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Abstract 

Automatic speech segmentation according to a phonetic transcription is now commonly 
performed by the application of Hidden Markov Models (HMM). The segmentation results 
from a time-alignment of the utterance against a sequence of HMMs corresponding to the 
transcription. In order to allow HMMs to capture the intrinsic speech variability, they have 
to be tuned in a supervised way on a training set. Most approaches that try to fulfil these 
HMM training requirements resort to a manually segmented speech inventory. As we wished 
to develop a fully automatic segmentation technique, we avoid this prerequisite for manually 
segmented speech material and propose instead a hierarchical approach for acquiring a reli
able training set. The preparation of training material in the first stage is accomplished by 
attributing local acoustic-phonetic properties to the utterance resulting into a broad phonetic 
class segmentation. Subsequently, a fairly accurate phonemic segmentation is obtained by 
segmenting each broad phonetic class segment into its constituting phonemes. The resulting 
segmented speech material serves for the HMM training procedure. The final segmentation 
is obtained by time-alignment of the utterances against the HMMs. The approach does not 
need external references nor prototypes of typical phonemes nor a collection of pre-segmented 
speech material. 

By considering 50 phoneme-like HMMs, experiments on a Dutch speech database con
taining 827 isolated word utterances of a single male speaker have demonstrated that the 
difference between a manual segmentation and automatic segmentation is smaller than 20 ms 
for more than 88 % of the segment boundaries. 



Preface 

Finding time-aligned transcriptions of continuous speech in an automatic way has proven to 
be difficult. This fact is rather disappointing taking into account the clear need for large 
corpora of accurately transcribed speech. 

Nowadays, the de facto Hidden Markov (HMM) modelling technique in automatic speech 
recognition (ASR) has brought adequate solutions for the translation of parametrized speech 
to linguistic units. If the sequence of these units is already known at recognition time, 
the application of HMMs is reduced from a recognition process to a segmentation process. 
The power of these statistica! models now stimulates renewed interest in the segmentation 
problem. The incorporation of these relatively innovative ASR-instruments constitutes our 
main present effort toward the segmentation problem. 

In fact, the presence of inspiring ASR techniques that may lead to big improvements in 
segmentation accuracy was not our primary motivation in tackling the segmentation problem. 
Actually, the quest of accurately transcribed speech material in all areas of speech research 
initiated a project that aims at research and development of automatic speech segmentation 
techniques. The acquired techniques can serve as tools for a wide range of disciplines within 
the speech research such as speech synthesis, speech perception, prosody research and speech 
recognition. 

Diphone speech synthesis Incorporating a new voice or language in a speech synthesis 
system based on the concatenation of pre-recorded speech fragments such as diphones is 
a rather tedious and cumbersome procedure. Diphones have to be excised from carrier 
utterances and in order to prepare a new diphone database much recording, labelling 
and (manual) segmentation is required. The availability of a rapid, consistent and 
reliable technique that is free of human intervention for acquiring these segments from 
a new recording would alleviate problems involved in this preparation. This argument 
is the main motivation behind our project. 

Prosody Accurately transcribed databases are necessary to obtain better speech production 
and perception models. Especially, the research in durational aspects of speech can 
profit from a method of fast detection and retrieval of speech segments that include 
specific phonetic contexts. 

Automatic Speech Recognition Although speech recognition heavily relies on statistica! 
models, these models do not usually carne for free. A large amount of segmented speech 
data is needed in order to, at least, seed (bootstrap) these models. 

Unfortunately, setting up large phonetically labeled speech databases for supporting speech 
research is a laborious task. 
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1. The manual time alignment procedure is time-consuming. Even positioning of the 
phoneme labels in a single three-syllable word takes several minutes on the average. 
lt requires carefull listening along with waveform and spectogram interpretation. In 
addition, the repetitive work is very tedious, introducing human errors caused by loss 
of concentration. 

2. Motivated expert acoustical phoneticians are required to skillfully perform the segmen
tation task. In fact, the mere prerequisite of reliable labelling of speech, which is, in 
first instance, performed on the basis of auditory impression, is a subjective and time
consuming task. 

3. Each person has a different (and evolving) set of (subjective) criteria regarding the 
positioning of the segment boundaries. The variability across different experts and even 
within the same expert is not negligible, implying inconsistent results. 

To summarize, many disciplines within the speech research can benefit from an automatic 
approach for acquiring an accurate time-alignment of a phonetic transcription with an ut
terance. This report presents a new hierarchical procedure for segmentation which is fully 
automatic in that it does not need any manually segmented learning data. 
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Chapter 1 

Overview 

1.1 Introduction 

This report describes the results of a project aiming at research and development of automatic 
speech segmentation techniques and tools. It brings a solution to the segmentation problem 
that we have defined as finding the boundaries between the constituting phonemes of an 
utterance, relying only on its phonetic transcription. 

It is suggested that the availability of such tools improves the overall quality of speech 
synthesis based essentially on the concatenation of well defined pre-recorded speech units 
known as diphones. Diphones are short speech segments which contain mainly the transition 
between two adjacent phonemes but also the last part of the left and the first part of the 
right phoneme. To date, they are extracted from short utterances via a tedious manual 
segmentation process. In this respect, a tool that automatically extracts the speech fragment 
is far more practical than manual segmentation process, since it reduces the amount of work 
and provides more consistent results. The reduction of work leads to an easier adaptation toa 
new speaker or language of a speech synthesis system that must cover a particular application. 
Consistent segmentation results may also produce smoother synthesized speech. 

Besides speech synthesis, a wide range of disciplines within speech research involving 
speech perception, recognition, and production can benefit from an automatic segmentation 
tool. For instance, large speech database can automatically be provided with segmentation 
information that can serve as a facility for supporting the study of the tempora! aspects of 
speech. 

1.2 Goal of the project 

This project tries to develop automatic segmentation tools for the excision of diphones from 
isolated utterances of words that are recorded for this purpose. However, it is mainly focused 
on the segmentation of phoneme-like units by time-aligning a phonetic transcription with 
the speech waveform. The reason is that knowledge of the phoneme-like unit positions in the 
waveform is easy to translate to diphone positions by e.g. applying ad hoc rules. In particular, 
the following topics have been addressed in the field of speech segmentation: 

1. Improvement of existing speech segmentation tools at the Institute for Perception Re
search (IPO) in providing higher accuracy and in requiring less human intervention and 
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a priori knowledge. It is feit that higher accuracy can be reached by exploiting local 
( acoustic-phonetic) signal properties without using external references. Less human 
intervention can be reached by implementing a fully automatic procedure in which a 
minimum amount of apriori knowledge is used. 

2. Incorporation of innovative speech recognition techniques such as Hidden Markov Mod
elling (HMM) technology. HMMs are statistica! models that try to model the intrinsic 
variability of speech. Because of their statistica! nature, their parameters have to es
timated by a training process on a large collection of speech data. The application of 
HMMs for segmenting speech is now commonly used and a promising approach in terms 
of performance. 

3. Incorporation of Vector Quantization techniques that try to compute jointly a set of 
segmentation points and a set of centroids characterizing corresponding segments. An 
attractive idea is to use adapting centroids by calculating them on-the-fly from the 
utterance at hand by means of some standard distortion measure while looking for an 
optimal segmentation. 

1.3 About this document 

This document describes the aspects of the project concerning the research and development 
of automatic segmentation techniques. In order to be accessible for all the readers we con
structed this report by moving from gener al to particular. Chapter 1 and 2 are meant for 
an executive and managerial audience. Chapter 3, 4, and 5 give extra information needed to 
fully understand the proposed technique and the conducted experiments. The last chapter 
gives an overview of the software tools written in the course of the project. 

Overview defines the purpose of the project by stating the problem and the need for 
automatic segmentation facilities. 

Summary presents the main result of the project. Also, recommendatations for future 
research and conclusions are given. 

Statement of the problem describes in full detail the need for speech segmention and 
the assessment method. Successively, we describe the segmentation requirements for 
a diphone database preparation, the segmentation problem in a formal and unified 
framework, the speech inventory at hand, and the performance assessment procedure. 
As concluding section, we present a literature survey about state-of-the-art segmentation 
techniques and experiments. 

A Hierarchical Approach describes in full detail our proposed method for automatic 
segmentation. The hierarchical approach consists in a set of building blocks, each doc
umented in a distinct section. In general, each section proceeds along the same lines: 

• An outline of the method for each building block is given. Theoretica! aspects 
needed to comprehend the method are intertwined with the description. 

• The results achieved with that building block are presented along with its contri
bution to the hierarchical approach. 
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• Limiting cases are given to put the results in a proper perspective. 

• Some implementation variants of the method are discussed and compared with our 
method. 

• A discussion gives some reflections about the implementation, results, and direct 
recommendations. 

Discussion presents in full detail the main results of the experiments, the implications for 
the project and recommendations for further research. 

Software Tools presents the suite of software tools written in the course of the project. It 
is described for the benefit of users and future programmers. 

Appendix A ha.s a comprehensive list of mismatches between labelling and realization that 
are encountered during an examination of the speech inventory. 
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Chapter 2 

Summary 

A mix of conventional pattern recognition techniques and rather innovative speech recognition 
techniques is proposed in order to tackle the automatic segmentation problem. lt consists in a 
hierarchical combination of these techniques. Software tools are written that implement this 
approach. The performance in segmentation accuracy is investigated on a speech inventory 
that was already available for the purpose of speech synthesis in Dutch. lt consists of 827 
isolated word utterances from a single male speaker. The whole inventory was manually 
segmented by considering 50 phoneme-like units. 

We have strived to keep the required a priori knowledge for the segmentation process 
to a minimum by exploiting local acoustic-phonetic signal properties and by capitalizing on 
the following minimum knowledge: a phonetic transcription of the utterance, global duration 
constraints of phonemes, and the annotation of four acoustic-phonetic properties of phonemes, 
i.e. voicedness, unvoicedness, burstness, and silence. The system does not need external 
references nor prototypes of a typical phoneme nor a collection of pre-segmented speech 
material. 

.- If we consider an interval of 20 ms around a manually positioned segment boundary to 
be correct, the proposed hierarchical approach results into 88 % of the phoneme boundaries 
positioned correctly in the speech inventory as compared with the manual segmentation. By 
considering an interval of 25 ms, the accuracy is even 93 % correct. 

In order to put the methodology and results in a proper perspective we have assessed the 
present state-of-the-art segmentation by a literature survey. This survey demonstrates that 
our approach is rather unique in its accuracy performance and in the fact that it does not 
need pre-segmented speech material. 

The hierarchical approach consists of 

1. A conventional pattern recognition tool that attributes local acoustic-phonetic proper
ties of the speech waveform. The output is a so-called braad phonetic class segmentation 
of the input utterances that provides reliable anchor points for subsequent detailed anal
ysis. 

2. A vector quantization-oriented tool that segments the waveform in phoneme-like units 
by considering only locally available spectra! information and by capitalizing on a small 
set of required a priori knowledge. The resulting phoneme-like segmentation is guided 
by the braad phonetic class segmentation of the previous step. 

3. A training tool that bootstraps phoneme-like Hidden Markov Models (HMM) using the 
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phoneme-like segmentation obtained in the previous stage. The training procedure is 
carried out by means of a Segmental K-Means algorithm. 

4. A training tool that fine-tunes the initialized HMMs by subjecting them to a last train
ing process and using only the transcription. This training tool iteratively re-estimates 
the parameters of the HMMs by means of a Baum-Welch reestimation. By this tech
nique, HMMs will recover from possible time-alignment mismatches of the transcription 
introduced in earlier stages of the approach. 

5. A speech recognition tool that is restricted to time-align the utterance with the HMMs. 
The transcription of the utterance determines the sequence of HMMs. In other words, 
the recognition process carried out by a conventional Viterbi decoding is reduced to a 
segmentation process. 

Still, some major recommendations for future research can be made on the basis of the 
results. Research can be focused on an elaboration of the automatic segmentation techniques 
in several ways. 

• Evaluating the segmentation performance on other speech inventories (Cross-validation) 

• Starting the segmentation process from an orthographic transcription of the utterance. 

• Exploiting Hidden Markov Models with distinct topology and structure for each pho
netic class or having distinct models for different phonetic contexts. 

• Refining frame acquisition via a pitch synchronous way. 

Also, research can be directed to touch other topics that improve segmentation accuracy. 
Designing a user interface that nicely interacts with the tedious segmentation process, the 
preparation of speech fragments for speech synthesis, and the algorithms. Automatic seg
mentation is still affected by incorrect boundary placements. Much attention has to be paid 
how to repair these errors by means of audio and visual feedback facilities. Also, the prepara
tion and 'polishment' of speech fragments that must be incorporated into a speech synthesis 
system will benefit from a professional work bench. 
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Chapter 3 

Statement of the problem 

3.1 Segmentation for speech synthesis 

The quality, in terms of intelligibility and naturalness, of speech synthesis based on the 
concatenation of pre-recorded speech fragments involves many critica! aspects. Beside the 
adequate application of knowledge concerning speech production and perception at a supra
segmental level (prosody), the purely acoustical characteristics of the speech fragments are 
predominant. In this respect, the segmental acoustic properties of the speech fragments are 
dependent on 

l. the segmentation accuracy of the fragment . 

2. the quality and sart of speech material from which the fragments are excised. This also 
includes speaker characteristics (timbre, dialect), recording protocol and conditions. 

3. the coherence or proper acoustic matching of adjacent concatenated fragments in the 
synthesis process . 

In the sequel, we will focus on the segmentation accuracy and ignore other quality influ
encing aspects. 

One can choose from a range of fragments that could be used as building blocks for 
synthesis : word groups (phrases), isolated words, syllables and subsyllable units such as 
triphones or diphones. From ari engineering point of view and without making any claims 
about the ultimate synthesis quality, the use of large units implies a loss of flexibility during the 
construction of a speech synthesizer. Large units do not efficiently support a large vocabulary 
and do not allow for a convenient extension possibility of the vocabulary without a repeated 

~ acquisition of new speech material. In contrast, small fragments such as diphones are prepared 
-= once and for all ( for a given speaker) independently from the vocabulary or the application 

to be covered. 
Diphones are defined as the speech segments spanned by the central (stable) part of 

a phoneme and the central part of the following phoneme. In other words, it spans the 
transitional speech portion (transient) between two phonemes and so captures the complex 
transition between speech sounds in precompiled chunks. Diphone boundaries are defined by 
the time marks in the carrier waveform from which the diphone will be excised. The marks 
indicate the diphone onset somewhere at the central part of the first constituting phoneme 
and the diphone end at the centra} part of the second constituting phoneme. 
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SI N C N 00 N C 

N2001 002Nl 

Figure 3.1: Nonsense carrier word 'nenoone' for the excision of the diphones N2001 and 
002N1. 

In order to prepare a new diphone inventory, a speaker is instructed to read aloud a list 
of words out of which the diphones will be excised. In genera!, vowel-consonant (V-C) and 
consonant-vowel ( C-V) diphones are embedded in an isolated three-syllable nonsense carrier 
word composed of the diphone of interest positioned in a stressed syllable and surrounded 
by some neutra! phonetic context. Diphones involving schwa are positioned in unstressed 
syllables. In cases when a so-called silence is one of the demi-phonemes, the diphone is a 
word initia! or final. It is feit that the use of isolated nonsense words remedies the problem 
of the diphones being polluted by their prosodie context of a carrier. As shown in Figure 3.1, 
the nonsense word 'nenoone' carries the C-V diphone N2001 and the V-C diphone 002N1. On 
the other hand, vowel-vowel (V-V) and consonant-consonant (C-C) diphones are excised from 
lexica! words in order to avoid unnatural articulation effects. Syllable boundaries within a 
diphone could also be included by a proper selection of the carrier. There are almost as many 
recordings of carrier words needed as there are different diphones required in the synthesis 
system. 

The preparation of diphones for a synthesis system requires much labelling and segmen
tation work. First of all, diphone boundaries are required to excise the unit from the carrier 
word. The diphone boundaries can be found by different strategies. In principle, one could 
directly find them by exploiting some notion of stationary characteristics at the center of a 
phoneme. However, one usually starts by computing the sequence of phoneme boundaries by 
time-aligning a phonetic transcription with the speech waveform. Giving this time-alignment, 
it is easy to excise the desired diphone by applying explicit ad hoc rules or by using some 
spectra! resemblance measure [Boëffard 92, Hemert 85, Hemert 87]. 

In addition, the phoneme boundary (between the two demi-phonemes) of the extracted 
diphone must also be specified to serve as anchor point for prosodie postprocessing in a synthe
sis system. Finally, in case of synthesis systems based on waveform manipulation techniques 
(PSOLA), the prosodie post-processing also necessitates a precisely specified placement of 
pitch instants. 
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3.2 Genera} formulation of the segmentation problem 

Several techniques for speech segmentation are already available and are described in a review 
paper[Vidal 90] . We propose here our own hierarchical combination of conventional and more 
innovative pattern recognition techniques to obtain boundaries at the phoneme level. 

Obviously, the segmentation process needs some a priori knowledge in order to perform 
its task. In our method we have strived to keep the amount of a priori knowledge to a 
strict minimum: it consists in the phonetic transcription, some global duration statistics 
of realizations of phonemes and phonetic characteristics such as burstness, voicedness or 
unvoicedness of particular sounds. Other particularly interesting phonetic properties such as 
spectra! differences between sounds will be implicitly acquired in a statistica! framework by 
training. 

The utterance is supplied by a sampled speech waveform which, in its raw form, is not 
directly suitable for the application of segmentation algorithms. An adequate description is 
a sequence of acoustic vectors where each vector characterizes the speech signal over a small 
time frame (typically 20 ms) at a low rate (typically 10 ms). This frame-by-frame analysis 
results in a so-called discrete observation sequence. 

Observation sequence o(t) = (o1(t), · · ·, op(t))' is the observed acoustic vector at frame t 
with 1 :S t :S T; T is the number of speech frames ; p is the number of vector elements. 
o{ = o( i) , • • • , o(j) is a partial sequence of (j - i + 1) acoustic vectors extending from 
frame i to frame j. Of= o(l) , · · · , o(T) is the complete observation sequence that 
generally represents a whole realization of an utterance. 

There are numerous possibilities to characterize a speech frame spanning a short interval 
of about 20 ms. For example, one can describe the energy distributions over a pre-determined 
set of frequency bands (filterbank analysis). Considering only instantaneous values related 
to a single frame reduces too much the amount of information provided to the segmentation 
algorithm. Tempora! changes in the speech spectrum which span several frames also con
tribute very useful cues. One can incorporate these changes into the vectors by estimating 
time-derivatives from instantaneous values of vectors that are some frames apart (see Section 
4.4 .1) . 

This preprocessing stage implies that the boundaries can only be indicated as frame num
bers in the input observation sequence and the accuracy is thus inherently limited by the 
frame rate. 

We denote the sequence of boundaries by the set of integer B = {bo, b1, · · ·, h} in which 
L is the pre-determined number of segments (labels). As already said, the segmentation is 
dictated by a phonetic transcription (sequence of phonetic labels) . A segment denoted as 
label l starts at frame b1_ 1 + 1 in the observation sequence and ends at frame b1. In order 
to increase readability, we denote each label by an integer. In reality, it corresponds to a 
segment label from a finite set. 

Some constraints have to be satisfied in order to obtain a valid segmentation result . 

1. The beginning and ending points of the sampled speech data file are given and fixed , 
i.e. bo = 1 and h = T . 

2. The sequence of boundaries B = {bo , b1 , · · · , bL} is strictly increasing, i.e. b1_1 < b1 , l = 
1,2, · · · , L . 
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3. Obviously, the number of phonetic labels never exceeds the number of observation vec
tors, i.e. L ~ T. 

This formulation of the segmentation problem is purposely stated in general terms to 
provide a common framework for each stage of our hierarchical approach. The precise setting 
for each stage will specified later. 

3.3 The speech inventory 

For the purpose of speech synthesis in Dutch, a speech inventory was available consisting 
of 827 carrier words for a pre-selected number of diphones. Among these, 522 words are 
three-syllable nonsense words and 305 words can be considered as real lexical words. All ut
terances were recorded from a single male speaker. lnitially, they were digitized by means of 
an in-house VAX sampled data format with a 8kHz sampling frequency and 12-bit precision. 
For this project, the inventory was converted to the Apple Interface File Format (AIFF) with 
a 8kHz sampling frequency and dynamically scaled to 16-bit precision. All speech material 
is transcribed and segmented by hand. The database transcription and labelling conven
tion follows the SAM-Phonetic Alphabet definition [ESPRIT 92], a system for intra-language 
phonemic representation. The tables hereunder provide a brief outline of the phonemes with 
an example word and its SAM-PA notation together with the more computer (keyboard) 
oriented IPO notation we have used as the phoneme label names thoughout the project. 

Besides, diphtongs are divided into a segment corresponding to the relatively low vowel 
and a segment corresponding to the fast movement up to the relatively high vowel. The 
unvoiced plosives are split into a closure and a burst. Voiced plosives are divided into a 
blählaut and a burst. Taking this into account, the total number of distinct segments is equal 
to 50. The number of phoneme occurrences is equal to 7239. The number of hand-positioned 
phoneme boundaries in the database is equal to 6412 (without counting the beginning and 
ending of the sampled speech data files). 

'Checked' vowels Monophtongs 'Potential ' Diphtongs 
SAM-PA IPO example SAM-PA IPO example SAM-PA IPO example 

A A mAt i II lIEp e: EE IEEs 
@ C dE y y fUUt 2: OE kEUs 
y cc pUt u u rOEt o: 00 rOOd 
E E !Es a: AA mAAt 
I I pit 
0 0 rOt 

'Essential' diphtongs Loanword vowels 
SAM-PA IPO example SAM-PA IPO example 

Ei Ell EI2 rEis E : EH mayonAlse 
9y Uil Ul2 mUis 9: UH frEUle 
Au AU1 AU2 kOUd 0: OH zOne 

Unvoiced fricatives Voiced fricatives Silence 
SAM-PA IPO example SAM-PA IPO example 

f F Fok V V Veer SI(#) 
s s Sok z z Zeer 
s SJ SJaak z ZJ Journaal 
X X Gok 
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Unvoiced plosives Voiced plosives Semi vowels 
SAM-PA IPO example SAM-PA IPO example SAM-PA IPO example 

k K1 K2 Kas b B1 B2 Bas h H Hang 
p P1 P2 Pas d D1 D2 Das j J Jan 
t T1 T2 Tas g G1 G2 Goal w w Wang 

Nasals Liquids 
SAM-PA IPO example SAM-PA IPO example 

m M Meer 1 L Lang 
n N Neer r R Rang 
N Q baNG 

The segmentation and labelling was carried out by means of the in-house graphical speech 
processing system GIPOS (Graphical Interactive Processing Of Speech) that has sophisticated 
audio and visual feedback facilities. The native segmentator was a non-expert phonetician 
hut was supervised by a second more phonetically experienced person. The labelling was 
given beforehand by a third phonetically experienced person. The tedious work was executed 
in ± 50 hours of effective worktime. The segmentation procedure was conducted along the 
following guidelines that closely resemble proposed segmentation rules [Cosi 91]: 

• Boundaries were placed at significant events ( e.g. boundaries in a voiced region were 
positioned near the first zero crossing of a pitch period). 

• Unambiguous boundaries of labels were placed by means of visual waveform and audio 
inspection. In some ambiguous cases, an audio 'window' was placed at one side of a 
hypothesized boundary in order to extract the segment from its phonetic environment. 
The window was iteratively extended towards the hypothesized boundary until the next 
or previous segment was clearly perceived. If this point clearly divided both contiguous 
segments on auditory grounds, it was considered as a boundary. 

• Spectra! information was only utilized in cases of uncertainty ( e.g. liquid-vowel transi
tions, transition mark within diphtongs) . 

• In cases of persistent uncertainty, a second opinion from the supervisor ultimately forced 
the decision. 

• Special attention has been paid to check whether the phonetic transciption neatly cor
responded to the acoustic realization. Many phonological processes such as assimilation 
were encountered. They are enumerated in Appendix A. 

Some duration statistics can be drawn for this manual segmentation and are shown in 
Table 3.1. Although expected, it is apparent that the loanword vowels EH, UH, and OH are 
exotic. There is an excessive number of the vowel schwa C due to its constant appearence 
in the neutral phonetic contexts of the nonsense words. Moreover, durational aspects of the 
labels show rather irregular patterns. This is expressed by the large standard deviations and 
the big differences between the minimum and maximum durations. 

3.4 Performance assessment procedure 

The quantitative evaluation of an automatic segmentation procedure is difficult. A reason
able approach is to point out the differences with a manually segmented reference set . The 

12 



Label No. 0cc. Ave. Dur. ± Std. Dev. Min. Dur. Max. Dur. 

I 44 86.0 ± 20.3 33.0 139.2 

E 79 88.9 ± 18.8 58.4 145.2 

.l 125 90.3 ± 22.6 12.1 142.6 

0 73 96.4 ± 24.1 53.0 180.0 

cc 99 89.3 ± 22.0 45.5 176.6 

C 1117 95.5 ± 23.7 21.1 188.9 

II 96 113.2 ± 28.3 28.0 183.8 
y 41 118.2 ± 38.2 58.6 230.0 

u 71 99.9 ± 27.6 40.0 190.0 

AA 134 168.8 ± 34.9 96.5 261.0 

EE 116 143.9 ± 39.1 74.0 247.2 

OE 33 175.4 ± 29.3 113.4 239.2 

00 77 160.0 ± 44.5 76.1 259.2 

Ell 60 101.8 ± 18.3 58.1 146.4 

EI2 60 85.3 ± 26.8 26.8 150.5 

UI1 70 100.8 ± 22.5 64.5 181.0 

UI2 70 70.5 ± 27.5 26.2 150.0 

AU1 34 121.7 ± 23.0 78.6 173.4 

AU2 34 83.1 ± 26.8 30.0 134.8 

EH 14 173.8 ± 23.5 143.4 221.4 

UH 3 218.9 ± 23.2 195.1 241.5 
· OH 6 178.4 ± 15.4 163.4 201.0 

P1 114 60.6 ± 22.7 12.4 135.0 

P2 114 26.6 ± 17.5 10.0 112.0 

B1 94 61.0 ± 22.1 20.0 165.1 

B2 94 17.1 ± 5.3 7.5 36.6 

T1 287 56.1 ± 20.9 12.9 145.2 

T2 289 37.8 ± 24.9 14.8 155.0 

D1 159 61.2 ± 33.0 20.0 231.1 
D2 159 19.9 ± 6.0 9.1 66.0 
Kl 163 55.0 ± 18.1 18.5 122.2 
K2 163 39.7 ± 17.0 15.1 145.8 
Gl 74 50.6 ± 20.4 14.l 147.2 
G2 74 24.7 ± 7.8 11.2 43.5 
F 133 85.2 ± 31.7 34.5 257.4 
V 83 73.8 ± 25.0 32.5 164.6 
s 196 130.1 ± 62.5 39.1 306.6 
z 75 93.3 ± 26.5 56.6 187.0 
X 123 99.4 ± 30.1 35.2 226.5 
H 93 60.0 ± 18.3 14.6 108.1 

ZJ 65 108.2 ± 32.1 53.9 213.0 
SJ 94 115.4 ± 36.0 52.1 293.1 
M 124 77.7 ± 27.5 21.5 184.6 
H 179 88.6 ± 35.2 31.2 207.2 
Q 88 118.2 ± 49.1 40.4 380.1 
L 200 82.6 ± 31.4 20.6 175.1 
R 171 74.4 ± 30.9 14.2 189.9 
w 128 71.5 ± 26.4 18.5 164.0 
J 93 86.9 ± 24.2 45.4 135.6 

SI 1154 59.9 ± 23.6 3.9 233.9 

Table 3.1: Duration statistics (ms} of manually segmented labels in the speech inventory. 
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segmentation discrepancies can be objectively expressed by considering an interval round the 
reference boundary as correct, the so-called correct margin. By counting the automatically 
obtained boundaries that fall within that margin, one acquires the segmentation accuracy 
in terms of absolute values and percentages. By extending the margin typically by multi
pies of 10 ms, one obtains cumulative statistics that reveal the persistent discrepancies of 
troublesome boundaries. The statistics can be displayed in tables or graphs (e.g. bar charts) . 

1. By considering all phoneme-to-phoneme boundaries, a quick global overview is obtained 
that may express the overall accuracy of the segmentation procedure. 

2. By grouping all phonemes in a smaller set of phonetic categories (e.g. vowels, fricatives), 
a clear abstracted overview is given that may give better evidence to possible common 
tendencies. 

