
 

Detection rate of fetal distress using contraction-dependent
fetal heart rate variability analysis
Citation for published version (APA):
Warmerdam, G. J. J., Vullings, R., van Laar, J. O. E. H., van der Hout-van der Jagt, M. B., Bergmans, J. W. M.,
Schmitt, L., & Oei, S. G. (2018). Detection rate of fetal distress using contraction-dependent fetal heart rate
variability analysis. Physiological Measurement, 39(2), Article 025008. Advance online publication.
https://doi.org/10.1088/1361-6579/aaa925

DOI:
10.1088/1361-6579/aaa925

Document status and date:
Published: 28/02/2018

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1088/1361-6579/aaa925
https://doi.org/10.1088/1361-6579/aaa925
https://research.tue.nl/en/publications/14750236-eac7-4356-8c4f-59dbe429badc


Detection rate of fetal distress using contraction-dependent
fetal heart rate variability analysis

G.J.J. Warmerdam1, R. Vullings1, J.O.E.H. Van Laar2, M.B. Van der
Hout-Van der Jagt1,2, J.W.M. Bergmans1, L. Schmitt3, and S.G. Oei1,2
1 Faculty of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The
Netherlands
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Abstract. Objective: Monitoring of the fetal condition during labor is currently performed
by cardiotocography (CTG). Despite the use of CTG in clinical practice, CTG interpretation
suffers from a high inter- and intra-observer variability and a low specificity. In addition to
CTG, analysis of fetal heart rate variability (HRV) has been shown to provide information
on fetal distress. However, fetal HRV can be strongly influenced by uterine contractions,
particularly during the second stage of labor. Therefore, the aim of this study is to examine if
distinguishing contractions from rest periods can improve the detection rate of HRV features
for fetal distress during the second stage of labor. Approach: We used a dataset of 100
recordings, containing 20 cases of fetuses with adverse outcome. The most informative HRV
features were selected by a Genetic Algorithm and classification performance was evaluated
using Support Vector Machines. Main results: Classification performance of fetal heart rate
segments closest to birth improved from a geometric mean of 70% to 79%. If the classifier
was used to indicate fetal distress over time, the geometric mean at 15 minutes before birth
improved from 60% to 72%. Significance: Our results show that combining contraction-
dependent HRV features with HRV features calculated over the entire fetal heart rate signal
improves the detection rate of fetal distress.

Keywords: Intrapartum monitoring, fetal heart rate variability, uterine contractions, Genetic
Algorithm, Support Vector Machine. Submitted to: Physiol. Meas.

1. Introduction

The introduction of cardiotocography (CTG) in the 1960s, has enabled continuous monitoring
of the fetal heart rate (FHR) and uterine contractions. In current obstetric units, CTG has
become the worldwide standard for detection of fetal distress during labor. However, the
CTG is interpreted visually and the inter- and intra-observer variability is high (Blix et al.,
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2003). Furthermore, despite a high sensitivity of CTG interpretation, the specificity is poor
(Ayres-de Campos et al., 2015). As a result of the low specificity, the rate of unnecessary
operative interventions has increased since the introduction of CTG in the clinic (Alfirevic
et al., 2006). To detect if the fetus is in distress, additional information is therefore often
required when the CTG is abnormal.

In recent studies, analysis of fetal heart rate variability (HRV) has been shown to provide
information on fetal distress (Gonçalves et al., 2006; van Laar et al., 2010, 2011; Spilka et al.,
2012; Georgieva et al., 2013; Abry et al., 2013; Xu et al., 2014; Warmerdam et al., 2016).
Since the autonomic nervous system (ANS) regulates the heart rate, variations in the heart
rate reveal autonomic regulation and might indirectly provide information on fetal distress. To
quantify changes in HRV, several features have been developed in the literature that describe
different aspects of HRV. For overviews of the most commonly used HRV features the reader
is referred to (Voss et al., 2009) or (Bravi et al., 2011).

Most HRV features have been developed and validated for adults in controlled
experiments. However, unlike for adults, changes in the exterior of the fetus cannot be
controlled during labor. Uterine contractions can lead to a temporary reduction of oxygen
supply to the fetus (e.g. due to umbilical cord occlusion or reduced maternal placental blood
flow). Besides, uterine contractions can cause large fluctuations in the intrauterine pressure,
directly influencing the fetal cardiovascular system. As labor progresses into a stage of active
pushing, the strength and influence of contractions increases.

