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Abstract

Let V be a vector space over the field F2. We investigate subgroups of
the linear group GL(V ) which are generated by a conjugacy class D of
elements of order 3 such that all d ∈ D have 2-dimensional commuta-
tor space [V, d].
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Hans Cuypers Linear groups generated by elements of order 3

1 Introduction

In his revision of Quadratic Pairs [2, 3], Chermak [2] classifies various sub-
groups of the symplectic groups Sp(2n, 2) generated by elements d of order
3 with [V, d] = {vd− v | v ∈ V } being 2-dimensional, where V is the natural
module of Sp(2n, 2). Besides the full symplectic group he encounters orthog-
onal and unitary groups over the field with 2 or 4 elements, respectively, as
well as alternating groups. Chermak’s proof of this classification is inductive
and relies mainly on methods from geometric algebra.

By using discrete geometric methods we are able to classify subgroups
of GL(V ), where V is an F2-vector space of possibly infinite dimension,
generated by elements d of order 3 with [V, d] being 2-dimensional.

In particular, we prove the following. (For notation and definitions, the
reader is referred to the next section.)

1.1 Theorem. Let V be a vector space of dimension at least 3 over the
field F2. Suppose G ≤ GL(V ) is a group generated by a conjugacy class D
of elements of order 3 such that

(a) [V, d] is 2-dimensional for all d ∈ D;

(b) [V,G] = V and CV (G) = {0}.

Then, up to isomorphism, we have one of the following.

(a) There exists a subspace Φ of V ∗ annihilating V such that G = T(V,Φ);
the class D is the unique class of elements of order 3 with 2-dimensional
commutator on V .

(b) dim(V ) = 3 and G = 7 : 3; D is one of the two classes of elements of
order 3 in G.

(c) dim(V ) = 4 and G = Alt7 (inside Alt8 ≃ GL(4, 2)); the class D
corresponds to the class of elements of order 3 which are products of
two disjoint 3-cycles inside Alt7.

(d) dim(V ) ≥ 6, and G = FSp(V, f) with respect to some nondegenerate
symplectic form f on V ; the class D is the unique class of elements of
order 3 with 2-dimensional commutator on V .

(e) dim(V ) ≥ 6 and G = FΩ(V,Q) for some nondegenerate quadratic form
Q on V with trivial radical; the class D is the unique class of elements
of order 3 with 2-dimensional commutator on V .
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(f) G = FAlt(Ω) for some set Ω of size at least 5; the class D corresponds
to the class of 3-cycles, or in case |Ω| = 6, the class of elements which
are a products of two disjoint 3-cycles. The space V is the subspace of
the space F2Ω generated by all vectors of even weight, or, in case |Ω|
is even, the quotient of this subspace by the all one vector.

(g) V carries a G-invariant structure of an F4-space V4 such that G equals
R(V4,Φ), where Φ is a subspace of V ∗

4 annihilating V4. The class D is
the class of reflections in G.

(h) V carries a G-invariant structure (V4, h) of an F4-space V4 equipped
with a nondegenerate Hermitian form h such that G = FU(V4, h), the
subgroup of GU(V4, h) generated by all reflections. The class D is the
class of reflections in G.

As indicated above, our proof of this theorem is of geometric nature.
By using methods similar to those developed in Cameron and Hall [1] and
Cohen, Cuypers and Sterk [4] we are able to show that the subspaces [V, d]
with d ∈ D, are either all the lines of P(V ) (leading to the cases (a)-(c) of
the theorem) or of a cotriangular space embedded in P(V ) (cases (d)-(f))
or these spaces are (part of) the one-dimensional subspaces of an F4-space
induced on V (leading to the cases (g) and (h)). Although not entirely self
contained (we rely on Jonathan Hall’s classification of cotriangular spaces
[5]), our proofs and methods are completely elementary.

In the following section we describe the examples occurring in the con-
clusion of Theorem 1.1 somewhat closer. The Sections 3 and 4 are devoted
to the proof of Theorem 1.1. In particular, in Section 3 we consider the case
where there are d, e ∈ D with [V, d] ∩ [V, e] being one-dimensional, leading
to the groups defined over F2, while the final section covers the remaining
cases of groups defined over F4.

2 The examples and their geometries

Suppose V is a vector space over the field F2. If dim(V ) < ∞, then the
generic example of a group G generated by a class D of elements d with
[V, d] of dimension 2 is the group SL(V ). The elements in D correspond to
conjugates of the element
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In small dimensions we encounter two exceptional examples of groups
satisfying the hypothesis of Theorem 1.1.

Suppose V has dimension 4. The group SL(V ) is isomorphic to Alt8.
Under this isomorphism the elements in D correspond to those elements in
Alt8 that are products of two disjoint 3-cycles. The subgroup Alt7 of Alt8
also acts irreducibly on V and is of course generated by its elements of D.

Suppose dim(V ) = 3. Then the group SL(V ) contains a subgroup 7 : 3, a
split extension of a group of order 7 by a group of order 3, which is irreducible
on V . This subgroup is generated by its elements of order 3.

If V is infinite dimensional, then the set of all elements of GL(V ) of
order 3 with two dimensional commutator generates the subgroup FSL(V )
of GL(V ), consisting of all the finitary elements of determinant 1, see [1].
Inside this group we encounter more examples which we now describe. Let
0 6= v ∈ V and 0 6= ϕ ∈ V ∗ with ϕ(v) = 0. Then tv,ϕ denotes the transvection

tv,ϕ : V → V,w ∈ V 7→ w + ϕ(w)v.

The group G = T(V,Φ) where Φ is a subspace of V ∗ is defined to be the
subgroup of GL(V ) generated by all transvections tv,ϕ with 0 6= v ∈ V and
0 6= ϕ ∈ Φ with ϕ(v) = 0. Suppose Φ annihilates V . Then one easily checks
that CV (G) = {0}. If v,w ∈ V and ϕ,ψ ∈ Φ such that ϕ(v) = ψ(w) = 0
but ψ(v) = ϕ(w) = 1, then the product d = tv,ϕtw,ψ is an element of order 3
with commutator [V, d] = 〈v,w〉 of dimension 2. Let D denote the set of all
such elements. It is straightforward to check that this set D is a conjugacy
class of G generating G. Clearly, [V, d] with d running through D is the set
of all 2-spaces of V . So, [V,G] = V .

