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Parallel and Successive Resource Allocation for
V2V Communications in Overlapping Clusters

Luis F. Abanto-Leon, Arie Koppelaar, Sonia Heemstra de Groot

Abstract—The 3rd Generation Partnership Project (3GPP) has
introduced in Rel. 14 a novel technology referred to as vehicle–to–
vehicle (V2V) mode-3. Under this scheme, the eNodeB assists in
the resource allocation process allotting sidelink subchannels to
vehicles. Thereupon, vehicles transmit their signals in a broadcast
manner without the intervention of the former one. eNodeBs
will thereby play a determinative role in the assignment of sub-
channels as they can effectively manage V2V traffic and prevent
allocation conflicts. The latter is a crucial aspect to be enforced in
order for the signals to be received reliably by other vehicles. To
this purpose, we propose two resource allocation schemes namely
bipartite graph matching-based successive allocation (BGM-SA)
and bipartite graph matching-based parallel allocation (BGM-
PA) which are suboptimal approaches with lesser complexity
than exhaustive search. Both schemes incorporate constraints
to prevent allocation conflicts from emerging. In this research,
we consider overlapping clusters only, which could be formed at
intersections or merging highways. We show through simulations
that BGM-SA can attain near-optimal performance whereas
BGM-PA is subpar but less complex. Additionally, since BGM-
PA is based on inter-cluster vehicle pre-grouping, we explore
different metrics that could effectively portray the overall channel
conditions of pre-grouped vehicles. This is of course not optimal
in terms of maximizing the system capacity—since the allocation
process would be based on simplified surrogate information—but
it reduces the computational complexity.

Index Terms—weighted bipartite graph matching, radio re-
source allocation, broadcast vehicular communications, sidelink

I. INTRODUCTION

In the last months we have been witness to an enormous
effort from academia and industry in developing novel tech-
niques across the many fronts of vehicle–to–vehicle (V2V)
communications, which is to become a pivotal role player
in the fifth generation of wireless systems. Within the many
use cases of V2V communications, safety-related services are
unquestionably among the most important and challenging.
Further enhancements capable of guaranteeing low latency
and high reliability would become inestimable assets for
deployment of fully-connected vehicle systems with the po-
tential to reduce the amount of road traffic accidents [1].
Nevertheless, due to extreme mobility and highly varying
channel conditions, the stringent requirements for this type of
scenario are not so straightforward to fulfill [5]. Hence, V2V
communications calls for further research and comprehensive
field tests before it can become a trustworthy technology.

In this work, we consider that vehicles periodically broad-
cast short-term signals called cooperative awareness messages
(CAMs) [2]. A CAM message—which is transported over a
sidelink subchannel—contains meaningful information of a

vehicle, e.g. speed, position, direction, that drivers and /or
autonomous vehicles can harness for making improved and
more rational decisions. In V2V mode-3, a crucial target that
eNodeBs must guarantee is a time-domain conflict-free as-
signment of subchannels [4]. Conversely to traditional cellular
systems where communications are controlled by the eNodeB
and are virtually point–to–point links between mobile users,
in V2V mode-3 data traffic is not subject to management. For
instance, if we consider a cellular system with 4 users and
therefore two point–to–point links, the eNodeB can allocate
the two uplink transmit users in the same time subframe but
in different frequency subchannels. Afterwards, via downlink
the other two users may even receive in the same subframe the
corresponding data from the senders. On the other hand, V2V
mode-3 operates in a broadcast manner where transmission and
reception are implemented without intervention of eNodeBs.
Therefore, due to the absence of a controller that dictates the
uplink and downlink instants, only one vehicle in the cluster
can transmit at a time while the others receive. If two or
more vehicles transmit concurrently, the data sent by one will
not reach the other, thus originating a conflict. Nevertheless,
a subchannel that serves a vehicle in a certain cluster can
be repurposed by other, if the latter vehicle belongs to a
different cluster. Thus, eNodeBs will play a determinative role
in effectively allocating subchannels to in-coverage vehicles.

