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INTRODUCTION 

This report emanatcs from a seminar of the group EEC, held in spring 1972, 

and it reflects our knowledge in the field of automatic wiring design, built 

up during the first months of that year. At the second session the participants 

discussed the schematic overview of page 2. The framed subjects in this scheme 

were pointed out as topics of the sessions to follow. 
~~- -~,---~~-

In the seminar the simultaneous "placement-and-routing"-part was emphasized, 

so that only the Lee-Akers-algorithm was presented (by Prof. Jess at the 

third session), since it was the most representative and general of all 

routing algorithms. A flaw was elicited during this session and a correction 

seemed to be difficult. Our ideas about this algorithm are more mature now 

and that is why the treatment of the subject is different in this report. 

Starting from a simple "minimum-distance" algorithm we generalize as far as 

possible ending up with an abstract model. 

Next in this report we have a short introduction to notions in graph theory, 

although this was a subject of the fourth session. This reordering was 

necessary, because of the final description of routing algorithms and problem 

formulations in which some of the notions are employed. 

The mathematical formulation is published as an article in the "International 

Journal of Circuit Theory and Applications". The fourth and the fifth constraint 

were presented in the formulation for the whirl problem, hut the solutions 

given during the session were basically wrong. We added some directives for 

technological modifications. 

Four planarity tests were given then 

!. CEL-algorithm: preceded by the treatment of "drain functions" and "deltas 

and their formulas"; 

2. pseudo-hamiltonian method; 

3. methods using matrices; 

4. whirl method. 

The last session was concerned with planarization of networks. 

It concludes also this report. 
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I. GRAPHTHEORET ICAL NOTIONS 

We start from a non-empty set G, the so-called set of vertices. On this set 

we define a binary relation: r ç;, G x G. The elements of rare cal led arcs. 

Our notation of an are will be [x,y> with x and y as terminalvertices. In 

the following the set of arcs will be designated by V. 

The pair consisting of G and Vis called a digraph, and is denoted by (G,V). 

We assume the relation fto be antireflexive (this means [x,x>ir). A digraph 

is finite, when G is finite. We will restrict ourselves to finite digraphs. 

If the relation ris symmetrie ([x,y>e:f+-{y,x>e:f), we speak of a graph, here 

denoted by (G,U) with U = {[x,yJJ [x,y>e:f}. U is a set of non-ordered pairs 

of vertices, called edges. We speak of a multigraph, when U is a family. 

The relation rcan be treated as any other binary relation: 

We write ye:f(x), when [x,y>e:f. 

The inverse of ris denoted by r-l and is defined by r-l (y) = {xJye:f(x)}. 

We define the powers of r in the following way: 

r 0 (x) ={x} 

r 1(x) = r(x) 

r 1 (x) r(ri-I (x)) (i is a non-negatieve integer) 
= 

r-i(x) = (r-l)i(x) 

The transitive closure f of fis defined by f (x) 

For digraphs we have also the following notions: 

2 3 = {x}ur(x)ur (x) ur (x)u ••••• 

+ Jr(x)J 1s called the out-degree of x and is denoted by y (x). 

Jr-1(x) 1 1s called the in-degree of x and is denoted by y- (x). 
+ -y(x) = y (x) + y (x) is the degree of x. 

-1 -
xe:G 1s a source, when r (x) = 0 or equivalently Y (x) = 0 

xe:G is a sink, when r(x) = 0 or equivalently y+(x) = 0 

For graphs we have only the degree of xe:G: y(x) = J{yJ[x,y]e:U}I. 

Suppose we have two digraphs (G
1
,v

1
) and (G2 ,v2), and a bijective mapping ~ 

from G
1 

into c
2

• Then ~ is called an isomorphic mapping (or an isomorphism), 

if 

[ x,y>e:V
1
+-+Gp(x), Hy)>e:V2• 
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If such a mapping exists, then (G 1,v 1) and (G
2

,V
2

) are called isomorphic. 

For graphs we have a similar definition. 

A graph (G,U) is called topological if: 

1. G is a set of points in a topological space R, and U is a set of open 

Jordancurves in R, 

2. the terminalpoints of an edge of U are in G, 

3. the edges of U have no other points in connnon than terminalpoints. 

In the case of digraphs we give the Jordancurve [x,y> an orientation in the 

direction of y. 

(G',U') is a topological representation of (G,U), if (G,U) and (G',U') are 

isomorphic and (G',U') is a topólogical graph. 

A graph is called planar, when it has a topological representation in a 

plane. 

The graph (G',U') is a subgraph of (G,U), when G'cG and V U'[uEU]. 
U€ 

The name chain is given to a sequence vl ,v2' .... ' vk of arcs of (G,V) such 

that, if v. = 
l. 

[x. ,y.>, then Y· = x. 
l. l. + 1 

for i = 1 ' 2, . ... ' k - 1. A chain 
l. l. 

is simple, if no are occurs twice in the sequence. It is called elementary, 

if it does not contain a vertex twice. We denote a chain by C[x1, yk>, 

A cycle is a chain in which x 1 = yk. A cycle is elementary if, apart from 

x1 and yk' every vertex in it is distinct from the others. 

A digraph is called acyclic, when it has no cycles. The length of a chain is 

the number of its arcs. 

A path is a sequence u1,u2, ••••• ,uk of edges of a graph (G,U) in which 

we have with u. = [x.,y.], that y. = x. + 1 and y. 1 = x. for i = 2,3, ••• , k - 1. 
l. l. l. l. l. l. - l. 

A path is simple, when all its edges are different, and elementary, when every 

vertex in it appears only once. A path is denoted by PCx 1,yk]. A circuit is 

a path with x 1 = yk' and it is called elementary, when all its vertices 

x')' .... . . . . ' ~ are distinct • 
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A graph (G,U) is connected, if for every pair of vertices in G there is 

a path between them. A component of (G,U) is a maximal connected subgraph 

of (G,U). A vertex x of G is an articulation point of (G,U), if the number of 

components of the subgraph obtained by deleting x and all the edges incident 

to x is one higher than in (G,U). 

Theo rem 1: A vertex ais an articulation point of a con~ected graph, 

if and only if there exist two vertices x and y such that 

every path joining x and y contains a. (x # a ~ y). 

The proof of this theorem is trivial. 

A graph (G,U) is said to be biconnected, if it is connected, and it contains 

more than one edge and no points of articulation. 

Theo rem 2: Given any elementary path P[a0 ,a1, .••• , ak] joining two 

distinct vertices a0 and ak of a biconnected graph (G,U), 

we can associate with it two elementary paths P' and P" such 

that: 

1 • P' and P" join both ao and ak, 

2. ao and ak are the only vertices which P' and P" have 

l.n common, 

3. if P' or P" is followed from ao to ak' the indices of 

the vertices of P encountered on route are in increasing 

order. 

Proof: The theorem is trivially true, when P has length 1 (P =[a0 ,a1J), for 

U contains at least two edges, and neither a0 nor a 1 can be an 

articulation point. 

Let us assume the theorem to be true for all elementary paths of length k, 

and deduce from this that it is also true for the elementary path 
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By hypothesis there exist two disjoint paths Pb and Pö joining a
0 

and ak, and satisfying the conditions of the theorem. We now have 

to show the existence of two paths P' and P" between a 0 and ak + I 

with analogous properties. 

From theorem I we know that there is a path Q[a0 ,~ +IJ' which does 

not contain ak. Let us denote by q the vertex of Q[a
0

,ak + 
1

J nearest 

to ak + 1, and which is also in P[a0 ,~J or P0Ca0 ,akJ or PöCa0 ,akJ. 

We distinguish four cases: 

I. q = ao: 

This case is simple: P' Ca0 ,ak IJ = P[a
0

, ak IJ + + 

P"[a
0

,ak IJ = Q[ao, ak IJ + + 

II. q=ak+l" 
This means that q i P[a0 ,akJ. This leaves two analogous cases: 

qe P0[a
0

,akJ or qePö[a0 ,akJ. Take for example qeP0[a0 ,akJ' then 

P'[aO,ak + IJ= PO[ao,qJ 

P"[aO,ak + IJ= PÖ[aO,akJ + [ak, ak + IJ 

III. q{P[a0 ,ak + 1J: 

This means that either qeP0[a0 ,akJ or qePÖ[a0 ,akJ. In the latter 

case (the farmer isanalogous), we take 

IV. qeP[aI,akJ: 

P'[aO,ak +IJ= PO[aO,akJ +[ak,ak +IJ 

P"[aO,ak +IJ= Pö[ao,qJ + Q[q,ak + IJ 

Then we can write q = a with m<k. Let p be the highest index with 
m 

apeP[a0 ,ak + IJ' apePö[a0 ,ak + IJ (apeP0[a0 ,akJ is analogous) 

and plO:m. 

In such a case we take 

P'[aO,ak + IJ 

P"[aO,ak + IJ 

PO[a0, 8 kJ +[ak, 8 k + IJ 

P"[a a J + P[a ,a 1 + Q[am,ak + I 0 O, p p m 
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T h e o r e m 3: Given two arbitrary edges u 1 and u2 of a connected graph, we 

can construct an elementary path, which starts with u
1 

and 

finishes with u
2

• 

Proof: If UI = [ a,x ] and u2 =[b,y], then since the graph is connected, the 

vertices a and b can be joined by an elementary path P[a,b] = 
[a, al' a2' .... ak b]. 

Again four cases (the required path 1S denoted by P
0
): 

I. xiP[a,b], yiP[a,b]: 

P0 = [x,a] + P[a,b] + [b,y] 

II. xtP[a,b], ysP[a,b]: 

P0 = [x,a] + P[a,y] + [y,b] 

III. xsP[a,b], yiP[a,b]: 

P0 = [a,x] + P[x,b] + [b,y] 

IV. xsP[a,b], ysP[a,b]: 

Po = [a,x] + P[x,y] + [y,b] 

T h e o r e m 4: Given two arbitrary edges u.1 and u2 of a biconnec.ted graph, an 

elementary circuit exists which contains u 1 and u2 both. 

Proof: P[a0 ,ak] is an elementary path with u 1 = [a0 ,a 1J and u2 = [ak _ 1,ak]. 

