

LPC-based diphone synthesis for the PolyGlot text-to-speech
system
Citation for published version (APA):
Kaufholz, P. A. P., & Vogten, L. L. M. (1994). LPC-based diphone synthesis for the PolyGlot text-to-speech
system. (IPO-Rapport; Vol. 1003). Instituut voor Perceptie Onderzoek (IPO).

Document status and date:
Published: 12/09/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/96d958f9-9fbb-4944-b3fa-91ad4764d39f

lnstitute tor Perception Research
P.O. Box 513 - 5600 MB Eindhoven

Rapport no. 1003

PK/pk 94/04
12.09.1994

LPC-based diphone synthesis tor
the PolyGlot text-to-speech system

Paul A.P. Kaufholz
Leo L.M. Vogten

LPC-based diphone synthesis for the PolyGlot
text-to-speech system

Paul A.P. Kaufholz & Leo L.M. Vogten

September 1994

Contents:

0 Introduction 1

1 From text to speech 1

2 Synthesis in the PolyGlot TTS system 3
2.1 Synthesis variants and pre-processing 3

2.2 Functions for synthesis 5

3 LPC diphone synthesis ... 6
3.1 The diphone data base 7

3.2 Diphone parameter adjustments 8

3.3 LPC filtering 9

3.4 Functions for LPC diphone synthesis 11

4 The stand-alone system 13
4.1 Differences between the PolyGlot module and the stand-alone system 13

4.2 Rules and compilation 14

4.3 Extra functions for the stand-alone system 14

Synthesis Pre-processing: 14

5 Conversion of VAX diphone format to PC format 15

References 17

Appendix A: Index to functions 19

Appendix B: KUN, IPO and SAM-PA phoneme notations 20

Appendix C: A short user's guide ... 22

Appendix D: Functional diagrams 24

O lntroduction
In the Netherlands two systems for speech synthesis are operational: the KUN allophone syn
thesis (Loman, Kerkhoff, Boves, 1989; Loman, Boves, 1993) and the IPO diphone synthesis
(Elsendoorn, 't Hart, 1982; van Rijnsoever, 1988). Allophone synthesis is applied in the Poly
Glot text-to-speech (TTS) system, which currently incorporates the most sophisticated linguis
tic analysis for Dutch, whereas diphone synthesis results in better speech than allophone
synthesis with respect to acoustic signal processing.

In order to combine the strong aspects of both systems a project has been defined by SPIN
ASSP to integrate diphone synthesis into the PolyGlot text to speech system on a PC with a
DSP board. The project has been worked on at IPO from july 1 until december 31 1993 by Rob
Roddeman, using some existing software modules from Lex Elich, Nijmegen. After the end of
the project the software has been completed and documented by Paul Kaufholz and Leo
Vogten from IPO.

This report is two-folded. First, it describes the theoretica! background and algorithms of LPC
diphone synthesis within the context of literature on TTS conversion. Second, it is meant as
software documentation of the diphone synthesis module in the PolyGlot TTS system. For
both purposes functional diagrams are used to define and illustrate the different modules in the
system. The syntax of the diagrams is a variant on the functional diagrams from the OMT
(Object Modelling Technique) method by Rumbaugh et. al. (1991). A brief description is given
in appendix D. It must be emphasized that the diphone synthesis module has not been designed
using any software engineering method but is only documented post hoc using functional dia
grams based on existing source code from different authors.

Sections 2, 3 and 4 end with a description of all relevant c-functions. All function descriptions
follow the next ' blueprint '. The process name refers to the functional diagram. A process is
implemented by the successive functions which can be found in the mentioned source file. The
module name indicates what functional diagram the following processes refer to.

Module:

process: Description.

functionl [source-file]:
Description.

function2 [source-file]:
Description.

An index to all functions is supplied in appendix A.

1 From text to speech
Text to speech conversion can be modelled as a linear sequence of processes. In most current
TTS systems the process can be divided in a linguistic analysis part and a speech generation
part, each of which consists of other processes (e.g: van Leeuwen & te Lindert, 1993; Carlson
& Granström, 1976). The linguistic analysis part determines a number of linguistic structures,
the Phonemes and Prosody data store, which are used to generate the speech signal (figure 1).
The major data store (see appendix D) consists of the following information streams: phoneme
string, word accents, sentence accents and intonational phrasing.

The linguistic analysis part can roughly be divided in three modules. First, the input text is
parsed into separate words and sentences. Second, a phonetic transcription, the word accent

and the syllabic structure is determined, either using a lexicon (Lammens, 1993), or by amor
phologic analysis (Heemskerk, 1993; Nunn et.al., 1993) or by a set of grapheme to phoneme
rules (Kerkhoff et. al., 1984). Third, sentence accents and intonational phrasing for each sen
tence are determined by a syntactic and prosodie analysis (Dirksen & Quene, 1992). The four
mentioned minor information streams of Phonemes and Prosody are used in the speech gener
ation part.

ASCII Text

Phonemes and
Prosody

Speech

Text ro Speech

Figure 1. Text to Speech conversion. The major data store Phonemes and Prosody is determined by module
Linguistic Analysis (not in this report). Module Phonemes to Speech converts the informationfrom this data
store to speech.

The speech generation part can be seen as a phonemes to speech system. The input text in this
case consists of the phonetic transcription, together with the mentioned prosodie information.
Figure 2 gives a schematic phonemes to speech system. The synthesis module calculates the
final speech signal. Which synthesis method is used, e.g.: diphone- or allophone synthesis, is
independent from the 'Duration', 'Intonation' - and 'Pitch' processes. The linguistic input has
to be converted to a concrete duration for each phoneme in the phoneme string and in pitch
values as a function of time. The duration can be determined in the 'Duration' process by
means of a set of rules (van Coile, 1987). The process 'Intonation' determines the declination
and the intonation patterns used for the word- and sentence accents (Terken, 1993). The output
of Intonation is a specification of the intonation contour from which concrete pitch values as a
function of time are calculated in process 'Pitch'.

