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Abstract—As the Internet-of-Things (IoT) emerges, connecting
immense numbers of sensors and devices, the continual growth in
wireless communications increasingly manifests itself in terms of
a larger and denser population of nodes with intermittent traffic
patterns. A crucial issue that arises in these conditions is how to
set the activation rates as a function of the network density and
traffic intensity. Depending on the scaling of the activation rates,
dense node populations may either result in excessive activations
and potential collisions, or long delays that may increase with
the number of nodes, even at low load.

Motivated by the above issues, we examine optimal activation
rate scalings in ultra-dense networks with intermittent traffic
sources. We establish stability conditions, and provide closed-
form expressions which indicate that the mean delay is roughly
inversely proportional to the nominal activation rate. We also
discuss a multi-scale mean-field limit, and use the associated fixed
point to determine the buffer content and delay distributions. The
results provide insight in the scalings that minimize the delay
while preventing excessive activation attempts. Extensive simu-
lation experiments demonstrate that the mean-field asymptotics
yield highly accurate approximations, even when the number of
nodes is moderate.

I. INTRODUCTION

A. Background and motivation

In the present paper we examine optimal activation rate
scalings in large-scale wireless networks with intermittent
traffic flows. The sustained growth in wireless communications
will increasingly manifest itself in terms of a larger number
and denser population of nodes, driven by a proliferation of
low-cost sensors and machine-type devices in the emerging
Internet-of-Things (IoT). Forecasts indicate that the number
of IoT nodes will reach into the tens of billions over the next
few years, and outgrow the number of human-operated devices
by an order-of-magnitude [1], [2].

With such a massive number of nodes, each of which
individually may only be sporadically active, any form of
dedicated spectrum allocation or scheduled medium access is
impractical. Instead these large-scale networks will typically
rely on the individual nodes to dynamically share the medium
in a distributed fashion. A popular mechanism for distributed
medium access control is provided by the Carrier-Sense
Multiple-Access (CSMA) protocol. In the CSMA protocol
each node attempts to access the medium after a certain back-
off time, but nodes that sense activity of interfering nodes
freeze their back-off timer until the medium is sensed idle.

While the CSMA protocol is fairly easy to understand at a
local level, the interaction among interfering nodes gives rise
to quite intricate behavior on a macroscopic scale. As it turns
out though, in saturated-buffer scenarios (so nodes always have
packets to transmit), the joint activity process of the various
nodes has a product-form stationary distribution [22], provid-
ing useful throughput estimates for persistent traffic flows [4],
[24], [31]. However, these results do not capture the relevant
performance metrics in unsaturated-buffer scenarios, which in
particular arise in an IoT context with highly intermittent traf-
fic sources. In such situations, buffers will frequently be empty,
and nodes will refrain from competition for the medium during
these periods. The resulting two-way interaction between the
activity states and the buffer contents produces extremely
complex behavior, and even basic throughput characteristics
and stability conditions have remained largely elusive so
far [9], [23].

A particularly crucial issue that arises in the above sce-
narios, with vast numbers of intermittently active sources, is
how to set the back-off rates as a function of the network
density and traffic intensity. In order to avoid collisions, the
value of the back-off rate should first of all account for the
maximum signal propagation delay between interferers, which
is mostly governed by the physical attributes of the network.
However, as networks grow increasingly dense, the sheer
number of interferers can grow extremely large as well. Thus
the aggregate back-off rate of the nodes within interference
range can be correspondingly large, which may also give rise
to spurious collisions.

The above issue can be countered by lowering the value of
the back-off rate in dense networks and for example setting it
inversely proportional to the number of nodes. Such a rule of
thumb would be somewhat reminiscent of the well-known fact
that in a slotted Aloha system with N nodes a transmission
probability 1/N maximizes the throughput [28]. However
these considerations implicitly rely on the assumption that
nodes have saturated buffers and always packets to transmit.
Dense networks with a huge number of nodes can only sustain
the collective load if they each individually have low traffic
rates and are only sporadically active. In these cases setting
the back-off rate inversely proportional to the number of nodes
could result in unnecessarily long delays that may increase
with the number of nodes, even when the collective load is
not particularly high.



B. Key contributions and implications

We will examine optimal activation rate scalings in ultra-
dense wireless networks with intermittent traffic sources.
Specifically, we assume that the mean nominal back-off rate at
each node is scaled by a factor f(N) as a function of the total
number of nodes. We then investigate the impact of f(N) on
key performance metrics such as the buffer content and delay.
We further investigate how the stationary aggregate back-off
rate behaves as a function of f(N). The key contributions and
findings may be summarized as follows:

1) We establish that, for any fixed subcritical aggregate
traffic intensity, the system is stable as long as the mean
nominal back-off period scales sublinearly with the number
of nodes, i.e., f(N) falls off slower than 1/N .

2) We provide closed-form expressions for the mean sta-
tionary buffer content and delay, which illuminate the impact
of the function f(N). In particular, for a fixed traffic intensity,
the mean stationary delay and system-wide backlog scale
roughly inversely proportional with f(N), i.e., they grow
approximately linearly with the mean nominal back-off period.

