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From closed-loop identification to dynamic networks:
generalization of the direct method

Paul M.J. Van den Hof, Arne G. Dankers and Harm H.M. Weerts

Abstract— Identification methods for identifying (modules in)
dynamic cyclic networks, are typically based on the standard
methods that are available for identification of dynamic systems
in closed-loop. The commonly used direct method for closed-
loop prediction error identification is one of the available tools.
In this paper we are going to show the consequences when
the direct method is used under conditions that are more
general than the classical closed-loop case. We will do so by
focusing on a simple two-node (feedback) network where we add
additional disturbances, excitation signals and sensor noise. The
direct method loses consistency when correlated disturbances
are present on node signals, or when sensor noises are present.
A generalization of the direct method, the joint-direct method,
is explored, that is based on a vector predictor and includes
a conditioning on external excitation signals. It is shown to be
able to cope with the above situations, and to retain consistency
of the module estimates.

I. INTRODUCTION

Identification methods for modelling dynamic (cyclic) net-
works are receiving considerable attention. Among different
non-parametric and parametric approaches [1], [2], [3], [4],
[5], a framework for the extension of prediction error ap-
proaches to the case of dynamic networks has been presented
in [6]. Focussing on the problem of identifying a single mod-
ule in a dynamic network, conditions have been formulated
for prediction error methods to arrive at consistent module
estimates, see e.g. [6], [7], while identifiability of the network
has been addressed in [8], [9], [10]. The identification
methods typically considered, are based on classical closed-
loop identification methods, referred to as “direct method”
or “two-stage / projection” method ([11]). In a closed-loop
configuration the direct method is very attractive as it leads
to consistent model estimates and asymptotically reaches the
Cramer-Rao lower bound for the variance of model estimates.
While basic consistency results for direct methods applied in
a dynamic network situation have been derived in [6], [7], the
analysis has been limited to the estimation of a single module
and for a particular set-up. When considering a module as
a basic building block for a dynamic network, we need to
generalize this set-up to include disturbances on inputs and
outputs that can be mutually correlated, external excitation
signals that can be present on different locations, and sensor
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noise that can affect the measurements. We will illustrate
the consequences of this generalized set-up on a very simple
two-node feedback configuration. Starting from a classical
two-node closed-loop system we are going to consider the
options of adding (correlated) disturbance signals, external
excitation signals, and sensor noise, to show what the effects
are on consistency of the identification results. We will
introduce and analyse a generalization of the direct method,
by considering a (symmetric) vector signal predictor as well
as adding external excitation signals as predictor inputs,
as introduced in [12]. The resulting so-called joint-direct
method will be shown to be able to provide consistency
in the situation of correlated disturbances and sensor noise,
and therefore can serve as a prime identification method for
modules in dynamic networks.
After introducing the system setup that we will be consider-
ing, the classical direct method of closed-loop identification
will be briefly reviewed in Section III, and its results will
be evaluated for our more general network setup in Section
IV. A new joint-direct method will then be presented and
analyzed, while the particular issue of dealing with sensor
noise is addressed in Section VI.

II. SYSTEM SETUP
We consider a two-node network system, as depicted in Fig-
ure 1, where G0

12 and G0
21 are linear time-invariant systems,

the circles are summation points, with the node signals w1

and w2 being the results of the summations respectively,
r1, r2 are external excitation signals that are available to the
user, and v1, v2 are non-measured disturbances, modelled as
stationary stochastic processes with rational spectral density
([11]).

Fig. 1. Two-node dynamic network system.

The system equation reads:

w(t) = G0(q)w(t) + v(t) +R0r(t) (1)

with
G0(q) =

[
0 G0

12

G0
21 0

]
,



and R0 = I (the identity matrix) when both signals r1, r2 are
present, and with q the shift operator, i.e. qw2(t) = w(t+1).
Unless otherwise stated we will assume that (excitation)
signals r are uncorrelated to (disturbance) signals v, and
that the closed-loop system is stable. The noise process v is
modelled through v(t) = H0(q)e(t), with H0 monic, stable
and minimum phase, and e a white noise process. In order
to simplify technicalities, we will assume that the modules
G0

12 and G0
21 are strictly proper. The node signals w are

considered to be measured, possibly under the presence of
sensor-noise. In that latter situation the measured variables
become w̃(t) := w(t) + s(t), with s sensor noise. Sensor
noise is present only when it is particularly mentioned in the
text.

