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Lateral torsional buckling design imper-

fections for use in non-linear FEA 
To perform geometrically and materially nonlinear analyses including imperfections for steel beam lateral torsional 

buckling, the size and shape of the geometric imperfection can be obtained from EN 1993-1-1. The shape is pre-

scribed as an initial bow along the weak axis of the section, excluding torsion of the cross-section. The shape of the 

imperfection can alternatively be taken equal to the lateral torsional buckling mode, including torsion. Several tables 

and formulas exist to determine the size of the imperfection. In this article, different imperfection approaches are 

presented for finite element simulations to evaluate the lateral torsional non-linear buckling resistances and to com-

pare these to the results obtained with design rules. Based on the comparisons made, the article concludes with a 

proposal for design imperfections to be used in non-linear Finite Element Analyses (FEA) for lateral torsional buckling 

of beams. 

1 Introduction 

Eurocode 3 provides design rules for the assessment of lateral torsional buckling (LTB) of beams in 

bending in clause 6.3.2 of EN 1993-1-1 [1]. Alternatively, the code allows LTB to be assessed by per-

forming Geometrically and Materially Nonlinear Analyses with Imperfections of beams. For carrying out 

such GMNIA calculations, the size and shape of the equivalent geometric imperfection is given in clause 

5.3.4(3) of EN 1993-1-1. The shape is prescribed as an equivalent initial bow of the weak axis of the 

section considered, excluding torsion of the cross-section. This comes down to the weak axis flexural 

buckling (FB) mode. The size is prescribed as k·e0,d where k is a factor having as recommended value k = 

0.5 and e0,d is the initial local bow imperfection given in Table 5.1 of EN 1993-1-1. This initial local bow 

imperfection depends on column length, relevant buckling curve and the type of cross-section check used 

(elastic or plastic). The design values of the initial local bow imperfections as given in Table 5.1 of EN 

1993-1-1 are under debate [2]. In [2] it is shown that the values specified are sometimes unconservative 

and a new proposal [3] has been made and adopted for inclusion in the next version of EN 1993-1-1. In 

the new proposal, the initial local bow imperfection also depends on yield stress level besides on column 

length, relevant buckling curve and the type of cross-section check used. Further restricting design rules 

are given for the case that a plastic cross-section check is used. As an alternative to the initial local bow 

imperfections of Table 5.1 of EN 1993-1-1 and of the new proposal, the initial local bow imperfection e0,d 

can be more accurately based on the slenderness dependent eq. (5.10) of EN 1993-1-1: 

 
Rk

Rk
d,0 N

M
.e 20   (1) 

Where is the imperfection factor according to Table 6.1 of EN 1993-1-1,  is the non-dimensional 

slenderness for weak axis buckling, MRk is the characteristic moment resistance, and NRk is the character-

istic normal force resistance. In case of class 1 and 2 cross-sections 

MRk = Mpl and NRk = Npl where Mpl is the plastic moment resistance of the cross-section and Npl is its 

plastic normal force resistance. 

The advantage of the initial local bow imperfections of Table 5.1 of EN 1993-1-1 and of the new proposal 
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is that they are independent of slenderness. They can therefore be easily applied in all kinds of second 

order analyses. However, if it is the intention to carry out GMNIA calculations by FEA, the slenderness 

can easily be calculated from the results of a LBA by using the same FE model as for the GMNIA. Then 

Eq. (1) can be applied equally easily.  

In line with clause 5.3.2(11) of EN 1993-1-1, the shape of the imperfection can also be taken according to 

the LTB mode, including torsion of the cross-section. For the size of the imperfection, Eq. (1) can be 

used. However, for the next generation of Eurocodes, new LTB design rules [4-8] have been derived 

consistently as an alternative to those of the current EN 1993-1-1. Using these new LTB design rules and 

their derivation, a formula has been obtained which, for an LTB mode, describes explicitly the imperfec-

tion size: 

 
Rk

Rk
LTLTd,0 N

M
.e 20   (2) 

Where LT is the imperfection factor according to Table 1 (also see [8]) and LT is the non-dimensional 

slenderness for lateral torsional buckling. In Table 1, h is the section height, b is the section width and 

Wel,y and Wel,z are the strong and weak axis section modulus respectively. 