3. By considering each particular phoneme-to-phoneme boundary separately, a detailed 
inspection of boundary placement discrepancies is given that may help to refine and 
fine-tune the segmentation procedure. 

In the sequel, we have standardized a correct margin of 20 ms round the reference boundary 
as reliability criterium. All boundaries associated with the 50 phoneme-like units are taken 
into account. Obviously, the first and last boundary associated with the beginning and ending 
of the utterance are left out. 

The deviation of 20 ms is justified by several arguments about discrepancies across manual 
segmentations. 

1. Several investigations involving the reliability across interindividual manual segmenta
tions revealed that still only a percentage of 88-90 % was considered similar within a 
correct margin of 20 ms by comparing four manual segmentations in all possible com
binations. This experiment was conducted with an isolated word segmentation task 
performed by four experts [Cosi 91]. 

2. Two manual segmentations of a French diphone inventory performed by one and the 
same expert show that a large number of boundaries would disagree if the correct mar
gin was reduced below 20 ms. 
[Boëffard 92] In other words, it is not reasonable to expect that an automatic segmen
tation technique performs more accurately than the discrepancies involved with two 
segmentations performed by the same human expert. 

3. Many researchers to date express their results in terms of this margin. 
(e.g. [Alphen 92, Angelini 93, Brugnara 92, Farhat 93]) 

When the ultimate goal (of segmentation) is speech synthesis, the overall quality of the 
automatic segmentation procedure can only be assessed by performing subjective listeners' 
tests for comparing the automatic and the manual way of preparing diphone inventories. It 
must be emphasized that from this point of view only the segmentation results around the 
acoustic unit of interest of the carrier word are important for the overall synthesis quality. The 
proper segmentation of the bearer phonemes constituting the phonetically neutra} context of 
the carrier words do not ( directly) contribute to the overall synthesis quality. It can indirectly 
affects the segmentation process because misalignments of one label may affect the positioning 
of neighbouring labels. Although we are developing an automatic segmentation strategy that 
will serve as a diphone inventory preparator, we take all boundaries into account. 
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3.5 Overview of Automatic Segmentation Approaches 

A complete review of the state-of-the-art clearly falls beyond the scope of this report. On 
the other hand, some reference is needed to put our methodology as well as our results 
in a proper perspective. Therefore, we give hereunder a selection of recent representative 
papers on the segmentation by means of Hidden Markov Models (HMM) together with short 
comments on the method and the results. lt is difficult (not to say impossible) to compare 
different systems by the lack of a formally unified assessment methodology that prescribes 
data base requirements, the set of objective assessment criteria, and the testbed. In addition, 
it is often difficult to retrieve the essential points of a segmentation method and the exact 
experimental conditions from short publications in conference proceedings. Nevertheless, we 
specify the segmentation accuracies as they were found in the literature in perspective with 
the training and test set. The main factors that may influence the segmentation accuracy 
and which highly differ from application to application are language, speaker, training and 
test database, recording conditions (including sample frequency and precision), and the set 
of speech units to be segmented. Some main conclusions can be drawn from this literature 
study: 

1. The Hidden Markov Models are now commonly used for automatic segmentation trough
out the speech community. 

2. lt is illustrative that an approach by exploiting the simplest from of HMMs, namely 
the context independent phoneme-like models, results into the highest segmentation 
accuracy compared with more elaborate models in which the left and/or right phonetic 
contexts of a phoneme are incorporated. 

3. Most approaches heavily rely on a big amount of a priori knowledge by resorting to a 
collection of manually segmented data. In that sense, our approach clearly stands out 
from the list and has a rather unique position, since our method is fully automatic. 

AT & T Bell - New Jersey, U.S.A. (Ljolje et al.) [Ljolje 91] 

A set of HMMs was constructed for 4 7 phonemes with as wide triphone coverage as 
possible with the available training data. The training set consisted of two third of 5084 
manually segmented sentences from the TIMIT-DARPA speech database [Lamel 87] 
recorded from a big collection of speakers. The test set was the remaining one third. 

Two third of the manually segmented data was used to train some models which were 
applied for automatically segmenting all speech material. As a result the manually seg
mented as well as the automatic segmented data can be pairwise combined for training 
4 different ultimate sets of HMMs. Results with the four training strategies were all 
quite comparable and resulted into a segmentation accuracy of 80 % correct within a 
margin of 17 ms. 

CSTR - Edinburgh, U.K. (Taylor et al.) [Taylor 91] 

Context-independent phoneme-like HMMs were trained on a training set of 400 man
ually segmented British English isolated words with at least 10 phoneme occurrences 
from one speaker. Another 400 British English nonsense words recorded from the same 
speaker were used as test set. The segmentation accuracy was 95 % correct within a 
margin of 30 ms and 98 % correct within 40 ms. 
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CSTR - Edinburgh, U.K. (Schmidt et al.) [Schmidt 91] 

Context-independent phoneme-like HMMs were trained on a training set of 200 English 
sentences covering almost all permissible demi-syllables in English. The test set which 
was completely different from the training set contained 260 English sentences with 5780 
phonemes. The segmentation accuracy was 50 % correct within a margin of 12 ms, 78 
% correct within 20 ms, and 95 % correct within 40 ms. 

CNET France Télécom - Lannion, France (Boëffard et al.) [Boëffard 92, Boëffard 93] 

The HMMs were divided into two classes: models that represent so-called useful phonemes 
capturing the diphone sought, and models that represent the neutral phonetic context 
of the nonsense word (logatome). The training procedure consisted of three stages in 
which the models were enhanced in topology and structure at each stage. They were 
trained on a whole diphone inventory (± 1400 words) without any manually segmented 
material. Segmentation accuracy by using two French, one German, and one Spanish 
diphone database were nearly similar. The segmentation accuracy was in the range of 
85-90 % correct within a margin of 30 ms for the four databases. 

IFA - Amsterdam, the Netherlands (van Alphen) [Alphen 92] 

The whole experiment was conducted by using a speech inventory of three repetitions 
of 100 Dutch sentences and 10 extra utterances in order to evaluate the segmentation 
accuracy. All utterances were spoken by a male speaker. The total number of 310 
utterances were divided into an initialization set, a training set, and a test set. 

The set of 39 context-independent phoneme-like discrete HMMs were bootstrapped on 
an initialization set of 34 Dutch sentences spoken 3 times. These (3x34) 102 utterances 
were manually segmented. A subset of 74 utterances was used for creating multiple 
codebooks. 

The HMMs were subsequently trained on a collection of 100 sentences spoken 3 times. 
The initialization set was also included in this process but no manual segmentation 
information was utilized. 

For testing purposes 10 extra sentences were recorded ( these sentences were also present 
in the initialization set). The segmentation accuracy was 78.8 % correct within a margin 
of 20 ms. 

IRST - Povo di Trento, Italy (Brugnara et al.) [Brugnara 92] 

A set of 48 context-independent phoneme-like HMMs was applied to a subset of the 
TIMIT-DARPA speech database[Lamel 87]. The training set was constructed by se
lecting 64 speakers, each uttering 8 sentences (64 x 8 = 512). The test set consisted of 
24 speakers, not included in the training set, each of them uttering 8 sentences (24 x 
8 = 192). A distinct feature of this investigation is that the authors also examined the 
situation where only the orthographic transcription (but not the phonetic transcription) 
of utterances was available. This reduces even further the amount of a priori knowledge 
since the same orthographic transcription may result in quite different phonetic realiza
tions. In such a way, the problem amounts to finding both segmentation and phonetic 
labelling of the utterance. In addition, three distinct training strategies were examined: 

1. providing labelled and manually segmented speech material 
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2. providing labelled speech material 

3. providing no information whatsoever 

This gave rise to 6 different configurations of the system by considering all possible 
combinations of training and segmentation strategies. 

In the case where the labelled and the manually segmented material was provided during 
training and where the segmentation was dictated by the labelling, the accuracy was 
86. 9 % correct within a margin of 20 ms. 

A drastic performance reduction was observed when only the labelling of the speech 
material was provided during the training phase (75.6 % correct within 20 ms). · 

When both labelling and segmentation had to be performed automatically, a slight 
error increase was observed in the two configurations mentioned above. The use of no 
labelling or segmentation information during both training and segmentation <lid not 
further influence substantially the performance. 

lt was concluded that exploiting manually segmented data was crucial for the segmen
tation accuracy. The training set was varied in its size (64, 128, 256, and 512 sentences) 
by still covering all 64 speaker in order to investigate the minimum a priori training re
quirements. No significant changes were observed when reducing the training size from 
512 to 256. lt was found that 128 sentences were a good compromise between training 
size and performance. Further reducing the size to 64 seemed to be inefficient. 

IRST - Povo di Trento, Italy (Angelini et al.) [Angelini 93] 

The context-independent phoneme-like HMMs were trained on 256 manually segmented 
sentences of TIMIT-DARPA speech database [Lamel 87]. The sentences were recorded 
from distinct speakers. The test set consisted of 192 sentences recorded from 24 speakers 
and was not included in the training set. The segmentation accuracy was 88.3 % correct 
within a margin of 20 ms. An extension of the size of the training set <lid not contribute 
to a higher segmentation . accuracy. Moreover, a performance of 88. 7 % correct within 
a margin of 20 ms, given a training set of 512 manually segmented sentences, was 
considered to be a limiting treshold in accuracy. 

A set of 66 context-independent phoneme-like HMMs were trained on an ltalian database 
consisting of 152 manually segmented phonetically rich sentences recorded from several 
speakers. The test set consisted of 48 sentences. The segmentation accuracy was 91.1 
% correct within a margin of 20 ms. 

IRIT - Toulouse, France (Farhat et al.) [Farhat 93] 

The HMMs were divided in ten distinct phonetic classes, each having a different topol
ogy. The training set consisted of 23 manually segmented French sentences spoken by 
one speaker and manually segmented digits pronounced by ten other speakers. The test 
set consisted of the same 23 sentences, hut spoken by another speaker. Different training 
strategies were carried out for obtaining context-independent, left-context dependent, 
right-context dependent, or triphone models. However, the highest segmentation accu
racy was obtained by the simple context-independent HMMs and resulted into 75 % 
correct within a magin of 20 ms. 
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AT & T Bell - New Jersey, U.S.A. (Ljolje et al.) [Ljolje 93] 

This research was conducted using different training strategies in order to obtain context
dependent as well as context-independent models. A set of 1158 manually segmented 
sentences, spoken by a single male speaker, was provided in order to train some mod
els which are applied for automatically segmenting 50 entirely different phonetically 
balanced sentences from the same speaker and the 1158 sentences themselves. As a 
result the manually segmented as well as the automatic segmented data can be pair
wise combined for training 4 different ultimate sets of HMMs. The test set consisted 
of the above mentioned 50 sentences. However, the highest segmentation accuracy was 
obtained by using the simple context-independent models and training the models with 
only the manually segmented data. The segmentation accuracy was more than 80 % 
correct within a margin of 11. 5 ms. 
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Chapter 4 

A Hierarchical Approach 

4.1 Introduction 

Our main interest and effort is to incorporate de facto speech recognition techniques into 
the segmentation process. The application of Hidden Markov Models (HMM) is a promising 
approach in terms of performance in which the segmentation is merely a by-product of the 
modelling of each phoneme-like unit by an HMM and of Viterbi decoding. Unfortunately, an 
accurate time-alignment of the utterance against a sequence of HMMs now shifts the problem 
to finding a set of reliable HMMs. Usually, HMMs are obtained by a maximum likelihood 
training procedure on a collection of utterances but a severe problem in this setting is the 
need for a good initialization (bootstrapping) of the models before they are further tuned on 
the training data. 

Many researchers propose a solution in which they resort to a subset of pre-segmented 
speech from the same recording for HMM initialization (e.g. [Angelini 93, Ljolje 91, Ljolje 93]). 
Another way around is to initialize HMMs by using some pre-segmented material from 
an entirely different collection[Taylor 91]. However, this still requires the tedious hand
segmentation work that we want to get rid of. Also, the question arises about the amount 
of manually segmented material required fora new database to be effective in obtaining high 
segmentation accuracy. At the other extreme, HMMs can be initialized by a so-called 'lin
ear segmentation' of the recorded corpus where the frames of the utterance are uniformly 
attributed to the states of the HMM model. This, however, yields poor quality models. 

For obvious reasons we <lid not want to use any of these methods and we felt that the diffi
cult initialization problem could be circumvented by a hierarchical approach. As can be seen 
in Figure 4.1, each stage in this approach needs a transcribed speech database (in sampled 
data or parametrized form) . The hierarchy is basically structured by firstly segmenting the 
utterance in three broad phonetic classes (voiced, unvoiced, and silence) relying exclusively 
on the phonetic transcription and traditional statistica! pattern recognition techniques. lts 
outcome is a broad phonetic class segmentation that provides robust anchor points for more 
detailed analysis and serves as a preamble for a next stage consisting of a Sequence Con
strained Vector Quantization (SCVQ). This stage tries to segment each braad phonetic class 
region into its constituting phoneme-like units delivering a 'crude' phoneme-like segmenta
tion. In other words, it tries to cluster the observation sequence into a pre-selected number 
of non-overlapping phoneme-like segments by minimizing a spectra! distortion measure. The 
constraints to be satisfied are that the segments are contiguous in time, that the number 
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Figure 4.1: Flow diagram of the Hierarchical Approach. All processes (ellipses) need as input 
a transcribed speech data base. 

of segments is dictated by the phonetic transcription and that the segment locations should 
be fully compatible with the broad phonetic class segmentation obtained in the previous 
stage. Subsequently, these rudimentary segments obtained by this SCVQ stage are used as 
bootstrapping data for the HMMs. This supervised HMM initialization is conducted by the 
Segmental K-Means algorithm. Finally, fine-tuning of the HMMs is clone by a Baum-Welch 
training by exploiting the whole speech inventory without using segment information. In 
order to obtain the final segmentation result, the Viterbi decoding algorithm is applied on 
the same speech inventory by using the transcription and the fully trained HMMs. lt will be 
shown that this hierarchical approach will lead to an incremental refinement of the boundaries 
in which each stage has an effective contribution to the whole. 

The apriori knowledge that must be 'fed' to the system is kept to a minimum; the whole 
process only requires the phonetic transcription, a mapping from which the broad phonetic 
class of each phoneme-like unit can be derived, and some very genera! duration statistics for 
each phoneme (see Table 3.1). 

Beside the training requirements as mentioned above, other aspects that influence the 
accuracy must not be underestimated. In order to ensure a proper characterization of phono
logical processes within and between phonemes, they have to be adequately covered by the 
training material and occur in distinct phonetic contexts_ In our application, it is hardly pos
sible to address this prerequisite due to the structure of the speech inventory. The diphone 
carrier words are not phonetically rich and balanced. Rather, the acoustic units of interest 
are embedded in phonetically neutra! contexts that have only a limited amount of phonemes 
(the neutra! schwa vowel is predominant) resulting in an unbalanced phoneme-phoneme tran
sition distribution. lt may bias the HMM training and subsequently deteriorate the accuracy 
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performance of the segmentation. 
We have tried to convey a coherent picture of the distinct stages involved in the hierarchical 

approach. Each stage comes up with specific pecularities, possibilities and parameter settings 
leading off to side-ways that may not be interesting in a first instance. Thus, we have followed 
a main thread throughout this chapter by devoting a separate section for each stage within the 
hierarchical approach. First in each section, a detailed outline of the method of that stage is 
given intertwined with theory to comprehend the material. Second, the achieved experiment 
results are given along with their contribution to the hierarchical approach. Third, limiting 
cases in the sense of no-knowledge and full-knowledge instances of the technique are given to 
put the results in a proper perspective as well as implementation variants or small extensions 
of the technique. These sections called 'Variants' and 'Limiting Cases' can be skipped in a 
first reading. 
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4.2 Broad Phonetic Classes 

In order to incorporate acoustic-phonetic knowledge into the hierarchical approach, a broad 
phonetic class (BPC) segmentation is used as preamble for subsequent processing. The ob
jective is to provide reliable anchor points for a more detailed analysis. A similar approach is 
followed by some researchers who want to provide a robust description of significant acoustic
phonetic events of the utterance before it will be subjected to a next stage [Leung 84]. In an 
ideal case, these broad phonetic class segments have only to be divided in segments corre
sponding to their constituting phoneme-like units by a next stage. 

4.2.1 Outline of the method 

A straightforward and reasonable approach is to use a representation of the utterance into 
three broad phonetic classes, 

l. silence (SIL), where no speech waveform is present, 

2. unvoiced (UNV), where the speech waveform is aperiodic or random in nature, 

3. voiced (VOI), where the speech waveform is quasi-periodic. 

Our method is to exploit conventional statistica! pattern recognition techniques which 
receive as input an observation sequence representing speech signal measurements. These 
measurements must provide a basis for distinguishing the three broad phonetic classes . A wide 
variety of measurements are candidates for this role. However, distributions of measurements 
show substantial overlap in their voiced and unvoiced regions. In a practical setting, the 
use of one measurement alone does not always come up with an unambiguous decision. The 
simultaneous utilization of several distinct measurements may alleviate this sensitivity for 
overlap. 

We propose five distinct measurements that are simple to compute and roughly charac
terize the proposed classes. They all try to give a fairly good indication of the location of the 
dominant portion of the spectra! energy of the speech sound. First of all, we take into account 
the fact that unvoiced sounds are generally characterized by an energy concentration in the 
relatively high frequency region, and voiced sounds in the relatively lower frequencies. Thus, 
these measurements can be effective in giving cues for discriminating voiced and unvoiced 
regions of speech. In addition, an energy level measurement is primarily used to distinguish 
speech from silence. 

The observation vector consists of the following five measurements: 

1. Normalized short-time energy EN , 

2. Normalized low-frequency energy Elow in the range 50-1200 Hz. 

3. Normalized high-frequency energy Ehigh in the range 2000-4000 Hz. 

4. Zero crossing rate ZN. 

5. First LPC coefficient a1. 
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Figure 4.2: Five measurements /or the nonsense word 'kekakke '. 

In order to avoid undesirable weighting of the measurements due to differences in dynamic 
range, all measurements are normalized to fall within the interval [0, l]. 

We assume a sampled speech waveform x(k), for k = 0, • • ·, N - 1 that is pre-emphasized 
by the filter 1- 0.95z- 1 , blocked and Hamming-windowed into frames of 20 ms, with a frame 
shift of 10 ms. 

Normalized short-time energy 

The short-time energy EN can be estimated by 

N-1 

EN= L x(k) 2 

k=O 

( 4.1) 

The primary motivation for incorporating this measurement is to distinguish speech 
from silence. EN is normalized by the maximum short-time energy Emax found in the 
utterance. Furthermore, EN is scaled by a factor e (experimentally fixed at 500.0) in 
order to circumvent the problem in discriminating weak fricatives or plosive bursts from 
silence. Furthermore, it is flipped in magnitude to express the presence of silence by a 
value near 1, i.e. 

(4.2) 

Finally, negative values of EN are clipped to zero. 

N ormalized low and high frequency energies 

A straightforward method of performing broad-band filtering is to combine the output of 
Discrete Fourier Transform (DFT) channels that lie within the required frequency bands. 
First, an N-point FFT of the speech sequence x(k) is taken and the squared modulus 
is calculated of each FFT channel (spectra! power domain filtering). By considering 
cut-off frequencies of 50 Hz and 1200 Hz for the low frequency energy Elow and 2000 

23 



Hz and 4000 Hz for the high frequency energy Ehi h, the channels that fall within one 
of these frequency bands are added. Subsequently, &oth energy contours are normalized 
by the total energy that is found in the two frequency bands. 

Zero crossing rate 

A zero crossing occurs if successive samples have opposite algebraic signs. An appro
priate definition for the zero crossing rate Z N is, 

l N-1 

ZN = -N L lsgn[x(k}] - sgn[x(k - 1}]1 
2 

k=l 

(4.3} 

in which sgn[.] is the sign function. 

Obviously, all that is required is to check samples in pairs for sign changes and compute 
the average over N samples present in the frame. 

Since high frequencies imply high zero crossing rates, and low frequencies imply low 
zero crossing rates, there is a strong correlation between zero-crossing rate and spectral 
energy distribution. One can roughly state that a high zero crossing rate is due to 
unvoiced speech, while if the zero crossing rate is low, voiced speech is at stake. 

First LPC coefficient 

The first LPC coefficient of a first order LPC model is defined as the ratio of the first 
and zero-tb autocorrelation lag, i.e. 

r(l} 
a1 = r(0} ( 4.4) 

where r(0} and r(l} can be calculated by their unbiased estimations from the speech 
samples. An a 1 coefficient lying near 1 indicates a major energy concentration in the low 
frequencies and a value near -1 indicates a major concentration in the high frequencies. 

We have linearly scaled the magnitude of the a1 coefficient into an interval between 0 
and 1, by defining 

a~ = (1 + ai)/2 (4.5} 

Let us now describe in more detail the specific task of segmenting an utterance into a 
predetermined sequence of broad phonetic classes. We assume that each phoneme falls in 
only one of the three broad phonetic classes. This is accomplished by defining a function that 
uniquely maps each phonetic label onto a broad phonetic class. Thus, denoting by Lab the 
set of phonetic label names, and by Class the set of broad phonetic class names, we introduce 
the auxiliary function M : Lab - Class. By that means, we acquire a unique transcription 
into L' broad phonetic classes (SIL,UNV, and VOI) from a transcription in L phonetic labels 
where L' ~ L. 

Now, the problem is to find L' consecutive broad phonetic class segments in an observation 
sequence Of= o(l), · · ·, o(T) as formally defined in Section 3.2. 

We can represent each broad phonetic class by a prototypical vector or centroid. So, let 
C = { êsIL, êuNV, êvoÜ be a set of three (initially undetermined) centroids of these classes. 
We denote d(o(t),ê) as a distance measure between the t-th observation vector and a centroid 
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ê E C. The l-th intra-segment distance d1(i,j) is simply the summed distances between the 
vectors spanning the segment and the centroid ê E C, 

j 

d1(i,j) = L d(o(t), êk) , with k = F(l) (4.6) 
t=i 

where F : 1N - Class represents an auxiliary function that directly maps an integer l 
( denoting a segment number) onto its broad class name for the utterance under consideration. 

As the centroids are initially unknown, we both have to find a segmentation and a set of 
centroids such that the total distortion is minimal, i.e. 

L' L' b1 

L d1(b1-1 + 1, bi)= L L d(o(t), êk) , with k = F(l) (4.7) 
l=l l=l t=b1-1 +1 

The Euclidean distance between the observation vector o(t) and the centroid êk is used, 
thus 

(4.8) 

where ' denotes transpose. The centroid êk belonging to a broad phonetic class k E Class is 
simply the arithmetic mean of all observation vectors assigned to that class by a preceding 
iteration of the segmentation algorithm, 

(4.9) 

in which Tk is the number of vectors assigned to class k. 
lt is worth noting that the implementation of the minimization is accomplished in a 

dynamic programming framework that is quite similar to Viterbi training used in speech 
recognition [Rabiner 93] and close to the level-building approach described in Section 4.3.l. 
As can be seen in Equation 4.13, minimal and maxima! durations allowed for a segment can 
be imposed to the level-building algorithm. We have capitalized on that feature by putting 
the duration parameters for each broad phonetic segment equal to the sum of the duration 
parameters of its constituting phoneme-like units. The required duration statistics for each 
phoneme-like unit are acquired from the speech inventory at hand. We used the minimal and 
maxima} duration found in the inventory and they are shown in the columns with headings 
Min Dur and Max Dur in Table 3.1. 

The broad phonetic class segmentation consists in an iterative procedure where each iter
ation has two steps. The first step seeks an optima} set of boundaries given a set of centroids. 

- The second step updates the centroid set by using the new acquired boundaries. Both steps 
- come up with a minimal total distance that is exploited to guarantee convergence. 

Thus, each iteration i involves the updating of the boundaries using centroid set Ci re
sulting into boundary sequence Bi and a total distance Di. Subsequently, the centroid set 
is updated using boundary sequence Bi resulting into Ci+l and total distance n:+i · This 
procedure is repeated until some convergence criterion involving Di and n:+1 is met. 

The first iteration starts with an initia! set of centroids Co that represent some ideal broad 
phonetic classes. This is a reasonable thing to do, recalling the imprecise spectra} energy 
distribution characterization of each measurement with respect to a broad phonetic class. 

In more detail we describe hereunder the proposed algorithm 
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Outline of Algorithm 

One is given an observation sequence of length T, 

01,T = o(l), · · ·, o(T) 

where 
o(t) = (E',.,Elow,Ehigh,ZN,a~)' 

the set of braad phonetic labels Class = {SIL, UNV, VOI}, a transcription function F : IN --+ 

Class, and a convergence threshold é. 

Initialization: 

Set i = 0. 

Start with a initial centroid set Co= {êsrL,êuNv,êvor} where each centroid is a binary vector: 

êsrL = (1, o, o, 1, 1)1 êUNv = (o, o, 1, 1, o)' êvor = (0, 1, o, o, 1)' 

( Justification for this initial centroid set: An ideal prototypical centroid for the class SIL is 
characterized by a low normalized short-time energy implying that E',. lies near 1, low normalized 
energies in both frequency bands implying that both Elow and Ehigh lie near 0, a high zero 
rate crossing implying that ZN lies near 1, and a high first LPC coefficient implying that a~ lies 
near 1. The same sort of arguments hold for the classes UNV and VOI. ) 

Step 1. Boundary updating: 

Update the boundary sequence Bi= {bo, • • •, bL'} by minimizing the total Euclidean distance, 

. L' b1 

Di = n;t L L (o(t) - êk)'(o(t) - êk) , with k = F(l) 
l=l t=b1-1+l 

This time-alignment of the observation sequence against the centroids is achieved by an imple
mentation of the level-building dynamic programming algorithm (see Section 4.3.1) . Duration 
constraints of the segments are imposed to the algorithm. 

Step 2. Centroids updating: 

Update the centroid set Ci+l by first collecting all partial observation sequences that correspond 
to the same braad phonetic class label into three distinct sequences O~~t, where Tk denotes the 
number of vectors for each label k E Class, i.e. 

0~~:t = {o(t) 1 b1-1 + 1 S t S b1 /\ k = F(l) /\ 1 S l S L'} 

The optimal centroid êk E C;+l for the Euclidian distance is the arithmetic mean of each 

sequence O~~t, 

Compute the distortion decrease 

where 
L' b1 

D:+i = L L d(o(t),êk) ,withk=F(l) 
l=l t=b1-1+l 

represents the new distortion one obtains by using the updated centroid set C;+1. 
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Step 3. Termination: 

If the convergence criterion 8 < t: is met, terminate with boundary sequence Bi and minimum 
total distance Di, else set i = i + 1 and go to Step 1. 

We have to guarantee that this iterative procedure converges toa local optimal solution by 
showing that the sequence of intermediate total distances is monotonically decreasing, namely 
Do ~ D1 ~ · · · ~ Di ~ Di+1 ~ • · •. This can be proved inductively along the following lines 
(see [Rabiner 93] for a completely similar argument concerning the convergence of Viterbi 
training): 

1. As described in Step 2, summing up all intra-segment distances by using the updated 
centroid set Ci+l yields a new distance Di+I that is smaller than or equal to Di obtained 
by the centroid set Ci, i.e. Di ~ Di+I · This can be explained by the fact that each 
centroid ê E Ci+1 is chosen as the one that minimizes all intra-segment distances to that 
centroid. This is also true for the first iteration in which the first updated centroid set C1 

is only a improved version of the initial centroid set C0 with respect to the segmentation 
Bo. 

2. As descibed in Step 1, calculating a set of boundaries Bi by using the centroid set Ci 
yields a minimal total distance Di that is smaller than or equal to Di because Bi is 
obtained by means of a distance minimization scheme, i.e. Di ~ Di. 

Combining both results proves that the inequality Di ~ Di+l holds for all i. 

4.2.2 Results 
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Figure 4.3: The braad phonetic class segmentation results into 80.42 % correct within 20 ms 
/2760/3432}. Horizontally, the correct margin is successively extended by 5 ms. Vertically, 
the percentage of boundaries that fall within a margin is specified (fp/q} means p correct out 
of q occurrences). 