III. THE CLASSICAL DIRECT METHOD

In the classical direct method, there is a noise process v2 and
possibly an external excitation signal r1, while v1 and r2 are
absent, and sensor noise is considered not to be present, see
Figure 2.

Fig. 2. Classical closed loop system.

This implies that

H0(q) =

[
0 0
0 H0

2

]
, and R0(q) =

[
1 0
0 0

]
.

The target of direct identification typically is to estimate one
of the modules, i.e. the “plant” G0

21, while the other module
G0

12 is considered to be a feedback controller that might or
might not be known. In the direct method, a one-step-ahead
predictor for node signal w2 is considered,

ŵ2(t|t− 1) := E{w2(t)|wt−1} (2)

where E is expected value, and wt−1 denotes the past of
the measured signal w up to time t− 1. When applying the
predictor to a parametrized model (G21(q, θ), H2(q, θ)), it
can be expressed as

ŵ2(t|t− 1; θ) := H2(q, θ)−1G21(q, θ)w1(t)+

+(1−H2(q, θ)−1)w2(t),

and a model estimate is obtained by applying a least squares
identification criterion:

θ̂N = arg min
θ

1

N

N−1∑
t=0

[w2(t)− ŵ2(t|t− 1; θ)]2. (3)

Under weak regularity conditions ([11]) consistent model
estimates for G0

21 and H0
2 are obtained, provided that

• The data generating system is present in the model set;

• There are no algebraic loops in the network and in the
parametrized model, i.e. G12(∞, θ)G21(∞, θ) 6= 0 for
all θ, with G(∞, θ) := limz→∞G(z, θ);

• There is sufficient excitation in the closed-loop ([11]),
e.g. through presence of r1;

Some characteristics of the direct method in this situation
are:
• Asymptotically, the model estimates reach the Cramer-

Rao lower bound for the variance, on the basis of the
measured data w1 and w2;

• No explicit use is made of the external excitation signal
r1, although it serves its purpose of providing excitation
in the loop;

• Possible prior knowledge of the controller G0
12 does not

help in improving the identification results. Note that
G0

12 can actually be estimated from w1 and r1 in a
noise-free estimation setting.

• The consistency results hold true even if G0
12 is nonlin-

ear and/or time-varying.

IV. THE DIRECT METHOD FOR A NETWORK
SYSTEMS SETUP

A. Consistency results

First we extend the situation of the classical closed-loop to
a situation with an additional disturbance v1 in Figure 3.

Fig. 3. Classical closed loop system with input disturbance.

When analyzing the prediction error ε(t, θ) := w2(t) −
ŵ2(t|t−1; θ) for this situation, we arrive at (using shorthand
notations and denoting S0 := (1−G0

12G
0
21)−1):

ε = H−12 [w2 −G21w1] = H−12 [G0
21w1 + v2 −G21w1]

= H−12 [G0
21 −G21]w1 +H−12 v2.

When using w1 = S0r1 + S0v1 +G0
12S

0v2, this leads to

ε = H2(θ)−1[G0
21 −G21(θ)]S0r1+

+H2(θ)−1
{
S0

S(θ)
v2 + (G0

21 −G21(θ))S0v1

}
(4)

with S(θ) := (1−G0
12G21(θ))−1.

We can now distinguish two situations:
1) If v1 and v2 are uncorrelated, then the expression

for ε(θ) is composed of three independent terms.
Minimization of the power of ε(θ), which is asymp-
totically achieved by (3), is then achieved by making
the r1- and v1-dependent terms 0 which is implied
by G21(θ) = G0

21, and making the transfer from e2



to ε(θ) unity, which is implied by H2(θ) = H0
2 . As a

result consistency of the model estimates can be shown
to hold under the same conditions as in the previous
section. Addition of the disturbance term v1 does not
hurt the consistency results. Actually it adds to the
power of the signal w1 that excites G0

21.
2) If v1 and v2 are correlated, then the above reasoning

fails. It is not guaranteed anymore that G21(θ) = G0
21

and H2(θ) = H0
2 lead to a minimum of the power of

ε(θ). As a result the consistency property is lost.