3) We discuss a multi-scale mean-field limit for the overall
buffer occupancy process. In contrast to the standard mean-
field set-up, we do not simply normalize the entire process
by the number of nodes N as a common factor, but scale
the number of nodes with k or more packets in their buffer
by N(Nf(N))−k. We identify the fixed point of the mean-
field limit, and use that to determine the buffer content and
delay distributions in the many-sources regime. In particular,
the probability that the buffer of an individual node contains
k or more packets scales as (Nf(N))−k as N →∞.

4) The mean-field limit further reveals that the aggregate
back-off rate settles around a constant value as the number
of nodes grows large, which is independent of the exact
back-off scaling, in contrast to saturated-buffer scenarios.
This reflects a self-regulating property, where the number of
backlogged nodes that is actively competing for the medium
is roughly inversely proportional to the nominal back-off rate.
For example, a more aggressive back-off scaling indirectly
results in a proportional reduction of the number of backlogged
nodes.

5) In order to further sharpen the above-mentioned ‘con-
centration’ property, we establish the central limit behavior of
the system-wide backlog, and leverage that to show that the
aggregate back-off rate is bounded in the many-sources regime
with high probability. We use the mean-field asymptotics
and central limit result to provide insight in the scalings
that minimize the delay while preventing excessive activation
attempts.

6) The various analytical results will be corroborated by ex-
tensive simulation experiments, which confirm that the mean-
field asymptotics yield highly accurate approximations for the
relevant performance metrics, even when the number of nodes
is moderate.

C. Related work

As noted earlier, the issue of how to set activation probabil-
ities was extensively studied in slotted Aloha systems, see for
instance [18], [28], [30], [32]. However, these studies either
consider static optimization as a function of the number of
nodes in saturated buffer scenarios, or dynamic optimization
for infinite-source models, and the collision dynamics render
the problem fundamentally different from that for collision
avoidance schemes.

The line of work that has pursued optimization of activation
rates for CSMA schemes, has mainly been concerned with
optimizing some fairness criterion or global throughput utility
metric in scenarios with saturated buffers [21], [25]. Scenarios
with packet arrivals have been considered in the context
of queue-based CSMA strategies [17], [20], [27], [29], but
these involve given queue-dependent activation probabilities,
whereas we focus on optimization of the nominal back-off
rates as a function of the total number of nodes.

Mean-field analysis has emerged as a powerful approach
to obtain tractable performance estimates in random-access
networks. Mean-field concepts were already leveraged to de-
rive throughput estimates in saturated-buffer scenarios in the
seminal paper [3], with further results in [12], [15], [26].
Mean-field techniques have also proved useful in examining
stability issues [5] and obtaining expressions for queue length
distributions and delay metrics in unsaturated-buffer scenarios
[10], [11]. However, none of these papers have pursued multi-
scale mean-field limits, or specifically addressed the perfor-
mance impact of the activation rates and how to set these as
a function of the network density and traffic intensity.

D. Paper organization

The remainder of the paper is organized as follows. In
Section II we present a detailed model description. In Sec-
tion III we establish stability conditions and provide closed-
form expressions for the mean stationary buffer content and
delay as a function of the activation rate. We discuss a
multi-scale mean-field limit for the overall buffer occupancy
process in Section IV, and use the fixed point to determine
the buffer content and delay distributions and demonstrate
the concentration property of the aggregate back-off rate in
the many-sources regime. Section V establishes the central
limit behavior of the total buffer content and bounds for
the aggregate back-off rate. In Section VI we discuss the
simulation experiments that we have conducted to corroborate
the analytical results. In Section VII we make some concluding
remarks and describe possible topics for further research.

II. MODEL DESCRIPTION

Consider a random-access network of N mutually interfer-
ing nodes sharing a wireless medium. Packets are generated
at the various nodes as independent Poisson processes of rate
λ/N . When a node gains access to the medium, it transmits a
single packet, which takes an exponentially distributed time
with parameter µ. Before initiating a transmission, a node
obeys a back-off period. This period is frozen whenever



another node is transmitting and immediately resumed when
the medium is sensed free again. When a node with packets
to transmit completes a back-off period, it gains access to
the medium and starts a transmission. The back-off period
at every node is exponentially distributed with parameter
νf(N). Denote the aggregate traffic intensity of the network
by ρ = λ/µ.

The network evolution is described by the queue length
process Q(N)(t) and the activity process Y (N)(t). The queue
length Q(N)

n (t) represents the number of packets in the buffer
of node n at time t (excluding the one possibly in transmis-
sion). The activity state at time t is Y (N)(t) = 1 if any of
the nodes is active (transmitting) and Y (N)(t) = 0 otherwise.
Because all the nodes are exchangeable, the queue length
process may be equivalently represented by the population
process X(N)(t), where X(N)

k (t) denotes the number of nodes
having k packets in their buffer at time t, i.e,

X
(N)
k (t) =

N∑
n=1

1

{
Q(N)
n (t) = k

}
.

The process (X(N)(t), Y (N)(t)) is Markovian with the fol-
lowing transitions:
• A packet arrives at a node having k packets in its buffer
with rate λX(N)

k /N , generating the transition

(X(N), Y (N))→ (X(N) + ek+1 − ek, Y (N)),

where ek is the k-th N -dimensional unit vector.
• A transmission is completed with rate µ and only if a node
is transmitting, i.e., Y (N) = 1, generating the transition

(X(N), Y (N))→ (X(N), Y (N) − 1).

• A back-off is completed by a node having k > 0 packets
in its buffer with rate νf(N)X

(N)
k and only if no node is

transmitting, i.e., Y (N) = 0, generating the transition

(X(N), Y (N))→ (X(N) + ek−1 − ek, Y (N) + 1).

