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1 Introduction

In this technical report, the proof of Theorem 1 can be found. Sections 2-4 are copies of the
Sections 2-4 of the American Control Conference paper. Section 5 presents the proof of Theorem

1.



2 Extremum-seeking control problem for time-varying out-
puts

Consider the following multi-input-multi-output nonlinear plant:

> { &(t) = f(x(t),u(t),w(t))
" U e(t) = g@(t), ult), w(t)),

where & € R™= is the state of the plant, u € R™ is the input of the plant, e € R™e is the output
of the plant, w € R™ are disturbances, and ¢ € R is time. In the context of extremum-seeking
control, the input w is a vector of tunable plant parameters, the output e is a vector of measured
performance variables, and w are (time-varying) disturbances, for which we adopt the following
assumption.

(1)

Assumption 1 The disturbances w(t) are piecewise continuous, defined and bounded on t € R.
Moreover, there exists a constant py, € Rsq such that w(t) € W for allt € R, with W = {w €
R flw| < pw}-

In addition, we adopt the following assumption on the plant.

Assumption 2 The plant ¥, in (1) is globally exponentially convergent' for all constant inputs
u € U, where U C R™ is a compact set.

Remark 1 Assumption 2 guarantees that, for any constant w € U and any w(t) € W, there
exists a unique globally exponentially stable (time-varying) steady-state solution. This assumption
is the time-varying analogue of the common assumption in extremum-seeking literature on the
plant exhibiting globally asymptotically stable equilibria. In many (nonlinear) control problems,
for example tracking, synchronization, observer design and output regulation problems, the con-
vergent system property that all solutions of a closed-loop system converges to some steady-state
solution and thus "forget" their initial condition plays an important role. Moreover, this property
is immediate for asymptotically stable linear time-invariant systems with inputs.

From Assumptions 1 and 2, it follows that for all constant inputs uw € U and all disturbances
w(t) € W there exists a unique steady-state solution of the plant 3,, which is defined and
bounded on ¢t € R and globally exponentially stable (GES). The steady-state solution is denoted
by & (t, u), emphasizing the dependency on time-varying disturbances w(t) and constant inputs
u, and satisfies

T (t,u) = F(ZTw(t,u), uw,w(t)). (2)

In addition, we adopt the following assumption.

Assumption 3 The steady-state solution T.,(t,u) is twice continuously differentiable in w and
satisfies

O
| 0] < B ®
forallt e R, all u € U, and some constant Lz, € Rsg.

Furthermore, it follows from Assumption 2 that there exists a unique steady-state output of
the plant ¥, in (1), denoted by €,(t,u), which is given by €., (¢, u) = g(Zw(t, u), u, w(t)). It
is the task of the designer to define a bounded cost function, denoted by Z, that quantifies
the performance of interest for the plant under study. Then, the corresponding measured plant
performance is given by

y(t) = Z(e(t),u(t)), yeR. (4)
For all constant inputs w € U and all (time-varying) disturbances w(t) € W, the steady-state plant
performance (¢, u) is given by @y (t,u) = Z(g(ZTew (t, ), u, w(t)),u). Our aim is to find the
constant input values w that minimize the measured steady-state plant performance ¢,,, yielding

IFor definitions of convergent systems the reader is referred to Section 2.2 in [19].



the optimization of the steady-state plant output e.,. In the context of extremum-seeking control,
ideally the measured steady-state plant performance %, is constant for constant inputs w; this
forms one of the basic assumptions in the extremum-seeking literature [2], [7]. However, due to the
time-varying nature of the disturbances w(t) in (1), in general, the measured steady-state plant
performance g, is time-varying in nature (also for constant w).

To deal with time-varying plant outputs, consider the series connection of the plant >, as in
(1), the cost function Z as in (4), and additionally a filter, denoted by X, which reads

. { 2(t) = azh(z(t),y(t))
U ) = k=),

where a, € R+ is a tuning parameter, z € R"= is the state of the filter, ¥ € R is the input of
the filter defined by (4), and I € R is the output of the filter. Intuitively, the filter ¥, acts as
an averaging operator on y(t), utilized to quantify performance of the plant similar to the use of
exponentially weighting filters [9], [17]. Basically, if we tune «. small, the solution of z(t) will
vary "slowly" in time, i.e., the output of the filter I(¢) will be quasi-constant and determined
predominantly by the average of y(¢).

The series connection of the cost function Z in (4) and the filter Xy in (5), we call the dynamic
cost function. We adopt the following assumption on the dynamic cost function.

()

Assumption 4 The dynamic cost function consisting of the cascade of Z and Xy, given by (4)
and (5), respectively, is exponentially input-to-state convergent® for all constant inputs w € U and
all ay € Ryg.

The series connection of the nonlinear plant ¥, in (1), the user-defined cost function Z in (4),
and the to-be-designed filter Xy in (5) is referred to as the extended plant ¥ and is schematically
depicted in Fig. 1. The dynamics of the extended plant is given by

£(t) = azh(z(1), Z(g(x(t), u(t), w(t)), u(t))) (6)
I(t) = k(z(t)).

We adopt the following assumption on the extended plant regarding the smoothness of functions.

w(t) = f(@(t), u(t), w(t))
|

Assumption 5 Functions f and g in (1) are twice continuously differentiable in x and w and
continuous in w. Function Z in (4) is twice continuously differentiable with respect to both argu-
ments. Functions h and k in (5) are twice continuously differentiable with respect to all arguments.

Remark 2 The smoothness of the functions f and g in Assumption 5 is a common assumption
in the extremum-seeking literature, see, e.g., [2], [7]. The smoothness of the functions Z, h, and
k can easily be satisfied by design.

By similar arguments as in the proof of Property 2.27 in [19], we can conclude from Assumptions
2 and 4 that the extended plant ¥ in (6) is globally exponentially convergent for all constant
inputs w € U and disturbances w(t) € W. As such, there exists a unique steady-state solution
of ¥4, induced by the extended plant, which is defined and bounded on ¢t € R and GES. This
steady-state solution is denoted by 2Z.,(t,u,a,), emphasizing the dependency on time-varying
disturbances w(t), constant inputs w, and the tunable parameter «, and satisfies

;zw(t7u7ocz) = O‘zh(z"—“(t7u7az)7gw(t7u))‘ (7)
In addition, we adopt the following assumption.

Assumption 6 There exists a twice continuously differentiable function q,, : R™ — R"=, re-
ferred to as the constant performance cost, such that

lim Zw(t,u,az) = q,(u), (8)

az—0

2For the definition of input-to-state convergent the reader is referred to Definition 2.18 in [19].



Figure 1: The extended plant ¥, i.e., series connection of the nonlinear plant ¥, the user-defined cost
function Z, and the to-be-designed filter .

for allt € R and all u € U and w(t) € W. Moreover, there exist constants 0, € R>¢, related to
the disturbances w(t) and the extended plant X, and Ly € R, such that

[Zow (£, w0, 02) = @y (w)]| < @200, (9)
and o5 p
Zw q
ZEw _ Mw <
152 (1w, 02) = 2 )| < s, (10)

forallt e R, allu e U and all 0 < ay < €, for some €, € Ryg.

Hence, by Assumption 6, under steady-state conditions of the plant X,, the cost function Z,
the filter ¢, the limit o, — 0, and for constant inputs w € U, we have that the parameter-
to-steady-state performance cost of the plant can be characterized by the static input-to-output
map

Fu(u) := k(g (u), Vucel. (11)
We refer to the map Fy, as the objective function. To minimize the steady-state plant performance
Jw, We aim to find the plant parameter values for which the objective function in (11) is minimal.
We further assume that the dynamic cost function Z + X is designed such that there exists
a unique minimum of the objective function F,, on the compact set U for any (time-varying)
disturbance w(t) € W satisfying Assumption 1, where the minimum of the map F,, corresponds
to the optimal plant performance. This assumption is formulated as follows.

Assumption 7 The objective function Fy, : R™ — R in (11) is twice continuously differentiable
and exhibits a unique minimum in the interior of the compact set U. Let the corresponding optimal
input u* be defined as

u” = argmin Fp (u). (12)
uel

Furthermore, there exists a constant Lpy € Rsg such that

dF'w * *
W(u)(ufu ) > Lei|lu —u®|)?, Yuel. (13)

From Assumption 7, it follows that the vector of tunable plant parameters u will converge to
optimal input u* if we are able to design a controller that drives the tunable plant parameters w
in opposite direction of the gradient of the objective function in (11). However, since the steady-
state solutions of the plant in (1) and the filter in (5) and the objective function F,, are unknown,
we typically cannot design such a gradient-descent controller. Information of the objective function
can only be obtained through measured outputs ! of the extended plant in (6). The measured
output differs from the objective function F, in two ways; i) due to the dynamics of the plant in
(1) and the filter in (5) not being in steady-state, and ii) due to the presence of (time-varying)
disturbances w(t) and the design parameter «, which, in the presence of time-varying disturbances
w(t), is typically designed to be small, but still non-zero and positive. Nevertheless, we aim to
steer the inputs u to their performance optimizing values u* by using the measured extended
plant output I(¢) as feedback to an extremum-seeking controller that is introduced in the next
section.

3 Extremum-seeking controller

The controller design proposed here follows from the one in [12, Ch. 2]. In Section 3.1, a dither
signal design is presented, in Section 3.2, a model of the input-to-output behavior of the plant is



presented to be used as a basis for gradient estimation, in Section 3.3, a least-squares observer
to estimate the state of that model (and therewith the gradient) and a normalized optimizer
to steer the plant parameters w to the minimizer u* are presented, and, in Section 3.4, tuning
guidelines are provided for the closed-loop system composed of the extended plant ¥ in (6) and
the extremum-seeking controller.