Quote 1: While the direct method is able to
provide consistent model estimates in a classical
closed loop setting, consistency is lost when the
input signal is affected by an external disturbance
that is correlated to the output disturbance of the
system.

One might consider to add a second external excitation signal
r2 to the closed-loop in an attempt to retain the consistency
property. However adding an r2 signal will not change the
contribution of the disturbance term in the expression (4) for
ε(θ) and therefore will not solve the consistency issue.

Quote 2: Adding an additional external excitation
signal r2 to the closed-loop system has no effect
on the consistency properties as meant in Quote 1.

When the node variables are measured under the influence of
sensor noise, so the measured signals are w̃ = w1 + s1 and
w̃2 = w2 + s2 with s1, s2 sensor noises, a more complicated
situation occurs, which in the literature is referred to as an
errors-in-variables problem. It is known that in this situation
a direct method can not provide consistency results, without
explicitly using the external excitation signal r1, see [13].

Quote 3: Consistency properties of the direct
method are lost when the node signals are mea-
sured under the influence of sensor noise.

B. Confounding Variables

The lack of consistency in the presence of correlated dis-
turbances, can also be explained using the notion of con-
founding variables. In [7] conditions have been formulated
for consistency of the direct method in a general dynamic
network setting. In the setting of the configuration of Figure
3, a confounding variable is a non-measured variable that
has paths to w2 as well as to w1 that do not pass through
measured variables, as e.g. the nonmeasured variable v3 in
Figure 4 (left). Confounding variables create a correlation
between w1 and w2 that is not induced by the module G0

21,
and therefore can cause lack of consistency for the direct
method.
In the situation of Figure 2, the variable v2 has a path to
w2, but the path from v2 to w1 passes through the measured
signal w2 and therefore v2 is not a confounding variable.
In the situation of Figure 3 the situation is more complex.
If v1 and v2 are correlated, then the network configuration

Fig. 4. Classical closed loop system with confounding variable v3 (left)
and correlated disturbances (right).

can actually be rewritten into Figure 4 (right), showing the
presence of confounding variables e1 and e2.
As a result the lack of consistency in the considered situation
can be explained through the presence of confounding vari-
ables. In Section VI it will be shown that also the presence
of sensor noise can actually be phrased in terms of the
occurrence of confounding variables.

V. THE JOINT-DIRECT METHOD

A. The two-node dynamic network situation

We will now consider the two-node dynamic network as
depicted in Figure 1. In an attempt to overcome the lack of
consistency of the direct method in the situation with corre-
lated disturbances, we explore a network predictor that was
introduced in [12], in particular for dealing with algebraic
loops in networks. It is defined as:

ŵ(t|t− 1) := E{w(t)|wt−1, rt} (5)

which, in comparison with (2), shows two differences:
1) Both signals w2 and w1 are predicted, and
2) External excitation signals r are included as predictor

inputs.
As shown in [12], for the case of strictly proper modules,
this network predictor is expressed by

ŵ(t|t−1) =
(
I −H(θ)−1(I −G(θ))

)
w+H(θ)−1R0r (6)

for a parametrized model (G(q, θ), H(q, θ)) while it is as-
sumed that R0 is known and fixed. A model is then identified
by applying the identification criterion:

θ̂N = arg min
θ

1

N

N−1∑
t=0

εT (t, θ)Wε(t, θ),

with ε(t, θ) := w(t)− ŵ(t|t− 1; θ), and W a 2× 2 positive
definite weighting matrix.
For analysing consistency properties of the estimated model
G(q, θ̂N ), H(q, θ̂N ), we analyse the prediction error:

ε(θ) = H(θ)−1(I−G(θ))(I−G0)−1[R0r+ v]−H(θ)−1R0r
= H(θ)−1

[
(I −G(θ))(I −G0)−1 − I

]
R0r +

+H(θ)−1(I −G(θ))(I −G0)−1v. (7)

On the basis of this expression for ε, and considering the
situation R0 = I (both components of r present), consistency



of the model estimates is rather obvious, since the power
of the r-dependent term is made 0 by G(θ) = G0, while
additionally the power of the noise-induced term is mini-
mized through the choice H(θ) = H0. There is no condition
now on (absence of) correlations between the disturbance
variables in v! This leads to the following quoted result:

Quote 4: The joint-direct method, characterized
by the use of a vector predictor (predicting both
w1 and w2) and by including the two external
excitation signals as predictor inputs, extends the
consistency properties of the direct method to
consistent estimates of the full network (and not
only G0

21), and to the case where v1 and v2 are
correlated.

