

Embedded toggle generator to control the switching activity
during test of digital 2D-SoCs and 3D-SICs
Citation for published version (APA):
Katselas, L., Athanasiadis, A., Hatzopoulos, A., Jiao, H., Papameletis, C., & Marinissen, E. J. (2017). Embedded
toggle generator to control the switching activity during test of digital 2D-SoCs and 3D-SICs. In Proceedings of
IEEE International Symposium on Power and Timing Modeling, Optimization, and Simulation 2017 (pp. 1-8).
Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/PATMOS.2017.8106969

DOI:
10.1109/PATMOS.2017.8106969

Document status and date:
Published: 27/09/2017

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1109/PATMOS.2017.8106969
https://doi.org/10.1109/PATMOS.2017.8106969
https://research.tue.nl/en/publications/14d9fbae-ea50-45c3-88e6-6a57c620b246

Embedded Toggle Generator to Control the Switching Activity

during Test of Digital 2D-SoCs and 3D-SICs

Leonidas Katselas1

Hailong Jiao4*

Angelos Athanasiadis1

Christos Papameletis3
Alkis Hatzopoulos1

Erik Jan Marinissen2,4

1 Aristotle Univ. of Thessaloniki

University Campus
54124 Thessaloniki

Greece

katselas@auth.gr
angeatha@ece.auth.gr

alkis@eng.auth.gr

2 IMEC

Kapeldreef 75
B-3001 Leuven

Belgium

erik.jan.marinissen@imec.be

3 Cadence Design Systems

1701 North Street
Endicott, NY 13760

United States of America

christos@cadence.com

4 Eindhoven Univ. of Technology

Den Dolech 2
5612 AZ Eindhoven

The Netherlands

h.jiao@tue.nl

Abstract—In digital logic circuits, unconstrained scan tests are
known to evoke much higher switching activity than functional
modes. To create test conditions which are as similar as possible
to functional modes, today’s ATPG tools have knobs to constrain
the switching activity of the generated test to a user-defined
functional (= lower) level. Two-dimensional system chips (SoCs)
and three-dimensional stacked ICs (SICs) are typically tested in
a modular fashion, i.e., per embedded core or stacked die. At any
moment during the test, one or more modules are being tested
(‘module-under-test’, MUT); we refer to the modules currently
not being tested as ‘neighbors’. The switching activity of the
MUT(s) can be controlled by ATPG constraints, but the switching
activity of the neighboring modules is typically not controlled. In
this work, we present two key elements for an approach to control
the switching activity of both MUT(s) and neighboring modules.
The first is a toggle analysis tool, that determines the switching
activity of a module in either functional or test mode on the basis
of a Value Change Dump (.vcd) file generated during gate-level
Verilog netlist simulation. The second element is a programmable
on-chip toggle generator, for which we present both its hardware
scheme, as well as an algorithm to program it to achieve any
target switching activity. For each module, the toggle analysis
tool can be used to determine the switching activity in functional
mode, which then forms the target for the ATPG tool when the
module is a MUT, or for its embedded toggle generator while
the module is in its role as neighbor.

I. INTRODUCTION

Today integrated circuits (ICs) have evolved into very

complex system chips. Their designs consist of many hier-

archical levels, including cores, subsystems and (in the case

of 3D-SICs) dies. Testing these large chips for manufacturing

defects in a modular fashion has major benefits with respect

to test quality, test development effort, and test application

cost[1]. Modular test performs test generation per module,

which makes ATPG and fault-simulation much more tractable

tasks. Such a divide-and-conquer test approach minimizes

the required test data volume[2] and offers opportunities to

*Hailong Jiao is currently affiliated to Peking University Shenzhen
Graduate School in Shenzhen, China. Reach him at jiaohl@pkusz.edu.cn.

reduce test application times through effective scheduling [3].

In modular test, a module alternatingly assumes the roles of

module-under-test (MUT) and module-not-under-test (which

we refer to as ‘neighbor’ to the MUT). Modular testing

typically involves wrapping test modules for controllability

and observability purposes and connecting all test wrappers

to SoC pins through one or more test access mechanisms

(TAMs). Test wrappers have been standardized by IEEE Std

1500 [1, 4, 5].