Such a path exists, as is said by theorem 3. From theorem 2 we know 

that in such a case there exist two disjoint paths P'[a0 ,ak] and 

P"[a0 ,ak] with the properties advertised there. 

Let US denote by p the first vertex of P[aO,ak] after ao, which is 

also in P'[a0 ,ak] or in P"[a0 ,ak] and by q the last vertex b.efore ak 

with the same properties. 

We have three cases this time: 

I. p=ak: 

Necessarily q = ao then. The required circuit 1S 
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II. p f ak and thus q f a0 ; further pEP 1[a0 ,ak] and qsP'[a0 ,akJ· 

(The case pEP"[a0 ,ak] and qEP"[a0 ,ak] is analogous)., Now we 

take 

P[a0 ,p] + P'[p,q] + P[q,ak] + P"[ak,aO] 

III. Again p f ak and q f a0 , hut now pEP'[a0 ,ak] and q€P"[a0 ,ak]. 

(The case pEP"[a0 ,ak] and qEP'[a0 ,ak] is analogous). 

P[a0 ,pJ + P'[p,ak] + P[ak,q] + P"[q,a0J 

We have a biconnected graph (G,U). Let H be a subset with IHl~2. We suppose 

that (G,U) has the following property: 

(G,U) has a topological representation (G' ,U') in a plane such that H is 

completely contained in a circuit C' that (of course) divides the rest of 

the plane into two connected open domains and one of these domains contains 

no edge of U'. 

Such a graph is called H-accessible and the representation (G',U') is called an 

H-periphere representation. Two elements h
1 

and h2 of H are said to be G'-

adjacent, if there is a path P[ hj ,h_2J between h' 
1 and h' 

2 which is on the 

periphery c' of (G' ,U') and which contains no vertex of H'\{hj,hp. 

Theo rem 5: If (G',U') and (G",U") are both H-periphere representations 

of an H-accessible graph (G,U), then every G'-adjacent pair 

is also a G"-adjacent pair. 

Proof: If IH!s3, then there is nothing to prove. Thus, suppose IHl>3 and that 

h
1 

and h2 (both elements of H) are G'-adjacent and not G"-adjacent. 

This means that there is a path P'[hi,hz] on C' in which no element 

of H'\{hj,h_2} appears. P"[hi',h2J is the corresponding path in (G",U") 

and this path contains at least one edge which is not on C". 

Let P"[h" h"J and P"[h" h"J be two disJ"oint paths together covering the 
a l' 2 b l' 2 ' 

whole C". On P~[h 1

1',h2J there must be an h~ not equal to h'1' or h2· On 

Pb[h;',hz] there must be an hb' which is also unequal to h;' or hz• From 

the Jordancurves-theorem we know that there is no path from h~ to hb not 

containing a vertex of P"[h'i,h2J in (G",U"). In (G',U') however, there 

is clearly a path from h~ to hb which contains no vertex of P'[hi,hiJ • 

This is a contradiction. 
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II. ROUTING ALGORITHMS 

1. SIMPLE CONNECTION AI.GORITHM ON A GRID 

Consider two sets of natural numbers: R = {nlnENjA(O<n~r)} 

K = {nlnENjA(O<n~k)} 

We define the set C as being R~K and we call its elements "cells". On this 

set we define a relation nccxc in the following way: 

V V C [(c., c.)En++(jr.-r.l+lk.-k.I =IJ c.EC c.E 1. J 1. J 1 1. J 
l. J 

where c. =(r., k.) and c. = (r., k.). By c.n we mean {cl (c., c)En}. Clearly, 
1. l. 1. J J J 1. 1. 

n is syuunetric, and it is easy to see that 

At the initialization of the socalled "connection"-procedure, we suppose that 

C is partitioned into two subsets A and B. A is called the set of admissible 

cells, while B consists of these cells which are "prohibited". Further two 

elements of A are pointed out: one as being the origin c*, the other as the 
** target c 

The procedure is a search routine followed by a trace-routine: in the first 

routine we split A in three sets: P, Q and A\(PuQ); in the second step we 

select a sequence S of elements of P and Q which are added to B. This sequence 
. * **11 is called "the shortest path from c to c • 

The procedure is built in such a way that 

1. ScA 

* ** 2. S = (c 1, c2 , ••. ,cm)-+(c 1=c A c =c Ay S [(c., c. 
1
)En]) 

ID C.E 1. 1+ 

3. For every sequence S' that satisfies 1. 1 and 2., we have Is' l~lsl 
We must emphasize that the solution need not be unique. In the blocks 

marked by an asterisk the detetmination of the new ë may give some 

difficulties. We can meet here two situations: 

1. IPnënl 

IQnënl 

2. IPncnl 

!Qnënl 

= 

= 

~ 

~ 

2 

"' ... 

the procedure can proceed in a unique way. 

the procedure needs a rule to decide which cell will be 
the next ;:;, 



1 2 

~ 

f 

) 

~ 
) 

7 

3 
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For the missing rule in the second case one may take the following one: 

if possible, do not change the coordinate that was changed in the preceding 

step; 

if possible, make the coordinate that must be changed as low as possible. 

The procedure gets stuck in the black marked by two asterisks when this set 

is empty:this means that no solution exists. (Fig.2.) 

As an application of the described procedure we consider the rectangular grid 

of fig. Ia. The cells are here the little squares of the grid determined 

by the coordinates at the top and at the left side. The cells belonging to 

B are shaded. 

Let the origin be (I,6) and the target (7,5). 

After the first part of the procedure the partition gives the result as given 

in fig. Ib. The set P consists of the cells containing the character "p" and 

the set Q is the set of all cells containing the "q". 

During the "trace-routine", the second step, we meet only the situation 

jPnënl = 1 orjQnënl = I, and thus, the solution is unique. 

However, when we choose (I,3) instead of (I,6) as the origin, a rule like 

the one given above is necessary to obtain a unique solution. The results 

are depicted in fig. Ic. 

3 i.,. 5 6 7 8 1 2 3 '1 5 6 7 

1 p 

2 p 

3 q 

'1 q 

s p 

6 

1 

8 

p 

9 

<i 

p 

p 

9. 

q 

8 p 
~ 

f i!j · ia f ~ ib 
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2 3 4 5 6 '1 9 

p 
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'i 

q 

p Fig. 1 : Example of a routing algorithm 

on a grid. 
p 

q 

p q q 

ftj. c 
1. 

2. SIMPLE CONNECTION ALGORITHM ON A GRAPH 

The connection algorithm on a graph has a more general nature and the procedure, 

described in the preceding section, must be modified. The main principle, 

however, is still the same. 

The set C is now equal to the set of vertices G, while the relation n is now the 

same as the relation r .. Again, C is partitioned in to two sets A and B, and an 

origin and a target are pointed out. 

However, the first step splits A in four sets: P, Q, Rand A\(PuQuR). 

Again, the blocks marked by an asterisk make uniqueness uncertain. One has to 

add a "decision-rule" to eliminate this flaw, e.g. when the vertices are 

labeled with different integers one may demand that the vertex with the lowest 

label of all possible vertices is taken. But when the labels were not assigned 

in a special way, this will be an arbitrary choice. 
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3. SIMPLE MULTILAYER CONNECTION ALGORITHM 

In the preceding section we generalized the algorithm of section l by 

admitting an arbitrary relation n. In this section we want to generalize 

not on the relation n, but on the number of "layers". Every layer has the 

same "grid structure". In every layer we have a partition of C into two 

sets: for layer i f.e. A. and B .. Again, we have in C an origin and a 
1. 1. 

target. The procedure consists also of a search routine and a trace routine. 

In the first one C is partitioned into four sets P, Q, Rand T and in the 

second part the sequence S is selected where Sccx1 (L is the set of "layers" , 

In the description of the algorithm the following arrays are used to store 

the sets: 

F[l:r, l:k, I:LJ is an array which is not changed during the connection 

procedure. It is only changed after such a procedure to add the cells of 

S to the proper B. 's. During the procedure the array F is as follows: 
1. 

F[i, j, h] = X~ ((i, j)) d w z F[i, ], h] ++ (i, j)E~ 

F[i, ], h] = 0 ++ (i, j)EBh 

The array E[l:r, l:k] keeps track of the partition of C into P, Q, Rand T 

E[i, j] 0 ++ (i' j)ET 

E[i, j] ++ (i, j)EP 

E[i, j] = 2 ++ (i' j)EQ 

E[i, j] 3 ++ (i' j)ER 

At the initialization of the procedure all .cells are in T and thus all 

E[i, j] are zero. 

t is an variable, which can take the values 1, 2 and 3. 

Further we have two "projection"functions: TI
1

(c) = 

1T2(c) = j 

The search procedure can be described as follows: 

Step I: D:= * {c }, E[TI
1
(c*), 1T2(c*)J:= 3; t:=3 

Step 2: t: = t+l (mod 3) 

Step 3: DD:= u {en} 
ct::D 

3· K[c = JE 
3· R[c 1. E 

(i' j) J 

(i, j)] 



Step 4: 

Step 5: 

Step 6: 
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For every c in the set DD we determine whether E[n
1
(c), n

2
(c)] 

and whether there is an h such that F[n
1
(c), n

2
(c), h] = 1 

If both conditions are satisfied, then E[n
1
(c), n

2
(c)]:= t 

else DD:= DD\{c} 

D:= DD 

** If c E D then the search routine is compieted, else go back 

to step 2. 

After the search routine we have some data for the trace routine available, 

i.e. t, F and E. With these data we can detérmine the sequence S, hut in 

general this sequence will not be uniquely determined, so that additional 

decision rules have to be applied. 

An example of this procedure is given in fig 4. 

