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Abstract 

This study focuses on a new and unique model to determine the elastic bearing deformation of 

structural timber. Available models that aim to predict the deformation are usually limited in 

their application. The performance of a simple model is compared to three other models, all 

being evaluated using experimental test data for the wood species Norway Spruce, Poplar, 

Beech, Cumaru and Akki and covering eight different load cases. The results show a simple 

model to have the best performance in deformation prediction and so is a potential candidate 

for introduction in updated structural timber design codes.  

  

Keywords: timber, bearing, compression perpendicular to grain, deformation. 

 

1 Introduction 

In building practice, perpendicular to grain load situations occur in many places. These might 

be where timber beams (joists) find support, or where studs in timber frames load the bottom 

and top rail perpendicular to grain. In pre-stressed timber bridge decks, a relatively high pre-

stress perpendicular to grain keeps the individual bridge desk laminations together. Currently, 
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structural timber designers are looking for ways to design higher timber frame houses and 

even multi-storey mid high-rise buildings, where knowledge about strength and deformation 

of bearing supports becomes increasingly important. Recently, advances have been made in 

the development of reliable calculation models for the bearing strength capacity, Leijten [1]. 

What has to be done is to evaluate bearing deformation models that are easy to apply, accurate 

and can be used for most bearing situations. The elastic-plastic material behaviour, 

considering all possible load situations, is hard to predict. This study presents a physical 

deformation model based on spreading of the bearing stresses which, in a unique way, is able 

to cover all load cases and is also simple in application and sufficiently accurate for practice. 

The load cases evaluated are given in Figure 1 where load case A represents the standardized  

test piece for the determination of the compression strength and stiffness perpendicular to 

grain (CPG). Using the stress spreading model proposed by Van der Put [2] and the stiffness 

data from the standardized test, the deformation of the other load cases can now be derived. 

 

Figure 1 Load cases evaluated in Leijten [1] 

 

Although not leading to direct structural failure, CPG deformations can create substantial 

damage to building components that do not follow the bearing deformation. Knowledge about 
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shrinkage, the elastic and creep deformation, including mechanic-sorption, are key ingredients 

for a successful estimation of the total bearing deformation during the life-time of a structure. 

This article focuses on the evaluation of the bearing deformation which can be characterised 

by the onset of non- linear behaviour. The elastic deformation forms the starting point for 

estimation of additional influences like creep.  

Not only are deformation models dealing with bearing deformation scars neither of them have 

yet been accepted by the leading structural timber design codes in the world. This article aims 

at ending this situation.  

 

2 Bearing deformation models 

Deformation models are hard to find in literature. In 1982, Madsen et al. [3] published a 

bearing deformation model presented in Eq.(1). The model is based on Hook's Law (strain is 

proportional with the applied stress) as a starting point. The spreading of the bearing stresses 

was recognised and the total deformation δ is dependent on the depth of the timber beam, h. 

Further parameters are: the applied load perpendicular to grain Fc,90 , the width of the loaded 

area b, and a reduced loaded length parallel to grain lr and le, depending on the depth and the 

distance to the end face, as well as the modulus of elasticity perpendicular to grain E90. The 

parameters lr and le have, as stated by the author, no physical meaning but are empirical in 

nature and thus do not relate to the CPG.   
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In the European Design Code of 1987 [4] an empirical model, Eq.(2) is presented but only for 

the load cases B and F. Hook's Law is again applied but now modified with a factor ku. It is 

assumed this factor was determined by evaluation of test results.  
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The a/h ratio in the modification factor refers to the ratio of the end grain distance a, and the 

beam depth h. It was F. Mårtensson [5] who proposed another empirical deformation model, 

Eq (3) that again takes Hook's law as a starting point. The total deformation δ is dependent of 

the beam depth h, the load Fc,90,  effective loaded area A, and the modulus of elasticity 

perpendicular to grain E90. The factor μ considers the influence of the depth to bearing length 

ratio.  
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Based on the evaluation of tests and final element calculations, μ=0.3 is proposed. This 

applies for situations where the loaded area is not too close to the beam end. The author does 

not specify, however, any specific values for boundary conditions.  Furthermore, A. 