Next suppose that (V, f) is a symplectic space over F2. The radical
Rad(f) is the subspace {v ∈ V |f(v,w) = 0 for all w ∈ V } of V . For any
nonzero vector v ∈ V \ Rad(f) the transvection

tv : V → V,w ∈ V 7→ w + f(v,w)v

is a nontrivial element of Sp(V, f). It is well known that the set of such
transvections forms a conjugacy class of 3-transpositions in Sp(V, f). If we
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set D to be the set of all products tvtw where v,w ∈ V with f(v,w) = 1,
then one readily checks that D is a conjugacy class of elements of order 3
in G = 〈D〉 with [V, d] of dimension 2. The radical Rad(f) is contained in
CV (G).

By Sp(V, f) we denote the partial linear space (P,L) where P consists
of all the nonzero vectors of V . A line in L is the set of three nonzero vectors
in a 2-dimensional subspace W of V on which f does not vanish.

Notice that for each d ∈ D, the commutator [V, d] determines a unique
line of Sp(V, f). The class D generates FSp(V, f) provided dim(V ) ≥ 6.
Here FSp(V, f) denotes the finitary symplectic group, i.e., the subgroup of
finitary elements in the symplectic group Sp(V, f). If dim(V ) = 4 or 2,
then D generates the derived groups Alt6 ≤ Sp(4, 2) and Alt3 ≤ Sp(2, 2),
respectively.

Next consider a quadratic form Q on V whose associated bilinear form
is the symplectic form f . The radical Rad(Q) of Q is defined to be the
radical of f . The transvection tv, where v ∈ V \ Rad(Q) with Q(v) = 1,
is in the orthogonal group O(V,Q). Suppose dim(V ) ≥ 6. Then the subset
DQ of D of all elements obtained as products tvtw with Q(v) = Q(w) = 1
and f(v,w) = 1 is a conjugacy class of Ω(V,Q), the derived subgroup of
O(V,Q). The set DQ generates the finitary group FΩ(V,Q). The radical of
Q is centralized by FΩ(V,Q).

The corresponding geometry N (V,Q) has as points the vectors v ∈ V
with Q(v) = 1. A typical line is the set of three nonzero vectors in an elliptic
2-space, i.e., a 2-space in which Q(v) = 1 for any nonzero vector v contained
in it. Clearly, N (V,Q) is a subspace of Sp(V, f).

There is yet another class of subgroups of Sp(V, f) generated by a sub-
set of D. To describe this class we will start with a particular description
of the symplectic space (V, f). Indeed, the symplectic space (V, f) might be
obtained as follows. Suppose Ω is a (possibly infinite) set. Let F2Ω be the
F2-vector space with basis Ω. By EF2Ω we denote the subspace of F2Ω gen-
erated by the vectors ω1 + ω2, where ω1, ω2 ∈ Ω. Notice that the standard
dot product on F2Ω induces a symplectic form on EF2Ω. We can iden-
tify (V, f) with this symplectic space. The transpositions in Sym(Ω) induce
transvections on V . So, the 3-cycles in Sym(Ω), (i.e., the products of two
noncommuting transpositions) induce a subset DΩ of D generating a sub-
group of GL(V ) isomorphic to the (finitary) alternating group FAlt(Ω), the
subgroup of Sym(Ω) of all permutations with finite support that are even.
The corresponding geometry T (Ω) has as points the vectors ω1 + ω2, where
ω1 6= ω2 ∈ Ω, a line being the triples of points of the form ω + ω′, where
ω 6= ω′ are taken from some subset of size 3 of Ω.

5
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The above geometries are all examples of cotriangular spaces. These are
partial linear spaces with lines of size three and having the property that
any point p not on a line l is collinear with no point or with exactly two
points on l. A cotriangular space is called irreducible if it is connected and
for any pair of points p, q we have that p⊥ = q⊥ implies p = q. Here p⊥

denotes the set consisting of p and all points not collinear with p. The
spaces described above are characterized by the following result (rephrased
to fit our purposes) of Jonathan Hall.

2.1 (J.I. Hall [5]) Let V be a vector space over the field F2. Let Π = (P,L)
be an irreducible cotriangular space, where P is a subset of V \ {0}, and
each line in L is a triple of points inside a 2-dimensional subspace of V . If
P generates V and

⋂

p∈P 〈p
⊥〉 = {0} we have one of the following:

(a) Π = Sp(V, f) for some nondegenerate symplectic form f on V .

(b) Π = N (V,Q) for some nondegenerate quadratic form Q on V with
trivial radical.

(c) There is a set Ω such that Π = T (Ω) and V = EF2(Ω) or, in case |Ω|
is even, V = EF2(Ω)/〈Σω∈Ω ω〉, the quotient of EF2(Ω) by the all one
vector.

Finally we shall discuss the examples coming from groups defined over
F4. Let V4 be a vector space over F4. For every v ∈ V4 and ϕ ∈ V ∗

4 , with
ϕ(v) 6= 0, 1 we define the map

rv,ϕ : V → V4, w ∈ V4 7→ w − ϕ(w)v.

The map rv,ϕ is a reflection with center 〈v〉 and axis kerϕ. A reflection has
order 3. If Φ is a subspace of V ∗

4 , then denote by R(V4,Φ) the subgroup of
GL(V4) generated by all reflections rv,ϕ with v ∈ V4, ϕ ∈ Φ and ϕ(v) 6= 0, 1.
If dim(V4) is finite-dimensional, then R(V4, V

∗
4 ) = GL(V4). Let V denote

the space V4 considered as an F2-space. The reflections provide examples of
elements of order 3 having a 2-dimensional commutator on V .