0 
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3 2 3 1 

2 1 2 3 

• 1 3 1 2 

2 1 

3 2 3 1 

1 3 

1 

2 3 4 5 

Fl F2 E Fl F2 E Fl F2 E Fl F2 E Fl F2 E 

l 3 l l 2 0 3 1 0 2 

2 l l 2 0 2 3 0 

3 l 0 2 0 3 

4 0 2 0 0 2 0 3 0 

5 l 3 2 3 0 0 2 

6 l 3 0 2 0 3 

7 0 0 0 0 0 0 0 0 0 

8 l 0 t 0 3 2 

9 l 0 0 0 3 

10 l 0 

Fig.4: Example of a multilayer problem. 
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4. GENEl{J\L IZAT lONS 

In the two preceding sections we have generalized the procedure of section 

in two different ways. In section 2 the n-relation became unrestricted 

(except for finiteness, of course); in section 3 we introduced a multilayer 

procedure. Another possibility is to allow for a more complex optimality 

criterion. The criterion was up to now "the shortest path between the origin 

and the target", where '_shortest meant: "passing through a minimum number 

of cells" • One could solve the problem also by assigning "cell masses" 

inste.ad of partitioning into sets P, Q, (R) and D. The "cell mass" of c is 

in such a case the smallest number of cells one has to pass through before 

reaching c started in c*. By allowing amore "general cell mass" one may 

think to have improved the procedure greatly. One can take for example as a 

"cell mass" a weighed sum of penalties: 

f(c) = .E
1
a. f.(c) 

i= l. l. 

f.(c) are the penalty functions, f.e. the number of cells one has to pass 
l. 

through to reach c from c*, the number of crossings one has met, etc •• 

Two complications are then introduced. Firstly, our strategy has to be 

changed (one must assign "cell masses" only to those cells that obtain the 

lowest possible mass, which means that one has to remember all neighbour 

cells which didn't get a mass) and secondly, the penalty function has to 

satisfy special conditions (the minimum corner problem is not solvable 

by this algorithm). We will give the description of the algorithm, and then 

these difficulties will be apparent. 
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The model 

b b is symbol 'prohibition symbol' 

Nl
0 

Nl
0 

is the set of nonnegative integers 

c 

S' 

C is a finite set 

S' is a finite set 

cns' = 4> 

bES 1 

'set of cells' 

'cell -alphabet' 

S S = S'\{b} 

n 

a 

µ 

A 

p 

p* 

p c' 
c 

ncCXC ~V CV 1 C[(c,c)in A ((c,c 1 )En++ (c 1 ,c)En)J 
CE C E 

'neighbourhoods
relation' 

crc;.cxs' 

VcEC a!sES' [(c,s)Ecr] 

µcNI xsxNI 
0 0 

V(n,s)ENj xsa !mENj [(n,s,m)t:µ] 
0 0 

'labeling relation' 

'weighing relation' 

VnENI VsES VmENj [(n,s,m)Eµ+n::;m] 
0 0 

V 1 V 1 V [n~n' + (n,s)µ~(n' ,s)µ] nEN n'EN sES 
0 0 

AsC 

V [cEA ++ (c,b)icr] 
CEC 

c 
p = u ei 

i=l 

'set of admissible cells' 

P*={(c
1
,c

2
, ••• ,c) j(c

1
,c

2
, ••• ,c )EPAc EAAV1<. [c.EAA(c.,c.+l)En A n n n _i<n 1 1 1 

'set of paths' 

óc p*xNI 
o ] 'cell-mass relation' 

V A V Nj [((c),n)Eó+n=o 
CE UE 

0 V( ) p*[((c
1
,c

2
, ••• ,c ),m)EÓ++((c

1
,c

2
,,,,,c _

1
)o,c cr,m)Eµ] 

c
1
,c

2
, ••• cn E n n n 

Ih~_E!:~!?1~~ 
* ** Given: c EA, c EA 

Asked: Find a pE Pee:* such thatvpE pC** [((p,m )E·óA(p!m)di)+m sm] 
C* O O 
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* * * 1. L:={c },L' :=1":=1:=0, f(c ) :='l(c ) :='l:=O, VcEC\{c*}[f(c) :='l(c) :=00 ] 

2. 'l:='l+l 

3. 

4. V V, 
1
[c'Ecn+(f(c'),ca)µ:EI] CEL' c E 

5. m :+(m EIA la [m<m ]) 
o o mEI o 

6. VCEL'[ 3: 1 L[(f(c'),ea,m )e:µ]+ (f(c):=m Ae:e:L"A'l(c):='l)J c e:cnn o o 

7. L:=(LuL")\{c!cEAA V, [f(e')f00Ve'a=b]} 
e Een 

** 
8. 1=0 + Pc* =0 

e 

** 9. if f(c )=00 then goto 2. 

** "' ** 10. p:=(c ), c:=e 

"' - -ll. e:+ ((e,e)EnA V "'['l(c)~'l(c)]) cEen 

12. p:=(c,p)T 

"' 13. e:=c 

• "'.L * 14. if ere then goto JO. 

Remark: Te AxPxP 

* (p~P Ap=(c
1
,c2 , .•... ,cn)Acfc2AcEc

1
n)+(c,p)T=(c,c

1
,e2 , •••. ,cn) 
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III.THE MATHEMATICAL FORMULATION OF THE WIRING PROBLEM 

1 • INTRODUCTION 

The wiring problem which occurs in the design of printed boards and integrated 

circuits, arises from the restriction of the number of wiring layers. In many 

cases this number will be one. The problem is usually translated into a graph

theoretical formulation [l, 2, 3] in such a way that a certain graph has to 

be tested for planarity. When the result of such a test is negative, technica! 

modifications should be applied in order to obtain a planar graph. 

Besides the one layer constraint there are other requirements. They are listed 

below. 

c1: The terminals of the circuit are to be placed on the periphery 

of the chip or the board. 

The connection of the printed board with the other parts of the system is 

simplified by satisfying this requirement. In the case of circuit integration 

the same applies for the bondation of the circuit to its package, but here we 

have the additional advantage of keeping the bonding pads out of the region 

in whic.h the elements are placed (thermal effects). 

c2: The terminals are to be positioned on the periphery in a previously 

specified sequence. 

This constraint is dictated by standardization rules and the desire to avoid 

special precautions for isolation. 

With Cl and C2 a practical layout algorithm for integrated circuits l.S possible. 

The formulation for printed boards, however, is not complete. It should be 

extended by the following three constraints (C3 , c4 , c5). 

c3: The contacts of a certain component must appear in a given 

sequence. 

As to its treatment this constraint is equivalent to a combination of c1 and 

c2 • Components with more than three pins in a fixed order make the implementation 

of c
3 

necessary. However, in order to match the pins of the components to the 

contacts on the board, the sequence of the contacts has to have a specific 

orientation, namely clockwise or counterclockwise. Therefore we introduce 

the following constraint. 
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(,'.J: '!'l1c· or•i'.enla./,t'.on ar llw conla.cls on ûw board must be the same j'or 

a.ll llw components with more than tUJo pins in a ['ixed order. 

The last requirement makes an a priori choice of the side on which the 

components are to be placed, possible: 

c5: The orientation of the corrrponents described in c4 is defined with 

respect to the orientation of the terminal sequence at the periphery. 

In order to adapt our notions to those in literature we will start section 2 

with some definitions and statements whose proofs are either trivial or to be 

found in hooks on graph theory and analytic topology [4, 5, 6] • Section 2 

ends with the statement and the proofs of the five crucial theorems necessary 

for the justification of the mathematical formulation of the problem with the 

above-mentioned five constraints. This formulation is described in section 3, 

and in section 4 an example is presented for printed board layout. The last 

section contains some concluding remarks. 

2. THE GRAPHTHEORETICAL BASE 

A graph (G, U) consists of a finite set of vertices G and a finite family 

of edges U such that GnU = ~. G and U define an incidence relation which 

associates with each edge [x, y] two vertices, x and y, called its ends. 

Parallel edges are associated with the same pair of vertices. A loop is an 

edge of which the associated vertices are not distinct. The number of edges 

incident with vertex x is called the degree y(x) of x. We call a graph simple, 

when there are no vertices of degree less than 3, no parallel edges and no loops. 

With every graph we associate a simple graph by applying the following rules 

as many times as possible: 

1. Delete a loop 

2. Delete a vertex of degree l with its incident edge 

3. Replace two parallel edges by one edge in such a way that every pair 

of vertices which was associated with an edge remains so 

4. Replace a vertex of degree 2 and the two edges incident with it by 

one edge in such a way that the degree of the other vertices is not 

changed. 
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A path P[x 1, yk] is a sequence Cx
1

, y 
1
], Cx2 , y 2J, . . • . [~, yk] of edges 

in which we have 

x. +-+ 1 
J 

j) A (y. 
1 

A circuit is a path with x
1 

= yk. A graph is called connected, when there is a 

path between every pair of vertices. The maximal connected subgraphs of a graph 

are called components. The intersection of two graphs consists of all the 

edges they have in common and their associated vertices. The union of two graphs 

is the graph consisting of all the edges and vertices of the original graphs. 

Two graphs are said to meet each other, if they have an edge in common. Otherwise 

they are called disjoint. The complement of a subgraph (H, V) in the graph 

(G, U) is the graph consisting of all the edges in U\V and all their associated 

vertices, denoted by G1H. The set Hn(G1H) is called the attachment set of 

(H, V). The number of elements in this set is called the attachment number. 

Let (C, W) be a circuit of~. U). We call a subgraph (H, V) of (G1C, U\W) 

C-bounded, when all its vertices of attachment are vertices of C. It is clear 

that (G1C, U\W), the complement of any C-bounded subgraph in (G7C, U\W), and 

the intersection of any two C-bounded subgraphs, are all C-bounded. A C-bounded 

subgraph of (G1C, U\W) is called a bridge of (C, W) if none of the subgraphs of 

this graph is C-bounded. In other words a bridge of (C, W) is a minimal C-bounded 

subgraph of (G7C, U\W). When [x, y]EU\W, then the intersection of all the 

C-bounded subgraphs of (G1C, U\W) containing [x, y], is a bridge. (G1C, U\W) 

is thus the union of all the bridges of(C, W). Clearly, a bridge is connected, 

because it is minimal [7]. 

A graph is called n-separable, where n is a non-negative integer, when it can 

be partitioned into two disjoint subgraphs, each having at least one vertex 

which is not a vertex of the other, such that the attachment number is ·not more 

than n. A graph is properly n-separable, when its simple graph is n-separable. 

The graph is n-connected when it is not properly m-separable for any m<n. An 

articulation set is a set of n vertices being the vertices of attachment of 

a subgraph of an n-separable and n-connected graph. In a 2-connected graph a 

circuit can be found such that it contains an arbitrary edge (or vertex) [7, 8, 9]. 