In Romano et al. (2006) and Cesarelli et al. (2010), it was shown for healthy fetuses
that HRV was significantly higher during contractions as compared to rest periods (i.e. the
period in between contractions). Moreover, Warrick et al. (2010) used an input-output model
to describe the relation between the uterine activity (UA) and FHR signal, and showed that
features extracted from this model provided information about fetal distress. The change
in FHR during contractions could indicate a healthy response of the fetal ANS to stabilize
the cardiovascular system. In a recent study we showed that the differences between HRV
features during contractions and rest might be used to improve the detection of fetal distress
(Warmerdam et al., 2016).

In (Spilka et al., 2012; Georgoulas et al., 2006; Georgieva et al., 2013; Xu et al., 2014)
it was shown that the detection of fetal distress can be improved by classifying combinations
of multiple HRV features. Therefore, in this paper we examine whether the detection of fetal
distress can be improved by combining HRV features that were calculated over the entire heart
rate with HRV features that were calculated separately during contractions and during rest
periods. To determine the most informative subset of HRV features, both with and without the
additional contraction-dependent HRV features, we used a Genetic Algorithm (GA) (Mitchell,
1998). Furthermore, the classification performance of these subsets for detection of fetal
distress was evaluated over time, using Support Vector Machines (SVMs) (Shawe-Taylor and
Cristianini, 2000).

The rest of this paper is organized as follows; Section 2.1 discusses the data acquisition
and pre-processing. In Sections 2.2 and 2.3 we summarize the implementation of the used
HRV features. Feature selection, classification, and validation are explained in Sections 2.4-
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Figure 1. Flowchart of signal processing.

2.6. Results and discussion are presented in Sections 3 and 4.

2. Methods

This section describes the different HRV features, feature selection, and the classification that
was used in this paper. The overall classification procedure is presented in Fig. 1.

2.1. Data acquisition and pre-processing

We used FHR and UA signals that were recorded on a Neoventa STAN® (Mölndal, Sweden)
in the Máxima Medical Center in Veldhoven, the University Medical Center in Utrecht, and
registrations collected in Sweden in the context of STAN evaluation over the period 2001-
2008. Registrations of at least 36 weeks of gestation were included. Pregnancies complicated
by intra-uterine growth restriction, fever, fetal congenital anomalies, or use of ritodrine were
excluded. We used beat-to-beat FHR signals that were recorded by a scalp electrode. UA was
recorded with either a tocodynamometer or intra-uterine pressure catheter. Contractions were
annotated by a clinical expert that had no knowledge of the FHR signal or fetal outcome.

Because the beat-to-beat R-R intervals are determined when a heartbeat occurs, the R-R
intervals are not equidistantly sampled. We used linear interpolation to obtain an equidistantly
sampled FHR signal, sampled at a rate of 4 Hz. If an R-R interval changed by more than 25
BPM or more than 200 ms with respect to the adjacent R-R interval, the R-R interval was
considered an artifact. Artifacts were corrected by linear interpolation.

Each registration was divided into segments of 10 minutes, with five minute overlap.
If a segment contained less than 20% loss of FHR signal and at least annotation of two
contractions and two rest periods, the segment was used for further analysis. We only included
FHR signal during the second stage of labor (stage of active pushing), since during this
stage contractions have a strong effect on the fetus. Besides, because we expect that the
effects of oxygen deficiency increase as labor progresses, we only considered FHR segments
up to maximally 45 minutes before birth. Since we are also interested in the classification
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Table 1. Clinical characteristics of included fetuses.

healthy fetuses fetuses with adverse outcome
Clinical features (cases n=80) (cases n=20)

Gestational age (days) 280 ± 10 283 ± 8
Birth weight (g) 3551 ± 471 3560 ± 467
1-minute Apgar score 8.6 ± 1.1 6.3 ± 2.0
5-minute Apgar score 9.5 ± 0.5 7.8 ± 2.0
Cord arterial pH 7.25 ± 0.03 7.00 ±0.04
Cord arterial base excess (mmol/l) -5.8 ± 2.3 -16.0 ± 2.2
Length second stage of labor (min) 58 ± 24 62 ± 24

Values are expressed as mean and standard deviation.

performance over time, only registrations were included with at least 3 usable 10 minute
segments within the final 45 minutes before birth.