If h is a nondegenerate Hermitian form on V4, then for each vector v ∈ V
with h(v, v) = 1 and α ∈ F4, α 6= 0, 1, the map

rv : w ∈ V4 7→ w + αh(w, v)v

is a reflection in the finitary unitary group

FU(V4, h) = {g ∈ FGL(V ) | ∀x,y∈V h(xg, yg)) = h(x, y)}.

6
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In fact, all these reflections generate the finitary group FU(V4, h).
Notice that in these examples over F4, the commutators [V, r1] and [V, r2],

where r1 and r2 are reflections on V4, either are equal or meet trivially.

3 Geometries with points and groups over F2

Let V be a vector space over F2, and suppose G ≤ GL(V ) is generated by a
normal set D of elements d ∈ G of order 3 such that [V, d] is 2-dimensional.
(Here normal means closed under conjugation.)

3.1 Suppose d ∈ D. Then V = [V, d] ⊕CV (d).

Proof. Suppose v ∈ V with [v, d] ∈ [V, d] ∩ CV (d). Then 0 = [vd + v, d] =
vd2+vd+vd+v = vd2+v. But then [v, d] = (vd2+v)d = 0. We have found
that [V, d] ∩ CV (d) = 0. As each v ∈ V equals v = v + [vd, d] + [vd, d] =
v+vd+vd2+[vd, d] ∈ CV (d)+[V, d] we have proved that V = [V, d]+CV (d).
✷

3.2 A subspace W of V is invariant under d ∈ D if and only if W ≤ CV (d)
or [V, d] ≤W .

Proof. If W is centralized by d, it clearly is invariant. If [V, d] ≤ W , then
for w ∈W we have wd = [w, d] +w ∈W and we find W to invariant under
d.

Now suppose w ∈ W is invariant, but not centralized by d. Then 0 6=
[w, d] ∈W ∩ [V, d]. But then [V, d] = 〈[w, d], [w, d]d〉 is contained in W . ✷

A D-line, or just line, is a subspace of V of the form [V, d] with d ∈ D.
A D-point, or just point, is a 1-space of V which is the intersection of two
distinct D-lines. Both points and lines are also considered to be points and
lines of the projective space P(V ).

Let P be the set of D-points and L the set of D-lines. The geometry
Π(D) is the pair (P,L), where incidence is symmetrized containment. A
line is often identified with the set of points it contains.

If W is a subspace of V , then by Π(D)W we denote the pair (PW ,LW )
where LW is the set ofD-lines contained inW , and PW the set of intersection
points of two distinct lines in LW meeting nontrivially.

Let U be a subspace of V . Then by DU we denote the set of all d ∈ D
with [V, d] ≤ U . The subspace AU of V is equal to

⋂

d∈DU
CV (d).

3.3 If l is a D-line, then it contains zero or three D-points.

7
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Proof. Since [V, d] ∩ CV (d) = {0} by (3.1), we find that d is transitive on
the three nonzero vectors in [V, d]. This clearly implies the result. ✷

3.4 Suppose l and m are distinct D-lines intersecting at a point. Let W
be the subspace l +m of V . Then Π(D)W is either a dual affine plane or a
projective plane in P(W ).

The group 〈DW 〉 is transitive on the lines in LW .

Proof. Let d ∈ D with [V, d] = l. Then 〈d〉 fixes a unique point in P(W ),
call this point q, is transitive on the three points of l, and transitive on the
three remaining points of P(W ). The group 〈d〉 fixes l, is transitive on the
three lines of P(W ) on q and on the three remaining lines.

If q is a point on a D-line, then clearly 〈DW 〉 is transitive on the points
and lines of P(W ) and Π(D)W equals P(W ).

If q not on any D-line, then Π(D)W equals the dual affine plane of all
points of Π(D)W different from q and all lines not on q. Also in this case
〈DW 〉 is transitive on the points and lines of Π(D)W . ✷

3.5 If D is a conjugacy class in G, then G is transitive on L and P.

Proof. Transitivity of G on D implies transitivity on lines. As each d ∈ D
is transitive on the three 1-spaces of the line [V, d], transitivity on points
follows immediately. ✷

3.6 If l,m ∈ L are in the same connected component Π0 of Π(D) and l =
l0, . . . , lk = m is a path from l to m inside Π0, with li and li+1 intersecting
at a point for 0 ≤ i < k, then there is a g ∈ 〈Dl0 , . . . ,Dlk〉 with lg = m.

Proof. By (3.4), there is for i = 0, . . . , k − 1 a gi ∈ 〈Dl0 , . . . ,Dlk〉 with
ligi = li+1. But then g = g0 · · · gk−1 maps l to m. ✷

3.7 Suppose l 6= m ∈ L are in the same G-orbit on L. Then l ⊆ Am if and
only if m ⊆ Al.

Proof. Suppose l ⊆ Am, then l and therefore also Al is invariant under each
element d ∈ Dm. So, by (3.2) we either have m ⊆ Al or Al ⊆ Am. In the
latter case the inclusion is proper since l ∈ Am but not in Al.

Now suppose m 6⊆ Al. Then Al ⊂ Am. Let g be an element in G with
mg = l, which is the product of a finite number of elements from D. Such
an element exists by (3.6). Then Al = Amg ⊂ Am. However, as g ∈ G is
the product of a finite number of elements from D, the subspace CV (g) has

8
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finite codimension in V . As g induces a bijective map Am/(Am ∩CV (g)) →
Amg/(Amg ∩ CV (g)) between finite dimensional spaces, these spaces are
equal. This implies Al = Amg = Am contradicting the above. ✷

3.8 Suppose L is a single G-orbit. Let d, e ∈ D. If dim(CV (d)∩ [V, e]) = 1,
then [V, d] and [V, e] are in the same connected component of Π(D)[V,d]+[V,e].

Proof. Let d, e ∈ D with dim(CV (d)∩ [V, e]) = 1. Notice that [V, e] 6⊆ A[V,d].
So, by (3.7) we can assume, eventually after replacing e by some appropriate
element in D[V,e], that [V, d] 6⊆ CV (e).