Although leakage power is increasingly important for ad-

vanced CMOS technology nodes, the dominant power con-

sumption component remains dynamic power; it is linearly

proportional to the amount of switching activity in the circuit.

In high-performance applications, massive switching might

lead to faults due to critical IR-drop in the power distribution

network and (over-)heating. In mobile low-power applications,

excessive switching reduces battery life. Hence, designers have

come up with various ways to reduce the amount of switching

in the functional operation of the system, such as clock

gating, multiple clock domains, dynamic frequency scaling,

and multiple power domains [6, 7].

During test, the switching activity is typically significantly

higher than during functional operation. Peak power increases

of up to 30× during scan test as compared to the functional

mode have been reported [8]. During manufacturing test,

power is typically provided from a wall-plugged ATE, and

hence battery life is not a concern; however heat dissipation,

excessive IR drop, and providing realistic test conditions that

mimic functional operation are. Consequently, EDA suppliers

have equipped their ATPG tools with low-power modes and

pattern compression techniques, in which the switching activ-

ity can be constrained by the user, often at the expense of

additional test patterns and/or a slight drop in fault coverage

[9–13].

In many test access architectures, the neighbors are toggling

on the basis of the MUTs test pattern data while shifted in

978-1-5090-6462-5/17/$31.00 ©2017 IEEE

2017 27th International Symposium on Power and Timing Modeling, Optimization and
Simulation (PATMOS)

Fig. 1: An example of a SoC during modular test. Core B is the MUT, and the Core A and the Core C are neighbors.

and out of the SoC/SIC [14, 15]. The test patterns targeted at

the MUT are random data to the neighbors, and hence evoke

arbitrary, typically high, switching activity in these neighbors.

This might cause IR drop, over-heating, and/or cross-talk

noise. Consequently, the test conditions for the MUT(s) might

be unnecessarily harsh, due to which a MUT might fail its

test unjustifiably (‘false reject’) or it might be permanently

damaged due to excessive switching activity. In both cases

this results in unnecessary yield loss.

Some SoC/SIC designs prevent random toggling of neigh-

bors by shielding them from the MUT test pattern data

that is passing by, e.g. by gating the internal scan chain(s),

clock gating, and/or power-down modes [16]. This easy-to-

implement approach reduces the switching activity in neigh-

boring modules to zero. Unfortunately, it might provide a too-

optimistic test condition for the MUT(s) and consequently lead

to test escapes (‘false positives’) [17]. False rejects lead to

unnecessary yield loss, which is typically expressed as a per-

centage. On the other hand, test escapes are typically measured

as defective parts-per-million (DPPM); just the relative size of

these two units is an indication that test escapes are even more

intolerable than yield loss due to false positives.

In this work, we aim to provide realistic test conditions

to the MUT(s), to minimize both yield loss and test escapes

[17]. Therefore, we want to control the switching activity of

modules during test, also when these modules are in their

neighbor role. To this end, we equip all modules with an

on-chip programmable toggle generator. The toggle generator

can be programmed to impart a toggle pattern to the module-

internal scan chains that causes a user-defined switching

activity within the module when in its neighbor role. Typically,

we set the user-programmable switching activity to be equal

or similar to the switching activity of the functional mode of

that module.

Figure 1 illustrates the concept. It shows an SoC consisting

of three cores: A, B, and C. All three cores have an IEEE

1500-compliant test access structure (shown in blue) con-

sisting of a Wrapper Instruction Register (WIR), a Wrapper

Bypass (WBY), core-internal scan chains, and some mode-

configuring multiplexers. Shown in light-shaded orange are

the DfT extensions proper to our approach: a Programmable

Toggle Generator (PTG) and an additional multiplexer. In the

configuration shown in Figure 1, Core B is in its MUT role,

while Cores A and C are in their neighbor roles. The bold

red solid line shows the test data flow: test stimuli from the

test equipment, via the Wrapper Serial In (WSI) pin, bypassing

Core A through its WBY register, into the internal scan chains

of Core B; and the test responses from the internal scan chains

of Core B, bypassing Core C through its WBY register, via the

Wrapper Serial Out (WSO) pin, into the test equipment. If the

orange-shaded extensions were not present, the neighbors of

Cores B, Cores A and C would be toggling at random on the

bypassing test data for Core B. However, with these extensions,

their core-internal scan chains are loaded with scan-test stimuli

that are generated by their respective on-chip PTGs. These

PTGs are programmed such that a switching activity equal or

similar to a functional mode of operation is achieved. While

Figure 1 shows a one-bit (‘serial’) test interface, the same

concept is applicable for a multi-bit test interface and parallel

scan chains.