The fetal outcome was based on the umbilical arterial acid-base state. Adverse outcome
was defined as a pH below 7.05 and base excess below -12 mmol/l, and healthy as a pH
above 7.20 (Sundström et al., 2000). Out of 1232 registrations, our dataset contained 44
cases with adverse outcome. Of these 44 cases, 6 cases were excluded due to either intra-
uterine growth restriction, fever, fetal congenital anomalies, or used of ritodrine. Another 6
had to be excluded because no information was available on the onset of the second stage of
labor. Of the remaining 32 cases, 20 cases had sufficient quality FHR and UA signal, and
were used for further analysis. The 20 cases with adverse outcome were matched with 80
healthy cases (1-to-4 ratio between the size of both groups). We have attempted to match the
prevalence of certain medications that can cross the placenta and influence fetal HRV (e.g.
anti-hypertensives or pain killers) in accordance with the difference in size of the two groups.
The main clinical characteristics of the included fetuses is shown in Table 1.

2.2. HRV analysis

For each 10 minute FHR segment, conventional HRV features were calculated over the
resampled FHR signal. The HRV features used in this paper have been described in detail
in our previous study (Warmerdam et al., 2016) and only the implementation is discussed
here. The used HRV features are listed in Table 2. In the rest of this paper we will denote the
resampled FHR signal by x[n], for samples n = 1, ...,N, with N the length of the signal.

As shown by Peters et al. (2011), artifact correction by interpolation influences the HRV
analysis. Excluding these periods for the computation of HRV features reduces the error
made in the HRV analysis (Peters et al., 2011). This section also describes how we reduced
the influence of artifacts for each HRV feature.

Statistical features The standard deviation (SD) and the root mean square of successive
differences (RMSSD) were calculated as statistical features. For the calculation of SD and
RMSSD all artifact corrected samples were excluded.



Contraction-dependent fetal heart rate variability analysis 5

Table 2. HRV features.
HRV features abbreviation
Standard deviation SD
Root mean square of successive differences RMSSD
Low frequency power LF
High frequency power HF
Total power T P
Normalized low frequency power LFn

Normalized high frequency power HFn

Sample entropy SampEn
scaling exponent α

Deceleration capacity DC

Frequency domain features Spectral analysis was performed to examine the heart rate at
specific frequency bands that are related to sympathetic and parasympathetic activity (Van
Laar et al., 2008). Frequency bands for analysis of fetal HRV differ from frequency bands for
analysis of adult HRV (van Laar et al., 2009). Power in the low frequency band (LF , 0.04-
0.15 Hz) is related to both sympathetic and parasympathetic activity, and power in the high
frequency band (HF , 0.4-1.5 Hz) is related to parasympathetic activity only. Besides absolute
LF and HF , also normalized frequency powers were calculated (LFn and HFn), by dividing
LF and HF by the total power (T P, 0.04-1.5 Hz).

Spectral analysis was performed by the Continuous Wavelet Transform (CWT) with a
fifth order symlet wavelet (Peters et al., 2011; Warmerdam et al., 2016). In this study, we
used the complex CWT (Addison, 2002). Because the complex CWT also provides phase
information, it is possible to calculate the spectral power at each sample, leading to more
reliable calculation of LFn and HFn. Note that resampling of the beat-to-beat FHR signal to an
equidistant signal may cause some distortion of the spectral analysis (Clifford and Tarassenko,
2005). Yet, we expect that the influence of this distortion on the outcome is limited since
resampling was performed for all registrations.

CWT compares x[n] to a family of analyzing wavelet functions ψ[n−τ

s ], where s is a
scaling parameter and τ the position parameter of the wavelet. The CWT coefficients W [s,τ]
can be obtained by varying the scale parameter s and the position parameter τ . The power at
each time instant and scale is proportional to the square of the CWT coefficients. The total
power in a frequency band is then calculated by integrating the power over the scales within
the frequency band of interest and averaging over time.

Each wavelet ψ[n−τ

s ] has a support width that is related to the scaling parameter s.
Similar to Peters et al. (2011), we considered one-third of support width of ψ[n−τ

s ] as the
effective support width. A CWT coefficient was excluded for the calculation of HF if one
or more samples within the effective support width was artifact corrected. To calculate LF ,
we excluded CWT coefficients when more than five seconds of consecutive FHR signal was
artifact corrected within the effective support width.
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Complexity features The presence of irregularities in the heart rate is seen as healthy
blood pressure control by the ANS. Complexity in short time signals can be quantified
by Sample Entropy (SampEn) (Richman and Moorman, 2000). To calculate SampEn, the
FHR is divided into vectors u[i] = {x[i],x[i + 1], ...,x[i + m− 1]}. SampEn estimates the
conditional probability that if patterns are similar for length m− 1, they will also be similar
for length m. A tolerance parameter r is used to define a threshold for similarity between
two patterns. We excluded vectors u[i] from the calculation of SampEn if any of the samples
{i, i+1, ..., i+m−1} was artifact corrected. Similar to Gonçalves et al. (2006), Spilka et al.
(2012) and (Warmerdam et al., 2016), the length of the vectors was set to m = 2 and the
tolerance to r = 0.2SD.