Similarly define the ‘cumulative’ population process
Z(N)(t), where Z(N)

k (t) denotes the number of nodes having
at least k packets in their buffer at time t, i.e.,

Z
(N)
k (t) =

∑
m≥k

X(N)
m (t),

and let L(N)(t) be the total number of packets in the system
at time t, i.e.,

L(N)(t) =

∞∑
k=1

kX
(N)
k (t) =

∞∑
k=1

Z
(N)
k (t).

We now introduce some convenient notation that will be
used later to characterize the behavior of various quantities as
functions of the back-off scaling f(N) in the regime where
N grows large. Given two functions f1, f2 : N→ R+ we say
that f1 is asymptotically bounded from below by f2, denoted
by f1(N) ≥N f2(N), if f1(N) = Ω(f2(N)), i.e.,

f1(N) ≥N f2(N) ⇐⇒ lim
N→∞

f1(N)

f2(N)
> 0.

Similarly, we say that f1 asymptotically dominates f2, denoted
by f1(N) >N f2(N), if f1(N) = ω(f2(N)), i.e.,

f1(N) >N f2(N) ⇐⇒ lim
N→∞

f1(N)

f2(N)
=∞.

III. STABILITY AND MEAN STATIONARY PERFORMANCE

In this section we establish stability conditions and pro-
vide closed-form expressions for the mean stationary queue
length and waiting time which reveal the impact of the back-
off scaling factor f(N). We will leverage results from the
polling literature, harnessing a connection between a CSMA
network with complete interference and a polling system with
a 1-limited service discipline and a uniform random routing
policy [13]. In order to explain the connection, suppose that
not each individual node has an exponential back-off clock
with rate νf(N), but that there is a fictitious global exponential
back-off clock with rate νNf(N). When the global back-
off clock ticks, one of the N nodes is selected uniformly at
random, and granted the opportunity to transmit one packet, if
it has any. The latter operation is statistically identical to that
in the CSMA network, and at the same time equivalent to the
evolution of a system with N queues and a single server, which
selects queues uniformly at random, takes an exponential
time with parameter νNf(N) to move to the selected queue,
and then serves exactly one packet there (if present). This
in turn corresponds exactly to a polling system with a 1-
limited service discipline, a uniform random routing policy,
and exponential switch-over times with parameter νNf(N).

The next proposition follows from a direct application of the
stability conditions derived in [14], [16] for the latter polling
system to the CSMA network.

Proposition 1. The queue length process Q(N)(t) is positive-
recurrent if and only if S(N) > 0, where

S(N) := 1− ρ− λ

νNf(N)
. (1)

In particular, observe that if f(N) <N
1
N , then the queue

length process Q(N)(t) is transient for all N sufficiently large.
Conversely, the queue length process is positive-recurrent for
all N sufficiently large if

ρ < 1 and ξ̃ = lim sup
N→∞

ξ

f(N)N
< 1, (2)

where ξ := λ
ν(1−ρ) . Condition (2) entails f(N) ≥N 1

N , and
we will focus on the case where f(N) >N

1
N , so that ξ̃ = 0.

The case with ξ̃ > 0 was analyzed in [10], [11].
We henceforth assume that condition (2) is satisfied, so that

the queue length process is positive-recurrent for all suffi-
ciently large values of N . Denote by Q(N) the random vector
with the stationary distribution of the queue length process
Q(N)(t), tracking the buffer contents of the various nodes.
Note that each component Q(N)

n has the same distribution
since all the nodes are exchangeable, and let Q(N) be a random
variable with that common distribution. Similarly we define
the stationary versions of the processes X(N), Z(N), and



L(N), introduced in Section II. We further denote by W (N)

the stationary waiting time of an arbitrary packet, i.e., the
amount of time spent in the buffer of a node until the start of
transmission.

In view of the connection with a polling system with a 1-
limited service discipline and a uniform random routing policy
described above, we can use the so-called pseudo-conservation
law for the latter system in [7, Eqn. (5.31)] to obtain the
expected stationary waiting time E[W (N)] as presented in the
next proposition. Because of Little’s law, this also immediately
yields the expected stationary queue lengths as

E[Q(N)] =
λE[W (N)]

N
, E[L(N)] = λE[W (N)] = NE[Q(N)].

Proposition 2. If condition (1) holds, then

E[W (N)] =
1

S(N)

( ρ
µ

+
1

νf(N)

)
, (3)

E[L(N)] =
1− ρ
S(N)

( ρ2

1− ρ
+

ξ

f(N)

)
. (4)

Since S(N) is increasing in f(N) when condition (1) is
satisfied, it directly follows from (3) that the expected station-
ary waiting time and queue length are both decreasing in the
back-off scaling factor f(N), as expected. More specifically,
we can observe that, for a fixed traffic intensity ρ, the expected
stationary waiting time and total backlog in the system scale
both roughly inversely proportional with f(N), i.e., they grow
approximately linearly with the mean nominal back-off period.