This paper presents two key elements for the concept

described above with Figure 1. The first element is a toggle

analysis tool that can determine the switching activity of a

design module in either functional or test mode. The analysis

is based on a Value Change Dump (.vcd) file generated during

gate-level IEEE Std 1364 Verilog [18] netlist simulation. The

second element is the programmable toggle generator (PTG)

that is to be included on every design module. We present

its hardware scheme, as well as an algorithm to program it

to achieve virtually any target switching activity. For each

module, the toggle analysis tool can be used to determine the

switching activity in functional mode, which then forms the

target for the ATPG tool when the module is a MUT, or for its

embedded toggle generator while the module is in its neighbor

role..

The rest of the paper is organized as follows. Section II

describes our toggle analysis tool. The toggle generator is

described in Section III. Experimental results based on IS-

CAS’89 benchmarks and an actual industrial circuit are shown

in Section IV.We conclude the paper in Section V.

2017 27th International Symposium on Power and Timing Modeling, Optimization and
Simulation (PATMOS)

II. TOGGLE ANALYSIS TOOL

Several industrial EDA tools provide a detailed power

analysis of digital ICs. However, the switching activity per

net or per clock cycle of a circuit is not available in the power

reports generated by those EDA tools. This information is

critical to the creation of a system to control the toggle rate

of a digital circuit.

As input for the toggle analysis tool we use the Value

Change Dump (VCD) file from the functional or test sim-

ulation of the circuit-under-analysis. The VCD file format

is part of the IEEE Std 1364, the standard for hardware

description language Verilog [18]. VCD files contain time-

stamped information about value changes (net toggles) on

selected nets in the design. Designers can indicate which

variables (nets) should be ‘dumped’ in a Verilog testbench

file.

The toggle analysis tool can extract two kinds of circuit

profiles on functional or scan test mode. The first profile is

the time profile (TP) of a circuit. A TP shows the number of

net toggles per clock cycle. The second profile is the net profile
(NP) of a circuit. The net profile (NP) shows the number of

toggles per net.

In order to illustrate the capabilities of our toggle analysis

tool, we present its results for an industrial IC design D1.

Figure 2 shows the TPs of four functional modes of D1.

The total switching activity and the standard deviation of

net toggles per clock cycle are different for every functional

mode. The time profiles for standard and low-power ATPG

test are plotted in Figure 3. For reasons specific to the design

of D1, the test patterns are scanned in-and-out of the circuit

without scan overlap and cause the v-shaped time profile.

Consequently, the number of net toggles is increasing during

scan load and is decreasing during scan unload. The peaks

of the profile occur during the capture phase. Note that the

number of net toggles for both test modes is significantly

higher (up to 50×) than for any of the four functional modes.

Also note that this simulation data shows that the number of

net toggles of low-power ATPG is significantly lower than

for standard ATPG, confirming the effectiveness of low-power

ATPG. Figure 4 shows which fraction of the nets are actually

toggling during functional and test modes. This data shows

that for the four functional tests the fraction of toggling nets

is rather small, while both test modes toggle virtually all nets

(as can be expected from a high-quality test). Some nets toggle

twice during every clock cycle: they are the so-called ‘clock

nets’.

A key metric that can be extracted from the proposed

analysis is the switching activity (SA). The global Switching

Activity summarizes all of the switching of a circuit in a single

number. The average percentage of nets that toggle per clock

cycle is calculated as follows:

SA = (CC ×N)−1 ·
N∑

i=1

CC∑

j=1

tij , (1)

where CC is the total number of clock cycles. N is the number

of nets of the circuit. If net i toggles in clock cycle j, then tij
is 1, and 0 otherwise.

Fig. 2: Time profiles of four functional modes for D1.

Fig. 3: The time profile of ten standard and low-power test patterns
for D1.

Fig. 4: Net profiles of functional and test modes for D1.