Fractal features To describe the scaling properties of HRV over different time scales, we
used scaling exponent α , which is obtained from Detrended Fluctuation Analysis (DFA)
(Ihlen, 2012). To calculate α , first the cumulative sum y[n] of the FHR signal is obtained.
Next, y[n] is divided into equally spaced segments of length a and the linear trend of each
segment (ya[n]) is determined. The characteristic fluctuation F at each scale a is computed as
the root mean square (RMS) deviation between y[n] and its trend ya[n].

The scaling exponent α is given by the slope of the relation between log(F [a]) and
log(a). Similar to Abry et al. (2013), α was computed over the scales ranging from 1 to
60 seconds, which corresponds to the physiological range of the baroreflex.

Artifact corrected samples are excluded from the calculation of the linear trend ya[n] and
the characteristic fluctuation F . Moreover, if the percentage of artifact correction within a
segment of length a is more than 20%, it is excluded entirely.

Phase rectified signal averaging In addition to the HRV features that were included in our
previous study (Warmerdam et al., 2016) and have been described above, we also used Phase
Rectified Signal Averaging (PRSA). PRSA has shown promising results for the detection
of fetal distress (Georgieva et al., 2014) and (Xu et al., 2014). The basic idea of PRSA is
to account for non-stationarities in the heart rate by aligning heart rate segments based on
predefined events, called anchor points (ν). For analysis of the heart rate, anchor points are
typically defined as decelerations and accelerations in the heart rate, and PRSA quantifies
the average response to a deceleration (the deceleration capacity, DC) or acceleration (the
acceleration capacity, AC). It was shown by Georgieva et al. (2014) that DC and AC are highly
correlated and that their performance for detection of fetal distress is similar. Therefore, we
only included DC in our analysis.

PRSA depends on two parameters: a filter parameter T and a window parameter L
(Kantelhardt et al., 2007). Similar to Georgieva et al. (2014) we used T = 5 and L = 45.
Artifact corrected samples were not used as anchor points. Moreover, when there was more
than 20% artifact correction within a window ν±L, the anchor point ν was also excluded.
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Figure 2. Example of an FHR (upper graph) and UA signal (bottom graph) of healthy fetus.
Black lines are rest periods and gray lines contractions.

2.3. Contraction-dependent HRV features

In addition to calculating HRV features over the entire FHR signal, we also calculated HRV
features separately during contractions and rest periods. Using the expert annotations, the rest
period was defined as the period in between two contractions. No contraction or rest period
was defined if the length of a contraction or the time between contractions was less than 20
seconds. Note that the fetus typically requires some recovery time directly after a contraction,
but has enough time to recover before a new contraction. Therefore, if the time between two
contractions was more than one minute, we only considered the final minute preceding the
second contraction as rest period. In Fig. 2 an example is shown of an FHR signal that is
recorded during contractions and during rest periods.

HRV features during contractions were based on R-R intervals that were recorded during
contractions (denoted as f eatureuc). Similarly, HRV features during rest periods were based
on R-R intervals that were recorded during rest periods (denoted as f eaturerest). Also the ratio
between HRV features calculated during contractions and during rest was included (denoted
as f eatureratio = f eatureuc/ f eaturerest), as the ratios have shown promising results in our
previous studies (Warmerdam et al., 2016). Because the time between contractions or the
length of the contractions was often less than one minute, we could not calculate LF , LFn,
HFn, α and DC separately during contractions and during rest periods. Our analysis of
contraction-dependent HRV features was therefore limited to SD, RMSSD, HF , and SampEn.