The lines [V, e]d and [V, e] intersect in the point CV (d) ∩ [V, e] and are
contained in the 4-dimensional subspace [V, d] + [V, e]. The subspace W =
[V, e]+[V, e]d is 3-dimensional and Π(D)W is a dual affine or projective plane
inside P(W ).

The line [V, d] intersects P(W ) in a point p of P(W ). If this point p is
in PW we are done. Thus assume that this point is not in P. In this case
Π(D)W is a dual affine plane and p is the unique 1-space of P(W ) not in
this dual affine plane. In particular, p equals CW (e).

By the same arguments we can assume that [V, d] meets W ′ = [V, e] +
[V, e]d2 in the point q = CW ′(e) which is the unique 1-space of P(W ′) not in
Π(D)W ′ . As p 6= q, we find that [V, d] = 〈p, q〉 ≤ CV (e), which contradicts
our assumption. ✷

3.9 Suppose CV (G) = {0} and P 6= ∅. Then Π is connected if and only if
G is transitive on L.

Moreover, if Π is connected, then its diameter is at most 2.

Proof. First assume that Π is connected. Then by (3.6) G is transitive on
L.

Now suppose that Π is not connected, but G is transitive on L. Since G is
generated by D, there are f, h ∈ D such that [V, h] and [V, h]f = [V, hf ] are
in different components of Π. Then also [V, h]f and [V, h]f2 are in different
components. Since hf does not centralize both [V, h] and [V, h]f2, we can
assume that there are noncommuting d and e in D with [V, d] and [V, e] in
different connected components of Π. Fix such an element e. By (3.8) we
can assume that CV (e) ∩ [V, d] = {0}.

Let f ∈ D such that [V, f ] meets [V, d] in a point and let W be the
subspace [V, d]+ [V, f ]. If Π(D)W contains a line [V, g] with g ∈ D such that
CV (e) ∩ [V, g] is 1-dimensional, then (3.8) gives a contradiction with [V, e]
being in a connected component of Π(D) different form the one containing

9
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[V, d]. Hence Π(D)W is a dual affine plane, moreover, CV (e) meets W in the
unique 1-space p not in that dual affine plane.

As CV (G) = {0}, there is an element h ∈ D not centralizing p. But then
CV (h) meets at least one of the lines of the dual affine plane Π(D)W in a
point. Without loss of generality we may assume this line to be [V, d]. Let
U = [V, d] + [V, h]. If [V, d] and [V, h] meet nontrivially, then Π(D)U is a
projective plane containing a line l ∈ L which meets CV (e) in a point. As
above, this leads by (3.8) to a contradiction. Thus dim(U) = 4. But then
U1 = [V, d]+ [V, d]h and U2 = [V, d]+ [V, d]h2 are two distinct 3-dimensional
spaces on [V, d]. As above, for both i = 1 or 2, we can assume that CV (e)
meets Ui in a 1-space, which is the unique 1-space of Ui which is not in PUi

.
But that implies that CU (e) = CU (d).

By (3.6) the above reasoning also applies to [V, h] and h, so that CU (e) =
CU (h). But CU (h) 6= CU (d), which is a final contradiction. Hence we have
shown that Π is connected.

It remains to prove that the diameter of Π is at most 2, provided Π is
connected. So assume Π to be conected and let p, q, r, s be a path of length
3 in the collinearity graph of Π. Then both p and s have at least 2 neighbors
on the line through q and r, see (3.4). But that implies that they have a
common neighbor. So, indeed, the diameter of Π is at most 2. ✷

Let p, q ∈ P be points. We write p ∼ q if p and q are distinct collinear
points of Π. By p ⊥ q we mean that p and q are equal or noncollinear. By p∼

we denote the set of all points collinear to p (excluding p). The complement
of p∼ in P is the set p⊥.

If for p and q we have p⊥ = q⊥, then we write p ≡ q. The relation ≡ is
obviously an equivalence relation.

3.10 Suppose Π is connected. If p 6= q ∈ P with p ≡ q, then CV (G)∩p+q 6=
{0}.

Proof. Suppose p 6= q ∈ P with p ≡ q. Notice that p ⊥ q. Let r be the third
point on the projective line through p and q. If l ∈ L is a line on p, then
ΠW is a dual affine plane, where W is the subspace spanned by l and q. So,
each d ∈ Dl centralizes r.

If p1 and q1 are two noncollinear points in ΠW , then the projective line
on p1 and q1 contains r. Moreover, if s ∈ p⊥1 but not in q⊥1 , then either s is
collinear to p but not to q, or vice verse. As this contradicts p ≡ q, we find
that p1 ≡ q1.

But that implies, by connectivity of Π, that r is in CV (d) for each d ∈ D.
In particular, CV (G) ∩ p+ q 6= {0}. ✷

10
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3.11 Suppose G is transitive on L, CV (G) = {0}, [V,G] = V and P 6= ∅.
If (P,L) contains no projective planes, then the subspace

⋂

p∈P 〈p⊥〉 of
V is equal to {0}.

Proof. Suppose (P,L) does not contain projective planes. Let p be a point
in P and l a line on p. Then there is an element d ∈ D with l = [V, d].

Let q be a point in p⊥. If q is collinear with a point on l, then inside
the 3-space 〈q, l〉 we find a unique 1-space r, which is not in the dual affine
plane generated by q and l. This point r is centralized by d and on the line
through p and q. But then q ∈ 〈p, r〉 ⊆ 〈p,CV (d)〉.

If q is not collinear to a point on l, then, by (3.9), we can find a point
s collinear with both q and the point p′ = pd on l. We can assume that s
is in p⊥. (Indeed, if s is collinear to p, then we may replace it by the third
point on the line through p′ and s, which is not collinear with p.) Let t be
the third point on the line through s and q. Notice that also t is in p⊥ but
collinear to p′. By the previous paragraph we find both s, t ∈ 〈p,CV (d)〉 but
then also q ∈ 〈p,CV (d)〉. This shows that 〈p⊥〉 is contained in 〈p,CV (d)〉.
Moreover, as CV (d) has codimension 2 in V , we find 〈p⊥〉 to be a proper
subspace of V not containing l = [V, d].

