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Abstract
Generalized Burniat surfaces are surfaces of general type with pg = q and Euler number
e = 6 obtained by a variant of Inoue’s construction method for the classical Burniat surfaces.
I prove a variant of the Bloch conjecture for these surfaces. The method applies also to the
so-called Sicilian surfaces introduced byBauer et al. in (JMath Sci Univ Tokyo 22(2–15):55–
111, 2015. arXiv:1409.1285v2). This implies that the Chow motives of all of these surfaces
are finite-dimensional in the sense of Kimura.

Keywords Algebraic cycles · Chow groups · Finite-dimensional motives · Burniat
surfaces · Inoue surfaces · Sicilian surfaces

Mathematics Subject Classification 14C15 · 14C25 · 14C30 · 14J29

1 Introduction

Quite recently Bauer et al. [1] have investigated a generalization of Inoue’s construction [7]
of the classical Burniat surfaces [4]. These surfaces are minimal, of general type and have
invariants pg = q = 0, 1, 2 or 3.

Recall that the Chow group CHk is said to be “trivial”, if the natural cycle class map
CHk ↪→ H2k is injective. The kernel of the cycle class map CHhom

k can be investigated
by means of the Abel–Jacobi map CHhom

k → J k , where the target is the kth intermediate
Jacobian. Its kernel is denoted CHAJ

k . If this vanishes, this has strong consequences. For
instance for surfaces this implies pg = 0 and the Albanese map is an isomorphism up to
torsion. The converse is Bloch’s conjecture [3]. In a follow-up study [2] this conjecture has
been verified for the generalized Burniat surfaces, i.e CHhom

0 = 0.
These generalized Burniat surfaces Y = X/G are all quotients of X by a freely acting

abelian group G � (Z/2Z)3 and where (X ,G) is a so called Burniat hypersurface pair
(X ,G): X is a hypersurface in a product A of three elliptic curves having at most nodes
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378 C. Peters

as singularities and G is an abelian group acting freely on A and leaving X invariant. The
surface X is also calledBurniat hypersurface. These come in 16 families, enumeratedS1–S16.
The classical Burniat surface belongs to the 4-parameter family S2. Also the family S1 is 4-
dimensional. The remaining families have only 3 parameters coming from varying the elliptic
curve. This implies that the equation of X in these cases is uniquely determined, contrary
to the first two where there is a pencil of hypersurfaces invariant under G. The surfaces Y
have at most nodal singularities. For simplicity I assume in this note that Y , and hence X is
smooth, which is generically the case. However, none of the arguments is influenced by the
presence of nodal singularities.

In [9] it has been remarked that the main theorem of loc. cit. yields the Bloch conjecture
for the classical Burniat surfaces. The goal of this paper is to apply the same methods to all
Burniat hypersurfaces. In particular, one obtains a short proof of the Bloch conjecture in the
appropriate cases.

To state the result, let me recall that the Chow motive1 h(X) is the pair (X ,�) where
� ⊂ X × X is the diagonal considered as a (degree 0) self-correspondence of X . As a self-
correspondence it is an idempotent in the ring Corr0(X) of degree 0 self-correspondences.
If a finite group G acts on X , any character χ of the group defines an idempotent

πχ = 1

|G|
∑

g∈G
χ(g)�g ∈ Corr0(X),

where �g is the graph of the action of g on X . The pair (X , πχ ) is the motive canonically
associated to the character χ . Note that the trivial character gives the motive h(X/G) of the
Burniat hypersurface. The main result now reads as follows:

Theorem (=Theorem 4.2) With i : X ↪→ A the inclusion, let (X ,G) be a Burniat hyper-
surface pair as before and let Y = X/G be the corresponding generalized Burniat surface.
Consider the one-dimensional space H0(�3

A) as a G-representation space, i.e. as a character
χA. Then

(1) For the families S1,S2 the involution j = ι1ι2ι3 belongs to G and the motives h(X/ j)
and h(Y ) are finite dimensional.