In total, 22 HRV features were used: 10 calculated over the entire FHR, 4 during
rest, 4 during contractions, and 4 ratio features, as presented in Table 3. We defined HRV
feature set S1 ∈ R10 as the set of HRV features that are calculated over the entire FHR,
without distinguishing contractions and rest periods. The set of HRV features that contain
the contraction-dependent HRV features is defined as S2 ∈ R12. The set of HRV features that
contains both HRV features that are calculated over the entire FHR signal and contraction-
dependent HRV features is defined as S3 = S1∪S2.
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Table 3. HRV feature sets.
feature set HRV features
S1 ∈ R10 SD, RMSSD, LF , HF , T P, LFn, HFn, SampEn, α , DC
S2 ∈ R12 SDuc, RMSSDuc, HFuc, SampEnuc

SDrest , RMSSDrest , HFrest , SampEnrest

SDratio, RMSSDratio, HFratio, SampEnratio

S3 ∈ R22 S1∪S2

2.4. Feature selection

Fulcher et al. (2012) showed that many HRV features that are described in Section 2.2
are correlated and might therefore contain redundant information. Besides, our dataset is
relatively small, with only 20 cases of fetuses with adverse outcome. As a consequence, there
is a risk of overfitting when too many HRV features are used for classification. Therefore,
we used a Genetic Algorithm (GA) to select the best combination of HRV features. GA has
the advantage that it can effectively explore the entire feature space, without running through
all possible combinations of features and it has successfully been used for detection of fetal
distress by Xu et al. (2014).

A schematic overview of GA is presented on the right side of Fig. 1. GA iteratively
creates populations of candidate feature subsets (genotypes) by randomly combining and
mutating genotypes of the population in a previous iteration, until certain convergence criteria
are reached. In each iteration, the genotypes of the current population are scored by a
fitness function. Genotypes are then selected at random to generate a new population with
a probability that is proportional to their fitness value. Each new population consists of
elite children (best performing genotypes that are guaranteed to survive to the next iteration),
children that are produced by random mutations of a single genotype, and children that are
produced by random crossover between pairs of genotypes.

For the implementation of GA, we used ga from the standard Global Optimization
Toolbox of Matlab® (The Mathworks, Inc. Natick, MA). As fitness function, we used the
performance of an SVM classifier, which is explained in Section 2.5. Based on the ranking
in fitness value, genotypes are selected using a roulette system (Mitchell, 1998). Genotypes
with equal scores were given equal rank and only the best 50% was used to generate the
next population. Similar to Xu et al. (2014), the population size was set to 100, two elite
children were used, and the crossover fraction was set to 80%. The remaining 20% for the
new population was obtained by single point mutation. If two equal genotypes were selected
for crossover, single point mutation is used instead to generate the child. To prevent GA from
reaching a local minimum with a relatively large number of selected features, the number of
selected features of a genotype was restricted to a maximum of five features. The GA was
terminated if the best fitness value of the population did not improve for 10 iterations or in
case 200 iterations were done. The settings for GA are summarized in Table 4.
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Table 4. GA settings.
Parameter Value
Population size 100
Number of elite children 2
Crossover fraction 80%
Mutation function single point
fitness value SVM performance
fitness function rank
Genotype selection roulette system
Maximum number of features in genotype 5
Maximum iterations with same fitness value 10
Maximum iterations 200

Table 5. SVM settings.
Parameter Value
Kernel function rbf
Kernel width (σ ) 1
Penalty factor (C) 1
Optimization metric g
Misclassification cost majority class 0.25
Misclassification cost minority class 1

2.5. Classification

We used SVMs to classify healthy fetuses and fetuses with adverse outcome. SVMs are
supervised learning models that construct a set of hyperplanes that minimize the classification
error while maximizing the distance between the hyperplanes and its nearest data points
(Shawe-Taylor and Cristianini, 2000). We used a Gaussian radial base function (rbf) to
allow for non-linear decision boundaries. To implement the SVMs, we used the standard
implementation fitcsvm in the Statistics and machine learning toolbox of Matlab®. We used
the default settings of the SVM for the width of the Gaussian kernel function (σ = 1) and the
penalty parameter for misclassification (C = 1).