This implies that the space
⋂

p∈P 〈p⊥〉, which is invariant under each e ∈

D, does not contain any line from L. But then (3.2) implies that
⋂

p∈P 〈p⊥〉
is centralized by each e ∈ D and hence is contained in CV (G) = {0}, proving
the result. ✷

3.12 Theorem. Suppose G is transitive on L, CV (G) = {0}, [V,G] = V
and P 6= ∅. Then, up to isomorphism, Π is one of the following spaces:

(a) P(V ).

(b) Sp(V, f) for some nondegenerate symplectic form f on V .

(c) N (V,Q) for some nondegenerate quadratic form Q on V with trivial
radical.

(d) There is a set Ω such that V = EF2(Ω) or, in case |Ω| is even, V =
EF2(Ω)/〈Σω∈Ω ω〉, the quotient by the all one vector, and Π = T (Ω).

Proof. By (3.4) and (3.9), the space Π is a connected partial linear space of
order 3 in which any two intersecting lines generate a subspace isomorphic
to a projective or a dual affine plane.

11
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If all planes are projective, then clearly Π = P(V ) and we are in case
(a). If all planes are dual affine, then by (3.11) we can apply Theorem 2.1
and we are in one of the cases (b), (c) or (d).

Now to prove the theorem it suffices to show that Π cannot contain both
a projective and dual affine plane. So, suppose it does. Let π be a projective
plane and p a point outside π. We claim that p is collinear with all or all but
one of the points of π. First assume that p is collinear with some point q ∈ π
and let r be the third point on the line through p and q. If p⊥ ∩ π is a line,
then so is r⊥∩π. This would imply that there is a point in π∩p⊥∩r⊥ ⊂ q⊥,
which is clearly impossible. So p⊥ meets π in at most one point.

Now assume that π ⊆ p⊥. As the diameter of Π is at most 2, there is a
point q collinear to p and also to some point in π. Since by the above q⊥∩π
contains at most one point, there is a projective plane π′ on q meeting π in
a line. But then p⊥ meets π′ in a line, which contradicts the above, and we
have proved our claim.

Now suppose p and q are noncollinear points. By (3.5) each line on p is
in a projective plane and hence contains at most one point in q⊥. So, all
points collinear to p are also collinear to q. Similarly all points collinear to
q are also collinear p. This implies that p ≡ q, and, by (3.10), contradicts
that CV (G) = {0}. ✷

3.13 Theorem. Suppose Π = P(V ). Then, up to isomorphism, G = T(V,Φ)
for some subspace Φ of V ∗ annihilating V , or dim(V ) = 4 and G = Alt7, or
dim(V ) = 3 and G = 7 : 3.

Proof. First assume that the group G contains a transvection τ . As G is
transitive on the points in P(V ), see (3.5), each point in P(V ) serves as center
of some transvection in G. Suppose H is a hyperplane of V serving as the
axis of some transvection τ ∈ G. Let p be the center of this transvection. If q
is now a second point in H, then let e be an element of D with p, q ⊆ [V, e].
Then q = pe or q = pe−1 and the transvection with center q and axis H is
a conjugate of τ in G.

Now let K be a second hyperplane of P(V ) serving as transvection axis
for some transvection in G. Then by the above we can find transvections τ
and σ in G with the same center and with axis H and K respectively. But
then στ is a transvection with axis the unique hyperplane L distinct from H
and K containing H ∩K. So the elements of V ∗ serving as transvection axis
for some transvection in G form the set of nonzero vectors of a subspace Φ of
V ∗. This implies that the transvections in G generate the subgroup T(V,Φ)
of G.

12
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If dim(V ) = 3 or 4, and G contains a transvection, then by the above
G = SL(V ). So, assume that G does not contain any transvection.

If dim(V ) = 3, then any involution in GL(V ) is a transvection. So, |G| is
odd and |G| | 21. On the other hand, G is transitive on the 7 lines, while an
element d ∈ D fixes a line. Hence G has order 21 and is isomorphic to 7 : 3.

If dim(V ) = 4, then G has order divisible by 3 · 15 · 7 as the stabilizer
of a point-line flag has order at least 3. Indeed, an element d ∈ D, fixes
a point-line-flag. An easy computation within Alt8 ≃ GL(4, 2) reveals that
G ≃ Alt7.

Now assume that dim(V ) ≥ 5. Fix an element d ∈ D and the consider
the line [V, d]. This line is contained in 5-dimensional subspace U of V . The
intersection of U with CV (d) is 3-dimensional. Pick two lines l and m in L
spanning CV (d) ∩∆. The above shows that inside the subgroups generated
by D[V,d]+l and D[V,d]+m, respectively, we can find elements e ∈ Dl and
f ∈ Dm not centralizing [V, d]. But then it is straightforward to check that
among the conjugates of d under 〈e, f〉 we find two elements, d1 and d2
say, with [V, d1] and [V, d2] meeting at a point. Moreover, as both e and
f leave CV (d) invariant, we have CV (d1) = CV (d2) = CV (d). But then
either d1d2 or d1d

−1
2 induces a transvection on [V, d1] + [V, d2] with center

[V, d1]∩ [V, d2]. But as CV (d) is centralized by d1d2 or d1d
−1
2 , we have found

a transvection τ on V in G. Now notice that d1 ∈ 〈τ, τd1〉. So G is generated
by its transvections. By the above we can conclude that G equals T(V,Φ),
where Φ is some subspace of V ∗. Since

⋂

ϕ∈Φ kerϕ is centralized by G, we
can conclude that

⋂

ϕ∈Φ kerϕ = {0} and Φ annihilates V . ✷

3.14 Theorem. Suppose Π is a nondegenerate cotriangular space as in
case (b), (c) or (d) of (3.12). Then, up to isomorphism, we have one of the
following.

(a) G = FSp(V, f) for some nondegenerate symplectic form f .