A graph is called planar, when it has a topological representation in a plane 

(or equivalently on a sphere). This definition is the link between graph theory 

and analytic topology. For the details we refer to the literature [4, 5, 6]. 
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Here we confine ourselves to some facts from these areas. 

A graph is planar if and only if its simple graph is planar. Further, every 

subgraph of a planar graph is planar. The most famous criterion for the 

planarity of a graph is due to Kuratowski [IO]: A graph is planar if and only 

if it has no subgraphs whose simple graphs are isomorphic to({x .• J$i$5}, 
l. 

{[x., x.JI l$i$5Ai<j$5}) or ({x. ll$i$6}, {[x., x.JI l$i$3A4$j$6}). 
i J i i J 

A planar 2-connected graph (G, U) is called H-accessible where H c G, when there 

exists a circuit (C, W) in (G, U) such that H c C and there is a planar 

representation (G', U') of (G, U) in which every point of c'uW' can be connected 

with a point xtG'uU' by disjoint Jordan curves without intersecting G'uU'. 

(G', U') is called an H-periphere representation of (G, U). It is clear that 

one of the regions in which C'uW' divides the plane, contains no edges of U'. 

We call this region a face in this particular representation. The circuit 

C'uW' forms the boundary of this face. Two elements h1 and h2 of Hare called 

G'-adjacent in H when they can be connected by a Jordan curve in this face 

without intersecting other Jordan curves in this face connecting two elements 

of R. The notation for this relation will be: h 1 ~h2 • Every planar representation 

automatically defines an adjacency relation on H, when it is H-periphere. In 

a planar representation every vertex and every edge is on the .boundary of some 

face. The whole graph is contained in the interior region of one of the boundaries. 

This boundary is called the outer boundary. For every face there can be found 

a planar representation on a plane such that its boundary is the outer boundary. 

Suppose namely that the graph is mapped onto the surface of a sphere. Call an 

arbitrary point of the face in question the north pole P. Stereographic projection 

from P on the tangent plane through the south pole will project the north pole 

on the infinite of the plane and the projection of the face concerned will form 

the outer region of the plane. 

Suppos.e we have a simple closed Jordan curve C (dividing the plane into two 

regions; Jordan curve theorem) on which two pairs of distinct points c 1, c2 and 

c
3

, c4 are selected (C 1 # c2 and c3 # c4). These pairs are said to alternate 

when there is no section of C connecting c1 with c2 without containing c3 or 

c4 . It is possible to connect c1 with c2 and c3 with c4 by disjoint Jordan 

curves in one region if and only if (c 1, c2) and ç3 , c4)do not alternate [6]. 

An equivalent definition of G'-adjacent in H is now: two vertices h 1 and h2 
of H are G'-adjacent in H if they do not alternate with any other pair of 

vertices of H on C'uW'. 
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From now on in this section (G, U) is a 2-connected graph. In the case of 

1-connectedness }he accord ing statements are easy to1 det~ve from the results 

below. Only theorem 3 undergoes a slight modification. 

Theorem 1: H. c G , x. ,/ G 'uv, 1, 1, F-

(G, U) has a planar representation (Gr:i V') that 1,S Hi-periphere 

for l$i$m if and onZy if the graph 

) ' ( m { } m { [ hi] 1 hiEH.})) (K, V = (Gu u. x. ) , Vu ( .u x ., 
i=l 1, 1,=1 1, 1, 

is pZanar for some {x1, x 2 ••• xm} 

Proof: Suppose (K, V) is planar, then it has a planar representation (K', V') 

We consider a face with x. on its boundary. 
. 1 . 

with elements of Hi' h~.and h~ 
boundary consists of [h

2
1

, x.], 
• . 1 

must also be 
i 

[xi' h 1J and 

Since x. is only connected 
1. 

on this boundary. Thus the 

P 1 [h~, h~]. None of the pairs 
1 1 

(xi'.Y) ~here yEP 1Ch 1, h2J, are mutually alternating, so every point of 

P 1 [h~, h~] can be connected with xi by a Jordan curve in the face without 

meeting one of the other connecting curves. The same applies for the 
. i i i i points ~f P

2
Ch

2
, h

3
J, P

3
[h

3
, h

4
J, etc. The curves connecting the points 

of P.[h:, h7 
1
J with x. are in another face as the curves belonging to 

J· J . J+ 1 • 

Pk [h~, h~+l] (k 1 j). The Jordan curves [hj , xi] are disjoint from each 

other because (K', V') is a planar representation, and disjoint from the 

constructed curves, because they are on the boundary of the faces. 
i i i i So we conclude that every point of the circuit P1Ch 1, h2JuP2Ch2 , h

3
Ju 

uPk[h~, h~]uH. can be connected with the point xi by disjoint Jordan 

curves. This means that 

(K'\(~=1 {xi}), V'\(~=l{[xi' 
of (G, U) for all l$i$m. 

hi]\hiEHi})) is a H.-periphere representation 
1. 

Conversely, when (G, U) 

for }$ i $ m, then every 

disjoint Jordan curves, 

has 
1. 

a planar representation which is H.-periphere 
1. 

h EH. 
1. 

can be connected to an x. with mutually 
1. 

and without intersecting any edge. We only have 

to consider the points x. as new vertices, and the connecting Jordan 
1. 

curves as new edges, and we have a planar representation of 
m m i i (Gu(u {x.}), Uu(u {[x., h Jlh EH.})) 
i=l 1. i=l 1. 1. 
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HcG, x/G 

(G, U) has an H-periphere representation (G', U') with the 

property 

"1~i<k [hi'Vhi+l] 

if and only if 
(K, VJ = (G u {x}, Uu{[x,h] lhEH}u{[h1,hk]}u{[hi,hi+l] 1 l~i<k}) 

is planar. 

Proof: For IHl~3 the theorem reduces to theorem 1. So we suppose !Hl~4. 

For the first part of the proof we start from the planar H-periphere 

representation (G', U') with the proposed properties. We can connect 

.hi with hi+I and h 1 with ~by disjoint Jordan curves in the face with 

H on its boundary. The new edges form together a circuit containing H 

completely and being the boundary of a new face. The new represented 

graph is thus H-periphere. From theorem 1 we know that the graph (K, V) 

is planar. 

Now we suppose we have anH-periphere representation (G', U') but with a 

wrong adjacency relation on H. This means that there is a subset 

{ha' hb' he' hd} of H with a<b<c<d and ha'Vhc and hb'Vhd in {ha,hb,hc,hd}. 

Further, we suppose that (K, V) is planar, and thus we have a planar 

representation of 

(M, W) = (G, Uu{[h 1, hk]}u{[hi,hi+IJI l~i<k}) 

since this is a subgraph of (K', V'). From the first part of this proof we 

also know that this representation is still H-periphere with the same 

adjacency relation. 

From theorem 1 and the first part of this proof we conclude that the graph 

(Mu{x}, Wu{[ha,hc]' [hb,hd], [ha,x], [hb,x], [hc,x], [hd,x]}) 

must also be planar. 

However this graph contains the subgraph 

(Hu{x}, {[ha,x], [hb,x], [hc,x], [hd,x], [ha,hc]' [hb,hd], [h1,hk]}u 

u{[hi,hi+l]Jl~i<k}) 

whose simple graph is isomorphic to one of the graphs in the theorem 

of Kuratowski. So (K, V) cannot be planar, which implies a contradiction. 
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Wli1'n o :;r·ar 1'1 ((;, IJ) i'.c fl-auec:rniJ;l,c, lhrY'e 1,:; only one ad.jaeency 

r><'laf (,m 011 Il f!o::::(/J/.e. 

Proof: Again we suppose that IHl~4. 

Since (G, U) is H-accessible it has an H-periphere representation (G', U'). 

Suppose it has another H-periphere representation (G", U") such that there 

. is a pair h 1, h2 in H, which is G'-adjacent and not G"-adjacent. This 

means there is a path P'[h
1
,h2J in (C', W') in which there is no element 

of H\{h1,h2}. P"[h 1,h2J is the corresponding path in (G", U"), and this 

path contains at least one edge not in (C", W"). Let P~[h 1 ,h2 J and 

Pb[h1,h2J be two disjoint paths, together covering the whole (C", W"). 

On P~[h 1 ,h2 J there must be an haEH and not equal to h 1 or h2 , and on 

Pb[h 1,h2J there must be an hbEH, not equal to h 1 or h2 • In (G', U')we 

can easily find a path P'[ha,hb] not containing a vertex of P'[h 1,h2J 

(forexamplein (C'uW,\P'[h 1,h2]).However, in (G", U") there is not such 

a path, since ha•1\, and h 1,h2 are alternating on C"uW". 

Theorem 4: A planar graph (G, U) is properly 2-separable if and only if there 

is at least one face boundary in an arbitrary planar representation 

of its simple graph which has more than one bridge. 

Proof: There is a planar representation of the simple graph of (G, U). Suppose 

one of the face boundaries has more than one bridge. Bridges are connected. 

thus attachment vertices of a bridge B cannot alternate with vertices of 

attachment of another bridge B'. So all the vertices of attachment of 

Bare on a path P[c 1,c2J of the boundary and none of the attachment 

vertices of B' is. Then the graph is separated by c 1 and c2• 

Conversely let the planar graph (G, U) be properly 2-separable with 

articulation set {c 1,c2}.Then separate the graph at c 1 and c2 • We have 

now two components: (Hj, Uj) and (H2, U2)· Since c 1 and c2 are connected 

in (HZ' Uz), (Hj, Ui) must be {c 1,c2}-periphere (apply theorem after 

choosing an arbitrary point on a path r 2Cc 1,c2J in (H2, U2)), so we can 

connect c
1 

and c
2 

by a Jordan curve in the new face. The same is possible 

in (Hz, Uz). After identifying [c 1,c2J in both components we have a 

Jordan curve between c 1 and c2 in (G', U') and from theorem 1 we know that 

c 1 and c2 must be on the same boundary (C',W').(This fact is obvious from a 

picture, but as many theorems of analytical topology hard to prove). 
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The theorem is usually referred to as the Jordan-SchÖnflies theorem [6]) 

Since the graph(G, U) was properly 2-separable, there must be 

a vertex not in C in H
1 

as well in H
2

• This means that (H
1
, C, U 

1 
\W) and 

(H21c, u2\W) contain each at least one bridge of (C, W), since they are 

not empty. 