3.1 Dither signal

To estimate the gradient of the objective function and use this estimated gradient to drive w
towards u* by an optimizer, we define the following input signal:

u(t) = w(t) + aww(t), (14)

where a,,w is a vector of perturbation signals with amplitude «a,, € R~q, and 4 is referred to as
the nominal input to be generated by the extremum-seeking controller. The vector w is defined
by w(t) = [wi(t),wa(t), ...,wn, ()] T, with

) sin (“glnwt) , if i is odd,
wilt) = { cos (3nwt), if 4 is even, (15)

fori ={1,2,...,n4}, where n, € R is a tuning parameter. The purpose of the perturbation signal
is to provide sufficient excitation to accurately estimate the gradient of the objective function. The
nominal plant parameters & can be regarded as an estimate of the minimizer u*.

3.2 Model of input-to-output behavior of the extended plant

To obtain an estimate of the gradient of the objective function, we model the input-to-output
behavior of the extended plant in (6), that is, from the nominal input @ to the measured output
of the extended plant [, in a general form. Let the state of the model be given by

m(t) = [Fuw(a(t) awife (@)’ (16)
From Taylor’s Theorem and (14), F,, can be written as

Fu(u(t) = Fu(@(0)) + 0w 2 @(0)w(0)

+ aiJ(t)/O (1-0) di;;:; (@(t) + saww(t))dow(t).

The dynamics of the state in (16) is governed by

m(t) = A(t)m(t) + al, Bs(t)

2 (18)
I(t) = C(tym(t) + adv(t) + r(t) + d(t),

B:[ ’ } o=l w0, (19)

and the signals s, v, r, and d defined as

() =2 (a() 4L,

(e 7%)

() = (1) /0 (1-0) d‘i 5::; (@(t) + oaww(t))dow(t),
r(t)

=k(2(1) - k(Zw(t v, az)),
d(t) = k(Zw(t, u, az)) — k(g (u(t))). (20)



extremum-seeking controller

Figure 2: The closed-loop system composed of the extended plant ¥, the observer ¥,, the optimizer X,,
and the dither signal aw.

The signals s, v, r and d can be interpreted as unknown disturbances to the model. The influences

of s, v, r and d on the state and output of the model in (18) are small if i) @ is slowly time varying,

if ii) o, is small, if iii) the states « of the plant in (1) and the states z of the filter in (5) are close

to their steady-state values, and if iv) ay is small.

The state m in (16) contains an estimate of the gradient of the objective function, scaled by
the perturbation amplitude «,. Hence, an estimate of the gradient of the objective function can
be obtained from an estimate of the state m. Based on this gradient estimate, an optimizer can
steer the plant parameters w to the minimizer w*. In the next section, a least-squares observer
and an optimizer for this purpose are proposed.

3.3 Controller design

We introduce an extremum-seeking controller that is composed of a dither signal as in (14), a
least-squares observer to estimate the state m of the model in (18), and an optimizer that uses
the estimate of the state m of the observer, denoted by 7, to steer the nominal plant inputs @
to their performance optimal values u*.

The least-squares observer, denoted by 3,, is given by

m(t) = (A(t) — nmo,Q(t)D " D) m(t)
+1mQ)C T (1)(U(t) — C(t)m(1))

Q) =1mQ(t) + A(H)Q(t) + Q(H) AT (1)
—nmQ(t)(CT (t)C(t) + 0.D " D)Q(1),

where D = [0 I], and 1., 0, € R are tuning parameters related to the observer, referred to as

a forgetting factor and a regularization constant.
The optimizer, denoted by X, is given by

PN (21)

nu D7 (t)
"N+ A [ DT ()|

S a(t) = -\ (22)
with Ay, 74, € Rso being tuning parameters related to the optimizer. Normalization of the
adaptation gain in (22) is done to prevent solutions of the closed-loop system of the extended
plant and the extremum-seeking controller from having a finite escape time if the state estimate
m is inaccurate [12, Ch. 2]. The closed-loop system, composed of the extended plant ¥ in (6),
the observer ¥, in (21), and the optimizer ¥, in (22), is depicted in Fig. 2.

3.4 Tuning guidelines

For the closed-loop system to operate properly, we have design guidelines that guarantee time-scale
separation:

1) The convergence of the solutions of the plant dynamics in (1) to its steady-state operation
is assumed to be fast,

2) The tuning parameter « of the filter in (5) is chosen small such that the difference between
the time-varying steady-state solution of the extended plant ¥ and the performance cost is
small (see Assumption 6), however sufficiently large such that convergence of solutions of
the filter dynamics is on a medium-to-fast time scale,



3) The dither frequencies parameterized by 7, are chosen slower than the filter dynamics to
provide sufficient excitation, admitting a medium time-scale,

4) The observer should use a sufficiently long time history of the perturbation signals and
measurement signal to be able to accurately extract the state of the model [12, Ch. 2|; the
observer dynamics and its design parameter 7,, should be associated with a medium-to-slow
time scale compared to the dither signal,

5) The nominal plant parameters 4, induced by the optimizer, should be slowly time varying
with respect to the observer by proper design of the design parameters A, and 7,,, admitting
a slow (optimizer) time-scale.

4 Stability analysis

In this section, we will provide a stability result for the closed-loop system described in the previous
sections. Due to the perturbation of the tunable parameter u, the optimizer state @ will in general
converge to a region of the performance-optimal value u*. The next result states conditions on
tuning parameters and initial conditions under which the extremum-seeking scheme guarantees
that @ converge to an arbitrarily small set around the optimum w*.

Theorem 1 Under Assumptions 1-7, there exist (sufficiently small) constants e1,...,e6 € Rso,
and initial conditions x(0) € Xy, symmetric and positive-definite Q(0) € Qp, w(0) € Uy, 2(0) €
Zy, and m(0) € Mg, where Xy C R, Uy C R, Qo C Rrutlxnutl z, c Rz A, C RPut!
are compact sets, such that the solutions of the closed-loop system consisting of the extended plant
in (6) and the extremum-seeking controller (consisting of the dither signal in (14), the observer %,
in (21), and the optimizer X, in (22)) are uniformly bounded for all az, &w, Ny Ay iy o € R0
and all o, € R>qg that satisfy a, < €1, Nw < @z€2, Mm < Nwes, Ay < Mmes, Nu < QwmeEs,
and o, < €g. Moreover, the solutions a(t) satisfy

. _ 1)
lim sup || @(t)| < max {Oéucl7 Do ,, 220w 03}, (23)
t—o0 «Q

z w

for some constants c1, ...,cs € Rso, with w(t) = a(t) — u*.

Proof of Theorem 1 The proof can be found in Section 5. (]

Remark 3 Tuning guidelines. Under the conditions of Theorem 1, it follows that, if we are
dealing with constant (or no) disturbances w(t), i.e., 0, = 0, the optimizer state 4 converges to
an arbitrarily small region of the performance-optimal value u* if the dither parameters oy, and 1.,
are chosen sufficiently small for an arbitrary bounded c,. To make the region to which @ converges
arbitrarily small in case we are dealing with time-varying disturbances w(t), i.e., 0,4 > 0, see (23),
we subsequently tune ., small to make the first term in the right-hand side of (23) arbitrarily
small, tune ay small to make the third term in the right-hand side of (23) arbitrarily small, and
finally tune n, small to make the second term in the right-hand side of (23) arbitrarily small.

10



5 Proof of Theorem 1

The proof of Theorem 1 is partially inspired by the one in [12, Ch. 2]. To prove Theorem 1, we
introduce the following coordinate transformation:

2(t) = x(t) — Tw(t, u(t)),
2(t) = 2(t) — Zw(t,u(t), az),
m(t) = m(t) — m(t), (24)
Q(t) = Q7 (1) —E7' — Imn(1),
a(t) = a(t) —u”,
with
() — 0 wT (1) -
(t) - O/Ww [ w(T) LU(T)UJT(T) _ %I :| d (25)
and
~_[1 o
=~[o 2] 0
Let us define the following vector fields:
}(tv éﬂ"') = f(:i: + Zw (t7u)7u7 w(t)) - f(i:’w(tv u)7 u7w(t))7 (27)
h(t, 2, u,0z) = (2 + Za(t, U, @z), Goo (£, 1)) — R(Zww (t, 0, a2), Too (E, ).

Furthermore, let us consider all variables on compact sets, i.e., let us define positive constants
La, Ly, pz, PQ, Lz, Pz, Pus pm € Rso and the following compact sets:

X={weR™ ]| < Lo},
U={ueR™: |u—u"|| < L.},
Xo={z e R"™ : |[Z]| < pa},

Qo = {Q e R™ V™1 |Q| < po}.
Z={zeR™ 3] < L.},

Zo={z eR"™ : 2| < p:},

Up = {8 € R™ : s — '] < pul}),

Mo ={m eR™ " |m| < pm}

Loosely speaking, the analysis of the stability properties of the closed-loop system can be divided
into three temporal stages, where we defined some finite time instances ¢; and to:

e for 0 <t < t; the solutions & and Q converge to a neighborhood of the origin and remain
there, the solution Z converges but may still be away from a neighborhood of the origin,
while the solutions m and @ may drift, but remain bounded.

e for t; <t < to, the solutions & and Q have already converged to a neighborhood of the
origin, the solution Z converges to a neighborhood of the origin, while the solutions m and
4 may drift, but remain bounded.

e for ¢t > to, the solutions m and @ also converge to a neighborhood of the origin.