Table 1: Imperfection factors for Eq. (2) 

Cross-section Limits LT
 

Rolled I-section 
21.b/h   340120 .WW. z,ely,el 

 

21.b/h   490160 .WW. z,ely,el 
 

  Table 2: Three imperfection approaches  

Approach Imperfection shape Imperfection size 

1 Weak axis FB mode, excluding torsion d,0ek  of Eq. (1) 

2 LTB mode, including torsion d,0ek  of Eq. (1) 

3 LTB mode, including torsion d,0e of Eq. (2) 

 

The three different imperfection approaches for LTB as shown in Table 2 have been studied in this arti-

cle. A finite element model for LTB was developed and verified using several other models in literature. 

With that model, the different approaches for imperfection shape and size were applied to evaluate the 

LTB resistances by GMNIA. Subsequently, these LTB resistances were compared with the LTB re-

sistances according to the appropriate design rules. For the approaches 1 and 2, the design rules according 

to the clauses 6.3.2.1 and 6.3.2.2 of EN 1993-1-1 for the so called ‘general case’ were used as reference 

while for approach 3 the newly developed design rules according to [4-8] were used. This article is based 

on research work as reported in [9] and is an extended and updated version of the conference paper [10]. 

2 Scope 

The imperfection study in this article is carried out for hot-rolled class 1 and 2 IPE, HEA, and HEB sec-

tions. The fillet radius between web and flanges is neglected; therefore the sections are denoted by adding 

an asterisk: e.g. IPE* sections. The section properties have been modified accordingly for proper compar-

isons. Three load cases have been considered as indicated in Fig. 1. 

                  

Fig. 1: Three load cases (LC) considered: LC1 – constant bending moment (left), LC2 – concentrated load (middle), LC3 – uniformly 
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distributed load (right) 

3 Finite element model 

For the finite element model, developed in Abaqus 6.2 [11], so-called "S8R" Mindlin-Reissner elements 

are used. These are quadrilateral eight node shell elements with six degrees of freedom (DOF's) per node, 

four integration points across the surface, and five integration points ("section points" in Abaqus) along 

the thickness. The elements take into account shear deformations and thus are suitable for thick shell 

applications. A mesh-convergence study led to the application of 8 elements over the width of the flanges 

and 16 elements over the height of the web. A bilinear stress-strain diagram, neglecting strain hardening, 

is used with yield stress fy = 235 N/mm2 and Young’s modulus E = 2.1×105 N/mm2. The Poisson’s ratio is 

set to 0.3. The Von Mises yield criterion was applied. 

             

 

Fig. 2: Boundary conditions for support on the left, kinematic coupling constraints for the cross-section on the right. 

With respect to the boundary conditions, Fig. 2 on the left shows three bold lines that indicate the left end 

of the web and flanges, in other words the lines of the cross-section at the complete left. Using so-called 

kinematic coupling constraints, all finite element nodes at the bold line of the top flange are coupled for 

all their displacements and rotations to a reference node: the node at the middle of this line, and the same 

applies to the bottom flange. This effectively makes the lines of the flanges infinitely stiff. For the web, 

all nodes at the bold line are coupled for all their displacements - and only for rotations about the x and z-

axis - to a reference node at the middle of the line. As such these constraints result in a cross-section 

which is infinitely stiff in-plane, but able to warp (limited to straight flange lines) as is shown in the bot-

tom left part of Fig. 2. Note that "in geometrically non-linear analysis steps, the coordinate system in 

which the constrained degrees of freedom are specified will rotate with the reference node" [11].  

Secondly, for fixing the beam in place, boundary conditions are applied to set displacements in y and z-

direction and rotations about the x-axis zero, see Fig. 2 2 on the left.  

Since beam geometry, load cases, imperfection shapes, and failure modes are symmetrical, only half the 

beam is modelled, applying symmetry conditions Ux=URy=URz = 0 for all nodes at the symmetry plane. 

Boundary condi-
tions for support: 
Uy=Uz=Rx=0 

 

Ux,Uy,Uz,Rx,Ry,Rz 
of flange edge nodes 
coupled to indicated 
reference node 

Ux,Uy,Uz,Rx,Ry,Rz of 
flange edge nodes 
coupled to indicated 
reference node 

Ux,Uy,Uz,Rx,Rz of web 
edge nodes coupled to 
indicated reference 
node 
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Fig. 3: Load application: LC1 – constant bending moment (left), LC2 – concentrated load (middle), LC3 – uniformly distributed load 

Loads are applied as shown in Fig. 3. Note that for the concentrated load, stiffeners have been applied. 

Linear buckling analyses have been carried out with a Subspace solver, whereas the GMNIA simulations 

use a modified Riks approach for the solution, with the arc-length size selected such that smooth load-

displacement curves were obtained. 