The imbalance in the distribution of the two classes in our dataset causes the SVM to
be accurate for classification of the majority class (healthy fetuses) but to perform poorly for
classification of the minority class (fetuses with adverse outcome) (He and Garcia, 2009).
To prevent poor classification of the minority class, we defined a cost function based on the
imbalance in the class distribution: the cost for misclassification of the minority class was
thus four times higher than misclassification for the majority class. The SVM settings are
summarized in Table 5.
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2.6. Validation

In case of an imbalanced dataset, the accuracy (Ac) is not the best metric to evaluate the
classification performance (He and Garcia, 2009) and (Georgoulas et al., 2006). Instead, we
used the geometric mean (g) as metric to train the classifier and as fitness function for the
feature selection in GA. The metric g provides a balance between the classification accuracy
of the majority class (specificity, Sp) and the classification accuracy of the minority class
(sensitivity, Se), and is defined as g =

√
Sp ·Se (He and Garcia, 2009). The SVM rbf is a soft-

type classifier, meaning that the output of the classifier can be a continuous value. Changing
the threshold settings of the classifier will vary Se and Sp. Receiver operating characteristic
(ROC) curves can be used to evaluate how the classifier performs for various classification
threshold settings. The area under the ROC curve (AUC) can be used as a metric to evaluate
the classification performance for various classification threshold settings.

For feature selection, the FHR segments of all registrations were used that were closest
to birth. We used the 10-fold cross validation performance of the SVM as fitness value in
GA. Note that for feature selection we only used the 10 minute FHR segment of each fetus
that was closest to birth, meaning that from each fetus only a single FHR segment was used.
The 10 minute FHR segment was either included in the training or in the test partition, but
never in both. Using 10-fold cross validation ensures that the fitness value for genotypes is
not overestimated. Due to our relatively small dataset, containing only 20 cases of fetuses
with adverse outcome, feature selection and classification could be influenced by the location
where the dataset was split into ten fold. To obtain a more objective result, feature selection
was repeated 50 times, starting from different data splits. Hence, we generated 50 subsets of
HRV features with 50 outcome measures for sets S1, S2, and S3.

Besides classification performance for the FHR segments closest to birth, we are also
interested in the classification performance over time. To this end, a classifier was trained
for each generated feature subset on the FHR segments closest to birth. Then, the trained
classifiers were used to classify if a fetus was in distress or not for all FHR segments within
a registration, starting from 45 minutes before birth up to the time of birth. Since the purpose
of the classifier would be to initiate an intervention in case an FHR segment is classified as
fetal distress, all remaining FHR segments of that registration up to the time of birth were also
indicated as fetal distress.

At each time instant the g, Se, and Sp for a classifier were calculated. Note that since
not all registrations have 45 minutes of active pushing, the outcome measures were calculated
with respect to the total number of registrations with at least one FHR segment up to that time
(as shown in Fig. 3). Furthermore, for some recordings we were unable to analyse the final
minutes before birth, either due to loss of FHR signal or insufficient quality UA signal. For
these recordings, we retained the classification value of the final available segment up to the
time of birth.



Contraction-dependent fetal heart rate variability analysis 11

0102030
time before birth [min]

0

20

40

60

80

100

av
ai

la
bl

e 
re

gi
st

ra
tio

ns
 [

%
]

pH>7.20
pH<7.05

Figure 3. Percentage of registrations with at least one FHR segment up to that time.

0

50

100

150

200

250

SD

rest contractions 0

5

10

15

20

R
M

SS
D

rest contractions 0

50

100

150

H
F

rest contractions 0

0.1

0.2

0.3

0.4

0.5

0.6

Sa
m

pE
n

rest contractions

Figure 4. Comparison of HRV features measured during rest periods and contractions. Results
are shown as boxplots where the central marker indicates the median and the edges of the box
the interquartile range. The whiskers correspond to the full range of the data.

3. Results

Figure 4 show boxplots of the HRV features that were calculated separately during
contractions and rest periods (SD, RMSSD, HF , and SampleEn) for the entire dataset. The
correlation matrix of the HRV features used in this study is presented in Figure 5. Figure
6 shows the HRV features that were selected in the 50 runs by GA. From S1 (only HRV
features that are calculated over the entire FHR segments), T P, LFn, HFn, and DC were most
frequently selected. In case of S2 (only contraction-dependent HRV features) SDratio and
RMSSDuc were most frequently selection. In case of S3 (combined set of HRV features in S1

and S2), SDratio and HF were most frequently selected. The average size of selected subsets
from S1 was 3.0, from S2 2.6, and from S2 3.5 HRV features.

The average cross validation performance for classification of the FHR segments closest
to birth is shown in Table 6. The average g for S1, S2, and S2 were g = 70%, g = 76%, and
g = 79%, respectively. Finally, Fig. 7 shows the classification performance over time.
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Figure 5. Correlation matrix of the HRV features in S3. The color indicates the strength of the
correlation.

Table 6. Average 10-fold cross validation performance for classification of the FHR segments
closest to birth.

