

Prosodic manipulation of speech using knowledge of instants
of significant excitation
Citation for published version (APA):
Yegnanarayana, B., & Teunen, R. (1994). Prosodic manipulation of speech using knowledge of instants of
significant excitation. (IPO-Rapport; Vol. 1029). Instituut voor Perceptie Onderzoek (IPO).

Document status and date:
Published: 23/12/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/6a6af754-2884-4c43-880d-ba7c23e6d156

Institute for Perception Research
PO Box 513, 5600 MB Eindhoven

Rapport no. 1029

Prosodie manipulation of speech
using knowledge of instants of
significant excitation

B. Yegnanarayana and
Remco Teunen

23.12.1994

Prosodie Manipulation of Speech using
Knowledge of Instants of Significant

Excitation

B. Yegnanarayana and Remco Teun en

Abstract

In this report we describe a method for manipulation of prosodie (duration

and intonation) information in a speech signal. The method is based on the use

of the knowledge of instants of significant excitation, which can be derived from

speech signals. The prosodie information can be mainly attributed to the excitation

source of the vocal tract system. Therefore the speech signal is decomposed into an

approximate source and system components, and the source component is modified

according to the specified prosodie manipulation. The method is implemented using

the IPO/OTS Software Library, with flexibility to manipulate the source and system

components in a desired manner.

1 Introd uction

In many applications and for studies in speech perception it is aften desirable to

generate speech with specified characteristics or to modify a given speech signal

by incorporating some specified features. The features may include changes in the

vocal tract system and source characteristies. These characteristies at a segmental

level may correspond to, for example, the average pitch, vocal tract length and

the source-tract interaction within each pitch period. At the suprasegmental level,

the characteristics of interest are the durations of units at syllable or higher levels,

intonation, and the speaking rate. In this report we address the issue of modifying a

given speech signal to incorporate specified features mainly at suprasegmental level.

The emphasis is on the manipulation of prosodie features such as speaking rate and

intonation.

In order to generate natural sounding speech with some desired prosodie fea

tures incorporated, several time and frequency domain methods were proposed in

the literature[l,2]. Methods were also proposed based on modelling the speech sig

nal, like Linear Predietion (LP) analysis, and sinusoidal modelling[3,4]. Waveform

1

based techniques like PSOLA and WSOLA [5 ,6] produce natura! sounding speech,

provided the modifications in the scale factors for duration and pitch are small.

Also waveform based techniques rely on the identification of excitation moments in

a pitch period. Methods that combine features of waveform and transform based

methods have been proposed to overcome some of the limitations of the individual

methods[7] .

The critica! step in most of the methods is the identification of the moments

of excitation, especially in the voiced speech. In fact, the instants of significant

excitation of the vocal tract system define the primary source information. Recently

a new method has been developed for extraction of these instants from continuous

speech signa! [8]. The method identifies all the significant instants including the

instants of glottal closure, onset of burst , etc. The method also identifies major

secondary excitations, if any, within each period, besides random excitation instants

in the unvoiced , aspirated and silence regions.

A vailability of these instants of excitation makes prosodie manipulation easier,

in principle, as it is these instants that need to be modified to realize any desired

prosodie characteristics. We focus mainly on the issue of manipulation of speaking

rate and pitch period, although it is also possible to affect changes in the segmental

characteristics as well. We discuss the procedure to incorporate the desired prosodie

modifications, but the procedure to derive the modification rules themselves is not

within the scope of this work.

In the next section we give the basic principle for obtaining the significant in

stants, which is the key input for the prosodie manipulation procedure described in

Sec.3. The implementation of the procedure is described briefly in Sec.4 and the

details of the implementation are given in the Appendices.

2 Extraction of instants of significant excita

tion

Recently a method has been proposed for determining the instants of significant

excitations in speech signals[8]. The method is based on the global phase charac

teristics of minimum phase signals. The average slope of the unwrapped phase of

the short-time Fourier transform of the linear prediction residual is calculated as

a function of time. This is called phase slope function. Instants where the phase

2

slope function makes a positive zerocrossing are identified as significant excitation

instants. Here significant excitation refers mainly to the instant of glottal closure

within a pitch period in voiced speech, although the method also gives the instants

at the onset of other significant events like burst and secondary excitations in a

pitch period such as glottal opening in voiced speech.

Fig. l shows a speech signal, its line ar prediction (10th order) resid ual, phase

slope function and a residual gain plot showing the strengths of impulses at the

instants of excitation. The strengths of the impluses in the gain plot correspond

to the average energy of the LP residual per sample in the interval between two

successive instants. From the figure it is clear that in voiced speech the significant

excitation mainly takes place at the instant of glottal closure within each period,

although in some case a strong secondary excitation is also identified at the glottal

opening. The method identifies instants at the onset of other significant events also

such as burst or release of stop sounds. In the unvoiced, silence and aspirated regions

the instants are randomly positioned. Typically the instants in the voiced regions

can be distinguished from those in the nonvoiced regions by the quasiperiodic nature

of the glottal excitation, which is reflected in the quasiperiodicity of the extracted

instants. The instants in the unvoiced and silence regions can be distinguished, if

necessary, using the gain information and the average spacing between the instants.

Some postprocessing of the gain plot is required to delete the instants due to minor

excitations within a pitch period in the voiced speech, and also to label a given

instant as belonging to voiced or nonvoiced category. In the present study this

postprocessing is realized by manual editing of the gain plot file using additionally

the information in the speech signal and the LP residual. Fig.ld shows the edited

gain plot with voiced (V) and unvoiced (U) labels marked on it. All nonvoiced

segments are marked as unvoiced.

The availability of the instants of significant excitations with voiced and non

voiced labels eliminates the need for extraction of pitch for performing prosodie

manipulations. Moreover, these instants will enable us to select the significant por

tion of the residual signal for generating the excitation signal for synthesis. These

instants also preserve the microprosodic information, especially after the vowel on

set in a voiceless consonant-vowel syllable. In the next section we show how to

perform prosodie manipulation using the information of the instants of excitation.

3

3 Prosodie manipulation

The main objective is to modify a given speech signa! to incorporate the desired pitch

and durational changes, while preserving the natura! segmental characteristics. The

segemental characteristics include features of the excitation and vocal tract system

within each pitch period in the case of voiced speech. For unvoiced speech it is

not critica! to preserve the segmental characteristics. lt is possible to incorporate

the natura! variations in the prosodie features of the speaker for different pitch

and rates of speaking, provided that prosodie information is made available. The

prosodie information can be acquired by analysing large amount of data, but it is

not within the scope of the present study.