Mårtensson states that deformations caused by creep and mechanic-sorption are believed to be 

covered by reducing the E90. Gehri [6], mentioned the necessity to use realistic values for the 

E90 and that strength and deformation considerations should not be mixed. Apparently, this 

model is too limited in its application to be accepted by the timber design codes, as none of 

the structural timber codes have adopted it. In those days, E90 values were taken as a 
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percentage of the same property parallel to grain and, later in this article, this issue will be 

elaborated on. Van der Put [2] as well as Blass and Görlacher [7]  came up with a deformation 

model similarly based on Hook's law, but with the assumption of a certain spreading of the 

bearing stresses in grain direction, combined with the assumption of a linear elastic material 

behaviour, Eq.(4). The assumption is that the timber outside the stress spreading area does not 

significantly prevent any bearing deformation. In Eq.(4) the assumed stress spreading gradient 

is 1:1, the load perpendicular to grain Fc,90, and the depth and width of the beam are h and b 

respectively. The length parallel to grain of the loaded area is l, while the support stress length 

is the effective length, lef.  

 

 

Figure 2. Stress spreading gradient for load case B 
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This stress spreading approach can be applied to all load cases. As shown in Figure 3 for load 

case C the total deformation can be calculated by splitting up the stressed area into two parts. 

One caused by the top loaded area with loaded length l and depth h1, and the second caused by 

the bottom support with loaded length ls and depth h2, having an common intersection length 

indicated by the horizontal dotted line, the so-called effective length lef. The total deformation 

is approximated as the summation of the deformation of both stressed areas. Similarly, this 
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can be applied for close spaced loads and to situations where the loads are close to the end 

face, load case F and J, Figure 4. A dotted horizontal line parallel to grain divides the stressed 

areas at locations where they start to either interfere with other stressed area or touch the end 

face.   

 

 

Figure 3. Stress spreading gradient for load case C 

 

 

Figure 4. Load cases F and J with interfering stress areas. 

The approximated contribution of each stressed area in the total deformation has to be 

determined following this procedure.  

Taking this linear elastic approach as a starting point, the deformation models associated with 

load cases B, C, D, E and F, Figure 1 are listed in the second column of Table 1. For load case 

F it is assumed that the load starts at the end face. In Table 1 the model expressions for the 

load case J is not given but this one follows from a combination of the other load cases. In 

principle, load cases G and H are the same as B because at a certain depth the deformation 
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perpendicular to grain vanishes, Leijten et al. [8], Figure 5. For these discrete load cases the 

depth of the beam h is replaced by the effective depth hef which is equal to 40% of the total 

beam depth or 140mm, whichever is the smallest. This research result applies to Spruce. For 

other wood species an FEM analyses can be applied to check the validity of these values. In 

the equation of Table 1 a factor k is introduced to account for the fact that associated with a 

stress spreading of 1:1 the deformations are no longer linear elastic but show the onset of 

yielding. Therefore the approach is taken to modify the modulus of elasticity perp to grain to 

an apparent value applying kE90.   

  

Figure 5. The effective depth for not fully supported load cases 

 

Table 1 Elastic deformation models  

 Deformation models based on  

Load  case                                         Eq.(4)                                       Eq.(5) 
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A different formulation using the same starting point of stress spreading  is based on the 

following. Calculate the average stress perpendicular to grain taken at the loaded area and the 

support area and apply Hook's law as follows: 
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In Eq.(5) the depth h can either be the full depth of the beam as in load cases B and F, or the 

so-called effective depth hef in load cases C, G and H. For load case C, for instance, Figure 3 

both stressed areas with depth h1 and h2 contribute to the total deformation as mentioned 

earlier. The location where both stresses meet and have equal length parallel to grain is called 

the effective length lef which can be calculated with Eq.(6) where the length of both loaded 

areas are l and ls.  