2017 27th International Symposium on Power and Timing Modeling, Optimization and
Simulation (PATMOS)

Fig. 5: Toggle generator connected to multiple scan chains.

Dividing the total toggle count by the number of nets and

the number of clock cycles (as per Equation (1)) allows to

compare the time profiles of different circuits and/or different

simulation lengths, such as functional vs. test simulations.

Our toggle analysis tool can be used to analyze the switch-

ing activity for any functional or test-mode simulation. A

potential issue is that, for a large circuit and a simulation

spanning many clock cycles, the simulation time required to

create the VCD dump file and the size of the resulting VCD

file might grow unwieldly large. While such a large VCD file

is no problem for our toggle analysis tool, it could cause

storage and transfer issues. Especially scan-test modes are

time-consuming to simulate, due to the relatively long scan-

in/out times. These challenges can be effectively addressed by

only simulating a small subset of all test patterns.

III. TOGGLE GENERATOR

The hardware scheme of the programmable toggle generator

and the algorithms to program the operation of the toggle

generator are presented in this section. The toggle generator

is controlled by a serial input port and generates a repeated

‘toggle pattern’. The toggle pattern is loaded parallel through

the scan chains and determines the toggle rate of the circuit.

Figure 5 shows the connection of the toggle generator with

the scan chains of the circuit. A toggle pattern consists of an

endlessly repeated sequence of alternating runs of 0s and runs

of 1s of equal run length.

The operation of the toggle generator is separated in two

phases, the store phase and the toggle phase. The store phase

starts at the beginning of the modular testing. During store

phase a serial vector is stored in the register of the toggle

generator. This vector contains the information about the run
length (RL) of the toggle pattern. After completion of store

phase, starts the toggle phase. During this phase the toggle

pattern is generated and repeated until the end of the modular

testing. To achieve small toggle rate, the run length of the

toggle pattern be long.

A. Hardware Scheme

The hardware implementation of the programmable toggle

generator with a single toggle pattern is shown in Fig 6. It

consists of a serial in - parallel out shift n-bit Run Length

Register (RL-Register), a digital counter, and a comparator.

Fig. 6: The hardware scheme of the single toggle generator.

The run length of the toggle pattern (2n) is loaded and stored

as a vector in the register during the store phase. When the

output of the counter is equal to the value that is stored in the

register, the output of comparator triggers the flip-flop and the

output bit changes from 0 to 1 or vice versa. The counter has

two reset signals, an internal and an external. The internal reset

signal is activated when the comparator is high. The external

reset is activated at the start of the modular test.

The toggle generator that combines two toggle patterns is

shown in Fig. 7. During the load phase a vector is stored in a

N-bit register. The vector is composed of four parts. The first

2n bits indicate the run length of the two toggle patterns. The

last 2m bits define how many times a toggle pattern should

be repeated to generate the final combined toggle pattern. For

example the vector 0011-0010-0010100-0001110 composes a

14-bit long toggle pattern repeated two times and a 20-bit long

a toggle pattern repeated three times. During the toggle phase,

the m-bit counter and comparator are responsible to repeat

the toggle patterns and switch the output of the multiplexers.

This toggle generator occupy larger area than the previous,

however, the achieved switching activities are closer to the

desired values.

B. Single Toggle Pattern Algorithm

The pseudocode of the proposed algorithm to generate

toggle patterns with a single toggle pattern is presented in

Algorithm 1. Firstly, the target switching activity (TSA)

and the target standard deviation (TStdev) are read. The

desired delta, the absolute difference of achieved SA and

standard deviation from the desire metric, are also defined.

Then the user defines the values of the minimum and the

maximum run length of the toggle pattern as well as the

iteration step from the minimum to the maximum run length.

Algorithm 1 [Single Toggle Pattern]

1: read TSAfunc, TStdDev, DeltaSA, DeltaStdDev;
2: set min RL, max RL, step;
3: for i = min RL to max RL : step;
4: simulate patterni;
5: calculate SAi, StdDevi;
6: end
7: for i = min RL to max RL : step;
8: if |SAi – TSA|<DeltaSA AND |TStdDevi – TStdDev|<DeltaStdDev
9: togglePattern = patterni;
10: end
11: end

All the toggle patterns are simulated with the target circuit. The

SA of each circuit is calculated by using our toggle analysis

2017 27th International Symposium on Power and Timing Modeling, Optimization and
Simulation (PATMOS)

Fig. 7: Hardware scheme of combine toggle generator.

tool. If the SA of a simulation meets the criteria, then this

pattern is defined as the toggle pattern. If none of the patterns

can be used as toggle pattern, then the user have to change

one or more of the parameters to generate the required toggle

pattern or apply alternative algorithm that is introduced in the

next sub-section.