The modifications in the pitch and speaking rate are presented in the form of

multiplication factors. Since the LP residual signa! is available, it is possible to

keep as much of the signa! as needed , to preserve the naturalness at the segmental

level. This is similar to the philosophy of PSOLA method where the naturalness is

sought to be preserved by selecting a windowed speech waveform [5] .At higher pitch

frequencies removing a portion of the residual signa! will produce distortion, even

though it is from the less significant part of the residual. This is because it is not

the way natura! speech is produced at higher pitch frequencies. This is a matter for

detailed investigation, once the basic software for prosodie manipulation is available.

If the excitation signa! is to be generated using a model for glottal pulse in voiced

regions and random noise in unvoiced regions, then obviously it gives more flexibility

for manipulation. But the choice between selecting a portion of the residual or a

model for excitation depends on the desired degree of naturalness and the level

tolerance for distortion due to truncation of the residual. Through the proposed

algorithm we provide both the options for generating the excitation signa! to enable

one to experiment with various alternatives. Using the excitation signa! together

with the linear predictor coeffficients (LPCs) representing the system at each of the

significant excitation instants, it is possible to synthesize speech incorporating the

desired prosodie modifications. Since the transfer function of the vocal tract system

is represented by the LPCs, it is also possible to modify the system characteristics,

if necessary, before synthesizing the speech signa!.

The data available for prosodie manipulation is the speech signa!, the significant

excitation instants in the form of a gain function, and the LPC data file with Voiced

(V) / U nvoiced (U) labels. Centered around each of these instants a windowed

4

speech signal is taken, and a residual signal is obtained by passing the speech signal

through the inverse filter defined by the predetermined LPCs. From the residual

signal around the instant, the required number of samples are taken to associate with

the current instant. The gain per sample is computed at the instant by computing

the square root of the mean squared energy of the residual signal associated with

the instant.

The basic approach in prosodie manipulation is to derive an excitation signal in

corporating the desired modification in the speaking rate and the pitch period. This

is clone by first taking the instants information in the gain function, and creating

a new instants file incorporating the speaking rate and pitch period modifications

specified in the form of scale factors for these parameters. We associate with each

instant, the time, pitch period (interval between successive instants), LP residual

and LPCs. For speaking rate/duration manipulation, obtain the new scaled time

instants using the time scale multiplication factor. Likewise, for pitch manipulation,

the pitch period associated with each instant is scaled appropriately. Now a new

set of instants and the parameters at those instants are determined as follows (see

Fig.2) :

Proceeding from left to right, the first instant is copied as a new instant. The

next new instant should be at the pitch period away from the first one, the period

information being available in the parameter list associated with the first instant.

Determine which of the old instants are closer to the new instant. Associate the

parameter information of the old instant to the new instant. It is also possible to

obtain an interpolated value of the pitch period for the current new instant from

the pitch periods at the old instants which are on either side of the current new

instant. Use the pitch period value in the parameter list at the current new instant

to obtain the next new instant. This process is repeated until the end of all the

instants derived from the original speech data.

Problems will arise while copying the residual samples at the new instants from

the parameter list associated with the old instants, if the new pitch period is smaller

than the old value at that instant. The required number of residual samples around

the instant are copied. But to avoid discontinuity due to this partial selection of the

residual samples, the residual signal sample are multiplied with a Hanning window.

The signal is high pass filtered (cut-off frequency of about 50 Hz) to remove the

very low frequency components including the zero frequency component. This will

5

ensure that the resulting residual signal has zero mean. This process may produce

some distortion, especially when the pitch period is scaled down significantly, say

by a multiplication factor of 0.5 or lower. If the scaled pitc period is larger than

the old one, the additional excitation samples needed in each pitch period are set to

zero. The resulting excitation samples are appropriately scaled to obtain the gain

value specified in the parameter list for that instant.

For instants labelled as unvoiced, the required number of residual samples are

copied from the residual signal associated with the instants. For these instants, the

entry in the pitch period field associated with the instants is not modified. Therefore

if the interval between instants increases due to expansion of the time scale (slow

speaking rate), some segments of the residual samples belonging to the unvoiced

portion may be repeated. Sometimes this will produce some audible distortion.

One way to overcome this is to use random samples with appropriate gain, instead

of repeating the residual samples as is being done in the current implementation.

Speech signal is generated by exciting the all-pole model defined by the LPCs

and the gain parameter with the new excitation signal. It is also possible to vary the

all-pole model characteristics within a pitch period to reflect the differences in the

vocal tract system in the closed and open phases of glottal vibration. This is realized

approximately by using in the open phase a set of LPCs which correspond to the

poles moved towards the origin in the z-plane. This creates an effect of damping of

formants in the all-pole model representing the vocal tract system. This damping

effect can be controlled by using a parameter to modify the LPCs. The parameter

is simply the radius (r) of a circle in the z-plane concentric with the unit circle.

As mentioned earlier, it is possible to generate the excitation signal completely

using a model for glottal pulse (see Fig.3) for voiced segments, and random noise

for unvoiced segments, and appropriately synchronizing them with the information

associated with the instants. The glottal pulse model shown in Fig.3 is a model

similar to the LF model described in the literature[9) .

4 lmplementation of prosodie manipulation

The above procedure is implemented using the routines, data structures and other

features given in IPO/OTS software library[lO). The two key data structures are:

(a) InPulseData, which contains at each input instants the residual samples, gain,

6

pitch period, and LPCs with voiced unvoiced labels. {b) OutPulseData, which

contains the corresponding data for the output instants. The implementation details

are given in Appendix-! and Appendix-II for the cases using the actual residual

signal (PROG-1) and synthetic source signal {PROG-2), respectively.

The output results of the programs can be examined through the GIPOS (Graph

ical Interactive Processing Of Speech ans audio signals) software available at the

Intitute for Perception Research. It is also possible to specify any desired pitch con

tour within the GIPOS framework, and the prosodie manipulation program gen

erates speech with that pitch information together with the V /U frame decision

already available in the parameter file.

Typical sessions of running the programs PROG-1 and PROG-2 are illustrated

in the Appendix-II! and Appendix-IV, respectively. They show the options available

with the package for generating speech with any desired prosodie characteristics.

References

[1] S.Seneff, System to independently modify excitation and/or spectrum of speech

waveform without explicit pitch extraction, IEEE Trans on ASSP, vol.ASSP-

30, pp.566-578, 1982.

[2] M.Portnoff, Time-scale modification of speech based on short-time Fourier anal

ysis, IEEE Trans on ASSP, vol.ASSP-29, pp.374-390, 1981.