(b) G = FΩ(V,Q) for some nondegenerate quadratic form Q with trivial
radical.

(c) G = FAlt(Ω) for some set Ω, where V = EF2Ω or, in case |Ω| is even,
V = EF2(Ω)/〈Σω∈Ω ω〉, the quotient by the all one vector.

In all cases D is uniquely determined.

Proof. For each line l of Π, there is (up to taking inverses) at most one
element d ∈ GL(V ) with [V, d] = l and centralizing the codimension 2 sub-
space

⋂

p∈l〈p
⊥〉 of V . So, this element is in D. But now it is straightforward

to check that the theorem holds. ✷

13
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The above results classify all the groups satisfying the hypothesis of
Theorem 1.1 for which the set P is nonempty.

4 Pointless geometries and groups over F4

Suppose V is an F2-vector space and G ≤ GL(V ) a subgroup generated by
a normal set D of elements d ∈ G of order 3 with [V, d] of dimension 2. We
keep the notation of the previous section.

In this final section we consider the case where P is the empty set.
Although the set P is empty, we will still be able to construct a useful
geometry. However, now the elements of L will play the role of ‘points’ and
certain 4-dimensional subspaces of V will play the role of ‘lines’. We make
this precise in the sequel of this section.

Assume throughout this section that the set P is empty.

4.1 If d, e ∈ D, then [V, d] ∩ CV (e) = {0} or [V, d] ≤ CV (e).

Proof. If [V, d]∩Cv(e) 6= {0}, then [V, d]e = [V, de] meets [V, d] nontrivially.
By the assumption that P is empty, we find [V, d]e = [V, d]. By (3.1) and
(3.2) we find [V, d] ≤ CV (e). ✷

A spread of a 4-dimensional subspace W of V is a set of 5 subspaces of
W of dimension 2, pairwise intersecting in {0}.

4.2 Suppose d, e ∈ D with [V, d] 6= [V, e]. If [V, e] 6⊆ CV (d), then W :=
[V, 〈d, e〉] is a 4-dimensional subspace of V containing 4 or 5 lines from L.

If W contains 5 lines of L, then these 5 lines form a spread in W .
If W contains exactly 4 lines from L, then these 4 lines together with the

2-dimensional space CV (d) ∩W form a spread of W .

Proof. Let d, e be elements in D with [V, d] 6= [V, e]. Then, as by assumption
[V, d] ∩ [V, e] = {0}, the space W := [V, d] + [V, e] is 4-dimensional.

If d does not centralize [V, e], then W contains the four lines [V, d], [V, e],
[V, e]d and [V, e]d2. So , it contains 4 or 5 lines from L.

Clearly, if W contains 5 lines from L, then these lines from a spread.
If W contains 4 lines from L, then none of these 4 lines is in CV (d). So,

by (4.1), these 4 lines together with CV (d) form a spread. ✷

A spread is called full if it contains 5 lines from L. The set of all full
spreads is denoted by F . A subspaceW as in (4.2) containing exactly 4 lines

14
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from L contains a unique spread containing these four lines. This spread is
called a tangent spread. By T we denote the set of tangent spreads. The fifth
2-space in such a tangent spread is called the singular line of the spread.
The set of all singular lines is denoted by LS .

If we identify each (full or tangent) spread with the set of lines from L
contained in it, then (L,F ∪ T ) is a partial linear space, which we denote
by ∆.

4.3 Let W be a 4-space containing a full or tangent spread S. If S is a
tangent spread, then 〈DW 〉 induces Alt4 on the lines of L in S. If S is full,
then 〈DW 〉 induces Alt5 on the lines of L in S.

Proof. Let l be a line of S. An element d ∈ Dl induces a 3-cycle on the
lines in S and fixes l. So, if S is a tangent spread, then 〈DS〉 induces the
2-transitive group Alt4 on the 4 lines in S.

If S is full, then let m be the unique line of S different from l fixed by d.
If there is an element e ∈ Dm not fixing l, then 〈d, e〉 induces the 2-transitive
group Alt5 on S.

So, assume that l ⊆ Am, then any line k 6= l,m in S is not in Ak, see
(3.7). Let k be such a line and f ∈ Dk an element not fixingm. Then 〈d, e, f〉
induces the the 2-transitive group Alt5 on S. ✷

4.4 If S is a full or tangent spread and d ∈ D, then CV (d) either contains
S or CV (d) ∩ S is a line in L ∪ LS.

Proof. This follows from (4.1). ✷

4.5 If l ∈ L and h ∈ LS, then h ∩ l = {0}.

Proof. Let S be a tangent spread containing h and let W be the 4-space
containing S. Fix an element d ∈ D with l = [V, d]. Suppose l meets h
nontrivially. Then CV (d) ∩W is a line m ∈ L of S. Now let e ∈ D with
[V, e] a line of S distinct from m. Then [V, e] + [V, d] contains a spread T
and meets W in [V, e] + (l ∩ h). A point in [V, e] + (l ∩ h) not on [V, e] or h
is on a line of L inside S and on some line in L ∪ LS of T . Since there is at
most one line of LS in T , there is a point in [V, e] + (l ∩ h) on two distinct
lines of L, which contradicts P being empty. ✷

4.6 Suppose W is a 4-space containing a tangent spread with singular line
h. Suppose f ∈ D does not centralize h.

Then there exists an involution t ∈ 〈DW 〉 with h = [V, t] being the sin-
gular line of the spread, that does not centralize [V, f ].

15
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Proof. Let S be the tangent spread in W and h its singular line. Let f ∈ D
be an element not centralizing h. Then, f centralizes a line, say [V, d] of S,
with d ∈ D. If d does not centralize [V, f ], then [V, d] + [V, f ] contains a full
spread. So, after replacing d by a suitable element in D[V,d], we can assume
that d centralizes [V, f ], see (3.7). Let e be an element in D with [V, e] a line
in S different from [V, d]. If e centralizes [V, f ], then [V, f ] + [V, e] is a full
spread. So again, after replacing e by a suitable element in D[V,e], we can
assume that e does not centralize [V, f ].