We formulate the resource allocation problem as a weighted
bipartite graph matching where the aim is to find a perfect one–
to–one vertex assignment with maximal sum-rate capacity.
We propose two suboptimal resource allocation approaches,
namely (i) bipartite graph matching-based successive allo-
cation (BGM-SA) and (ii) bipartite graph matching-based
parallel allocation (BGM-PA). The former one is a cluster-
wise sequential scheme that performs allocation with priority,
from the most to the least constrained cluster. The latter
algorithm is based on a primary stage of random vehicle pre-
grouping followed by a secondary resource allocation stage.
In BGM-PA, we have experimented with different metrics
in order to discover one that could effectively depict the
channel conditions of a set of pre-grouped vehicles, while
still providing an acceptable sum-rate capacity value. We have
employed the Kuhn-Munkres algorithm [6] as a basis for both
algorithms. Moreover, modifications have been considered to
enforce intra-cluster constraints and thus prevent conflicts.

Our paper is structured as follows. In Section II, we ex-
plain the motivation of our work and succinctly describe our
contributions. In Section III, we describe the sidelink channel
structure for V2V broadcast communications. In Section IV,
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Fig. 1: Sidelink V2V broadcast communications scenario

we formulate the resource allocation problem. In Section V
and Section VI, the proposed approaches BGM-SA and BGM-
PA are presented, respectively. In Section VII, we discuss
simulation results in detail for several scenarios. Finally,
Section VIII is devoted to summarizing our conclusions.

II. MOTIVATION AND CONTRIBUTIONS

The motivation of this paper can be clearly ex-
plained through Fig. 1. We observe two communica-
tions clusters; one consisting of 7 vehicles, namely
{v1, v2, v3, v4, v5, v6, v7}, whereas the remaining cluster con-
sists of 6, i.e. {v5, v6, v7, v8, v9, v10}. While there are no
conflicts in the 7-vehicle cluster—as vehicles have been as-
signed orthogonal time-domain subchannels—in the remaining
cluster we can identify a conflict. Observe that in subframe
t = 4, vehicles v8 and v10 have been assigned subchannels
located in the same subframe. Thus, these subchannels are
non-orthogonal in time domain and therefore, v8 and v10 will
not be able to receive each other’s information (assuming
that vehicles are equipped with half-duplex PHY). In order to
prevent this kind of issues from occurring, we propose two re-
source allocation schemes. Our contributions are summarized
in the following points.

• In Section IV, we introduce a compact matrix formula-
tion for the resource allocation problem when multiple
clusters are considered.

• The mentioned formulation includes additional con-
straints to prevent intra-cluster time-domain conflicts. It
also contemplates a notation for representing vehicles
with multiple cluster memberships, which facilitates mod-
eling of vehicles at intersections.

• In Section V, we propose a scheme called BGM-SA
which allocates subchannels to vehicles in a sequential
and hierarchical manner. BGM-SA is capable of attain-
ing near-optimal performance at lower complexity than
exhaustive search.

• In Section VI, we introduce a second approach called
BGM-PA which is based on (i) inter-cluster vehicle
pre-grouping and (ii) subchannel assignment. Due to
pre-grouping, the performance of BGM-PA is modest
compared to BGM-SA but with lower complexity.

• We also devise six simple metrics to optimize the alloca-
tion of subchannels in BGM-PA and the performance of
each is evaluated.

III. SIDELINK RESOURCES CHANNELIZATION

We consider that uplink/downlink and sidelink spectrum
resources are decoupled from each other. We assume that
the resources utilized for V2V sidelink communications are
located in the intelligent transportation systems (ITS) band
[3] whereas uplink/downlink spectrum resources are located in
bands that usually serve cellular users. As mentioned before, in
V2V mode-3 vehicles periodically broadcast CAM messages
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Fig. 2: Channelization for V2V communications

to their counterparts via sidelink [7]. However, uplink is used
by vehicles to report their own channel conditions to the
eNodeB. Downlink is employed for (i) signaling and for
(ii) notifying vehicles on the subchannels they have been
assigned. The channelization of sidelink spectrum resources
can be regarded as a time-frequency arrangement of non-
overlapping subchannels as shown in Fig. 2. The dimensions
of each subchannel are T = 1 ms in time and B = 1.26
MHz in frequency, which to the best of our understanding
is sufficient for conveying a CAM message. Moreover, there
are L subframes and each contains K subchannels. Therefore,
the total number of subchannels in this formation is KL.
Furthermore, each subchannel rk (for k = 1, 2, . . . ,KL)
consists of 7 resource blocks (RBs), where 5 RBs are used
for data and 2 RBs for control.