(2) For all other families, the motive (X , πχA ) is finite-dimensional. For the families S3,S4,
S11,S12,S16 this motive is just h(Y ).

(3) The Bloch conjecture holds for the families S1–S4. In the remaining cases a variant of
Bloch’s conjecture holds, namely2 ker(i∗ : CHAJ

0 (X)χA → CHAJ
0 (A)χA ) = 0. For the

families S11,S12 and S16 this means that ker(i∗ : CH0(X) → CH0(A)) = 0.3

As shown in [1] the families S11 and S12 give two divisors in a 4-dimensional component
of the Gieseker moduli space.

The above method applies also to the surfaces in this component, the so-called Sicilian
surfaces so that the result for S11 and S12 is valid for these as well. See Remark 4.3.

1 See Sect. 2.1 for background on motives.
2 As a matter of notation, for any G-module V we set V χ :={v ∈ V | g(v) = χ(g)v for all g ∈ G}.
3 This can also be stated directly in terms of the so-called “variable motive”. See Theorem 4.2.
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Amotivic study of generalized Burniat surfaces 379

2 Preliminaries

2.1 Motives

Adegree k (Chow) correspondences froma smooth projective variety X to a smooth projective
variety Y is a cycle class

Corrk(X , Y ):=CHdim X+k(X × Y ).

A correspondence of degree k induces a morphism on Chow groups of the same degree
and on cohomology groups (of double the degree). Correspondences can be composed and
these give the morphisms in the category of Chow motives. Let me elaborate briefly on this
but refer to [10] for more details.

Precisely, an effective Chow motive consists of a pair (X , p) with X a smooth projective
variety and p a degree zero correspondence which is a projector, i.e., p2 = p. Morphism
between motives are induced by degree zero correspondences compatible with projectors.
This procedure defines the category of effective Chow motives. Every smooth projective
variety X defines a motive

h(X) = (X ,�), � ∈ CHdim X (X × X) the class of the diagonal

and a morphism f : X → Y between smooth projective varieties defines a morphism
h(Y ) → h(X) given by the transpose of the graph of f .

One can also use correspondences of arbitrary degrees provided one uses triples (X , p, k)
where p is again a projector, but a morphism f : (X , p, k) → (Y , q, 	) is a correspondence
of degree 	−k compatible with projectors. Such triples define the category of Chow motives.
It should be recalled that motives, like varieties have their Chow groups and cohomology
groups:

CHm(X , p, k) := Im
(
CHm+k(X)

p∗−−→ CHm+k(X)
)

,

Hm(X , p, k):= Im
(
Hm+2k(X)

p∗−−→ Hm+2k(X)
)

.

Kimura [8] has introduced the concept finite-dimensionality for motives. If the motive of a
surface S is finite-dimensional, then the Bloch conjecture holds for any submotive M of S
with h2,0(M) = 0. This is the motivation for considering the variable cohomology. In [11]
it is shown that there is indeed a submotive of S whose cohomology is the variable motive.

2.2 A criterion for finite dimensional motives

The general situation of [9] concerns smooth d-dimensional complete intersections X inside
a smooth projective manifold M of dimension d + r for which Lefschetz’ conjecture B(M)

holds. This conjecture is known to hold for projective space and for abelian varieties and so
in particular for the situation in this note.

Recall also (see e.g. [5, Ch. 3.2]) that in this situation, with i : X ↪→ M the inclusion, the
fixed and variable cohomology is defined as follows.

Hd
fix(X) = Im(i∗ : Hd(M) → Hd(X)),

Hd
var(X) = ker(i∗ : Hd(X) → Hd+2r (M)),
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380 C. Peters

and that one has a direct sum decomposition

Hd(X) = Hd
fix(X) ⊕ Hd

var(X),

which is orthogonal with respect to the intersection product. In [11] I explained that validity
of B(M) implies the existence of a motive (X , πvar) such that πvar induces projection onto
variable cohomology.