So apparently by extending the predictor to (5), and identi-
fying the two modules G0

21 and G0
12 simultaneously, we are

able to handle the situation of correlated disturbances. The
complexity that is added is that we need to solve a MIMO
identification problem rather than a SISO problem.
Remark 1: There are other identification methods that can
handle correlated disturbances, as e.g. the two-stage / IV
type of methods analysed in [6], [7]. However the joint-direct
method uses all available information in the node signals
(rather than projecting them onto excitation signals r) and
therefore can be is expected to achieve a smaller variance.

B. A network identifiability result

When considering the identification problem in the setting
where only one of the two external excitation signals is
present, a detailed analysis of the prediction error becomes
more complicated. For that situation we can follow a differ-
ent line of reasoning to arrive at a result.
For consistent identification of module dynamics and noise
models in a dynamic network setting, the key condition
is that the parametrized model set that is being used
is network identifiable, [8], [10]. This implies that from
the network transfers function Twr := (I − G(θ))−1R0

and spectral density Φv(ω) there is a map to unique
elements (G(q, θ̂), H(q, θ̂)) in the model set M :=
{(G(q, θ), H(q, θ)), θ ∈ Θ}. Together with the condition that
the data generating system is contained in the model set, and
external excitation signals are sufficiently exciting, this will
imply consistency of the model estimates.
In this paper we will use a condition for verifying network
identifiability that has been introduced in [10]. For this
purpose we need to denote the matrices

U(θ) :=
[
R0 H(θ)

]
, and T (θ) := [I −G(θ)]−1U(θ)

while 0 ≤ K ≤ 2 is the number of external signals in r that
is actually present in the network.
Proposition 1 ([10], Theorem 2.): Let M be a network
model set that additionally satisfies the following properties:

a. Every parametrized entry in the model
{(G(q, θ), H(q, θ)), θ ∈ Θ} covers the set of all
strictly proper rational transfer functions;

b. All parametrized transfer functions in the model
(G(q, θ), H(q, θ)) are parametrized independently (i.e.
there are no common parameters).

Then M is globally network identifiable if and only if
• each row i of the transfer function matrix

[
G(θ) U(θ)

]
has at most K + p parameterized entries, and

• for each i, Ťi(θ) has full row rank for all θ ∈ Θ, where
the αi×(K+p−βi) matrix Ťi(q, θ) is the submatrix of
T (q, θ) that is constructed by taking the row numbers
that correspond to the columns of G(q, θ)i? that are
parametrized, and by taking the column numbers that
correspond to the columns of U(q, θ) that are not
parametrized.

It can be shown ([8]) that this identifiability result also holds
row-wise for all elements in row i of the composed matrix
[G(q, θ) H(q, θ)] in the model set M. The elements in row
i are then identifiable if the above conditions are satisfied
for the corresponding row i of

[
G(θ) U(θ)

]
and for Ťi(θ)

respectively.

C. Network identifiability for a reduced number of external
excitation signals

For the situation when there is only one component of the
r-signal present, we can analyse the identifiability conditions
as formulated in Proposition 1. Without loss of generality we
consider r1 to be present and r2 to be absent. Then

I −G(θ) =

[
1 −G12(θ)

−G21(θ) 1

]
U(θ) =

[
1 H11(θ) H12(θ)
0 H21(θ) H22(θ)

]
with K + p = 1 + 2 = 3, α1 = α2 = 1, and β1 = β2 = 2.

T (q, θ)=

[
1 −G12(θ)

−G21(θ) 1

]−1 [
1 H11(θ) H12(θ)
0 H21(θ) H22(θ)

]
= (1−G12G21)−1·[

1 H11 +G12H21 H12+G12H22

G21 G21H11+H21 G21H12+H22

]
(where arguments (θ) have been dropped for brevity).
The matrices Ťi are of dimension 1× 1, and are given by

Ť1 = (1−G12(θ)G21(θ))−1G21(θ)

Ť2 = (1−G12(θ)G21(θ))−1.