IV. PROBLEM FORMULATION

Let J denote the total number of partially overlapping
clusters. Thus, each cluster can be denoted as a set of vehicles
V(j), each consisting of Nj vehicles (for j = 1, 2, . . . , J). To
illustrate this description, consider Fig. 3, where the scenario is
constituted by J = 4 partially overlapping clusters such that
V(1) = {v1, v2, v3, v4, v5}, V(2) = {v1, v2, v6, v7}, V(3) =
{v1, v2, v8, v9}, V(4) = {v1, v2, v10} and cardinalities N1 =
|V(1)|= 5, N2 = |V(2)|= 4, N3 = |V(3)|= 4, N4 = |V(4)|= 3
with vehicles {v1, v2} lying at the intersection. Notice that
each vehicle has an absolute labeling and a corresponding
relative one which is with respect to the clusters a vehicle
is members of 1. In addition, there exists a set of allotable
subchannels which are managed by the eNodeB. In sum, there
exists a whole set of vehicles V distributed into J clusters
which are seeking to be assigned a resource from a set of
allotable subchannels R. Considering the absolute labeling,
this problem can be represented as a weighted bipartite graph

1In this section only the absolute labeling is employed. The relative notation
will be used in Section V, where Fig. 3 is repurposed to illustrate an example.
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matching between two disjoint sets: vehicles and subchannels.
Such a graph is denoted by G(V,R, E), where V = ∪jV(j) =
{v1, v2, . . . , vN}, R = {r1, r2, . . . , rKL} and E = V × R =
{e11, e12, . . . , eN(KL)} is the set of edges. The total number
of vehicles is denoted by N =

∑
j |V(j)| −

∑
j′ |V(j) ∩V(j′)|

for j 6= j′, whereas N̂ = |
⋂
j V(j)| represents the number of

vehicles at the intersection.
We can thereby represent vehicles and subchannels as

vertices. Thus, the line connecting two vertices—a vehicle
vi ∈ V with a subchannel rk ∈ R—is called an edge eik.
Each edge eik has a corresponding weight cik that in our case
represents the achievable capacity that vehicle vi can attain in
subchannel rk. Therefore, cik = B log2(1 + SINRik), where
B is the subchannel bandwidth and SINRik is the signal–to–
interference–plus–noise ratio (SINR) that vehicle vi senses in
subchannel rk. The objective function is the maximization
of the system sum-rate capacity subject to satisfying the
allocation constraints. The two types of constraints that must
be enforced are (a) the intra-cluster allocation restrictions,
which prevent time-domain conflicts and (b) the one–to–one
vertex matching conditions, which impose that each vehicle is
assigned exactly one subchannel. This is equivalent to finding
a vector x that maximizes (1a) while satisfying the constraints
(1b). Thus,

max cTx (1a)

subject to

([
IN×N ⊗ 11×L
QJ×N ⊗ IL×L

]
⊗ 11×K

)
︸ ︷︷ ︸

constraint matrix

x = 1 (1b)

where ⊗ represents the tensor product operator, c ∈ RM ,x ∈
BM with M = NLK. IN×N and IL×L are identity matrices
whereas 11×L and 11×K are vectors whose elements are all
1. Q ∈ BJ×N is the membership matrix which portrays the
association of vehicles to several clusters. Thus, if a vehicle vi
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belongs to cluster V(j), the element qji is set to 1; otherwise it
is zero. Also, x = [x1,1, . . . , x1,KL, . . . , xN,1, . . . , xN,KL]

T ,
c = [c1,1, . . . , c1,KL, . . . , cN,1, . . . , cN,KL]

T are the solution
vector and weight vector, respectively. The relation between
the graph edges eik and the solution vector x is the following.
First, we have assumed that the graph vertices are fully
connected, i.e. there are no prohibited assignments at the
beginning of the resource allocation process, and therefore
eik = 1 ∀i, k. The solution to the problem x is a subset
of edges eik called matching whose weights cik provide a
maximal sum while respecting the constraints. Therefore, if
the edge eik is part of such optimal matching, then xik = 1
otherwise xik = 0.