The main input is the special case of [9, Thm. 6.5 and Cor. 6.6] for surfaces inside a
threefold. It reads as follows.

Theorem 2.1 Let M be a smooth projective threefold on which a finite abelian group G acts.
Let L be line bundle with G-action, X ⊂ M a G-invariant section and χ a character of G.
Suppose that

(1) the conjecture B(M) holds;
(2) the sections of H0(M,L)G separates orbits;
(3) all characters of G appear in End(H2

var(X));
(4) the Chow motive (M, πχ ) is finite-dimensional;
(5) 0 �= H2

var(X) and H2
var(X)χ is pure of Hodge type (1, 1).

Then CHvar
0 (X)χ = 0, and the motive (X , πχ ) is finite-dimensional.

2.3 Elliptic curves

Let me recall the relevant facts about theta functions on an elliptic curve E with period lattice

 generated by 1 and τ ∈ h. Points in the elliptic curve referred to by the standard coordinate
z ∈ C and the corresponding line bundle by Lz . It is the bundle with H0(E,Lz) = Cϑz ,
ϑz a theta-function with simple zeros in the points z + 
 only. Let tu : z 	→ z + u be a
translation of E . Then Lz � t∗z L0. If one takes for z one of the four two-torsion points
ε ∈ {0, 1

2 ,
1
2 τ,

1
2 + 1

2 τ } of E , the corresponding line bundlesLε have the four classical theta
functions ϑ1, ϑ2, ϑ3, ϑ4 respectively as sections. See e.g. [6, Appendix A, Table 16 ] for the
definitions.

Set

ME :=H0(E,L2
0 ).

Lemma 2.2 (i) The bundleL2
0 is a symmetric line bundle and all its sections are symmetric.

(ii) The translations tε define a faithful action of (Z/2Z)2 on L2
0 .

(iii) The character decomposition of ME for this action is (+−) ⊕ (−+).

Proof (i) is clear.
(ii) SinceL2

ε � L2
0 for all two-torsion points ε, the functions ϑ2

j define sections of the same

bundle L2
0 . The sections ϑ2

j , j = 1, 2, 3, 4 are characterized by having a double zero at
exactly one of the four 2-torsion points. This shows in particular that the action of the
group {tε, ε a 2-torsion point} is faithful on ME .

(iii) It follows that there is a basis of two sections of L2
0 consisting of simultaneous eigen-

vectors for this action. Since the action is faithful, the character decomposition must be
(+−), (−+).


�
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Amotivic study of generalized Burniat surfaces 381

3 Surfaces inside abelian threefolds invariant under involutions

3.1 Products of three elliptic curves

Consider the abelian threefold

A:=E1 × E2 × E3, Eα = C/
α, with 
α = Z ⊕ Zτα, α = 1, 2, 3.

Using for a fixed elliptic curve E = CZ ⊕ τZ the involutions

ιE : z 	→ −z, tE : z 	→ −z + 1

2
, τE : z 	→ −z + 1

2
τ ,

we obtain three involutions on A

ια = ιEα

ιαβ = tEα tEβ ,

ι123 = τE1τE2τE3 .

(1)

and we consider the group (Z/2Z)6 operating on A as

G0:=〈 ι1, ι2, ι3, ι12, ι13, ι123 〉.

Lemma 3.1 The action of G0 on holomorphic 1-forms of A is given by

Form ι1 ι2 ι3 ι12 ι13 ι23 ι123

dz1 − + + − − + −
dz2 + − + − + − −
dz3 + + − + − − −

Consider now the symmetric line bundle L2
A where

LA := OE1(L0) � OE2(L0) � OE3(L0),

and set

H0(L2
A) = ME1 � ME3 � ME3 .