C. Combined Toggle Pattern Algorithm

If the user demands more accurate SA for the circuit or

fewer iterations to get the required toggle patterns, then two

different patterns can be combined. The pseudocode of this

algorithm is presented in Algorithm 2.

Two adjacent pattrens are selected from the toggle pattern

table. The TSA should be between the SA’s of the two

selected patterns. To generate an accurate toggle pattern, the

SA’s of the two patterns should be the next higher and smaller

ones, respectively. For the sake of convenience, the pattern

with the lower SA is called patternL and patternH the other.

Algorithm 2 [Combined Toggle Pattern]

1: for i = min RL to max RL : step;
2: if SAi >TSA AND SAi+step <TSA;
3: break;
4: end
5: end
6: interpolation = |SAi – TSA|/ |TSA – SAi+step|;
7: find integers A, B that A/B � interpolation;
8: togglePattern = repeat(patternLi,Brepeat(patternLi+step,A);
9: end

To get as close as possible to the target switching activity, the

interpolation of patternL and patternH is used. The absolute

difference of the SApatternL and TSA is divided by the

absolute difference of the SApatternH and TSA (Line 6). Then

we choose the minimum integers (A & B) whose fraction

(A/B) is closer to the result of the division (Line 7). The final

toggle pattern is the patternL repeated B times followed by

the patternH repeated A times.

D. Silent Scan Chain Algorithm

In cases when the length of the scan chains is shorter than

the length of the minimum toggle pattern, the SA of the

toggled core is dramatically decreased for some time period

because of the lack of toggles. To prevent the long low or high

toggle rate periods and sustain a low the standard deviation

of the profile, the Silent Scan Chain algorithm is applied.

Algorithm 3 [Silence Scan Chains]

1: read num sc;
2: for j = 1 to num sc
3: simulate min RL;
4: calculate scSA[j];
5: end;
6: for i = min RL to max RL : step;
7: num silen sc = (TSA/SAi) × num sc;
8: choose num silen sc scan chains with the lowest SA from scSA[j];
9: simulate patterni on num silen sc;
10: calculate SAi;
11: if |SAi – TSA|<DeltaSA AND |TStdDevi – TStdDev|<DeltaStdDev
12: break;
13: end
14: end

In Algorithm 3, firstly, the number of the scan chains in the

circuit is read. Then we simulate the desired toggle pattern

2017 27th International Symposium on Power and Timing Modeling, Optimization and
Simulation (PATMOS)

TABLE I: Design and simulation data.

Circuit Name #Nets #Scan Chains FF/SC
s5378 4,128 2 89
s9234 2,843 2 105
s15850 9,045 3 178
s38417 25,665 3 545
s38584 29,756 3 475
D2 31,521 3 343

TABLE II: Toggle pattern list.

Run s5378 s9234 s15850 s38417 s38584 D2Length
2 83.08% 49.80% 48.14% 60.15% 63.86% 59.92%
4 41.89% 25.47% 25.85% 30.50% 33.88% 29.10%
8 21.30% 12.78% 13.85% 16.34% 17.54% 15.50%
16 10.98% 6.24% 7.01% 7.90% 9.00% 7.85%
32 5.38% 3.10% 3.64% 4.39% 4.54% 4.10%
64 2.75% 1.58% 1.86% 2.15% 2.38% 2.08%
126 1.38% 0.80% 0.96% 1.08% 1.20% 1.01%
188 0.95% 0.55% 0.63% 0.81% 0.82% 0.85%
250 0.72% 0.43% 0.51% 0.61% 0.62% 0.65%

on each scan chain to calculate the switching activity. The

number of the silent scan chains is calculated. After that, we

choose the scan chains with the lowest switching activity and

we simulate the toggle pattern only on them. If the switching

activity and the standard deviation are within the desired range,

we use this toggle pattern. If not, we repeat this procedure for

every toggle pattern from the minimum to the maximum run

length with the step given.