Theorem 5: A graph (G, U) has a umque planar representation (i.e. the 

boundaries of the faces consist of the same edges for every planar 

representation of (G, U)) if and only if (G, U) is planar and not 

properly 2-separable ([11, 12]), 

Proof: The necessity is easy to see., for one can, without spoiling the planarity, 

obtain the nrlrror -image of every subgraph with attachment number two, by 

twisting it around its attachment vertices. 

The sufficiency follows from theorem 4: 

Suppose we have two planar representations(G', U') and (G", U") of (G, U). 

(C', W') is the boundary of a face in (G', U')and (C", W"), the corresponding 

circuit in (G", U"), is not the boundary of a face. In (G", U"), (C", W") 

must contain inner and outer bridges, so at least two bridges. Thus the 

corresponding circuit in (G', U'), (C', W') must also have at least two 

bridges. Since (C', W') was the boundary of a face. The graph (G, U) must 

be properly 2-separable. 

3. THE MATHEMATICAL FORMULATION 

In this section we want· to construct a graph from a given network and some 

additional design data (constraints) such that it is suitable for a number 

of tests which are necessary and sufficient to yield cl to es, and a practical 

implementation on a computer is possible. In the case of integrated circuits 

where c4 and es have lost their relevance a planarity test proves to be 

efficient. However, with printed board layout we have chosen for a combination 

of two tests, a planarity test followed by a connectivity test. Of course it 

will be advantageous that the output of the first test is adapted to the other. 

We will carne back to these subjects in section S. 
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The starting point is the schematic diagram of the network consisting of components 

artd conductive interconnections. In the set of components we distinguish between 

components that can be crossed by wires and those that cannot be crossed. 

Resistors on a printed board are usually big enough to allowfor one or more 

crossings, In IC-technology a diffusion resistor of more than l k~ can also 

be crossed without difficulty. These components belong to the first set. A 

transistor is an example of the second kind of components. lts contacts are toa 

close to each other to permit a crossing (In IC-technology the distance between 

the contacts is sometimes big enough, hut here we want to avoid crossings too, 

since parasitic capacitors are introduced then). With every component of the 

second kind we associate a vertex in the graph to be constructed. We refer to such 

a vertex as a c-vertex. The conductive interconnections in the diagram form a set 

of "trees". These trees can never be crossed without special measures ("jumpers" 

for printed boards, "cross-under resistors" for IC's). With every conductive 

tree we associate a vertex, called a t-vertex. Whenever a component belonging to 

a c-vertex c of the graph has one of its contacts on a conductive tree associated 

with t-vertex t we connect c with t by an edge [c,t], Note thatthe graph so 

constructed is bipartite. This means that the set of vertices can be partitioned 

into two subsets, such that every edge of the graph connects a vertex of one 

subset with a vertex of the other. 

Remarik:Some components with a special shape (f .e. IC with a "dual in line"-package) 

should be implemented in a special way. 

The graph generated by the described procedure is called the potential graph. 

We assert that, when the potential graph is planar, then there exists a planar 

wiring and a non-overlapping component placement. It is easy to get a layout 

with these properties by "growing" the c-vertices until they have reached the 

size of their components. The wiring between the components is (for example) 

the rest of the graph. Of course this is not a practical layout. In one of the 

subsequent stages of the program one has to minimize the chip area or to place 

everything on a board (mostly with standardized dimensions). These procedures are 

not the subject of this paper. 

After the construction of the potential graph we have to implement c
1 

to c
5

• 

The treatment of the first constraint is innnediately clear from theorem 1. 

There are several conductive trees which contain terminals. The set of vertices 

H is the set of their t-vertices. What in fact we want to know naw is whether 

the graph is H-accessible. We therefore connect every vertex in H with a new 

vertex x. (The graph is still bipartite; we consider the vertex x as a c-vertex). 

Planarity of the graph thus obtained is necessary and sufficient for the 

H-accessibility. 
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The introduction of c2 seems to be obvious from theorem 2. Acting in the sense of 

this theorem we connect every pair of "adjacent" terminals by a new "adj.:icency 

edge" (bipartiteness is preserved by laying a vertex on every new edge; these 

vertices can be considered as c-vertices). The potential graph is naw extended 

by a so-called wheel (the "terminal wheel" in this particular case): the 

adjacency edges form together the "rim" of the wheel, x is called the "hub" and 

the edges incident with x are called the "spokes". Planarity of the obtained 

graph is necessary and sufficient for a planar potential graph constrained by 

c1 and c2 • However, theorem 3 makes the usefulness of the implementation of c
2 

questionable. (We will explain this in section 5). Nevertheless we maintain the 

addition of the adjacency edges, because most planarity tests yield directives 

as to the set of edges whose deletion planarizes the graph and then the adjacency 

edges may be useful. Besides the implementation of c
4 

becomes easier as we will 

see later in this section. 

c3 is treated in an analogous manner. Here the hub is the c-vertex associated with 

the respective component. The set H is formed by the t-vertices directly connected 

with the hub. We only have to add new edges between adjacent contacts, and again 

a complete wheel is introduced. We can make the same remarks on the introduction 

of c3 as we did with c2 • The graph so obtained is called the extended potential 

graph. 

The question now is, whether this graph is planar or not. In case of planarity 

a layout constrained by c1, c
2 

and (eventually) c3 exists. Otherwise the graph 

should be modified by using possibilities given by the technology until planarity 

is obtained. The problem which is left now can be formulated as: "Does a planar 

representation of the (eventually modified) graph exist in which c
4 

and CS are 

satisfied?".This is very unlikely to occur, and thus in most cases modifications 

should be carried out. It is innnediately clear that methods searching all planar 

representations(f.e. by applying the theory described in [12], [16] or [17]) 

are not recommendable. Firstly because of the computational effort involved, and 

secondly because we don't obtain any indication for executing the necessary 

modifications. The next thought can be to invalidate these objections by using 

a "constructive" planarity test. By constructive we mean that the starting point 

is a planar subgraph which is extended until the graph at hand is obtained. 

The extension-steps consist of transformations, which do not spoil the planarity 

and take the orientations into account. Nevertheless we prefer a connectivity test 

(subsequent to the planarity test) on a planar representation of the (eventually 

modified) extended potential graph which accounts for c
4 

and CS. The reason 

for this choice will be given in section S. The connectivity test implies a 

partitioning of the graph into maximal not properly 2-separable subgraphs. 

Before executing the test we add the three adjacencv edges of each component 

with three pins whose orientation has to be considered. They may not 



-32-

have been insertecl into the extended potential graph, since they are not 

essential for the sequence of the contacts (it always is the same in the case 

of three contacts) and they may complicate the modification steps. 

Yet, in the connectivity test, these edges are important, because the graph has 

to be subjected to a simplification procedure in which a c-vertex associated 

with an orientated three-pin-component may disappear. 

Furthermore, wheels are clearly not properly 2-separable. This means that its 

hub cannot be in an articulation set with less than three elements. Thus wheels 

will not be split apart by the connectivity test procedure. 

According to theorem 5 the subgraphs generated by the test have unique planar 

representations. So the orientations of the components in such a subgraph are 

fixed with respect to each other. Consequently, a necessary condition for 

satisfying c4 is that the orientations of the components in such a subgraph are 

all clockwise or all counterclockwise. This is also sufficient, because some 

subgraph with all its wheels oriented in the same way may be adjusted with 

respect to the orientation in another subgraph by twisting it aroun.d its 

articulation points. 

The orientation of the "terminal wheel" referred to in constraint c
5

, can 

easily be incorporated into the procedure.to check c4 • 

4. EXAMPLE 

In this section the described method is demonstrated with a printed board 

layout design. 

The circuit diagram is given in figure 1 (voltage stabilizer). The components 

are numbered (1) up to (12) inclusively, and the conductive trees 13 up to 23 

inclusively. The constraints are specified as fellows: 

c
1

: The terminals 13, 14, 15 and 16 are to be placed on the periphery of the 

board. 

c
2

: The following sequentia! position of the terminals around the periphery 

is required: 13, 14, 15, 16. 

c
3

: The contacts of component (1) (the operational amplifier) must appear in 

the following sequence: 16, 19, 13, 21, 20, 14. 

c
4

: The orientation of the components (1), (3), (4) and (9) has to be the same: 

when walking along the rim of the respective wheels in clockwise direction 

the hub has to be in the region at the right. The t-vertices on the rims 
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then have to occur in the following sequence: 

a) for the operational amplifier ((1)): 

16' 19' 13, 21, 20, 14 

b) for the transistors ((3) respectively (4)) 

(3): 15' 23, 16 (emitter-base-collector) 

(4): 16' 20, 23 (idem) 

c) for the potentiometer ((9)): 

17, 18, 19 

es: When walking along the rim of the "terminal wheel" in the sequence 13, 16, 

15, 14, the hub has to be at the right. 

The potential graph can easily be constructed by connecting the c-vertices 

((1)-(12)) with the t-vertices (13-23) according to the schematic diagram of 

figure 1. For the moment we consider all the components to be non-crossable. 

If necessary all the components may be crossed except the transistors, operational 

amplÜier, and the potentiometer. (The op-amp has a T0-5-TYPE package; see 

bottomview). 

We take care of constraint c1 and c2 by adding a new vertex ((24); c-vertex) 

and adding the edges [24, 13], [24, 14], [24, 15], [24, 16] and the edges 

[13, 14], [14, 15], [15, 16], [16, 13]. 

The treatment of c
3 

requires the addition of the edges [16, 19], [19, 13], 

[13, 21], [21, 20], [20, 14], [14, 16]. The graph obtained now, is the extended 

potential graph and has to be tested on planarity. The test discloses the 

extended potential graph to be non-planar. Planarity can be obtained by deleting 

two edges. A possible choice can be: 

a) edge [4, 20] (the base of transistor (4)); Technologically this connection 

can be established as a"jumper". 

b) One of the edges [14, 10] and [10, 18]; In this case, the modification 

is simple, si.nee vertex (10) is associated with a component (resistor) 

that may be crossed. 