IV. MULTI-SCALE MEAN-FIELD LIMIT

The analysis in the previous section revealed the impact
of the back-off scaling on stationary performance metrics
like the expected waiting time and expected total backlog.
In order to gain deeper insight in the impact of the back-
off scaling, we investigate in this section a multi-scale mean-
field limit for the overall buffer occupancy process. In contrast
to the conventional mean-field framework, we do not simply
normalize the entire process by the number of nodes N as a
common factor, but scale the number of nodes with a queue
length of k or larger by N(Nf(N))−k to obtain a refined
view of the buffer occupancy dynamics on the relevant scales.

A. Mean-field limit path

Let Z̃
(N)

(t) be the rescaled cumulative population process,

Z̃
(N)
k (t) =

(
Nf(N)

)k
N

Z
(N)
k (t), k ≥ 1. (5)

As mentioned above, the scaling factor (Nf(N))k/N may be
interpreted as the inverse of the typical number of nodes with
a queue length of k or larger, meaning that Z̃(N)

k (t) should
typically be O(1). Accordingly, define

k̄ = sup
k∈N

{(Nf(N)
)k

N
<N 1

}
≥ 1 (6)

as the largest value of k for which the typical number of nodes
with a queue length of k or larger grows large as N → ∞.

Let ζ(N)(t) be the k̄-dimensional process where ζ
(N)
k (t) =

Z̃
(N)
k (t) for every k = 1, . . . , k̄.
Even though the typical numbers of nodes with a queue

length k = 1, . . . , k̄ grow large as N → ∞, we observe that
whenever f(N) >N 1/N , the number of nodes with a queue
length of k+1 or larger is of a smaller order-of-magnitude than
the number of nodes with a queue length exactly k. Hence,
the variable Z̃

(N)
k (t) may equivalently be thought of as the

rescaled number of nodes with a queue length exactly k. In
particular, taking k = 0, the number of nodes with a non-
zero queue length is of a smaller order-of-magnitude than the
number of nodes with a zero queue length. In other words,
the overwhelming majority of nodes have empty buffers.

The next proposition states that, for suitable initial condi-
tions, as N → ∞, the rescaled and accelerated cumulative
population process ζ(N)(t/f(N)) converges to a deterministic
limit ζ(t) described in terms of a set of differential equations.
This is referred to as a multi-scale mean-field limit, since the
components of the original population process Z(N)(t) are of
different orders-of-magnitude and have been scaled differently.

Proposition 3. Multi-Scale Mean-Field Limit Assume that
1
N <N f(N) <N 1 and that ζ(N)(0) ⇒ ζ(0) as N → ∞.
Then

ζ(N)
( t

f(N)

)
⇒ ζ(t) as N →∞, (7)

where ζ(t) satisfies the system of differential equations

∂ζ(t)

∂t
= H(ζ(t)), (8)

with

H1(ζ(t)) = λ− νπ0
ζ(t)ζ1(t), (8.a)

Hk(ζ(t)) = λζk−1(t)− νπ0
ζ(t)ζk(t), (8.b)

for k = 2, . . . , k̄ and π0
ζ(t) = µ/(µ+ νζ1(t)).

B. Discussion of mean-field limit behavior

The differential equations that arise in the above multi-scale
mean-field limit may be interpreted as follows. The function
Hk(ζ(t)) represents the change in the rescaled number of
nodes with a queue length of k or larger in the state ζ(t),
which is increasing at rate λζk−1(t) due to packet arrivals
at nodes with queue length exactly k − 1 and decreasing
at rate νπ0

ζ(t)ζk(t) due to successful back-off completions at
nodes with queue length exactly k. The term π0

ζ(t) captures the
fraction of time that successful back-off completions can occur
in state ζ(t), which corresponds to the fraction of time that no
node is active. The function H1(ζ(t)) similarly represents the
change in the rescaled number of nodes with a non-zero queue
length in the state ζ(t), but the term corresponding to arrivals
at nodes with zero queue length takes a slightly simpler form
since by definition Z̃0 = 1.

The proof of Proposition 3 is lengthy and technically
involved. For the details we refer to [8, Sect. 5.3]. The key
argument involves a stochastic averaging principle similar to
[11], [19], capturing a separation of time scales between the



‘fast’ activity process Y (N)(t) and the ‘slow’ rescaled cumu-
lative population process Z̃

(N)
(t). To illustrate the separation

of time scales, it is useful to consider the drifts of these two
processes. When the state is (z̃, y) =

(
Z̃

(N)
(t), Y (N)(t)

)
, the

k-th component of Z̃
(N)

(t) experiences a drift

Fk(z̃, y) =f(N)λ
(
z̃k−1 −

z̃k
Nf(N)

)
− f(N)ν1{y = 0}

(
zk −

z̃k+1

Nf(N)

)
, (9)

while the activity process is subject to a drift

G(z̃, y) =ν1{y = 0}z̃1 − µ1{y = 1}. (10)

Equations (9) and (10) reflect that the rescaled population
process Z̃

(N)
(t) changes at a ‘slow’ rate f(N) as N → ∞,

while the activity process Y (N)(t) evolves at a ‘fast’ O(1) rate.
(Equation (9) further reflects that although all the components
Z

(N)
k (t) are of different orders-of-magnitude, the rescaled

versions Z̃(N)
k (t), k = 1, . . . , k̄, all evolve on the common

time scale 1/f(N)). Hence, by rescaling time by 1/f(N)
and letting N grow large, the activity process instantaneously
converges to its stationary distribution, which only depends on
the current state of the rescaled population process. The latter
stationary distribution is given by πz̃ = (π0

z̃, π
1
z̃) such that

νπ0
z̃ z̃1 − µπ1

z̃ = 0, π0
z̃ + π1

z̃ = 1,

yielding π0
z̃ = µ/(µ+ νz̃1).