The BPC segmentation is evaluated on the speech inventory by mapping each manual seg
mentation to its broad phonetic class representant. lt resulted into 3432 manually positioned 
boundaries between broad phonetic class segments. The mapping itself is shown in Table 4.1. 
Obviously, the first and last boundary representing respectively the beginning and ending of 
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:.. 

phoneme-like unit 
P1 T1 K1 SI 
P2 T2 K2 F SI SJ 
IE A O CC C Y U AA EEDE 00 II EB UH OH 
EI1 EI2 UI1 UI2 AU1 AU2 
D1 D2 B1 B2 G1 G2 V Z H ZJ M N Q L R W J 

broad phonetic class 
--+ SIL 
--+ UNV 

--+ VOI 

Table 4.1: Mapping from phoneme-like unit to broad phonetic class. 

the sampled speech data file are not taken into account in the segmentation results (see also 
Section 3.2 and 3.4) . 

Each sampled speech waveform from the inventory was pre-emphasized by the filter 1 -
0.95z- 1 , blocked and Hamming-windowed into frames of 20 ms, with a frame shift of 2.5 ms. 
A frame shift of 2.5 ms resulted into higher segmentation accuracies than settings in which 
the frame shift was 10 ms. The phonetic transcription of the utterance, some global duration 
statistics for each phoneme-like unit as shown in the columns with heading Min Dur and Max 
Dur in Table 3.1, and the mapping to the braad phonetic classes were also provided to the 
algorithm. 

UNV VOI SIL 
UNV 0 / 0 743 / 914(81.29%) 55 / 98 (56.12%) 798 /1012 78.85 % 
VOI 299 / 370 (80.81 %) 0/0 774 /1066 (72.61%) 1073 /1436 74.72 % 
SIL 562 / 618 (90.94%) 327 / 366(89.34%) 0 / 0 889 /984 90.35 % 

861 /988 1070 /1280 829 /1164 2760 /3432 
87.15 % 83.59 % 71.22 % 80.42 % 

Table 4.2: Detailed overview of the boundary disagreements for each broad phonetic class by 
considering a correct margin of 20 ms. fp/qj means p correct out of q occurrences. 

As shown in Figure 4.3, the segmentation method demonstrates that the difference be
tween the manual segmentation and the automatic segmentation is inferior to 20 ms for 80.42 
% of the braad phonetic class boundaries. A more detailed overview of the boundary discrep
ancies by considering a correct margin of 20 ms is shown by Table 4.2 in which vertically the 
braad phonetic class to the left of the boundary is indicated, and horizontally the class to 
the right of the boundary. The score p/q in each entry of the matrix means p correct out of 
q occurrences. Also, the corresponding percentage is presented. In the bottom row and the 
right most columns, summations over respectively the column and the row is given. In the 
bottom-right entry, the total segmentation performance is given. 

lt is apparent in Table 4.2 that the VOI-SIL boundaries (with only 72.61 % correct and 
large number of occurrences) are a first candidate for improvement. These boundaries occur 
at word final positions, mostly at the ending of the neutra! schwa (recall the phonetic structure 
of the nonsense words). Also it represents the closure onset of unvoiced plosives which are 
of special interest (T1, P1, and K1 segments) . lt is difficult to determine exactly the onset of 
these SIL regions by relying solely on our set of signa! measurements. 

The boundaries between voiced and unvoiced regions still need improvement. Our method 
does not carne up with a clear discrimination between these regions in all cases. Many mis-
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alignments are observed in burst-vowel transitions in which the bursts are not well articulated. 
On the other hand, the SIL-VOI score is rather high, delivering clear closure-burst event 

detections within unvoiced plosives (e.g. P1 P2 clusters). However, permanent attention has 
to be paid to distinguishing silence from weak unvoiced fricatives and plosives. 

4.2.3 Limiting Cases 
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Figure 4.4: Limiting case of broad phonetic class segmentation. A The iterative broad phonetic 
class segmentation method results into 80.42 % correct within 20 ms {2760/3432/. B The broad 
phonetic class segmentation with externally provided centroids results into 80. 77 % correct 
within 20 ms {2772/3432/. Horizontally, the correct margin is successively extended by 5 ms. 
Vertically, the percentage of boundaries that fall within a margin is specified ([p/qj means p 
correct out of q occurrences). 

The final performance of our proposed method of segmenting broad phonetic classes must 
be investigated in a proper perspective. Therefore, we conducted the same experiment by 
providing the algorithm a set · of external centroids. Instead of computing interatively a 
new centroid set, the set is known and determined by averaging the collection of signal 
measurements that fall within each manually positioned broad phonetic class segment in the 
speech inventory. This reduces our method into a template matching scheme. In this respect, 
template matching technique must deliver better results and thus is considered an upper 
bound of performance that can be achieved by our method. By considering a margin of 20 
ms, 80. 77 % of the automatic positioned broad phonetic class boundaries are correct. In 
Figure 4.4 the global segmentation performance of this template matching method is shown 

·~ compared with our iterative method. No substantial performance difference between the two 
methods exists. As a matter of fact, the same observations as mentioned in Section 4.2.2 
are made. Thus, the addition of more a priori knowledge in terms of externally provided 
centroids does not remove the lack of discriminative power of the signal measurements. 

4.2.4 Discussion 

Some aspects of our method have to be kept in mind. Some of them may be considered 
weaknesses and must be remedied in future research projects: 
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1. The existence of an acoustic-phonetic property at a particular position in the utterance 
is assumed a priori. A phonetic transcription of the utterance never assures that a 
particular phoneme is acoustically realized according to an assumed broad phonetic 
class. Especially, assimilation processes as they can occur in clusters of phonemes with 
voiced and unvoiced characteristics, such as / sz/ and / fv/ clusters, are not detected. 
No mechanism that takes account of these kind of phonological processes was utilized 
here. 

2. The choice of signa} measurements made here is probably not optima} and they are 
combined in a rather ad hoc manner. Other measurements and combinations may turn 
out to be better. 

3. The particular choice for starting from an initia} centroid set that reflects an ideal 
broad phonetic class representant and iteratively updating the centroids according to the 
information at hand is made on rather intuitive grounds. Another possibility was to start 
with nothing and compute the centroids on-the-fly during a single dynamic programming 
pass, such as in the method that will be explained in Section 4.3.1. However, we feit 
that this is inappropriate because we can make good guesses for an initia} set recalling 
their discriminative power regarding the three classes. Besides, we want to represent all 
corresponding broad phonetic class segments by one and the same centroid because these 
classes are heavily linked with each other regarding their acoustic-phonetic properties. 
This so-called centroid-pooling proved to us to be very difficult to solve in a single 
dynamic programming pass. The need for centroids can also be solved by providing 
them externally such as the template matching method mentioned in Section 4.2 .3, but 
this does not fit in the philosophy of our approach. 

4. The normalization procedure of the measurements (by sealing them to an interval be
tween O and 1) in order to compensate for dynamic range differences may be rather 
crude. Amore sophisticated way is to normalize the measurements by their (estimated) 
variances. This results ip.to the application of a weighted Euclidian distance (i.e. Ma
halanobis distance). This distance metric has the advantage that it assigns a lower 
weight to measurements that show a high standard deviation, i.e. they are considered 
less reliable. 
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4.3 Sequence Constrained Vector Quantization 

The segmentation into broad phonetic classes delivers anchor points for a more detailed 
processing. In principle, the segmentation at phoneme level of the complete utterance can now 
be broken down in the segmentation of each broad phonetic class segment into its constituting 
phoneme-like units. The benefit is that segmentation inaccuracies in one broad phonetic class 
segment do not propagate to the next one, thus improving accuracy as reflected in the results 
in Section 4.3.2. In practice, we shall take into account the fact that the anchor points are not 
totally exact and we shall allow small adjustments to this anchor points when this improves 
the accuracy of the Sequence Constrained Vector Quantization. 

4.3.1 Outline of method 

The problem being addressed now is the determination of L consecutive phoneme segments 
in an observation sequence Of= o(l), • • •, o(T) as formally defined in Section 3.2. 

We shall follow a method originally proposed by Svendsen and Soong [Svendsen 87, 
Vidal 90] which aims at segmenting the utterance into consecutive quasi-stationary elements. 
Obviously, diphtongs and plosives have to be further divided in their constituents as explained 
in Section 3.3. 

In order to quantify the concept of quasi-stationarity we need a distortion measure between 
a pair of observation vectors. This measure gives the possibility to cluster vectors or to 
associate an observation with a segment. By that means, each segment l can be represented 
by a generalized centroid that is based on the observation vectors spanning that segment. One 
can recognize the resemblance with ordinary Vector Quantization codebook design [Gray 84] 
in which T vectors are partitioned into L clusters and L codebook vectors are chosen as 
the centroid of each of the L clusters. In our case, the technique is further subjected to the 
constraint that all vectors in a cluster (segment) are contiguous in time and is therefore called 
Sequence Constrained Vector Quantization (SCVQ) in the sequel. 

As already noted in Section 4.2.1, the method to identify the positions of the broad 
phonetic classes and this SCVQ approach are quite similar. Nevertheless, we have treated 
them separately because they show some specific differences. 

An 'optima!' segmentation and a set of L centroids can be found by minimizing a total dis
tortion which we now definé. We denote the distortion measure between the t-th observation 
vector o(t) and a centroid ê1 of the l-th segment as d(o(t), êi). The l-th intra-segment dis
tortion d1(i,j) is simply the sum of distortion terms between the vectors o{ = o(i), • • •, o(j) 
spanning the segment l and the centroid ê1, 

j 

d1(i,j) = L d(o(t), êi) (4.10) 
t=i 

- Now the problem can be formulated as finding the boundaries {bo, b1 , • • •, bL} by minimizing 
the total distortion measure, 

L L b1 

L d1(b1-1 + 1, bi)= L L d(o(t), êi) (4.11) 
l=l l=l t=b1-1+l 

Still, attention has to be paid to the determination of the centroid of a segment . One 
possibility is to define the centroid as the vector that minimizes the distortion in a particular 
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fixed segment spanned by the observation sequence ot
1
+1 = o(b1-1 + 1), ... , o(bz), i.e. 

. l b1 
ê1 ~ argmm --- L d(o(t),cz) 

cz b1 - b1-1 t=b1-1 +i 
(4.12) 

This has the obvious advantage that no additional knowledge is required and the centroids 
are acquired from the observation at hand. It must be emphasized that this centroid compu
tation is on-the-fly and must re-computed each time the segment is stretched (or shrinked) 
during the minimization of Equation 4.11. So, many candidate centroids for each segment 
are to be considered. 

Another possibility could be to assume that the centroids are provided externally by single 
reference frame templates or prototypes via a hand-labelled speech database. This however 
would require a priori knowledge and therefore does not fit into our approach. 

The actual centroid computation procedure as defined by Equation 4.12 is highly depen
dent on the choice of the distortion measure. This discussion will be postponed until the 
description of the particular distortion measure that is incorporated in the SCVQ framework 
is given. 

---------
segment l 

---------
segment /-1 

' ' . ' 
' ' ' ' ' . ' ' 

: . . l 1 ; l 

. . ' . 
' ' . ' : : : : 

l l : : : i . : : . 1 ; 

D ······· ········ D D D D D D D D ······ ···· D ·········· D 
. t•T ,/J,-c••···· · j ··· ·· ·· ·· ·<> t•T ~/~ 

obsuvation sequence 

~. Figure 4.5: An operational interpretation of level-building according to Equation 4- 13. 

The SCVQ approach can be efliciently implemented by the application of level-building 
dynamic programming [Rabiner 93] . As with any technique based on dynamic programming, 
this one tries to find a time-aligned path between the observation sequence and a set of cen
troids. This path indicates the best match between groups of consecutive vectors (segments) 
and each centroid. 

In addition to this dynamic programming framework, the level-building approach performs 
all computations at each segment1 on all candidate centroids before it proceeds to the next 
segment. By that means, we can compare partial accumulated distortions at each segment 

1 Level-building denotes segments as 'levels' because in an operational graphical representation of the process 
the segments appear as horizontal lines. 
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and retain only the minimum at each path ending frame. The computation of the next 
segment simply picks up this minimum as well as its path ending frame and starts from there. 
It exactly meets our needs of finding consecutive segments in such a way that the sum of all 
intra-segment distortions is kept to a minimum. 

In this respect, we define the minimum accumulated distortion D(l, t) over a partial ob
servation Üi = o(l), • • •, o(t) that is decomposed into l segments (levels). This minimal 
distortion corresponds to a time-alignment path that intersects with a range of candidate 
ending frames that marks the transition from segment l - 1 to l. This range of candidate 
ending frames represents the path expansion constraints and are specified by the interval 
[t - Tgh, t - T~lnl• As explicitly shown by the superscripts, each path constraint can be 

handled separately for each particular segment under consideration. In other words, T~ln and 

Tgh may respectively represent the global minimum and maximum duration allowed for a 
phoneme-like unit derived from statistics of (manually segmented) speech data as given in 
Table 3.1. 

As is shown in Figure 4.5, the accumulated distortion D(l, t) is recursively defined as the 
minimum distortion D(l - 1,j) of the partial observation O{ = o(l), • • • ,o(j) divided into 
l - 1 segments plus the intra-segment distortion d1(j + 1, t) from Equation 4.10. That is, 

D(l, t) = min [D(l - 1,j) + d1(j + 1, t)] 
t-T.(l) < "<t-T<I) max_J_ mm 

( 4.13) 

By satisfying the boundary condition D(0, 0) = 0, one can interpret D(L, T) as the mini
mal total distortion in which the complete observation sequence of= o(l), • • • o(T) is decom
posed into L consecutive segments. By retaining all candidate ending frames corresponding to 
minimal partial time-alignment paths, one can easily find the boundaries B = {bo, b1 , • • •, bL} 
by backtracking the optima! path ending at frame T. 

lt is perhaps worthwhile to emphasize two major differences between SCVQ and the 
segmentation in broad phonetic classes described in Section 4.2.l. There, all segments carrying 
the same broad phonetic class label are represented by the same centroid. This is not the 
case with SCVQ where segments with the same phonetic label will generally have different 
centroids according to Equation 4.12. In addition, the determination of centroids and segment 
boundaries are integrated in a single minimization step of the total distortion defined by 
Equation 4.11, whereas in Section 4.2.1 computation of boundaries and centroids update is 
performed in distinct successive steps. 

So far, nothing is said about the integration of the broad phonetic class segmentation 
as provided by BPC into this SCVQ stage. Obviously, each broad phonetic class segment 
spans acoustic realizations of some phoneme-like units. By seeking locally in a specific broad 
phonetic class segment for boundaries of its constituting phoneme-like units, one can expect 
that segmentation inaccuracies at one place do not propagate to other positions. However in 
practice, the segmentation into broad phonetic classes is not totally exact. Together with the 
fact that a simple linear normalization is needed to scale the duration constraints for each 
phoneme-like unit, a small compliance factor has to be maintained for these anchor points to 
improve accuracy. This is done as follows. 

Assume a broad phonetic class segments can be broken down into L constituting phoneme
like units. We are given the actual duration Ts of the broad phonetic class segment. Also, 
we know some estimated average duration p,(I) of each phoneme-like unit. In particular, we 
have used the average duration statistics as shown in Table 3.1 in the column with heading 
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Ave Dur ± Std Dev. An approximation for the minimal and maximal allowed duration 
of a phoneme-like unit as denoted by T~ln and T~h in Equation 4.13 can be made by a 
straightforward normalization procedure. An appropriate minimum and maximum allowed 
duration for phoneme label l is given by 

(1) _ A(I) Ts 
Tmin - µ '°'L A(I) - Ï 

L.,l=l µ 

T(l) = µA(l) Ts + 1 max '°'L A(I) 
L.,[=l µ 

(4.14) 

(4.15) 

where I is a compliance factor. The highest accuracy was obtained by fixing I at 20 ms. 
A subtle, but important addition in terms of accuracy performance is to follow a slightly 

different procedure for burst-like units, such as P2 and B2. In preliminary experiment, it 
was observed that just these bursts highly contributed to the overall segmentation inaccuracy 
due to a too loose specification of the allowed durations. Thus, no compliance factor to the 
maximum allowed duration T~h for the bursts is added. 

Itakura Distortion Measure 

In automatic speech-recognition applications, studies to date have not indicated conclusively 
that a particular distortion measure leads to a higher recognition accuracy. The choice 
for a specific local distortion measure is often a function of the specific application, speech 
parametrization, and environment. Our application deals with speech recorded from a single 
speaker that is noise-free, in which co-articulation effects are kept to a minimum. In this 
respect, we have used a distortion measure that is very suitable for speech recognition in such 
an environment, i.e. the Itakura distortion. The rationale bebind this distortion is that the 
set of all possible speech segments derived from the same speech sound are similar in that 
the underlying true Linear Predictive Coding (LPC) coefficient vectors ä are identical. The 
difference with the calculated LPC coefficients of a speech segment are primarily due to the 
inaccuracy of the linear prediction speech model. In fact , the ltakura distance is a proposed 
simplification of the Gaussian log-probability that the calculated coefficients vector a are from 
a speech segment with true coefficient vector ä [Itakura 75]. Whenever we consider the cen
troid ä1 as the true LPC model of segment l, we can state this measure as our intra-segment 

distortion (see also Equation 4.10), 

(4.16) 

where ä1 = (1, a1, · · ·, ap)' is the p-th order LPC centroid vector of segment l (p = 12), o} 
is the residual energy in frame t, and Rt is the augmented (p + 1) x (p + 1) autocorrelation 
matrix of frame t 

f(O) 
f(l) 

f(l) 
f(2) 

f(p) 
f(p - 1) 

f(p) f(p- 1) f(O) 

( 4.17) 

The ltakura distortion is a logarithm of the ratio of prediction residuals resulting from 
inverse filtering the waveform of frame t by the LPC centroid model ä1 and by the LPC model 
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of that frame. If the frame model is close to the process generated by the LPC centroid model 
ä1 the distortion will be close to zero; otherwise, it will be significantly large. 

An alternative efficient computation of the ltakura distortion that requires a factor of 
(p + 2) less operations than the direct way is by evaluating the residual energy term by 
[Rabiner 93], 

p 

ä~Rtä1 = r 0 (0)f(O) + 2 L ra(n)f(n) (4.18) 
n=l 

where 
p-n 

ra(n) ~ L aiai+n , for n = 0, 1, · · · ,P (4.19) 
i=O 

whieh is the autocorrelation of the predictor coefficients. 
As defined in Equation 4.12, the centroid is that vector that minimizes the intra-segment 

distortion with respect to the observation sequence in that segment. By substituting the 
Itakura distortion in Equation 4.12, we have to solve 

( 4.20) 

However, this can not be solved in a straightforward way due to the involved minimization 
procedure of a geometrie meao. A reasonable approximation is to ignore the logarithm in 
Equation 4.20 whieh reduces the problem into a minimization of an arithmetie meao that can 
be considered an upperbound of the geometrie meao [Rabiner 93]. Now, the centroid becomes 
the LPC solution of the set of normal equations defined by the average residual-normalized 
autocorrelations 

( 4.21) 

4.3.2 Results 

We evaluated the segmentation results by comparing them with their corresponding manually 
positioned boundaries. A total of 6412 boundaries are considered without the boundaries that 
specify the beginning and ending of the sampled speech data file (see also Sections 3.2 and 
3.4). 

Each sampled speech waveform was pre-emphasized by the filter 1 - 0.95z- 1 , blocked 
and Hamming-windowed into non-overlapping frames of 10 ms, with a frame shift of 10 ms. 
We used an order of 12 (p = 12) for the LPC analysis. Non-overlapping frames guarantee 
the correct calculation of the centroid minimizing the Itakura distortion within a segment. 
This calculation requires the estimation of an average (residual-normalized) autocorrelation 
sequence as shown in Equation 4.21, thus overlapping frames may bias this estimation (or at 
least hamper an efficient computation) . We chose a rather low time-frequency resolution by 
considering a frame width of only 10 ms because this resulted into higher performances than 
with frame widths of 20 ms. 

With respect to the provision of duration information to the algorithm, we followed the 
scenario that moves from no duration constraints to specific duration constraints that can be 
derived from a preceding broad phonetic class segmentation. 
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Figure 4.6: Segmentation results for three configurations of the SCVQ imposed to different 
duration constraints. A No duration constraints results into 51.19 % correct within 20 ms 
{3282/6412] B Global duration statistics as given in Table 3.1 results into 63.91 % correct 
within 20 ms {4098/6412]. C Duration constraints as provided by a preceding broad phonetic 
class segmentation results into 69.31 % correct within 20 ms [4444/6412]. Horizontally, the 
correct margin is successively extended by 5 ms. Vertically, the percentage of boundaries that 
fall within a margin is specified ([p/qj means p correct out of q occurrences) 

A Segmenting the inventory with no duration statistics, i.e. T~fn = 1 and T~lx = T + 1 for 
all /, where T is the number of speech frames in the observation sequence at hand. 

B Segmenting the inventory with global duration statistics for each phoneme-like unit l, i.e. 
T~fn = p,(l) - §(I) and T~l = p,(I) + §(I) for all l, where p,(I) and §Cl) are respectively the 
number of frames corresponding to the average duration and its standard deviation as 
shown in Table 3.1 in the column with heading Ave Dur ± Std Dev. 

C Segmenting the inventory by using the anchor points as provided by the broad phonetic 
class segmentation. This provides more reliable duration constraints specified for the 
utterance at hand as described in Section 4.3.l. 

As shown in Figure 4.6, the configuration C with the broad phonetic class segmenta
tion as preamble resulted into the highest accuracy ( 69. 31 % correct within a margin of 20 
ms [4444/6412]) . Configuration B resulted into 63.91 % correct within a margin of 20 ms 
[4098/6412], and configuration A into 51.19 % correct within a margin of 20 ms [3282/6412]. 
lt is clear that a substantial improvement is accomplished by providing duration information 
for each phoneme-like unit that is made as specific as possible for the utterance at hand. 

We have clustered all labels into 6 categories, as shown in Table 4.3, in order to look more 
closely at particular transitions. The two segments of the diphtongs and unvoiced plosives 
are 'glued' together again to form a single label. This means that we disregard boundaries 
between these distinct segments in the results and statistics. A detailed overview of the 
boundary discrepancies by considering a correct margin of 20 ms is shown by Table 4.4 in 
which vertically the category to the left of the boundary is indicated, and horizontally the 
category to the right of the boundary. The score p/q in each entry of the matrix means p 
correct out of q occurrences. In the bottom row and the most right columns, summations 
over respectively the column and the row is given. In the bottom-right entry, the total 
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name category phoneme-like units 
Vow vowels IE! 0 CC C II Y U !! EEDE 00 

EH UH OH !U1 !U2 EI1 EI2 UI1 UI2 
Plo plosives B D G P1 P2 K1 K2 T1 T2 
Fri fricatives Z ZJ V S SJ F I 
Liq liquids, semi-vowels L R H W J 
Nas nasals 1 M Q 
SI silence SI 

Table 4.3: Categories /or evaluation purposes. 

segmentation performance is given. This percentage is slighty different (smaller) compared 
with the percentage as shown in Figure 4.6 due to the disregarding of boundaries within 
plosives and diphtongs. 

The method is far from perfect and some severe problems can be noticed from Table 4.4 
without picking out all of them. 

• The vowel-vowel transitions (43.75 % correct [35/80]). Many transitions are realized 
with a untranscribed glottal stop. 

• The beginning of concluding silences (50.89 % correct [372/731]) . Because of their 
relatively large number and their inaccuracy, these transitions highly bias the overall 
performance, although we are not interested in concluding silences in the first place. 

• The transitions involving liquids and semi-vowels (60.88 % correct [372/611] and 61.70 
% correct [414/671]). 

Vow Plo Fri Liq Nas SI 
Vow 35 / 80 336 / 503 330 / 426 228 / 394 186 / 261 335 / 606 1450 /2270 63.88 % 
Plos 567 / 740 10 / 15 20 / 27 22 / 42 7 / 8 5 / 42 631 / 874 72.20 % 
Fri 498 / 595 41 / 49 14 / 25 20 / 33 9 / 14 4 / 13 586 / 729 80.38 % 
Liq 336 / 530 20 / 37 32 / 47 8 / 14 5 / 12 13 / 31 414 / 671 61.70 % 
Nas 202 / 277 16 / 33 18 / 23 6 / 14 0 / 4 15 / 39 257 / 390 65.90 % 
SI 48 / 54 60 / 79 73 / 101 88 / 114 66 / 75 0/0 335 / 423 79.20 % 

1686 /2276 483 / 716 487 / 649 372 / 611 273 / 374 372 / 731 3673 /5357 
74.08% 67.46 % 75.04 % 60.88 % 72.99 % 50.89 % 68.56 % 

Table 4.4: Detailed overview of the correct boundary placements /or each category by consid
ering a correct margin of 20 ms as achieved by the combined SCVQ and BPC stages within 
the hierarchical approach. {p/q} means p correct out of q occurrences. 

4.3.3 Contribution to hierarchical approach 

Although it is already lightly touched upon in Section 4.3.2 and Figure 4.6, we are inter
ested in the contribution to the hierarchical approach when the Sequence Constrained Vector 
Quantization is preceeded by a braad phonetic class segmentation. The primary motivation 
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Figure 4. 7: Improvement contribution of the broad phonetic class segmentation with respect to 
the Sequence Constrained Vector Quantization and considering separately words with SIL and 
V0I regions and words with SIL, V0I , and UNV regions. A Duration constraints as provided by 
a preceding broad phonetic class segmentation. B Global duration statistics per phoneme-like 
unit as given in Table 3.1 . Horizontally, the correct margin is successively extended by 5 ms. 
Vertically, the percentage of boundaries that fall within a margin is specified ([p/qj means p 
correct out of q occurrences) 

for using the braad phonetic class segmentation as a preamble for the SCVQ segmentation 
is the provision of reliable anchor points. In particular, utterances with both voiced and un
voiced regions may profit from this. In order to evaluate this in more detail we have divided 
the segmentation results into a set containing words with only voiced and silence regions 
(SIL-V0I words) and a set containing words with silence, voiced and unvoiced regions (SIL
V0I-UNV words) . By evaluating the performance for each set separately, we can measure the 
contribution of the braad phonetic class segmentation in more detail. In Figure 4.7, a SCVQ 
application preceeded with a braad phonetic class segmentation is compared with a SCVQ 
application imposed with global duration statistics for each phoneme-like unit. As might ex
pected, words consisting of a single voiced region possibly enclosed by silence ( e.g. SI J C J 
00 J C SI) only profit marginally by a preceding braad phonetic class segmentation. On the 
other hand, words with alternating voiced and unvoiced characterisitics show a substantial 
performance improvement due to the provision of anchor points in the utterance. 

- 4.3.4 Limiting cases 

In our hierarchical approach, Sequence Constrained Vector Quantization tries jointly to find a 
set of centroids and a set of boundaries that is optimal with respect to the ltakura distortion 
of the observation sequence at hand. A limiting case is to relax one of these objectives by 
providing the algorithm a set of 'exact ' centroids. This centroid provision simplifies the algo
rithm toa template matching scheme in an ideal setting. The centroids are directly calculated 
from the manually positioned segments in the speech inventory by using Equation 4.21. Two 
ways in calculating the 'exact ' centroids from this manual segmentation are investigated. 

A. A centroid is calculated for each segment by Equation 4.21. Thus, each realization of 
a label in the transcription has attached to it an exact and unique centroid during the 
dynamic programming pass. 
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Figure 4.8: Segmentation result /or the limiting case of SCVQ by providing it 'exact' centroids. 
A SCVQ provided with 'exact' centroids calculated /rom the manually position segments results 
into 95. 04 % correct within 20 ms {6094/6412}. B SCVQ provided with centroids calculated 
/rom all collected realizations form manually positioned segments results into 91.06 % correct 
within 20 ms. {5839/6412} C SCVQ within the hierarchical approach results into 69.31 % 
correct within 20 ms /4444/6412}. Horizontally, the correct margin is successively extended 
by 5 ms. Vertically, the percentage of boundaries that fall within a margin is specified {fp/qj 
means p correct out of q occurrences) 

B. A centroid is calculated for each collection of segments corresponding to the same label 
by Equation 4.21. The realizations for each label are pooled. Thus, each correspond
ing label in the transcription is represented by the same centroid during the dynamic 
programming pass. 