[3] B.S.Atal and S.L.Hanauer, Speech analysis and synthesis by linear prediction of

the speech wave, Journal of the Acoustical Society of America, vol.50, pp.637-

655, 1971.

[4] Thomas F.Quatieri and Robert J. McAulay, Shape invariant time-scale and

pitch modification of speech, IEEE Trans on Signa/ Processing, vol.40, pp.497-

510, March 1992.

[5] C.Hamon, E.Moulines, and F.Charpentier, A diphone systhesis system based

on time-domain prosodie modifications of speech, Proceedings of ICASSP-89,

pp.238-241, Glasgow, 1989.

[6] W .Verhelst and M.Roelands, An overlap-add technique based on waveform sim

ilarity (WSOLA) for high quality time-scale modification of speech, Proceedings

of ICASSP-93, pp. 554-558, Minneapolis, 1993.

7

[7] R.N.J. Veldhuis and H. He, Time-scale and pitch modifications of speech signals

and resynthesis from the discrete short-time Fourier transform, lntitute for

Perception Research Manuscript No.1034, IPO, Eindhoven, The Netherlands,

July 1994.

[8] R.L.H.M. Smits and B.Yegnanarayana, Determination of instants of signifi

cant excitation in speech using group-delay function, Institute for Perception

Research Manuscript No.886/II, IPO, Eindhoven, The Netherlands, August

1994.

[9] D.G.Childers and C.F. Wong, Measuring and modelling vocal source-tract in

teraction, IEEE Trans on Biomedical Engineering, vol.41, N0.7, pp.663-671 ,

July 1994.

[10] T.J .G.Veenker, Programmer's guide - IPO/OTS Software Library, lnstitute

for Perception Research Manual No.129, IPO, Eindhoven, The Netherlands,

August 1994.

8

(a)

(b)

(c) _ I 1 _____ ___ , ; __________ , ___ ____________ j_.._ _________ ;, ____

(
d) -,~I _I _I _____ , _, __ , _,_; , _, __ , ---' ___ , ___,,.,, __________ , _, ____.,_ , _____ l-!-1 _._I I_I

U U U U U U U U U UV V V V V V V V: V V V
1 1 1 1 1 1
V V V V V

Fig. 1. lllustration of the extraction of instants of significant excitation (a) speech signal, (b) linear prediction residual,
(c) gain plot showing the strength of the inpulses of the significant instants, and (d) edited gainplot with V /U labels.

V V V V uu u u
T1 Tz T3 T4 t1 t2 t3 t4

1 2 3 4 5 6 7 8

(a) 1 1 1 1 -- - -
lUl _____

0 T1 T2 T3 t1 t2 t3 T

V V V V u u u u
T1 T2 T3 T4 t1 t2 t3 t4

2 3 4 5 6 7 8

(b) 1 1 1 1 - - - -- - -
0 CXT1 CXT2 CXT3 at1 at2 at3 aT

V V V V V u u u u u
13T1 l3T2 l3T2 l3T3 j3T4 t1 t2 t3 t3 t4

J' 2' 3' 4' 5' 6' 7' 8' 9' JO'
(1) (2) (2) (3) (4) (5) (6) (7) (7) (8)

1 1

1 1
1
1
1 1

1 1 1

(c) . - - - - - - -
Ü l3T1 W 2 W2 l3T3 l3T4 t1 t2 t3 t3 aT

Fig. 2. Illustration of prosodie manipulation. V and U are the voiced and unvoiced
labels for the instants. T/s are intervals between instants in voiced regions, and t/s
are intervals between instants in unvoiced regions.
(a) Instants in the input data.
(b) Instants shifted due to time scale multiplication factor a.
(c) The new instants and the entries in the pitch period field at each instant in voiced

and unvoiced regions, where the pitch period is modified by a factor ~- Note that
the spacing between inpulses is ~ Ti in voiced regions and ti in unvoiced regions.

10

te I I

1 '
1

1

1

1

1

Fig. 3. Shape of the differentiated glottal waveform used for synthetic
case, showing the different parameters as in LF model (Ref. 9), where
to is one pitch period.

11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Appendix-1 : PROG-1
/*==*
* Name: ReleasePulseData *
*
*
*
*

Description: Releases memory occupied by the given pulse data structure
'PulseData' .

*
*
*
*

* Arguments: PulseData = Pulse data structure to be released. *
==/
ReleasePulseData(PulseData)
(

}

If PulseData is not NULL then do :
(

For all nodes of PulseData do :
(

}

Free memory used by residual signal of current node.
Free memory used by LPC frame of current node.

Free memory used by the structure PulseData itself .

EOF ReleasePulseData()

/*==*
* Name: ReadResGnFile *
*
*
*

*
*
*
*
*

Description :

Arguments :

Read excitation instant data from file (gain is ignored).
This routine also creates the nodes of InPulseData . Each
non-zero sample of the inputfile is an excitation instant.

FileName

InPulseData

Name of the inputfile which contains the
residual gain data (instant data).
The information gathered will be stored in
this structure .

*
*
*
*
*
*

==/
ReadResGnFile(FileName, InPulseData)
(

Open an AIFF file named FileName with residual gain data and create a
buffer to speed up reading of the file.

For all samples in the file do :
(

}

If the buffer is empty, fill it with new data from file.

Get a new sample value from the buffer.

If the current sample value is greater than zero, an instant
is found. Create a new node for InPulseData, fil l the node with
data & do some housekeeping.

Finish the job; close the file and exit.
}
EOF : ReadResGnFile()

/*==*
* Name: ReadLPCsFile *
*
*
*
*
*
*
*

Description :

Arguments:

Read LPCs from file & store them in InPulseData .

FileName

InPulseData

Name of the inputfile which contains the
LPC data .
The information gathered will be stored in
this structure.

*
*
*
*
*
*

==/
ReadLPCsFile(FileName, InPulseData)
(

Open a LVSA file named FileName with LPC data and copy some header
information to InPulseData. This information is needed later to create a new
LVSA-file with LPC data.

For all nodes of InPulseData do:
(

}

Allocate memory for LPC frame of current node.

While the correct LPC frame is not found do :
(

Read the current LPC frame.

Check if this LPC frame is better than the next frame. If not
goto next frame & try again.

Close the file and exit the routine.
}
EOF : ReadLPCsFile()

/*==*
* Name: ReadFile *

*
* Description : Read speech signal from file and calculate the residual

Page 12

93
94
95
96
97 .
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

*
*
*

*
*
*

Arguments :

Appendix-1 : PROG-1
signal . Store the residual signal in the nodes . Note that
the speech signal is not stored in the nodes, it is used
only to calculate the residual.

FileName

InPulseData

Name of the inputfile which contains the
speech signal .
The information gathered will be stored in
this structure .