We first derive bounds on each of the variables in (24) corresponding to these three temporal
stages of convergence.

From the plant ¥, in (1) and its steady-state solution that satisfies (2), the coordinate trans-
formation in (24), and the vector field defined by (27), it follows that the dynamics of & for

11



constant inputs u is governed by
Z(t) = &(t) — Bap (£, 1)
(:IZ, u, w(t)) - f(@w (t7 u)7 u, w(t))
(@ + Zw (t,w), u, w(t) = f(@Zw(t, u), u, w(t))
= f(t, %, u).

=f
29

_f (29)
To derive a bound on the solutions of &(¢) for time-varying inputs wu(t), a preliminary result is

presented in Lemma 1 on the existence of a Lyapunov function for the &-dynamics, on a compact
set, for constant inputs w € U in (29), and satisfying Assumptions 1-3 and 5.

Lemma 1 Under Assumptions 1-8 and 5, there exists a function Vy : R x R" x R™ — R, and
constants Ya1, Va2, ---, Y5 € R, such that the inequalities

Yer|2]* < Va(t,2,u) < yao |2, (30)
8V OV -~ -
We (1) + 22 (12 0) (1. 5.) < s3] (31)
and oV, oV,
H = (1, H < el H = :u)H < sl (32)

are satisfied for allt € R, all ® € X, all constant u € U, and each (time-varying) disturbance
w(t) e W.

Proof. See Section 6.1. O
From the plant ¥, in (1) and its steady-state solution that satisfies (2), the coordinate trans-

formation in (24), and the vector field defined by (27), it follows that the state equation for & for
time-varying inputs w(t) is given by

2(t) = @(t) — Tuw(t, u(t))

= (1) — 22 (1, (1)) — O 1, w(t))is(1)
= F(@(0) u(0), () ~ F (@ (b u(t)), wlt), w(0)) — 220, u(t)ist) (33)
= F@0) + Bt u(), w(), () — F @t w(t)), w(t), w(B) — T 1, w(t) ()

- Oy

A bound on the solutions of the Z-dynamics for time-varying inputs w(t) in (33) is presented in
Lemma 2.

Lemma 2 Under the conditions of Theorem 1, there exist constants cz1, Cz2, Bz € Rso such that
the solutions of & satisfy

@(2)] < max { et [2(0) =" aunoces } (31)
for allt >0, all x(0) € Xy, and all time-varying u(t) € U.
Proof. See Section 6.2. O

From the observer in (21), the coordinate transformation in (24), and the model of the input-

output behavior in (18) we obtain that the state equation for @ is given by

Q1) = —nmQ(t) — QUA(L) — AT(DQ(1) (: n ’;—’”n(w) Alt)
“ (35)

T =1 77mn . Nm
A ()( + I (t)) )

w

A bound on the solutions of Q(t) is presented in Lemma 3.

12



Lemma 3 Under the conditions of Theorem 1, there exist constants cq, Bg € Rso such that the
solutions of Q satisfy

1] < max { el Qo) ", ¢ | (36)

forallt >0, all Q(0) € Qq for which Q(0) is symmetric and positive definite, and all time-varying
u(t) eU.

Proof. See [12, Ch. 2]. O

From Lemma 2 and Lemma 3, we conclude that there exists a finite time ¢; > 0 such that
&) < dwnwees and |Q(t)| < % for all t > t;. These bounds on &(t) and Q(t) are utilized to
obtain bounds on the solutions of z(t), w(t), and m(t) in Lemmas 5, 6, and 7, respectively.
From the filter ¥ in (5) and its steady-state solution that satisfies (7), the coordinate trans-
formation in (24), and the vector field defined by (27), it follows that the state equation for Z for

constant inputs u is given by
Z(t) = 2(t) — Zw(t,u, o)
= azh(z7 y) - Oézh(z'w (t7 u, az)7 ’gw (t7 u))
=0z (h(z7 Zj—w (t7 u)) - h(iw (t7 u, aw)7 ’gw (t7 u))) +az (h(z7 y) - h‘(z7 ’gw (t7 u)))
aziz,(t, zZ(t),u,0z) + az (h(z, y) — h(z, Jw(t, u)))

37)

To derive a bound on the solutions of Z(t) for time-varying inputs u(t), a preliminary result is
presented in Lemma 4 on the existence of a Lyapunov function for the zZ-dynamics, on a compact
set, for constant inputs w € U in (37), and satisfying Assumptions 4 and 5.

Lemma 4 Under 4 and 5, there exists a function V, : R x R™ x R™ x R — R, and constants
YalsV22s -5 V25 € R, such that the inequalities

Yo lZP < Vit 2,u, a2) < vao 27, (38)
oVy , V. = 12
z z z V2, U, 0z) < —QzYz , 39
o (t,2,u,0z) +a 5% —Z(t,2,u,a2)h(t, 2,u,az) < —az7y23] /2| (39)
and oV oV,
G220 <amtal, |Gz man| <zl (10)

are satisfied for allt € R, all z € Z, all ay € Rso, all constant w € U, and each (time-varying)
disturbance w(t) € W.

Proof. The proof of Lemma 4 follows similar arguments as the proof of Lemma 1. (Il

From the filter ¥ in (5) and its steady-state solution that satisfies (7), the coordinate transfor-
mation in (24), and the vector field defined by (27), it follows that the state equation for z for
time-varying inputs w(t) is given by

2(t) = 2(t) — Zu(t, w(t), oz)

= 5() — 2221, u(t), 02) — 22 (1, u(t), o))
= azh(z(t)7 y(t)) - Oézh(iw (t7 u(t)7 O‘z)v Yw (t7 u(t))) - % (t7 u(t)7 Ocz)'it(t)
()

= az (h(2(t), Gu (t, u(t))) — h(Zw (t, u(t), ow), Gu(t, u(t))
+ oz (h(z(t),y(t) — h(z(t), Juw(t,u(t)))) - 8;—w(t u(t), az)u(t)
0Zw

= azh(t 2(0),u(t), 0z) + ax (A(=(2), y (1)) — h(=(1), Gut u(0)) — S22 (t,u(t), az)i(t).

)
)

A bound on the solutions of the Z-dynamics for time-varying inputs w(t) in (41) is presented in

Lemma 5.

13



Lemma 5 Under the conditions of Theorem 1, for any finite time t1 > 0, the solutions of z are
bounded for all 0 <t < t1, all z(0) € 2y, and all time-varying u(t) € U. In addition, there exist
constants cy1,Cz2,Cz3, Bz € Rsqg such that the solutions of z satisfy

AN

Hé(t)l‘ < maX{CZl||2(t1)|‘6_QZﬁZ(t_tl)7O‘inwazcz% CzS} (42)

z

for allt > t1, all 2(0) € 2y, all £(0) € Xy, and all time-varying u(t) € U.
Proof. See Section 6.3. g

From Lemma 5 we conclude that there exists a finite time ¢5 > t; > 0 such that

AN

[2(t)|| < max{alnoazcz2, cz3}, (43)

for all ¢ > t2 > t;. Moreover, from Lemmas 2 and 3 it follows that ||Z(t)] < wnwCe2 and
Q)| < % for all t >ty > t1. These bounds on &(t), Z(t), and Q(t) are utilized to obtain bounds
on the solutions of @(t) and m(t).

Firstly, consider the @i-dynamics. From the optimizer in (22) and the coordinate transformation
in (24) it follows that the state equation for @ for time-varying inputs w(t) is given by

nuDT(t)
"1+ A [ D(t)]]
nuD (m(t) + m(t))
“Nu + A [|D (m(t) +m(1))]

w(t) = a(t) = -\
(44)

A bound on the solutions of @(t) for time-varying inputs w(t) in (44) is presented in Lemma 6.

Lemma 6 Under the conditions of Theorem 1, for any finite time to > 0, the solutions of u are
bounded for all 0 <t < ta, and all w(0) € Uy. In addition, there exist a constant c,1 € Rso such
that the solutions u satisfy

- - 1 -
sup )] < mox { (el ~-eur sup )]} (15)
t>to (e 7] t>to
and L
limsup [|@(t)] < o Cul lim sup || (¢)]]. (46)
t—o0 w t—o0
Proof. See [12, Ch. 2]. O

Secondly, consider the m-dynamics. From the observer in (21), the coordinate transformation
in (24), the model of the input-output behavior in (18), and the state definition in (16) we obtain
that the state equation for 1 is given by
lt) = f(t) — m(t),
= (A®) = mQW) (CTWC (1) + 0. D" D) ) a(t) + a2 B (5(1) - s(t)) (47)

~ 1mQWCT(1)(02 (1) — v() = (t) — (1)) = s @() DT T2 (a(t))

A bound on the solutions of m(t) for time-varying inputs w(t) in (47) is presented in Lemma 7.