This then implies that the sum of the first and third term
in Equation (9) converges to the function Hk(t) as N → ∞.
It can further be shown that the other two terms scaled by
Nf(N) vanish as N →∞, yielding Proposition 3.

C. Fixed point

We now turn attention to the fixed point of the mean-
field limit as stated in Proposition 3. The fixed point will be
used to determine the buffer content and delay distributions at
individual nodes and demonstrate the concentration property
of the aggregate back-off rate.

The next proposition identifies the fixed point of the system
of differential equations (7), and establishes that it is globally
stable. The proof is provided in Appendix A.

Proposition 4. Fixed Point of Mean-Field Limit For any
initial state ζ(0), there exists a unique solution ζ(t) of the
system of differential equations (7), with

lim
t→∞

ζ(t) = ζ∗, ζ∗k = ξk, ∀ k = 1, . . . , k̄,

with ξ = λ
ν(1−ρ) as defined earlier.

• Stationary performance at individual nodes. The fixed point
can be leveraged to obtain stationary performance measures
at individual nodes. Specifically, if we assume the large-scale
(N → ∞) and stationary (t → ∞) limits to commute, then

we obtain an asymptotic approximation for the buffer content
distribution at an individual node

P{Q(N) ≥ k} =
E[Z

(N)
k ]

N
∼ ζ∗k

(Nf(N))k
=
( ξ

Nf(N)

)k
,

(11)
for all k = 1, . . . , k̄. Applying a similar observation as used
in the the distributional form of Little’s law, this also yields
an asymptotic approximation for the waiting-time distribution

P{W (N) ≥ t} ∼ e−
(
ν(1−ρ)f(N)− λ

N

)
t, (12)

and thus P{f(N)W (N) ≥ t} → e−ν(1−ρ)t as N → ∞. This
reflects that asymptotically the queue length and waiting
time at each individual node behave as the total number
of jobs and the sojourn time in an M/M/1 system with
arrival rate λ/N and service rate ν(1 − ρ)f(N), and thus
evolve as in an M/M/1 system with arrival rate λ/(Nf(N))
and service rate ν(1−ρ) when viewed on a time scale 1/f(N).

• Implications for aggregate back-off rate. The mean-field
limit in Proposition 3 implies that the rescaled number
f(N)ZN1 (t) of backlogged nodes at time t converges to ζ1(t)
as N → ∞. In particular, the rescaled stationary number of
backlogged nodes f(N)Z

(N)
1 settles around its mean value

ζ1 = ξ = λ
ν(1−ρ) as N → ∞. It follows that the stationary

aggregate back-off rate V (N) = νf(N)Z
(N)
1 concentrates

around its mean value νζ1 = λ
1−ρ . Thus, the mean stationary

aggregate back-off rate multiplied with the stationary fraction
of time 1− ρ that no node is active, i.e., Y (N) = 0, equals λ,
which makes sense as summing the balance equations for the
population process X(N)(t) in fact yields the identity relation
E
[
V (N)

1

{
Y (N) = 0

}]
= λ.

It is interesting to observe that the mean stationary aggregate
back-off rate does not depend on the scaling factor f(N).
This reflects a self-regulating property, where the number of
backlogged nodes that is actively competing for the medium
is roughly inversely proportional to the nominal back-off rate.
For example, a more aggressive back-off scaling indirectly
results in a proportional reduction of the number of backlogged
nodes. Thus, the improvement of the packet delay performance
observed in Section III does not come at the expense of
an increase in the aggregate back-off rate and excessive
activations or collisions.

The mean-field limit also suggests that each individual node
is backlogged with probability ξ

Nf(N) as N →∞. Assuming

independence among nodes, this would imply that Z(N)
1 is

roughly distributed as a binomial random variable Bin(m, p)
where m = N is the number of trials and p = ξ

Nf(N) is

the probability of success. This would imply that Z(N)
1 , when

properly centered and normalized, is approximately distributed
as a standard normal random variable√

f(N)

ξ

(
Z

(N)
1 − ξ

f(N)

)
∼ N (0, 1).



However, independence only holds among finite subsets of
nodes in the mean-field limit, and not among all nodes. In
the next section we will establish nevertheless a central limit
result for L(N) which allows us to show that the above normal
approximation provides a conservative estimate for Z(N)

1 and
that the stationary aggregate back-off rate is bounded with
high probability.

V. AGGREGATE BACK-OFF RATE

The mean-field limit established in the previous section pro-
vides detailed insight in the dynamics of the buffer occupancy
process and revealed a remarkable self-regulating property.
Specifically, the rescaled stationary number of backlogged
nodes f(N)Z

(N)
1 that actively compete for the medium, settles

around its mean value ξ, and hence the aggregate back-off rate
V (N) = νf(N)Z

(N)
1 concentrates around νξ = λ/(1− ρ). In

this section, we seek to obtain further insights in the fluctuation
of V (N) around λ/(1−ρ). Specifically, we show that the vari-
ation in the rescaled total system backlog around ξ is governed
by a central limit behavior which yields concentration bounds
for the aggregate back-off rate.

A. Central-limit behavior of the total system backlog

The next theorem shows that the total system backlog
satisfies a central limit law.