V. PROPOSED ALGORITHM BGM-SA

Without recurring to exhaustive search to solve (1), we
propose to perform the allocation process in an ordered and
sequential manner, which will lead to a suboptimal solution.
It should be noted that, the degree of constrainedness in
allocating subchannels is related to the cardinality of the
cluster. Hence, the assignment of subchannels becomes more
complicated when the number of vehicles in the cluster is
large. Considering the foregoing facts, the allocation process
in BGM-SA starts by assigning subchannels to the cluster
with largest cardinality and terminates when the cluster with
smallest cardinality has been processed. To illustrate this
idea with an example, we consider Fig. 3. Based on the
cardinality criterion, the ordered clusters are |V(1)|≥ |V(3)|≥
|V(2)|≥ |V(4)|. Thus, once each of the 5 vehicles in V(1)

has been alloted a subchannel, the process will continue with
cluster V(3), where only v8 and v9 should be allocated since
v1 and v2 obtained their own subchannels when V(1) was
processed. Afterwards, v6 and v7 will receive their respective
subchannels. And the last vehicle to be serviced is v10. At

every allocation phase, vehicles must be accommodated such
that they do not generate conflicts to vehicles already alloted.

To prepare the ground for the formulation of BGM-SA, we
start by isolating a single cluster V(j) as shown in Fig. 4, where
vehicles and subchannels are represented by black and white
vertices, respectively. The set R is constituted by KL vertices
which are grouped into L disjoint vertex subsets {Rl}Ll=1 that
we call macro-vertices, i.e. R = ∪Ll=1Rl, Rl ∩ Rl′ = ∅,
∀l 6= l′. Each macro-vertexRl is a congregation of K vertices,
i.e. a collection of K subchannels in the same time subframe.
Considering the relative labeling, the bipartite graph shown
in Fig. 4 is denoted by G(V(j),R, E(j)). Thus, the edge e

(j)
ik

connects vehicle v
(j)
i ∈ V(j) with a subchannel rk ∈ R. Also,

the edge weights are defined as c
(j)
ik = B log2(1 + SINR

(j)
ik ).

Instead of solving the allocation for the whole system in
(1), we solve a graph matching subproblem for each cluster
V(j), for j = 1, 2, . . . , J . Therefore, we optimize an objective
function that maximizes the sum-rate capacity of each cluster
V(j), which is expressed by

max cTj xj (2a)

subject to

([
INj×Nj ⊗ 11×L
11×Nj

⊗ IL×L

]
⊗ 11×K

)
︸ ︷︷ ︸

constraint matrix

xj = 1 (2b)

where cj ∈ RMj ,xj ∈ BMj with Mj = NjKL and L ≥ Nj .
For completeness, we add a number of virtual vehicles with
zero-valued edge weights, such that Nj = L and Mj =
M = KL2 ∀j. Therefore, the solution and weight vectors are
given by xj = [x

(j)
1,1, . . . , x

(j)
1,KL, . . . , x

(j)
L,1, . . . , x

(j)
L,KL]

T and
cj = [c

(j)
1,1, . . . , c

(j)
1,KL, . . . , c

(j)
L,1, . . . , c

(j)
L,KL]

T , respectively. It
is important to notice that the two types of allocation con-
straints mentioned in Section IV are also enforced in (2b).
This means that each vehicle will be alloted exactly one
subchannel and the resource allocation will guarantee that no
two vehicles—in the same cluster—transmit in subchannels of
same subframe. Although the constraint matrices (1b) and (2b)
are similar, it is possible to exploit the structure of (2b) and
further simplify the allocation problem. Recall that the time-
domain orthogonality requirement on alloted subchannels is
compulsory for vehicles in the same communication cluster
only. It can be shown that enforcing this requirement is
equivalent to aggregating vertices into macro-vertices, which
in addition simplifies the complexity of (2), since the di-
mensionality is reduced. Such said vertex aggregation can be
modeled as a matrix transformation, which is depicted in Fig.
5. Thus, the problem in (2) can be recast as (3)

IM×M ⊗ 11×K

IM×M ⊗ 11×K×diag(·)

xj

cj

yj

dj

Fig. 5: Transformation process



max dTj yj

subject to

[
IL×L ⊗ 11×L
11×L ⊗ IL×L

]
yj = 1

(3)

where yj = [(yj)1,1, . . . , (yj)1,L, . . . , (yj)L,1, . . . , (yj)L,L]
T ∈

BL2

and dj = limβ→∞
1
β

◦
log
{
(IM×M⊗11×K)e◦βcj

}
∈ RL2

.