Lemma 7 Under the conditions of Theorem 1, for any finite time to > 0, the solutions of m are
bounded for all 0 < t < ta, all m(0) € My, and all time-varying u(t) € U. In addition, there exist
constants ¢mi, ..., tm7 € R such that the solutions of m satisfy

(t)||7 Cm3az17 Cm4a3)77waz7

2
- - Qg A |y ~
sup (0] < sup mx { e (1) a2
t>to t>to Im

(48)

« ~
Cm5 @l 3 Cm6az5'w7 Cm7 O0rQiw Hu(t)”} 3

z
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and

= Hﬁ(t)||7 CmSOéiy Cm4az:7]w0¢z,7

lim sup || (t)]| < lim sup max {cmg Qo
t—o0 t—o0

(0% ~
Cm5 wnw7cm6az6wycm7\/ OrQw Hu(t)”} 3

Qz

Proof. See Section 6.4. O

The dynamics of w and m can be seen as feedback-interconnected subsystems for which the
solutions satisfy the bounds in Lemmas 6 and 7, respectively. To verify that this feedback-
interconnected system exhibits uniformly bounded solutions, the cyclic-small-gain criterion in [22]
is employed. The cyclic-small-gain criterion for each simple cycle follows from Lemmas 6 and 7,
and are given by
QA
<1,
Nm (50)
Culcm7\/a < 1.
For (sufficiently small) constants €y, ...,es € Rsq, the cyclic-small-gain criterion for each simple
cycle is satisfied for all a,Ay < Mmeq, and all o, < €4, rendering the closed-loop system of the
extended plant and the extremum-secking controller ISS with respect to the dither signal aq,w(t).
Therefore, from (45) and (48), we obtain that

Cu1Cm?2

- 1
sup [|a(t)]| < max {IIU(tz)L —cuicmi|[m(t2) |, dwcuicms,
t (e7%)

>t
’ (51)
Nw 0z 0w }
ANwzCyu1Cmdy, — CulCmb5, — CulCmeé6
z (675)
and )
- - Qg A N 2 2
sup || (1)|| < max | cmallm(t2)]], cma||w(t2)]], cmsog, cmacinworz,
>t (52)
QuwTw ~
a Cm57az6w0m67aw\/arcm7|‘u(t2)||}7
z
Similarly, from (46) and (49), we have that
. - Neo Q20w
lim sup ||u(t)H S maX § XwCulCm3; XwNwXzCulCm4, —— CulCmb, —— CulCmé6 (53)
t— 00 Qz (e7%)
and o
limsup ||m(t)]| < max {cmgai, Crma0,Tw Oz, w_%cm57 az6w6m6}7 (54)
t— 00 Qz

The boundedness of the solutions of the closed-loop system in Theorem 1 follows from Lemmas 2,
3, 5, 6, and 7, the bounds in (51), (52), and the coordinate transformation in (24). The bound in
(23) of Theorem 1 directly follows from (53) and the coordinate transformation in (24).

A final remark has to be made about considering the inputs w on the compact set &/. Through-
out Lemmas 1-7 we have considered u(t) € U, where U is a compact set as defined in (28). From
the result of Theorem 1 can be concluded that by subsequently tuning a,, ., and 7, small, we
can tune the region to which @ converges arbitrarily small, such that in the limit for ¢ — oo we
have u(t) € U. However, u needs to stay in the compact set U for all time, not only in the limit
for t — oo.

The condition u(t) € U as used throughout Lemmas 1-7 requires that ||u(t) —u*|| < L,, for all
t > 0, with some constant L,, € Rs. From the definition of w in (15) it follows that there exists
a positive constant Leo € R such that ||w]] < Ly2. As such, from (14) and (24) we have that

Ju(t) — uw’|| = @) — u* + aww(t)],
<) - |l + awlw®ll,
<||@(t) — u*|| + qwLuwa, (55)
< la(@)] + cw Loz,
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Basically, if we show that ||@(t)|| < L, — c Lo for all ¢ > 0, then u(t) € U for all ¢t > 0.
First, we consider 0 < ¢ < t3. From the optimizer in (22) we have that

@)l = [le(®)]] < 1, (56)

which yields
[w@®l < |a(0)| +nut V>0 (57)

This implies that the bound on @(¢) in (57) grows with time on the interval 0 > ¢ > t5. Never-
theless, for any initial condition @(0) € Uy C U and for any finite time t5 > 0, from (57) it follows
that we can tune 7, sufficiently small such that ||@(t)|| < Ly — awLee for all 0 < ¢ < t5. In
particular, for all @(0) € Uy, with Uy as in (28), we should tune 7, < %&, such that
u(t) eU for 0 <t < ts.

Second, consider ¢ > to. From (51), it follows that we can subsequently choose a.,, iz, N,
and 7, sufficiently small such that the last four terms and the first term in the right-hand side of
(51) are smaller than L., — «, Le2. In particular:

e From the third term in (51) it follows that w(t) € U for ¢ > t5 if ay, < Loy

(curcma+Lw2)’

e From the sixth term in (51) it follows that w(t) € U for t > ty if o, < 2ellu—0wles).

OwCulCme

e From the fourth and fifth term in (51) it follows that w(t) € U for t > to if 9, < (L4 —
0 Lo) min{ L }

Qw2 Cul1Cmd’ Cul (/mo

e From the first term in (51) it follows that w(t) € U for t > to if 9y, < W;

Now it remains to show that the second term in the right-hand side of (51), i.e., 2= cuyicm1|m(t2)]],

can be upper bounded by L, — a L. From (171) in Lemma 7 and the comparison lemma we
can deduce that

’H;n + 4(12,

Vin (11(8), (1)) < Vn (112(0), Q(0))e™ ¥+ —5= Livamu sup Q' ()| + 6LkaZ 5%,
5 m = (58)
+ - af_,LFQLwQ +6LE sup ||2(t)||* + 202 Lo sup ||a(t)|)?,
t>0 t>0
for t > 0. Using (159) we obtain
- Amaz(Q~ - —1m 4043, _
prao)? < 2mes @O i gy 4 (292 102 sup @ 1) + 6170203
3 4 2 2 r2 ~ 2 1
412,14, + 6L 20.02 L )
+ G0bThaLls + 6LEsup |20 + 2002 Lrasup 801 ) s— o=
for t > 0. From (59) we obtain
()] < /5 mrs mas {/6Amas (@ (0)) [r(O) e
Amin (Q (1))
2V/6 Ly 21 Ok (60)
F2 supHQ (t)H276LkO‘z5w7
Nm t>0
802 Lira L, 6L sup |2(1)], 2v/30, 0w Lz sup [a(t)]| },
t>0 >0
for t > 0. From (151) in Lemma 5 we have that
> < D=2 3’Yz2zl 3’Yz222 2
sup [|2(1)|I* < “=2(0)))* + =5 sup |2 O + 2257 sup | Z(#)ll
t>0 z1 V= Wz = V= ’Yz = (61)
372223 2 2 2
%T%Oéw’ﬂw (ezes + Luw1)”,
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which leads to

- 22 - 21 - 22 -
sup [[2(t)[| < 2 —7 max{Hz(O)ILﬁ—supllw(t)|\27\/§— sup [[Z(t)],
t>0 Yz3 t>0 V23 t>0

(62)
23 OlwMw
V3= el (E3E5+Lu1)}
Yz3 Oz
From (34) in Lemma 2, we have that
sup [2(0)]* < max {z.]|2(0)]*, adniczs} (63)
and
sup (1) < max {car[2(O)], awrocoa} (64)
From the coordinate transformation in (24) we obtain that
sup |Q ™1 (1) < sup |Q()[| + =77 + Suplln( - (65)
t>0 t>0

From (25) and (26) it follows that there exist constants N1, Na € R+ such that |n(t)]] < Ny V¢t >
0 and ||Z71|| £ Na. Moreover, from the conditions in Theorem 1 follows that 7, < n.e€3. Using
this and (36) in Lemma 3 we obtain

sup [Q ' (t)|| < sup [|Q(¢)]| + N2 + Nl,
t>0 t>0

(66)
< max {CQHQ(O)H, g} + N2 + €3Ny,
From (62)-(64) we obtain
21631 . 22C21 | -
sup 1201 < 2,/ 72 max { 2O 222 a0, 22 ja(0)]
- : (67)
z10z2 2 9 22Cx2 23 Owlw (6365+L 1)}
Y=z3 i Y=z3 e Yz3 Oz “

Combining (60), (66), and (67), using the conditions in Theorem 1, i.e., M, < auNmes and
Nw < az€2, and assessing ||m(t)|| at ¢ = t2, the second term in the right-hand side of (51) reads

1 - VAR
—cu1cmi||m(t2)]| < Mmax{ maa( Hm Ve~ “F 2,
O Amin(Q " (2))
12Lk ’y 2 12Lkzlcm1 3’)/ 2 ~ 2 12Lkz20 1 3’)/ 20~
— /= lz ()IL* =20)[1°, ————1/ == 12(0)]l;
w Yz1 Yz1 QY23 Yz1

1
w2V6Lpaes (CQHQ(O)H + Na2 + 63N1) ’,

1

1 p)
an\/ngzés (g + N2 + €3N1> ) (68)
6Ly Qzdw .30 LpaLl s, 121y, %2 216 O MNw Oz €2,
(e 7%} Y=z3

12L;, /3%2 Z2Ca2 T, 121, [3Vz2 23 Tlu (e3¢5 + L),
V=1 Yz1 V=3 Oz

2v/30,Lp2 sup Hu Qll }

to>t>0

By showing that the right-hand side of (68) is bounded by L., — ay, L2, we have that u(t) € U
for all ¢ > 0. In particular:

e From the last term in (68) it follows that, if we have designed n,, < L’“Ot‘iz“*p“ (as discussed

2
before), and if we design o, < % (ﬁ) we have that the last term is bounded by L
0 L2, yielding u(t) € U for t > to.
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e The 5% to 11" term in (68) can be made arbitrarily small by subsequently tuning a.,, as,
and 7, small, such that the last term is bounded by L., — o, Le2 and yielding u(t) € U for
t > 1.

e From the first four terms it follows that we can not choose arbitrarily (large) initial condi-
tions. For example, we require «,, to be small to make some terms small, while given the
first four terms require the initial conditions to be chosen even smaller. Nevertheless, there
exist a (small) set of initial conditions such that the first four terms can be bounded by
Ly, — L2, and thus u(t) € U for all t > to.