Theorem 1. Assume ρ < 1 and N−
2
3 <N f(N) <N 1. Then

f(N)L(N) − ξ√
f(N)σ

⇒ N (0, 1), σ :=
(
1 +

ρ2

1− ρ
)
ξ. (13)

To prove Theorem 1, we first introduce a variation of
the CSMA network, and establish a central limit theorem
for this auxiliary model. The core of the proof consists
in showing that the CSMA network and its variation are
strongly related and that the CSMA network therefore obeys
the same central limit law when N−2/3 <N f(N) <N 1.
Specifically, it can be shown that the total system backlog
in the CSMA network is stochastically bounded from
above by that in the auxiliary model. This, together with
proving that the stationary total system backlogs of the two
models are relatively close in expectation, concludes the proof.

• A variation of the CSMA network. In the CSMA network
under investigation each backlogged node attempts back-offs
at rate νf(N), independent of its exact buffer content. Now
imagine a variation where a node with buffer content k
attempts back-offs at rate kνf(N). Intuitively, in the variation
of the CSMA network an exponential back-off clock is asso-
ciated with every packet, while in the original CSMA network
only with those packets at the head of their queue. This
corresponds to a 1-limited vacation queueing model analyzed
in [6], where vacations are interrupted at the instants of a
time-inhomogeneous Poisson process with a rate that is νf(N)
times the number of packets in the queue.

Let LA,(N) be the stationary number of waiting packets and
L̃A,(N) the stationary total number of packets (including the

one in service) in the auxiliary model. In [6, Cor. 3.5] the
probability generating function of L̃A,(N) is shown to be

GL̃A,(N)(r) =
( 1− ρ

1− ρr

)1+ λ
νf(N)

(
e(r−1)

λ
νf(N)

)
. (14)

The next theorem shows the central limit theorem for
LA,(N). The proof is presented in Appendix B.

Theorem 2. Assume ρ < 1 and f(N) <N 1. Then

f(N)LA,(N) − ξ√
f(N)σ

⇒ N (0, 1), (15)

where σ is as defined in (13).

• Proof of Theorem 1. In order to deduce (13) from (15), it
remains to be shown that the original CSMA network and its
variation are strongly similar in a certain sense, and that the
central limit law for the auxiliary model hence carries over to
the original CSMA network.

First of all, we observe that LA,(N) is stochastically
bounded from above by L(N). This result is plausible since
given the same total buffer content in the two models, the
aggregate back-off rate in the auxiliary model is larger than
that in the original network. The proof of this fact involves
stochastic coupling arguments, and is omitted because of page
constraints. At the same time, LA,(N) and L(N) are relatively
close in expectation. Indeed, noting that

E[L̃A,(N)] = G′
L̃A,(N)(1), E[LA,(N)] = E[L̃A,(N)]− ρ,

we obtain from (4) and (14), that

E
[
L(N) − LA,(N)

]
=

ξ

Nf(N)− ξ

( ρ2

1− ρ
+

ξ

f(N)

)
, (16)

which scales as 1
Nf(N)2 when N →∞ and f(N) ≤N 1.

We are now ready to present the following proposition,
which allows us to prove the central limit law for the original
CSMA network, exploiting Theorem 2 and the closeness with
the auxiliary model. The proof of the proposition is omitted
here due to page limitations and the details are presented in
[8, Prop. 5.3].

Proposition 5. Consider two sequences of random variables
{XU

n }n≥1, {XL
n }n≥1, a sequence {(cn, dn)}n≥1 ⊆ R+ × R,

and a random variable X > 0 such that XL
n ≤s XU

n for every
n ≥ 0, and

cnX
L
n + dn ⇒ X, lim

n→∞
cn

(
E
[
XU
n

]
− E

[
XL
n

])
= 0.

Then, it holds that cnXU
n + dn ⇒ X .

To prove Theorem 1, we apply Proposition 5 to the se-
quences given by XU

N = L(N), XL
N = LA,(N), and

(cN , dN ) = (

√
f(N)

σ
,
−ξ√
f(N)σ

).

Observe that Theorem 2, for f(N) <N 1, yields

cNL
A,(N) + dN ⇒ N (0, 1).



In order to apply Proposition 5, we only need to show that

lim
N→∞

√
f(N)

σ
E
[
L(N) − LA,(N)

]
= 0,

which is the case due to (16) if and only if f(N) >N N−
2
3 .

• Discussion of Theorem 1. As discussed above, the proof of
Theorem 1 is based on the connection between the CSMA net-
work and the auxiliary model. However, while the central limit
law for the auxiliary model also holds for f(N) ≤N N−

2
3 ,

the same does not for the CSMA network. The difference
between the two scenarios is due to the number of nodes
Z

(N)
2 with two or more packets in the buffer. In Section IV,

we proved that, since k̄ > 2 for f(N) <N N−
2
3 , we have

Z
(N)
2 ⇒ ξ2/(Nf(N)2), which does not vanish when the

central limit scaling is applied.

B. Concentration bounds for the aggregate back-off rate

We now aim to understand the implications of Theorem 1
for the stationary aggregate back-off rate. We proved that,
assuming ρ < 1 and N−

2
3 <N f(N) <N 1,

lim
N→∞

P{f(N)L(N) > τ(N)} = P{N1 > τ̄}, (17)

where

N1 ∼ N (0, 1), τ̄ = lim
N→∞

τ(N)− ξ√
f(N)σ

.