2

Phonemes to Speech

speech wave

Figure 2. Phonemes to Speech conversion. From the linguistic input streams the phoneme duration, pitch as a
function of time and the intonation specification are determined by the processes Duration, Pitch and
lntonation. These streams are the input to the module Synthesis Variants where different synthesis methods can
be chosen.

2 Synthesis in the PolyGlot TTS system
The PolyGlot TTS system covers the whole sequence from text to speech for Dutch and can, in
principle, also be divided in a linguistic analysis and a speech generation part. lt contains an
advanced linguistic analysis which presently gives the best analytic results for a Dutch TTS
system. The synthesis is based on allophone synthesis (Loman, Boves, 1993). However,
diphone synthesis often results in better speech quality. Therefore, the LPC-based IPO diphone
synthesis has been implemented into the PolyGlot TTS system as an altemative to the allophone
synthesis. The diphone synthesis module is also implemented in a stand-alone TTS program,
'dsn', where the linguistic analysis, the duration and intonation modules are limited, using only
a small set of simple rules. The program allows a direct comparison between the LPC-diphone
synthesis and allophone synthesis in a small TTS-system. For more details, see section 4.

2.1 Synthesis variants and pre-processing

In figure 3 the synthesis is shown. The relevant input consists of the phoneme string, the
phoneme durations and the pitch as a function of time. In the current system both diphone and
allophone synthesis can be chosen. The output of both methods is a digital speech signa! which
can be sent to the DA-converter and/or to a speech output file. For the DA-conversion (DAC)
and the time consuming calculations in the synthesis part in the PolyGlot system a
Loughborough DSP board is used.

3

Synthesis Variants

sound file acoustic signal

Figure 3. Synthesis Variants. The three input streams can serve both the diphone and the allophone synthesis
modules (Allophone Synthesis not in this report). Before the Diphone Synthesis module is cal/ed some
modi.fications to the input streams take place in module Synthesis Pre-processing. Thefinal speech wave can
be written toa speech file or directly transformed to an acoustic signa/ by the DA-converter.

The phoneme string, duration- and intonation information as a result of the linguistic analysis
in the PolyGlot system are not suitable for the diphone synthesis module as such. Figure 4
illustrates which adjustments have to be made to the input streams. The phonetic transcription
contains prosodie markers, all with a duration of O seconds, which are irrelevant for the
synthesis. Also silences at the start and at the end of the text, necessary for the diphone
synthesis, are missing. The process 'prepare' takes care of the addition of the silences, the
deletion of the prosodie markers and the deletion of zero phoneme durations.

The phoneme string is transcribed into KUN phoneme symbols as used in the PolyGlot system,
but must be converted to the IPO phoneme symbols (appendix B). Combinations of two KUN
phonemes, each with its own duration, are sometimes translated to a single IPO symbol. In this
case the phoneme duration of the new IPO phoneme has to be adjusted to the sum of the two
KUN phoneme durations. Next, the IPO phoneme string can be converted to a diphone string.
Now, all information streams are suitable for the diphone synthesis module. The functions for
the different processes of figure 4 are described in section 2.2.

4

Kun-> IPO
phonemes

IPO Phonemes ->
Diphones

Synthesis Pre-processing

Figure 4. Synthesis Pre-processing. The phoneme string is adjusted and translated by procedures Prepare,
KUN-> /PO phonemes and /PO Phonemes to Diphones toa diphone string which can be used in the Diphone
Synthesis module. The phoneme durations are updated according/y.

2.2 Functions tor synthesis

Synthesis Variants:

inputs: Five input streams are used, three major data stores and two options, defined and deter
mines in the PolyGlot main program must be accessible to the diphone synthesis module. For
each input stream the interface to the main program is given:

Options 'synthesis type' and 'output type' are set in main [dutch.c]
The major data stores, phoneme string, duration and pitches, are retrieved in
synthesize_contour [parsyn.c]

File Out: Calculated sound samples are saved into a speech data file of the so called Wendy
format. The raw data in 2 byte integers is preceded by a header of 128 4 byte integers with at
position 125 the sample rate and at position 126 the number of 2 byte samples.

init_phonlevel [pho_modu.c]:
Opens and initializes the speech output file.

close_phonlevel [pho_modu.c]:

5

Updates and doses the speech output file.

synth_diph [dip.c]:
Writes speech samples of one diphone to the file.

DAC: Converts sound data to an acoustic speech signal. A Loughborough Digital Signal Proc
essor board DSP32C is used to perform this task. Existing DSP software (putsamp.o and intr.o)
is used for the low-level operations. The interface from the PC host computer to the DSP is
done in the source module 'dsyn.c'. It has to be mentioned that the main program for the LPC
diphone synthesis is also performed on the DSP-board using the source in module 'dip.c' (see
section 3).

Synthesis Pre-processing:

Prepare: Removes prosodie markers in the phoneme string and adjusts the duration accord
ingly.

ds_alf [ds_alf.c]:
The main program for diphone synthesis. For this process it adjusts the pho
neme durations.

prepare_start / prepare_stop [ds_alf.c]:
Opens/closes the diphone data-base (see section 3) and initialises/closes the
DSP board.

rem_accents [ds_alf.c]:
Removes prosodie markers.

KUN-> IPO phonemes: Translation of KUN-formatted phoneme string to IPO format by
rules.

make_ipoJon [ds_alf.c]:
Rules for translation implemented in source code. This function could be
replaced by rules implemented according to a rule formalism and compiled by a
rule compiler.