Concluding, there exist (sufficiently small) constants €, ..., 5 € Rs¢ and initial conditions x(0) €
Xo, Q(0) € Qq, 2o € 2y, u(0) € Uy, and m(0) € M, with Xy, Qo, 2o, Uy, and M as in (28), such
that i) the solutions of the closed-loop system of the extended plant and the extremum-seeking
controller are uniformly bounded for all a, ), N, Au, Tm, Nw € Rso and all o, € R>( that satisfy
ar < €1, Nw < 262, Tm < Nwes, Gwdu < Nmed, Tu < Awlmes, and o, < eg, ii) u(t) € U for all
time, and iii) the region to which @ converges can be made arbitrarily small. This completes the
proof of Theorem 1. O
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6 Appendix

6.1 Proof of Lemma 1.

The proof of Lemma 1 follows a similar line of reasoning as Theorem 4.14 and Lemma 9.8 in Khalil
(2002). The structure of the proof is as follows. First, it is shown that the inequalities in (30)
hold. Second, it is shown that the inequality in (31) holds. Third, it is shown that the inequalities
n (32) hold.

Since Assumption 2 implies that the system in (29) is globally exponentially convergent for
constant inputs u € U and all (time-varying) disturbances w(t) € W for all ¢t € R, satisfying
Assumption 1, there exist constants g, vz € Rsg for each pair u and w(t) such that all solution
of the dynamics in (29) satisfy

I1Z(8)]| < FallZ(t0)[le™= ),V &(to) € R™™, t € R, (69)

where fig,v, € Ry denote the maximum of all p; and minimum of all v, for each pair uw and
w(t), respectively.

Let ¢(7;t, &, u) denote the solution of (29) for constant inputs w that starts at (¢, &); that is,
¢(t;t, &, u) = &. In other words, ¢ satisfies the equation

9¢

o (it @) = f(r¢(rit@,u),u), Gt @,u) = 2. (70)

The notation ¢(7;t, &, u) emphasizes the dependence of the solution on the constant input w.
Moreover, due to the exponentially decaying bound on the trajectories in (69) we can write the
following:

l(r:t, &, u)|| < fiall@(t;t, 2, u)|le =T, V71>t (71)
Define the function
t+6,
Va(t, &) = / &7 (7t & u)(r 1, &, w)dr, (72)

t
where 6, > 0 is a positive constant to be chosen. Firstly, we prove that the inequalities in (30)
hold. Using (71), we obtain the following upper bound on V:

t+dx
Va(t, &, u) = / lp(rst, &, u)|* dr
t
t+0x 4
< / e 2 Oar|a]? = T2 (1o ete ) .

> 2,

(73)

t

Next, we construct also a lower bound for V,,. From Assumption 5, it follows that if we consider
x and u on compact sets, i.e., x € X and u € U, there exist constants L g, Lw, Lgz, Lgu € R5g
such that o 5
H_f(m7u7w)H§Lfﬂ?7 H—‘f(m,u,w)H SLf’u:
ox ou
9 P (74)
Hi(wfuﬂw)u §L9T7 Hi(m7u7u})u SLQTM

for all x € X, all w € U, and all w € W. In addition, from (29) and the Mean-Value Theorem,

we have _
£t 2, w)|| = [[F(Z + B (t, u), w, w) = f(Zw(t, u), u, w)|

1
of , . . _ -
/8—m(am+azw(t,u),u7w)daw
0

of , .

P

1
</
0

:ew<t,u>,u7w>‘ do || = Lya 3]
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By using (75) and (70) we obtain

g (¢T(T;t,a~c,u)¢(7;t,5c,u))‘

0 -
= (st @) = | =

2|67 (it @ w)F (7. $(rit 3,0), w) (76)
2llg(rit. @, W)l | F(r (rit @, w), )
2Lga ||p(T5t, 2, u)||2 )

)

IN A

from which we can derive the following bound:

0 - -
o (lp(rt, &, u)l*) > —2Lse | ¢(3t, 2, u)|, (77)

for all 7 > ¢. From the inequality in (77) we obtain

0

5= (le(r:t. 2w ¢ e7) > 0. (78)

By integration of both sides with respect to time over the domain [t, 7], it follows that

/ <% (||qi>(s;t7:i:,u)|\2 eQLf“S)) ds >0

(79)
I | g(rit, &, u)l|* — et (it &, w)||* > 0
lp(rst, &, w)|* > e 2E= 70 )2
Then we obtain, using (72) and (79), that
t+0g
Ve (t, &, u) = / llp(r;t, &, u)|* dr
t
riss (80)
1
> 2L g (T—1) g411 2112 _ _ o 2Lsadz ) (152,
> [ @] = 57— (1- =) Jal
t
The bounds on V, in (73) and (80) imply that the inequalities in (30) are satisfied with
— _ 2Ljzéa ,u‘(v o —2v,0a
Vel ST (1 e ) , and Yz = 2w, (1 e ) , (81)

and since L gq, [iz, V,, and d are positive constants, we have that 51 > 0 and yz2 > 0.
Secondly, we prove that the inequality in (31) holds. By Leibniz’s rule for differentiation, the
derivative of V, along the trajectories of the plant is given as follows:

r. - T . o . - T (4. - . o
W+%f(t7m7u):¢ (t+5mat7m7u)¢(t+627t7m7u)7¢ (t7t7w7u)¢(t7t7m7u)
t+0x
+/2¢T(T,t5: )%‘f( t, &, w)dr
t
t+0p
[ 267 e w gt it a wirf,a.0) (82

t

= ¢ (t+0ait, @, u)(t + 0wt 2, u) — |2

t+60
09 09

+ / 2 (31,2, )<8t( &)+ 52 w,u)}(m,u)>dr.
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In order to evaluate the third term in the right-hand side of (82), we integrate both sides of (70)
with respect to time over the domain [r,t] such that we obtain

S(rit, B u) = & + / F (s, blss t, &, ), w)ds, (83)

Taking the partial derivative to ¢t and &, by Leibniz’s rule for differentiation we obtain

9¢ - Bf . [010)
at ( ) -f( ) 8w( ¢(87t7 111, u) ) at ( )d87
t (84)
¢ - Bf - [o10)
8 (ritiew) = It [ 9L (s, plst,,), w) 32 (51,8, w) s,
t
Therefore,
09 D e e
at( > L )+am( tw?“)f(t7m7u)7
85)
[OF iy a 99 00 " (
Lotz (GPsta0) + 2t .00 ) ) .
By differentiation of (85) with respect to 7, we obtain the following differential equation
09 0, - oa L
o (e + St awia ) -
af o o (86)
D rsraww (BRenew+ e wites).
with the initial condition (which follows from (84))
99 st @) + 22 (11,2, w) P (1. 8w) = — F(t.Bw) + F(t.2w) = 0. (87)
ot ox
From the differential equation in (86) and the initial condition in (87), it follows that
0 (it + 2 (rit, 2w P2 w) =0, W1, (59)

which renders the third term in the right-hand side of (82) zero.
In order to evaluate the first term in the right-hand side of (82), we use (69) from which it
follows that

¢ (t+ 025 t, B, WDt + Sai b, &, ) = ||p(t + a8, Z, w)|?
< e (11, 2, w)|* = e
By using the results in (88) and (89), the derivative of V, along the trajectories of the plant in

(82) yields

avcv & avcv ~ F3 ~ =2 —2v.0z ~ 112

St @ w) + S (et E,w) < - (1- ke ") |l (90)
The bound in (90) implies that (31) is satisfied with vz3 = (1 — i2e~?2=%). To show that 73 > 0,
we choose d, in (72) such that J, > lnl(j—ﬂ“) > 0, where fip, v, € R>0 Without loss of generality,

this implies that
Iaie*an(#m) > ﬂief%mém 2 O7

2 (/i) 5 e ete > ), (91)
1> pte == >,
As such, we have that 53 > 0.
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To show the validity of the first inequality in (32), consider the derivative of V, with respect

to x:
P o
T T/ . ~ ~,
9% = / 2¢ (t;t, @ )8:(:( it &, u)dT.
t
Then we obtain
v, e o
— T . i L . o~
152 =1 [ 20" it a0t a i
t
465
< dr.

< / 210t | 522w

From (71) it follows that

lp(r;t, & u)|| < fwe™ =2, V>t

Moreover, by differentiation of the second equation in (84) with respect to 7 we obtain

0, - of 9 .1 5 99 . _
7 (S2minaw) = Lo e wiee e, e -
Then we obtain the following bound:
0 - 0¢ -
|7 (8 cea)| <[ otmrem o] [ meem]

Using the fact that

0 ||0¢ - 0o -
B | ks iy G <
g %w,t,m,u)H <[ & (Seraw)|.
and from (74) we have that
of oz a .
EIR YT —
|t
S Lfm7
it follows from (96), (97), and (98) that
o¢ . 9¢ -
87’ 8:(:( it ,u)HSwa 8—~( ta;u)HA
The inequality in (99) can be rewritten as
a¢ ~ —LggT
@ <0.
87’(8:1:( it &, u)ll e )_0

(92)

(94)

(95)

(98)

(99)

(100)

By integrating both sides with respect to time over the domain [¢, 7] and using the initial condition

n (95), we obtain

Hg—g(r;t,@u)ue_Lf“ < Hg—z(t;t@u) e et
T et
Using (94) and (101) in (93), we obtain
t+6m
1%z < [ 210tea | S2ena ) o
t
t+6m
< 211@6_(Ew_Lfm)(T_t)dTHiiJH7
t
< (1o e Cambrelie) 3.
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The bound in (102) implies that the first inequality in (32) is satisfied with

2fig ( (Lpg—vy)s )
= Mz (eFremvadie 1) 103
Y4 Lo -1, e (103)

Given the fact that Lz, fiz, Vs, 0z € Rsg, consider the following two cases:

Za

1) If Ly, > v, it follows that
(Lremraie 15 (104)
9%
Moreover, since Ha 0, it follows that 44 > 0.
fz — Vg

2) If Lz < v, it follows that
—1 < ellreralie 1 <, (105)

2

fz — Vg

Moreover, since < 0, it follows that 44 > 0.