By Lemma 2.2 this is a representation space for G0 which admits a basis of simultaneous
eigenvectors. If {θ1E j

, θ2E j
}, denotes the basis of Lemma 2.2, for ME j , j = 1, 2, 3, their

products give 8 basis vectors as follows.

θ j1 j2 j3 = θ
j1
E1

· θ
j2
E2

· θ
j3
E3

, jk ∈ 1, 2.

The next result is a consequence.

Lemma 3.2 The space H0(L2
A) is the G0-representation space which on the basis {θ j1 j2 j3},

j1, j2, j3 ∈ {1, 2}, is given as follows
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382 C. Peters

Element ι1 ι2 ι3 ι12 ι13 ι23 ι123

θ111 + + + + + + −
θ211 + + + − − + +
θ121 + + + − + − +
θ112 + + + + − − +
θ1 2 2 + + + − − + −
θ2 1 2 + + + − + − −
θ221 + + + + − − −
θ222 + + + + + + +

3.2 Hypersurfaces of abelian threefolds and involutions

Let A be an abelian variety of dimension three and L a principal polarization so that L3 =
3! = 6 and let i : X ↪→ A be a smooth surface given by a section of ofL⊗2. The Lefschetz’s
hyperplane theorem gives:

i∗ : H1(A)
�−→ H1(X) (2)

i∗ : H2(A)
�−→ H2

fix(X) ⊂ H2(X). (3)

Lemma 3.3 Suppose that ι : A → A is an involution which acts on H0(�1
A) with p eigen-

values 1 and n = 3 − p eigenvalues −1. Suppose also that ι preserves X and acts without
fixed points on X. Then we have

Tr(ι)|H2
var(X) = −29 + 8p(4 − p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 29 for p = 0

− 5 for p = 1

3 for p = 2

−5 for p = 3.

Proof The assumption implies that

Tr(ι)|H1(A) = 4p − 6 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 6 for p = 0

− 2 for p = 1

2 for p = 2

6 for p = 3,

and

Tr(ι)|H2(A) = 8p(p − 3) + 15 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

15 for p = 0

− 1 for p = 1

− 1 for p = 2

15 for p = 3.

If ι preserves X and acts without fixed points on X , Lefschetz’ fixed point theorem gives
0 = 2−2 Tr(ι)|H1(X)+Tr(ι)|H2(X) = 2−2 Tr(ι)|H1(A)+Tr(ι)|H2(A)+Tr(ι)|H2

var(X),

and so the above calculation immediately gives the desired result. 
�
In order to calculate the invariants on X , let me first consider the holomorphic two-forms

in detail.
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Amotivic study of generalized Burniat surfaces 383

Lemma 3.4 1. One has

h0,2var (X) = 7, h0,2fix (X) = 3.

2. If X = {θ0 = 0}, the variable holomorphic 2-forms are the Poincaré-residues along X
of the meromorphic 3-forms on A given by expressions of the form

θ

θ0
dz1 ∧ dz2 ∧ dz3

with θ a theta-function on A corresponding to a section ofL⊗2, and where z1, z2, z3 are
holomorphic coordinates on C3.

3. Suppose ι acts with the character ε ∈ {±1} on holomorphic three forms. Let (p, n) be the
dimensions of the invariant, resp. anti-invariant sections of L⊗2. Then dim H2,0

var,(X) =
p − 1 if ε = 1 and = p otherwise.

Proof Consider the Poincaré residue sequence

0 → �3
A → �3

A(X)
res−−→ �2

X → 0.

In cohomology this gives

0 → H0(�3
A) → H0(�3

A(X))
res−−→ H0(�2

X ) → H1(�3
A) → 0. (4)

One sees that image of the residue map coincides with ker
(
H0(�2

X ) → H1(�3
A)

)
, which is

the (2, 0)-part of the variable cohomology, by definition equal to ker
(
H2(X)

i∗−→ H4(A)
)
.

Since H0(�3
A(X)) = H0(L⊗2) the assertion 1. follows.