IV. EXPERIMENTAL RESULTS

The objective of our experiments is to show the effectiveness

of our toggle generator in achieving the final switching activity

and adaptability in complex circuits.

Five benchmark circuits are used for simulations: five IS-

CAS’89 benchmarks s5378, s9234, s15850, s38417, s38584

[19] and one industrial design D2. For the ISCAS’89 circuits,

speculative toggle rates are used since no functional testbench

is available for those circuits. The industrial design is larger

and its functional SA is known. The smaller designs (s5378,

s9234) have two scan chains and the bigger three. The gener-

ated toggle pattern are loaded through the scan chains. Table I

shows the number of nets, the number, and the length of the

scan chains of the designs

The list of the SA of the patterns is shown in Table II. The

switching activity for every circuit that is caused from a toggle

pattern is shown in the corresponding cell of the table. The

minimum run length is two and the maximum is 250. The

step that is used is not constant. At the beginning we double

the length until the length is 32. Afterwards, 62 is used as

the step, because the changing rate of SA is slow, as the run

length is increasing.

To demonstrate the effectiveness of our toggle generator

we set six switching activities as target for every circuit. The

toggle patterns that are used to produce the target switching

activity TSA and Delta are shown in Table III. The run length,

the achieved SA, and the difference between the achieved

and the target SA are also presented. Algorithm 1 is accurate

when long toggle patterns are used. However, the efficiency is

decreased as the run length is increased. A method to increase

the accuracy even for high TSA is to decrease the step for the

generation of the toggle patterns, where more simulations are

required.

The data obtained with Algorithm 2 are presented in Ta-

ble IV. To achieve the selected TSAs, two continuous toggle

patterns, the SAs of which are on both sides of the TSA, are

combined. The Combined Toggle Patterns Algorithm generates

more accurate switching activities than the Single Toggle

Pattern Algorithm. The difference between the achieved SA

and the TSA is lower than 5% in almost every case. The

drawback of the Combined Toggle Pattern toggle generator is

that the hardware scheme is more complicated than the Single

Toggle Pattern toggle generator, yet it is significantly smaller

in comparison to an industrial circuit.

Another factor to be taken into account is the occupied area

of the toggle generator on the SOC. Table V shows the size of

the core, including the test wrapper and the toggle generator.

An advantage of our toggle generator is that achieve accurate

switching activities and occupy only a small percentage of the

total core area.

V. CONCLUSION

Accurate toggle rate analysis and toggle generation is crit-

ical to low power modular test in 2D-SoCs and 3D-SICs.

Accurate switching activity profiles (per time and per net)

can be created through the analysis of the VCD files that are

extracted from functional, as well as from scan test simulation

of digital circuits. Algorithms and hardware schemes are

proposed in this paper to generate patterns to control the

switching activity of the cores neighboring to the module

under test in a modular test scenario. Experimental results on

ISCAS’89 benchmarks and an industrial circuit demonstrate

that the proposed toggle generators control accurately all the

circuits for various switching activities.

ACKNOWLEDGEMENTS

We thank Carolina Mora Lopez, Steven Redant, Geert

Vanwijnsberghe, and Jan-Willem Weijers of IMEC IC-Link

for providing us with the design and simulation data of D1.

REFERENCES

[1] E.J. Marinissen and Y. Zorian, “IEEE Std 1500 en-

ables modular SoC testing,” IEEE Design & Test
of Computers, vol. 26, no. 1, pp. 8–17, 2009,

doi:10.1109/MDT.2009.12.

[2] O. Sinanoglu et al., “Test data volume compari-

son: Monolithic vs. modular SoC testing,” IEEE De-
sign & Test of Computers, vol. 26, no. 3, 2009,

doi:10.1109/MDT.2009.65.

[3] U. Ingelsson et al., “Abort-on-fail test scheduling for

Modular SOCs without and with Preemption,” IEEE
Transactions on Computers, vol. 64, no. 12, pp. 3335–

3347, 2015, doi:10.1109/TC.2015.2409840.

2017 27th International Symposium on Power and Timing Modeling, Optimization and
Simulation (PATMOS)

TABLE III: Toggle generation for various benchmark circuits with single toggle pattern.