 

ef
2

sl l
l h


             (6) 

 

This method of adding deformations of separate stress fields is also easy to apply to more 

complex load cases such as F and J, Figure 4. Also, when the stress field boundaries interfere 

with a neighbouring stress field or by the end grain face, the contribution to the total 

deformation can be calculated separately by following this principle. The horizontal dotted 

lines in Figure 4 separate the individual stress fields. A general expression for the model of 

Eq.(5) accounting for a number of stress fields n can be written as Eq.(7). 
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where 

δ  is the total bearing deformation, 

Fc,90 is the load perpendicular to grain, 

b  the width of the loaded area, 

k modification factor to change E90 into an apparent value 

E90 is the modulus of elasticity of the wood species involved perpendicular to grain, 

n are the number of stress fields, 

hn  the distance between the loaded and the bearing area of each individual stress field, 

ln,  ln+1 the loaded length of the loaded area, n and bearing area, n+1. 

 

The appropriate expressions for load cases B, C, D, E and F are given in the right column of 

Table 1. Comparing the expressions in the two columns, it will be clear that the equations in 

the right column do not change by load case and this eases the use for the design engineer. An 

evaluation of test data and further analyses are required to see which of the models perform 

most successfully and with satisfactory accuracy. 

 

3 Test Data 

The wood species involved in the evaluation are Norway Spruce, Poplar, Beech, Cumaru and 

Akki (Azobé) ,with average wood densities of 418kg/m
3
, 433kg/m

3
, 623kg/m

3
, 947 kg/m

3
and 

1163 kg/m
3
 respectively. All test specimens were conditioned at 60% RH and 20

0
C. The 

experimental determination of the E90 is a key parameter to evaluate the models. This material 

property should be determined in a standardized and physically correct way. In Leijten and 

Jorissen [9], it is shown that the prescribed test specimens in the tests standards of North 

America and Australia/New Zealand are unsuitable for this purpose. Only in CEN/EN408 
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[10] a cubic type test piece is prescribed that is loaded over the full surface area and as such 

provide physically more correct values than the partly loaded test specimens of the other 

standards. The dimensions of this test specimen bxhxl are 45x90x70mm, with the width b, 

depth h and parallel to grain length l, respectively. During the test, the total deformation 

together with the applied load results in a load-deformation curve, Figure 6, left. 

The compressive strength Fc,90, is defined by the intersection of a line parallel to the linear 

elastic part of the load-deformation  curve, off-set by 1% of the specimen depth. This straight 

line is used to calculate the modulus of elasticity of the standard test specimen, E90. If the 

value of E90 is used to determine the deformation at the defined Fc,90, this value has to be 

reduced which leads to the introduction of an apparent modulus of elasticity, kE90 as 

mentioned earlier. 

 

Figure 6. Test according to EN408, load case A (left) and a test results for load case B (right). 

A typical experimentally determined load-deformation curve for load case B is given in 

Figure 6, right. The determination of the CPG strength follows the same procedure as for the 

standard test piece, but now the off-set line is 1% of the full beam depth for load case B, or 

1% of the effective beam depth dependent on the individual load case. The deformation 

associated with this CPG strength is δ, as is given in the figure which does not include any 

delayed load uptake at the beginning of the load application. This deformation is recorded and 
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is later compared with the model predictions. Due to the non-linearity, the experimentally 

determined displacement δ may be somewhat greater than that which the models predict as 

they assume linear elastic response. It may be expected, therefore, that model predictions are 

conservative.  In this respect, it is time to address a shortcoming of the standard test procedure 

of EN408 that affects the determination of the modulus of elasticity perpendicular to grain. It 

might seem logical to take as deformation the total deformation (over the full depth) of the 

standard test piece and similarly measure the total deformation of any other test piece. 

However, the gauge length to record the deformation currently prescribed by EN408 is set to 

60% of the specimen depth. This results in the undesirable effect shown in Figure 7 for load 

case B, where the highest deformed zone is omitted from the observation. Models to predict 

the deformation aim at predicting the total deformation. For this reason, it is important to 

analyse experimental results as to what gauge length is used. 

 

  
 

Figure 7. Load case B measuring the deformation over 60% of the test specimen depth, 

Hansen [11]. Arrows point at the attachment points of the transducer.  