Since the planar representation in figure 2 does not satisfy the constraints 

c4 and c5 , the connectivity test has to be executed. 

The starting point for this test is the extended potential graph (figure 2, 

without dotted lines) with addition of all the "adjacency edges" of each 

3-pin-component whose orientation has to be considered. The first thing to do is 

simplifying this graph. The result is depicted in figure 3. 

Theorem 4 indicates that we have to determine which faces of this graph have more 



than one bridge. The following faces (shaded in figure 3) have this property; 

- 19 - 13 

17 - 13 - 19 

16 - 13 - 18 - 19 

16 - 14 - 15 - 23 

16 3 15 

16 - 15 - 24 

articulation points 13 and 19 

articulation points 15 and 16 

Faces with two vertices in common are grouped together and enclose a maximal 

subgraph of the simple graph, that is not properly 2-separable. The orientations 

of the components that are placed in the same subgraph, are fixed. If these 

relative orientations are not according to the constraints c4 and c
5

, some 

additional modifications have to be carried out to satisfy the constraints. 

If the (relative) orientations of the components in distinct subgraphs are not 

according to the constraints, then the orientations in some subgraph may be 

changed by twisting the subgraph around its eventual articulation points. In 

our case we have 3 maximal subgraphs that are not properly 2-separable: 

a) ({13, 17, 19, 18, 9}, {[13, 17], [17, 19], [18, 19], [13, 18], [9, 17], 

[9, 18], [9, 19]}). 

This subgraph contains the wheel associated with the potentiometer (9). 

b) ({16, 23, 15, 3}, {[16, 23], [23, 15], [3, 15], [3, 23]}). 

This subgraph contains the wheel associated with transistor (3). 

c) The subgraph containing all the edges of the graph in question except 

those edges that are contained in the graphs a) and b). 

This subgraph contains two wheels, namely the terminal-wheel (hub 24) 

and the wheel associated with the operational amplifier (1). 

The orientation of transistor (4) is of course always ensured since one of 

its pins is connected with a jumper. The relative orientation of the two wheels 

in c) is according to the constraints, so no additional modifications have to 

be carried out. The subgraphs a) and b) have to be rotated to get the planar 

representation of the graph as given in figure 4. From this graph it is easy 

to construct the planar representation of the modified potential graph that 

satisfies the given constraints. · 
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S. CONCLUDING REMARKS 

In the preceding sections we have shown how the wiring problem in a general 

form (taking into account the five design requirements c
1 

tot CS) can be 

formulated in a graph theoretical way such that implementation on a computer 

is possible. 

The construction of the potential graph as described here is in fact the same 

as in [13], hut we do not want to adopt the cumbersome notion of the generalised 

graph [14], which is only a bipartite graph from the topological point of view. 

Of the five constraints the first two did appear in literature before [15, 16, 13, IJ. 

Tile step to c3 is then evident. In [ 13, 1] the implementation was also the same 

as described here but the actual content of theorem 3 is not noted. From this 

theorem it is tempting to conclude that the adjacency edges are superfluous, 

and indeed, in the planarity test they are. The planarity test on the graph 

extended with adjacency edges even yields less information than the test on 

the graph that does not contain these edges. However, when the graph turns out 

to be non-planarmodifications have to be applied. The importance of the 

adjacency edges at this stage depends on how these modifications are carried out. 

Of course the potential graph need not be biconnected, hut separability only has 

influence on the preceding when an articulation point is in one of the sets H .• 
1. 

In practice this case will not occur; besides this influence can easily be seen 

from the planar representation. 

In the construction we indicated how to preserve the bipartiteness of the graph. 

This only is advantageous when this property is used in the operations carried 

out on this graph, for example in the planarity test. 

After the planarity test a connectivity test is necessary for treating the 

orientations of the components as fixed in c4 and CS. In the case that such a 

test has to be carried out it is recommendable to apply a planarity test that 

gives adequate output for the connectivity test. We have at our disposal a 

planarity test that yields the planar representation in a face-oriented way. 

After the planarisation a check on the orientations can be executed very easily. 

Another advantage is that the terminal wheel need not be added since cl and c2 

can be taken care of by starting the procedure with a face that contains the 

terminals in the required sequence. 

More facts about splitting a graph in not properly 2-separable subgraphs are 

given in [17]. This paper, however, does not contain an algorithm for the splitting 

procedure in spite of Weinbergs statement [ 16] that it does. 
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In section 3 we mentioned as a thought that a constructive searching for a 

planar representation could solve the problem. Then , one can investigate the 

graph upon the requirements c
1 

to c
5 

by one test. However the problem remains 

to find a practical implementation. Weinbergs algorithm [16] for example 

can be alterned eas±ly for this purpose, but is as planarity test already 

difficult to implement. Several other "constructive" algorithms have a simpler' 

implementation, but the required alterations are complicated. This is the 

reason of preferring the method presented in section 3. 
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Appendix chapter 111: 

f~!!:~!E~~!i:~~-~!_!!!~-E~!~!!:!i:!!.L.SE!!E!} 

The set of vertices: 1) directly connected conductive "trees", 

The set of edges 

Constraints 

Modifications 

Remark 

2) transistors used as transistor. 

1) edge between the transistor and the "tree" with 

which it is connected, 

2) non-crossing resistors between the corresponding 

"trees", 

3) capacitors between the corresponding "trees", 

4) transistors used as diodes, 

5) diodes. 

1) terminals must lie on the "periphery" of the graph. 

We take care of this by adding one vertex and edges 

between the terminals and this new vertex. 

2) The n terminals must lie on the periphery in a specific 

order. This is done by numbering the terminals in this 

order and by connecting terminal i with terminal i + 1 

and terminal 1 with terminal n. 

If the graph turns out to be non-planar, some modifications 

are required: 

1) Reduction of the number of edges: 

a. lf the collectors of some transistors are directly 

connected they can be placed in the same isolation

region. This means that the connecting edges can 

be removed from the graph. 

b. Cross-under resistances if allowed. 

2) Extension of the number of nodes: 

a. Multiple base-, emitter - and collector contacts. 

For some algorithms it will be necessary to place a node 

on the edges of type 2, 3, 4 and 5. 
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1.V. EXAMl'LE OF AN IC-LAYOUT 

As an example we give the layout of the µA 709. The different stages 

are depicted in the figures 1-4. 
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F. ig.4: The layout. 
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V.THE CEL. -ALGORITHM 

We have a graph (G,U) with n vertices (jGj = n). Of course we can define 

a bijective mapping f from G into the set { 1, 2, 3, •••• n}. This means 

that every vertex xEG is associated with an integer f(x). We can use 

this fact in giving the edges of (G,U) an orientation. The result is a 

digraph (G,V), called the f-oriented digraph of (G,U) and defined by 

v G v G [ [ x,y>EV+-+ [ x,y] E u /1 f (x)<f (y)] XE yt:. 

Every function f which is conform the description above1 points out one vertex 

st:.G with f(s) = 1 and one vertex tt:.G with f(t) = n. A function f is called 

a drain function of (G,U) when it possesses the additional property 

v xEG [(x i= s " x f t) +-+ 3: 1 

[x,y]e:U 
[f(y)>f(x)>f(z)]] 

[x,Z]EU 

A digraph (G,V) is called a drain if it is acyclic and it contains exactly 

one source and exactly one sink. 

Theo rem 1: Every f-oriented digraph (G,V) for which fis a drain function, 

is a drain. 

Proof: First suppose that (G,V) possesses a cycle. C[a0 ,a1,a2 •••• , ak> with 

a0 = ~· From the definition of f-oriented we conclude 

This is contradictory, since f is bijective and thus a0 = ak ~ f(a0) = f(~; 

1 is the smallest number in the range of f. The graph is f-oriented 

thus s must be a source. n is the highest number in the range of f, 

and so t is a sink. 

There are no other sources,because for every x f s there is a yEG 

with f(y)<f(x). (f is a drain function !) 

Analogously, t is the only sink. 
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Now we have a drain (G,V). Let U be the set {[x,y]j[x,y>EV v [y,x>EV} 

Suppose that fis such a drain function of (G,U), that the associated 

f-oriented digraph of (G,U) is equal to (G,V). Then we call fa natural 

drain function of (G,V). 

T h e o r e m 2: With every drain (G,V) there is at least one natural drain 

function associated. 

Proof: We have a drain (G,V) with the source s, and the sink t. 

Let us construct the following subdigraph of (G,V): 

(G 
l ' 

v l ) : G G\ { t} n - n - n -

v = V \ V' n - n - l 

V' = {[x,t>j[x,t>t:V} n -

By deleting arcs we cannot get extra cycles so (Gn _ 
1

, Vn _ 
1

) is 

also acyclic. 

Clearly, every source of (G,V) is a source in (G 
1

, V 
1
). 

n - n -
Furthermore, G 

1 
does not contain more sources, since r only changes 

n -
for vertices in the set G~ _ 

1 
= {xj [x,t>EV}. If such a vertex x is 

-1 -1 
a source of (Gn _ 

1
, Vn _ 

1
) than r

0
_

1
(x)= 0. Since t i r (x) for 

-1 
every x in G, r (x) = 0, and x would be a source of (G,V). 

We conclude thus that (G 
1

, V 
1

) has also one un1que source. 
n - n -

We now state that (G 
1

, V 
1

) is connected,in other words, t 
n - n -

1s not an articulation point of (G,V). We prove this statement by 

reducing its negation to an absurdity. 

When (Gn _ 
1

, Vn _ 
1

) is not connected, it consists of more than one 

component. We consider one of these components (G',V') of (G~ _ 1 ,V
0 

_ 1) 

and prove that it must contain at least one source. Since (G 
1
,v 1) 

n - n -
has only one source, it can have at most one component, which means that 

it is connected. 
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rhe outline of this part of the proof is: 

we prove that t is a partial ordering for G' 

every chain has an upper bound 

according to Zorn' s lennna we conclud: that there is a minimal element 

which is a source in our case. 