TSA s5378 s9234 s15850
Run length SA Delta Run length SA Delta Run length SA Delta

20% 8 21.30% 6.50% 4 25.47% 27.35% 4 25.85% 29.25%
10% 16 10.98% 9.80% 8 12.78% 27.80% 16 7.01% 29.90%

5% 32 5.38% 7.60% 16 6.24% 24.80% 32 3.64% 27.20%
2% 126 1.38% 31.00% 64 1.58% 21.00% 64 1.86% 7.00%
1% 188 0.95% 5.00% 126 0.80% 20.00% 126 0.96% 4.00%

0.7% 250 0.72% 2.85% 126 0.80% 14.28% 188 0.63% 10.00%

TSA s38417 s38584 D2
Run length SA Delta Run length SA Delta Run length SA Delta

20% 8 16.34% 18.30% 8 17.54% 12.30% 8 15.50% 22.50%
10% 16 7.90% 21.00% 16 9.00% 10.00% 16 7.85% 21.50%

5% 32 4.39% 12.20% 32 4.54% 9.20% 32 4.10% 18.00%
2% 64 2.15% 7.50% 64 2.38% 19.00% 66 2.08% 4.00%
1% 126 1.08% 8.00% 188 0.82% 18.00% 126 1.01% 1.00%

0.7% 255 0.61% 12.85% 250 0.62% 11.42% 250 0.65% 7.14%

TABLE IV: Simulation results with combined toggle patterns algorithm.

TSA s5378 s9234 s15850
Toggle Pattern SA Delta Toggle Pattern SA Delta Toggle Pattern SA Delta

20% 8×7 ⊕ 16×1 20.04% 0.20% 4×4 ⊕ 8×3 19.92% 0.40% 4×1 ⊕ 8×1 19.99% 0.05%
10% 16×14 ⊕ 32×3 9.97% 0.30% 8×4 ⊕ 16×3 10.02% 0.20% 8×7 ⊕ 16×9 10.05% 0.50%

5% 32×6 ⊕ 64×1 5.01% 0.20% 16×3 ⊕ 32×2 5.01% 0.20% 16×2 ⊕ 32×3 4.98% 0.40%
2% 64×5 ⊕ 126×6 2.01% 0.50% 32×5 ⊕ 64×13 1.87% 6.50% 32×1 ⊕ 64×11 2.03% 1.50%
1% 126×3 ⊕ 188×4 1.00% 0% 64×1 ⊕ 126×3 0.95% 5.00% 64×0 ⊕ 126×1 0.96% 4.00%

0.7% 250×1 ⊕ 0 0.72% 2.85% 126×3 ⊕ 188×2 0.70% 0% 126×3 ⊕ 188×11 0.69% 1.42%

TSA s38417 s38584 D2
Toggle Pattern SA Delta Toggle Pattern SA Delta Toggle Pattern SA Delta

20% 4×2 ⊕ 8×3 21.46% 7.3% 4×2 ⊕ 8×11 18.67% 6.65% 4×1 ⊕ 8×2 20.31% 1.55%
10% 8×1 ⊕ 16×3 10.03% 0.3% 8×15 ⊕ 16×1 9.94% 0.60% 16×2 ⊕ 8×5 10.24% 2.40%

5% 16×1 ⊕ 32×5 4.63% 4.70% 16×1 ⊕ 32×9 4.86% 2.80% 16×5 ⊕ 32×13 5.53% 10.60%
2% 64×6 ⊕ 126×1 2.03% 1.50% 64×2 ⊕ 126×1 2.12% 6.00% 64×1 ⊕ 126×0 2.08% 4.00%
1% 126×7 ⊕ 188×3 1.01% 1.00% 126×9 ⊕ 188×10 1.00% 0% 126×1 ⊕ 188×0 1.01% 1.00%

0.7% 188×9 ⊕ 255×11 0.7% 0% 188×2 ⊕ 250×3 0.70% 0% 188×1 ⊕ 250×1 0.70% 0%

TABLE V: Area data.