IPO phonemes -> diphones: Translation of IPO formatted phoneme string to an IPO diphone
string.

make_diphones [ds_alf.c]:
Translation module. Since this is a linear straightforward procedure no rule set
is used.

Diphone Synthesis:

read_records [ds_alf.c]:
Retrieves diphones from the diphone database and adjusts length and pitch for
each frame. Adjusted diphones are synthesized (see section 3).

3 LPC diphone synthesis
Each diphone of the LPC diphone database consists of parametrized frames, each of which is
the result of a 10th order LPC-analysis where one frame represents a quasi-stationary speech
segment of 10 ms obtained using an analysis window of 25 ms. Each frame is described by 13
parameters: the pitch, the voiced/unvoiced information, the gain and five pairs of filter param
eters, defining five spectra} resonances (van Rijnsoever, 1988).

6

For the synthesis of a diphone all diphone parameters must be completely specified. The pre
pared diphones are held in a diphone data base from which the main parameters for each
diphone can be retrieved. Next, the parameter setting must match the intended phoneme dura
tion and pitch. Finally, the gain of two subsequent diphones is interpolated (figure 6). Because
some procedures need information about the following diphone, always two diphones are
available during the adjustments: the current diphone and the next diphone. Figure 5 illustrates
the terminology used in this section.

smooth interval
current diphone next diphone

one frame

first phoneme part second phoneme part \ "~~~,
phoneme boundary

Figure 5. An example diphone concatenation. One diphone consists of the second part of a phoneme followed
by the first part of the next phoneme. The phoneme and diphone boundaries are indicated. The smooth interval
covers the frames relevant for gain smoothing from one diphone to the other.

3.1 The diphone data base

A diphone is a short speech segment containing the transition between one phoneme and
another, e.g. for vowels starting in the quasi stationary part of the first phoneme and ending at
the quasi stationary part of the second phoneme. Using diphones as building blocks instead of
allophones overcomes the problem of specifying the complicated and perceptually important
transitions between two phonemes. Concatenation of diphones implies the easier task of inter
polating two quasi stationary parts of the same phoneme. Theoretically there exists one
diphone for each combination of two phonemes. For Dutch this would be 1600 diphones for 40
phonemes. However, in practice the number of diphones is smaller since some combinations of
phonemes never occur.

Each diphone consists of a number of frames preceded by a header containing general infor
mation about the frames. Each frame contains the necessary filter parameters.

Header:
* name of the diphone
* default frame duration in samples
* duration of the first phoneme part in samples per frame
* duration of the second phoneme part in samples per frame
* number of frames of the first phoneme part
* total number of frames
* frame number where gain smoothing ends
* frame number where gain smoothing starts

Frame:
* pitch
* gain
* voiced / unvoiced
* pre-emphasis (fixed, -0.9)

7

* 5 pairs of filter parameters

The diphones are synthesized one by one. Before synthesizing, several parameters have to be
adjusted, but first, the diphone has to be retrieved from the diphone data-base. In this imple
mentation for the PolyGlot system all diphones are stored in one binary file. For more informa
tion on the precise format, see section 6. For fast access, the diphones are indexed by a hash
function .

3.2 Diphone parameter adjustments

After the information about the current and the next diphone is read from the diphone data
base, the information on duration and pitch has to be mapped to diphone parameters and the
gains of two adjacent diphones have to be smoothed (figure 6) .

Phoneme duration to frame duration
The minor data store duration contains a duration in milli seconds for each phoneme. However,
the original text to be synthesized is expressed as a string of diphones. Every phoneme is con
structed by the second phoneme part of the current diphone and the first phoneme part of the
next diphone. Each phoneme part consists of a number of frames each of equal length. The
duration is distributed over the frames of equal length of both phoneme parts. Thus, the dura
tion is mapped to the number of samples per frame, which is the same for both phoneme parts.

The number of samples per frame (S) , is determined by the total number of frames F and the
given duration of a phoneme D [ms], where Fis the sum of the number of frames of both pho
neme parts, Fr and F1. Fora given total duration of D ms fora phoneme, the number of sam-

ples per frame for both phoneme parts is:

D · f s
S=

F

where f s is the sample frequency. This value is stored in the header of the corresponding

diphones. For the first and the last phoneme, Fr and F1 are zero respectively.

Pitch

(EQ 1)

The pitch values as a function of time, pitch(t), have to be mapped to the pitch parameters of
the individual frames . During one LPC-frame the pitch is defined to be constant. Now, fora
particular frame the pitch parameter is pitch(t5), where t5 is the starting time of this frame.

Since the frame duration of every frame has been set, the exact starting time t5 can be calcu

lated.

All frames are synthesised one after the other, therefore a time index is used to keep track of
the total time of the already synthesised frames resulting in the starting time of the current
frame . Because all frames within one diphone part are of equal length the increment of the time
index is constant during one phoneme part of a diphone and can be calculated in advance .
Hence, the increment value of the time index is updated only at the start of a new phoneme
part.

Gain smoothing
A diphone is cut from a longer segment of real speech. Different diphones stem from different
speech segments. Therefore, the corresponding phoneme parts of two adjacent diphones also
stem from different speech segments. Hence, in genera! there occur differences between the
amplitude and spectra! shape of the two quasi-stationary parts that have to be concatenated.
Gain smoothing of the frames near the diphone boundaries compensates for different ampli
tudes. No compensation for spectra! difference as a result of different filter parameters is

8

implemented in the PolyGlot system. lf the difference between the parameter sets is signifi
cant, the imposed difference in spectra! energy can still result in a perceptually different ampli
tude after gain smoothing. An interpolation of the formant tracks, parametrized in terms of the
filter parameters, would be necessary.