We imposed no durational constraints to the algorithm, i.e. T~ln = 1 and T~l.x = T for all 
l, where T is the number of speech frames in the observation sequence at hand. As shown in 
Figure 4.8, we found that 95. 04 % of the boundaries [6094/6412] were positioned in an interval 
of 20 ms around their manually positioned correspondent for case A . By pooling firstly the 
realizations, and successively calculating centroids from these, the accuracy is still 91. 06 % 
correct. These pooled centroids do not exactly correspond one-to-one with the segments 
causing more confusion during the segmentation process. However, both cases show a rather 
great performance difference with respect to the accuracy of SCVQ within the hierarchical 
approach. We conclude that the disposal of reliable centroids is crucial for the performance 
of the algorithm, leaving room for further studies that aim at finding optimal centroids by 
clustering strategies. A similar conclusion was drawn by Svendsen and Soong [Svendsen 87] . 
In addition, we were convinced by the fact that looking at local signal properties contribute 
to high accuracy suggesting that a concluding SCVQ stage at the end of a HMM Viterbi 
segmentation may give our final result. In other words, this SCVQ stage directly calculates a 
set of centroids by considering the segments (or some central part of them) provided by the 
HMMs and subsequently carries out a template match alignment. Unfortunately, preliminary 
experiments were not in favour of this idea; although it mend some problems involving liquids
schwa transitions introduced by the HMMs, it lowered the 20 ms accuracy achieved by HMMs 
by± 4%. 

A preceding step of a braad phonetic class segmentation provides durational constraints 
that nicely correspond with the desired segments of the observation sequence at hand. As 
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Figure 4.9: Segmentation result for the limiting case of SCVQ by providing it an 'exact' 
broad phonetic class segmentation. A SCVQ provided with the manually positioned 'exact' 
broad phonetic class segmentation results into 75.84 % correct within 20 ms [4863/6412}. B 
SCVQ within the hierarchical approach results into 69.31 % correct within 20 ms [4444/6412]. 
Horizontally, the correct margin is successively extended by 5 ms. Vertically, the percentage 
of boundaries that fall within a margin is specified ([p/q} means p correct out of q occurrences) 

shown in Figure 4.6, this boost the segmentation accuracy of the SCVQ. A limiting case in 
this respect is to pass on an exact broad phonetic class segmentation for each observation 
sequence to the SCVQ algorithm. This can be established by means of the manually positioned 
boundaries in the speech inventory. For each utterance we conducted a SCVQ in this ideal 
setting, even for the 155 utterances for which a one-to-one correspondence exists between 
the phonetic transcription and the broad phonetic class transcription ( e.g. SI F C F AA F 
C SI). The centroids were calculated on-the-fly using Equation 4.21. As shown in Figure 
4.9, we found that 75.84 % of the boundaries [4863/6412] were positioned in an interval of 
20 ms around their manually positioned location. Obviously, the improvement compared to 
the SCVQ within the hierarchical approach can solely be attributed to utterances with both 
voiced and unvoiced regions (the so-called SIL-VOI-UNV words as in Section 4.3.3), emphasizing 
the need for a reliable broad phonetic class segmentation preamble. 

4.3.5 Variants 

We have surveyed some implementation or application variants with respect to the SCVQ 
stage. Although they are not included in the hierarchical approach at this moment because 
they did not fulfil the performance expectations, they can be investigated in the near future 
again by implementing some small modifications. Skipping this section on first reading does 
not blur the coherent picture of the hierarchical approach. 

Cepstral distance 

Another distortion measure that has been extensively investigated in the framework of SCVQ, 
hut delivered only inferior performance, is the cepstral distance. Essentially, the cepstrum 
coefficients correspond to a frequency smoothed representation of the log magnitude spectrum. 
We derived the first (p + 1) cepstrum coefficients making up the observation vector c( t) = 
( c0 , c1, · · ·, ep)' at frame t from the LPC coefficients by the recursion [Rabiner 93] 
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Figure 4.10: Segmentation results for cepstral distance oriented SCVQ imposed to duration 
constraints as provided by a preceding broad phonetic class segmentation. A SCVQ with a 
cepstral distance results into 68.04 % correct within 20 ms {4363/6412}. B SCVQ with a 
weighted cepstral distance results into 66.13 % correct within 20 ms {4240/6412}. C SCVQ 
with a cepstral distance augmented with delta features results into 63. 72 % correct within 20 
ms [4086/6412}. Horizontally, the correct margin is successively extended by 5 ms. Vertically, 
the percentage of boundaries that fall within a margin is specified ([p/q} means p correct out 
of q occurrences). 

co = lnu2 

Cn = -an+¼Ei::f(n-k)akCn-k ,n=l,·· · ,p 

where u 2 is the residual energy and (a0 , a 1 , • • •, ap)' is the LPC coefficient vector where a0 = 
l. 

A truncated version of the weighted cepstral distance is used as distortion measure and 
can be incorporated in the intra-segment distortion of Equation 4.10 by considering a centroid 
ê1 = (êo, ê1, · · ·, ê,,)', 

j p 

d1(i,j) = L I:[w(n)en(t) - w(n)ên(t)] 2 + ci(co(t) - êo(t))2 (4.22) 
t=i n=l 

in which w(n) is a liftering function and a a energy sealing factor. A proper handling of the en
ergy term co in Equation 4.22 was needed to incorporate the important phonetic information
hearing of the energy contour for sound identification. Therefore, we separated the energy 
term from the rest of the cepstrum that defines the genera! LPC spectra! shape. In order 
to compensate for the differences in dynamic range of the terms involved, we experimentally 
fixed a at 0.1. 

It was shown that the variability of higher cepstral coefficients are more influenced by the 
inherent artifacts of the LPC analysis than that of lower cepstral coefficients. The variabil
ity of low cepstral coeffi.cients is primarily due to transmission and speaker characteristics 
[Rabiner 93]. Thus, in order to de-emphasize these variabilities in the calculation of the cep
stral distance, a cepstral weighting or liftering procedure w(n) was suggested as a raised sine 
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function [Rabiner 93] 

w(n)={ l+~sin(r;;) forn=_l,2, ... ,w 
0 otherw1se, 

( 4.23) 

where W = 10 is typical for 4 kHz bandwidth speech. However, we found that the use of 
the liftering procedure deteriorated the segmentation accuracy. Therefore, we excluded the 
cepstral weighting and put simply w(n) = 1, for n = 1, ·· · ,Pand w(n) = 0 otherwise. 

The truncated cepstral distances are Euclidian distances and thus, the calculation of the 
centroid is straightforward. The cepstral centroid ê1 = ( êo , ê1, · · · , êp )' that minimizes the 
intra-segment cepstral distance is simply the arithmetic mean of all cepstral vectors within 
that segment, thus 

l b1+1 

ên= b b L en(t) ,n=0, 1,··· , p (4.24) 
l+l - 1 t=b1+l 

where en(t) denotes the n-th cepstral coefficient at frame t. 
Considering instantaneous cepstral coefficients related to a single frame provides a locally 

correct representation of the spectrum. Cepstral time derivatives also contribute very useful 
cues and are found to improve the performance of a speech-recognition system [Rabiner 93] . 
A reasonable estimation of these time derivatives is to approximate it by a polynomial fit, 
as described in Section 4.4.1. Based on these computations, the observation vector in our 
SCVQ consists of p+ 1 instantaneous cepstral coefficients including the scaled energy term ac0 

augmented with p+ 1 cepstral time-derivatives. The use of Equation 4.22 as distance measure 
for this augmented cepstral observation vector is still legitimate [Rabiner 93]. However, we 
found that the incorporation of delta features into the SCVQ approach rather confused the 
segmentation. 

After all, the usage of a cepstral distance rather than the Itakura distance does not 
deteriorate the segmentation accuracy that much. We feel that many segment modelling 
inaccuracies are caused by the inexactness of the LPC analysis. Investigations regarding 
isolated word recognition within a time warping scheme [Davis 80] revealed that FFT-based 
acoustic analysis methods better represent relevant short-term speech spectrum aspects than 
LPC-based implying higher recognition performance. 

Frame acquisition in a pitch synchronous way 

lt is feit that the availability of frames that are acquired period by period over an interval 
that is centred at a glottal closure instant contribute to a higher performance. lt is known 
that LPC based signa! analysis methods suffer from a frame acquisition strategy in which 
each successive frame is shifted by a fixed amount. This equidistant spacing of analysis 
frames does not take local signa! characteristics into consideration: influences of the decaying 
impulse response function originating from the previous pitch period are not properly taken 
into account, source excitation components (glottal closures) are at different unpredictable 
positions in the speech segments. In other words, these equidistant speech segments are 
considered poor candidate analysis frames for the estimation of LPC parameters. By taking 
instants of the glottal closure, simply called the epochs, as the centre of each frame, these 
influences are equally distributed over all analysis frames. 

For the detection of the instants, we follow a method originally proposed by Ma [Ma 94]. 
These instants are efficiently computed by calculating a so-called 'running' Frobenius norm 
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Figure 4.11: Glottal closure instant detection by method proposed by Ma [Ma 94]. From top to 
bottom, a pre-emphasized utterance of the nonsense word 'nenoone ', the 'running' Frobenius 
norm estimated /rom this pre-emphasized utterance, its LPC-residual signa/, and the 'running ' 
Frobenius norm of this residual are successively shown. Local maxima of the Frobenius norm 
of the pre-emphasized speech correlate with glottal closure instants. 

of signa! matrices 

X= 

x(t - p) 
x(t-p+l) 

x(t - p + l - 1) 

x(t - p + 1) 
x(t-p+2) 

x(t-p+l) 

x(t) 1 x(t + 1) 

x(t+:l-1) 

(4.25) 

The Frobenius norm of a matrix A = { aij : 1 :::; i :::; m , 1 :::; j :::; n} is defined as the square 
root of the summation of all squared entries of matrix A , thus 

m n 

Il A Il}= (L L a;j) ( 4.26) 
i=l j=l 

By normalizing the Frobenius norm value by the factor p • l , one acquires an energy 
measure. Maxima of the numerical value of the Frobenius norm nicely correlate with the 
epochs [Ma 94] . The location of the maxima in the Frobenius norm of the signa! segment 
extending from t = 1 to t = p + l is put at time point t = p + 1 because this maximum appears 
when the excitation point x(p + 1) enters the first column of the signa! matrix. 

lt seemed preferable to apply this method on pre-emphasized speech or on the LPC
residual signa!. The latter was obtained by inverse filtering the sampled speech waveform by 
its estimated sequence of 12-order LPC filters. However, the use of pre-emphasized speech 
surpassed the use of the residue in performance. The LPC-residual gives rise to significant 
pulses other than those on the excitation moments and loss of epochs due to the inexactness 
of the LPC analysis. This is illustrated by Figure 4.11 in which the local maximum of the 
'running' Frobenius norm estimated from the pre-emphasized utterance nicely corresponds to 
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epochs, whereas the one derived from the LPC-residual shows, beside spurious local maxima, 
a considerable lack of local maxima in voiced regions. 

However, the integration of frame acquisition via a pitch synchronous way in the SCVQ 
stage was never completely evaluated. Although we strongly believe in its strength for robust 
LPC analysis, the automatic epoch detection still has to contend with some difficulties that 
rather aggravate the segmentation process. Due to the inexactness of the method, an irregular 
pattern of pitch markers having misses and misplacements of epochs is provided. This has 
dramatic consequences for short segments, implying misalignment and propagation of errors 
in other positions. Regarding duration constraints for segments, a more elaborated approach 
has to be followed to map time points to specific observation vectors. A simple sealing 
involving an average pitch period is not sufficient due to the inexactness of the method. 

4.3.6 Discussion 

A minor modification to the proposed method may be by realizing that the ltakura distortion 
between two speech segments only models their genera! spectra! shape without compensating 
for an overall spectra! level ( or gain). The role of this gain term is not explicitly modelled. 
However, a energy contour of the utterance may contain important information about the 
phonetic identity of the sounds. A flexible and proper way of incorparating this energy 
information over time, either the absolute power or minimum residual energy term (gain), 
has to be added to the ltakura distortion, as it could increase the segmentation accuracy. 

As demonstrated in Section 4.3.4, the availability of reliable duration knowledge and/or 
centroids is a crucial factor in the performance of the SCVQ method. Further research must be 
focused on providing these durations; this can only be resolved by an improved and extended 
broad phonetic class segmentation preamble. An extra modification to the approach may be 
to extend it with an adequate solution to the centroid problem. A proposal is to apply an 
extra template matching scheme by means of centroids that are extracted from the SCVQ 
segmentation. 
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4.4 Hidden Markov Models 

lt is common practice nowadays to use Hidden Markov Models (HMM) for supervised seg
mentation of speech. This is because HMMs are able to capture the intrinsic variability of 
speech regarding both speaking rate and spectra! characteristics of the speech sounds. The 
aim of using HMMs in our approach is to achieve even higher segmentation accuracy than 
can be obtained through SCVQ by capitalizing on this property. 

In the present context of segmenting utterances according to a given phonemic transcrip
tion, we have defined a set of 50 phoneme-like units and used a separate HMM for each unit. 
Segmentation results then from time-alignment of the utterance against a sequence of HMMs 
corresponding to the transcription. 

However, the HMM contain a large number of parameters that have to be tuned in order 
for the models to work well. This tuning is performed by a supervised training on a collec
tion of speech segments, called the training set. Most often (e.g. [Alphen 92, Brugnara 92, 
Angelini 93, Farhat 93]), the training set is obtained by a manual segmentation performed on 
a subset of the same database or on a separate database. This however does not fit in the 
fully automatic procedure we want to develop. Therefore, initialization of the HMM will be 
performed on the phoneme-like segments provided by the previous stage of our hierarchical 
approach, namely the SCVQ. Although the segmentation accuracy of SCVQ is not perfect, 
it is still fairly high and allows to obtain high quality HMMs in a fully automatic way. 

4.4.1 Outline of the method 

A HMM consists of a finite set of states which are connected by transitions. Each transition is 
characterized by a probability of using it. With each state an emission probability distribution 
is associated that takes care of the production of an acoustic vector when visiting a state. 
The underlying statistica! law of emitting a vector is necessary because the speech waveform 
can not be considered as a sequence of stereotyped patterns due to its intrinsic variability. 
The tempora! structure in speech, on the other hand, is accounted for by the transition 
probabilities. A possibly prolonged stay in a state produces another vector and thus consumes 
a next piece of time. A majority of self-loop transitions in a path through a model, corresponds 
to a slow pronunciation while many jump transitions characterize fast speech. 

HMM A Hidden Markov Model À is defined by a set of M states { sili = 1, · · · , M} extended 
with an initia! state so and a final state SM+l which are non-emitting. Each state Si can 
be connected by a transition to Sj- The probability of actually making this transition 
is given by P(sjlsi)- The visiting of a state Si with 1 ~ i ~ M is accompanied by the 
emission of an acoustic vector o(t) according to a probability distribution P(o(t)lsi) 
and is often called local contribution. The specification of P(o(t)lsi) implies that states 
are not associated with one typical observation vector hut with all possible vectors. By 
that, the vectors in an observation sequence can not be mapped one-to-one on the states 
in a state sequence since each vector can be generated by any state. In other words, the 
state sequence is hidden. 

State sequence The event of visiting state Si at time t is denoted by s!. A state sequence 
through a HMM model is denoted by Sf = s8, sli, sl2, ·· · ,st. 

sr = s8, st' sl2' ... 'sfr-=_~' sL+1 is a path through a HMM model beginning at the 
initia! state so and ending at the final state s M +1 · The length of the path necessarily 
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Figure 4.12: A Bidden Markov as a generating device. 

equals the number of vectors emitted. 

The particular form of the emission distribution P(o(t)lsi) considered here is a multi
variate multiple-mixture Gaussian distribution [Young 93]. Each observation vector o(t) is 
split into D independent data streams o(t)Cd) representing different information sources (e.g. 
instantaneous features and delta features). Each stream dis modelled by a separate Gaussian 
mixture distribution, 

( 4.27) 

where Md is the number of mixtures in stream d, w~:!; is the weight of the m'th mixture 
and N(. ; µ , E) is a multi-variate Gaussian distribution with mean vector µ and diagonal 
covariance matrix :E. All experiments were conducted by using 4 mixtures (Md = 4) for each 
datastream d. 

Thus, two sets of parameters characterize the HMM: emission and transition probabil
ities. We shall assume that we have a separate HMM for each phoneme-like unit. From 
these building blocks we can derive a word HMM simply by concatenating the models of the 
constituting phoneme-like units as given by the transcription. Having defined the HMM as a 
stochastic speech production model, we can clarify how to use this model for aligning a known 
transcription with an utterance (segmentation), and how to estimate the optima! values of 
the HMM parameters (training). 

All segments, except for the burst-like segments P2, T2, K2, B2, G2, and D2 are modelled by 
the topology as depicted in Figure 4.12. The states so and s4 are non-emitting. The first state 
represents (in an over-idealized way) the transition into the phoneme-like unit, the centra! 
state represents the stationary part in the phoneme-like unit, and the third state represents 
the transition out of the phoneme-like unit. lt must be emphasized that this specific topology 
requires a minimum duration of a modelled phoneme-like unit of at least 3 frames (30 ms 
with a frame rate of 10 ms). All burst-like segments are modelled by a one-state model. 
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Now, we shall describe how we can use Viterbi decoding for time-aligning HMM word 
models with an utterance represented by an observation sequence. Next, we shall describe 
how the HMM parameters are tuned to their optima} values. This is achieved in two stages: 
a Segmental K-Means for HMM initialization followed by a Baum-Welch re-estimation that 
represent the care HMM training process. We conclude with a description of the front end 
of the HMM system that couverts the sampled speech waveform into a discrete observation 
sequence. 

Viterbi decoding as a segmentation algorithm 

Giving an observation sequence Of= o(l), • • • ,o(T) of a word, the Viterbi decoding uses a 
dynamic programming algorithm to find the most probable state sequence from the collection 
of all possible paths through the HMM word model .À [Rabiner 89, Rabiner 93]. Assume that 
we know the optima} partial path terminating in state Sj at frame t - 1. Let 8i(t) represent 
the probability along the optima} partial path that state Si is reached at frame t and the 
partial observation sequence Oi is observed given a model .À. This probability 8i(t) can be 
computed as a product of transition probablities between states and emission probabilities of 
acoustic vectors on the visited states. The following dynamic programming recursion lies at 
the basis of the Viterbi decoding and allows a recursive computation of 8i(t) together with 
the determination of the optimal path. 

with the following boundary conditions 

8i(l) = P( Si I so )P( o(l) 1 Si) 

8M+1(T) = P( of I .À) 

( 4.28) 

( 4.29) 

( 4.30) 

where .P(Ofl.À) is the probability of the complete observation sequence along the optima} 
path in the word model .À. 

lf we keep track of the maximization decisions taken in Equation 4.28, we are able to find 
the state-time trajectory of the optima} path in the word model .À and, in particular, the time 
instants of the transitions between phoneme models, i.e. the segmentation points. This is 
essentially how we shall use the HMM for segmentation. 

~ Segmental K-Means 

The Segmental K-Means algorithm is a combination of the well-known K-means iterative 
procedure for clustering data[Wilpon 85] and Viterbi decoding. It is devised to provide reli
able initia} models for subsequent HMM training, in our case, by Baum-Welch re-estimation 
[Rabiner 93]. 

We assume we have for each phoneme-like unit a finite set O of observation sequences and 
a parameter specification for the corresponding phoneme-like HMM .À provided by a previous 
iteration of the algorithm. 

Each observation sequence in O is segmented into the HMM states by application of 
Viterbi decoding as explained above. In the absence of an initial parameter estimate at the 
first iteration, the process is started by performing a linear segmentation of each observation 
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sequence into the states. The state-alignment by Viterbi decoding assigns to each state Sj 

of the current model >. a particular segment of each observation sequence. Now, the K
Means algorithm [Wilpon 85] clusters the acoustic vectors belonging to state Sj into a set 
of M clusters (using a Euclidean distortion measure). In our case of multivariate multiple
mixture Gaussian densities, each cluster represents one of the mixtures. From this clustering 
an updated model ~ can be derived by using sample estimations for the mixture weights, 
means and covariances. The transition probabilities P(sjlsi) can be obtained by using the 
transitions statistics as provided by the Viterbi decoding alignment. 

This process of model-reestimation is repeated until either convergence denoting statistica! 
similarity between two successive model-estimations is met or a default number of iterations 
is reached. The convergence criterion is expressed by the reduction of the Viterbi aligment 
score between two successive models >. and i 

Baum-Welch reestimation 

There is no known analytica! procedure to come up with the optima! model parameters. 
Thus, we must resort to a method that adjusts the model parameters to satisfy a certain 
optimization criterion. We assume we have a finite (training) set O of observation sequences, 
and a provisional specification of a HMM >. modelling any type of speech unit. In our case, the 
parameter specification comes from the previous Segmental K-Means application. The HMM 
parameters are estimated by a hill-climbing procedure, known as Baum- Welch reestimation, 
which iteratively increases the likelihood P( OI>.) that the observation set O is generated by 
model >. [Rabiner 89, Rabiner 93]. 

Remark that this likelihood can be estimated by means of the training set O by considering 

P( o 1 >. ) = II P( of 1 >. ) 
Ofeo 

( 4.31) 

Let S be the set of all mutually exclusive paths of length T in the model >.. The probability 
of producing the sequence Of = o(l), · · ·, o(T) E O given the model >. is the sum over 
all mutually exclusive paths Sf = s8, sfi, s;

2
, • • ·, sL+l of length T in the model >.. Each 

individual probability of generating Of along a path is the product of transition and emission 
probabilities associated with this path. More precisely, 

P(Ofl>.) = L P(S[)P(O[IS[) 
sfes 

T+l M 

= L { II P( Sit I Sit-l ) II P( o(m) 1 Sim )} 

sfes t=I m=l 

in which i0 = 0 and ir+1 = M + l. 

( 4.32) 

( 4.33) 

The right hand side can be efficiently computed by a recurrence relation known as the 
forward Baum- Welch recurrence [Rabiner 89, Rabiner 93]. The whole procedure is comple
mented by an iterative parameter update until the likelihood converges to a critica! point. 
However in practice, we conduct a pre-determined number of iterations of a single Baum
Welch reestimation procedure on the observation set 0. 
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HMM Front End 

There is no consensus about the most adequate speech signal description for recognition 
or segmentation. Investigations showed substantial performance differences by using differ
ent parametric speech representations with regard to speech recognition[Davis 80]. lt was 
concluded that Fourier-spectrum derived parameters preserve information that LPC derived 
parameters omit, especially for consonant spectra. Also, filters spaced at non-linear frequency 
distances ( e.g. mel-frequency) allow better suppression of insignificant spectra} variation in 
the higher frequency bands. Moreover, a cepstrum parameter set succeeds better than linear 
prediction coefficient or reflection coefficients. Another study [Alphen 92] showed that the 
segmentation with linear prediction coefficients as front end was less accurate than one with 
a Bark scaled filterbank analysis. Inspired by these arguments, we have decided to use a fil
terbank analysis with non-uniform spacing as described hereunder without really conducting 
comparative experiments with different front ends. 

0 u.u....._._._._..._._._._.....__.__.._._ __ .__....__.....___. __ ___, 

0 1000 2000 3000 4000 

frequency (Hz) 

Figure 4.13: A 16-channel filterbank in which each filter has a triangle bandpass frequency 
response with bandwidth and spacing determined by a constant ERB interval (spacing = 1.59 
ERB, bandwidth = 3.18 ERB) · 

We assume a sampled speech waveform x(k), for k = 0, • • ·, N - l that is pre-emphasized 
by the filter 1 - 0.95z-1 , blocked and Hamming-windowed into frames of 20 ms, with a frame 
shift of 10 ms. 

The filterbank analysis is DFT-based and is essentially a simplified method of designing 
bandpass filters . The DFT structure is exploited by combining the adjacent DFT-outputs 
according to a warping criterion to realize a 16-channel nonuniform filterbank analysis. 

Each individual filter has a triangular bandpass frequency response and is applied to the 
power spectrum, as can be seen in Figure 4.13. The spacing as well as the bandwidth is 
determined by a constant Equivalent Rectangular Bandwidth (ERB) frequency interval in 
order to simulate the perceived spectrum[Glasberg 90]. The spacing is approximately 1.59 
ERB and the width of the triangle is 3.18 ERB. The ERB frequency warping function is 
defined by 

ERB(/) = 21.4log10 (1 + 
2
;

9
) ( 4.34) 

Dynamic features are incorporated by means of estimations of time-derivatives of the 
filterbank parameters, obtained by a polynomial approximation. This leads to smoother 
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estimates than a direct difference method [Rabiner 93]. We assume a small trajectory of a 
vector element {on(r+t)}~-M · lts origin is shifted tor , thus index t is with respect tor and 
the time-derivative approximation is done for each r. Also, all elements On ( r + t), n = 1, · · · , p 
are individually taken into account . It is formulated by fitting a trajectory of a coefficient 
{on(r + t)}~-M by a second-order polynomial h1 + h2t + h3t2 such that the fitting error 

M 

E = L [on(T + t) - (h1 + h2t + h3t2)] 2 (4.35) 
t=-M 

is minimized. Expressions for h1 , h2, and h3 can be found by differentiating E with 
respect to h1 , h2 , and h3 , setting the result to zero, and solving the set of three simultaneous 
equations. Estimations of the first and second time-derivatives of On ( r + t) ( i.e. delta and 
delta-square parameters) can then be obtained by differentiating the fitting polynomial, which 
gives 

and 

= 

where 

2h3 

2{TM [L~-M On(T + t)] - (2M + 1) [L~-M t2on(T + t)]} 

Tk - (2M + 1) [I:~-M t4
] 

M 

TM = L t2 

t=-M 

(4 .36) 

( 4.37) 

( 4.38) 

The parameter M specifies the window width for the polynomial interpolation. We com
pute all time-derivatives fixing M at the number of frames corresponding to 20 ms. By 
considering a frame shift of 10 ms, M is fixed at 2. This means that 5 observation vectors 
are considerated in the computation. At the edges of the observation sequence, simple first 
order differences are used. 

To summarize, the observation vector o(t) consists of a set of 16 filter channel outputs, 
augmented with an estimation of its first time-derivatives ( delta features) and second time
derivatives (delta-square features). Morever, a short-time log energy value that is normalized 
by the maximum short-time log energy as found in the utterance is added to the vector, 
appended with estimations of its first and second time-derivatives. This results into a 51-
dimensional observation vector with 4 data streams (16 instantaneous features , 16 delta fea
tures, 16 delta-square features , and 3 features associated with short-time log energy). Each 
data stream is modelled by Gaussian densities with 4 mixtures on each HMM state. 
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Figure 4.14: Segmentation results of HMM segmentation by exploiting the hierarchical ap
proach. It results into 87. 73 % correct within 20 ms {5625/6412}. Horizontally, the correct 
margin is successively extended by 5 ms. Vertically, the percentage of boundaries that fall 
within a margin is specified ([p/qj means p correct out of q occurences). 

4.4.2 Results 

Each sampled speech waveform was pre-emphasized by the filter 1 - 0.95z-1 , blocked and 
Hamming-windowed into non-overlapping frames of 20 ms, with a frame shift of 10 ms. Subse
quently, it was converted to a discrete observation sequence by subjecting it to the filterbank 
analysis. 

We have passed through the hierarchical procedure by conducting its first two stages (BPC 
and SCVQ) resulting into segmentation information that is correct for 69.31 % considering 
a margin of 20 ms. These provisional segments were provided for initializing the HMMs by 
means of a Segmental K-Means bootstrapping procedure on the whole speech inventory. As 
concluding stage, the HMMs were further trained by means of three Baum-Welch iterations 
by building a single composite HMM model for each observation sequence according to the 
transcription and training the model on the whole observation sequence. 

In Figure 4.14, the final segmentation result by exploiting the hierarchical approach is 
shown. A segmentation accuracy of 87. 73 % correct is achieved within a margin of 20 ms. 

In order to investigate the contribution of Baum-Welch, several iterations of this algorithm 
were conducted (see Figure 4.15). We started with the provisional HMMs that one acquired 
by a Segmental K-Means initialization on the segment information provided by the first two 
stages of the hierarchical approach. After each Baum-Welch training iteration a segmentation 
task is conducted. Some observations can be drawn from this figure 

• It is apparent that the bootstrapped HMMs (iteration 0) have already a high perfor
mance (86.82 %). We conclude that the provision ofreliable segments for bootstrapping 
the HMMs is crucial for obtaining a high accuracy. Subsequent Baum-Welch fine-tuning 
of the HMMs, solely relying on the transcription and maximum-likelihood training, does 
not contribute that much. 