Since Z(N)
1 ≤ L(N) by definition, we obtain by taking τ(N) =

ξ +
κ
√
f(N)

ν that

lim
N→∞

P{V (N) >
λ

1− ρ
+ κ
√
f(N)} ≤ 1− Φ

( κ√
σ

)
, (18)

where Φ(·) is the CDF of the standard normal distribution
and σ is as defined in (13). In particular, the aggregate
back-off rate V (N) is asymptotically bounded from above by
νξ + κ

√
f(N) = λ

1−ρ + κ
√
f(N) with high probability for

sufficiently large κ values.

C. Optimal back-off rates

Consider f(N) = − log(N), i.e., N−ε <N f(N) <N 1 for
every ε > 0. Let us examine the performance in terms of the
stationary waiting time and aggregate back-off rate. From (11)
and (12) we deduce that

Q(N) ∼ Geom
(ξ log(N)

N

)
, W (N) ∼ Exp

(ν(1− ρ)

log(N)
− λ

N

)
,

and from (13) we obtain

L(N) − ξ log(N)√
log(N)σ

⇒ N (0, 1).

From (17), we obtain

lim
N→∞

P
{
V (N) >

λ

1− ρ
+ κ

1√
log(N)

}
≤ 1− Φ

( κ√
σ

)
,

Fig. 1. Example 1 - Sample path of ζ(N)
k (t) for k = 1 (blue), for k = 2

(green), and for k = 3 (red). From left to right, we consider N = 103, 106.

Fig. 2. Example 1 - Empirical average ζ̄(N)
k (t) for k = 1 (blue), for k = 2

(green), and for k = 3 (red). The empirical variance is displayed with a dotted
line. From left to right, we consider N = 102, 104.

and in particular

P
{
V (N) >

λ

1− ρ
+ κ

1
2+ε
√

log(N)

}
→ 0

for every ε, κ > 0 as N → ∞. This demonstrates that as
the network dimension grows large, on the one hand the
waiting time increases only logarithmically in the dimension,
on the other hand the system self-regulates so that the large
majority of the nodes are empty most of the time and therefore
storms of back-off completions are rare. As is illustrated
by this example, a mean waiting time of the order 1/f(N)
corresponds to a variation in the aggregate back-off rate of
the order

√
f(N). As a general guideline, this advocates a

scaling factor that decays slowly to optimize the waiting-time
performance, unless the variation in the aggregate back-off rate
is a major concern.

VI. NUMERICAL AND SIMULATION EXPERIMENTS

A. Accuracy of the multi-scale mean-field approximation

We consider Example 1 with λ = 0.75, ν = 2, µ = 1, and
f(N) = N−7/10, so that ξ = 1.5, ρ = 0.75, and k̄ = 3. In
Figure 1 we show the sample path of ζ(N)(t) obtained from
simulations with N = 103, 106. Observe that as N grows
large, the sample path of ζ(N)

k (t) gets closer to the numerical
solution of (7) which is displayed as a dashed line. The rate of
convergence depends on how fast f(N)kNk−1, the magnitude
of the process, tends to zero. Note that for k = 3 we have
f(N)kNk−1 = N1/10, hence the convergence is slow and the
process is noisy even for N = 106.



Fig. 3. Example 2 - Evolution of the buffer occupancy at node n = 1. From
left to right, we consider N = 100 and N = 1000.

Fig. 4. Example 2 - Waiting-time distribution. From left to right, we consider
N = 100 and N = 1000.

Although sample path convergence may be slow for large
k, the mean-field limit captures the average behavior very
accurately, even for low values of N . We simulated 1000
independent instances for N = 102, 104, and considered

ζ̄
(N)
k (t) =

1

1000

1000∑
j=1

ζ
(N),j
k (t), k = 1, 2, 3,

where ζ(N),j
k (t) describes the cumulative population process

observed in the j-th simulation with N nodes. In Figure 2 we
present the comparison between ζ̄(N)

k (t) and ζ(N)
k (t). Observe

that already for N = 104 these are almost indistinguishable.

B. Performance of individual nodes

Consider Example 2 with λ = 0.8, ν = 2, µ = 1, and
f(N) = N−3/5, so that ξ = 2, ρ = 0.8, and k̄ = 2. In
Section IV-C, we discussed how to leverage the mean-field
limit to approximate the stationary queue length distribution
at an individual node. In particular, equation (11), in our
example, yields

P{Q(N) ≥ 1} ≈ 2N−2/5 =: z
(N)
1 ,

P{Q(N) ≥ 2} ≈ 4N−4/5 =: z
(N)
2 .