For gain smoothing in the PolyGlot system the start frame of the first diphone and the end
frame of the second diphone are linearly interpolated. These frames are retrieved from the
diphone 's header information. The gain values of the frame prior to the start frame and the one
after the end frame are used as edges. A simple linear function can be retrieved to find the gain
values of the intermediate frames. The original gain values are not used.

Gain smoothing is only desirable for voiced phonemes. For unvoiced phoneme parts the start
frame or end frame in the diphone's header is simply set to frame number last+ 1 or O to prevent
gain smoothing.

diphone string

diphone
data-base

Retrieve Diphone

Frame Duration

pnch(II ___ ..,

Gain Smoothing

speech wave

Diphone Synthes1s

Figure 6. Diphone Synthesis. The diphones in the diphone string are retrieved one by one from the diphone
data-base. In eachframe duration, pitch and gain are adjusted by the procedures Frame Duration, Frame
Pitch and Gain Smoothing. Then module LPC Filtering calculates a speech wave fora diphone.

3.3 LPC filtering

The implemented LPC-resynthesis is based on the source-filter model (Marke! & Gray, 1976).
Five second order filters are cascaded, each representing a formant filter specified by one so
called p, q parameter pair. The cascade is preceded by a first order de-emphasis filter that com
pensates the pre-emphasis from the radiation at the lips resulting in a spectra! tilt of +6 dB/

9

octave, specified by a constant parameter pl=0.9 (Vogten, 1983). The filter is realized for ease
as a second order filter with a q parameter of zero (figure 7). Pitch, voiced/unvoiced informa
tion and gain determine the source signal.

The synthesis model differs from the one used for the allophone synthesis in the PolyGlot TTS
system. In allophone synthesis the formant tracks must be calculated in detail, including fea
tures like burst onsets in consonants and nasality, whereas in diphone synthesis these effects
are implicit. The synthesis model used for allophone synthesis (Boves et. al., 1987), which is a
variant of the Klatt synthesizer (Klatt, 1980), is therefore more complex and includes anti res
onances to model, for example, nasality.

,--··· ·· ·-· ······· ·w~r~~ .. --- .. ,
, '

Gain

... •·······

- -- - - -· ···· ·- ··-- •···-·-·· ···· -·· filt~r ····- -·· / --- -- - - -- - -- -. . . ____ .-----------------

pS. QS) ---- ---speech

sound

', pre-emphas1s .
',tlst order) __ ____ _________ ____ __ cascade 2nd orderlllters ___ ____ ____ ____ __ /

Figure 7. Source-filter model of LPC-synthesis. The source determines the excitation to the filter sequence,
which is different for voiced and unvoiced frames. The filter sequence, consisting of a 1 st order de-emphasis
filter followed by five 2nd order filters, determines the final sample values. The inset rep resems one 2nd order
filter containing two internal states, sn-J and sn_2, and is specified by a p, q parameter pair.

After all parameters of the individual frames are adjusted, the speech wave can be calculated.
The input to this sequence is a pulse determined by the procedure 'Determine Excitation'. The
resulting output is one speech sample. Internally every formant filter has two internal state
values and one filter output, which is shown in the inset.

The filters are reset to zero only at the start of a synthesis procedure. When a new diphone is
synthesized, the filter coefficients, or p, q parameters, of the first frame are passed to the filters .
The procedure 'Calculate Samples' determines the next input to the first filter and calculates the
next output sample by a one step propagation of the input through the cascade of filters, until
all samples for the current frame are calculated. Next, a new frame is going to be synthesized
and the 'Calculate Samples' procedure orders 'Update Filters' to pass the filter coefficients of
the next frame to the filters, where after the sequence of sample calculation just continues
(figure 8).

For every sample the input to the filters is determined by 'Deterrnine Excitation'. The excitation
is different for a voiced or an unvoiced frame. For voiced frames mono-pulse excitations are
used, that is, a Dirac-pulse with an amplitude corresponding to the gain of the particular frame
is used as an excitation at the start of every pitch period within the frame. Within a pitch period
the remaining input to the filters is zero. Unvoiced frames are excited by a continuous stream
of gaussian random noise pulses, which stem from the noise generator 'noise'. The current

10

synthesis is 'frame synchronous', which means that the filter parameters are updated every
frame, independant of the excitation pulses.

currenl d. hone
noise

...1!!!!!!... ___ _,
pitch
vluv
gain

frame length

____ next sampfe

'

Calculate
Samples

, new frame? -------------
speech wave

Determine
Excitation

Update
Filters

LPC Finering

Figure 8. fig 8: LPC Filtering. Calculate Samples calculates the speech wave frame by frame. The filter
parameters are updated at the start of every frame. Determine Excitation presents an input to the synthesis
filter, which is mono-putse excitation for voiced frames and a sequence of gaussian random pulses, that stem
/rom 'noise ', for unvoiced frames.

An alternative could be a 'pitch synchronous' synthesis where the filter parameters are updated
every pitch period with interpolated filter parameters, obtained by the interpolation of the filter
parameters of two adjacent frames proportional to the distance of the pitch period to the frame
boundaries. Pitch synchronous synthesis might give slightly better results, especially in cases
where the framelenght is relatively long compared with the pitch period.

In the frame synchronous synthesis a pitch period can cross a frame boundary. Calculation of
samples continues until the end of the pitch period, then the parameters of the next frame
determine the excitation of the following pitch period. However, at the immediate start of a new
frame the filter parameters are passed to the filters for both voiced and unvoiced frames. One
could choose to finish the current pitch period with the parameter setting of the first frame,
however, in practice no significant difference will be perceived.

3.4 Functions for LPC diphone synthesis

Diphone Synthesis:

Retrieve Diphone: Retrieves a selected diphone from the diphone data base.

dhash [ds_alf.c]:
Calculates the hash value for a specific diphone, indicating the starting position
for diphone search in the diphone data-base.

look_up [ds_alf.c]:
Positions the file pointer in the diphone data base file according to the hash
value, searches the correct diphone from this position and retrieves its parame
ters.