For the GMNIA, two types of imperfection shapes, i.e. the weak axis FB mode excluding torsion and the 

LTB mode including torsion are applied after performing the relevant linear buckling analysis (LBA). In 

Fig. 4 these shapes are shown for the cross-section in the middle of the beam. For the LTB mode the size 

of the imperfection is measured at the heart of the top flange. 

For validation of the finite element model, its GMNIA results were compared with results found in the 

literature [5, 12], and these results were found to be in good agreement [9]. 

 

Fig. 4: Two imperfection shapes shown for the cross-section in the middle of the beam: weak axis flexural buckling mode (left), 

lateral torsional buckling mode (right) 

4 Simulation and comparison procedure 

The comparison between the simulations with the finite element method (FEM) and EN 1993-1-1 design 

rule predictions is illustrated for an IPE240* section with a length of 3400 mm for load case 1 (constant 

bending moment) and imperfection approach 2: LTB shape and size of the imperfection according to 

d,0ek  of Eq. (1). First an LBA is performed resulting in an elastic critical bending moment Mcr = 84.1 

kNm. See Fig. 5 for the corresponding buckling mode, which is also used for the shape of the imperfec-

tion. Note the half beam model due to symmetry. 

 

Fig. 5: Half buckling mode shape of a 3400 mm long IPE240* beam with constant bending moment 
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The plastic resistance can be calculated as Mpl = Wpl,y·fy = 353.9·103·235·10-6 = 83.0 kNm. The non-

dimensional slenderness then equals: 

990
184

083
.

.

.
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M
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pl
FEM,LT   

First the non-dimensional slenderness  for weak axis buckling needs to be determined using the elastic 

critical force for weak axis buckling Ncr,z: 
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In these calculations Iz is the weak axis second moment of area, Lcr,z is the buckling length for weak axis 

buckling and A is the area of the cross-section. Since h/b = 240/120 = 2 > 1.2 and the flange thickness tf = 

9.8 mm is smaller than 40 mm, buckling curve ‘b’ applies for weak axis buckling according to Table 6.2 

of EN 1993-1-1 and the imperfection factor is α = 0.34 according to Table 6.1 of EN 1993-1-1. The im-

perfection size is then determined using Eq. (1): 

      337
3779

72772
203213402020 ....

A

W
.

N

M
.e

z,pl

Rk

Rk
d,0   mm 

With k = 0.5 the final imperfection size becomes: 3.67 mm. With this imperfection size and the imperfec-

tion shape of Fig. 5, a GMNIA is performed, for which load-displacement curves are shown in Fig. 6. 

 

Fig. 6: Load-displacement curves obtained with GMNIA for a 3400 mm long IPE240* beam for LC1, constant bending moment 

The ultimate load is reached at MR = 57.6 kNm. The reduction factor can then be calculated as: 

6940
083

657
.

.

.

M

M

pl

R
FEM,LT    

The combination of 990.FEM,LT  and 6940.FEM,LT  is compared with the current lateral torsional 

buckling curve ("Curve a") of clause 6.3.2.2 of EN 1993-1-1 as shown in Fig. 7 (black arrows). Results 

for other values of the non-dimensional slenderness (beam lengths) and other load cases are also included 
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Fig. 7: Comparison of FEM,LT  with EC,LT for imperfection approach 2 for an IPE240* beam 

in Fig. 7. In Fig. 7 on the left, a direct comparison is made between the FEM results and the buckling 

curve of EN 1993-1-1. FEM results above the buckling curve are on the unsafe side, i.e. they are calculat-

ed using a too small imperfection size so that k > 0.5 should have been chosen. In Fig. 7 on the right, the 

reduction factors calculated by FEM are compared with those calculated with the clauses 6.3.2.1 and 

6.3.2.2 of EN 1993-1-1. The solid grey line represents a perfect match between both reduction factors. If 

FEM,LT  > EC,LT then the FEM results are on the unsafe side. The two dashed lines represent a 5% 

over- or underestimation. 

5 Results 

5.1 Imperfection approach 1: weak axis FB mode with size k·e0 of Eq. (1) 

The results for imperfection approach 1, with the imperfection shape based on the weak axis FB mode 

and the imperfection size equal to d,0ek  of Eq. (1), are shown in Fig. 8 for an IPE600* beam. Similar 

results were obtained for IPE240* and HEA300* beams, see Fig. 9 [9]. 