*
*
*
*
*
*
*
*

== /
ReadFile(FileName, InPulseData)
{

Open an AIFF file named FileName with speech data and copy some header data
to InPulseData. This information is needed later to create a new AIFF-files
(for the residual gain data, the residual signal and the speech signal).

Create a buffer for the file to speed up reading .

For all nodes of InPulseData do
{

}

Adjust the LPC frame of the current node so the frame duration is
correct (= half pitchperiod of the previous node+ half pitchperiod
of current node).

Calculate what piece of the speech signal to pick for generation of
the residual signal . Only the residual signal centred around the
instant time (node time) is used (so you might get gaps between
residual data of adjacent nodes).

Allocate memory for the residual signal of the current node .

If data in speech buffer is wrong, fill it with new data from file .

Setup inverse LPC filter ; obtain the coefficients.
Setup pre-emphasis filter; obtain the coefficient .

Filter the speech signal ; first pre-emphasis, then inverse LPC filtering.
Store the resulting residual signal in the current node. Also calculate
the gain of the residual signal.

Close the file and exit the routine .
}
EOF : ReadFile()

/ *==*
* Name: InputFiles2InPulseData *

*
*

Description:

Arguments:

Read all inputdata from files & put it in InputPulseData . *
*

InResGnFileName

InLPCsFileName

InFileName

Name of the inputfile which contains the *
residual gain data. *
Name of the inputfile which contains the *
LPC data.
Name of the inputfile which contains the *
speech signal .

* InPulseData The information gathered will be stored
* in this structure . *
==!
InputFiles2InPulseData(InResGnFileName, InLPCsFileName, InFileName, &InPulseData)
{

}

Allocate memory for InPulseData & fill it with zero's .

Call ReadResGnFile(InResGnFileName, InPulseData).
Call ReadLPCsFile(InLPCsFileName, InPulseData).
Call ReadFile(InFileName, InPulseData).

EOF : InputFiles2InPulseData()

/*==*
* Name: ProsodicManipulation *
*
*
*

*
*
*
*
*
*
*

*

*
*
*
*
*
*
*

Description:

Arguments:

Generate OutPulseData by manipulating InPulseData given
the parameters TimeMulVal and PitchPeriodMulVal (and the
pitch contour specified in the LPC frames).

*
*
*

InPulseData

TimeMulVal
PitchPeriodMulVal
WindowWidthMulVal

UsePitchContour

UsePitchlnterpolation

UseGaininterpolation

OutPulseData

This structure contains all the *
inputdata about the speech signal. *
Time multiplication factor. *
Pitchperiod multiplication factor . *
Window width multiplication factor *
for reducing the number of residual *
samples around each instant . *
TRUE if the pitchcontour specified *
in the LPC frames should be used. *
TRUE if pitch(period)interpolation *
should be used . *
TRUE if gain interpolation should *
be used. *
This structure will be filled with
data about the output speech *
signal. The structure can then be *

Page 13

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

Appendix-1 : PROG-1
* used to generate outputfiles . *
==/
ProsodicManipulation(InPulseData, TimeMulVal, PitchPeriodMulVal,

WindowWidthMulVal, UsePitchContour, UsePitchinterpolation,
UseGaininterpolation, &OutPulseData)

Allocate memory for OutPulseData and initialize the structure .

For all samples do :
(

)

Look for nearest input node & ether 'bounding' input node.

Allocate memory for the new output node & copy some data from the
nearest input node .

Calculate the pitchperiod of the output node. Use pitch interpolation
if the segment is voiced and no pitchcontour is specified. If a
pitchcontour is specified in the LPC file and the segment is voiced
then take the pitchperiod from the LPC frame of the nearest input node .
In unvoiced segments, always just copy the pitchperiod from the
nearest input node.

Calculate what the gain scale factor of the residual should be .
This is the quotient of the interpolated gain and the original gain .

Calculate the new window width.

Allocate memory for LPC frame & residual signal. Copy LPC frame from
input node to output node & adjust some fields (frame duration, pitch
and gain).

Copy the residual signal from the nearest input node to the current
output node . If the pitchperiod is smaller, the center of the
original residual signal should be copied, so samples should be deleted
from both sides of the original residual signal . If the pitchperiod is
larger, just copy the original residual signal.

Apply gain correction, windowing and highpass filtering to the
residual signal (in that order). Highpass filtering is used to remove
the low frequency bias due to manipulating the residual signal.

Calculate the time of the next output node .

Ready! Exit routine.
)
EOF : ProsodicManipulation()

/*==*
* Name: WriteResGnFile *

*
*
*
*
*
*

Description:

Arguments:

Write excitation instant & gain data to file .

OutPulseData

FileName

This structure contains inputdata for the
generation of the file.
Name of outputfile for the residual gain
data .

*
*
*
*
*

==/
WriteResGnFile(OutPulseData, FileName)
(

Create an AIFF file named FileName for residual gain data and create a
buffer to speed up writing to the file.

Until all samples (and all nodes of OutPulseData) have been processed do :
(

)

If the current sample number is equal to the time of the current node,
append the (scaled up) gain sample of the current node to the buffer and
goto the next node. Otherwise append a zero to the buffer.

If the buffer is full, write it to file .

Close file and exit routine.
)
EOF: WriteResGnFile()

/*==*
* Name : WriteResFile *

Description: Write residual signal to file. *
*
* Arguments: OutPulseData This structure contains inputdata for the *
* generation of the file. *
* FileName Name of outputfile for the residual signal. *
==/
WriteResFile(OutPulseData, FileName)
(

Create an AIFF file named FileName for the residual data and create a
buffer to speed up writing to the file.

Until all samples have been processed do
(

Page 14

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

}

Appendix-1 · PROG-1
If not in gap between nodes, get a sample from the residual signal of
the current node . Otherwise make the sample value zero.

Write the residual sample to the buffer and goto the next node.
If the buffer is full, write it to file.

Close file and exit routine.
}
EOF : WriteResFile()

/* ==*
* Name : WriteLPCsFile *
*
*
*

Description: Write LPC data to file .
*
*
*

* Arguments : OutPulseData This structure contains inputdata for the *
* generation of the file. *
* FileName Name of outputfile for the LPC data . *
==/
WriteLPCsFile(OutPulseData , FileName)
{

Create a LVSA file named FileName for the LPC data .

Check to see if the file should start with a dummy frame. The start time of
a LPC frame should be equal to the time of the node to which the frame
belongs . If the time of the first node is greater than zero, a dummy frame
is needed. If so do
{

Allocate memory for dummy LPC frame .
Fill dummy frame with dummy data .
Write dummy frame to file.