The function
◦
log{·} represents the element-wise natural

logarithm whereas e◦{·} is the Hadamard exponential [8].
Note that (3) is equivalent to finding a maximal matching in
a graph G̃(j) = (V(j), R̃, Ẽ(j)) where R̃ = {r̃1, r̃2, . . . , r̃L}.
Also, the edge weights between vertices in this resultant
problem is dj , whose elements d(j)il depict the weight between
vertices v

(j)
i and r̃l, for l = 1, 2, . . . , L. Approaching (3) by

means of finding a maximal matching in G̃(j) is less complex
than solving (2) through G(j) because |R̃| is K times smaller
than |R|. Thus, instead of solving either (1) via exhaustive
search in an optimal manner or (2) sub-optimally through any
available method, we can attain the same performance as (2)
by solving (3) at lesser computational complexity.

In order to solve (3), we propose BGM-SA which is
based on [6] and shown in Algorithm 1. Recall that since
the allocation is performed in a hierarchical and sequential
manner, we first sort the clusters according to their cardinality.
Thus, we assume that the clusters have been labeled such
that |V(j)|≥ |V(j+1)|. We believe that the algorithm is self-
explanatory and therefore we will not discuss the steps in
detail. Instead, we introduce the following definitions in case
they were necessary for its understanding.

Labeling: A feasible vertex labeling in the bipartite graph
G̃(j) is a real-valued function lj : V(j) ∪ R̃ → R such that
lj(v) + lj(r) ≥ dvr, ∀v ∈ V(j), ∀r ∈ R̃. An initial feasible
labeling lj can be obtained by assigning lj(v) = max

r∈R̃
dvr

and lj(r) = 0. Because Algorithm 1 operates in a sequential
manner processing one cluster Ṽ (j) at a time, the j indexing
has been dropped to simplify the notation and thus dvr is
equivalent to d

(j)
vr .

Equality subgraph: An equality subgraph G
(j)
l obtained

from a labeling lj contains edges evr ∈ Ẽ(j) such that
lj(v) + lj(r) = dvr holds, as described in Step 1b.

Perfect matching: A matching M(j) is said to be perfect
when every vertex of a graph is linked to only one edge of
the matching.

Neighborhood of a set: In a bipartite graph, the
neighborhood of a vertex v ∈ V(j) is defined by
N(v) = {r | evr ∈ G

(j)
l }. Therefore, N(S) = ∪tN(st),

∀st ∈ S (See Step 6).

For each cluster V(j), the input is a bipartite graph G̃(j) =
(V(j), R̃, Ẽ(j)) and the output is a matching M(j) that will
contain the association of vehicles

(
in V(j)

)
and subchannels(

in R̃
)
. Such matchingM(j) is a collection of edges e(j)il that

can be mapped to yj . Thus, if e
(j)
il ∈ M(j), then (yj)il = 1

or (yj)il = 0 otherwise.

Algorithm 1: Bipartite Graph Matching-based Successive
Allocation (BGM-SA)

Input: A bipartite graph G̃(j) = (V(j), R̃, Ẽ(j)) for each
cluster, such that

∣∣V(j)
∣∣ = ∣∣R̃∣∣ for completeness.

Output: A set of perfect matchings M(j), j = 1, . . . , J .
begin

for j = 1 : J do
Step 1a:Generate an initial feasible labeling lj .
Step 1b:Compute the equality subgraph G

(j)
l =

{evr | lj(v) + lj(r) = dvr} for ∃v ∈
V(j),∃r ∈ R̃, evr ∈ Ẽ(j).

Step 1c: Find an arbitrary matchingM(j) in G
(j)
l .

Step 2: Terminate the algorithm if the matching
M(j) is perfect.

Step 3: Find a vertex v′ ∈ V(j) that has not been
matched in M(j) and set S(j) =
{v′}, T (j) = {∅}.

Step 4: Go to Step 6 if N(S(j)) 6= T (j).

Step 5a:Compute the labeling l′j , ∀ vertex z

l′j(z) =

 lj(z)− ε, if z ∈ S(j)
lj(z) + ε, if z ∈ T (j)

lj(z), otherwise
where

ε = min
v∈S(j)

r∈R̃\T (j)

{
lj(v) + lj(r)− dvr

}

Step 5b:Compute the equality subgraph G
′(j)
l .