Circuit name Area (μm2) Additional Area
Design TG1 TG2 TG1 TG2

s5378 5.186 111 274 2.14% 5.28%
s9234 2.167 111 274 5.12% 12.64%
s15850 11.348 111 274 0.97% 2.41%
s38417 24.344 111 274 0.45% 1.12%
s38584 29.827 111 274 0.37% 0.91%
D2 21.677 111 274 0.51% 1.26%

[4] Y. Zorian, E.J. Marinissen, and S. Dey, “Testing

embedded-core based system chips,” Proceedings of the
IEEE International Test Conference (ITC), pp. 130–143,

1998, doi:10.1109/TEST.1998.743146.

[5] E.J. Marinissen et al., “Vesuvius-3D: a 3D-

DfT demonstrator,” Proceedings of the IEEE
International Test Conference (ITC), pp. 1–10, 2014,

doi:10.1109/TEST.2014.7035332.

[6] J. Rabaey, Low Power Design Essentials. Springer

Science & Business Media, 2009, doi:10.1007/978-0-

387-71713-5.

[7] B. Bowhill et al., “The Xeon® Processor E5-2600 v3:

a 22 nm 18-Core Product Family,” IEEE Journal of

Solid-State Circuits, vol. 51, no. 1, pp. 92–104, 2016,

doi:10.1109/JSSC.2015.2472598.

[8] D. Czysz et al., “Low-power scan operation in

test compression environment,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 11, pp. 1742–1755, 2009,

doi:10.1109/TCAD.2009.2030445.

[9] S. Remersaro et al., “Preferred fill: A scalable method to

reduce capture power for scan based designs,” Proceed-
ings of the IEEE International Test Conference (ITC), pp.

1–10, 2006, doi:10.1109/TEST.2006.297694.

[10] M.A. Kochte et al., “SAT-based capture-power

reduction for at-speed broadcast-scan-based test

compression architectures,” Proceedings of the
IEEE/ACM International Symposium on Low-Power
Electronics and Design (ISLPED), pp. 33–38, 2011,

doi:10.1109/ISLPED.2011.5993600.

[11] R. Sankaralingam, R.R. Oruganti, and N.A. Touba,

“Static compaction techniques to control scan

vector power dissipation,” Proceedings of the
IEEE VLSI Test Symposium (VTS), pp. 35–40, 2000,

doi:10.1109/VTEST.2000.843824.

[12] K. Chakravadhanula et al., “SmartScan-Hierarchical test

2017 27th International Symposium on Power and Timing Modeling, Optimization and
Simulation (PATMOS)

compression for pin-limited low power designs,” Pro-
ceedings of the IEEE International Test Conference
(ITC), pp. 1–9, 2013, doi:10.1109/TEST.2013.6651897.

[13] D. Czysz et al., “Low power compression of in-

compatible test cubes,” Proceedings of the IEEE In-
ternational Test Conference (ITC), pp. 1–10, 2010,

doi:10.1109/TEST.2010.5699274.

[14] S.K. Goel and E.J. Marinissen, “SOC test architec-

ture design for efficient utilization of test bandwidth,”

ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 8, no. 4, pp. 399–429, 2003,

doi:10.1145/944027.944029.

[15] T. Waayers, R. Morren, and R. Grandi, “Definition of

a robust modular SOC test architecture; resurrection of

the single TAM daisy-chain,” Proceedings of the IEEE
International Test Conference (ITC), pp. 10–pp, 2005,

doi:10.1109/TEST.2005.1584022.

[16] F. Frederick and T. McLaurin, “Design for test features

of the ARM clock control macro,” Proceedings of the
IEEE International Test Conference (ITC), pp. 1–8, 2007,

doi:10.1109/TEST.2007.4437586.

[17] E.J. Marinissen and S. Deutsch, “Controlled toggle

rate of non-test signals during modular scan testing

of an integrated circuit,” Dec. 16 2014, US Patent

8,914,689. [Online]. Available: https://www.google.com/

patents/US8914689

[18] IEEE Design Automation Sub-Committee, “IEEE Std

1364-1995 Standard Hardware Description Language

Based on the Verilog Hardware Description Language,”

1996, doi:10.1109/IEEESTD.1996.81542.

[19] F. Brglez et al., “Combinational profiles of sequential

benchmark circuits,” Proceedings of the IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pp.

1929–1934, 1989, doi:10.1109/ISCAS.1989.100747.

2017 27th International Symposium on Power and Timing Modeling, Optimization and
Simulation (PATMOS)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