For nodes of OutPulseData do :
{

Write LPC frame of current node to file.
}
Close file and exit routine.

}
EOF : WriteLPCsFile()

/* == ==============================*
* Name : WriteFile *

* Description : Write speech signal to file .
*
*
*

* Arguments: OutPulseData This structure contains inputdata for the *
* generation of the file. *
* LPCAdjFac Multiplication factor for the LPC bandwidth *
* change. *
* FileName Name of outputfile for the speech signal. *
=== ===============================/
WriteFile(OutPulseData, LPCAdjFac, FileName)
{

Create an AIFF file named FileName for speech data and create a buffer to
speed up writing to the file.

For all samples of the residual signal do :
{

If not in gap between nodes, get a sample from the residual signal of
the current node . Otherwise make the sample value zero .

Calculate what the current LPC adjustment factor should be (to
change the bandwidth of the all-pole filter) . Use LPCAdjFac.

Setup LPC Filter; calculate the coefficients.
Setup de-emphasis Filter; obtain the coefficient.

Apply the filters to the residual sample and store the resulting
speech sample in the buffer. First apply the LPC filter, then
the de-emphasis filter.

If the buffer is full, write it to file .
}
Close file and exit routine .

}
EOF : WriteFile()

/ *==*
* Name: OutPulseData20utputFiles *
* *
* Description : Write data from OutPulseData to files. *
* *
* Arguments: OutPulseData This structure contains inputdata for *
* the generation of the files . *
* LPCAdjFac Multiplication factor for LPC bandwidth *
* change. *
* OutResGnFileName Name of outputfile for residual gain *
* data . *
* OutResFileName Name of outputfile for residual data . *

Page 15

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

Appendix-1 : PROG-1
* OutLPCsFileName = Name of outputfile for LPC data . *

OutFileName = Name of outputfile for speech data. *
==/
OutPulseData20utputFiles(OutPulseData , LPCAdjFac, OutResGnFileName,

OutResFileName, OutLPCsFileName , OutFileName)

}

Call WriteResGnFile(OutPulseData, OutResGnFileName).
Call WriteResFile(OutPulseData, OutResFileName) .
Call WriteLPCsFile(OutPulseData, OutLPCsFileName) .
Call WriteFile(OutPulseData, LPCAdjFac, OutFileName).

EOF : OutPulseData20utputFiles()

/*==*
* Name: main *

* Description : A basic (& not very user-friendly) interface for the *
* routines above. Use only for test purposes. *
==!
main()
{

}

Put some program information on the screen (name, version and copyrights).

Ask if male voice should be used or female voice.
Ask if gain interpolation should be used.
Ask if pitch interpolation should be used .
Ask if pitch contour in LPC file should be used. If not, then
the original pitch contour will be maintained.
Ask for time multiplication factor (float).
Ask for pitchperiod multiplication factor (float).
Ask for windowwidth multiplication factor (float).
Ask for LPC adjustment factor (to change the bandwidth) (float).

Setup filenames & print what parameter values will be used.

Call InputFiles2InPulseData; read inputfiles and put data in the
structure InPulseData.

If call to InputFiles2InPulseData was ok, call ProsodicManipulation;
create structure OutPulseData from InPulseData, using the given parameters.

If call to ProsodicManipulation was ok, call OutPulseData20utputFile;
write data from the structure OutPulseData to the outputfiles .

Release structures.
If there was an error, say s o.

EOF : main()

Page 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Appendix-Il : PROG-2
/*==*
* Name: ResWave_Impulse *

*
*
*
*
*

Description:

Arguments:

Impulse excitation: The routines gives back the requested
sample of residual signal of the given node. This routine
also signals the calling routine when to update the LPCs
and when to change the bandwidth . The routine creates a
zero-mean impulse-residual signal.

*
*
*
*
*
*

Node
ResSampleNr

Pointer to the node. *
Number of the requested sample. Should be *
equal to or greater than zero and smaller *

* than the pitchperiod of Node. *
* UpdateLPCs Target variable. This flag signals the calling*
* routine that the LPCs should be updated or *
* LPC bandwidth change should be applied. *
* ErrorCode Return errorcode. MSG_SUCCESS if ok, else *
* MSG_?. *
* Return: Sample of residual wave. *
==/
ResWave_Impulse(Node, ResSampleNr, &UpdateLPCs, &ErrorCode)
{

)

Set UpdateLPCs to the correct value; if ResSampleNr is zero, then the
LPCs should be updated. If the segment is voiced and ResSampleNr is
equal or greater than half the pitchperiod, then LPC bandwidth change
should be applied.

if this is a new node, check if the frame is unvoiced and if so do :
{

)

Allocate memory for buffer to store noise in . Fill the buffer with
noise (with maximum gain).

Calculate the mean value of the noise and adjust the signal so
its zero-mean.

Calculate the gain of the noise and adjust it if that gain is
not equal to the gain specified in Node.

if the segment is unvoiced return a sample from the noise buffer,
else return an impulse (scaled gain of node) if ResSampleNr is zero
else some small negative value to make the signal zero mean.

EOF : ResWave_Pulse()

/*==*
* Name: ResWave_GlottalPulse *

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*

Description:

Arguments :

Glottal pusle excitation : The routines gives back the *
requested sample of residual signal of the given node . This *
routine also signals the calling routine when to update the*
LPCs and when to change the bandwidth. The routine uses a *
model derived from the LF model to create residual signal . *

Residual(t)

TO

Node
ResSampleNr

UpdateLPCs

ErrorCode

A*exp(Alfa*t)*sin(t*pi/Tp), for 0<=t<=Tp,
B*exp(Alfa*t)*sin(t*pi/Tp), for Tp<=t<=Te ,
B*exp(Alfa*Te)*sin(Te*pi/Tp)
(exp(-(t-Te)/Ta)-
exp(-(T0-Te)/Ta)) /
(1-exp(-(T0-Te)/Ta)), for Te<=t<=T0.

Pitchperiod .

*
*
*

*
*
*
* ..

Pointer to the node . *
Number of the requested sample. Should be *
equal to or greater than zero and smaller *
than the pitchperiod of Node. *
Target variable. This flag signals the calling*
routine that the LPCs should be updated or *
LPC bandwidth change should be applied. *
Return errorcode. MSG_SUCCESS if ok, else *
MSG_?. *

* Return: Sample of residual wave. *
==/
ResWave_GlottalPulse(Node, ResSampleNr, &UpdateLPCs, &ErrorCode)
{

if the pitchperiod is less than 5, use a zero-mean impulse waveform.
Else if this is a new node, check if the frame is unvoiced and if so do
{

)

Allocate memory for buffer to store noise in. Fill the buffer with
noise (with maximum gain) .