Step 5c: Update the equality subgraph and
labeling: G(j)

l ← G
′(j)
l , lj ← l′j .

Step 6a:Find a vertex r ∈ N(S(j)) \ T (j).
Step 6b:Perform S(j) ← S(j) ∪ {u}, T (j) ←

T (j) ∪ {r} and go to Step 4 if ∃eur ∈
M(j) such that u ∈ V(j).

Step 7a:Find an alternating path
〈ev̂0r̂0 7→ev̂1r̂1 7→ . . . 7→ev̂mr̂m〉 such that
v̂n ∈ V(j), r̂n ∈ R̃, r̂m = r, ev̂nr̂n ∈
{G(j)

l \M(j)} for n = 0, 1, . . . ,m,
ev̂nr̂n−1 ∈M(j) for n = 1, 2, . . . ,m.

Step 7b:Augment the previous matchingM(j) ←{
M(j) ∪ {ev̂nr̂n}n=mn=0

}
\{ev̂nr̂n−1

}n=mn=1 .
Step 7c: Go to Step 2.

Step 8: Update the edges in R̃ such that ev′r′ ←
0, ∀r′ ∈ R,∀v′ ∈

{
{V(jk1

) ∩ V(jk2
) ∩

· · · ∩ V(jkq )}\V(j)
}

if ev′r′ ∈M(j).
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VI. PROPOSED ALGORITHM BGM-PA

The target of inter-cluster vehicle pre-grouping in BGM-PA
is to decrease the computational complexity of BGM-SA.
In this regard, the allocation problem can be completed
in one run by forming a virtual single cluster of vehicles,
in contrast to BGM-SA that requires to allot subchannels
for each cluster on a consecutive basis. Thus, each vehicle
group is denoted by Wu, such that W = ∪uWu and
Wu ∩ Wu′ = ∅, ∀u 6= u′, u = 1, 2, . . . , |W|. Such
scenario is depicted in Fig. 6, where the outcome of pre-
grouping is shown. R̃ is the set of subchannels whereas
r̃l (l = 1, 2, . . . , L) are the same resources we referred to in
(3). Hence, there are |W|= 5 groups of vehicles: W1 = {v1},
W2 = {v2}, W3 = {v5, v6, v8, v10}, W4 = {v4, v7, v9},
W5 = {v3}. Note that grouping is applied only to those
vehicles that do not lie at the intersection. The selection
of vehicles per cluster is done randomly but aiming at
assembling as many vehicles as possible. For instance, W3

contains 4 vehicles because that was the maximum number
allowable, i.e. one vehicle per each cluster at most. On the
other hand, W4 consists of 3 vehicles. Finally, v3 was the
last vehicle remaining and therefore, it by itself constitutes
W5. Although pre-grouping is beneficial for decreasing
the allocation complexity, it also originates difficulties on
how to represent the overall channel conditions of each
collection of vehicles Wu. The formulation of this problem is
similar to (2), except that J = 1, because after pre-grouping
there will exist one cluster only. Therefore, the problem
can be further reduced and thus adopt a form identical to
(3). Nevertheless, instead of employing Algorithm 1, we
use Algorithm 2, which in essence is similar. A central
issue to take into consideration is that the resultant edge
weights d̃ul between Wu and r̃l, must be a joint metric
that can fairly represent the overall channel conditions of a
group of vehicles. Therefore, if such a group is defined by
Wu = {wu1, wu2, . . . , wu(mu)} with mu representing the
number of vehicles in the group, then the resultant edge
weight is d̃ul = metric(d(u1)l, d(u2)l, . . . , d(umu)l). To this
purpose, we have devised six different metrics that are defined
as follows.

Algorithm 2: Bipartite Graph Matching-based Parallel
Allocation (BGM-PA)

Input: A bipartite graph G = (W, R̃, E).
Output: A perfect matching M.
begin

Drop the index j from Algorithm 1.
Perform random pre-grouping of vehicles.
Select an edge metric for the grouped sets of vehicles.
Perform from Step 1 to Step 7.

Minimum (MIN): For each r̃l, select the smallest edge
weight d̃ul among all the vehicles v′ ∈ Wu. This is a plausible
metric because if fair allocation can be guaranteed for the
least favored vehicle, then the other vehicles in the group will
at least experience equal or better channel conditions.