Feature set g (%) Se (%) Sp (%) Ac (%) AUC
S1 70 66 76 74 69
S2 76 75 76 76 78
S3 79 81 77 78 80

4. Discussion

Analysis of fetal HRV provides information on fetal distress. Most HRV features have been
developed and validated for adults in controlled experiments. However, during labor the fetal
cardiovascular system is strongly influenced by contractions. As can be seen in Fig. 4, HRV
features are higher during contractions compared to HRV features during rest periods. In this
study we showed that separating contractions from rest periods improves HRV analysis for
the detection of fetal distress during labor.
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Figure 6. Results feature selection by GA.

4.1. Data acquisition

Out of the relatively large number of available registrations, we could only include 20 cases
of fetuses with adverse outcome. This is partly due to the low incidence of fetuses with
pH below 7.05 and partly due to our strict inclusion criteria. Moreover, we required a good
quality UA signal to be able to clearly identify contractions. Because in clinical practice
the UA signal is often of poor quality, this requirement limits the application of contraction-
dependent HRV features. A potential solution to improve the quality of the UA signal might
be to use electrohysterography to record the UA instead of a tocodynamometer (Euliano et al.,
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Figure 7. Average performance classification over time.

2013) and (Vlemminx et al., 2017). In addition to good quality UA signal, less than 20% loss
of FHR signal was allowed. To minimize the influence of artifact correction of the FHR signal,
periods with artifact corrected FHR were excluded from the calculation of HRV features.

In this study we only focussed on FHR segments during the second stage of labor. During
the second stage, contractions generally have a strong effect on the fetus. In contrast, during
the first stage of labor (stage of cervical dilation), the effect of contractions is less pronounced.
Therefore, a classifier that is trained on FHR from the second stage of labor might be less
predictive during the first stage of labor. For future work it would be interesting to also
examine the classification performance during the first stage of labor.

Because the goal of this study was to examine whether separating contractions from rest
periods can improve the HRV analysis, we limited our dataset to two groups that are well
separated in terms of fetal outcome and did not consider registrations with pH between 7.05
and 7.20. However, this approach simplifies the classification task and does not represent true
clinical conditions. Before a classifier can be used in clinical practice, future study should use
a dataset that contains registration with all pH values.

4.2. Feature selection

In Fig. 5 it can been seen that several of the HRV features that were used in this study were
correlated. In particular, HRV features calculated on the entire FHR signal were correlated to
their counterpart that was calculated during contractions or during rest periods (e.g. SD was
correlated to SDrest and Suc). To select the best combination of HRV features for detection of
fetal distress we used GA. The average size of selected subsets from S1, S2, and S3 (3.0, 2.6,
and 3.5, respectively) was smaller than the maximum number of five features that was allowed
for GA, indicating that larger feature subsets would not have resulted in better classification.

Because GA uses the classification performance to score the candidate subsets, selected
HRV features could perform differently for other classifiers. Furthermore, 10-fold cross
validation was used for feature selection. Since feature selection could be influenced by
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splitting the dataset, GA was repeated fifty times using different data splits. The influence
of splitting the dataset on feature selection can be seen from Fig. 6 by the number of HRV
features that were selected multiple times.

The most frequently selected HRV feature for S1 was T P, and the most frequently
selected HRV feature for S2 and S3 was SDratio. Although T P was selected most of the
time from S1, T P was only selected a few times for S3, as shown in Fig. 6. Since both T P
and SDratio are related to the presence of decelerations, these HRV features contain similar
information. SDratio also contains information about how well the fetus is able to recover
from contractions: a high SDratio indicates that the fetus quickly recovers from a contraction
and is able to stabilize its cardiovascular system during the rest periods. On the other hand, a
low ratio indicates that the variability during contractions and rest periods is similar, meaning
that the fetus is unable to recover during the rest periods. In case SDratio is selected, the
information of T P becomes redundant.

Other HRV features that were often selected for S1 were LFn, HFn, and DC. van Laar
et al. (2010) also found that normalized spectral powers were predictive of fetal distress.
Since changes in normalized spectral powers are not masked by changes in the total power,
normalized spectral powers can give better insight in cardiovascular control than absolute
spectral powers.