Calculate the mean value of the noise and adjust the signal so
its zero-mean.

Calculate the gain of the noise and adjust it if that gain is
not equal to the gain specified in Node.

Else if this is a new node and the frame is voiced do
{

Calculate Tp, Te and Ta.

Page 17

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

}

}

Appendix-Il : PROG-2

Allocate memory for buffers to store the signal in. The positive
part of the signal is stored in a different buffer than the negative
part, so the signal can be made zero-mean by just sealing the signal
of one of the two buffers.

Fill the buffers with the glottal pulse .

Calculate the mean value of the signal and adjust the signal so
its zero-mean.

Calculate the gain of the signal and adjust it if that gain is
not equal to the gain specified in Node .

If the segment is unvoiced do :
{

}

Set UpdateLPCs so that the LPCs are updated at the beginning of
the signal. Return a sample from the noise buffer.

Else do
{

Set UpdateLPCs so that the LPCs are updated at time Tp and the
bandwidth is changed for times less than Tp.

Return a sample from the signal buffers .

EOF ResWave_GlottalPulse()

/*==*
* Name: ReleasePulseData *

*
*
*

Description: Releases memory occupied by the given pulse data structure
'PulseData'.

*
*
*

* Arguments: PulseData = Pulse data structure to be released. *
==/
ReleasePulseData(PulseData)
{

}

If PulseData is not NULL then do :
{

For all nodes of PulseData do :
{

Free memory used by LPC frame of current node .
}
Free memory used by the structure PulseData itself.

EOF ReleasePulseData()

/*==*
* Name: ReadResGnFile *
*
*
*
*
*

*
*
*

Description:

Arguments:

Read excitation instant & gain data from file. This
routine also creates the nodes of InPulseData. Each
non-zero sample of the inputfile is an excitation instant.

FileName

InPulseData

Name of the inputfile which contains the
residual gain data.
The information gathered will be stored in
this structure.

*
*
*
*
*

*
*
*

==/
ReadResGnFile(FileName, InPulseData)
{

}

Open an AIFF file named FileName with residual gain data and create a
buffer to speed up reading of the file.

For all samples in the file do :
{

}

If the buffer is empty, fill it with new data from file.

Get a new sample value from the buffer. If greater then zero this value
is the gain of the residual signal scaled up by a factor .

If the current sample value is greater than zero, an instant
is found. Create a new node for InPulseData, fill the node with
data & do some housekeeping.

Finish the job; close the file and exit.

EOF : ReadResGnFile()

/*==*
* Name: ReadLPCsFile *
*

*
*

Description :

Arguments:

Read LPCs from file & store them in InPulseData .

FileName Name of the inputfile which contains the
LPC data .

*

*

*

Page 18

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

*
*

Appendix-Il : PROG-2
InPulseData = The information gathered will be stored in

this structure.
===================~==/
ReadLPCsFile(FileName, InPulseData)
{

Open a LVSA file named FileName with LPC data and copy some header
information to InPulseData. This information is needed later to create a new
LVSA-file with LPC data.

For all nodes of InPulseData do :
{

}

Allocate memory for LPC frame of current node.

While the correct LPC frame is not found do :
{

Read the current LPC frame .

Check if this LPC frame is better (nearer) than the next frame .
If not goto next frame & try again.

Close the file and exit the routine.
}
EOF : ReadLPCsFile()

/ *==*
* Name: InputFiles2InPulseData *

*
*

*
*
*
*

Description:

Arguments:

Read all inputdata from files & put it in InputPulseData.

InResGnFileName

InLPCsFileName

InPulseData

Name of the inputfile which contains the
residual gain data.
Name of the inputfile which contains the
LPC data .
The information gathered will be stored
in this structure.

*
*
*
*
*
*
*
*
*

==/
InputFiles2InPulseData(InResGnFileName, InLPCsFileName, &InPulseData)
{

Allocate memory for InPulseData & fill it with zero's.

Call ReadResGnFile(InResGnFileName, InPulseData).
Call ReadLPCsFile(InLPCsFileName, InPulseData) .

}
EOF : InputFiles2InPulseData()

/*==*
* Name: ProsodicManipulation *
*
*
*
*

Description: Generate OutPulseData by manipulating InPulseData given
the parameters TimeMulVal and PitchPeriodMulVal (and the
pitch contour specified in the LPC frames).

*

*
*
*

* Arguments: InPulseData This structure contains all the *
* inputdata about the speech signal . *
* TimeMulVal Time multiplication factor. *
* PitchPeriodMulVal Pitchperiod multiplication factor . *
* UsePitchContour TRUE if the pitchcontour specified *
* in the LPC frames should be used . *
* UsePitchinterpolation TRUE if pitch(period)interpolation *
* should be used . *
* UseGaininterpolation TRUE if gain interpolation should *
* be used . *
* OutPulseData This structure will be filled with *
* data about the output speech *
* signal. The structure can then be *
* used to generate outputfiles. *
==/
ProsodicManipulation(InPulseData, TimeMulVal, PitchPeriodMulVal,

UsePitchContour, UsePitchinterpolation, UseGaininterpolation, &OutPulseData)

Allocate memory for OutPulseData and initialize the structure.

For all samples do :
{

Look for nearest input node & other 'bounding' input node.

Allocate memory for the new output node & copy some data from the
nearest input node .

Calculate the pitchperiod of the output node. Use pitch interpolation
if the segment is voiced and no pitchcontour is specified. If a
pitchcontour is specified in the LPC file and the segment is voiced
then take the pitchperiod from the LPC frame of the nearest input node .
In unvoiced segments, always just copy the pitchperiod from the
nearest input node.

Calculate what the gain of the residual should be. This value is the
interpolated gain (using the nearest input node & other bounding
input node.

Page 19

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
32 3
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

Appendix-Il : PROG-2

Allocate memory for the LPC frame. Copy LPC frame from
input node to output node & adjust some fields (frame duration, pitch
and gain).

Calculate the time of the next output node.
}
Ready! Exit routine .

}
EOF : ProsodicManipulation()

/*==*
* Name : WriteResGnFile *
*
*
*

*
*
*

Description :

Arguments:

Write excitation instant & gain data to file.

OutPulseData

FileName

This structure contains inputdata for the
generation of the file .
Name of outputfile for the residual gain
data.

*
*
*
*
*
*

==/
WriteResGnFile(OutPulseData, FileName)
{

Create an AIFF file named FileName for residual gain data and create a
buffer to speed up writing to the file.