2. This is clear.
3. This follows directly from (4). 
�
Corollary 3.5 The invariants of X are as follows.

b1 bvar2 = (h2,0var , h
1,1
var , h

0,2
var ) bfix2 = (h2,0fix , h1,1fix , h0,2fix )

6 43 = (7, 29, 7) 15 = (3, 9, 3)

Proof Equation (2) gives b1(X) = b1(A) = 6. To calculate b2(X) we observe that c1(X) =
−2L|X and c2(X) = 4L2|X so that

c21(X) = c2(X) = 4L2|X = 8L3 = 48.

Since c2(X) = e(X) = 2 − 2b1(X) + b2(X) = 48, it follows that b2(X) = 58. By (3) one
has bfix2 (X) = b2(A) = 15 and so bvar2 (X) = 43. Since h2,0var = 7, the invariants for X follow.


�

3.3 Burniat hypersurfaces

ABurniat hypersurface of A = E1×E2×E3 is a surface which is invariant under a subgroup
G ⊂ G0 generated by 3 commuting involutions and which acts freely on X . Each of the
involutions is a product of the involutions (1). The quotient Y = X/G is called a generalized
Burniat surface. In [1] one finds a list of 16 types of such surfaces, denoted S1, . . . ,S16.
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384 C. Peters

Table 1 Burniat hypersurfaces

Type Involution 1 Involution 2 Involution 3 G-invariant 1-forms χA

S1 ι1ι2ι3 ι2ι3ι123 ι3ι23 None − − −
S2 ι1ι3ι23 ι3ι13 ι2ι23 None + − −
S3 ι1ι3ι23 ι3ι123 ι2ι3ι12 None + + +
S4 ι1ι3ι12 ι3ι123 ι2ι3ι23 None + + +
S5 ι1ι3ι13 ι3ι123 ι3ι23 dz3 + + −
S6 ι2ι3ι123 ι2ι3ι13 ι3ι23 dz3 − + −
S7 ι1ι3ι23 ι3ι123 ι2ι12 dz3 + + −
S8 ι1ι3ι23 ι2ι3ι123 ι2ι3ι13 dz3 + − +
S9 ι1ι2ι3ι23 ι3ι123 ι2ι12 dz3 − + −
S10 ι1ι2ι3ι13 ι2ι3ι123 ι3ι23 dz3 − − −
S11 ι1ι2ι23 ι2ι123 ι2ι3ι12 dz2 + + +
S12 ι1ι3ι13 ι3ι123 ι2ι3ι23 dz3 + + +
S13 ι1ι2ι3ι23 ι2ι3ι123 ι2ι12 dz2, dz3 − − −
S14 ι1ι13 ι12ι123 ι2ι23 dz1, dz2 − − −
S15 ι1ι3ι13 ι12ι123 ι2ι3ι23 dz1, dz2 + − +
S16 ι1ι3ι13 ι3ι12ι123 ι2ι3ι23 All + + +

All of the surfaces are of general type with c21 = 6, pg = q and q = 0, 1, 2, 3 and hence
e = 6 = 2− 4q + b2 so that b2 = (pg, h11, pg) = (q, 4+ 2q, q). There are 4 families with
q = 0 and one of these, S2 gives the classical Burniat surfaces from [4]. See Table 1.

The last column of this table gives the action of the three generators (g1, g2, g3) on
H0(�3

A). It is calculated using Lemma 3.1. If an involution acts as the identity, there appears
a “+” in the corresponding entry and else a “−”; e.g. (+,−,−) means that g1 = id but
g2 = g3 = − id.