• If we consider a correct margin larger than 20 ms, the segmentation performance tends 
to increase by the first few Baum-Welch iterations before it settles down. On the other 
hand, Baum Welch training rather deteriorates the performance by considering smaller 
segmentation discrepancies ( correct margin of 20 ms). 
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Figure 4.15: Zero to ten iterations of the Baum- Welch training within the hierarchical ap
proach. Four distinct correct margins are shown {20 ms, 25 ms, 30 ms, and 40 ms). Frame 
width = 20 ms, Frame shift = 10 ms. 
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Figure 4.16: Zero to ten iterations of the Baum- Welch training within the hierarchical ap
proach. Four distinct correct margins are shown {20 ms, 25 ms, 30 ms, and 40 ms). Frame 
width = 20 ms, Frame shift = 5 ms. 
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• A rather great performance difference exists when comparing a 20 ms with a 25 ms 
deviation. This may bring hope to improvement proposals in future studies to the 
hierarchical approach. Even a small accuracy improvement will already boost the global 
segmentation performance. A suggestion was made that a smaller frame shift during 
the filterbank analysis would bridge this performance gap. However, a frame shift of 
5 ms did not bring us much further. As shown in Figure 4.16, it resulted in 88.37 % 
correct within 20 ms [5666/6412] at the expense of much more computer processing 
time. 

We have adopted 3 Baum Welch-iterations as default. Although the performance decreases 
for margins of 20 ms by executing this number of Baum-Welch iterations in Figure 4.15, the 
performances increases for greater margins as shown in Figure 4.15 and 4.16. 

The same clustering of labels into categories is conducted as described in Section 4.3.2, in 
order to look more closely at particular transitions. The set of categories is shown in Table 
4.3. The two segments of the diphtongs and unvoiced plosives are 'glued' together again to 
form a single label. This means that we disregard the boundaries between these distinct 
segments in the results and statistics. 

The differences between the automatically obtained boundaries and the manually posi
tioned boundaries considering the categories are examined by calculating the mean difference 
and the standard deviation. In Table 4.5, these statistics are shown by considering the left 
and the right boundary of each category separately. lt is apparent that liquids (semi-vowels) 
and nasals show a great variation in their boundary placement. Furthermore, vowel onsets 
are on the average later and their endings are on the average earlier compared to the manual 
segmentation. The table also shows that fricative and silence beginnings are on average ear
lier and their ending on the average later than the manual ones. N asals are on the average 
stretched too long. 

Left boundary Right boundary 
category no mean std.dev. no mean std.dev. 
Vow 2276 4.33 15.28 2270 -3.48 16.57 
Plo 716 -1.11 10.98 874 -0.05 12.86 
Fri 649 -5.20 11.10 729 2.97 9.82 
Liq 611 3.11 22.40 671 1.13 21.84 
Nas 374 -0.19 14.86 390 5.36 23.23 
SI 731 -13.02 15.47 423 2.25 9.24 

5357 -0.37 16.46 5357 -0.37 16.46 

Table 4.5: Number, mean, and standard deviation (in ms) of automatic obtained boundaries 
as compared with the manually positioned boundary classified by phonetic categories. Both the 
statistics of the left and right boundary of each category is shown. 

A detailed overview of the boundary discrepancies between categories by considering a 
correct margin of 20 ms is shown by Table 4.6 in which vertically the category to the left of 
the boundary is indicated, and horizontally the category to the right of the boundary. The 
score p/q in each entry of the matrix means p correct out of q occurrences. In the bottom row 
and the right most columns, summations over respectively the column and the row is given. 
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In the bottom-right entry, the total segmentation performance is given. This percentage is 
slighty different (smaller) compared with the percentage as shown in Figure 4.14 due to the 
disregarding of boundaries within plosives and diphtongs. 

Vow Plo Fri Liq Nas SI 
Vow 55 / 80 465 / 503 388 / 426 289 / 394 244 / 261 451 / 606 1892 /2270 83.35 % 
Plo 733 / 740 13 / 15 25 / 27 37 / 42 8 / 8 15 / 42 831 / 874 95.08 % 
Fri 572 / 595 48 / 49 15 / 25 31 / 33 13 / 14 10 / 13 689 / 729 94.51 % 
Liq 447 / 530 31 / 37 32 / 47 10 / 14 11 / 12 8 / 31 539 / 671 80.33 % 
Nas 232 / 277 18 / 33 14 / 23 5 / 14 1 / 4 17 / 39 287 / 390 73.59 % 
SI 51 / 54 78 / 79 90 / 101 110 / 114 75 / 75 0 / 0 404 / 423 95.51 % 

2090 /2276 653 / 716 564 / 649 482 / 611 352 / 374 501 / 731 4642 /5357 
91.83 % 91.20 % 86.90 % 78.89 % 94.12 % 68.54 % 86.65 % 

Table 4.6: Detailed overview of the correct boundary placements for each category by con
sidering a correct margin of 20 ms as achieved by the hierarchical approach. fp/qj means p 
correct out of q occurrences. 

Although the hierarchical approach achieves good results for many transitions by consid
ering a margin of 20 ms, some sources of concern can be summarized. lt is apparent that 
most misaligments occur in well-defined pairs of categories. In general, this means that only 
these indicated transitions need further (manual) checking, substantially reducing the work. 

• The vowel-vowel transitions (62.50 % correct [55/80]) . Many of these transitions occur 
at word boundaries (i.e. Z EI1 EI2 E R X E T1 T2) and are realized with a glottal 
stop. Although this temporary amplitude lowering is clearly visible in the waveform, it 
is not transcribed as such (see also Appendix A). 

• The beginning of concluding silences (68.43 % correct [501/731]). 

• The transitions involving liquids (semi-vowels) , especially the transitions from vowel 
(schwa) to liquid (73.35 % correct [289/394]). 

• The transitions from vowel to voiced fricative (75 .00 % correct [84/112]) . 

• The detection of vowel onsets within nasals (83.75 % correct [232/277]) and liquids 
(84.34 % correct [447 /530]). This is mainly attributed to the schwa onsets within nasals 
(75.17 % correct [109/145]) and liquids (80.66 % correct[196/243]) . Especially word 
initial nasals and liquids (i.e. Q and J) are extended too far within the following schwa. 
lt is observed that these boundaries are troublesome. Their misplacements are persistent 
considering larger correct margins . Moreover, it is apparent that this particular kind 
of misalignments scarcely occur at the SCVQ stage and, thus, are introduced by the 
HMMs. 

• The closure beginning of unvoiced plosives (88.76 % correct [387 /436]) . Although this 
can not be derived from Table 4.6, we <lid not want to deny the reader this information 
because of our special attention already paid to these closures by splitting the unvoiced 
plosives into two segments. 
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Figure 4.17: Segmentation results by using a set of 'fresh' HMMs for each observation se
quence. The HMMs were bootstrapped by using the segmentation as provided by the first two 
stages of the hierarchical approach. A. Fresh HMMs for each observation sequence resulted 
into 71.49 % correct within 20 ms {4584/6412}. B. The bootstrapping segmentation was 69.31 
% correct within 20 ms (4444/6412}. Horizontally, the correct margin is successively extended 
by 5 ms. Vertically, the percentage of boundaries that fall within a margin is specified ((p/qj 
means p correct out of q occurences). 

4.4.3 Variants 

For the purpose of segmentation, HMMs have to be made as specific as possible for the 
training speech material. In particular, local signa} characteristics have to be captured and 
attributed to a specific model. This approach can be pushed to the extreme that reserves a 
set of 'fresh' HMMs for each complete observation sequence. Still, each 'fresh' HMM models 
all partial observation sequences of corresponding labels within a single utterance. However, 
this implies fewer observations for each model which means that simpler HMMs have to be 
used in order to allow reliable estimations of their parameters. In this experiment, each 
observation sequence was designated a new set of HMMs. The emission probabilities were 
modelled by single mixture Gaussian densities. The HMMs were bootstrapped by means of 
Segmental K-Means (that reduces toa simple Viterbi training) using the segment information 
as provided by the first two stages of the hierarchical approach. Three Baum-Welch iterations 
on the observation sequence rather deteriorated the segmentation accuracy, so these were not 
applied. Although we <lid not expect miracles from this approach considering the lack of 
sufficient and reliable training data for each HMM, we were at the end disappointed about 
the ultimate result. Only a small fraction of the boundaries were placed correctly compared 
with the inputted segmentation. The segmentation accuracy was 71 .49 % [4584/6412] correct 
within 20.0 ms. In Figure 4.17, the segmentation accuracy considering distinct margins is 
shown along with the segmentation that served as bootstrap material. 

Two extra options regarding this HMM variant were also investigated 

Intermediate stage 
A possibility is to consider the segmentation provided by fresh HMMs as an intermediate 
stage in the hierarchical approach. However, the usage of this segmentation as bootstrap 
material for initializing models that cover all observations <lid not bring any relief; the 
segmentation accuracy was 86.51 % correct within 20 ms. 
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Specializing boot-strapped models 
Starting from 'fresh' models that have not yet undergone any training at all is too 
much, considering the Jack of training material. Therefore, having reliable HMMs at our 
disposal (i.e. the HMMs that result from the hierarchical approach), some extra Baum
Welch iterations by using only the observation sequence at hand may specialize the 
models and adapt them just that little bit . In a preliminary experiment, we used a set 
of bootstrapped HMMs as provided by the Segmental K-Means stage as starting point. 
As mentioned in Section 4.4.2, these models already resulted into 86.19 % [5533/6412] 
correct within 20. 0 ms. Three Baum-Welch iterations focused only on the observation 
sequence to be segmented and a successive Viterbi segmentation resulted into 87.31 % 
[5598/6412] correct within 20.0 ms. 

4.4.4 Limiting cases 
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Figure 4.18: Limiting cases in perspective with the hierarchical approach. A. HMMs initialized 
on linear segmentation of inventory results into 75.67 % correct within 20 ms [4852/6412/. 
B. Hierarchical approach results into 87. 73 % correct within 20 ms {5625/6412]. C. HMMs 
initialized on the manually segmented inventory results into 94- 03 % correct within 20 ms 
{6029/6412/. Horizontally, the correct margin is successively extended by 5 ms. Vertically , 
the percentage of boundaries that fall within a margin is specified ([p/qj means p correct out 
of q occurrences). 

Two straightforward limiting cases for the HMM application for segmentation can be made 
up. One is to start from the manual segmentation. We have used the manual segmentation 
for bath the Segmental K-Means initialization and Baum-Welch training stage. These HMMs 
are subjected to the segmentation task. The resulted accuracy draws the borderline of how 
accurate one can get with these type of models. At the other extreme, we can follow the 
approach as advocated by many researchers by simply bootstrapping the HMMs by a linear 
segmentation, that uniformly attributes the observation vectors to the states of the HMM. 
A Segmental K-Means initialization procedure considering this linear segmentation delivers 
provisional HMMs of a poor quality. Subsequently, Baum-Welch iterations must correct the 
errors introduced in the initialization phase. The performance difference between this 'blind
folded' approach and our hierarchical approach expresses the contribution of the BPC and 
SCVQ stages. In Figure 4.18, the hierarchical approach is compared with its two limiting 
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cases. All experiments were conducted by considering three Baum-Welch iterations in the 
training process. 
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Figure 4.19: Zero to ten iterations of the Baum- Welch training. The HMMs were initialized 
by means of a linear segmentation. Four distinct correct margins are shown (20 ms, 25 ms, 
30 ms, and 40 ms). Frame width = 20 ms, Frame shift = 10 ms. 

For comparison with the experiment in Section 4.4.2, we have investigated the contribu
tion of each Baum-Welch reestimation to the segmentation accuracy. We started with the 
provisional HMMs acquired by a Segmental K-Means initialization on the linear segmented 
data. The results are shown in Figure 4.19 and some remarkable observation can be drawn. 

• In contrary with Figures 4.15 and 4.16, the performance increases for each extra Baum
Welch iteration. Although the accuracy never exceeds 80 % correct considering a 20 ms 
margin, its recovery from the linear segmentation is quite remarkable. 

• Provisional models at iteration O have a poor quality, delivering only 66.41 % correct 
within 20 ms. However, only a single Baum-Welch iteration already boosts the accuracy 
to 72.41 %. 

4.4.5 Discussion 

Our method of training HMMs on the data and exploiting the resulting HMMs on the same 
data is comparable with one of the testing principles one encounters during the development 
of a speech recognizer. HMMs designated for speech recognition are subjected toa recognition 
task on the training data in order to investigate how well they reflect the characteristics of the 
training material. This so-called self-test may indicate the maximum feasible performance 
one can obtain with that set of HMMs. However, HMMs for the purpose of speech recognition 
are not allowed to specialize too much on the training material (i.e. become too training set 
specific). This may degrade the performance on the test set, not to mention the performance 
decrease one gets when the models are utilized in a 'real world' application. In contrast with 
that, our approach for segmentation has a rather opposite point of view: we are striving to 
capture as much training material characteristics as possible for achieving high performances 
because the segmentation is clone on the same data. The idea of attributing local signal 
properties to specific models as described in Section 4.4.3 has to be further explored. We 
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strongly recommend to make the HMMs as specific as possible to the observation sequence 
at hand. 

lt is observed that most alignment errors are associated with well-defined phoneme cate
gories. As a result of this , it is not necessary to check all boundaries hut restrict oneself to 
those category pairs containing liquids, semi-vowels, and schwas. In addition, one can im
prove specific inadequacies by modelling segments according to own insights and views (both 
phonological and pragmatic). For instance, different phoneme categories can be modelled 
by distinct topologies or structures. Corresponding segments in distinct phonetic contexts 
can have different models. One can also allow more syllable-oriented modelling avoiding the 
rather ad hoc definition of a phonemic segment. 
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Chapter 5 

Discussion 

The hierarchical approach for automatically segmenting speech is a clear stepping stone for 
further research. It demonstrates that a good bootstrapping procedure for HMMs is crucial 
for obtaining high segmentation accuracies. Moreover, we feel that small improvements at 
the first two stages of the hierarchical approach contribute to the overall performance of the 
automatic segmentation. Some of these feelings are reflected into the recommendations for 
further research. 

At this moment, the hierarchical approach consists of three successive stages, each with 
its' own characteristics. 

A Broad Phonetic Class Segmentation segments an observation sequence into three 
phonetic classes ( unvoiced, voiced, silence) according to a phonetic transcription. The 
observation is a sequence of a five-dimensional vectors containing signal measurements 
that roughly characterize the three phonetic classes. Iteratively, the segment boundaries 
are found by minimizing a total Euclidean distance, and subsequently the centroids 
representing the phonetic classes are updated. The method results into 80.42 % correct 
placements of braad phonetic class boundaries considering a margin of 20 ms. 

A Sequence Constrained Vector Quantization segments each broad phonetic class 
segment into its ' constituting phone-like units. It clusters the observation sequence into 
a pre-selected number of non-overlapping phoneme-like segments by minimizing the 
Itakura distortion. The method results into 69.31 % correct placement of phoneme-like 
unit segments considering a margin of 20 ms. 

A Bidden Markov Model System bootstrapped by segments as provided by the SCVQ 
method, serves as concluding stage and delivers the final phoneme-like unit segmenta
tion. The hierarchical approach result into 87. 73 % correct placement of phoneme-like 
unit boundaries considering a margin of 20 ms. Considering a margin of 25 ms results 
into a segmentation accuracy of even 92. 78 %. 

The quantitative performance metrics and overall design emphasize the rather unique 
position of the hierarchical approach concerning performance and required apriori knowledge. 
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5.1 Performance evaluation 

A first recommendation is to verify whether possible idiosyncrasies of the speech inventory 
at hand play some rule. The hierarchical approach has therefore to be cross-validated by 
subjecting it to other speech inventories. As the inventory used in this project is a subset 
of a database with a much richer pre-determined set of diphones and phoneme-like units, a 
first strengthening of the experimental conditions is to conduct experiments on the whole 
database. A second step may consist in using an isolated word corpus recorded from another 
speaker or a collection of speakers. An ambitious, hut concluding experiment is to apply the 
technique to a corpus with fluently spoken utterances. One can think about the PHONDAT 
[PHONDAT 92] corpus, a manually segmented database that contains continously spoken 
German sentences recorded from several speakers for the purpose of diphone preparation. 

5.2 More broad phonetic classes 

The provision of anchor points of broad phonetic classes can be extended by defining more 
classes such as nasals and liquids. As observed in the final segmention results, boundaries 
between category pairs containing liquids need some improvement. This may be remedied by 
marking these speech parts as liquids in an early stage in the hierarchical approach, during 
the broad phonetic class segmentation. 

5.3 Finding centroids 

The availability of reliable centroids in the Sequence Constrained Vector Quantization is 
crucial for the performance of this stage. Therefore , it must be further explored. A minor 
modification is to apply an extra template matching between the SCVQ stage and the HMM 
stage. It may extract centroids from the segmentation as resulting from the SCVQ stage. In 
addition, a more elaborated clustering technique (originated from the Vector Quantization 
field) for acquiring centroids must be investigated. 

5.4 Frame acquisition via glottal closure instants 

The speech analysis method is still block based by spacing analysis frames uniformly. This 
may result into a mixing of dynamic characteristics of speech in each frame and, hence, an 
unreliable signal analysis. Therefore, a frame positioning synchronized with glottal closure 
instants ( epochs) provides means for analyzing speech segments corresponding to these exci
tation events. 

5.5 Hidden Markov Model Structure 

The set of HMMs can easily be adapted to new insights as provided on the detailed exam
ination of the results. lt is observed that most misalignment errors occur in well-defined 
phoneme category pairs. This provides a setting in which the HMM system can be incre
mentally improved by iteratively modifying small parts of it and evaluating the performance 
(in/de)crease. HMM modelling other speech segments such as glottal stops can also be pro
vided. In addition, different phoneme categories can be modelled by distinct topologies or 
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structures. Corresponding segments in distinct phonetic contexts can be modelled by differ
ent models. One can also allow more syllable-oriented modelling avoiding the rather ad hoc 
definition of a phoneme-like segment. 

5.6 Starting form an orthographic transcription 

One of the severe problems that has to be addressed in fut ure studies is the possible mismatch 
one encounters between the prescribed transcription and the actual acoustic realization of 
the utterance. This phenomenon already shows up at the first stage of the hierarchical 
approach, i.e. the broad phonetic class segmentation. Beforehand, it is never assured that a 
speech segment possess the acoustic-phonetic properties that are associated with a label: all 
depends on the actual realization made by the speaker. There is a large variability in speech 
sound realizations due to human adjustments, most of them are formalized by phonological 
rules[Jongenbur 91] . Some of them can be considered compulsory such as the assimilation of 
voice in the cluster /sz/ in the word 'waszak'. It can be clearly seen in Figure 5.1 that the 
segment Z is realized with strong unvoiced characteristics under the influence of its phonetic 
context . Another example of an adjustment is the insertion of schwa C between the plosive 
Kl K2 and the nasal N in the word 'knieen', as shown in Figure 5.2. Although this insertion is 
very common in Dutch, it was not transcribed as such in the first place. On the other hand, 
utterances in the inventory were encountered having mismatches that could not be simply 
clarified by application of a phonological rule. In some cases, it was felt that the speaker <lid 
not obey the prescribed transcription during the recording session. 

In order to address these phenomena, acoustic-phonetic events have to be automatically 
detected by using only an orthographic transcription of the utterance. At this moment, we 
have circumvented it by examining the speech inventory and correcting mismatches as much 
as possible in the phonetic transcription (see Appendix A). 

SI w A s z A Kl K2 SI 

Figure 5.1: Utterance of the word 'waszak' {soiled-linen bag) with assimilation of voice in its 
S Z cluster. 

Thus, it is a false assumption that each word can be phonemically represented by a unique 
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Kl K2 C N I C N SI 

Figure 5.2: Utterance of the word 'knieen' (knees) with a schwa C (svaribhakti vowel) inserted 
between the plosive K1 K2 and the nasal N. 

phoneme label string. Consequently, it would seem preferable to start from a given ortho
graphic transcription of the utterance (and not from an unreliable phonetic transcription). 
In this case, the task of the HMM is to perform both segmentation and labelling. A plausible 
implementation of this idea is to represent all possible pronunciations of an utterance option
ally by a finite state network of pronunciations (transcriptions) . In addition, the mismatches 
between labels and realizations also occur during the training stages and will affect the qual
ity of the HMMs. In this respect, an unsupervised training procedure (with no explicit label 
information) has to be designed. For work along this line see e.g. [Brugnara 92] . 

5. 7 Linear Discriminant Analysis 

It is known [Haeb 92] that the application of Linear Discriminant Analysis (LDA) results 
in improved performance for speech recognition. It must be investigated whether segmenta
tion techniques can also benefit from this. LDA is a feature selection technique in statistica! 
pattern recognition [Fukunaga 90] . It improves the class separability and reduces the di
mensionality of the feature space by a linear transformation. The main question that arises 
(beside the implementation strategy concerning the computation method of the between-class 
scatter matrix) is how to define an appropriate class that will be subjected to LDA. Results 
of previous training and segmentation with class annotations referring to the class definition 
at hand are required for applying a LDA. 

5. 8 U ser interface 

The hierarchical approach is implemented by a set of ANSI-C programs that can be invoked via 
a UNIX-shell script in an off-line, batch-oriented way. However, the interaction and parameter 
setting of these programs require expert knowledge. This may not be a good facility for the 
work involved with segmentation and the preparation of a diphone inventory. Because of the 
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fact that automatic segmentation is still affected by incorrect boundary placements, designing 
a user interface that nicely interacts with the hierarchical approach would result into a truly 
professional work bench for speech researchers. 
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Chapter 6 

Software Tools 

This chapter represents an overview of the software programs that are written in the course 
of the project. As a matter of fact , they can be considered as the evaluation objects of the 
automatic segmentation techniques as described in this document. This software description 
is primarily meant for the benefit for future users or programmers and can be considered a 
supplement to this report . 

The software tools are written in ANSI-C on top of a software library from a third party, 
namely the Hidden Markov Toolkit (HTK) [Young 93]. The HTK is a suite of libraries and 
programs for manipulating continuous density Hidden Markov Models (HMM). In order to 
be file-compatible with this toolkit we have conformed ourselves to the file formats and data 
structures as they are defined within HTK. Beside the creation of totally new programs, we 
have fixed some minor bugs within HTK that we encountered during extensive HTK usage 
and adapted some data structures and HTK tools to our specific needs. This has led to a 
revised version of the HTK originated from the 'last academie' version V 1.4A. 

Unfortunately, the HTK Toolkit Reference Manual has some pitfalls regarding its informa
tion structure. It rather carries information around the document. We have tried to collect 
all required information, written them down in a condensed way while adopting the same 
format and style , and made references to the corresponding sections in the HTK manual. A 
little apriori knowledge on how speech recognition is implemented by HTK is recommended. 

It must the emphasized that the overview as presented here is oriented towards speech 
segmentation. The HTK tools are developed for the purpose of speech recognition implying 
an enormous amount of reading material in this chapter. If the purpose is solely speech seg
mention , some sections can be skipped by first reading. We devote a section for each tool and 
try to explain its functionality, usage and how it is implemented. Especially, the concluding 
part dealing with the implementation is meant for programmers and it is recommended to 
carefully examine the source code simultaneously. We conclude this chapter with a small 
tutorial in order to illustrate the practical usage of the tools in the hierarchical approach. 

Hereunder, a list of software tools is given in alphabetical order. These software tools 
merely represent the instruments needed to conduct the segmentation task as described in 
this document. They fall into three different categories: new tools that are developed by using 
the HTK library, tools that are extensions to existing tools within HTK, and HTK tools. The 
last category is not extensively documented in this report (see [Young 93]). 
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Assess 
A tool for assessing the performance in segmentation accuracy of an automatically 
obtained segmentation. lt takes pairs of labelled transcription files from which one 
may be a (manually segmented) reference. First, it performs a dynamic programming 
match between them in order to assure compatibility. Subsequently, it compares each 
boundary as specified in one file with its correspondent from the reference file and 
draws statistics from this. lt outputs global cumulative statistics about the accuracy 
plus optionally information pinned to specific transitions. Also, U.TE)X-compatible text 
files can be generated. 

BroPhon 
A tool that segments an input utterance into three broad phonetic classes (silence, 
unvoiced, voiced) according toa phonetic transcription, the specification which phoneme 
belongs to which broad phonetic class, and some global duration statistics allowed for 
each phoneme. lt is a direct implementation of the method described in Section 4.2.l. 

FrontEnd 
A tool that encodes an input utterance into a discrete observation sequence that can be 
subjected to the HMM system. The parameterized form of the speech is a FFT-based 
filterbank in which the spacing and bandwidth of the triangular filters are determined 
by an Equivalent Rectangle Bandwidth warping function. Both the calculation of delta 
and delta-square features are supported. lt is a direct implementation of the front end 
as described in Section 4.4. l. 

GenMarkov 
A tool that generates a HMM definition file according to syntax construction rules. The 
generated file serves as a topology and structure description of an HMM that can be 
provided to training tools. 

htk2ipo ipo2htk 
Two conversion tools that convert data formats as standardized within HTK to the 
IPO / OTS speech data formats and vice versa. 

lmplicit 
A tool that tries to segment_ an input utterance into a sequence of consecutive spectra! 
stable portions by applying a correlation technique between observation vectors. lt can 
also be used to 'polish' a given segmentation in order to require more exact positions. lt 
is a direct implementation of the 'implicit' method proposed by van Hemert [Hemert 87, 
Hemert 85]. 

Pitch 
A tool that calculates the pitch markers indicating glottal closure ( epoch) instants of 
an input utterance. lt is a direct implementation of the method as described by Ma 
[Ma 94]. 

SegKMeans 
A former HTK tool that is used to initialize HMM on a set of labelled speech segments 
by means of a Segmental K-Means algorithm. In first instance, it is meant to provide 
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sufficiently good initial HMM estimates that can be further subjected to stronger train
ing such as Baum-Welch re-estimations. In fact, this tool is a small extension to the 
Hlnit tool as present in the HTK (see also Section 4.4.1). 

SeqQuant 
A tool that segments an input utterance in contiguous non-overlapping segments by 
means of a so-called Sequence Constrained Vector Quantization. The process is con
trolled by a phonetic transcription. Extra a priori knowledge that is helpful in perform
ing its task properly is by giving global duration statistics allowed for each phoneme. 
Moreover, a broad phonetic class segmentation can also be supplied to the process. It 
is a direct implementation of the method as described in Section 4.3.l. 

HERest 
A HTK tool that does a single Baum-Weich reestimation on a collection of labelled 
(parametrized) speech material. It takes a set of provisional HMMs and trains them 
simultaneously using a training set of observation sequences and their corresponding 
transcriptions. For each sequence, the transcription is used to build a large composite 
HMM model and Baum-Welch is used to train the model on the whole utterance. No 
segment information is used during the whole process (see also Section 4.4.1 ). This tool 
is not further documented in this chapter. A complete description of HERest can be 
found in the HTK manual (see pp. 65-71 [Young 93]) . 

Viterbi 
A former HTK tool that performs continuous speech Viterbi decoding with finite state 
syntax constraints, beam search, and garbage collection. Throughout the project, we 
have used it solely as segmentation tool by restricting the search process to very simple 
finite state network, namely the transcription (see also Section 4.4.1). In fact, this tool 
is an extension to the HVite tool as present in the HTK. We have implemented a lattice 
N-best algorithm and bigram with word categories for the purpose of speech recognition 
[Pauws 93]. 

6.1 File formats 

6.1.1 Label files 

A HTK label file uses a text file consisting of one or more levels where each level is separated 
by a / character 

transcription = level { "/ " level } 

Each level is a sequence of text lines, each defining a label 

level = label { label } 

A label is specified in the format 

label = [ start end ] name [ score ] 

where start denotes the start time of the labelled segment in l00ns units, end denotes the end 
time in l00ns units , name is the name of the segment and score is a floating point confidence 
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score. All fields except name are optional. If start and end are both missing then the label 
file is treated as a simple symbolic transcription. The optional score would typically be a log 
probability generated by a recognition (segmentation) tool. 

Actual label names can be any sequence of characters but must begin with a non-digit 
character other than the level separator /. However, the - and + characters are reserved for 
identifying left and right context, respectively, in a context-dependent label (triphones) . 

The following sample text represents a label file with segment information of the manual 
segmentation at the phoneme level of the word 'nenoone'. Observe that this label file has 
only one level. 

0 682500 SI 
682500 2343750 N 
2343750 3116250 C 
3116250 3901250 N 
3901250 5657500 00 
5657500 6900000 N 
6900000 8223750 C 

All tools described in this chapter use this label file format. Also, Pitch writes its pitch
marker files in this format. 

In addition , tools reading in label files have also access to label file formats from other 
vendors. These formats are solely for input. 

TIMIT a text file format used in the prototype version of the US DARPA TIMIT database 
produced by Texas Instruments and MIT. TIMIT assumes that the corresponding audio 
data is sampled with 16 kHz. 

SPED a non-text label file format. 

SCRIBE the UK SCRIBE database label file format which is compatible with the European 
SAM standard. 