Until all samples (and all nodes of OutPulseData) have been processed do :
{

}

If the current sample number is equal to the time of the current node,
append the (scaled up) gain sample of the current node to the buffer
and goto the next node . Otherwise append a zero to the buffer.

If the buffer is full, write it to file.

Close file and exit routine.
}
EOF : WriteResGnFile()

/*==*
* Name : WriteResFile *

Description:
*

Write residual signal to file .
*
*
*

Arguments: OutPulseData This structure contains inputdata for the *
generation of the file. *

FileName Name of outputfile for the residual signal . *
ResWaveProc Pointer to the procedure which generates *

the waveform of the residual signal. *
==/
WriteResFile(OutPulseData, FileName, ResWaveProc)
{

Create an AIFF file named FileName for the residual data and create a
buffer to speed up writing to the file .

Until all samples have been processed do
{

}

If not in gap between nodes, get a sample from the residual signal of
the current node by calling ResWaveProc. Otherwise make the sample
value zero.

Write the residual sample to the buffer and goto the next node .
If the buffer is full , write it to file.

Close file and exit routine .
}
EOF : WriteResFile()

/*==*
* Name: WriteLPCsFile *
*
*
*

Description: Write LPC data to file.
*
*
*

* Arguments: OutPulseData This structure contains inputdata for the *
* generation of the file. *
* FileName Name of outputfile for the LPC data. *
=----===/
WriteLPCsFile(OutPulseData, FileName)
{

Create a LVSA file named FileName for the LPC data.

Check to see if the file should start with a dummy frame. The start time of
a LPC frame should be equal to the time of the node to which the frame
belongs. If the time of the first node is greater than zero, a dummy frame
is needed. If so do
{

Allocate memory for dummy LPC frame.
Fill dummy frame with dummy data.
Write dummy frame to file.

Page 20

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

Appendix-Il · PROG-2
For nodes of OutPulseData do :
{

Write LPC frame of current node to file.
}
Close file and exit routine.

}
EOF : WriteLPCsFile()

/*==*
* Name: WriteFile *
*
*
*

Description: Write speech signal to file.
*
*

Arguments: OutPulseData This structure contains inputdata for the *
generation of the file . *

* LPCAdjFac Multiplication factor for the LPC bandwidth *
* change . *
* FileName Name of outputfile for the speech signal. *
* ResWaveProc Pointer to the procedure which generates *
* the waveform of the residual signal. *
==/
WriteFile(OutPulseData, LPCAdjFac, FileName, ResWaveProc)
{

Create an AIFF file named FileName for speech data and create a buffer to
speed up writing to the file .

For all samples of the residual signal do :
{

If not in gap between nodes, get a sample from the residual signal of
the current node by calling ResWaveProc. Otherwise make the sample
value zero.

Calculate what the current LPC adjustment factor should be (to
change the bandwidth of the all-pole filter) . Use LPCAdjFac.

Setup LPC Filter; calculate the coefficients.
Setup de-emphasis Filter; calculate the coefficient.

Apply the filters to the residual sample and store the resulting
speech sample in the buffer. First apply the LPC filter, then
the de-emphasis filter.

If the buffer is full, write it to file.
}
Close file and exit routine.

}
EOF : WriteFile()

/*==*
* Name: OutPulseData20utputFiles *

*
*

Description: Write data from OutPulseData to files. *

* Arguments: OutPulseData This structure contains inputdata for *
* the generation of the files. *
* LPCAdjFac Multiplication factor for LPC bandwidth *
* change. *
* OutResGnFileName Name of outputfile for residual gain *
* data. *
* OutResFileName Name of outputfile for residual data. *
* OutLPCsFileName Name of outputfile for LPC data. *
* OutFileName Name of outputfile for speech data. *
* ResWaveProc Pointer to the procedure which generates *
* the waveform of the residual signal. *
==/
OutPulseData20utputFiles(OutPulseData, LPCAdjFac, OutResGnFileName,

OutResFileName, OutLPCsFileName, OutFileName, ResWaveProc)

}

Call WriteResGnFile(OutPulseData, OutResGnFileName).
Call WriteResFile(OutPulseData, OutResFileName, ResWaveProc).
Call WriteLPCsFile(OutPulseData, OutLPCsFileName).
Call WriteFile(OutPulseData, LPCAdjFac, OutFileName, ResWaveProc).

EOF : OutPulseData20utputFiles()

/*==*
* Name: main *
* *
* Description: A basic (& not very user-friendly) interface for the *
* routines above. Use only for test purposes. *
==/
main()
{

Put some program information on the screen (name, version and copyrights).

Ask if male voice should be used or female voice.
Ask if gain interpolation should be used.
Ask if pitch interpolation should be used .
Ask if pitch contour in LPC file should be used. Is not, then

Page 21

Appendix-Il : PROG-2 Page 22
461 the original pitch contour will be maintained .
462 Ask for time multiplication factor (float) .
463 Ask for pitchperiod multiplication factor (float).
464 Ask for LPC adjustment factor (to change the bandwidth).
465 Ask if glottal pulse excitation or impulse excitation should be used.
466
467 If glottal pulse excitation should be used do :
468 (
469 Ask for Tp-factor (Tp = Tp-factor * pitchperiod). See ResWave_GlottalPulse.
470 Ask for Te-factor (Te= Te-factor* pitchperiod). See ResWave_GlottalPulse.
471 Ask for Ta-factor (Ta = Ta-factor * pitchperiod). See ResWave_GlottalPulse .
472 Ask for alfa . See ResWave_GlottalPulse.
473 }
474 Setup filenames & print what parameter values will be used .
475
476 Call InputFiles2InPulseData; read inputfiles and put data in the
477 structure InPulseData.
478
479 If call to InputFiles2InPulseData was ok, call ProsodicManipulation;
480 create structure OutPulseData from InPulseData, using the given parameters.
481
482 If call to ProsodicManipulation was ok, call OutPulseData2OutputFile (with
483 the right parameters) to write data from the structure OutPulseData to
484 the outputfiles.
485
486 Release structures.
487 If there was an error, say so.
488 }
489 EOF : main()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Appendix-11I : Output of PROG-1

ProsMan.Nat Version Oct 28 1994.
Prosodie manipulations using a natural residual signal.
Copyright (c) IPO 1994. All Rights Reserved.