The full rank property of Ť1 and Ť2 is guaranteed if G21(θ)
is not strictly equal to 0 for all θ. Under this condition the
conditions of Proposition 1 are satisfied and the network
is network identifiable. Under the common conditions of
persistence of excitation of the appropriate signals, consis-
tency of G21(θ̂N ) and G12(θ̂N ) then follows automatically.
The converse situation of having only signals r2 present, in
stead of r1, follows directly by duality. As a result we can
formulate the following statement:

Quote 5: If in the situation of Quote 4 only 1
of the two reference signals is present, then the



consistency results remain valid for any correlation
between the disturbances v1 and v2, provided that
G21(θ) 6= 0 for all θ (if r1 is present only), or
provided that G12(θ) 6= 0 for all θ (if r2 is present
only).

In the situation that both excitation signals are absent, the
situation becomes slightly different. Now we have[
G(θ) U(θ)

]
=

[
0 G12(θ) H11(θ) H12(θ)

G21(θ) 0 H21(θ) H22(θ)

]
with K + p = 0 + 2 = 2, α1 = α2 = 1, and β1 = β2 = 2.
Then according to the first condition of Proposition 1, we
have too many parametrized terms in the rows of [G(θ U(θ)].
When evaluating the identifiabiltiy of G21(θ) only, we can
focus on the second row of

[
G(θ) U(θ)

]
. In the situation

H0
21 = 0 and H21(θ) ≡ 0 the number of parametrized terms

in the second row of [G(θ) U(θ)] satisfies the maximum
number of 2 parametrized terms. The second condition of
Proposition 1 then requires a full row rank of Ť2. After
some manipulations it can be shown that Ť2 = H11(θ) +
G0

12H21(θ) which is a monic proper transfer function of
full rank, and therefore the conditions for identifiability are
satisfied. The converse situation of estimating G0

12 under the
condition that H0

12 = 0 follows by duality.

Quote 6: In absence of external excitation sig-
nals r1, r2, the module G0

21 can be estimated
consistently when disturbance signals v1, v2 are
correlated, under the condition that H0

21 = 0. The
dual result is that G0

12 can be estimated consistently
if H0

12 = 0.

Note that the condition H0
21 = 0 implies that v1 does not

causally affect v2 in the sense of Granger ([4]). It does
not imply that Rv2v1(τ) = 0, τ > 0. This result is in
agreement with the identifiability results in [14] where one-
sided correlations between disturbance signals are considered
for the situation of a joint-io identification method.

VI. A CLOSED-LOOP NETWORK WITH SENSOR
NOISE

We will now focus on the situation that the node variables
w are measured under the influence of additive sensor noise.
To this end we write

w̃ = w + s (8)

where w̃ are the measured variables, and s is a (two-
dimensional) stationary stochastic process, uncorrelated with
signals r and v in the configuration, and with a diagonal
spectral density.
First we will illustrate that sensor noise can be described
in terms of the presence of confounding variables. For
illustration purposes we will consider the open-loop situation
(G0

12 = 0) and r2 ≡ 0. Then the system’s equation w̃2 =
G0

21w1+v2+s2 can be rewritten as w̃2 = G0
21(w̃1−s1)+v2+

s2 leading to the equivalence of the two networks indicated in
Figure 5, which shows in the right Figure that s1 has become

Fig. 5. Sensor noise equivalently described as confounding variable.

a confounding variable. When considering the general two-
node network, and substituting the expression for w̃ into the
system’s equation w = G0w + v + r, (assuming R0 = I),
we obtain w̃ − s = G0(w̃ − s) + v + r, leading to

w̃ = G0w̃ + v + (I −G0)s︸ ︷︷ ︸
ṽ

+r.

This system has the same structure as the original network,
with the node variables w replaced by w̃ and the disturbance
signal v by ṽ, see Figure 6. The major difference is that the
disturbance term now becomes

ṽ = v + (I −G0)s. (9)

The consequence of this is that even if the disturbance
signals v1 and v2 are uncorrelated, the new disturbance will
have correlated components because of the term (I −G0)s.
So sensor noise can be considered as a special form of
correlated disturbances. As a result, consistency properties
for the modules in G0 will remain invariant when sensor
noise is present. In this situation the noise model will need to
describe the disturbance ṽ, i.e. a combined signal composed
of disturbance signals and sensor noises.