In Table 2 the character spaces for the action on the forms coming from A is given. It
is calculated from the description of the generating involutions as given in Table 1 and the
known action of 1-forms as given in Lemma 3.1. In Table 2 we use the shorthand 1 for
(+ + +); the last two columns give the Hodge numbers (h2,0, h1,1, h0,2). From the first
column of this table one finds the trace of the action of these generators on H0(�1

A), or,
alternatively, the dimensions of the eigenspaces for the eigenvalues +1 and −1. Writing the
dimensions of the (+)-eigenspaces as a vector according to the group elements written in the
order (1, g1, g2, g3, g1g2, g1g3, g2g3, g1g2g3) yields the type (3, t1, t2, t3, . . . ) ∈ Z8 of the
group action. This gives the first row in Table 3 below. Using Lemma 3.3, this table enables
to find the multiplicity of χA in H2

var(X).4

Lemma 3.6 For each of the families S3–S16 the character of χA appears with non-zero
multiplicity in the variable cohomology. 5

Proof For each of the families S3,S4,S11,S12 and S16 one has H0(A,�3
A) = (+ + +) and

dimH1,1
var (Y ) = dim H1,1

var,+++(X) = 1, as one sees from Table 2.
For the other families we argue as follows. In each case, g ∈ G, g �= 1 act freely on

X and so one can apply Lemma 3.3 to find Tr g|H2
var(X), given the dimension p(g) of

4 We recall that χA is the isomorphism classe of the one-dimensional representation space H0(A, �3
A).

5 This is also true for the two remaining families, but this will not be used.
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Amotivic study of generalized Burniat surfaces 385

Table 2 Action on forms and invariants of the generalized Burniat surfaces

Type U = H0(A, �1
A) H0(A, �2

A) = ∧2U = W H1(A, �1
A) bfix2 (Y ) bvar2 (Y )

S1 (− + +)(− − +)(− + −) (+ − +)(+ + −)(+ − − ) 3 · 1 + 2W (0, 3, 0) (0, 1, 0)

S2 (− + +)(− − +)(+ + −) (+ − +)(− + −)(− − − ) 3 · 1 + 2W (0, 3, 0) (0, 1, 0)

S3 (− − −)(− − +)(+ + −) (+ + −)(− − +) (− − −) 3 · 1 + 2W (0, 3, 0) (0, 1, 0)

S4 (+ − +)(− + +)(− − +) (− − +)(− + +)(+ − +) 3 · 1 + 2W (0, 3, 0) (0, 1, 0)

S5 (+ − +)(+ − −) +1 (+ − +)(+ − −) (+ + −) 3 · 1 + 2W (0, 3, 0) (1, 3, 1)

S6 (− − +)(+ − −) +1 (− − +)(+ − −) (− + −) 3 · 1 + 2W (0, 3, 0) (1, 3, 1)

S7 (− − −) (− − +) +1 (− − −)(− − +) (+ + −) 3 · 1 + 2W (0, 3, 0) (1, 3, 1)

S8 (− − −)(− + −) + 1 (− − −)(− + −)(+ − +) 3 · 1 + 2W (0, 3, 0) (1, 3, 1)

S9 (− − −)(+ − +) + 1 (− − −)(+ − +)(− + −) 3 · 1 + 2W (0, 3, 0) (1, 3, 1)

S10 (+ − +)(− + −) + 1 (+ − +)(− + −) (− − −) 3 · 1 + 2W (0, 3, 0) (1, 3, 1)

S11 2·(− − −) +1 2· (− − −)+1 3 · 1 + 2W (1, 5, 1) (0, 1, 0)

S12 2 · (+ − +) + 1 2 · (+ − +)+ 3 · 1 + 2W (1, 5, 1) (0, 1, 0)

S13 (− − −)+2 · 1 2· (− − −) +1 3 · 1 + 2W (1, 5, 1) (1, 3, 1)

S14 (− − −)+2 · 1 2· (− − −) +1 3 · 1 + 2W (1, 5, 1) (1, 3, 1)

S15 (+ − +) + 2 · 1 2 · (+ − +) + 1 3 · 1 + 2W (1, 5, 1) (1, 3, 1)