Male or female [M / F]? m
Use gain interpolation [Y/N]? y
Use pitch interpolation? [Y/N]? y
Use pitch contour in LPC file [Y/N]? n
Time multiplication factor X (0.2 <= X <= 5). 1
Pitchperiod multiplication factor X (0 . 2 <= X <= 5). 1
Windowwidth multiplication factor X (0 <= X <= 1) . 1
LPC adj factor X (bandwidth change) (0.8 <= X <= 1) . 0.96

Using the following parameter values :

Male/ Female
UseGaininterpolation
UsePitchinterpolation
UsePitchcontour
TimeMulVal
PitchPeriodMulval
WindowWidthMulVal
LPCAdjFac

Male
Yes
Yes
No
1.000000
1.000000
1.000000
0.960000

Entering routine 'InputFiles2InPulseData'.
{

Entering routine 'ReadResGnFile'.
(

Opening ResGnFile 'dicmaleresgn.aiff'.
NrOfSamples = 36660.
Created buffer of length 20000.
Current sample at time 0. Found 1 excitation instants.
Closing ResGnFile.
['ReadResGnFile']

Entering routine 'ReadLPCsFile' .
{

Opening LPCsFile 'dicmaleap.lvsa'.
Number of parameter frames= 731.
Current node= O (time= 31). Duration of frame 1 from 50 to 100.
Closing LPCsFile.
['ReadLPCsFile']

Entering routine 'ReadFile' .
{

Opening File 'dicmale.aiff' .
NrOfSamples = 36608.
Created buffer of length 20000.
Current node= 0 (time= 31). ResTimeOffset
Closing File.
Buffer misses= 2, buffer hits= 560.
['ReadFile' l

['InputFiles2InPulseData']

Entering routine 'ProsodicManipulation'.
{

HP filter coefficient Alfa= 0.945093.
InNode = 0, OutNode = 0 .
MaxResGainScaling = 1 . 000000, MinResGainScaling
['ProsodicManipulation']

Entering routine 'OutPulseData2OutputFiles'.
{

Entering routine 'WriteResGnFile' .
{

Creating ResGnFile 'out.dicmaleresgn.aiff'.
NrOfSamples = 36629.
Created buffer of size 20000.
Current node= 0.
Closing ResGnFile.
['WriteResGnFile']

Entering routine 'WriteResFile'.
{

Creating ResFile 'out . dicmaleres.aiff' .
Current node= 0.
Total size of gaps= 5485 .
Closing ResFile.
['WriteResFile']

Entering routine 'WriteLPCsFile'.
{

Creating LPCsFile 'out.dicmaleap.lvsa'.
Current node= 0.
Closing LPCsFile.
['WriteLPCsFile']

Entering routine 'WriteFile' .
{

-12, WindowWidth

1.000000 .

Page 23

25 .

Appendix-11I : Output of PROG-1
93 Creating File 'out.dicmale . aiff' .
94 Current node= 1 .
95 Closing File.
96 ['WriteFile']
97
98 [' OutPulseData20utputFiles']
99
100 Entering rou tine 'ReleasePulseData'.
101 {
102 Current node= 0 .
103 ['ReleasePulseData']
104
105 Entering routine 'ReleasePulseData' .
106 {
107 Current node= 0 .
108 ['ReleasePulseData')
109
110 Ok. Ready .

Page 24

1
2
3
4
5
6
7
8
9
10
11
12
13
14
1 5
16
17
18
19
20
21
22
23
24
25
2 6
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Appendix-IV : Output of PROG-2

ProsMan.Syn Version Oct 28 1994 .
Prosodie manipulations using a synthetic residual signal .
Copyright {c) IPO 1994. All Rights Reserved.

Male or Female [M / F]? m
Impulse or Glottal pulse excitation [I/G]? g
Use gain interpolation [Y/N]? y
Use pitch interpolation? [Y/N]? y
Use pitch contour in LPC file [Y/N]? n
Time multiplication factor X (0.2 <= X <= 5). 1
Pitchperiod multiplication factor X (0.2 <= X <= 5). 1
LPC adj factor X (bandwidth change) (0.8 <= X <= 1) . 0.96
Tp {as factor of pitchperiod) (0 < Tp < 1). 0 . 3
Te {as factor of pitchperiod) (0.400 < Tp < 1) . 0 . 4
Ta {as factor of pitchperiod) (0 < Ta < 1) . 0.01
Alfa {as in LF model) (0 <= Tp <= 3). 0.2

Using the following parameter values :

Male/ Female
UseGaininterpolation
UsePitchinterpolation
UsePitchcontour
TimeMulVal
PitchPeriodMulval
LPCAdjFac
Impulse / Glottal pulse
Tp (as factor of TO)
Te (as factor of TO)
Ta {as factor of TO)
Alfa

Male
Yes
Yes
No
1 . 000000
1.000000
0.960000
Glottal pulse
0 . 300000
0 . 400000
0 . 010000
0.200000

Entering routine 'InputFiles2InPulseData• .
{

Entering routine 'ReadResGnFile'.
{

Opening ResGnFile 'dicmaleresgn . aiff• .
NrOfSamples = 36660.
Created buffer of length 20000 .
Current sample at time 31 . Found 1 excitation instants .
Closing ResGnFile.
[' ReadResGnFile']

Entering routine 'ReadLPCsFile'.
{

Opening LPCsFile 'dicmaleap . lvsa• .
Number of parameter frames= 731.
Current node= 0 (time= 31). Duration of frame 1 from 50 to 100 .
Closing LPCsFile.
['ReadLPCsFile']

['InputFiles2InPulseDàta']

Entering routine 'ProsodicManipulation• .
{

InNode = 0, OutNode = 0.
['ProsodicManipulation']

Entering routine 'OutPulseData2OutputFiles'.
{

Entering routine 'WriteResGnFile'.
{

Creating ResGnFile 'out.dicmaleresgn . aiff' .
NrOfSamples = 36629.
Created buffer of size 20000.
Current node= 0.
Closing ResGnFile .
['WriteResGnFile']

Entering routine 'WriteResFile' .
{

Creating ResFile 'out . dicmaleres.aiff•.
Current node= 0.
Total size of gaps= 31.
Closing ResFile.
['WriteResFile • l

Entering routine ' WriteLPCsFile'.
{

Creating LPCsFile •out.dicmaleap . lvsa• .
Current node= 0.
Closing LPCsFile.
['WriteLPCsFile']

Entering routine 'WriteFile' .
{

Creating File •out . dicmale.aiff•.
Current node= 1.
Closing File .
['WriteFile • l

Page 25

Appendix-IV : Output of PROG-2
93
94 ['OutPulseData2OutputFiles')
95
96 Entering routine 'ReleasePulseData'.
97 {
98 Current node= 0.
99 [' ReleasePulseData')
100
101 Entering routine ' ReleasePulseData'.
102 (
103 Current node= 0.
104 [' ReleasePulseData')
105
106 Ok . Ready .

Page 26