The group 〈d, e〉 induces Alt4 on S. After replacing e by e
−1, if necessary,

the element g = de induces a product of two disjoint 2-cycles in Alt4 on S.
Then for 0 6= v ∈ [V, f ], we have 0 6= [v, g] = [v, de] = [v, e] ∈ [V, e] and
[v, g2] = [[v, g], g] 6= 0 as [V, e] ∩ CV (g) = {0}.

Let t be the element g2 6= 1. Then t does not centralize [V, f ]. The
element t fixes all five lines of S. In particular, it fixes h pointwise. Any
3-space on a line l ∈ S \ {h} meets all other lines form S, including h, in
exactly one point. So, such 3-space is not only t-invariant, all its points not
on l are fixed by t. By varying l and the 3-space, we find all points W to
be fixed by t. So, [V, t] ⊆ W ⊆ CV (t), and we can deduce that t has order
2. Indeed, for all v ∈ V we have vt2 + vt = [v, t]t = [v, t] = vt + v, and
thus vt2 = v. Moreover, CV (t) contains CV (d) ∩CV (e) and S and therefore
is of codimension at most 2. Since t commutes with g, we find that [V, t] is
contained in h. Indeed, for all v ∈ V we have [[v, t], g] = (vt+v)g+(vt+v) =
vgt + vg + vt + v = [vg + v, t] = [[v, g], t] = 0. So [V, t] ⊆ CV (g) ∩ S = h.
Hence, either t is a transvection, or [V, t] = h. If t is a transvection, then
there is a line k in L meeting the axis of t in a point. But then k and kt
meet nontrivially, contradicting P to be empty. So t is indeed the element
we are looking for. ✷

4.7 Suppose h ∈ LS and d ∈ D not centralizing h. Then [V, d] + h is a 4-
dimensional space containing two lines from L and three from LS, pairwise
nonintersecting.

Proof. Fix a tangent spread S containing h and an element d ∈ D not
centralizing h. Let t be an involution as in (4.6). Then [V, d] and [V, d]t are
two lines from L in [V, d] + h, and h, hd and hd2 are three lines from LS
in S. By construction the three lines in LS do not intersect. So, the result
follows by (4.5). ✷

The five lines from L ∪ LS in a subspace [V, d] + h, where h ∈ LS and
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d ∈ D not centralizing h, form a spread of [V, d] + h called a hyperbolic
spread. The set of all hyperbolic spreads is denoted by H.

4.8 If l, h ∈ LS are distinct, then h ∩ l = {0}.

Proof. Suppose h and l meet in a point p. Let S be a tangent spread
containing l and suppose f ∈ D is an element not centralizing l. By (4.6)
there are involutions tl and th in G with [V, tl] = l and [V, th] = h not
centralizing [V, f ]. The space [V, f ] + h is a hyperbolic spread meeting L in
the lines [V, f ] and [V, f ]th, see (4.6), where [V, f ]th = CV (f) ∩ S. Similarly
[V, f ] + l is a hyperbolic spread T meeting L in the two lines [V, f ] and
[V, f ]tl, where [V, f ]tl = CV (f) ∩ T . But since ([V, f ] + l) ∩ ([V, f ] + h) is
3-dimensional, there is a point in CV (f) ∩ S ∩ T , which has to be on two
lines from L. This contradicts our assumption that P is empty. ✷

4.9 If S and T are two spreads (full, tangent or hyperbolic), then S ∩ T is
empty or a line in L ∪ LS.

Proof. This follows immediately from the assumption that P is empty, (4.8)
and (4.5). ✷

4.10 ∆ is connected if and only if G is transitive on L.
If ∆ is connected, then the diameter of its collinearity graph is at most

2.

Proof. Suppose d, e are elements from D with [V, d] and [V, e] lines not in
a spread. Then d centralizes [V, e] and e centralizes [V, d]. Since G = 〈D〉,
transitivity on the set L implies the space ∆ has to be connected.

Suppose ∆ is connected. Then (4.3) implies G to be transitive on L.
Now suppose [V, d], [V, f ], [V, g], [V, e] is a path of length 3 in the collinearity
graph of ∆. Let S be the spread in [V, f ] + [V, g]. As both [V, d] and [V, e]
are in a spread with at least 3 lines inside S, there is at least one line in S
at distance 1 from both [V, d] and [V, e]. So the distance between [V, d] and
[V, e] is at most 2. This implies that the diameter of the collinearity graph
of ∆ is at most 2. ✷

From now on assume that ∆ is connected and hence also that G is
tranisive on L.

4.11 If there exists a full spread, then there are no singular lines.
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Proof. Suppose S is a full spread and d ∈ D with [V, d] ∈ S. If LS is
nonempty, then by transitivity of G on L there exists a hyperbolic spread
T on [V, d] containing a second line [V, e] with e ∈ D from L and three lines
from LS. Let h be a singular line in T . Let th be an involution in G as in
(4.6) with [V, th] = h. The involution th centralizes a line l in S distinct from
[V, d], but it maps [V, d] to [V, e]. So, l + [V, e] is also a full spread.

As the group 〈D[V,e]〉 is transitive on the 4 lines in the full spread l+[V, e],
see (4.3), but fixes [V, d], we find at least 4 full spreads on [V, d] inside S+T .
In particular, there are at least 2 + 16 lines from L in S + T .

Now fix an element f ∈ Dl not centralizing [V, d], which exists by (4.3).
Then f centralizes at most one of the three singular lines of T . So, we find
at least 1 + 3 · 2 = 7 singular lines in S + T . As no two lines from L ∪ H
intersect, there are at least 3 ·(18+7) = 75 projective points in S+T , which
contradicts that S + T has dimension 6, and thus only 63 points. Hence LS
is empty. ✷

4.12 Theorem. Suppose ∆ is connected and contains a full spread. Then
∆ is isomorphic to a projective space of order 4. In particular, G preserves
an F4-structure V4 on V . Moreover, the group G is isomorphic to R(V4,Φ)
for some subspace Φ of V ∗

4 annihilating V4.