6.1.2 A priori knowledge files 

The tools BroPhon and SeqQuant both require some a priori knowledge that must be 
provided by a text file. The following text file format is used with one label and its data 
stored per line 

name ("UNV"l"V□I"l"SIL") ["PLOS"] mindur maxdur 

where name denotes the name of the label, UNV, VOI, and SIL denote the set of disjoint broad 
phonetic classes the given label belongs to, PLOS denotes an extra optional broad phonetic 
class, mindur denotes the minimum allowed duration of the given label in ms units, maxdur 
denotes the maximum allowed duration of the given label in ms units. 

Actual label names can be any sequence of characters. However, the - and + characters 
are reserved for identifying left and right context, respectively, in a context-dependent label 
(triphones) . 

The following sample text represents a part of a file that can be provided to the two tools, 
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SI SIL 36.1 83.5 
P1 SIL 37.0 82.8 
P2 UNV PLOS 10.0 44.1 
B1 VOi 38.9 83.1 
B2 VOi PLOS 11.8 22.4 
F UNV 51.1 120.3 
V VOi 52.6 100 
s UNV 69.8 199 
z VOi 67.4 120.6 
AA VOi 133.9 203.7 
EE VOi 104.8 183 
A VOi 67. 7 112.9 
E VOi 70.1 107.7 

6.1.3 Sampled speech data files 

Several file formats for sampled speech data are supported. 

AIFF Apple Interchange File Format. 

HTK HTK format. 

SUNAU8 8 kHz 12 bit µ-law NeXt/SUN audio format. 

TIMIT the format used in the prototype version of the US DARPA TIMIT database produced 
by Texas Instruments and MIT. 

NIST the standard format being promoted by the National Institute of Standards and Tech
nology. The DARPA Resource Management Database and the full version of the US 
DARPA TIMIT database are in this format . 

SCRIBE the UK SCRIBE database format which is compatible with the European SAM 
"' standard. 

SDES1 the Sound Designer 1 format developed by Digidesign for use in multimedia applica
tions. 

In addition, unknown audio file formats can be read provided that the overall structure 
concerning header followed by data is known. Setting the following environment variables 
enables this feature. 

HDSIZE - number of bytes in header 
SAMPSIZE - number of bytes per sample 
SAMPPERIOD - sample period in units of lOOns 
SAMPKIND - sample kind 

For instance, the following script will load an alien audio file with a header of 64 bytes, 16 
bit precision, and 16 kHz sampling frequency. 

setenv HDSIZE 64 

setenv SAMPSIZE 2 
setenv SAMPPERIOD 625 

setenv SAMPKIND ALIEN 
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6.2 Assess 

6.2.1 Function 

This tool reads in a set of HTK compatible label files as outputted by the tools BroPhon, 
SeqQuant, or Viterbi and compares them with a dynamic programming algorithm with 
corresponding reference label files on possible substitutions, deletions, or insertions. This is 
done solely for verification on labelling compatibility. In other words, one must be assured 
that a pair of label files represent exactly the same transcription. Within the dynamic pro
gramming framework, boundaries between two labels are compared with their correspondents 
in the reference files and statistics are drawn. The basic output is the segmentation accuracy 
statistics of all label1 boundaries for the whole file set: 

--------------------- Segmentation Results ------------------------
CORRECT MARGIN: [ 0 ms - 0 ms ] ¼Correct•0.27 [N•6412 ,C•17] 
CORRECT MARGIN: [ O ms - 10 ms ] ¼Correct•62.57 [N•6412,C•4012] 
CORRECT MARGIN: [ 0 ms - 20 ms] ¼Correct•86.96 [N•6412, C•5576] 
CORRECT MARGIN: [ 0 ms - 30 ms] ¼Correct•93.75 [11•6412, C•6011] 
CORRECT MARGIN: [ 0 ms - 40 ms] ¼Correct•96.30 [N•6412 ,C•6175] 
CORRECT MARGIN: [ 0 ms - 50 ms ] ¼Correct•97.52 [N•6412, C•6253] 
CORRECT MARGIII: [ 0 ms - 60 ms ] ¼Correct•98.07 [11•6412, C•6288] 
CORRECT MARGIII: [ 0 ms - 70 ms ] ¼Correct•98.61 [11•6412,C•6323] 
CORRECT MARGIN: [ 0 ms - 80 ms] ¼Correct•98.88 [N•6412, C•6340] 
CORRECT MARGIN: [ 0 ms - 90 ms] ¼Correct•99.17 [11•6412, C•6359] 
CORRECT MARGIN: [ 0 ms - 100 ms] ¼Correct•99.42 [11•6412,C•6375] 

-------------------------------------------------------------------

Each line gives the percentage of boundaries that fall within a correct margin round 
their corresponding reference boundaries and that may be considered correct. N is the total 
number of boundaries in the defining label files, C is the number of boundaries that fall with 
the correct margin. Each line represents an extension of the correct margin by a multiple 
of 10 ms. The resulting cumulative statistics reveal the overall performance by considering 
looser inaccuracies. 

Optional extra outputs from Assess are 

• Inspection of a single label with a pre-determined correct margin (see -i option below) . 

• Creation of tables that depict each label-to-label boundary in particular (see -t option 
below). 

• ti\TE'(-formatted text files (see -x switch below). 

For comparison purposes, it is also possible to assign two labels to the same equivalence 
class ( see -e option below). Also, label files containing ( context-dependent) triphone labels 
of the HTK defined form A-B+C can be optionally stripped down to just the label name B via 
the -s switch. 

6.2.2 Use 

Assess is invoked via the command line ( or from a UNIX shell script) 

1 The term 'label' refers to each possible modelling entity such as phoneme, syllable, word . 
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Assess [options] labelList labelFiles ... 

This causes Assess to be applied to each labelFile in turn. The file labelList con
tains all label names per line for which statistica! results information is required. For each 
labelFile, a reference file with the same name but with the extension lab (see also option 
-X) is read in and matched with it. The available options are 

-a By default, the first and last boundaries representing respectively the beginning and 
ending of the sampled speech data file, in genera!, are left out of the statistics. Setting 

~ -a also takes these boundaries into account. 

-m Lists the mean difference and standard deviation (in ms) between the test and reference 
boundaries. By default, both the left and the right boundary of each label is taken into 
account. 

-1 Take only left boundaries into account when switch -m is on. 

-r Take only right boundaries into account when switch -mis on. 

-i t f Lists all label files in which the boundaries associated with label t have a deviation 
of f ms equal to or greater than their corresponding references. 

-e s t The label t is made equivalent to the label s. More precisely, t is assigned to an 
equivalence class of which s is the identifying member. The null label ??? is defined so 
that making any label equivalent to the null label means that it will be ignored in the 
comparison process. Note that the order of equivalence labels is important, to ensure 
that label X is ignored, the command line option -e ??? X would be used. 

-s Causes all label names with the form A-B+C to be stripped to B. 

-g i Set the number of margins around the reference boundary that must be investigated to 
i. These margins are extended by some multiple and thus, show cumulative statistics 
of boundary discrepancies ( default 10) 

-d f Set the multiple to f in ms that must be maintained by extending the correct margin 
(default 10.0 ms). 

-t f Evaluates each label-to-label boundary separately by considering a margin off ms. lt 
gives a detailed overview by a table in which vertically the label to the left is indicated, 
and horizontally the label to the right of the boundary. In each entry of the table the 
score p/q is given meaning p correct out of q boundary occurences. In the bottom row 
and the most right columns, summations over respectively the column and the row are 
given. In the bottom-right entry, the total segmentation performance is given. 

-x Print the statistics in 15\TE]X-format. 

-G fmt Set the label file format to fmt . (Default HTK) . 

-L dir Set the directory to search for the reference label files to dir. If this option is not 
specified, Assess tries to find the files in the same directory as the label files to be 
evaluated. 

- X ext Set the extension of the reference label file to ext ( default: lab). 
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6.2.3 lmplementation 

The reference and test label files are read in and stored in the datastructures ref and test . 
Some possible modifications to the labels are applied according to the command line argu
ments. For instance, equivalent labels are stored in a linked list that is used to convert any 
equivalenced label in the transcription before they are further process (see ConvertEq). 

First, the transcriptions are compared by means of dynamic programming. The principle 
data structure is the matrix grid. Each entry in the grid is a Cell containing integer fields for 
the total match score, and the number of insertions, deletions, and hits along the path leading 
to that grid cell. While tracing back the grid, hits between a reference label and a test label 
(notified by a diagonal move along the grid) are used for gathering the statistics regarding 
the alignments of boundaries associated with these labels. Test boundaries are compared 
considering a range of intervals around the reference boundary by the routine CompareBound. 
These results are stored in a linked list scoreList where each node in this list captures the 
results considering specific interval. 

When required, some matrices (occBounds, corrBounds) are constructed considering each 
label-label transition separately. They respectively represent the number of occurrences of 
each label-label transition and the number of test boundaries that fall within a margin around 
the reference boundary (correct) . These tables are constructed and printed out at the end of 
the DP match. (see routine OutTable). 

In addition, al_l output routines have their UTEX-version. 
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6.3 BroPhon 

6.3.1 Function 

This tools tries to segment a given sampled speech waveform into a set of non-overlapping 
broad phonetic class segments according to a transcription. The transcription is provided 
by a text file as described in Section 6.1.1. The segmentation is carried out by iteratively 
calculating optima} segment boundaries by means of a level-building dynamic programming, 
followed by an updating of the centroids representing the new acquired segments (see also 
option -i below) . At this moment, the number of supported broad phonetic classes is rather 
small (UNV: unvoiced, V0I:voiced, SIL:silence). 

Two extra information sources are needed for this tool to accomplish its task: a mapping 
from label name to broad phonetic class, and some global duration statistics of each label. 
This data must be provided by means of a text file as described in Section 6.1.2. 

One can choose any combination of measurements to discriminate voiced from unvoiced 
regions from a pre-defined set: low-high frequency band pass filtered energy, zero crossing 
metrics, and first lpc coefficient (see -m option below). 

Optional extra output is the provision for a gnuplot compatible files that depicts graphi
cally the result of the segmentation (see -G option below). 

6.3.2 Use 

BroPhon is invoked via the command line (or from a UNIX-shell script) 

BroPhon [options] featFile speechFile 

This causes the given sampled speech data file speechFile to be subjected toa broad phonetic 
class segmentation. The file featFile contains information about the mapping from label to 
broad phonetic class and some global duration constraints allowed for each label (see Section 
6.1.2) . The output is written in the form of HTK label files (see Section 6.1.1) whose path 
name is determined from the input speech file name and the -S and -E option described 
below. 

The detailed operation of BroPhon is controlled by the following command line options. 
Many settings have to be optimized by a trial-and-error procedure. 

-i i Enable a method that iteratively determines a set of boundaries and a set of centroids 
that represent each broad phonetic class until some convergence criterium between two 
successive iterations is met. i states the maximum number of iterations. By default, 
a single iteration is conducted by using centroids that are acquired from a manually 
segmented database. 

-m flags By default, all measurements that discriminate between the three broad phonetic 
classes are used. This option causes just the measurements indicated by the flags 
argument to be used. This argument is a string containing one or more of the letters 
f (low-pass/high-pass energy), z (zero crossings) , or r (first coefficient of a first order 
LPC analysis). The presence of a letter enables the calculation of the corresponding 
measurement (default fzr). 

-v f Set the onset frequency of the low-pass filter tof. (Default: 50.0 Hz). 
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-V f Set the cut-off frequency of the low-pass filter tof. (Default: 1200.0 Hz) 

-u f Set the onset frequency of the high-pass filter tof. (Default: 2000.0 Hz) 

-U f Set the cut-off frequency of the high-pass filter to f . (Default: 4000.0 Hz) 

-s f Set the energy sealing factor tof in order to improve silence detection. (Default: 500.0) 

-W Enable a weighted Euclidian distance metric (Mahalanobis distance) in the segmentation 
process. (Default: Euclidean distance) 

-G Enable production of gnuplot-compatible printouts. 

-f T Set the frame period to T ms (default value 10.0 ms) . 

-k f Set the pre-emphasis coefficient tof (default value 0.95) . 

-w T Set the frame (window) duration to T ms (default value 20.0 ms). 

-L dir Set the directory in which the label files are stored to dir. These label files represent 
the phonetic transcription along which the segmentation is conducted. (default: current 
directory). 

-X ext Set the label input file name extension to ext (default lab). 

-S dir Set the directory to store the output label files to dir ( default: current directory). 

-E ext Set the output label file name extension to ext (default bpc). 

-T N Set the trace level to N ( default: tracing disabled). One level of trace output is provided, 
consisting of the partial distances at each level and the trace back matrix (N=1 ). 

-F fmt Set the audio file format to fmt for the input sampled speech data file (default AIFF). 
See Section 6.1.3. 

6.3.3 lmplementation 

The tool BroPhon uses level-building for accomplishing its task. Level-building is a dynamic 
programming technique that tries to find a pre-determined number of non-overlapping seg
ments by minimizing an overall distortion (see Section 4.3.1). Routine LevelBuild is a direct 
implementation of this algorithm. 

The pre-determined sequence of braad phonetic class label sequence is obtained by trans
lating the phonetic transcription into its corresponding braad phonetic class transcription. 
The internal represention of a transcription is the same as for other tools. See Section 6.11.3 
for more details about this. 

In C-like pseudo code, the implementation looks like 

/• t : phonetic transcription •/ 
/• b: broad phonetic class transcription •/ 
b • MakePhonFeatList(t); /• Init centroids, translate transcription •/ 
PreProcess(tsrc,ttgt); /• Convert vaveform •/ 
do { /• do until convergence criterium is met•/ 

it++; 
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prevDist • LevelBuild(ttgt,b); /• Update boundaries •/ 
UpdateCentroids(ttgt,b); /• Update centroids with new bounds •/ 
newDist = CalcOverallDist(ttgt,b); /• Calc. new total distance •/ 
score• (prevDist - newDist) / newDist; 

} while ((score>= epsilon) tt (it < maxlter)); 

Each braad phonetic class is represented by a centroid that is calculated from the utterance 
at hand. The initia} set of centroids represents some ideal broad phonetic classes (binary 
vectors). 

The determination of the initia} set of centroids, the incorporation of the duration con
straints, and the mapping to braad phonetic class transcription are conducted by the routine 
MakePhonFeatList . The next step is converting the sampled speech waveform src into an ob
servation sequence tgt according to the command line arguments by the routine PreProcess. 
A set of signa} measurements are computed frame-by-frame composing the acoustic vector. 
This is implemented rather straightforwardly. 

In principle, BroPhon consists in an iterative procedure where each iteration has two 
steps. The first step seeks an optima} set of boundaries given a set of centroids by means of 
level-building (see routine LevelBuild) . The second step updates the centroid set by using 
the new acquired boundaries (see routine UpdateCentroids). Both steps come up with a 
minimal total distance that is exploited to guarantee convergence. The convergence criterium 
is implemented by seeing whether the relative distortion decrease score is smaller than a 
treshold epsilon or a pre-determined maximum number of iterations is reached. A detailed 
overview of the algorithm is given in Section 4.2.l. 

In addition, a non-iterative procedure is implemented that conducts only a single level
building pass for acquiring boundaries by using some externally provided (but hard-coded) 
centroids. These centroids are obtained from a manually segmented speech database recorded 
from a single male speaker. 
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6.4 FrontEnd 

6.4.1 Function 

This tool converts a sampled speech waveform into a parametrized form, i.e. an observation 
sequence. The basic action is to divide the input file into a sequence of (possibly) overlapping 
frames. Each frame is converted by means of ~ filterbank analysis and outputted to the 
designated target file. The filterbank is FFT-based and essentially non-uniform in the sense 
that the triangular filters are spaced and have a bandwidth as specified by an Equivalent 
Rectangular Bandwidth warping function (ERB). Additional options exists for appending 
normalized log energy (see -e option below), delta and delta-square features (see -d and -D 
switches below), and a frame acquisition synchronized by pitch instants (see -G option below). 

The output of the parameterized speech is always written in pre-defined HTK audio file 
format . 

6.4.2 Use 

FrontEnd is invoked via the command line (or from a UNIX-shell script) 

FrontEnd [options] inFile outFile 

lts effect is to read in the given inFile, parameterize it according to the supplied options, 
and finally output it to outFile. The parameterization is to output FFT-filterbank channels 
along a ERB-scale. The options are 

-G Enable frame acquisition via a pitch synchronous way. ( default: equidistant frame acqui
sition). 

-P f Set average pitch period to f ms. This value is needed to guide the pitch marker 
detection ( default value 8.0 ms). It is only effective when -G switch is set. 

-L N Set length of data matrix to N for calculating 'running' Frobenius norm (default value 
20). It is only effective when -G switch is set. 

-0 N Set order of data matrix (assumed LPC model) for calculating 'running' Frobenius 
norm (default value 10). It is only effective when -G switch is set. 

-d Append delta features to observation vector. These delta features are estimations of the 
first time-derivatives of vectors spanning several frames. 

-D Append delta square features to observatin vector. These delta square features are 
estimations of the second time-derivatives of vectors spanning several frames. 

-e Append the normalized log energy to the observation vector. 

-f T Set the frame period to T ms for equidistant frame acquisition (default value 10.0 ms) . 

-k f Set the pre-emphasis coefficient tof (default value 0.95). 

-w T Set the frame (window) duration to T ms for equidistant frame acquisition (default 
value 20.0 ms). 
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-m Apply the filterbank analysis on the magnitude spectrum rather than the power spectrum 
(default power spectrum). 

-h Apply a Hamming window. 

-n N Set number of filterbank channels to be outputted to N. (default value 16). 

-q N Set the interpolation window to estimate the delta and delta square features to the 
frame range ± N ( default value 2) 

-T N Several levels of trace output are provided. A trace value of 1 gives basic progress 
information in the form of a dot being output for each processed speech frame. A trace 
value of 3 gives maximum tracing. 

-F fmt Specifies the audio file format fmt for the input sampled speech data file (default 
AIFF). See also Section 6.1.3. 

6.4.3 lmplementation 

The filters are triangular and they are equally spaced out along the ERB-scale. This is 
implemented by computing a FFT of the sampled speech waveform. By default, the first 
half of the FFT components are used to filter in the power domain. An option exists to 
filter in the spectra! magnitude domain. The gathering of FFT components that fall within 
a triangular filter is implemented as follows : First , all centre frequencies of the filters are 
determined by equally spacing along the warped frequency axis using the ERB-scale function 
(see also Equation 4.34) , 

ERB(k) = 21.4 logrn (l + (k - I)fs/(N * 229)) 

in which k denotes the index of the FFT component , N is the number of samples in the 
analysis FFT window and fs is the sample frequency. Each warped FFT component index is 
added to a lower bin representing the filter. Then the bins are weighted to form the filterbank 
channels. All channels along with the log short-time energy are stored in the acoustic vector. 
This analysis is clone for all speech frames at once to construct an observation sequence 
with instantaneous features. The log short-time energy is normalized by the maximum value 
found in the observation sequence. The last step is the addition of delta and/or delta-square 
features . This is directly implemented using the Equations 4.36 and 4.37. 
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6.5 GenMarkov 

6.5.1 Use 

This tool generates a so-called prototype of an HMM. The output HMM definition file is gen
erated according to the syntax construction rules (see pp. 21-28 [Young 93]). lt is primarily 
meant to specify the topology and structure of an HMM in a simple way. Means of emission 
densities are set to zero, variances are set to a positive value such as 1.0, and the sum of all 
mixture weights within a data stream amounts to 1.0. The transition matrix of the prototype 
specifies both the allowed transitions and their initia! probabilities. , 

Subsequently, the generated file can be used as input for training tools, such as SegK
Means. Only linear, left-to-right HMMs with no skips and a self-loop at each state can be 
specified. No parameter tying within in a model can be specified. For more elaborate HMMs, 
the generated file must be subjected to the HTK tool HHEd (see pp.72-81 [Young 93]). 

6.5.2 Use 

GenMarkov is invoked via the command line (or from a UNIX-shell script) 

GenMarkov [options] outFile 

lts effect is to generate an HMM definition written to outFile according to the given options. 
The options are 

-s i Set the number of emitting states to i (Default 3). 

-d i j . . . Set number of datastreams at each state to i. Subsequently, each size of a 
datastream must be specified. This is done by the sequence of integers denoted by j 
.... For instance, the option -d 4 16 16 16 3 sets the number of streams to 4, where 
the first stream is of size 16, the second stream of size 16, the third stream of size 16 
and the last stream of size 3 (Default, one stream of size 16). 

-m i Set the number of mixtures for each stream to i (Default 1). 

-p s Set the preprocessing type to the string s. Several string expressions correspond to 
distinct front ends ( default FBANK). 

FBANK ERB-frequency filter bank analysis . 

MELSPEC linear mel-frequency filter bank analysis. 

LPCEPTRA Linear predictive cepstral coefficients. 

IREFC Reflection coefficients in ( only) 16 bit precision. 

MFCC Mel-frequency cepstral coefficients. 

LPREFC Reflection coefficients. 

-f Enable a full covariance matrix for each mixture (default diagonal matrix) . 

6.5.3 lmplementation 

The implementation is straightforward, mainly consisting of output via fprintf () calls. 
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6.6 htk2ipo 

6 .6.1 Function 

htk2ipo converts the file format concerning audio and label information as specified within 
HTK to the file format as standardized at IPO. In addition, some other audio (e.g. NeXt/Sun) 
and label formats ( e.g. TIMIT) can be converted. 

6.6.2 Use 

htk2ipo is invoked via the command line (or via a UNIX shell script) 

htk2ipo [options] speechFiles ... 

causing the speechFiles to be converted according to the command line arguments. The 
options are 

-L dir Set the input label file directory to dir ( default current directory) . 

-X ext Set the input label file extension to ext (default lab). 

-0 dir Set the output file directory to dir (default current directory). 

-E ext Set the output file extension to ext (default ipo). 

-F fmt Specifies the audio file format fmt for the input sampled speech data file ( default 
AIFF). See also Section 6.1.3 . 

-G fmt Set the label file format to fmt ( default HTK). 

6.6.3 lmplementation 

The support of file formats as standardized within IPO is implemented by using the IPO / 
OTS speech software library [Veenker 94]. 
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6.7 ipo2htk 

ipo2htk converts the file format concerning audio and label information as standardized at 
IPO to the file formats as specified within HTK. Besides the HTK audio format, AIFF audio 
file format can be outputted. 

6.7.1 Use 

ipo2htk is invoked via the command line (or via a UNIX shell script) 

ipo2htk [options] speechFiles ... 

causing the speechFiles to be converted according to the command line arguments. The 
options are 

-L dir Set the output label file directory to dir (default current directory). 

-X ext Set the output label file extension to ext ( default lab). 

-0 dir Set the output audio file directory to dir (default current directory). 

-E ext Set the output audio file extension to ext ( default ipo ). 

-F fmt Specifies the audio file format fmt for the output sampled speech data file ( default 
AIFF). See also Section 6.1.3. 

6. 7.2 lmplementation 

The support of file formats as standardized within IPO is implemented by using the IPO / 
OTS speech software library [Veenker 94]. 
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6.8 lmplicit 

6.8.1 Function 

This tool tries to find a set of non-overlapping locally stable spectra! segments by means of 
a correlation metric between LPC spectrum observation vectors in a given sampled speech 
data file . This technique was originally proposed by van Hemert [Hemert 87, Hemert 85]. It 
does its work blind-folded with no usage of transcribed data. This may produce insertion 
or deletion of segments that do not correspond to an ideal transcription of the utterance. 
However, this technique can be exploited to 'polish' a given segmentation of the sampled 
speech data (see -P option below). 

Optional extra output is the provision for a gnuplot compatible files that depict graphically 
the result of the segmentation (see -G option below) . 

6.8.2 Use 

lmplicit is invoked via the command line (or via a UNIX shell script) 

Implicit [options] speechFile 

This causes the speech file speechFile to be subjected to a conversion to a sequence of 
LPC spectra according to the supplied option parameters, subsequently a correlation metric 
is computed on this sequence. At the ends of proposed segments where the correlation is low 
with respect to the central part of that segment, it is likely that a segment transition takes 
place. The option are 

-P Adjust ('polish ') the boundaries as given by the label files (see -L option) by this method. 
If this switch is not set , the default action is the acquisition of all segment transitions 
as calculated by this method regardless of a transcription. 

-n fn Specify the boundaries associated with the labels that must not be taken into account 
in the 'polishing' process by means of the text file fn. Each label is specified per line 
in the text file fn. 

-q f 'Polishing' may only occur if the input boundary lies in an interval off ms around the 
boundary as proposed by this method (default 20.0 ms). 

-f f Set the frame period tof ms (default 10.0 ms). 

-k f Set the pre-emphasis coefficient tof (default 0.95). 

-p N Set the LPC-order to N (default 12) . 

-w f Set the frame (window) duration tof ms (default 20.0 ms). 

-G Enable gnuplot-compatible printout of the result . 

-L dir Set the input label file directory to dir (default current directory). 

-X ext Set the input label file extension to ext (default lab) . 
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-S dir Set the output ('polished') label file directory to dir (default current directory). 

-E ext Set the output ('polished') label file extension to ext (default imp). 

-F fmt Specifies the audio file format fmt for the input sampled speech data file (default 
AIFF). See also Section 6.1.3. 

6.8.3 lmplementation 

lt is a direct implementation of the proposed method of van Hemert [Hemert 85, Hemert 87]. 
The sampled speech waveform is converted frame-by-frame into an observation sequence 

of LPC spectra. These spectra are obtained by evaluating the expression using 128 frequency 
points 

a 26.t 
S(J) = II+ ~t=1 ake-j21rfkó.tl2 

where a 2 is the residual energy, ak, k = I, · • • , P the LPC coefficients and fit is the time 
interval between two adjacent samples. The LPC coefficients are calcuted by using the stan
dard autocorrelation method (Levinson-Durbin recursion). The amplitude of the spectra are 
expressed in dB. 

The determination of transition from one spectra} state to another spectra} state (bound
ary) closely resembles the article of van Hemert. 'Polishing' the given boundaries is imple
mented by comparing them with the spectra} state transitions of this method (see routine 
PolishSegments ). A boundary is equalized to a spectra} state transition if it is the closest 
boundary to that transition and falls within a margin (of typically 20.0 ms) around it. 
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6.9 Pitch 

6.9.1 Function 

This tool tries to detect glottal closure instants ( epochs) or pitch markers in a speech waveform 
by means of calculating a 'running' Frobenius norm over signal matrices obtained by advancing 
a rectangular window over the waveform one sample further successively. Local maxima of 
the numerical value of the Frobenius norm correlates with the glottal closure instants. This 
technique was originally proposed by Ma [Ma 94]. 

The pitch markers are written in the HTK label file format (see Section 6.1.1) in which 
the onset of each label (first column) specifies the actual calculated glottal closure instant in 
units of 100 ns. 

Optional extra output is the provision fora gnuplot compatible files that depict graphically 
the waveform and its ' running' Frobenius norm (see -G option below). 

6.9.2 Use 

Pitch is invoked via the command line (or from a UNIX shell script) 

Pitch [options] speechFile outFile 

This causes the speechFile to be subjected to an epoch detection and the results to be 
written to outFile. The options are 

-k f Set the pre-emphasis coefficient tof (default 0.95) . 

-r Apply the method to the LPC-residue. By default pre-emphasized speech is used , result-
ing into more reliable detections. 

-P f Set the assumed averagè pitch period tof ms. This value is needed to find the position 
of the local maxima of the Frobenius norm. These maxima are assumed to lie in a 
region corresponding to this period. If no maxima are found (i.e. unvoiced speech) a 
pitch marker is positioned corresponding to this period. ( default 8.0 ms) 

L N Set the length of the signal matrix to N ( default 20) . 

-0 N Set the order of the signal matrix to N ( default 10) . 

-E fn The ' running' Frobenius norm is written to file fn . lts format is HTK audio format. 

-F fmt Specifies the audio file format fmt for the input sampled speech data file ( default 
AIFF). See also Section 6.1.3. 