Bodig and Jayne [12] showed that CPG deformation and failure is initiated by weak annual 

rings. When they are located outside the gauge length, the recorded deformation is unreliable 

as observed by Levé et al. [13]. To support the suggestion of taking the full test specimen 
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depth as gauge length instead of 60% of the depth, investigations by Hansen [11] are 

presented. The wood species used was Norway Spruce with an average moisture content of 

12%.  Hansen [11] uses both gauge lengths simultaneously, from which the modulus of 

elasticity E90, is derived taking the linear part of the recorded load-deformation curve. At first, 

the standard EN408 test piece of 90mm depth is taken and deformations recorded.  Similar 

tests are performed with test pieces of 145mm and 220mm depth with 10 replicates each. The 

first column of Table 2 shows the specimen depth while subsequent columns show the mean 

E90, and the coefficient of variation for each gauge length. The coefficient of variation of E90 

for the 90 mm standard specimens (EN408), is only one third of the coefficient of variation 

taking the 60% gauge length. Increasing the test specimen depth from 90 to 145mm and 

220mm does not affect the E90 value when taking the full depth. This is in contrast to when 

the 60% gauge length is taken as the 60% gauge length delivers consistently higher values for 

the variation coefficient. In another part of his research, Hansen [11] also performed tests for 

load case B, Figure 7. 

 

 Table 2. Overview of E90 test results by Hansen [11]  

for load case A specimens, Spruce. 

n=10 

E90 gauge 

length 

total depth  

Var. 

coeff. 

 

 [%] 

E90 gauge 

length 60% 

of total depth 

Var. 

coeff. 

 

 [%]  Depth 

[mm] 

mean 

[N/mm
2
] 

mean 

[N/mm
2
] 

h=95 199.3 9 199.3 31 

h=145 211.2 43 240 96 

h=220 203.2 29 305.9 48 

Mean 204  248  

 

He varied the specimen depth again from 95mm, 145mm to 220mm as well as varying the 

loaded length parallel to grain from 45mm, 95mm to 145mm. The specimen width was kept 

constant and the number of replicates per test series was five. Results are presented in Table 

3. Comparing the mean E90 values, as well as coefficient of variation of both tests, again 

support the earlier findings that taking the total test specimen depth culminates in more 
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reliable test results. For this reason, all deformations used to evaluate the deformation models 

are determined using the full specimen depth as gauge length.   

 

Table 3. Overview of E90 test results by Hanssen [11] 

for load case B specimens, Spruce. 

n=5 

 

loaded 

length 

 

E90 gauge 

length 

total depth 

Coeff 

of  

var. 

E90 gauge 

length 60% 

of total depth 

Coeff. 

of 

var. 

Depth 

[mm] 

 

[mm] 

mean 

[N/mm
2
] 

 

[%] 

mean 

[N/mm
2
] 

 

[%] 

h=95 

  

  

45 398 3 337 21 

95 268 13 240 10 

145 191 8 233 40 

h=145 

  

  

45 601 16 949 51 

95 403 19 769 86 

145 304 32 353 58 

h=220 

  

  

45 706 14 1441 40 

95 463 25 965 49 

145 337 7 502 27 

 

In Table 4, an overview is presented of the modulus of elasticity E90 of the standard test 

specimens, tested in accordance with EN408 for all the wood species involved in this study 

(taking the full specimen depth as gauge length). In building practice, the structural design 

engineer will usually take the strength and stiffness values from a particular strength class 

system. For the wood species involved these values have been added in the last column. For 

Spruce the material was CE marked C24 while for Poplar a value was taken from strength 

class C27 based on a mean density of 433kg/m
3
. In strength classes the material properties are 

given independent of the annual ring orientation. For this reason the annual ring orientation is  

not addressed in the test method of EN408 and taken at random. 