Interestingly, although HFn was frequently selected for S1 it was not often selected for S3.
Instead, for S3 HF was often selected in combination with SDratio. Since SDratio is related to
the presence of decelerations and the total power, it could be that the combination of SDratio

and HF also contains the information in HFn, since SDratio is related to T P. In line with
the selection of HF for S3 is the selection of RMSSDuc and HFrest for S2, as the combined
information of RMSSDuc and HFrest is similar to the information of HF .

To gain more insight in cardiovascular control, it would be interesting to examine HFn

and LFn during contractions and rest periods. However, the length of contractions or rest
periods was often less than the required length to calculate LFn and HFn, and we were unable
to calculate HFn and LFn separately during contractions and rest periods. Besides LFn and
HFn, in this study DC was also frequently selected from S1, similar to findings in (Xu et al.,
2014). Since DC contains information about decelerations, it contains similar information
as SDratio and was not frequently selected from S3. In our results, scaling exponent α was
selected less often. Recently, Chudacek et al. (2014) obtained promising results for detection
of fetal distress by calculating scaling exponents using a wavelet based scattering transform.
Abry et al. (2013) showed that the influence of decelerations on the scattering transform is
limited and using the scattering transform might improve the fractal analysis.

4.3. Classification

Many factors can influence the response of the fetus to contractions. There are clinical
parameters that can influence the FHR, such as gestational age (Laar et al., 2014), behavioral
states (van Laar et al., 2009), or medication (Verdurmen et al., 2013). Furthermore,
uterine contractions can directly influence the fetal cardiovascular system through a rise in
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intrauterine pressure, or indirectly by blocking the oxygen supply to the fetus (e.g. umbilical
cord occlusion) (van der Hout-van der Jagt et al., 2013). As labor progresses, the effect of
contractions on the fetal cardiovascular system increases. As a consequence, in the literature
many different FHR patterns have been described with different characteristics, several of
which have been related to fetal distress (e.g. late decelerations, bradycardia, sinusoidal
patterns, or saltatory patterns) (Sundström et al., 2000). The relatively low number of cases
with adverse fetal outcome in combination with the large variation in FHR patterns makes
training of a classifier challenging.

We did not compare our classification performance to visual CTG interpretation, because
the inter- and intra-observer variability of CTG interpretation is generally high (Blix et al.,
2003). Besides, in the final minutes before birth the CTG is typically abnormal in most
registrations. Hence, results obtained from visual CTG interpretation might in this case not
be representative.

The average 10-fold cross validation performance for classification of the FHR segments
closest to birth improved from g = 70% for S1 to g = 76% for S2, and g = 79% for S3.
The difference is less pronounced in terms of Ac (Ac = 74% for S1, Ac = 76% for S3, and
Ac = 78% for S3), because Ac is mostly determined by correct classification of the majority
class. Note that the classifier was trained to optimize g, which is a balance between Se and
Sp. Depending on the use of the classifier in clinical practice, it would be more appropriate
to train a classifier that is either more sensitive to misclassification of the minority group (and
increase Se) or misclassification of the majority group (and increase Sp). This can be achieved
by changing the penalty parameter for misclassification or changing the threshold settings of
the SVM. As AUC is higher for S2 and S3 compared to S1 (AUC = 69% for S1, AUC = 78%
for S2, and AUC = 80% for S3), using S2 and S3 will perform better for varying settings for
the penalty parameter or classification threshold.

The earlier a prediction, the more useful the information for clinical intervention. For
classification over time, the performance of S2 and S3 were similar, although performance of
S3 was slightly better. The average g over time for S3 increased by 12% with respect to the
average g of S1 (57% for S1, 68% for S2, and 69% for S3). At 15 minutes before birth, the
classification performance for S1 was g = 60%, for S2 g = 69%, and for S3 g = 72%. For
all sets S1, S2, and S3, classification performance over time was lower than the classification
performance for the FHR segments closest to birth. It should be noted that fetal distress
develops gradually over time (Fleischer et al., 1982). Since it is unclear at which point the
fetus is no longer capable of handling the stress, the relatively low Se at 35 minutes before
birth (Se = 31% for S1, Se = 52% for S2, and Se = 48% for S3) could be because at that time
some of the fetuses with adverse outcome were still relatively healthy. Further study using a
larger dataset is required to gain more insight into which combination of HRV features is the
most informative and to improve the classification.
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5. Conclusion

Fetal HRV analysis provides information on fetal distress. Combining HRV features
calculated over the entire fetal heart rate with contraction-dependent HRV features improves
the classification performance during the second stage of labor. Further studies are required
to gain more insight in the which combination of HRV features is most informative.
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