In Figure 3 we display the evolution of the queue length at
a specific node (node n = 1) both in case N = 100 and
N = 1000, and observe the striking accuracy of the proposed
approximation. In particular, we computed

Ẑ
(N)
k (t) =

1

t

∫ t

0

1

{
Q

(N)
1 (t) ≥ k

}
,

Example 3 Example 4

N
κ ν

√
σ

4
ν
√
σ νσ ν

√
σ

4
ν
√
σ νσ

102 21.12% 0.15% – 36.77% 2.46% 0.02%

103 10.43% – – 15.83% 0.02% –

104 0.61% – – 2.88% – –

TABLE I
FRACTION OF TIME THAT V (N)(t) SPENDS ABOVE THE THRESHOLD

λ
1−ρ +κ. WHEN THE FRACTION IS BELOW 0.01% WE INDICATE IT WITH –.

and show that limt→∞ Ẑ
(N)
k (t) is well approximated by z(N)

k

already for N = 100.
In Section IV-C we also claimed that the properly scaled

stationary waiting-time distribution at an individual node is
accurately approximated by WN , an exponential random vari-
able with parameter ν(1 − ρ) − λ/Nf(N), and eventually
converges to W ∼ Exp

(
ν(1− ρ)

)
. We simulated the scenario

in Example 2 both for N = 100 and N = 1000 until∑N
n=1 T

(N)
n (t) = 200N , where T

(N)
n (t) is the cumulative

number of back-off completions of node n by time t. We kept
track of Ŵ (N)

j , the time spent in the buffer by the j-th packet
starting a transmission for j = 1, . . . , 200N . In Figure 4 we
compare the empirical distribution of f(N)Ŵ

(N)
with that of

WN and W . As expected, the approximation WN is extremely
accurate for N = 1000, and remarkably sharp already for
N = 100. As N grows large, WN clearly converges to W as
well as the empirical distribution.

C. Bounded aggregate back-off rate

In Section V we observed that the total system backlog
scales as 1/f(N) as N → ∞, and then used (18) to bound
the probability that the aggregate back-off rate V (N) exceeds
a certain threshold. We now aim to understand how frequently
V (N) exceeds λ

1−ρ + κ for different values of N and κ. We
empirically show that V (N) rarely grows large as N gets
larger, thus storms of back-off completions are rare.

Let us consider the following examples. In Example 3 we
set λ = 0.6, ν = 1, µ = 1, and f(N) = N−1/2, so that
ξ = 1.5 and σ = 2.85. In Example 4 we set λ = 0.8, ν = 8,
µ = 1, and f(N) = N−1/2, so that ξ = 0.5 and σ = 2.1.

For both examples, we let simulations run for different
choices of N and κ from an initially empty configuration, and
report the results in Table I. Observe that already for small
values of N , the fraction of time that the aggregate back-off
rate exceeds λ

1−ρ + νσ is negligible.

VII. CONCLUSION

We investigated how back-off rates impact the performance
of ultra-dense random-access networks with intermittent traffic
sources. We presented closed-form stability conditions and
expressions for the expected stationary queue length and
waiting time as a function of the back-off rate. We performed
a multi-scale mean-field analysis and observed that the number
of backlogged nodes in stationarity is inversely proportional



to the nominal back-off rate as N grows large. This self-
regulating property hints that the aggregate back-off rate
remains bounded with high probability thus precluding storms
of back-off completions. This latter property is formally es-
tablished by proving a central limit theorem for the stationary
total number of backlogged packets.

To the best of our knowledge, this is the first work to
examine the performance impact of the back-off rates in ultra-
dense random-access networks. We have only considered full
interference conditions, and aim to extend the results to more
complicated interference scenarios in future work.
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APPENDIX

A. Proof of Proposition 4
Existence and uniqueness of a solution ζ(t) easily follows

by observing that H(·) in (8) is a Lipschitz continuous
function. So as to show that ζ∗ is a globally stable fixed point
we use induction on k. For ζ1(t), it follows from (8a) that

∂ζ1(t)

∂t
= λ− νµζ1(t)

µ+ νζ1(t)
.

Note that if ζ1(0) ≥ 0, then ζ1(t) ≥ 0 for all t ≥ 0. Hence,
given that ζ1(t) ≥ 0, it holds that ∂ζ1(t)

∂t > 0 if and only if
ζ1(t) < ζ∗1 , where ζ∗1 = ξ. Let us now consider k ≤ k̄ and
assume the inductive hypothesis, i.e., ζj(t) → ζ∗j = ξj for
every j < k. It follows from (8b) that

∂ζk(t)

∂t
= λζk−1(t)− νµζk(t)

µ+ νζ1(t)
,

with ζ1(t) → ξ and ζk−1(t) → ξk−1. Hence, ∂ζk(t)
∂t →

λξk−1 − ν(1 − ρ)ζk(t), which is positive if and only if
ζk(t) < ξk. Thus we conclude that ζk(t)→ ξk.

B. Proof of Theorem 2
It follows from (14) that L̃A,(N) ∼ P (N) +B(N), where

P (N) ∼ Poiss
( λ

νf(N)

)
, B(N) ∼ NB

(
1 +

λ

νf(N)
, 1− ρ

)
,

and NB(n, p) is a Negative Binomial random variable counting
the number of failures before the n-th success in a sequence
of Bernoulli trials with success probability p. As N grows
large, P (N) and B(N), suitably centered and scaled, converge
to normal random variables:

P̂ (N) ⇒ NP
(
0,
λ

ν

)
, B̂(N) ⇒ NB

(
0,

ρ

(1− ρ)2
λ

ν

)
,

where

P̂ (N) :=
√
f(N)

(
P (N) − λ

νf(N)

)
,

B̂(N) :=
√
f(N)

(
B(N) − ρ

1− ρ
( λ

νf(N)
+ 1
))
.

The proof is completed by observing that L̃A,(N) − 1 ≤
LA,(N) ≤ L̃A,(N), λν + ρ

1−ρ
λ
ν = ξ, and λ

ν + ρ
(1−ρ)2

λ
ν = σ.