Frame Duration: Mapping of phoneme duration to frame duration.

11

fil_dur [ds_alf.c]:
The frame duration is determined according to the phoneme duration. The dura
tion of a phoneme is distributed over the corresponding frames of the second
and first phoneme parts which are of equal length.

Frame Pitch: Mapping of the pitch stream to individual frame pitch parameters.

adjust_pitch [ds_alf.c]:
The corresponding pitch in the input array for the pitch parameter of every
frame in a diphone is determined by a pointer that keeps track of the starting
time of every frame.

Gain Smoothing: Smoothing of the gain parameters of frames near a diphone border to cor
rect for amplitude differences.

synth_diph [ds_alf.c]:
Here, the smoothing algorithm, see smooth, is called. From this function the
completed diphone is passed to the LPC filtering module.

smooth [ds_alf.c]:
Linear smoothing of gain for two phoneme parts. The start and end frame num
bers for smoothing are retrieved from the diphone 's headers.

LPC Filtering:

Calculate Samples: Main procedure for calculation of the speech wave for one diphone.
Includes filtering, based on the source-filter model, and initialization of filters.

synth_diphone [dip.c]:
Main loop for synthesizing a diphone. Checks for update, determines new exci
tation.

Jormants [dip.c] :
Calculates each sample value based on a cascade of a first order de-emphasis
and five 2nd order formant filters.

init_filters [dip.c]:
Initializes the internal states of the filter cascade to zero. Uses init_hfilters and
init_lfilters. This function is called by an external procedure at the beginning of
a synthesize sequence, hence, before the first diphone is synthesized.

Determine Excitation: Determines excitation to the filter sequence. For voiced frames this is
one pulse every pitch period, for unvoiced frames a gaussian random pulse sequence.

synth_diphone [dip.c]:
Type and timing of excitations are determined here. For unvoiced frames the
random pulses are retrieved from the function noise.

noise [dip.c]:
Fetches a gaussian random noise sample by random choosing one out of the
1024 values in the noise array prepared in prepare_noise.

Update Filters: Resets the filter parameters with the p, q values of the current frame. To keep
a continuous signal the internal states and outputs of the individual filters are not reset.

parcoe_cascade [dip.c]:
Reads the p, q parameters of the next frame to the corresponding filter parame
ters.

12

Noise: Supplies gaussian random noise samples.

prepare_noise [dip.c]:
Prepares an array of 1024 gaussian random noise samples.

gran [dip.c]:
Returns one gaussian random noise sample.

4 The stand-alone system
The stand-alone program, 'dsn', a small TTS system based on LPC diphone synthesis is meant
as a research tool. The core synthesis module can be tested in isolation, instead of being a part
of a large and complex TTS system. lts main goal is not to generate high quality speech but to
test or compare the synthesis modules. For this purpose several options have been added to the
program. Users can switch off duration and intonation modules to generate a sole diphone con
catenation, place accents in the input string themselves or use diphone names as input instead
of KUN or IPO phoneme symbols. However, by default the systems incorporates a complete
but simple TTS system. The linguistic analysis resulting in the essential input streams, pho
neme string, phoneme durations and pitch(t), is realized by a set of simple mies. The phoneme
durations are calculated by another set of mies, while the intonation, consisting only of a decli
nation, is realised in c-code.

The various program options will be explained in appendix C. Other differences and a brief
description of the mie compiler is given below.

4.1 Differences between the PolyGlot module and the stand-alone
system

The stand-alone system, 'dsn', differs from the diphone synthesis module of the PolyGlot sys
tem in the functionality they support. The PolyGlot module only synthesises the input informa
tion streams whereas the stand-alone system also takes care of the invocation of mie sets to
achieve the necessary information, and of the interpretation of program options.

The differences are consequently found in the Synthesis Pre-processing module. That is, the
two entry functions, ds_a/f() in case of the PolyGlot module and main() in case of' dsn', differ
and some new functions are added to 'dsn' .

First, the command-line arguments are read and interpreted by the function arguments(). Sec
ond, the linguistic analysis by mies has to be invoked. This is done by the interface function
convertor(). This function calls three mie sets depending on its argument: the grapheme to
phoneme (G->P) conversion, a small mie set to ad just the result of the G-> P conversion, and
the transformation of KUN phoneme to IPO phoneme symbols. The latter one could also be
used in the PolyGlot module to replace the conversion in c-code. The result of a mie set is
always returned in a text array. The mie sets are compiled to c-code by a special mie compiler.
More about the mie compiler can be read in section 4.2. Third, simple code in the PolyGlot
module 's entry function ds_a/f() is replaced here by separate functions. Function adjust_dur()
adds two silences to the phoneme string and readJr _dura() adjusts the durations after the
addition of silences. Fourth, duration and intonation are determined. The phoneme duration is
determined by another mie set, whereas the intonation, and finally the pitch as a function of
time, is calculated in c-code. The entry functions to the procedures are dura_into_rules() and
pitch_rules() respectively. The intonation is restricted to the calculation of only a declination.

13

4.2 Rules and compilation

In the stand-alone system four rule sets are used. Three are invoked by the function convertor
and one, the duration rule set, by dura_into_rules() . A rule set is specified in the format
described by Kerkhoff & Wester (1987). A rule set is compiled by the rule compiler
'flowc.exe ' . This program takes a file <name>.dat as input and generates two c-functions
depending on the type of rules: fone_ <name>() in case of phonological substitution rules (e.g.
grapheme to phoneme conversion), andfono_ <name>() in case of parametrization rules (e.g.
duration rules) . Each rule set can make use of feature tables which are compiled to c-modules,
used by 'flowc.exe' to generate the final output functions, by a feature compiler 'featc.exe ' .
The program 'featc.exe' takes two kinds of feature tables as input: one contains character fea
tures that are common among rule sets, and the other contains character features and optionally
default parameter values for each character.