S16 3 · 1 3 · 1 3 · 1 + 2W (3, 9, 3) (0, 1, 0)

Table 3 Trace vectors

Type Type H0(A, �1
A) Trace vect. H2

var(X) Trace vect. H0(A, �3
A) Mult. χA

S5 (3|3 1 2|1 2 2|2) (43| − 5 3 − 5| − 5 3 3|3) (1|1 1 − 1 |1 − 1 − 1| − 1) 2

S6 (3|2 1 2|2 12|3) (43|3 − 5 3|3 − 5 3| − 5) (1| − 1 1 − 1| − 1 1 − 1|1) 2

S7 (3|1 1 2|3 2 2|2) (43| − 5 − 5 3| − 5 3 3|3) (1|1 1 − 1 |1 − 1 − 1| − 1) 2

S8 (3|1 2 1|2 3 2|2) (43| − 5 3 − 5|3 − 5 3|3) (1|1 − 1 1| − 1 1 − 1| − 1) 2

S9 (3|2 1 2|2 3 2|1) (43|3 − 5 3|3 − 5 3| − 5) (1| − 1 1 − 1| − 1 1 − 1|1) 2

S10 (3|2 2 2|1 3 1|2) (43|3 3 3 | − 5 5 − 5|3) (1| − 1 − 1 − 1|1 1 1| − 1) 2

S13 (3|2 2 2|3 3 3|2) (43|3 3 3| − 5 − 5 − 5|3) (1| − 1 − 1 − 1|1 1 1| − 1) 2

S14 (3|2 2 2|3 3 3|2) (43|3 3 3| − 5 − 5 − 5|3) (1| − 1 − 1 − 1|1 1 1| − 1) 2

S15 (3|3 2 3|2 3 2|2) (43| − 5 3 − 5 |3 − 5 3|3) (1|1 − 1 1| − 1 1 − 1| − 1) 2

the (+1)-eigenspace of H0(�1
A). This type is given in Table 3. The next column gives the

corresponding trace vector. Then follows the trace vector of χA. Now apply the trace formula
for the multiplicity of an irreducible representation inside a given representation (see e.g.
[12, §2.3]): just take the “dot” product of the two trace vectors and divide by the order
of the group. Let me do this explicitly for the family S5. The trace vector for H2

var(X) is
(43,−5,−5, 3,−5, 3, 3, 3), the first number being dim H2

var(X). The representation χA =
(+ + −) has trace vector (1, 1, 1,−1, 1,−1,−1,−1) and the trace formula reads

1

8
(43 − 5 − 5−3 − 5 − 3 − 3 − 3) = 2.


�
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4 Themain result

In this section I shall show that the main theorem 4.2 below follows upon application of
Theorem 2.1. First an auxiliary result.

Lemma 4.1 Consider for each of the families S1–S16 the space of theta-functions H0(L2
A)

as G-representation space. This 8-dimensional space is the direct sum for all 8 characters
of G except for the families S1 and S2. For these families we have

• for S1 we have H0(L2
A) = 2((+ + +) + (+ + −) + (+ − +)+(+--)),

• for S2 we have H0(L2
A) = 2((+ + +) + (+ − +) + (− + −)+ (---)).

Proof This follows from theG-action on the basis θ j1, j2 j3 for H
0(L2

A)which can be deduced
from Lemma 3.2. I shall work this out for two cases: the family S2, and for the family S6.
For S2 we have g1 = ι1ι3ι23, g2 = ι3ι13 and g3 = ι2ι23 and for S6 we have g1 = ι2ι3ι123,
g2 = ι2ι3ι13 and g3 = ι3ι23, and the action of these involutions is given in the following
table. 
�

Element g1 = ι1ι3ι23 g2 = ι3ι13 g3 = ι2ι23 g1 = ι2ι3ι123 g2 = ι2ι3ι13 g3 = ι3ι23

θ111 + + + − + +
θ211 + − + + − +
θ121 − + − + + −
θ112 − − − + − −
θ1 2 2 + − + − − +
θ2 1 2 − + − − + −
θ221 − − − − − −
θ222 + + + + + +

Theorem 4.2 Let (X ,G) be a Burniat hypersurface pair as before and let Y = X/G be the
corresponding generalized Burniat surface. Consider the one-dimensional space H0(�3

A)

as a G-representation space, i.e. as a character χA. Then

(1) For the families S1,S2 the involution j = ι1ι2ι3 belongs to G and the motives h(X/ j)
and h(Y ) are finite dimensional.