Without loss of generality, we assume that Ly, # v, such that yz4 > 0.
To show the validity of the second inequality in (32), consider the derivative of V,, with respect
to w which reads

t+6x
Ve o6, .
B / 20" (1;t, & u)au(T,t,m,u)dT, (106)
t
from which it follows that
t+6x
Han 20" (1;t, & u)g—i(r,t,é,u)dr
t+gm (107)
§/2||¢ HH Tta:u‘d.
Differentiation of both sides of (83) with respect to w and by using (27) we have that
b, o [
a_u(T1t7m7u) - u (/f(57¢(57t7w7u)7u)d5> ’
(108)
PR of oo,
au( ¢(57t7w7u)7u) 8$(¢( ,t7ill )+w’w(8 u) u, 'UJ)au(S,tﬁlZ,u)d&
Taking the norm, it follows that
o, [0, .
|3 g/Hau(s,ws,t,m,u),u)H
(109)
H Uu) + Tw (s, u), u, w) HH—S;t,JB,u)‘ ds
Using (74), Assumption 3, (98), and
of ,_
A |
(110)

of
< — —_—
<o)+ 3

(i:wyuvw)H

S 2qu7
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we obtain the following inequality

HZ—Z(T;tﬁB,u)H S/<2qu+wa
t

oo

. (111)
09 _
< — O )
—2qu(T t)+Lfﬂ3/Hau(s’t7m7u)‘ ds
t
By using Gronwall’s inequality, it follows that
H g¢( it 5:7u)H < 2L gy (1 — t)eireT7h, (112)
u

Substitution of the exponentially decaying bound on the trajectories in (69) and (112) in (107), it
follows that

|5

< [ atwseon |2t

)| d,

t+0q
= / Afiz Ly (T — t)e! 272000 dr |, (113)

t

t+3g t+6a
<4awaue<LfmZm>t< / e(Lteta)Trdr _ ¢ / e(wazm>fdr> =l

t t

The integrals in (113) are given by

t+60
eEtara)m g — o(Lgara)t+ie) ((Lfe — Vo)t +02) =1\ (rpp—ryye ((Lfe —15)t =1
(Lpa—vg)t
_ e (L m_Zm)‘sm
— o (T (e = )0 2) = 1) = (B = )= )
(114)
and
t+0s
_ / oLpa—va)rg, (6<wa—zm><t+6w> _6<wa—zm>t)
Lfﬂ? - Zw
f (115)
(Lpa—vg)t
_ _ e ™ (Lfa—re)ds Le. — (L. —
(Lfz — 1,)? (6 (Lgo = vo)t = (Lso Z“’)t) ’
respectively. As a result, (113) can be written as
OV 4Mwau (Lfgp—vg)de ~
|G| < ety (eChammsae (Lo — 2o =1) 1) I (116)
The bound in (116) implies that the second inequality in (32) is satisfied with
Afie Lo (Lpm—vg)s
o5 = o h @ Voo ([ — v V5p —1) +1). 11
Va5 Lz —v,)2 (e (Lfa —vy)0 )+ ) (117)

Without loss of generality, if Lz # v, and with fiz, v, Lz, Lfu, Lfz, 62 € Rso, it can be shown
that vz5 > 0; the fraction in the expression for v5 is defined and positive whenever Lz # v,.

The expression between brackets is a function of the form ¢(z) = 1+ e®(z — 1). The derivative of
q(z) with respect to x is given by 44/dz = 2. From this follows that 44/dz = 0 if 2 = 0 (the limit
& — —oo is not considered here). For x = 0 it follows that ¢(0) = 0. Furthermore, 44/dz < 0 for
x < 0, and 94/az > 0 for > 0. As such, ¢(x) is positive for all z # 0. As a result, if Ly # v,
then 7,5 > 0. This completes the proof of Lemma 1. (I
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6.2 Proof of Lemma 2.

By using the function V; in Lemma 1 as a Lyapunov function candidate for the Z-dynamics with
time-varying inputs w(¢) in (33) we obtain the following expression for V:

Vol d,u) = D2 (1, 8,0) + D2 0,8, 0)d + 5 (1,8, )i
Ve ,, - Ve i~ 0% . Ve .
= a2 a (Feaw - G wwi) + 2 s i 1)

= B )+ D 0,2, 1,8, u) + (8—J(t,a~c,u) St u)ag’—u“’(m)) @,

for all @ € X, all (time-varying) inputs u(t) € U, for all ¢, and all (time-varying) disturbances
w(t) € W, for all t. Note that in (118) we have omitted the implicit time-dependency for notational
clarity. Using Lemma 1 and Assumption 3, it follows that

GVw - 8Vw - OZw
e e (PR o |
< as|&)* + (waLau + ves) [12][|E]), (119)
~ (’Ym4qu + ’YmS)
sl + sl e

Using Young’s inequality and from (30) in Lemma 1 we obtain

L 2
MWHQ

s 7 (120)
(')/az4L(vu + ')/az5)2 Hu||2

2’}/1:3

. N - 1 -
Va(t, @, w) < —Yos @] + 5 vas| 2] +

o Y3
2’}/1:2

< Vo (t,2,u) +
To find an upperbound for ||@|, it follows from (14) that i = @ + a,w. From (15) we have that
there exists a constant L,,; € Ry such that

lol] < NwLewt- (121)

Furthermore, from (22) we have that ||| < 7. Therefore, we obtain an upperbound on | ||
which is given by
il < Mu + ot L, (122)
which implies that
] < awne (eses + L), (123)

for all 3, €5 € Rsg, all 7y, < ny€3, and all 7y, < agNmes. Substitution of (123) in (120) gives

2 (’Ym4qu + ’YmS)

Y3 ~
Ve(t, @, u +o¢w »
x( ) 1, s

Vo (t, &, u) < —
ﬂ?(7w7u)7 2'7(02

(es€5 4 Luwn)?. (124)

From the comparison lemma in Lemma 3.4 in Khalil (2002) follows that

2
Va(t,2(0), (1)) < V(0. 3(0), u(0))e™ P25 4 o Uetbee 220
x3

— Yo p qu p 2
< Va(0,2(0), u(0))e =iy + ainiﬂ’w2m7+ry5) (
x3

2 — 3y
€sz€s + Lul) (1 —e 27z2 )

€3es + Lu1)2 ,

(125)
for all t > 0, all (0) € Xy, and all time-varying u(t) € Y. From (30) in Lemma 1 we obtain

3 4 L + 2
22 < 222 3(0) |26 T8 + iy, Q2iLon T 2e0)

eses + Lo1)”, 126
Va1 Vw1725 “1) (126)

such that the bound on ||Z(¢)| reads

D3 4 L + 2
1B 1)) < 1| 222 130)]2e” 25" + a2 ndes Dtlen T8 (o p 2. (127)
Yzl ’le'ng
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The last step is obtain as follows. The inequality in (127) is of the form /C3 < /C? + C3, with
Cy,Cy > 0. If Oy > Oy, then /C3 < /207 < V/2C;. If Cy > C4, then /CZ < /203 < v/205.
As a result, /02 < max{v/2C},v/2C5}, and thus the bound on ||&(t)|| reads

[Z(t)|| < max {ca1[|&(0)]le™"*", awnuwcan} (128)
with
2 T 2 x T qu T
Cor = || 22 cgp = (| 122024 Jr75(6365+Lm)7 (129)
Y1 Y1 Y3
and [z = Zﬁ, which completes the proof of Lemma 2. (I
VY2
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6.3 Proof of Lemma 5

By using the function V2 in Lemma 4 as a Lyapunov function candidate for the z-dynamics with
time-varying inputs w(t) in (41) we obtain the following expression for V:

Vz(t727u7 Oéz) = %(t727u7 Oéz) + %(t727u7a2)% + %(t727u7 Oéz)’il,
U
Ve, oV S
=5 (tz,u,02) + @z —— 55 (t,z2,u, 0z )h(t, Z,u, az)
oD% (1, 2,u,00) (h(z,9) — iz u(tw)
oV oV 0Zw .
+ <8u (t,z,u,z) — 55 —(t,z,u QZ)W(t,u,azO U
_0Ve Ve, - S
=5 (t, 2z, u, az)+azg(uz,u?az)h(t?z?u,az)
V.
+ a2 (42w 00) (R(2Y) = h(z Gt w)
oV, oV, O0Zw dq,, dq,, .
+ <8u (t,z,u,az) 55 (t 2z, u, ozz)( S (t,u,az) T (u) + T (u))) u

(130)
for all z € Z, all (time-varying) inputs u(t) € U, for all ¢, all y, T, € R satisfying (4), respectively,
and all (time-varying) disturbances w(t) € W. Note that in (130) we have omitted the implicit
time-dependency for notational clarity. Using the inequalities from Lemma 4, Assumption 6, and
the fact that there exists a constant Lq € Ry such that

dg., (u)
2\ ||
H L < Lg, Vueld (131)
it follows that
. N 2 oV, _
Va(t, 2, u,0z) < —azvas]l2]]” + az 5 (t, 2,u,0z)|| [|h(2,y) — h(z, Juw(t,uw))l
+ B 200 1l
oV 0Z dqw . (132)
+ 9% — (t,z2,u,az) ( u (t,u,az) — H H )H) Il ,

< —azyas| 2?4+ azvzallZ| R (2, y) - h(z, yw(t )|
+ (725 + 0vzaLat + Yasla ) |2l .