     

Fig. 8: Comparison of FEM,LT  with EC,LT for imperfection approach 1 for an IPE600* beam 
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Fig. 9: Comparison of FEM,LT  with EC,LT for imperfection approach 1 for an IPE240* beam (left) and an HEA300* beam 

(right) 

As can be seen, load case 2 (concentrated load) gives the largest discrepancies between the FEM and EC3 

results. All FEM results are significantly unsafe compared to the EC3 results, meaning that k = 0.5 is a far 

too small value. Therefore, it was decided to adjust the k-value such that the FEM results are within the 

5% limit boundaries. The analyses concentrated on load case 2 and a relative slenderness equal to 0.9, for 

which the influence of imperfections is substantial. Fig. 10 shows for IPE beams the required k-values to 

get FEM,LT to the target value EC,LT as a function of Iy/Iz, where Iy is the strong axis second moment 

of area. These k-values range from 2.4 to 1.1 and are summarized in the third column of Table 3. In a 

similar way adjusted k-values for HEA beams were obtained [9], also summarized in Table 3. 

 

 Fig. 10: Required k-values to get FEM,LT  to the target value for IPE beams with 90.LT   

5.2 Imperfection approach 2: LTB mode with size k·e0 of Eq. (1) 

Fig. 7 shows the results for an IPE240* beam for imperfection approach 2, with the imperfection shape 

based on the LTB mode, and the imperfection size determined with d,0ek  of Eq. (1). Similar results 

were obtained for IPE600* and HEA300* beams, see Fig. 11 [9]. In a similar way as described in section 
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5.1, required k-values were obtained [9]; see the last column in Table 3. The required k-values for IPE 

beams range now from 1.2 to 0.7 [9], still substantially larger than 0.5, but far better than for imperfection 

approach 1, for which torsion was neglected, see also Fig. 10. 

     

Fig. 11: Comparison of FEM,LT  with EC,LT for imperfection approach 2 for an IPE600* beam (left) and an HEA300* beam 

(right) 

Table 3: Required k-values for rolled sections  

Section Limits Imperfection approach 1 Imperfection approach 2 

IPE 

02.b/h   605340 .
I

I
.k

z

y 
 

442130 .
I

I
.k

z

y 
 

02.b/h   1520170 .
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I
.k

z

y 
 

4410170 .
I

I
.k

z

y 
 

HEA 
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I
.k

z

y 
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I
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2110080 .
I

I
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5.3 Imperfection approach 3: LTB mode with size e0 of Eq. (2) 

Figs. 12 to 14 show the results for IPE240*, HEA300* and HEA600* beams respectively, for imperfec-

tion approach 3 with the imperfection shape based on the LTB mode, and the imperfection size deter-

mined by d,0e of Eq. (2) [9]. For IPE240* beams, all results are satisfactory below the 5% upper limit. 

For HEA300* beams with 21.b/h  , the results are close to or even slightly above the 5% upper limit. 

For HEA600* beams with 21.b/h  , the results are on the safe side, within the 5% lower limit. It can be 

concluded that this imperfection approach, as could have been expected, leads to consistent results, with 

the additional benefit that no k-value is needed.  
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Fig. 12: Comparison of FEM,LT  with  84,LT for imperfection approach 3 for an IPE240*  

          

Fig. 13: Comparison of FEM,LT  with  84,LT for imperfection approach 3 for an HEA300* 

           

Fig. 14: Comparison of FEM,LT  with  84,LT for imperfection approach 3 for an HEA600* 

6 Conclusions  

Three different imperfection approaches have been studied for use in geometrically and materially non-

linear analyses with imperfections for lateral torsional buckling of beams in bending.  

It has been shown that imperfection approach 1, using the flexural buckling mode as imperfection shape 
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and a factor k multiplied by the initial local bow imperfection of Eq. (1) as imperfection size, requires k-

values far larger (k  >  2) than the recommended value k = 0.5 in cl. 5.3.4(3) of EN 1993-1-1.  

Also imperfection approach 2, using the lateral torsional buckling mode as imperfection shape and a 

factor k multiplied by the initial local bow imperfection of Eq. (1) as imperfection size, requires k-values 

substantially larger than k = 0.5, the largest value being 1.2, indicating that this approach is an improve-

ment over imperfection approach 1.  

Consistent results were obtained for imperfection approach 3, using the lateral torsional buckling mode as 

imperfection shape and the initial local bow imperfection of Eq. (2) as imperfection size. This imperfec-

tion approach does not need a k-value and is advised for use in non-linear finite element analyses for 

lateral torsional buckling. 
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