-G Enable production of gnuplot-compatible printouts. 
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6.9.3 lmplementation 

An efficient computation is implemented for calculating a 'running' Frobenius norm. We 
present this implementation by means of an operational example. Consider p = 3 and l = 6 
and the signal matrices at two ~uccessive time points t = 4 and t = 5. 

x(l) x(2) x(3) x(4) 
x(2) x(3) x(4) x(5) 
x(3) x(4) x(5) x(6) 
x(4) x(5) x(6) x(7) 
x(5) x(6) x(7) x(8) 
x(6) x(7) x(8) x(9) 

x(2) x(3) x(4) 
x(3) x(4) x(5) 
x(4) x(5) x(6) 
~(5) x(6) x(7) 
x(6) x(7) x(8) 
x(7) x(8) x(9) 

x(5) 
x(6) 
x(7) 
x(8) 
x(9) 

x(lO) 

The Frobenius norm F for the signal matrix at time point t = 4 can be directly calculated 
by implementing Equation 4.26 

F = x(I) 2 + 2x(2) 2 + 3x(3)2 + 4x(4) 2 + 4x(5) 2 + 4x(6)2 + 3x(7)2 + 2x(8) 2 + x(9) 

However, this requires many additions and multiplies for each time point. An efficient 
method is by considering the sum of the squared entries for each row Ti in the signal matrix. 
For the signal matrix at time point t = 4, we obtain 

r1 = x(1)2 + x(2)2 + x(3)2 + x(4)2 

r2 = x(2)2 + x(3) 2 + x(4) 2 + x(5) 2 

r5 = x(6)2 + x(7)2 + x(8) 2 + x(9) 2 

Remark , the Frobenius norm can now be calculated by the sum of all ri's. (F = I>i)
This calculation of all ri's has only to be carried out for the first 'running' Frobenius norm 
calculation (in this case, for the signal matrix at time point t = 4). 

Advancing the Frobenius norm calculation one time point (t = 5) further, only requires a 
'scrolling' assignment for all ri's, i.e. 

Ti-1 = Ti , i = 1, · · · , 5 

and an updating of the last summation r5 due to the departure of the sample x(6) and the 
arrival of the sample x(lO) in the row of the updated signal matrix. 

Having computed all numerical values of the 'running' Frobenius norm, it is now looking 
for local maxima. This is implemented by differencing the Frobenius trajectory and detecting 
the (largest) positive zero-crossings in some interval around an average pitch period. 
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6.10 SegKMeans 

6.10.1 Function 

SegKMeans is used to provide initia} estimates for the means, variances, mixture weights, 
and transition probabilities of a single HMM using a set of observation sequences. It is a small 
extension to the tool Hlnit as present in the HTK toolkit (see page 82-85 of [Young 93]) . 
Mainly, it is extended with a possibility to use pitch synchronously spaced training vectors 
and the updating of transition probabilities. lt works by repeatedly using Viterbi alignment to 
segment the training observations and then recomputing the means and variances by pooling 
the vectors in each segment. In the multiple mixture case, the vector pools are clustered 
using a modified K-Means algorithm. Transition probabilities are estimated by counting the 
number of visits at the states during the Viterbi aligment. In the absence of an initia} model, 
the process is started by performing a linear segmentation of each training observation. 

It normally takes as input a prototype HMM definition which defines the required HMM 
topology, i.e. it has the form of the required HMM topology and structure except that means, 
variances and mixture weights are ignored. Means should be set to zero, variances should be 
set to a positive value such as 1.0, and the sum of all mixture weights within a data stream 
should amounts to 1.0. The transition matrix of the prototype specifies both the allowed 
transitions and their initia} probabilities. Transitions which are assigned zero probability will 
remain zero and hence denote not-allowed transitions. Observation sequences can consist of 
continuously spoken training material. By giving each partial observation sequence a segment 
label corresponding to the HMM to be initialized, SegKMeans will simply cut it out of the 
training data automatically. 

SegKMeans supports multiple streams, multiple mixture, parameter tying within a single 
linear model and full or diagonal covariance matrices. 

6.10.2 Use 

SegKMeans is invoked via the command line (or from a UNIX shell script) 

SegKMeans [options] hmmFile trainFiles ... 

This causes the parameters of the given hmmFile to be estimated repeatedly using the data 
in trainFiles until either a maximum iteration limit is reached or the estimation converges. 

The detailed operation of SegKMeans is controlled by the following command line op
tions 

-b Take only one-third of the segment for bootstrapping the HMM, if possible. 

-c N Set the maximum number of cluster iterations to N (default 16). 

-e f Set the convergence factor to the real value f. The convergence factor is the relative 
change between successive values of the Viterbi alignment score ( default value 0.0001) 

-i N Set the maximum number of estimation cycles to N (default 20). 
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-1 s Set the string s to be the name of the segment label. When this option is used , 
SegKMeans searches through all of the training files and cuts out all segments with 
the given label. When this option is not used, SegKMeans assumes that each training 
file is a single token. 

-m N Set the minimum number of training examples, so that if fewer than N examples are 
supplied, an error is reported (default value 3). 

-n Suppress the initia! linear segmentation but use Viterbi alignment instead. This is useful 
for updating the parameters of an existing model. 

-o fn Write the new HMM definition file to fn. By default, the original file will be over
written. 

-p Use vectors that are spaced pitch synchronously. lt causes to load a pitch file , preferably 
generated by Pitch. 

-u flags By default, all HMM parameters are updated, that is, means, variances, mixture 
weights, and transition probabilities. This option causes just the parameters indicated 
by the flags argument to be updated. This argument is a string containing one or 
more of the letters m (means) , v (variance), w (mixture weight), and t (transitions) . The 
presence of a letter enables the updating of the corresponding parameter set. ( default 
mvwt). 

-v f Set the minimum variance to the real value f (default value 0.01) . 

-M mf Force a macro file to be loaded regardless of whether or not the actual HMM definition 
contains any clauses for using a macro. Macros are required when using parameter tying. 

-G fmt Set the label file format to fmt ( default HTK). 

-L 

-P 

-x 
-Y 

-T 

dir Specify the directory to search for the label files . If this option is not used it is 
expected that the label files are in the same directory as the training files. 

dir Specify the directory to search for the pitch files . If this option is not used it is 
expected that the pitch files are in the same directory as the training files. 

ext Set the extension of the label files to ext (default lab). 

ext Set the extension of the pitch files to ext ( default pit) . 

flags Set the trace level to N. Various levels of trace output are provided. The meaning 
of the flags argument is as follows, where \!,Il octal base is usd 

0001 basic progress reporting 

0002 information of training files 

0004 display each Viterbi alignment 

0010 trace the Viterbi decoding operationally 

0020 display each updated HMM 

0040 display cluster 

0100 print out cost of each cluster at each iteration 

0200 show cluster centre 
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6.10.3 lmplementation 

Details about the implementations can be found in the HTK manual (see page 84-86 in 
[Young 93]). We extend the source code with possibilities to update transition probabili
ties. Required statistics for this are obtained at each Viterbi decoding alignment. Also, the 
possibility to use training vectors that are spaced pitch synchronously is implemented . 
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6.11 SeqQuant 

6.11.1 Function 

This tool tries to segment a given sample speech data file into consecutive quasi-stationary 
elements according to a transcription subjected to the constraint that all vectors in a cluster 
(segment) are contiguous in time. This is accomplished by means of alevel-building dynamic 
programming framework. The transcription must be provided by a file as described in Sec
tion 6.1.l. Although not strictly necessary hut recommended for performance reasons, the 
accuracy can be improved by providing extra a priori knowledge to the process by means of 
a file as described in Section 6.1.2. Also the integration of broad phonetic class segmentation 
is made possible that further improves the accuracy (see -B and -Y options below). 

Optional extra outputs from SeqQuant are 

• Selection of two distortion measures: ltakura distortion and cepstral distance (see option 
-c, -d, and -W below). 

• Creation of a simple linear segmentation (see -1 switch below). 

• Provision for gnuplot compatible files that depict graphically the result of the segmen
tation (see -G option below). 

• Acquisition of frame by synchronizing it with pitch instants (see -s option below). 

6.11.2 Use 

SeqQuant is invoked via the command line (or from a UNIX-shell script) 

SeqQuant [options] speechFile 

This causes the given sampled speech data file speechFile to be subjected to a Sequence 
Constrained Vector Quantization along a given transcription. The output is written in the 
form of HTK label files (see Section 6.1.1) whose path name is determined from the input 
speech file name and the -S and -E options described below. 

The detailed operation of SeqQuant is controlled by the following command line options. 
Many settings have to be optimized by a trial-and-error procedure. 

-a Enable segmentation boundaries outputted at frame centres. Default boundaries are 
placed at frame onsets. 

-i Pool the partial observation sequences of corresponding labels in the transcription during 
the dynamic programming process. During the process of level-building, all separate 
partial observation sequences that correspond to the partial minimal distortion are col
lected. From these collected sequence (representing several realization of the same label), 
a single centroid is computed. By default, each label occurrence in the transcription 
has attached its own private centroid. 

-1 Apply a simple linear segmentation. 

-D fn Provide a file fn containing the mapping from label to broad phonetic class, some 
global duration constraints allowed for each label (see Section 6.1.2). The provision of 
this file overrules the options -m and -M. 
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-m f Set a minimum duration for each label to f ms (default value is the number of ms 
corresponding to a single frame). 

-M f Set the maximum duration for each label tof ms (default value is the total speech file 
length) . 

-b f Set boundary compliance factor to f ms. (default value 20.0 ms) . This factor is used 
for integrating the broad phonetic class segmentation and SeqQuant and leaves a small 
margin for the duration of each label. 

-s Enable frame acquisition via a pitch synchronous way. ( default: equidistant frame acqui
sition). 

-c Enable truncated cepstral distance for segmenting the utterance ( default: Itakura distor-
tion). 

-d Use delta features with the cepstral distance. 

-W d Set the cepstral liftering coefficient to N. The default value of 0 disables cepstral liftering. 

-f T Set the frame period to f ms in the case of equidistant frame acquisition ( default value 
10 ms). 

-k f Set the pre-emphasis coefficient tof (default value 0.95) . 

-w T Set the frame (window) duration to T ms in the case of equidistant frame acquisition 
(default value 10.0 ms) . 

-P Extract centroids (prototypes) from the segmented utterance. The segment information 
must be given in the label file. A single centroid is computed from all observation 
sequence corresponding to a label. This option reduces the algorithm into a template 
matcher . 

-H Extract centroids (prototypes) from the segmented utterance. The segment information 
must be given in the label file. Each label occurrence in the transcription has a unique 
centroid computed from the observation sequence. This option reduces the algorithm 
into a template matcher. 

-o Extract only one-third of the data required for the centroid computation for the -P and 
-H options. 

-L dir Specifies the directory in which the label files are stored. These label files represent 
the phonetic transcription along which the segmentation is conducted. (default: current 
directory) . 

-X ext Set the label input file name extension to ext (default lab). 

-S dir Set the directory to store the output label files to dir ( default: current directory). 

-E ext Set the output label file name extension to ext (default seg). 

-B dir Set the directory that contains the label files as provided by the broad phonetic class 
segmentation to dir and enable the usage of broad phonetic class segments. 
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-Y ext Set the label input file name extension of the broad phonetic class segmentation to 

ext. (default bpc). 

-T N Set the trace level to N (default: tracing disabled). One level of trace output is provided, 
consisting of the partial distances at each level and the trace back matrix N=1. 

-F fmt Set the audio file format to fmt for the input sampled speech data file (default AIFF). 
See also Section 6.1.3. 

6.11.3 lmplementation 

The tool SeqQuant uses level-building for accomplishing its task. Level-building is a dy
namic programming technique that tries to find a pre-determined number of non-overlapping 
segments by minimizing an overall distortion (see Section 4.3.1). Routine LevelBuild is a 
direct implementation of this algorithm. 

Minimum and maximum duration allowed for each label can be adapted to the broad 
phonetic class segmentation as provided by BroPhon. For this, routine AlignDurations is 
a straightforward implemention of Equations 4.14 and 4.15. 

For each label occurrence in the phonetic transcription a unique centroid is reserved. The 
actual computation for a given centroid is implemented by routine CalcCentroid. Each cen
troid is recomputed on-the-fly during the dynamic programming process each time a new intra
segment distortion has to be computed by invoking this routine (see routine CalcCepDist 
and Calcitakura). 

In addition, centroids can be calculated once by using the time annotation in the label 
file. Therefore, routine ConstUniqCentroids calculates a centroid for each label occurrence 
separately by cutting the label out of the observation sequence as specified in the label file 
and invoking CalcCentroid. On the other hand, routine ConstPooledCentroids calculates a 
centroid for each corresponding label in the transcription. Thus, all cut observation sequences 
for corresponding labels are brought together for calculating a 'pooled' centroid by invoking 
CalcCentroid. 

By default, 3 observation sequences are used for calculating the ltakura distortion: the 
sampled speech waveform is converted into a sequence of autocorrelation sequences (auCorr), 
a sequence of inverse LPC-filters (acVec) and a sequence of residual energies (sigma). The 
Itakura distortion is efliciently calculated using Equations 4.18 and 4.19. When using the 
cepstral distance, a LPC-derived cepstral vector sequence is calculated. When necessary, 
delta features are incorporated into this cepstral vector according to Equation 4.36. 

Internal representation of a transcription 

The internal representation of a transcription along which the levelbuilding is conducted 
as illustrated by Figure 6.1. It consists of several 'transcription' levels and each level is 
represented by a LabList record. Each of these holds a count of the number of labels in that 
level of the transcription, a pointer to an array of the labels themselves, and a pointer to the 
next level of the transcription. However, the facility of multiple levels in the transcription is 
not used. The whole transcription is represented by the type Transcription which is just a 
pointer to the first LabList record in the list. 

Each array of Label records is indexed from O and each element holds the label identifier 
labid, the start boundary location, the end boundary location, an optional score, duration 
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Figure 6.1: The main datastructures of SeqQuant 
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statistics (minimum, maximum and average), and an extra user pointer for specific usage. 
The variable numChunks is simply for internal memory management of the labels. The start 
and end locations are defined as absolute times in lOOns units. The user pointer is used for 
holding the centroid vector of that specific label (segment) . 

The label indentifier labid is a pointer to a hashed linked datastructure called NameCell . 
This hash linking is implemented by using the hash function as proposed by Kernighan and 
Ritchie [Kernigha 88]. Besides its efficiency, this hash linking mechanism also guarantees the 
maintainance of only one label reference throughout the program. 

Nevertheless, more than one occurrence of a label in a transcription can be present; they 
simply refer to the same NameCell record as linked in the hash table. NameCell consists of 
a label name string, two specialized pointer for integration with HTK tools (not shown in 
Figure 6.1) , two pointers user and user2 for specific usage, two auxiliary flags aux and aux2, 
and duration statistics (minimum, maximum and average) , and a pointer to the next item 
in the hash list. The aux-flags are used for holding the braad phonetic class types of labels. 
The user-pointer are used for holding intermediate or global (external reference) centroids of 
each label reference during the dynamic programming pass. 

As can be seen, there is a similarity between the member variables of Label and NameCell 
regarding the centroids and duration statistics. This is clone to emphasize the distinction 
between the duration statistics and centroids for the actual realization of a label (segment) 
at hand as it is the case for Label, and for a more global perspective as it is the case for 
NameCell. 
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6.12 Viterbi 

6.12.1 Function 

This tool is a general-purpose Viterbi recognizer with the possibility to generate N-best hy
potheses. It is an extended version of the HTK Basic Tool HVite (Version V 1.4A) in which 
a lattice N-best algorithm and a bigram with word categories is implemented. It will match a 
finite state network of HMMs against one or more parametrized speech files and output one 
or more segmented transcriptions ( output label files) in the format as described in Section 
6.1.l. 

Before actually invoking this tool, much prior work has to be done. All raw speech files 
have to be preprocessed in order to obtain parametrized speech files in the form of acoustic 
vectors (observation sequences). A particular front end has to be chosen for this reason by 
using the programs HCode from HTK[Young 93] or FrontEnd. Fully-trained HMMs have 
to acquired from a selected set of utterances, the training set . This computer time-consuming 
training process involves a proper design of the HMMs and proper usage of HTK utilities 
(see e.g. [Young 93],[Pauws 931). Also for the purpose of speech recognition, a pronunciation 
dictionary and language model (possibly with bigram probabilities) must be specified by 
means of a textual specification of a finite state network. 

When it comes to solely supervised speech segmentation, the finite state network is simply 
the sequence of HMMs corresponding to the transcription of the utterance. Also, the amount 
of preparation work is clearly lesser than it is documented here and Sections 6.12.3 and 6.12.4 
can be skipped by a first reading. 

6.12.2 Use 

Viterbi is invoked via the command line (or from a UNIX-shell script) 

Viterbi [options] hmmList netFile speechFiles ... 

This causes the given parametrized speech files to be matched against the finite state network 
of HMMs defined by netFile. This file contains the textual specification of the network (see 
Section 6.12.3) . The recognizer output is written in the form of HTK label files (see Section 
6.1.1) with the time alignment information whose path name is determined from the input 
speech file name and the -L and -X option described below. The list of speech files can be 
stored in a script file if required. 

The detailed operation of Vi ter bi is controlled by the following command line options. 
Many settings have to be optimized by a trial-and-error procedure. 

-N N Enables a lattice N-best algorithm that maintains the N hypotheses with the best 
scores. ( default: simple Viterbi decoding) 

-b fn Load bigram probabilities from the file fn. When the bigram consists of categories 
the -w option must be specified. 

-w Enable a bigram with word categories. 

-W f Set the fixed transition log probability within categories to f. Setting f to 0.0 means 
that word sequences within categories are considered to be a single entity (default 0.0). 
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-e f Set the tied-mixture pruning threshold tof. When all mixtures of all models are tied to 
create a full tied-mixture or semi-continuous system, the calculation of emission proba
bilities is treated as a special case. Only those mixture component probabilities which 
fall within f of the maximum mixture component probability are used in calculating 
the state emission probability ( default 20.0) . 

-d dir This specifies the directory to search for the HMM definition files corresponding to 
the labels used in the recognition network. The HMM definition files must be specified 
by means of syntax constructions rules. (see Section 4.3 including 4.5 of [Young 93] 
pp.21-28) . The tool GenMarkov generates correct HMM files that subsequently can 
be trained. 

-1 Set the transcription labels to start and end on frame centres. This is useful if Viterbi is 
used to provide segment boundaries for later training. By default, Viterbi places the 
start time of the label at the start of the first frame of the segment and the end time 
at the end of the last frame of the segment. 

-n Disable triphone-stripping of bigram names. This is necessary if bigram names con
tain either + or - symbols hut do not correspond to HTK context dependent names 
( triphones). 

-p f Set the fixed transition log probability ( word entrance penalty) to f. Typical value for 
word recognition is -15.0 (default 0.0). 

-s f Sets the grammar scale factor to real f. This factor post-multiplies either bigram log 
probabilities (or the - log(Nsucc(i)) factors). Typical value for word recognition with 
a bigram language model is 10.0 (default 1.0). 

-t f Enables beam searching with pruning threshold f . Each model is deactivated whose 
maximum log probability token falls more than f below the maximum for all mod
els. Typical values for this threshold are 30 for phone recognition and 150 for word 
recognition. Setting f to 0.0 disables the beam search pruning mechanism (default 0.0). 

-x ext Sets the extension to use for HMM definition files to ext . 

-F fmt Sets the parametrized speech format to fmt . Several base kind of acoustic vector 
types (such as LPC, FILBANK) can be expressed with a number of possible variants 
indicated by attaching a qualifier to the name of the base kind at the code fmt . Four 
such qualifiers are provided for adding delta features (....D), adding delta-square features 
(...A), adding energy coefficients (....E), and suppressing absolute energy coefficients (JJ) . 
(see Section 2.5 pp.11 and Section 3.1 pp.13-14 of [Young 93]) . 

-L dir Specifies the directory to store the output label files ( default: current directory). 
The conventions for naming these label files are as follows. The extension of the corre
sponding parametrized speech file (if any) is removed and the extension for output label 
files (default: ree) is appended. When the N-best -N option is set, more than one label 
file will be outputted and all label file extensions are preceded by a count representing 
the hypothesis ordering. 

-X ext Sets the output label file name extension to ext (default ree). 
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-S fn Enables the script file fn. In this file all test speech files are enumerated. 

-T N Sets the trace level to N ( default: tracing disabled) . Various levels of trace outputs are 
provided, each of which is enabled by a specific bit of the trace value set N. Many trace 
flags involves an inner look in the implementation issues of Viterbi. The meaning of 
these flags is as follows, where an octal base is used. 

0001 enables basic progress reporting. This consists of a line being printed as each 
speech file is processed followed by a line giving the average log probability per 
frame and the maximum number of PLRs (phone link records) generated. 

0002 dump the recognition network. 

0004 trace garbage collection. 

0010 show beam width. 

0020 show beam width. 

0040 show phone link records. 

0100 show the calculation of the emission probabilities. 

0200 show the recognition output . 

0400 print the network memory statistics. 

Example 

In order to illustrate the rather elaborated way of recognizing speech using word categories 
we present the following command line that will invoke Viterbi in which all HMMs will be 
retrieved from the directory hmm. A list of all HMMs is given in the file PhonList. The 
recognition results are stored in the directory Re sul ts and displayed according to the -T 
option. The beam search pruning treshold is 150.0, 'optimal' for phoneme-based recognition. 
The fixed transition probabilities is -15.0, 'optima!' for continuous speech recognition appli
cations. The recognition will be applied along the network as specified in the file Network 
(see Section 6.12.3) . Also, a word-categorized bigram as specified in the file Bigram will be 
used (see Section 6.12.4). The network file as well as the bigram file must be compatible. 
The option -w indicates that the language model is built up by word categories. In order to 
balance the bigram probabilities and the HMM probablitities, a grammar scale factor fixed 
at 10.0 is used. All parametrized speech files in the directory AcVec will be tested. These 
files contain filterbank analysis vectors with added delta, delta square, and energy features. 

Viterbi -b Bigram -w -s 10 . 0 -d hmm -L Results -t 150.0 -p -15.0 
-T 0200 -F FBANK_D_A_E PhonList Network AcVec/•.erb 

A much more simpler usage of Viterbi is demonstrated in Section 6.13. 

6.12.3 Network specification 

The finite state network consists of nodes that are a slot for an HMM or represent so-called 
'pseudo-models' necessary for guiding the recognition process . In particular, three types of 
nodes exist. 
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pseudo models Network nodes that have no container for holding an HMM instance, but 
represent specific network information necessary for guiding the recognition process 
(e.g. word and category boundaries). These nodes are denoted by the reserved words 
WD....BEGIN, WD..END, and WD_CAT. 

word-internal nodes Network nodes that represent HMM instances and are delimited by 
WD....BEGIN and WD..END nodes. 

word-external nodes Network nodes that are representants of HMM instances, but are no 
constituents of a composite word model. These nodes are useful when a whole (isolated) 
word recognition system must be built. Each word-external node keeps a huge HMM 
instance representing a whole word model. 

Connections between several nodes can be specified by a regular language notation. The 
whole network can be specified in a bottom-up procedure by firstly specifying single nodes, 
collecting them into sub-networks, and joining the sub-networks in a single network. 

The textual specification of a network is inputted using the following syntax construction 
rules in which characters delimited by double quotes are considered terminals (see also Section 
6.6 of [Young 93]) Each node in the network is represented by a model name, often this will 
correspond to an HMM. Additionally, each node holds an external name which is used when 
printing out the identity of a node. 

name 

model 

· char { char } 

name [ "ï." ( "ï." 1 name ) ] 

Here char represents any character except one of the following meta characters { } [ ] 
< > 1 = $ ( ) ; / *· 

The first name in a model definition is the internal name. There are three reserved 
internal model names : WD....BEGIN, WD..END, and WD_CAT. They represent the 'pseudo models' 
in the network. WD....BEGIN and WD..END nodes are used to delimit word boundaries for word 
recognition systems based on sub-word units (e.g. phoneme-based systems). The WD_CAT 
node name is reserved for describing the entrance of a category of word sequences. The 
second optional name is the external name. If the external name is not given then it is set by 
default to be the same ·as the internal name. If a second ï. symbol is written then the external 
name is set to NULL and will not be outputted by Viterbi (e.g. for silence words). 

Thus, WD....BEGINï.word represents a node (pseudo model) with a reserved internal name 
WD....BEGIN and external name word. Siï.ï. represents a node (HMM) with the internal name 
SI and a NULL external name. AA represents anode (HMM) in which the internal an external 
name are considered as the same. 

Network definitions may also contain variables 

variable "$"name 

Variables are identified by a leading $ character. They stand for sub-networks and must 
be defined by an expression before they appear in the right hand side of a rule. This means 
that recursion cannot occur. 

subnet varia bie "=" expr " ; " 
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An expr consists of a set of alternative sequences representing parallel branches of the 
network. 

expr sequence { " I" sequence } 
sequence = factor { factor } 

Each sequence is composed of a sequence of factors where a factor is either a model name, 
a variable representing some sub-network or a regular expression contained within various 
sart of brackets. 

factor "(" expr ")" 

"{" expr "}" 
"<" expr ">" 
"[" expr "]" 

"<<" expr ">>" 
model 
variable 

Ordinary parentheses ( ) denote simple factoring of expressions, curly braces { } denote 
zero or more repetitions of expressions (Kleene star operation) and angle brackets < > denote 
one or more repetitions of expressions (Kleene plus operation). Square brackets [ ] are 
used to enclose optional items. The double brackets « » are a special feature included for 
building context dependent loops (triphones, see Section 6.6 of [Young 93] pp.48-52). 

Finally, the complete finite network state network is defined by a list of sub-network 
definitions followed by a single expression within parentheses. 

network { subnet } " (" expr ")" 

C style comments may be placed anywhere in the text of the network definition. 

Network example 

The most sophisticated network that can be specified is by formulating a regular language 
model consisting of word categories. Each category is described by a regular expression of 
words. Each word is formulated- as a regular expression of HMM models (phonemes). This 
example defines a language in which each sentence is simply a sequence of verbs, determiners, 
nouns, and preposition delimited by silence (e.g the monkey takes the banana from the table). 
As it is shown for some transcriptions, words can be expressed by any regular expression of 
HMM models, representing distinct pronunciations of the same word. Also, word categories 
can be built up by more elaborated constructions representing whole phrases ( e.g. compound 
nouns, parenthetical remarks, verb phrases) . Other networks without word categories can be 
found in the HTK manual [Young 93]. 

$puts = WD_BEGIN¼puts 
$takes = WD_BEGIN¼takes 
$eats = WD_BEGIN¼eats 
$the = WD_BEGIN¼the 
$a = WD_BEGIN¼a 
$man = WD_BEGINi'.man 

P ( AH 1 uw 
T EY K S 
IY T S 
( TH I DH) 
AX 
M AE N 
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WD_END¼puts; 
WD_END¼takes; 
WD_END¼eats; 
WD_END¼the; 
WD_END¼a; 
WD _ENDi'.man; 



$monkey = wp_BEGINY.monkey MAO NX K IY WD_ENDY.monkey; 
$banana = WD_BEGIN¼banana B AX N (AE I AX) N ( AE 1 AX) WD_END¼banana; 
$car = WD_BEGIN¼car KAR WD_END¼car; 
$table = WD_BEGIN¼table T EY BEL WD_END¼table; 
$key = WD_BEGIN¼key K IY WD_END¼key; 
$from = WD_BEGIN¼from F R AO M WD_END¼from; 
$on = WD_BEGIN¼on AO N WD_END¼on; 
$sil = WD_BEGIN¼¼ SI WD_END¼¼; 

$VERS = WD_CAT¼VERS ( $puts 1 $takes 1 $eats ); 
$DET = WD_CAT¼DET ( $the 1 $a ); 
$PREF = WD_CAT¼PREP ( $from 1 $on); 
$NOUN = WD_CAT¼NOUN ( $man 1 $monkey 1 $banana 1 $car 1 $table 1 $key ); 
$S!L = WD_CAT¼SIL ( $sil ); 

( $S!L < $VERS 1 $DET 1 $NOUN 1 $PREF> $S!L) 

Now, Viterbi parses this network specification and builds a finite state recognition net
work from it. The recognition task is conducted along this network. 

6.12.4 Bigram specification 

Transitions between nodes in the network can be characterized by a bigram probability. When 
only word-external and/or composite word models (WD..END/WD..END pairs) are present in the 
network specification, bigrams can be specified between them. Whenever also categories are 
expressed in the network specification, only bigram probabilitites between categories (WD_CAT 
node) are allowed. 

The bigram probabilities are specified via a text file using the following format that simply 
defines a matrix structure 

l1 Pll P12 PIH 

l2 P21 P22 P2H 

lH PH2 PH2 · · · PHH 

where lh is the bigram name for the node. The bigram name for each composite word-model 
and word-external node is the external name, or if it is NULL the internal name is used. The 
quantity Pij denotes the conditional apriori probability of model (node) j followed by model 
i. I(f context-dependent models are being used (e.g. triphones) then, by default, the contexts 
are ignored when forming the bigram names. 