On compact sets, Assumption 5 implies that there exist constants Ly, Ly, Lk, Lze, Lzu € Rsg
such that

HaeaeT (e,u)| < Lze, HaeauT (e,w)|| < Lz, (133)
and
‘ g: (z,9) H < Lpz, %(%WM < Lpy, k z)H < Ly, (134)

forallz € X, all u € U, all z € Z, and all y € R. By defining § := y — gy (¢, u) and using the
bounds in (134), it follows that

[h(z,y) = h(z, §w(t, w)|| = [|R(2, 7 + §uw(t, u)) — h(z, §uw (t, w))||

1
oh
/ (2,07 + Juw(t, u))doy
0

(135)

1
oh . . ~
< [ |5 i+ motean)| o il = Lao il
0
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By defining é = e — &, (¢, u), using (4) and the bounds in (133), it follows that

G(t) = Z(6+ Ew(t,u), u) — Z(Ew(t,u),u) = g_f

0

(c€ + ew(t,u),u)doe

(gi(ae—&-ew(t ), u) — gf( wlt, ), ))daé

+ @f(ew(t w),u) — gf( Wt ),u*)) 6 g—f(éw(t,u*),u*)é

Oaz YA d (136)
(B enttu) ) - G ewlt ) u) ) e+ G (eultou) u)e
1 1 822
://8e8eT (roe+ ew(t,u))oédrdoe
0 0
1
+/ 0z (Bw(t,u") + 0 (Ew(t,u) — ew(t,u")) , u)do (ew(t,u) — €w(t,u’))é
DedeT ewl(t,u o(ew(t,u ew(t,u ,u)do (ew(t,u ewl(t,u e
0
/ Wt )0 + o = w))do(u — w)e + 52 (eu(t '), u')e
e{)uT u u olu u aglu u e 86 ew(l,u ),u )e
0
Then it follows that
1 1 82
) zZ o, 2
191 < [ [ |5 (roe + ew(tsw)|| odrdofle]
0 0
1
82 — — * — — * ~
+/ T( w(t,u”) + 0 (w(t,u) — ew(t,u’)), u)|| do||ew(t,u) — ew(t,u’)|| €]
dede
0 (137)
822 — * * * * ~ aZ — * * ~
+/\ s (Eultu)u 4 otu — w) | do fu = w ol + |2 (ewtt. ). el
LZe ~ ~
<22 ell? + Lzell@w(t, u) — ew(t, u)|€] + (LzuLlu + Lz €],
where we have used that u € U, i.e., |u — u*|| < Ly, for all w € U, and with
GZ — * *
Lz. = H%(ew(t,u ),ut)]|. (138)
From Assumption 5 and consequently the bounds in (74) it follows that
[ell = lle — ew(t, u)|| = lg(z, u, w) — g(Zw(t, u), u, w)]|
B B (139)
/H wlts ), w,0)| do] = Loal],
and § .
||éw(t7u) _é’w(t7u )H = Hg(jw(t7u)7u7w) _g(jw(t/u’ )7u 7w)||
< Hg(jw(t7u)7u7w) - g(jw(t7U*)7u7w)|l (140)

Flg(@w (b, u™), u, w) = g(@w (t,u"), u”, w|
< Loa||Zuw(t,u) — Buw(t,u’) || + LguLu,
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where we again used that w € U, ie., |[u —u*|| < L, for all u € Y. From Assumption 3 and
u € U, it follows that
B (£ 1) = B (8w < L L. (141)

Substitution of (139), (140), and (141) in (137) yields,

LZe

7]l < L2.11Z)° + (LzeLjwLowlu + Lze LguLgaLu + LzuLuLga + Lz Lga) || 2|, (142)

Substitution of (135) and (142) in (132) yields

. - - L N -
Vz(t7z,u7az) < _052’723”'2”2 + 052’724%1/;thsz””$”2+
Oéz’Yz4Lhy (LZeLészuLu + LZeLguLg(vLu + LZuLuLg(v + LZ*Lg(v) ||2||||i3|| (143)

+ (s + exvmaLar + v2aLa) 2]

for all 0 < a, < e,. The expression in (143) is of the form

Va(t,2,u,0z) < —azyzsl|2))” + azzi |Z]|Z]° + azzel| 2] 2] + 25 2] (144)
with
L e
21 = a2 L2 wLhy,
22 = ’Yz4Lhy (LZeLéwquLu + LZeLguLgmLu + LZuLuLgm + LZ*ng) 3 (145)

= (’YzS + Ez'Yzélel + ’Yz4Lq)7

where we note that z1,29,23 € Rsg. Applying Young’s inequality and defining to-be-chosen
positive constants v; > 0, with ¢ = 1,2, 3, gives

. 1 1 1
I (e —) 121
2 29 (146)
Qz ~ az ~ .
+ Al + R + sl
Choosing 71, y2,v3 equal to 3 yields
. ~ Oéz’yz3 3azz - 3azz - 323 2 .
Vet 2,u,02) < — I211* + 1|| I*+ 2H I+ 55— s . (147)

To find an upperbound for |||, it follows from (14) that & = @ + a,,w. From (15) we have that
there exists a constant L,,; € R~ such that

lwll < new Lot (148)

Furthermore, from (22) we have that ||| < 7. Therefore, we obtain an upperbound on | ||
which is given by ||| < 7w + QwwLw: which implies that

l[ie]] < awne (eses + L) , (149)

for all e3,e5 € R, all nm < nwes, and all 7y, < agNmes. Using the bound on |4 in (149) and
(38) in Lemma 4 we obtain

Valt, 2w, 00) < — 22081, (1,2, u, 0n) + 222 gt 4 3022 30‘222 =@
272,2 2’Yz3 (150)
322

Mafﬂli (eses + Lu)?
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for all 0 < ay < €z, all Ny < Nes, and all 7y, < @Nmes. From the comparison lemma and (150)
we obtain

= ~ Q223 3 Z2 3 )
Va(t, 2(t), u(t), az) < Va(0,2(0), u(0), az)e” 2053 t+( =221 ()| + 22222 3 sup [0
Vz3 t>0 v, +>0
_ %2723
+ 37;253 O‘wnw (eses + Lwl)Q) (1 —e 2722 t)
azVz3

< V(0 2(0), u(0), an)e” FE 4 21222 312223

SUpII~( )t + =52 sup |2 (1)
> >0

z3 zS t> (151)
3’Yz2Z32‘ o2 772 (6365 +L 1)2
042723 “r ”
- Sgtzdy 3Yz227 37z2z2 2 2
< V2(0,2(0), w(0), az)e” 2= "+ L sup[|2(t)|* + 61sup||w()|\
23 t>0 z3 t>
37z22’3
aZn, (ezes + Lo1)?
az')/z;g

for all 0 < ap < ez, all a, <€, all t > 0, all z(0) € 2y, all Ny, < Nwes, and all 7y, < QWNmeEs.
From (38) in Lemma 4 and (151) we obtain

~ < D=2 _QzVe3y 3’Yz221 4 372223 2
IZ@))* < Z=2)|2(0)]e” =2 4 =50 SHpHm( )* + €T sup |2 (t)||
Va1 V2172 t> v:1027% 0

5 ) (152)

Yz2%

TaradZ; e (26 L),

for all ¢ > 0. From Lemma 2 it follows that, for any finite time ¢; > 0, the solutions of &(¢) are

bounded for all 0 < ¢ < t;. As such, we obtain that the last three terms in the right-hand side of

(152) are bounded for all 0 < ¢ < ¢, and thus the solutions of Z(t) are bounded for all 0 < ¢ < ¢;.
From Lemma 2 it follows that here exists a time instance t; > 0, such that

()] < Cwnuwcaz, Vit (153)
From (153) and (152) we obtain

. 222 azza 372227 372223
1207 < B2 z@)|Pe 52 4 2 alnbeh, + 2 alnldc,
V=1 ')/zl’)/z;g 721a27z3
32222
%aani (eses + Lw1)2 .
V2102723 (154)
z 07z 2
’YZ2 ||z(t1)|\ e 27’;23 (t=t1) + —3’}/;2;«’1 i’ﬂi 12
’YZ1’)/z3
3Yz2 2 2 /2 2 22 2
W%ﬂ?w (23 (es€5 + Lon)” + 22€1Ca2)
z z /23
for ¢ > t;. Similar as in the proof of Lemma 2, we obtain the bound on ||Z(t)] as
~ ~ — — (6%

I1Z(8)|| < max {cz1||z(t1)||e azfz(t=t) o2 cen, ;—’7“’(:;3} (155)
forall 0 < ay < ez, allt >t all a, <€, all g, < azer, all Ny, < nees, and all 7, < Q@ENmes,
with

Cz1 = 3%7 Cz2 = 3€2, /%%ci%
Ca3 = 3\/7?’;2 (23 (eses + Lun)® + 23€3c2,)
z1l 723
and
B = L2 (157)

4')/z2
The boundedness of the solutions of 2(t) for 0 < ¢ < ¢; follows from (152) for any finite time #;.
The bound in (42) of Lemma 5 follows from (155), which completes the proof of Lemma 5. O
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6.4 Proof of Lemma 7