Maximum (MAX): This metric is similar to the previous
one, except that the maximum value is chosen instead of the
minimum.

Average (AVE): This metric considers the average channel
conditions of all the vehicles in the group.

Inverse of variance (IVAR): This metric measures the
deviation of the channel conditions in a group of vehicles.
If IVAR is large, then the channel conditions span a large
range of qualities. When IVAR is small, we can only infer
that the channel conditions are similar for the vehicles but it
is difficult to know whether these are good or not.

Minimum plus maximum (MPM): This is a merged metric
that considers the overall effect of MIN and MAX metrics.

Combined metrics (COMB): This metric combines some of
the metrics described above. Specifically to overcome the
shortcoming of IVAR and exploit the reasoning behind MIN,
we define COMB = AVE + MIN -

√
VAR, where VAR denotes

variance.
The computational complexity of exhaustive search is
O(|R|!/(|R| − |V|)!). On the other hand, when BGM-SA
is solved through Algorithm 1 after dimensionality reduc-
tion via (3), the complexity is O(max{J |V|, J |R̃|}3) =
O(max{J |V|, JK |R|}

3) whereas the complexity of BGM-PA
is O(max{|V|, 1

K |R|}
3).

VII. SIMULATIONS

In this section, we experiment with several configurations
considering different number of clusters and vehicles. We
also vary the number of vehicles at the intersection in order
to understand the impact on the allocation performance. We
evaluate exhaustive search, BGM-SA and BGM-PA using its
six variants. In our system, we consider a message rate of 10
Hz and therefore, a new allocation is performed every 100 ms
for all the vehicles. In all the experiments shown onwards, we
have averaged the results over 1000 simulations. In Fig. 7, we
have considered J = 3 clusters with N1 = 100, N2 = 90 and
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Fig. 7: Data rate for N = 210, L = 100 and K = 7 with J = 3, N1 = 100, N2 = 90, N3 = 80, N̂ = 30
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Fig. 8: Data rate for N = 130, L = 100 and K = 7 with J = 3, N1 = 100, N2 = 90, N3 = 80, N̂ = 70

N3 = 80 vehicles. The number of vehicles at the intersection
is N̂ = 30 whereas the amount of vehicles in the system is
N = 210. We have also chosen K = 7 and L = 100.

In Fig. 7, we show 5 different criteria to evaluate the
performance of the approaches. We can observe that BGM-
SA attains near-optimality as its performance is within 0.5%
of error. As we had presumed, BGM-PA-MIN exhibits an
acceptable performance compared to all other variants, being
surpassed only by BGM-PA-COMB in most cases. Because
BGM-PA-COMB is based on BGM-PA-MIN and in addition
employs statistical information of the group of vehicles, it
can in general achieve superior performance under all the five
criteria. However, under the criterion system average rate, the
best performance within the BGM-PA variants is attained by
BGM-PA-AVE. This behavior results logical because BGM-
PA-AVE considers—by definition—the average channel condi-
tions. Therefore, if BGM-PA-COMB had not been introduced,
we could have expected BGM-PA-MIN to perform best under
the worst-rate vehicle criterion, for the same reasons explained
above. The variant BGM-PA-MPM, which is based on BGM-
PA-MIN, can also attain acceptable performance under most
of the criteria. On the other hand, BGM-PA-MAX and BGM-
PA-IVAR are not capable of attaining good performance under
worst-rate vehicle and system rate standard deviation. These
two criteria would usually exhibit a favorable behavior when
the method can provide fairness. Nevertheless, since BGM-
PA-MAX is based on a greedy principle and BGM-PA-IVAR
is by itself insufficient, both variants perform poorly.

Fig. 8 illustrates a setup similar to Fig. 7 but with a change
in the number of vehicles at the intersection, namely N̂ = 70.