 

Table 4. Overview of  E90 values, load case A, EN408 

Wood  

species 

Sample  

number 

Number  

of tests 

Mean E90 Strength 

class  

Value 

EN338 

[N/mm
2
] CV [%] 

Spruce 

1 25 150 39 

2 13 141 55 

3 14 180 39 

4 10 170 44 
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Mean   158 48 370 

Poplar 

1 31 183 32  

2 12 116 11 

3 10 236 40 

mean   159 32 380 

Beech 1 10 976 25 700 

Cumaru 1 12 911 8 1240 

Akki 1 9 1082 33 1810 

 

For the European situation, the strength classes are specified in EN 338 [14]. Due to a lack of 

knowledge when the strength class values were initially set, E90 was taken as E0/30 for 

softwood and E90=E0/15 for hardwood. Table 4 shows a considerable deviation for Norway 

Spruce between the observed test value of 158N/mm
2
 and the strength class value of 

370N/mm
2
. For Poplar the differences are 159N/mm

2
 and 380N/mm

2
 respectively. In both 

cases the recorded modulus of elasticity E90 is approximately 50% of the E90 value. In his 

elaborate study, Hübner [15] p. 49 reports a mean value for Beech of 1040N/mm
2
 which is 

close to value of 976N/mm
2
 in Table 4. However, based on the mean density of 629kg/m

3
 the 

strength class value is D27 where E90 is 700N/mm
2
. For the other tropical hardwood species, 

Cumaru and Akki a similar approach was taken, strength classes D65 and D80, respectively. 

Apparently, there are reasons to question the moduli of elasticity perp to grain by the strength 

class system of EN 338.   

 

4 The test data base for the load cases B to J 

Specimens of Spruce, Poplar, Beech, Akki and Cumaru are cut from planks that vary in size 

suitable to test all the load configurations of Figure 1. Besides the data base which contains all 

the test results carried out at TU-Eindhoven, a limited number of test data from literature 

could be added. An overview of the variation in dimensions of the tested pieces, mainly sawn 

timber, is presented in Table 5 for the respective load cases. Only in the case of Norway 

Spruce is a distinction made between structural timbers (ST) and glued laminated timbers 

(GLT).  The table also includes standard test specimen dimensions, in accordance with 
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standards like ASTM- D143, AZ/NZ and ISO 13910. For load case J, the spacing between the 

load areas and the distance to the end face have been varied from 30mm to three times the 

specimen depth 3h.  

 

Table 5. Overview of test specimens evaluated for the bearing models. 
Load 

case 

Wood 

species* 

No of 

samples 

No of 

tests 

Width Total specimen 

depth 

Effective 

depth 

Loaded 

length 

  # # [mm] [mm] [mm] [mm] 

B    

  [11] 

[16] 

[17] 

 

Spruce ST 15 124 45-90-51-108-

150-160 

45-90-95-145-

150-200-220 

See total 

depth 

45-50-

95-145 

Spruce GLT 10 138 90-160 200-405-480 90-150 

Poplar 6 36 45-95-150 45-80-150 45 

Akki 4 17 45-95-145 45-95-145 50 

Cumaru 1 12 51 51 51 

Total 36 327  

C Spruce  ST 1 8 39 219 92-126 100-150 

Akki 4 14 45-95-195 45-95-195  50 

Total 5 22  

D Spruce ST 2 33 35-39-90 40-45-90 20-23-45 48-50-90 

Spruce GLT 1 11 90 90 45 48 

Poplar 6 38 45-80-150 45-150 23-40-75 45 

Akki 4 18 45-95-195 45-195 23-98 50 

Cumaru 1 12 35 45 22,5 90 

Total 14 112  

E Spruce ST 3 30 45-48 45-90-150 23-45-75 45-48 

 Spruce GLT 1 8 90 90 45 48 

Poplar 6 37 45-80 45-80-150 23-45-75 45 

Akki 4 13 45-95-195 45-95-195 23-48-98 50 

Total 14 88  

F Spruce GLT 6 159 150 200-480 See total 

depth 

150 

Akki 4 21 45-95-195 45-95-195 50 

Total  10 180  

G Spruce ST 14 106 40-48-80-90 219 88 50 

H Spruce ST 4 51 48 198 79 48 

Spruce GLT 1 6 90 405 140 90 

Total 19 163  

J Spruce ST 14 120 45-75-90 45-90-150-280 

See total 

depth 

45-50 

 Poplar 6 40 45-80 45-80-150 45 

 Beech 6 41 53-90 70-90 45 

 Akki 6 31 45-95-195 45-95-195 50 

Total 26 232  

* ST – Structural timber, GLT – Glued Laminated Timber 

 

The total number of tests performed, including tests reported by Hansen [11], Moseng and 

Hagle [16] and Augustin and Schickhofer [17], are presented in Table 6. The number of tests 

for Cumaru is limited, covering only load case B and D with 12 results each. However, the 
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deformation test results are in line with the range that is found for the other wood species and 

load cases. 