Bigram example 

A bigram file that specifies the transition probabilities between 5 distinct word categories 
determiner, preposition, noun, verb, and silence is as follows 

DET 0.05 0.05 0.80 0.05 0.05 
PREP 0.80 0.05 0.05 0.05 0.05 
NOUN 0.05 0.2 0.2 0.35 0.2 
VERS 0.4 0.3 0.05 0.05 0.2 
SIL 0.80 0.05 0.05 0.05 0.05 
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Obviously, the estimation of these probablities must be clone by resorting to a training 
text. A first impulse is to obtain the bigram probablities by a simple relative frequency 
approach and setting a floor probabilities for those pairs that are absent in the training text. 
However, more elaborate approaches exist [Pauws 93] . 

6.12.5 Implementation 

The main data structures used by Viterbi are the finite state network theNet with its nodes 
Node , the HMM definitions HMMDefs and the phone instances. Figure 6.2 shows a graphical 
representation of the way it is actually implemented in C. 

Viterbi is implemented using the Token Passing Paradigm that is applied along a finite 
state network [Young 93] . The network theNet is represented by a set of nodes with explicit 
pointers to all successor and all predecessor nodes . This is implemented by the arrays LinkSet 
that join nodes with their successor and predecessors. All nodes in the network can be 
visited one-by-one (in a linear list way) by traversing the pointer structure chain. Each node 
contains a single unused pointer member called user which can be used to attach application 
specific data structures and members for the internal name (modelName) and external name 
(extName) . The network contains a single entry node called ENTRY and a single exit node 
called EXIT. 

Once the finite state network has been built, a Phoneinstance structure is attached to 
each network node via the user member. The Phoneinstance also holds the identifier pi Type 
for the node type (word-internal, word-external, WD..BEGIN etc.) and the bigram index bigidx 
which points to the row or column of the bigram matrix (if any) for the node. This bigram 
matrix is maintained globally. For all nodes, except WD..BEGIN/WD...END and WD_CAT nodes, 
the attached Phoneinstance points to the corresponding HMM definition. The actual HMM 
definitions are stored as an HMM list in hlist. This structure contains an array of HMMEntry's 
where each entry holds a logica! HMM name lName, a physical HMM name pName and a 
pointer def to the corresponding HMM definition (see Section 6.5 of [Young 93] pp.43-47). 
The Phoneinstance contains the array *state of storage cells indexed by HMM state, each 
of which holds a token. A token represents an alignment path by the *link member and 
its probability logProb between the HMM system and the unknown utterance up to the 
current time frame. Every state holds a single token since the best path to the current input 
frame could end in any HMM state. The basic token passing paradigm algorithm simply 
propagates tokens from each state to every connecting state updating the probability and 
history information at each step. The algorithm is as follows 

InitModels; 
for (t-1;t<=T;t++){ 

Calculate_output_probs(); 

} 

StepModels(): /• ie propagate tokens within the models •/ 
CheckActive(); /• deactivate models with low prob tokens •/ 
NullEntryTokens(); /• put null token in all entry states •/ 
PropExitTokens(); /• copy best exit tokens into succ models •/ 
if (t<T) RecordDecisions(); 
else /• trace back to get optimal seq of models •/ 

0utputResul ts O ; 

This algorithm repeatedly propagates tokens through the network of HMM instances. 
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Figure 6.2: The main datastructures of Viterbi 
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First tokens are passed through each of the HMM instances (see StepModels in source code) 
and then between models according to the network links (see PropagateExi tîokens in source 
code). Each best token propagated from a distinct WD....END or word-external node is recorded in 
the form of a phone link record (PLR) (see RecordDecisions in source code). For this reason, 
a PLR has a container tok fora token. When the whole utterance has been matched, the last 
emitted best token is traced back to give the best match sequence (see OutputResults). 

When N-Best alternatives are generated, each token is accompanied by an ordered list of 
tokens •NBestToken denoting the alternative word predecessors of the current word. This list 
is constructed when entering a new word in PropagateExi tîokens and propagated until a 
distinct WD....END is reached. Now not only the best token is recorded in the form of a phone link 
record (PLR), hut also the tokens of the associated ordered token list (see RecordDecisions 
in source code) . During backtracking, the N-Best paths are traced back from the last emitted 
best token(s) to give the lattice N-Best match sequences (see OutputResults in source code). 

Calculation of emission probability 

Each HMM definition has extra information associated with it, stored in an Xlnfo record 
attached to the hook field of the HMMDef. This Xlnfo record has an array called bjot for 
holding the emission probabilities for each state of the model for the current observation 
vector. This allows the emission probabilities to be calculated just once regardless of how 
many instances there are for each model. 

Viterbi has two additional ways of computing emission probabilities for cases where 
the system is shared or fully-tied (semi-continuous). In order to reduce computation in 
HMM systems with parameter sharing, PreComp records are attached to shared Statelnfo 
and shared MixPDF records (see Section 7.2 of [Young 93] pp.65.71). When a probability is 
computed for time frame t, then the probability and time are stored in the PreComp record. 
Whenever an emission probability was already calculated for the current time, then that pre
stored value is used instead. For fully tied-mixture (semi-continuous) systems, and mixture 
probabilities for each independent data stream are pre-computed and stored in the global 
matrix tmProb. These are then used for calculating emission probabilities. If the threshold 
is set by the -c option, then all mixture probabilities which fall below the threshold of the 
maximum are ignored. 

Token propagation 

Between models token propagation proceeds in a number of stages. Tokens are first propa
gated between word-internal nodes, and then from the WD....END nodes to all external nodes, 
WD...BEGIN or WD_CAT nodes (if any). When tokens are entering WD_CAT nodes, these tokens are 
immediately propagated to the subsequent WD...BEGIN nodes. 

The (log) transition probabilities between any two connected word external models and/or 
composite word models is defined as 

where Mi and Mj are the word-external or word composite models, s is a grammar scale 
factor and p a fixed transition score ( word entrance penalty). 

If a bigram is used then 
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When composite models are used, bigram indices are always kept at the attached Phoneinstance 
records of the WD....BEGIN and WD..END nodes or word-external nodes. 

When no bigram is used then 

where Nsucc(i) is the number of successors to model Mi. For word-internal nodes the (log) 
transition probability is always - log[Nsucc(i)]. 

If a bigram language model is not used, computational savings in token propagation 
can be made when there are shared LinkSets in the network. This is implemented by 
allocating space for a token for each LinkSet in the array linkSetTokens and performing a 
two stage propagation operation( see PropExi tTokensLS in source code). If a bigram is used, 
the computational saving cannot be made and PropExi tTokensBG is used. 

When a N-Best ordered list is associated to a token, this list is left unchanged during 
word-internal token propagation. Only during propagation from all WD..END nodes to new 
WD....BEGIN (or WD..END) nodes the tokens are inserted in a new list. This insertion only occurs 
if the token belongs to the N-Best alternative tokens associated to the best token propagated 
from the new WD....BEGIN node. In the LinkSet case this list is created once for a LinkSet and 
propagated to the connected WD....BEGIN nodes (see PropExitTokensLS) whereas in the bigram 
case the list is constructed once for each WD....BEGIN node (see PropExitTokensBG). 

Beam Search 

For beam searching, Viterbi keeps a list of all active phone instances with HMMs attached in 
the global array active. Inter-model token propagation is then modified such that only the 
output tokens from active models whose scores lie within the beam, are passed to successor 
models. If the receiving model is inactive then it is activated. After each cycle, all active 
models are checked and any model containing no token within the beam is deactivated. 
Further, active lists for WD....BEGIN nodes (beginActive) and WD..END nodes (endActive) are 
maintained for composite word..:model propagation and a further list of active LinkSet tokens 
for the two-stage token propagation in LinkActive (when no bigram is used). 

Recording optima! path and boundaries 

All PLRs generated to record phone boundaries are chained in a linked list with head and 
tail stored in usedHs and usedîl, respectively. The fields lastplrt and lastplr in each 
Phoneinstance are used to record the last PLR generated for that instance in order to allow 
RecordDecisions to avoid generating duplicate PLRs. PLRs are only generated for WD..END 
nodes and word-external nodes. 

During generation of PLRs for N-Best alternatives, if a PLR is created for a token arriving 
at a node, then PLRs are also created for all alternative tokens in the ordered list associated 
with the best token (see RecordDecision). These PLRs are also inserted in the linked list 
(usedHd and usedîl) . 

Garbage Collection 

Garbage collection is performed whenever the number of PLRs generated since the last 
garbage collection exceeds the margin GCMARGINB. The PLRs attached to all active tokens 
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are traced back and marked as in use, the linked field of each PLR is used for this. Then all 
PLRs not marked are recovered by putting them back into the free list freeHd/freeîl (see 
GarbageCollectPLR). 

When N-Best PLRs are generated, all alternative tokens also have to be traced back and 
marked because they could be needed later for generating an alternative match sequence. At 
this moment, avoiding the undesired removal of N-Best PLRs is implemented by turning off 
the garbage collection. A recursive removal of only the correct PLRs was implemented, but 
this version is not completely error free because of some unrevealed constraints in the PLR 
data structure. 

Backtracking 

When all tokens have reached the end of the network (EXIT node), a back tracking procedure 
is started. Parallel with the token passing from word hypothesis to word hypothesis, partial 
sentence hypotheses are created. As stated, when a token leaves the last word of a partial 
sentence, then the corresponding score, a description of the last word and a backpointer to 
the PLR of the previous word in the partial sentence is stored. This backpointer registers the 
continuation of the best partial sentence, observed when the token entered the last word. So by 
backtracking through the backpointers of all preceding PLRs of the best scoring token reaching 
the end of the network, the entire corresponding best scoring sentence can be constructed (see 
OutputResults in source code). 

When the N-Best sentences have to be constructed, the backtracking has to use the back 
pointers generating the N-Best alternatives. Since for each PLR, the backpointers to the 
N-Best preceding PLRs (registering the continuation of the N-Best partial sentences observed 
when the best token entered the last word) and their score differences are known, the alterna
tives can be generated in an iterative way. When generating the best sentence, an ordered list 
of alternative PLR scores and back pointers is updated when better alternatives are observed 
along the alternatives of the PLRs in the best sentence. Once the best sentence is generated , 
the next candidate of this list will be the next best alternative and the corresponding PLR 
backpointer can be used to generate the next alternative. Again the ordered list is updated 
with observed better scoring alternatives of the PLRs along the next best sentence and corre
sponding PLR backpointers are stored. This process is repeated until the N-Best alternative 
sentences are generated. 
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6.13 Small Tutorial 

In order to illustrate the practical use of the tools, this section is devoted to a shell script 
that realizes the hierarchical approach. The tools are embedded in a C-shell script cut into 
pieces for didactic reasons. It depicts the fully automatic procedure for segmentation. This 
script can easily be adopted and subsequently adapted for specific needs. 

We assume that all preparation work regarding the transcription and labelling of speech 
bas already been done. Therefore, all speech audio files are stored in a directory called 
Speech and the corresponding transcription files in directory Label. The demonstration of 
the hierarchical approach is performed in a sequence of 7 steps and a concluding performance 
assessment step. 

l. BroPhon is invoked for obtaining the segmentation in broad phonetic classes for each 
sampled speech data file. It accomplishes its task iteratively while the maximum num
ber of iterations is fixed at 10. It takes the transcription of each speechFile from 
files present in the directory Label. The output label files are stored in the directory 
BPCResults for further processing. Also, it uses the file BPCMappingList that bas been 
created beforehand and that contains duration statistics for each phoneme-like unit 
and the mapping from phoneme to broad phonetic class. Many default settings of the 
options are in force. 

2. SeqQuant is invoked for the Sequence Constrained Vector Quantization step for each 
sampled speech data file . It takes the transcription of each speechFile from files 
present in the directory Label. It uses the file SCVQMappingList that has been created 
beforehand and that contains duration statistics for each phoneme-like unit and the 
mapping from phoneme to broad phonetic class. In contrast with the previous step, 
SCVQMappingList contains more restricted durations allowed for each phoneme-like 
unit. The broad phonetic class segmentation results are read in from the files in directory 
BPCResults. The output label files are stored in the directory SCVQResults for further 
processing. Many default settings of the options are in force. 

#!/bin/csh 
# UNIX C-Shell Script for Hierarchical Approach 
# Steffen Pauvs 

echo" 
echo" 

Il 

STEP 1 AND 2 .. . " 
echo" ... Broad Phonetic Class Segmentation " 
echo" .. . Sequence Constrained Vector Quantization 
foreach speechFile ( Speech/•.aiff) 

Il 

BroPhon -i 10 -L Label -S BPCResults BPCMappingList $speechFile 
SeqQuant -L Label -D SCVQMappingList -B BPCResults $speechFile 

end 

3. FrontEnd is invoked for converting each sampled speech data file into an observation 
sequence of filterbank vectors. Each analysis frame is explicitly Hamming-windowed. 
Each vector is augmented with delta, delta-square, and energy features. The result files 
are stored in the directory AcVec. Many default settings of the options are in force. 

echo " . .. . .. . .. . .. .. 11 
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echo" ... STEP 3 " 
echo " .. . Front End : Filterbank Analysis 
foreach speechFile ( Speech/•.aiff) 

set j s "'basename $speechFile'" 
set bases 'echo $j I cut -d. -f1' 
if ( -e AcVec/${base}.erb) then 

Il 

echo "Data File ${base}.erb already created" 
else 

echo "FrontEnd $speechFile --> AcVec/${base}.erb" 
FrontEnd -h -d -D -e $speechFile AcVec/${base}.erb 

endif 
end 

4. GenMarkov is invoked to generate two HMM definition files describing the topology 
and structure for each HMM. HMMDef is a 3-state model that is defined into 4 data 
streams. The first three data streams representing respectively instantaneous filterbank , 
delta, and delta square features are 16-dimensional each. The last stream for the energy 
features is only 3-dimensional. Each data stream is modelled by a 4-mixture Gaussian 
density. HMMBurst is a one-state model with the same configuration at the state. 

echo" Il 

echo " . . . STEP 4 ... " 
echo" . .. Generating HMM topology and structure 
GenHarkov -s 3 -d 4 16 16 16 3 -m 4 HMMDef 
GenHarkov -s 1 -d 4 16 16 16 3 -m 4 HMMBurst 

5. SegKMeans is invoked for a Segmental K-Means run for each HMM and its goal is 
to create initia! HMMs relying solely on the segmentation provided by SeqQuant as 
present in directory SCVQResul ts. The extension of these transcription files is seg. 

The tool requires parametrized speech data as present in directory AcVec . lt must be 
emphasized that this tool has to be invoked for each HMM modelling a phoneme-like 
unit . For obvious reasons, we only show four examples . HMM definition HMMDef is used 
for the phoneme-like units S and A, whereas the one-state model HMMBurst is especially 
for the bursts P2 and T2. The initialized HMMs are stored in a directory called hmm. skm. 
Many default settings of the options are in force . 

echo" 
echo" .. . STEP 5 .. . " 
echo " . .. Segmental K-Means Initialization " 
SegKMeans -X seg -L SCVQResults -1 S -o hmm.skm/S -T 1 HMMDef AcVec/•.erb 
SegKMeans -X seg -L SCVQResults -1 A -o hmm.skm/A -T 1 HMMDef AcVec/•.erb 
SegKMeans -X seg -L SCVQResults -1 P2 -o hmm.skm/P2 -T 1 HMMBurst AcVec/•.erb 
SegKMeans -X seg -L SCVQResults -1 T2 -o hmm.skm/T2 -T 1 HMMBurst AcVec/•.erb 

6. HERest is invoked three times to conclude the training phase by three Baum-Welch 
reestimations using only the transcription and parametrized speech. The bootstrapped 
set of models in hmm. skm are used and their updated version is written to hmm. ebw. Each 
intermediate set of HMMs is stored in a temporary directory called tmp. lt requires a 
file that lists all HMM models that must be trained. For that means, the file PhonList 

is generated using the UNIX-utilities aw.k, sort, and uniq. The transcription file for 
each parametrized speech file is loaded from the directory Label. Many default settings 
of the options are in force . 
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echo " .............. " 
echo " . . . STEP 6 . .. " 
echo" ... Baum Welch Reestimation 
set iter•3 
if ( ! -d tmp) mkdir tmp 

set srcdir•"hmm.skm" 
set tgtdir•"hmm.ebv" 

Il 

avk' { print S3} 'Label/•.lab I sort I uniq > PhonList 
vhile (Si<• Siter) 

echo "lteration Si of Baum-Welch Reestimation" 
HERest -d Ssrcdir -e Stgtdir -L Label -T 1 -v 0.0001 PhonList AcVec/•.erb 
G i++ 

end 

if (Si<• Siter) then 
rm -fr tmp 
mv hmm.2 tmp 
mkdir hmm.2 
set srcdir•"tmp" 

endif 

rm -fr tmp 

7. Viterbi is invoked in order to apply Viterbi decoding that is controlled by a very 
simple syntax network in a file called Network: it contains the transcription of the 
utterance. Hence, this network definition represents a recognition network in which all 
of the HMMs are placed in cascade, reducing the Viterbi decoding to a segmentation 
process. This file is generated simply by using the UNIX-utility awk. Also, the file 
PhonList is required representing a list of all HMM models that must be loaded by 
Viterbi. Each parameterized speech data file in directory AcVec is processed along its 
own network by using the fully-trained HMMs in directory hmm . ebw, its output being a 
set of transcriptions with their inferred boundary positions. The output label files are 
stored in the directory HMMResults. Many default settings of the options are in force. 

echo" 
echo" .. . STEP 7 . • . " 
echo" . . Automatic segmentation by Viterbi and HMMs 
foreach acvecFile ( AcVec/•.erb) 

end 

set j•"'basename SacvecFile'" 
set base•'echo Sj I cut -d . -fl' 
avk ' { print S3} 'Label/S{base}.lab I sort I uniq > PhonList 
avk 'BEGIN {print"("} { print S3} END {print")"}' Label/S{base}.lab > Netvork 
Viterbi -d hmm .ebv -L HMMResults -T 0200 PhonList Netvork SampaicVec/${base}.erb 

8. Assess is invoked in order to evaluate the accuracy. Both the automatically ob
tained boundaries provided by SeqQuant and Viterbi (as present in the directories 
SCVQResul ts and HMMResul ts) are compared with the manually positioned boundaries 
in directory Label. The output will be a table with global cumulative statistics about 
the accuracy. Moreover, a list of all HMM models PhonList is required . 

echo" 
echo" . .. STEP 8 . .. " 
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awk' { print $3} 'Label/•.lab I sort I uniq > PhonList 
echo" .. Segmentation performance SCVQ . . . " 
Assess -g 10 -L Label PhonList SCVQResults/•.seg 
echo" .. Segmentation performance HMMs .. " 
Assess -g 10 -L Label PhonList HMMResults/•.rec 
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Appendix A 
Phonological processes found 
the speech inventory 

• In 

As a result of a careful examination of the speech inventory several types of co-articulation 
such as assimilation has been detected. A relatively large set of utterances was suspected of 
having segments that were not labeled correctly in a phonetic sense. Special attention has to 
be paid to these phenomena in order to provide the automatic segmentation process with a 
transcription that correctly matches the acoustic realization. 

Before giving an overview of the specific co-articulation realizations found in the inventory, 
we give a short dèscription of some typical co-articulation processes[Jongenbur 91] 

Sy/lable structure related phoneme modifications Awkward sequences of only consonants or 
only vowels are avoided by elision and insertion of consonants: 

1. consonant cluster type such as degemination 

2. schwa-insertion after 1 and r 

3. r-elision 

4. glottal stop 

Assimilation Phonological features of segments are changed under the influence of their 
phonetic context. 

1. carry over assimilation of voice 

2. anticipatory assimilation of voice 

We have attempted to categorize all co-articulation realizations. Unfortunately, some 
factors that influence some sound adjustments were hard to highlight (in some case it was 
just a 'wrong' pronunciation), so some rather broad categories are maintained. 

• Schwa-insertion/elision. In Dutch a schwa can be inserted, for instance between a non
nasal sonorant and a nasal if both consonants belong to the same syllable. Schwas in 
unstressed syllables can be elided when they occur before liquids. 

• r-elision. In Dutch the elision of r is very common. Especially in the first ( unstressed) 
syllable of a word. 

• Glottal stops. In general, a glottal stop is inserted when a vowel is in hiatus position, 
for instance in a sequence of two (identical) vowels. 
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• Confusion voiced---+unvoiced. No attempt has been made to identify whether it was a 
carry-over or anticipating type or just a 'wrong' pronunciation. 

• Confusion unvoiced---+voiced. No attempt has been made to identify whether it was a 
carry-over or anticipating type or just a 'wrong' pronunciation. 

• Consonant clusters. In Dutch two adjacent identical consonants are reduced to one 
(degemination) . lt also holds for many sound-a-like consonants. 

• Artefacts (corruption). A corruption of the waveform has occurred during preparation 
of the file. 

schwa-insertion / elision 

index 
D1129 
D1130 
D223 
D250 
D570 
D662 
D692 
D706 
D859 
D903 
D989 
E60 

r-elision 

index 
D1230 
D380 
D468 
D648 
D903 
D928 
E35 

transcription 
S Tl T2 CC Kl K2 WE R -
VEEL WE R - Kl K2 
- Z CC Z C Z C 
- Z C Z CC Z C 
Kl K2 - N II C N 
Kl K2 ER - K C R 
Kl K2 ER - M C 
Kl K2 AR - N C 
S C S 00 S Ç 
Dl D2 0 R - Pl P2 C 
D1 D2 U Ç Kl K2 C N 
N E Tl T2 WE R - Kl K2 

transcription 
VCR Z A Kl K2 C 
Z Ell EI2 ER X ER Tl T2 
GEEL F IL T C R 
VCR J AA XC N 
D O R P C 

Kl K2 
co-articulation 
/@/-insertion 
/@/-insertion 
/@/-insertion 
/@/-insertion 
/@/-insertion 
/@/-insertion 
/@/-insertion 
/@/-insertion 
/ @/-elision 
/@/-insertion 
/@/-deletion 
/@/-insertion 

co-articulation 

Kl K2 Ell EI2 Kl K2 S Ell EI2 F C R S 
Tl T2 Uil UI2 NV Ell EI2 VCR 

/r/ elision 
/r/ elision 
/r/ elision 
/r/ elision 
/r/ elision 
/r/ elision 
/r/ elision 

G lot tal stop 

index transcription co-articulation 
D320 VEE - AUl AU2 Tl T2 00 glottal stop 
D339 NEE - 0 N D1 D2 C R glottal stop 
D374 B Ell EI2 - AU1 AU2 D1 D2 C R S vocal fry 
D397 Z Ell EI2 - 0 Pl P2 C R T glottal stop 
D398 Z Ell EI2 - 00 X T glottal stop 
D409 Z Ell EI2 - U F C N T glottal stop 
D410 V R Ell EI2 - UI1 UI2 Tl T2 glottal stop 
D414 B Ell EI2 - Y R C glottal stop 
D607 D II - UI1 UI2 Tl T2 glottal stop 
D865 Z 00 - UI1 UI2 Tl T2 glottal stop 
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Confusion voiced--+unvoiced 

index transcription 
.l F Y. .l Q C N 
J .l S Y. .l L C 
D1 D2 U SJ Y. .l.l Kl K2 
UI1 UI2 Tl T2 Y. EE IC 
W E I Y. .l L C 
Pl P2 .l Kl K2 Z .l Kl K2 C 
S Tl T2 0 F Z .l Kl K2 
W .l S Z .l Kl K2 
D1 D2 U SJ ZE L C F 
WEI Z .l Kl K2 C 
Gl G2 E Gl G2 .lU1 .lU2 Gl G2 C 
Y. C Y. .lU1 .lU2 Y. C 
Z C Z .lU1 .lU2 Z C 
Y. EE L Bl B2 EET C 
Z CC Z C Z C 
Y. C Y. E Y. C 
Y. EE .lU1 .lU2 Tl T2 00 
Y. C Y. EE Y. C 
ZCZEEZC 
Z EI1 EI2 0 Pl P2 C R T 
Y. CV EI1 EI2 Y. C 
Y.CY.IY.C 
Y. C J .l.l I C 
D1 D2 R CC Gl G2 M .lA K C 
ycvoyc 
Z E Z O Z C 
ZJ C ZJ O ZJ C 
Y. CV OE V C 
Z C Z OH Z C 
Z 00 00 L 00 XII 
V CV 00 Y. C 
Z C Z 00 Z C 
D1 D2 R CC Pl P2 A K1 K2 C 
Z E X S AA M C 
Gl G2 C Gl G2 CC Gl G2 
Gl G2 C Gl G2 U Gl G2 C 
Y. CC V CV C 

co-articulation 
/v/ unvoiced 
/v/ unvoiced 
/v/ unvoiced 
/v/ unvoiced 
/v/ unvoiced 
/ z/ unvoiced 
/ z/ unvoiced 
/ z/ unvoiced 
/z unvoiced 
/z unvoiced 
/ g/ unvoiced 
/v/ unvoiced 
/ z/ unvoiced 
/v/ unvoiced 
/ z/ unvoiced 
/v/ unvoiced 
/ v/ unvoiced 
/v/ unvoiced 
/ z/ unvoiced 
/z unvoiced 
/ v/ unvoiced 
/v unvoiced 
/v/ unvoiced 
/ g/ unvoiced 
/v/ unvoiced 
/ z/ unvoiced 
/ zj/ unvoiced 
/v/ unvoiced 
/ z/ unvoiced 
/ z/ unvoiced 
/v/ unvoiced 
/ z unvoiced 

D1112 
D1121 
D1123 
D1124 
D1125 
D1222 
D1223 
D1231 
D1233 
D1235 
D124 
D143 
D146 
D180 
D223 
D313 
D320 
D352 
D356 
D397 
D411 
D561 
D648 
D685 
D736 
D739 
D740 
D765 
D775 
D855 
D866 
D869 
D896 
D938 
D940 
D997 
Ell 
E35 
E37 
E37 
E66 
F227 

Tl T2 UI1 UI2 N Y. EI1 EI2 VCR 
Y. EI1 EI2 N Z C 

/ d/ unvoiced 
/ z/ unvoiced 
/ g/ unvoiced 
/ g/ unvoiced 
/ v/ unvoiced 
/v/ unvoiced 
/v/ unvoiced 
/ z/ unvoiced 
/ z/ unvoiced 
/ zj/ unvoiced 

V EI1 EI2 N Z C 
Z C Z. .l Z. C 
D1 D2 ZJ C D1 D2 ZJ CCD ZJ C 

Confusion unvoiced--+voiced 

index 
D288 
D406 
D763 
E39 
E40 
E50 

transcription 
D1 D2 U SJ D1 D2 EE Kl K2 C 
SJ C SJ EI1 EI2 SJ C 
SJ C SJ DE SJ C 
S C ~ OE S C 

S Tl T2 00 II~ EI1 EI2 NS 
Bl B2 0 ~ Bl B2 .lU1 .lU2 W 

co-articulation 
/sj/ voiced 
/sj/ voiced 
/sj/ voiced 
/s/ voiced 
/s/ voiced 
/s/ voiced 
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Consonant clusters 

index transcription 
Dl84 0 Pl P2 B1 B2 A Kl K2 C 
Dl240 Tl T2 II! ZJ URN AAL 
D277 Dl D2 R CC Gl G2 Dl D2 II 
D289 Uil UI2 Tl T2 Dl D2 AAI C 
D481 M AA Kl K2 Gl G2 00 L S 
D486 0 Pl P2 Gl G2 00 L S 
D671 I EE U Uil UI2 Kl K2 

L C R 

co-articulation 
/p/ elision 
/n/ elision 
unclear cluster / gd/ 
/t/ elision 
/ k/ elision 
/p/ elision 
degemination 

D896 Dl D2 R U Gl G2 Pl P2 A Kl K2 C / g/ elision 
D965 WAS SJ AA Kl K2 
D967 Dl D2 U SJ SJ AA Kl K2 
E30 Uil UI2 M H Uil UI2 Tl T2 C 
E31 Z WA M...Ji DES 
F481 M AA Gl G2 Kl K2 00 L S 
F620 HCHIIUC 

Artefact (corruption) 

index 
D214 
F633 

transcription 
Tl T2 CC Tl T2 C 
Tl T2 C Tl T2 II W Tl T2 C 

unclear cluster 
degemination 
/h/ elision 
unclear cluster /mn/ 
/ g/ elision 
/h/ elision 

co-articulation 
no /t/-closure present 
no /t/-closure present 
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