A A 

ris reflexive, because (x,x)Ef + xef (x) 

fis transitive: (x,y)ef + 
i 

(y,z)ef 

yef (x) + a. N ie 
,... 

+ zEf (y) + a. N 
JE 

[yEf (x)]l ~ 
~ zEf i + j (x) + 

[zEfJ (y)] 

+ zef (x) -+ (x,z)ef 

A A A 

ris antisymmetric: (x,y)er + yer(x) + a. N iE 
A 

(y,x)er + xef(y) + a. 
JEN 

i l [yef (x)] 

[xEI'J (y)] 
+ xer i + j (x) 

This means that there is a chain C'[x,y> and there is 

a chain C"[y,x>, which form together a cycle. However 

(G ', V ') is acyclic, thus i = j = 0 or x = y. 

These tb.ree properties of r make it a partial ordering. 

For every chain C in (G',V') we have V CV C [(x,y)er v(y,x)ef~ . XE yE 
which means that C is a linearly ordered subset of G'-. 

Every chain in (G',V') bas a lower bound geG': for take gin the 

following way 

geC 

then 

1\-,a c ccy,g)er AY 1- g J yE 

A 

VcEC [ (g,c)Ef J 

Finally, a minimal element in G' is an element s
0

, such tb.at 
A 

VXEG 1 [ (x,so)Ef + so = x J 

or in our terminology: s is a source (for r- 1(s) = 0) 
0 0 

We use now the famous lemma of Zorn: 

Every partially ordered set in which every chain has a lower bound, 

has a minimal element. 
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From this lenuna wc conclude that every component of (G 1,v 
1
) 

n - n -
contains a source, and since there is only one source in G 

1
, 

n -
(Gn _ 1,vn _ 1) must consist of only one component, which means that 

(Gn _ 1,vn _ 1) is connected. 

Analogously, we can find upper bounds for chains and then, again 

according to Zorn's lennna, there exists a maximal element, for us 

a sink. 

We delete one of these sinks, say t 
1 ' 

and all the arcs incident n -
to it. So we get (G 

2' v 2) ' and the whole process is repeated. n - n -
We proceed in this way until we have Gl = {s}. 

The drain function becomes f(tk) = k, 1 ~k~n with s t
1 

and t = 

T h e o r e m 3: We have a biconnected graph (G,U) and a subset G1 of G 

j G 1 j ~2 • There exists a path P[x,y] = [x,I,y] in (G,U) 

xe:G l , ye:G l and InG 1 = (/J. When G
1
cG, then I ~ r/J. 

t • 
n 

with 

with 

Proof: In a biconnected graph there exists an elementary circuit which contains 

two given edges. Because (G,U) is biconnected we can find two edges [x,z] 

and [x' ,z'J with x and x' in G1 an z and z' in G\G 1. 

C is a circuit containing these two edges. We consider the path P'[x,x'J 

on C consisting of x,I' and x', while I' has z as its first vertex. 

Let y be the first vertex next to zin P'[x,x'J which belongs to G1• 

P'[x,y] is the required path. I ~ 0, because z El. 

We call a graph (G,U) x-y-biconnected, when xe:G, ye:G and (G,U u {[x,y]}) 

is biconnected. 

T h e o r e m 4: A connected graph (G,U) possesses a drain function with f(s) 

·and f(t) = n for given s and t, if and only if (G,U) is 

s-t-biconnected. 

Proof: Assume that (G,U) is not s-t-biconnected. This means that (G,U u {[s,t]}) 

contains an articulation point a. If there exists a drain function for 

(G,U), then this function will also be a drain function for (G,U u {[s,t]}). 
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I. a = s: 

G1 = fxJ VP[x,t] [acP[x,t]]} 

It is certain that G1 f ~' sf y and t t G1• Further, every vertex 

adjacent toy is an element of G1, thus 

a _, ZEG 

But then f is not a drain function 

II. a f s: 

G1 = {xJ VP[x,s] [aEP[x,s ]]} 

3: 3: V [f(x) ~f(w) A f(y)~f(w)J 
XEG l yEG l WEG l 

Now G1 f r/i and stG 1• 

x = a-+ ..., a 
ZEG 

[[y,z]EU A f(z)>f(y)] 

x :/: a-+ ..., a 
ZEG 

[[x,z]EU A f(z)<f(x)] 

Again f is not a drain function. 

The second half of the proef is by construction: 
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wit~ l(\c•'f" é' s\c A f,OCk)~fkcv.) A Iknr,\(.:c; 

"':::: 1 r"1 
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lk+t()C.)~= ~k(x) ~o~ X4~\c /\ ~\c(A)<' !i.lv1o) 
fk+1("'):= ~k~)+wi t0 " xt-Sk .A.~k(...)~ ('1\c) 

)(·-

r-,vl e- P1c D<k, Y1c l A x :1:- 'Z 

h,". (~) : ,;- t(y)-1 

~". :z: =y 

1 

&; :..1( 

K::y 

y:= 
y6!o /\ (x,v)t: ~[r.,C:l A y ;p z 

k::k+1 
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A digraph (G, V) is called a delta D, if it satisfies the following conditions: 

1 • (G, V) is acyclic, 

2. ~! 
-1 

~sG 
[r (s~) = 0J 

3. VtsG [f(t) = 0 ++ lr-1(t) 1 = 1 J 

4. (G, V) has a topological representation in a plane conform the following 

description: a is a given straight line in that plane, 

all the vertices of G are on one side of a, 

d(a, x) is a distance between a vertex xsG and the line a, 

VxsG VysG [[x, y> sV + d(a, x)<d(a, y)] 

VtsG VzsG [f(t) = 0 + d(a, t)~d(a, z)] 

In the described representation we can take: 

All sinks are then on alinea parallel to the linea.ais called the sink line. 

d(a, o) is the distance between a and o. 

A connected graph is called separable, when it has at least one articulation 

point. 

The definitions relating to connectivity are given only in the case of graphs. 

With respect to digraphs we use these words, when the graph which is left 

after replacing every are by an edge, possesses the corresponding properties. 

A section is a maxima! subdigraph of a delta which contains the source s~ , 

in such a way that s~ is not an articulation point. Clearly, a section is 

a delta. 

The maxima! non-separable subdigraph S of a section S containing the source, 
c 

is called the core of s. A maxima! connected subdigraph of the digraph obtained 

by deleting all the arcs of S and the isolated vertices formed thereby, is 
c 

called a shell of S. 

Of course, every section with more than one edge has at least one shell and 

every shell is a delta. 
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!laving a plane representation as described in condition 4., we can give the 

seclions or a <lelta an ordering according to the incidence at sf:.. (f.e. from 

the left to the right): [S 1 * s 2 * ·•· * sP]. A similar ordering for the shells 

of a section, taking into account the shell-at-care incidence order, is 
. bl [ l 2 q] possi e: T T ••• T • 

Two deltas are called similar, if they are isomorphic and if for every pair 

of corresponding subdeltas the same orderings have been taken. A permutation 

of a delta is a transformation into an isomorphic delta under preservation 

of the similarity of the corresponding sections. A reflection of a section is 

a transformation which is not trivial and results with an isomorphic section 

under preservation of the similarity of corresponding shells. 

Theo rem l: The reflection of a section [T1T2 ••• Tq] is given by 
q q-1 1 

[T T ••• T ]. 

Proof: Let S be a section and S its core. H is a subset of the set of vertices 
c 

in S such that: H = {s, h 1, h2 , •••• , hq} with sas the source of S 

h. as the source of Ti. Clearly S is H-accessible. The plane 
i c 

representations of S satisfying condition 4. must be H-periphere. 
c 

Theorem 5 in "Graphtheoretical notions" gives directly the rest of 

the proof. 

From now on in this paper we assume that with every vertex x there is associated 

a label Z(x). The mapping Z from G in some label alphabet L is not injective; 

this means that the labels of distinct vertices can be the same. Two digraphs 

are called L-isomorphic, if they are isomorphic and the corresponding vertices 

possess the same labels. In our case we take for the elements of L positive 

integers. 

The sinks of a delta possessing the lowest label are called index sinks. Their 

labels are called index labels. A delta D is called normalisable, if it rnay 

be transforrned intoan L-isornorphic delta D' such that all the index sinks 

are together on the sink line without another sink in between. D' is called the 

normal form of D. 
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T h e o r e m 2: Every normalisable delta may be normalised by a successive 

application of permutations and reflections. 

Proof: When D is a normalisable delta, then there exists a delta D' which is 

L-isomorphic to D and which is in normal form. Consider any pair of 

corresponding sections, and if the shell ordering is not the same, 

then make it so by reflection (theorem 5 in "Graphtheoretical notions"). 

Next consider any pair of corresponding subdeltas, and if the section 

ordering is not the same, then make it so by permutation. After noting 

that the transformations do not impair each other, the theorem will 

be clear. 

Consider now a delta which is in normal form. On this delta we perform the 

following reductions: 

1. identify all index sinks with one new vertex r for which d(a, r)<d(a,a), 

without introducing crossings, 

2. add a new vertex t' to the delta on the sink line in such a way that not

neighbour-sinks in the original delta are not neighbours after adding t'. 

3. adjoin a new are [r, t'> between the new vertices, 

4. ass1gn the index label of the original delta to r and to t'. 

The obtained digraph is again a delta, and it is called the reduced form of the 

original delta. 

Elements of L, parentheses and asterisks are the symbols in the formula 4> of 

a delta which can be defined recursively: 

1. the formula of a section consisting of one are is equal to the label of 

the sink: 

S = ({x, y}, {[x, y>}) + 4> = Z(y) 

2. the formula of a delta with p sections is as fellows 

D =[SI* s2 * .•. * sPJ + 4> = (cj>l) * (q,2) * ••• * (q,P) 

1 si. . 1 2 where q, 1s the formula of 4> 1s called the product of 4> , 4> , 
p 

• • • <P • 

(<j>i) is called a factor of <j>. 

3. the formula of a section with q shells is as follows 

1 2 q 1 2 q) S = [T T , •• T ] + 4> = (cl> ) (<j> ) , •• (4> 
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and now <j> l. l.S the formula of Tl.• <j> is called the concatenation of 

<j> 1 ' <j> 2' 
q 

••• ' <P • 

(<jl i) is called a component in <j> • 

Remark: It is obvious that only sink labels enter the formula, a.nd that 

they appear in the same order as the corresponding sinks on the 

sink line. 