An overview is given of the rule modules and feature tables the different rule sets depend on:

Rule set: Rule module: Feature table:

G->P conversion

KVN->IPO phonemes

dura_into _rules

graf on.dat

grafo2.dat

ipofono.dat

duur.dat

gfeat.dat

grafeat.dat

ffeat.dat

fonfeat.dat

4.3 Extra functions for the stand-alone system

Text to Speech:

Linguistic Analysis

convertor(.. ,/) [grafon.dat] and convertor(.. ,2) [grafo2.dat]:
Interface functions for grapheme to phoneme conversion and an adjustment to
the result by rules respectively.

Phonemes to Speech:

Duration

dura_into_rules [g-f_int.c] :
Interface function for the determination of phoneme durations by rules.

Intonation & Pitch

pitch_rules [g-f_int.c; Uses source-modules: ipo.c and streams.c]:
Interface function for the determination of the intonation contour and finally the
pitch as a function of time, implemented in c-code.

Synthesis Pre-processing:

Prepare

arguments [ds_ipo.c]:
Reads and interprets the command line options to the stand-alone program.

adjust_dur [ds_ipo.c]:
Adds two silence phonemes to the beginning and end of the phoneme string.

14

readJr _dura [ds_ipo.c]:
Adjusts phoneme durations because of the added silences.

KUN -> IPO phonemes

convertor(.. ,3): [g-f_int.c]:
Interface function for the conversion of KUN phoneme symbols to IPO pho
neme symbols by rules.

5 Conversion of VAX diphone format to PC format
For the current system two diphone sets have been prepared for the PC: the SPIN-ASSP
diphones of speaker PB and the IPO diphone set of speaker HZ. The phoneme durations have
been standardised for both diphone sets and both sets only contain diphones from accented
(nonsense)words. Diphones from unaccented words (speaker PB) are not included because
they do not contribute to amore natura} sounding synthesis (Drullman, Collier, 1993). The
diphones are sampled at 10 kHz and have been LPC-coded in 10 ms frames of 5 pairs of 2nd
order filter parameters (p, q parameters) and a fixed de-emphasis of 0.9. For further informa
tion on the file format see Allain (1990).

A diphone database on the VAX is a so-called key-indexed file where fast access to the indi
vidual diphones is performed by means of a key, in our case the name of the diphone, e.g.
'A 1 S l '. Because this file format is VAX specific and does not exist on a PC, a hash table is
used to find the correct diphone in the diphone database. The hash table is held in the file 'difo
nen.lst' . A hash table points to a starting location in the diphone database 'difonen.bin' which
is not necessarily unique for one diphone. From this point the diphone database is searched for
the correct diphone. In practice the address points mostly directly to the wanted diphone.

Several tools take care of the transformation of the V AX diphone database to the hash tab Ie
indexed PC database:

V2P (VAX) [source: V2P.PAS]: Create key-indexed file DIFONEN.BIN.
vax2pc [source: vax2pc.c]: Transform VAX format diphone database 'vaxdif.bin' to
the PC format database 'difonen. bin' .
hashdip [source: hashdip.c]: Generate hash table 'difonen.lst' for diphone database
'difonen. bin' .
dump_dip [source: dump_dip.c]: Display the parameters of individual diphones in
detail. Takes as arguments 'difonen.bin', 'difonen.lst' and an ASCII file with a list of
diphone names to be displayed.

A complete conversion scenario is as follows:

At the VAX:

- Make an ASCII file called 'DIFONEN.LIST' containing a list of all diphones.

- Define a logica} VAXIND, pointing to the VAX-indexed file in which the diphones are
stored.

- Run the Pascal-programme 'V2P.PAS' creating 'DIFONEN.BIN'.

At the PC:

- Get the VAX-file 'DIFONEN.BIN' to the PC by ftp (binary mode) and rename it to
'vaxdif. bin'.

- Run the programme 'vax2pc', converting 'vaxdif.bin' into the PC diphone database 'difo
nen.bin'.

15

- Run the programme 'hashdip' generating hash table file 'difonen.lst'.

- Copy and eventually rename both files 'difonen.bin' and 'difonen.lst' to the diphone database
directory (e.g. DDB).

- Eventually inspeel individual diphones using dump_dip.

The header of the VAX file contains information which is irrelevant for the synthesis, for
example the speaker's sex. This information is not copied to the PC format for memory saving
reasons. Consequently the structure of one diphone, that is, the header plus a sequence of
frames, is different for both formats. One diphone is implemented as an array of shorts. At the
PC the first 18 positions are used for the header, and are followed by blocks of 20 positions
each specifying one frame. Each parameter is located at a fixed position in the array which is a
different position in the VAX format. The exact meaning of each position at the PC side is
given below with the corresponding position in the VAX format in brackets. The profile of one
line is: dip[position]=example value (VAX position) Meaning.