 

Table 6. Number tests per wood species 
Wood species Number of 

tests 

Spruce 794 

Poplar 191 

Beech   41 

Akki/Azobé 114 

Cumaru 24 

Total number 1164 

Total number of samples 134 

 

 

5 Model Evaluation 

The models and the test data have been presented. In the following, the ability of the models 

to predict the experimentally determined bearing deformation is investigated. The models 

given by Eq.(1) and (3) will be left out of the evaluation either because they do not distinguish 

between load cases or they contain unknown parameters. The models that will be evaluated 

are presented in Eq.(2), Eq.(4), Eq.(5) for as far the load cases apply. The models require an 

input value for the modulus of elasticity E90, which is taken from Table 4.  

Figure 8. Model Eq.(2) versus test data of Spruce. 

The test results are now presented in a graphical way to allow a quick visual assessment. In 

Figure 8 test results versus the model predictions using model Eq.(2 ) are presented for 

Norway Spruce only covering load cases B and F. Every dot in the graph represents the mean 
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value of a sample. It represents 476 test results from 41 samples. To visualise the a-symmetry 

of the results, the ratio between the observed deformation and the model predictions are 

calculated and presented by a histogram. The visual scatter of the data is high as represented 

by the high frequency of values over a considerable range for the test/prediction ratio on the 

horizontal axes. The histogram is completed by a fitted to the data normalised distribution of 

which the mean and standard deviation is given. It shows that the model mainly 

underestimates the recorded displacements. The coefficient of determination R
2
 = 0,315 

indicates that only about 32% of the variation can be explained by the model.  

 
Figure 9. Model Eq.(4) versus test data; all wood species. 

In the same way the model of Eq.(4) is evaluated in Figure 9, all the test data related to the 

wood species Norway Spruce, Poplar, Cumaru and Akki covering load cases B, D and H are 

evaluated. The number of samples is 134, representing 481 test results. Two trend lines are 

shown. One where the intersection with the origin is forced y=1.53x and one where the 

intersection with the vertical axes is left free y=0.97x+1.12. As expected this affects the 

coefficient of determination, R
2
= 0.16 and R

2
= 0.298, respectively but in any case both are 

low. The histogram shows a mean test to model prediction ratio of 2.15 which is still far from 

the ideal 1.0.  

The performance of the model of Eq.(5) is shown in Figure 10 for the wood species Spruce 

only. The number of samples is 72, representing 794 test results covering for all load cases. 
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As in Figure 9 again the two trend lines are shown. Compared to the previous models, the 

trend line runs more diagonally y=1.009x with a coefficient of determination of R
2
=0,57 

which increases to 0.67 when the intersection with the origin is left free. The histogram is  

quite different from the previous histograms in Figures 8 and 9. The mean of the fitted 

normalised distribution with a mean of 1.24 and a standard deviation of 0.51 is much better 

than the model of Eq.(4). How the model of Eq.(5) performs considering the results of the   

 

 

Figure 10. Model prediction Eq.(5) versus test data for Spruce.    

 

deciduous wood specimens is presented in Figure 11 with 62 samples, representing 370 test 

results. The result in terms of the coefficient of determination is less than in Figure 10 for 

Spruce only. The fitted normalised distribution in the histogram shows that the mean and 

standard deviations are close with Figure 10 values and still better than the results with the 

previous models shown in Figure 8 and 9. 
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Figure 11. Model prediction Eq.(5) versus test data of deciduous wood species. 

Merging the test data of Figure 10 and 11 results in Figure 12. This represents all wood 

species and all load cases with a total of 134 samples, comprising 1164 test results altogether. 

This performance is the better one in comparison with the other models. The coefficient of 

determination R
2
 of the two trend lines are 0.46 when the intersection with the origin is 

forced, and 0.62 when left free. The performance of Model Eq.(5), in terms of mean and 

standard deviation of the fitted normalised distribution, is 1.36 and 0.587. This is considerably 

better than previous models Eq.(2 and 4) as shown in Figures 8 and 9.  