Thus, the number of vehicles in the system is N = 130.
We can observe that because of the increment of N̂ , the
performance of all the approaches have changed. In some
cases the performance improves whereas in others degradation
can be identified. Notice that BGM-SA still attains near-
optimality but with a comparatively increased error of 3%
in contrast to the previous case. However, some BGM-PA
variants have undergone a considerable upturn. The reason
why the performance of BGM-SA has suffered degradation,
is essentially due to the increase of number of vehicles at the
intersection. More specifically, this means that when the first
cluster V(1) is processed, the best subchannels will be selected
for its N1 = 100 vehicles. When the turn of V(2) comes, there
will be N̂ = 70 time subframes already in use, leaving only
N1 − N̂ = 30 available. Thus, the N2 − N̂ = 20 unalloted
vehicles of V(2) must be accommodated in those 30 remaining
subframes. Notice that the remaining free subframes may not
necessarily have subchannels with high SINR for the vehicles
in V(2), as this was never enforced during the allocation of
V(1). If there were fewer vehicles at the intersection, e.g.
N̂ = 30 as in Fig. 7, BGM-SA would be able to achieve higher
performance as more unused subframes would be available. On
the other hand, we observe the opposite effect in BGM-PA.
When the number of vehicles at the intersection N̂ increases,
its performance is boosted. The explanation to this outcome
is that vehicles at the intersection are not grouped (this is
done in order to prevent conflicts). Thus, there are N̂ = 70
vehicles at the intersection and at most 30 lying outside the that
area (prior to pre-grouping). And as we may infer, the main
performance degradation source for BGM-PA is grouping due
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Fig. 9: Worst-rate vehicle for L = 100,K = 7 with J =
4, N1 = 100, N2 = 100, N3 = 100, N4 = 100 and varying N̂ .
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Fig. 10: Cumulative distribution function (CDF) of rate values
for L = 100,K = 7 with J = 3, N1 = 100, N2 = 90, N3 =
80 and N̂ = 50.

to the difficulty of representing channel conditions of a group
with a single metric. Thus, since there are fewer groups of
vehicles compared to the previous case, the performance is
improved. If we had considered a larger number of vehicles at
the intersection such as N̂ = 95 with N1 = N2 = N3 = 100,
the performance of both BGM-PA-MIN and BGM-PA-COMB
would have been within 6% of optimality.

Fig. 9 shows the data rate experienced by the worst-rate
vehicle. In the abscissa, we vary the ratio N̂/Nj which
represents the proportion of vehicles at the intersection to
vehicles in each cluster. In this setup, we have considered that
N1 = N2 = N3 = N4 = 100 and J = 4 clusters. For the
reasons explained above, we expect that as the ratio N̂/Nj

approaches unity the performance of BGM-SA will decrease
whereas the performance of BGM-PA will increase. In our
opinion, leveraging the worst-rate vehicle is a most important
criterion as it guarantees a minimum achievable rate for the
least favored vehicle. Thus, judging from the results, we can
say that the proposed BGM-SA, BGM-PA-MIN and BGM-

PA-COMB are robust allocation schemes that are not prone to
influence stemming from the diversity of possible scenarios.

Fig. 10 shows the cumulative distribution function (CDF)
of the achievable rates. In this scenario, we have considered
J = 3 clusters with N1 = 100, N2 = 90, N3 = 80. Also, we
have chosen N̂ = 50 as it is an intermediate value between the
most and least favorable scenarios for BGM-SA. We observe
that BGM-SA is similar in performance to exhaustive search,
and is undoubtedly superior to all other approaches. We know,
however, that such additional gain is achieved at the expense
of higher complexity. We also observe that the second and
third best schemes are BGM-PA-COMB and BGM-PA-MIN,
respectively. Specifically, these two variants perform well in
the low regime whereas they do not excel in the large regime.
On th other hand, BGM-PA-MAX only performs well in the
large regime. For this reason, BGM-PA-MPM—which uses
both the MAX and MIN metrics—also performs acceptably
right in the whole range.

VIII. CONCLUSION

We have presented two resource allocation schemes for V2V
broadcast communications. BGM-SA is based on successive
matchings of weighted bipartite graphs whereas BGM-PA is
capable of accomplishing the allocation—for all the clusters
in the system—in a parallel fashion. We showed through
simulations that BGM-SA can attain near-optimality with a
complexity that increases proportionally to the number of
clusters. On the other hand, BGM-PA has a lower complexity
but achieves inferior performance. We also presented six
different metrics to improve the matching performance of
BGM-PA. Thus, the variants BGM-PA-COMB and BGM-PA-
MIN are the most robust since they are not influenced by the
system setup. In the allocation process, we always considered
the enforcement of constraints in order to avoid intra-cluster
allocation conflicts. A naive assumption of this work is that
clusters can always be perfectly defined although in practice
this might be complicated to guarantee.
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