Fig. 6. Equivalent closed-loop network with sensor-noise measured
variables as node signals.

Quote 7: The consistency properties of the joint-
direct method (Quotes 4-6) remain valid for the
modules in G0 when the measured node variables
are subject to additive sensor noise.

It is a very strong property of the joint-direct method that
it can deal with both correlated disturbances as well as with
sensor noise. Note that these consistency properties can also
be achieved by a two-stage / projection method as analyzed
for the dynamic network situation in [6], [7], [15]. However
in the latter situations not the full input signals can be used
for estimation, leading to non-optimal variance results.
In Table I an overview is listed of the consistency properties
of the different cases that have been considered in this paper.



predictor
outputs

predictor
inputs

references
present

disturbance
present

disturbance
correlation

sensor noise
present

consistency quote

w2 w1 r1 v2 n/a no yes
w2 w1 r1 v1, v2 none no yes
w2 w1 none v1, v2 none no yes
w2 w1 r1 v1, v2 H12 and/or H21 no no 1
w2 w1 r1, r2 v1, v2 none no yes 2
w2 w1 r1, r2 v1, v2 H12 and/or H21 no no 2
w2 w1 r1, r2 v1, v2 none s1, s2 yes 3
w2 w1 r1, r2 v1, v2 H12 and/or H21 s1, s2 no 3
w1, w2 w1, w2 r1, r2 v1, v2 none no yes
w1, w2 w1, w2 r1, r2 v1, v2 H12 and/or H21 no no
w1, w2 w1, w2, r1, r2 r1, r2 v1, v2 H12 and/or H21 no yes 4
w1, w2 w1, w2, r1 r1 v1, v2 H12 and/or H21 no yes 5
w1, w2 w1, w2, r2 r2 v1, v2 H12 and/or H21 no yes 5
w1, w2 w1, w2 none v1, v2 H12 no yes (for G0

21) 6
w1, w2 w1, w2 none v1, v2 H21 no yes (for G0

12) 6
w1, w2 w1, w2, r1, r2 r1, r2 v1, v2 H12 and/or H21 s1, s2 yes (for G0) 7
w1, w2 w1, w2, r1 r1 v1, v2 H12 and/or H21 s1, s2 yes (for G0) 7
w1, w2 w1, w2, r2 r2 v1, v2 H12 and/or H21 s1, s2 yes (for G0) 7
w1, w2 w1, w2 none v1, v2 H12 s1, s2 yes (for G0

21) 7
w1, w2 w1, w2 none v1, v2 H21 s1, s2 yes (for G0

12) 7

TABLE I
OVERVIEW OF CONSISTENCY RESULTS FOR THE DIFFERENT SITUATIONS CONSIDERED.

Remark 2: Since the presence of sensor noise can be recast
into the situation of having correlated disturbance signals, as
illustrated in Figure 6, we can conclude that sensor noises
lead to the presence of confounding variables (see also Sec-
tion IV-B). In contrast with the classical direct identification
method, the joint-direct method is able to handle confound-
ing variables for the simple 2-node feedback connection
considered. Extending this claim to more complex dynamic
network configurations is a topic for future research.
Remark 3: The joint-direct method has been introduced in
[12], in particular for studying the problem of dealing
with algebraic loops in closed-loop network systems. In the
current paper we have assumed that all modules are strictly
proper. The present results can be generalized to deal with
(non-strictly) proper modules also.

VII. CONCLUSIONS

We have considered the identification of a single feedback
system that acts as a basic building block in dynamic
networks. The classical direct method of prediction error
identification leads to consistent (and minimum variance)
estimates of the plant model for a particular set of situations.
However if we extend the situations to deal with correlated
disturbances on the node signals as well as with sensor noise,
then consistency is lost. The new joint-direct method is based
on: (a) considering a vector predictor that predicts all node
signals simultaneously, and (b) including external excitation
signals as predictor inputs. Consistency properties have been
shown in situations of correlated disturbances and of sensor
noise. Both situations can also be qualified in terms of the
presence of confounding variables.
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