Header:

dip[0]

dip[1]=4

dip[2]=65

dip[2]=49

dip[2]=83

dip[2]=49

dip[lü]=l

dip[ll]=l00

dip[12]=80

dip[l3]=120

dip[14]=6

dip[15]= 15

dip[l6]=14

dip[l 7]=3

Not used

(none)

(none)

(none)

(none)

(none)

(none)

(111)

(none)

(none)

(122)

(35)

(121)

(123)

Number of symbols for diphone identification

symbol for identification, e.g. ' A'

symbol for identification, e.g. 'l'

symbol for identification, e.g. 'S '

symbol for identification, e.g. '1'

maximum 8 characters for identification

0: do synthesize, 1: do not synthesize (not used)

default frame duration in samples

duration of the first phoneme in samples per frame

duration of the second phoneme in samples per frame

frame number indicating start of second phoneme

total number of frames

frame number where smooth interval starts

frame number where smooth interval ends

Frame: (contents and order identical to VAX format)

dip[18] negative pitch period in samples

dip[19] gain factor

dip[20] RMS (not used)

dip[21] voiced/unvoiced (20 means voiced/ 200 means unvoiced)

dip[22] -14744 (-0.9 * 16383 represents pre-emphasis value, fixed at -0.9)

dip[23] Not used

dip[24]-dip[33] 5 second order p, q filter parameter pairs

dip[34]-dip[37] not used

16

Some remarks have to be made about header parameters 12 - 15. Since some parameters indi
cate a frame number, and not a number of frames , it is important to know the start number. It is
decided that the counting of frames starts at 1. Since dip[l 4] indicates the frame number where
the second phoneme starts and taking into account the fact that each phoneme part consists of
at least one frame, the following condition is always valid:

2 <= dip[l 4] <= dip[15]

In the procedure Frame Duration the values dip[12] and dip[13] are calculated such that the
total duration in the corresponding phoneme parts of two adjacent diphones, equals the calcu
lated duration of the corresponding phoneme. That is:

dip[12]*dip[14] + dip[13]*(dip[15]-dip[14]) = phoneme duration

References
Allain , P. (1990) . LVS Programmer's Manual. IPO internal report, no. 107.
Boves L., Kerkhoff J., Loman H. (1987) "A new synthesis model for an allophone based text to speech system".

Proc. Europ. Conf. on Speech Techno!. Vol 2, p385-388.
Boves, L. (1991). Considerations in the design of a multi-lingua) text-to-speech system. Journal of Phonetics 19,

pp. 25-36.
Carlson, R. & Granström, B. (1976). A text-to-speech system based entirely on rules. In Proceedings ofICASSP

'76, pp. 686-688. Philadelphia, April '76.
Coile , van B .M.J . (1987). A model of phoneme durations based on the analysis of a read Dutch text. In Proceed

ings of the European Conference on Speech Technology '87, Vol 2, pp. 233-236. Edinburgh, September
'87.

Coile, van B.M.J. (1989). The depes development system for text-to-speech synthesis . In Proceedings of ICASSP,
May 1989.

Drullman, R & Collier, R. (1991). On the combined use of accented and unaccented diphones in speech synthesis.
Journal of the Acoustical Society of America, 90, 1766-1775.

Elsendoorn, B.A.G. & 't Hart, J. (1982). Exploring the possibilities of speech synthesis with Dutch diphones . IPO
Annual Progress Report 17, pp. 63-65.

Heemskerk, J.S.M. (1993). MORPA, a morpheme lexicon based MORphological PArser. In Analysis and Synthe
sis of Speech, Strategie research towards high-quality text-to-speech generation (van Heuven, V.S. & Pols,
L. , eds) . Mouton de Gruyter, Berlin.

Kerkhoff, J ., Wester, J. & Boves, L. (1984). A compiler for implementing the linguistic phase of a text-to-speech
conversion system. In Linguistics in the Netherlands (Bennis, H. & Van der Kloecke, W.U.S. , eds), pp.
111-117. Foris, Dordrecht.

Kerkhoff, J . & Wester, J. (1987) . FONPARS 1 User Manual ; Part 1: Rule Format. Internal publication Institute of
Phonetics , Nijmegen University.

Klatt, D.H. (1980). Software fora cascade/parallel formant synthesizer. Journal of the Acoustical Society of
America, 67(3), March 1980.

Lammens, J.M. (1993) . Multiple paths to the lexicon. In Analysis and Synthesis of Speech, Strategie research
towards high-quality text-to-speech generation (van Heuven, V.S. & Pols, L., eds). Mouton de Gruyter,
Berlin.

Loman H., Kerkhoff J., Boves L. (1989). A working environment for speech synthesis by rule. In AFN-proceed
ings 13, p5 l-63, KUN (Nijmegen).

Loman, H. & Boves, L. (1993) . Development of allophone synthesis for Dutch. In Analysis and Synthesis of
Speech, Strategie research towards high-quality text-to-speech generation (van Heuven, V.S. & Pols, L.,
eds). Mouton de Gruyter, Berlin.

Marke), J.D. & Gray, A.H. (1976). Linear Prediction of Speech. Springer, Berlin.
Nunn, Anneke M., van Heuven, Vincent J. (1993) . MORPHON: Lexicon-based text-to-phoneme conversion and

phonological rules . In Analysis and Synthesis of Speech, Strategie research towards high-quality text-to
speech generation (van Heuven, V.S . & Pols, L., eds) . Mouton de Gruyter, Berlin.

Rijnsoever, van P.A. (1988). A multilingual text-to-speech system . IPO Annual Progress Report 23, 1988.
Terken, J .M.B. (1993) . Synthesizing natura) sounding intonation for Dutch: rules and perceptual evaluation. Com-

17

puter Speech and Language, 7, 27-48.
Rumbaugh, J. , Blaha, M., Premerlani , W., Eddy, F. & Lorensen, W. (1991) . Object-Oriented Modeling and

Design . Prentice-Hall International, Ine., New York.
van Leeuwen, H.C. & te Lindert, E. (1993) . Speech Maker: a flexible and genera! framework for text-to-speech

synthesis, and its application to Dutch. Computer Speech and Language 7, 149-167.
Vogten, L.L.M. (1983). Analyse, zuinige codering en resynthese van spraakgeluid. Ph.D. thesis , Eindhoven Uni

versity of Technology.