Proof. Let l,m ∈ L be distinct lines not in a full spread. By (4.11), there
is not tangent or hyperbolic spread on l and m and we have l ⊆ Am and
m ⊆ Al.

By (4.10) there are two full spreads S on l and T on m meeting at a
line n. Let k be a line in S distinct from l and n. Then m and k are in a
full spread R. Inside R we can find a line h which spans a full spread with
n distinct from S and T . But then none of the lines in R is inside Al and
each of them spans a full spread together with l. So, l is on 5 full spreads
each meeting T in a line. Hence, at least one of these spreads contains m. A
contradiction. Thus any two lines from L are in a full spread.

Now (L,F) is a linear space of order 4. Moreover, it satisfies the Veblen
and Young axiom. Indeed, suppose S1, S2 are two spreads on a line l ∈ L,
and T1 and T2 are two spreads meeting both S1 and S2 at lines distinct from
l, then as subspaces of V , the intersection T1∩T2 is 2-dimensional and thus,
by (4.9), a line of L.

Thus V carries a G-invariant F4-structure V4 and we can consider G to
be a subgroup of GL(V4). The elements in D induce reflections on V4. Each
1-dimensional subspace of V4 is in L and thus serves as center of a reflection.
Let l ∈ L. By (4.3), no element from L is in Al. As in [4, 6.2], we can conclude
that there is a subspace Φ of V ∗

4 annihilating V with G ≃ R(V,Φ). ✷
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From now one we can and do assume that F is empty.

4.13 Suppose S is a tangent spread and h its singular line. If d ∈ D does
not centralize h, then the subspace W generated by S and [V, d] contains 12
lines and 9 singular lines. These 21 lines and spreads in W form a projective
plane.

Proof. Let S be a tangent spread and h its singular line. Let d ∈ D not
centralizing h. Then there is a unique line m in S centralized by d. The
space [V, d]+m meets L in just [V, d] and m, for otherwise it would be a full
spread. So, on [V, d] there are 3 tangent and one hyperbolic spread inside
W . We now easily deduce that there are 1+9+2 = 12 lines of L in W , each
on three tangent spreads. Together they form a dual affine plane.

Inside W we find also 9 singular lines. As in the proof of the above
theorem, we find that these lines in W together with the spreads form a
projective plane. ✷

A set of five singular lines in a 2-dimensional subspace of V is called a
singular spread. By S we denote the set of all singular spreads.

4.14 Let S be a tangent spread with singular line h. If d ∈ D with [V, d]
not in S and CV (f)∩ S equal to h, then S + [V, f ] contains 5 singular lines
contained in a singular spread and 16 lines, together forming a projective
plane of order 4.

Proof. Every line l of S determines a unique tangent spread with [V, d]. So,
[V, d] is on at least 4 distinct spreads inside W := S + [V, d]. Thus there are
at least 13 lines from L and 5 singular lines from H, which are all in the
4-dimensional space CW (d). Thus the latter 5 lines form a singular spread T .
By similar argument we find that all lines form L insideW are on 4 tangent
spreads. But that implies that there are 16 lines from L in W forming an
affine plane. The rest follows immediately. ✷

4.15 If d ∈ D centralizes h ∈ LS, then there is a tangent spread S con-
taining [V, d] and h.

Proof. Let S be a tangent spread on h. If d does not centralize the spread
(i.e. is collinear in ∆ with some point of S), then we are done by (4.14).
Since the graph ∆ is connected, the result follows. ✷

4.16 If h, l ∈ LS are two singular lines, then there is a hyperbolic or sin-
gular spread containing h and l.
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Proof. Let S be a tangent spread on h and d ∈ D with [V, d] ∈ S. Let th
be an involution in G with [V, th] = h as in (4.6). If d does not centralize l,
then inside the subspace [V, d]th+S we find that h+ l contains a hyperbolic
spread, see (4.13).

If d centralizes h, then [V, d] + h contains a tangent spread and we can
apply (4.14) to find that h+ l contains a singular spread. ✷

4.17 If W is a 6-space in V containing two spreads, then the lines from
L ∪H and spreads in W form a projective plane of order 4.

Proof. Let S and T be two spreads inW intersecting at a line l. As each line
m ∈ S different from l forms a spread with each line of T , there are at least
and hence exactly 21 lines in W . Clearly the spreads induce a projective
plane of order 4 on these 21 lines. ✷

4.18 Theorem. Suppose ∆ is connected but does not contain full spreads.
Then the geometry (L∪LS ,T ∪H∪S) is a projective space of order 4. The
set LS is the set of absolute points of this projective space with respect to
some Hermitian polarity.

In particular, G preserves a nondegenerate Hermitian F4-structure (V4, h).
Moreover, G is isomorphic to FU(V4, h), with D corresponding to the class
of reflections in G.

Proof. By the above we find that the geometry (L∪LS ,T ∪H∪S) is a linear
space. As in the proof of (4.12) we can prove this space to be a projective
space of order 4. Thus V carries the structure of a vector space V4 over F4

invariant under G. In particular, we can consider G to be a subgroup of
GL(V4).

Let d ∈ D and l = [V, d], then Al = CV (d) is a hyperplane of V4.
Now consider a singular line h, and let th be an involution as in (4.6) with

h = [V, th]. From (4.13) and (4.14) it is readily seen that Ah := CV (th) is
a hyperplane of V4 containing precisely those spreads on h that are tangent
or singular. This shows that the map l ∈ L ∪ LS 7→ Al is a nondegenerate
Hermitian polarity on the projective space P(V4). As each d ∈ D induces a
unitary reflection with center [V, d] on V4, the theorem readily follows. ✷

Now the Theorems 3.13, 3.14, 4.12 and 4.18 certainly imply Theorem 1.1.
Actually, they provide a proof for a slightly more general result, in which the
assumption on D being a conjugacy class can be replaced by {[V, d] | d ∈ D}
being a G-orbit.
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