 

 

 
Figure 11. Model Eq.(5) versus test data. 

To discover if the model results are influenced by depth of the specimens, the test value to 

model Eq.(5) prediction ratio is set against the specimen depth or where appropriate the 
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effective depth, Figure 13. The trend line indicates that the model results are consistent, and 

the increasing specimen depth hardly affects the outcome. Presumably, this is affected by the 

limited number of experimental results with fully supported glued laminated specimens of 

480mm depth. Figure 13 shows that the majority of tests were performed on timber specimens 

with a depth smaller than 200mm. It should be considered, however, that the test data base 

also comprises results with glued laminated specimens of 600mm depth but loaded at discrete 

locations, Figure 5. For these cases, the effective depth is a maximum of 140mm. To gain 

more insight into the depth effect, more research should be performed. Whatever load case is 

considered, the CPG spreading stresses, as indicated in Figure 3 and 4, could disconnect for 

large specimen depth and show that they can be considered as discrete loading areas as given 

in Figure 5.  

 
Figure 13 The effect of the effective depth with Eq.(5) 

 

What has not yet been discussed is the necessity of the modification factor k that was 

introduced to modify the modulus of elasticity E90 to an apparent value in order to cater for 

any non-linearity. The results shown in the figures above were obtained with k=1.0. Some 

trials changing this value did not show any improvement of fit, so no adjustments are 

proposed.  
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6 Serviceability deformation 

The models aspired to predict the deformation at the point where the standard CPG strength is 

attained, Leijten[1]. For practical application the deformations at the serviceability limit will 

also be of interest for the structural designer. Is it possible to adapt the model and to predict 

the deformation at serviceability limit? For this reason the test data of several load cases and 

test series were reviewed. In general, the deformation at serviceability limit appeared to be 

approximately 50% of the deformation attained for the CPG strength. For practice, it simply 

means that Eq.(5) can be maintained with two adaptions. The E90 is doubled and the load 

perpendicular to grain is changed to the serviceability load, Fc,90,ser as given in Eq.(8). 
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1 1
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n nn
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bE l l
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 
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 
          (8) 

 

How realistic the deformation predictions for building practice turn out to be cannot be seen 

separately from the accuracy of the strength class E90 values and the way they are determined 

by using a standard test method. As mentioned, the values for Norway Spruce in EN338 are 

twice as high as determined experimentally, leading to design calculations that underestimate 

the actual behaviour.  

 

7 Conclusion 

The aim of the study is to investigate the ability of models to predict the bearing deformation 

of timber loaded perpendicular to the grain. Starting point for the deformation models is the 

accurate determination of the modulus of elasticity perpendicular to grain for the wood 

species tested. The test standard EN408 allows assessing the physically correct value by using 

a prismatic test loaded over the full surface. Unlike the method prescribed by this standard   

the deformations should be taken over the total specimen depth to obtain realistic values. For 

this reason revision of this part of EN408 is advised. The strength class values in EN338 for 

the modulus of elasticity perpendicular to grain are questionable and should be re-evaluated. 
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The modification factor k that was introduced to modify the modulus of elasticity E90 to an 

apparent value does not improve the model fit and subsequently can be taken as 1.0 in the 

models. The best performing model is given by Eq.(5). Regarding the evaluation of this 

bearing model for Spruce a satisfactory fit was obtain. This data base consisted of 72 samples, 

representing 794 test results covering for all load cases. In Figure 9 the trend line 

characteristics are given as y=1.009x with a coefficient of determination of R
2
=0,57 which 

increases to 0.67 when the intersection with the origin is left free. When the whole test data 

base is used, covering the wood species Spruce, Beech, Poplar, Cumaru and Akki, comprising 

of 134 samples and 1164 test results these trend line values change to y=1.004x with a 

coefficient of determination of R
2
=0,46 and 0.62, respectively.   

The bearing deformation model of Eq.(5) is therefore the preferred model regarding the 

simplicity (ease of use) and the predictive ability compared to the other models. It is the only 

model ever reported that can be applied to all the practical load cases and with this accuracy.   
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