18

Appendix A: Index to functions
adjust_dur [ds_ipo.c] : 14

adjust_pitch [ds_alf.c]: 12

arguments [ds_ipo.c]: 14

close_phonlevel [pho_modu.c]: 5

convertor(.. ,!) [grafon.dat] and convertor(.. ,2) [grafo2.dat]: 14

convertor(.. ,3): [g-f_int.c]: 15

dhash [ds_alf.c]: 11

ds_alf [ds_alf.c]: . 6

dura_into_rules [g-f_int.c]: 14

fil_dur [ds_alf.c]: . 12

formants [dip.c]: . 12

gran [dip.c]: 13

init_filters [dip.c] : 12

init_phonlevel [pho_modu.c]: 5

look_up [ds_alf.c]: . 11

make_diphones [ds_alf.c]: 6

make_ipo_fon [ds_alf.c]: 6

noise [dip.c] : 12

parcoe_cascade [dip.c]: 12

pitch_rules [g-f_int.c ; Uses source-modules: ipo.c and streams.c]: 14

prepare_noise [dip.c]: 13

prepare_start / prepare_stop [ds_alf.c]: 6

read_fr_dura [ds_ipo.c]: 15

read_records [ds_alf.c]: . 6

rem_accents [ds_alf.c]: 6

smooth [ds_alf.c]: 12

synth_diph [dip.c]: 6

synth_diph [ds_alf.c]: 12

synth_diphone [dip.c]: . 12

synth_diphone [dip.c]: 12

19

Appendix B: KUN, IPO and SAM-PA phoneme nota-
tions
Dutch graphemes KUN IPO SAM-PA

mAt A A A
bEdoel & C @

pUt u cc y

IEs E E E
pit I I I
rüt 0 0 0
rOEt (!) y u u
fUUt (!) u y y
IIEp II 1

mAAt a AA a:
IEEs e EE e:
kEUs @ OE 2:
rOOd 0 00 o:

kOUd AU AU Au
rEis EI EI Ei
mUis UI UI 9y
crEme E: EH E:
züne 0 : OH 0:
frEUle U: UH 9:

Pas p p p
Tas t T t
Kas k K k
Bas b B b
Das d D d
Goal G G g

Lang L 1
Rang r R r
Jan J J J
Wang w w w

Fok f F f
Sok s s s
Slaak s SJ s
Gok X X X

Veer V V V

Zeer z z z
bagaGe z ZJ z
Hang h H h

Meer m M m
Neer n N n

20

baNG N Q N

silence SI
glottal stop C GS ?

No SAM-PA phonemes:

poTJe C TJ
fraNje NN

Only KUN phonemes:

iNgaan
aaNwas *
vraGen g

21

Appendix C: A short user's guide
The stand-alone system as well as the PolyGlot system with diphone synthesis in combination
with real-time speech output using the DSP board, works well on a PC-486, 33 MHz machine
or higher.

The stand-alone system, ds_ipo.exe

The program ds_ipo. exe is started as follows:

ds_ipo <difonen.bin> <difonen.lst> [options]

<difonen. bin> and <difonen. lst> point at the diphone database (with extension .bin)
and the diphone index list (with extension (lst).These arguments can be omitted by using a dos
key, e.g. the one defined in doskey. bat. The program comes up with the prompt:

ds ->

Now, Dutch text can be typed or text can be read from file by redirection:

dsn < tekstf ile.

The program can be guit by entering a period (.).

Command-line options:

-? prints a help page to the screen.

-1 No intonation rules, default: on. Intonation rules add a simple declination to the speech.
Option -i results in monotonous speech of 100 Hz.

-c Concatenation of diphones. By default duration rules are applied. This option is useful
to synthesize without duration- and intonation rules. In practice, option -c is always
combined with option -i. Using both options no duration rules are applied but diphones
are concatenated with a default duration of 10 ms per frame. If intonation rules are used
a default duration of 40 ms per phoneme is used.

-k input of KUN phonemes instead of text. (accents: see -a)

-p input of IPO phonemes instead of text. (no accents)

-d input of diphones instead of text.

-a accents can be added to the input. This option only works in combination with KUN
phonemes input (-k). Accents:

sentence accent: '

word accent: '

-f Output to file. The generated speech signa! is written to the file speech.raw (raw data, 2
bytes per sample, little endian binary file). All calculations now take place at the PC,
providing the possibility to use the program without a DSP-board.

The PolyGlot system

Two options have been added to the functionality of the system:

-1 Use diphone synthesis

-r Write the diphone synthesis result to file speechdi

The first option replaces the allophone synthesis by diphone synthesis. The second option pro-

22

vides the possibility to write the result to file. Using this option the result is only written to file,
no speech is generated by the DSP board in parallel.

The file speechdi has a header of 128 long integers (512 bytes) containing the sample rate at
position 125 (byte 500) and the number of 2 byte samples at position 126 (byte 504). This is
the same format as the allophone speech output file TS 1.

23

Appendix D: Functional diagrams
The functional diagrams used in this report follow the syntax of the OMT method according to
Rumbaugh, 1991, except for some minor modifications. The most essential part of the syntax
is described in this appendix (figure 9).

A process changes data. In principle, each functional diagram that is apart of the whole system
is module. A module consists of other modules, specified in a separate diagram, and, non
dividable processes. The name of a module is displayed in the top right corner of the diagram.
Since all lower level modules finally will end up in processes the exact separation between a
module and a process is rather arbitrary to the designer.

Three different data stores are used. A major data store contains more than one independent
data streams. A minor data store contains at most one data stream and eventually one value
parameter. A parameter contains exactly one value.

A data store can be accessed, updated or both. A data store that merely delivers data to the sys
tem is called an actor. A data store only receiving data is called a terminator.

Actor

Figure 9. : Syntax of functional diagrams.

Major Data
Stream

Process

Terminator

24

Module name