The proof of Lemma 7 is inspired by, and partially adopted from the one in [12, Ch. 2]. We define
the following Lyapunov function candidate for the m-dynamics in (47):

Vin(m,Q) = m' Q 'm. (158)
For notational clarity, from this point on we omit the time argument. We note that
Amin(Q N |[* < Vin (1, Q) < Amaa( Q)| (159)

where )\mm(Q_l) and )\mm(Q_l) are the smallest and largest eigenvalue of Q, respectively.
For further details on @', the reader is referred to [12, Ch. 2|. From the observer in (21) and
(47) we obtain the time derivative of V, as

Vin(m, Q) =" (Q7T+Q7 )i —m Q'QQ '
_ 2mTQ—17}n . mTQﬂQQﬂTh

160
— 2 Q™Y — | (CTC n UTDTD) m— 202m Q 'Bs (160)
T o~T 2 T T dFw .
—2nmm C (—a,v—1—d) — 2npmorawm D du—T(u)’

where we have used the fact that Q' is real and symmetric, ie., Q7' = Q ", and, given A in
(19), that 7" (Q_lA — ATQ_l) m = 0. Furthermore, given C in (19) and D = [0 I] we have
the following inequality

Vi (1, Q) <~ Q112 — 1y ||C12||2 = N, || D2

T a1 202 2 - 2
—Vnmmm Q Bs + (| =nm ||Cm|| \/6nmag, |v
Vi Q! T2 B | S |Gl VBl I
5 ) 5 ) (161)
) 2t O] NG 1] 44 2 | Cl| G
- dFy , .
VB | D] Bemrrcn | 222 (@)
where we have used that —m ' CT Cri = — HrthTcmH — —|Cm|? and HrhTCTH = |Cm.
Using Young’s inequality we have
y ~ ~ T y—1 ~ ~ T -1 204‘2,;
Vin(m, Q) < —nmmm Q7 — /mm Q ~——=DB(s)
VIHm
" , (162)
+ 30mag |v]° 4 30m 7> + 30m |d|* + nmoral, du—lTU(ﬁ)

Since Q! is real, symmetric and positive definite, we can write Q7! = LL" for some real, positive
definite matrix L. Then, ||Q™ || = ||L||||LT|| = |L||||L|| = || L||?>. From this, Young’s inequality
and by using (158), we obtain

2
Vi (172, Q) < — 12V, (172, Q) — 10 " LL 10 + \/_nmmTLLT?/LLBs
Nm

2 2
dFw .||
+377m06i |v|2+377m|7’|2+377m |d|2+77m0'1"052; d'u,—T(u)
(163)
m ~ m ~ 2 m ~ 2 2 i
< =I5 V(i Q) = U5 [T T [ L B s
Nm
dFw , ||
+ 3m [0f 4 31m [r[? 4+ 3 |d° + mrs0d | G2 )|
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which can be written as

- m Qaw
Vin (17, Q) <~ Vi (172, @) + 222 1@ || B ||
N (164)
+ 377m0‘i: |v|2 + 31m |71|2 + 3nm |d|2 + nmarai d’ui (ﬁ')
Assumption 7 implies that there exists a constant Lps € R+ such that
<
HduduT ’ Lr2, Yuel (165)
From (20) and the bound in (165) we obtain
1 || d°Fuw
lall = o | s @
ozlL,J dudu (166)
< —Lpsa|lal.
(e 7%}

From (20), the definition of w in (15), which implies that there exists a constant L2 € R~ such
that |w|| < Ly2, and the bound in (165) we obtain

1
/1—0
0

1
fo-o o
0

< LFQLw2

o] < o

(u + ocauw)do

(167)

do ||w|*

[\

From (20) and Assumption 5 it follows that
7] = 1k(2) = K(Zw)ll = (2 + Zw) = k(Zw)]l

1
0/
From (20) and Assumptions 5 and 6 we obtain

|d] = [|k(Zw(t, u, az)) — k(gq, (w))],
= Hk((f (t,w, az) = Gy (w)) + gy (w)) — k(gy, ()],

(168)

(0z + Zw)doz|| < L Z|.

e

§ﬁ< (2t t,02) — @, () + @ (W) (2 (1,0, 02) — @, (w)

‘ (169)

do ||2’w(t7 u, Oéz) - qw(u)H )

/ | ozt u.02) - au () + au(w)

< Lg ||zw(t,u7o¢z) - qw(u)H = Lrazbw.

From the coordinate transformation in (24) and the bound in (165) we obtain

* dF *
w] =[G

1
d*F,,
dudu ™

(cu+u")dou (170)

do ||a]| = Lrz [[a] .

/Hdud T Uu“”‘
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By combining (164)-(170) and since we have from (19) that ||B|| = 1, we obtain

2
Q — )3
“ Lol Q™ |||l

2
. Nm (171)
+ {0 L Lis + 3nm LE| 2] + 31m LR 0280, + nmoral L |[@]]*

Vin (7, Q) < =2 Vi (11, Q) +

From Lemmas 4 and 6 we have that, for any finite time to > 0, the solutions of Z and u are
bounded for all 0 < ¢ < t3. Moreover, from the proof of Lemma 2.11 in [12, Ch. 2] we have
that Q! is positive definite and bounded for all 0 < ¢ < t5. From these facts and ||ﬁ|| < N,
which follows from (22), we obtain that the right-hand side of (171) is bounded for all 0 < t < t5.
Therefore, by applying the comparison lemma we obtain that V,,, (m(t), Q(t)) will be bounded for
all 0 <t < ty. Because Vi, (m(t), Q(t)) is bounded for all 0 <t < ¢y and Q! is positive definite
and bounded for all 0 < ¢ < ¢, it follows from (159) that the solutions of m are bounded for all
0<t<ts.
Let us define t5 > 0. From Lemma 2.11 in [12, Ch. 2] we have that
1

SI=<Q' <

I I (172)

| ot

for all t > to, all 5y, < nwez and all 0, < €5, and €3 and €g sufficiently small. Moreover, it follows
that 1 5
LIl < Ven(r, @) < 2 [, (173)

for all t > t5, and || Q|| < Z for all t > t5. From (16), (22), (24) and || D|| = 1, it follows that

i < 2wl < A (| 22 )+ o ) (174
Subsequently, from (174) and the bound in (165) we obtain
]| < Au (@wLrz|all + [lm]). (175)
From (173) and (175), it follows that
a]]* < 8XLVin (172, Q) + 205 Xo Lo |, (176)

for all to > 0. We assume that €4 in Theorem 1 is sufficiently small such that we obtain from (171)
and (176) that

2002 )2 5o, Ay,

Nm

Vin (11, Q) < =B Vi (17, Q) + LiraVin (0, Q) + Lia|al?

3 - -
+ anociﬁmm + 3nm L2 || 2] + 3nm Lia2dm + Nmoral, L |||,
o (177)
Bag, Ay,

< TRV (17, Q) + Ll

3 - -
+ 1m0 Lo Loy + 30m L |21 + 30 LEaZ 00, + nmorag, L ||l
for all t > t9, and all a,Ay < Nmes. From the comparison lemma and (177) we obtain
Nm

——(t—t2)

Vm(m(t),Q(t)) <e 4 Vm (m(t2), Q(t2))

Nim 442
——(t—t 4
+ (1 e 1! 2)> — <5O:7‘”/\“Li‘v2 sup [|@(t)|*

m m t>tg

A (178)
+ im0 Lia L + 3mm Li sup | (1)])°
t>to

+377mLi05i612u + nmaraiL%? Sl>Jp Hﬁ(t)HQ) .
t>to
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Finally, from Lemma 5 it follows that here exists a time instance to > 0, such that

|20 < max{olnoascss, = eus), (179)
By utilizing the bound in (179) and applying a similar approach as in Lemma 5 it follows from
(178) that

200 \2

sup Vim (m(t), Q(t)) < Vim(mi(tz), Q(t2)) + —=% Lio sup ||a(t)|?
t>ty Nm t>to
+3al,Lis Ly + 1213 sup ||2(1)| (180)
t>to

+ 12130262 + 4002 Liy sup ||a(t)|)?,
t

>to

and as a result it follows that

sup Vi (m(t), Q(t)) < 6 sup max {Vm(ﬁz(tz), Q(t2)), Tu LFQHu(t)HQ7

t>to t>ty m
2,2 (181)
80l Lba L, 12Lh gm0 o, 1207 =25,
12L%a26%,, 40,002 L |a(t)]*},
and ‘o
2004\ _
lim sup Vi (m(t), Q(¢t)) < 6lim sup max {#L%gl‘u(t)|l27
t—o0 t—o0 Nm
202 182
30 LisLia, 1203 alndocls, 1213 2202 2, (152)
az
12030265, doral, L, ||a(t)|},
From (173) and (181) we have that
- 5, . 2v/502,\ _
sup (0] < 206 sup mas § /2o, 22520 13 )
t>to t>to 4 NIm
V3L Lea L, 2V3Lk0d uazcaz, 231 2 oy, (183)
/3Ly, 0u, 24/Tr v Lo |\a(t)||} 7
Similarly, from (173) and (182) we have that
2v/502 \u N
imsnp (0)] < 216 1imsup { 2200 1 .
t— o0 t—o0 Im
V3a2 LraLls, 2V3 L0 Nwazcaz, 231k a:m’ cz3, (184)

V3 L1z 0w, 2/Tr e Lo |m(t)||} ,

The bounds in (48) and (49) of Lemma 7 follow from (183) and (184), respectively, which com-
pletes the proof of the lemma. O
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