(2) For all other families, the motive (X , πχA ) is finite-dimensional. For the families S3,S4,
S11,S12 and S16 the latter motive is just h(Y ).

(3) The Bloch conjecture holds for the families S1–S4. In the remaining cases a variant of
Bloch’s conjecture holds, namely CHvar

0 (X)χA = 0. For the familiesS11,S12 andS16 this
means that CHvar

0 (X) = 0.

Proof (1) For the family S2 this is [9, Example 7.3]. The same proof goes through for the
family S1.

(2) The conditions (1), (2) and (4) of Theorem2.1 are verified. Condition (5) is a consequence
of Lemma 3.4.3. Indeed, if all characters in the 8-dimensional space H0(A,L2) appear
once, this result implies that there is one character missing in H0,2

var (X), namely the
character χA for the holomorphic three-forms on A. So for this character space condition
(5) holds. As to (3), Lemma 4.1 states that in this case all characters appear in H2

var(X)

exceptmaybe thismissing characterχA. But itsmultiplicity has been calculated inTable 3.
It is non-zero and so condition (3) holds as well.

(3) This is one of the assertions of Theorem 2.1. 
�
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Remark 4.3 Recall the following definition from [1]: a Sicilian surface is a minimal surface
S of general type with numerical invariants pg(S) = q(S) = 1, c21(S) = 6 for which,
in addition, there exists an unramified double cover Ŝ → S with q(Ŝ) = 3, and such
that the Albanese morphism α̂ : Ŝ → Alb(Ŝ) is birational to its image Z , a divisor in its
Albanese variety with Z3 = 12. In loc. cit. one finds the following explicit construction. Let
T = C2/
2, 
2 = Z2 ⊕ τ1Z⊕Zτ2 be an Abelian surface with a (1, 2)-polarizationL2 and
let E = C/
, 
 = Z ⊕ τZ be an elliptic curve. Consider the sections of the line bundle
L = L⊗2

0 � L2 on A:=E × T that are invariant under the action of the bi-cyclic group K
generated by (e, a) 	→ (e + 1

2τ,−a + 1
2 τ1) and (e, a) 	→ (e + 1

2 , a + 1
2τ2). These sections

define hypersurfaces X ⊂ A and the quotient Y = X/K is a Sicilian surface and all such
surfaces are obtained in this way.

Let me consider the invariants. Note that pg(Y ) = q(Y ) = 1, c21(Y ) = 6 implies that
h1,1(Y ) = h1,1(X)++ = 6. In the samemanner as for the familiesS11 andS12 one shows that
h2,0var,++ = 0 so that H1,1(X)var,++ = H2(X)var,++.Moreover, one finds h1,1(X)var,++ = 1.
In the course of the proof of [1, Theorem6.1] it is remarked that H0(A,L) = (++)⊕(+−)⊕
(−+)⊕(−−). Clearly, H0(�3

A) is invariant under K and the residue calculus (cf. Lemma3.4)

shows that H2,0
var = (+−) ⊕ (−+) ⊕ (−−) and so the “missing character” χA is the trivial

character. Since h1,1(X)var,++ = 1 this missing character is present in H2(X)var and by
Theorem 2.1 it follows that for Sicilian surfaces Y , one has CHvar

0 (Y ) = 0 and the motive
h(Y ) is finite-dimensional.
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