Sometimes (not always) we can drop some of the parentheses in a formula without 

loosing information: 

1. ((<j>)) can be replaced by (cp), 

2. (<j>) where <j> is a single label, can be replaced by <j>, 

3. (<jl) where (<j>) is a factor in a product, and <j> is a concatenation, can be 

replaced by <jl. 

The meaning of the transformations permutation and reflection f or the formula 

is clear. Permutation is effected through a permutation of the factors in 

some product. Reflection is effected through a reversing of the order of the 

components in a concatenation which is either a factor in some product or a singlE 

component in some other concatenation. 

A formula is in normal form, if all of its index labels are together only 

interlaced with asterisks and parentheses. It is easy to see that the formula 

of a delta is in normal form if and only if the delta is in normal form (see 

the remark at the end of the definition of a formula). 

A formula is called normalisable, if it may be transformed into a normal form 

by a successive application of permutations and reflections. Knowing the effect 

of the transformations on formulas and deltas it is also clear, that a delta 

is normalisable if and only if its formula is normalisable. 

We now want to define the reduction of a formula in normal form in such a 

way that for any delta in normal form the reduced form of its formula is 

equal to the formula of its reduced form. This means that we have to translate 

the identification of the index sinks in a proper way. First we give a 

gradation to the parentheses of a formula. 
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A parenthesis is called weak, if it is placed between two index labels 

(ignoring asterisks and other parentheses).A weak parenthesis which is not 

enclosed by a pair of parentheses of which one parenthesis at least is weak, 

is called a main weak parenthesis. 

The reduction rules become: 

1. If q,. contains an index labei, and it is the first or the last factor 
i 

of a product bordered by a pair of parentheses, at least one of which is a 

2. 

main weak one (marked by an apostrophe), 

( . . . * <j>.)'-+ ( .... ) <P • i i 

' (<P. * ••• ) -+ <j>.( •••• ) i i 

if <P. contains an index label and it is i 
parentheses, at least one of which is a 

apostrophe), then 

'(</>.)'-+ q,. 
i i 

(<j>.)'-+ <P· 
i i 

'(q,.)-+ q,. 
i i 

then 

a concatenation bordered by a pair 

main weak one (marked by an 

3. apply I. and 2. recursively until all ·index labels are no longer interlaced 

with parentheses, 

4. replace all the index labels by one single index label. The resul1tant 

formula is the reduced form of the original normal form. 

of 
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From theorem 4 in "Assigning a drain function to a graph" we know that it 

is no restriction on the generality, when we assume that a biconnected graph 

which is to be tested for planarity, is a drain with the source and the sink 

connected by an are. In such a graph we define a basic set of ( n - 1) 

deltas: 

With the following rules we generate from the basic set a set of deltas, 

and we give the so-called planarity-bit pa value 0 or 1: 

no 

p: = 0 

k: = 2 

?> 

yes 

Transform D into 

a normal form D' 

Replace [r, t'> by Dk 

with r as the source 

of Dk. This graph 

becomes the new D 

k: = k + 

no 

p: = 
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Since we are dealing with deltas, the described procedure must have an 

analogue for formulas. First the basic set of formulas: 

with 

for l~k<n 

-I x. €I' ( z (k) ) 
1 

i "' j -+ x. "' x. 1 J 

m = 1 rcz-l (k)) 1 

The generation of the formulas declines as follows 

no 

p: 0 

k: = 2 

Transform <P into 

a normal form n 

Reduce n to p 

Replace the sinkindex 

in P by Sk. This for

mula becomes the new 

k: = k + 1 

no 

p: = 
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At this point we emphasise the fact that the generation procedure for a given 

drain is not unique, simply because the normalisation need not be unique. 

A delta may possess several normal forms. The following theorem states 

that, no matter how the normalisation is done, this will have no influence 

on the value of p at the end of the generation. 

Theo rem J: Given an arbitrary drain, then every generation gives 

the same value to the planarity-bit. 

Proof: Suppose that there is a generation R' which gives p the value o and 

there is a generation R, which gives p the value 1, both belonging 

to the same drain. This means that we meet in the procedure R' a 

non-normalisable formula cp' and a corresponding non-normalisable 

delta D'. There must be an L-isomorphic delta D in the generation R 

with its formula cp. These are however normalisable, since the procedure R 

ends with p = 1. This is a contradiction. 

Finally we have to give a proper interpretation of the planarity-bit. 

Doing this the next lemma turns out to be helpful. 

Consider a planar drain D = (G, V), D' is a planar representation of D; 

D'(k) = (Gk' Vk) is defined by: 

D'(k) = ({xl xEG' A Z(x)$k}, {[x, y> EV' A Z(x)$k A Z(y)$k}) 

By a face of a planar representation of a graph we mean a set of points 

in the plane that can be connected to each other by a Jordancurve, disjoint 

from the graph. 

T h e o r e m 2: For any plane representation D' of a planar drain D, and 

every o<k$n, all vertices belonging to G\Gk are contained 

in the same face of D'(k). 

Proof: The theorem is trivial for k$2 and k~n - 1. Suppose the theorem is 

not true for some k 2<k<n - 1. This means that the sink tof the drain 

is in one face and there are other vertices in G'\Gk in another face. 

Among these there has to be a vertex with a maximal label, and this 

vertex has to be a sink. Since there is only one sink in a drain, 

our assumption must be false. 
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T h e o r e rn 3: Given a drain D, then this drain is planar, if and only if 

there is a generation R for D which gives the planarity

bit the value 1. 

Proof: That Dis planar when p = 1, is clear frorn the generation, for the 

last generated delta is equal to the given drain, when we remove the 

last forrned are [r,t'>. 

Now suppose that D is planar and D' is a planar representation of it 

such that [s,t> is on the boundary of the outer face. We assurne that 

V [d(a,t)>d(a,x) A d(a,s)<d(a,x)] 
XED 1 \{s,t} 

According to theorern 2 all vertices of G' \Gk are lying in the outer 

face of D1 (k). Under this condition all the successive D'(k) in the 

generation can be drawn on the plane in a way that condition 4 of the 

delta definition is fulfilled. They form the whole set of deltas of 

the generation procedure, so the theorern follows. 

The CEL-algorithrn can be given in the following schernatic way: 

Take two vertices s and t in G 

such that [s,t]EU 

Assign to (G,U) a drain function 

such that f(s) = 1 and f (t) = n 

Deterrnine the basic set of f orrnulas 

Start the generation process 

no yes 

(G,U) is not planar (G,U) is planar 
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l 

4. Two examp les 

fl,= l.•7 • ,, 

/32:=3 *"". 6 

foa= '1 * ~ 
f31.t= io • 11 

fo15=6 * 9 ..-10 
/36= 1 

f.31= 8 >M 9 

fos= 9. * i1 

In this section we give two examples, one planar graph and one non

planar graph. 



1 

/31=':fa.=21f7•11=~i-:: f~ 

t 
:~=(<1.t !W5)• 4 •6) ~ 7. '1 

3 11 3 i.. 6 7 1J 

1 1 

~'3: (3~1;~6)*7*11 "'"Yl?> ==-.$3 

4 4 6 '1 11 5 4 6 7 1 '\ 

1 1 
rz"-=((s*i..)~ 4 *6)•1 ll'r'\'\ S1.t-:: (s"i Nt 6) "'1 * i1 

\0 6 7 11 s \0 ,, ó 7 11 

1 
'Ss"(S(io •11)*6)~7 *~'=>75 :: ~s 
9 IO 10 11 6 7 IO 6 

1 1 1 
= (1..6"' 9~ 10) (10•11)•6)* 1~11 ~!>= ((\0#'1)(,o• s•6) *B)•1•1i ~s: (c10•11)(10•9)6)•r • '\1 

\0 

1 

~1'= (<,o •11) (io~s) 1)•1 *11 = Yl1 

11 10 1 

1 
S7=Cao*11)óo•9) 1 -.11 



lO '\ 1 lO 11 '\O ,, ,, 

1 t 

:f <3 =(Jo •11) (!o ft 9) (C c:Hli 11) * 9) Ylf 11 ri" = (io ~ 11) (\o* c:i) (s*(s it'\ v) * '\'\ 

.f'3=(10 * '\'\) \0 g ,, # 11 .1\o-:: (101t 11) 10 10 ,, * 1'\ 

'1_,0=(11 *' \0) \0 \0 11 * 1'\ 
11 11 11 

4 

S11 = 11 



1 

1 

6 

'3 

13, ; :rl. ;. .2 * 3 * 6 = s?.. 

s "" s 

1 

.:f't-::. ~ • s) * (1.t • s) * 6 

s 

1 

j>s=565 •6 

6 s 

6 
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Pi.=- 6 

The non-planar example 

3 6 

4 4 5 6 6 

1 

'l°'i; (s * 1.c) ~c'-i * s) * 6 

1 

J11=51t5*6 
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VI.OTHER PLANARITY ALGORITHMS 

1 • ~-El~!:~!i!.Y:!!:2!_}2!!2!:f!_~!!-!!!! __ i!~!:~!iY~.-f!~~~!!1E~2 i!i~!!_!!l~!h~f!_i~ I.::~!:~f! ~: 

~~!!1il!~!!i~!!-!!1~!b~f!:2. 

Our starting point is the (connected and) nonseparable graph (G, U) • 

ScU is a segregate set, which divides G into two disjoint proper subsets G1 
and c11 • {Si} is a set of disjoint cutsets such that s

1
us2u ••• u Sn = S 

The subgraph (G1 ,u1 ) exists such that: VxEGI VyEGI [ [x,y]EU1+[x,y]EUJ 

Define a set of subgraphs (G.,U.) of (G,U) such that: 
1 1 

G.nG. = ~ 
1 J 

2) u =UI UD US uUluU2u •.• uun;UinUj=0;UinS=0;uinUI=0;UI nS=0;Ui nm=0 

VXEGI vyEGI [cx,y]EU A [x,y]~UI ++ [x,y]EDJ 

3)V G v G [cx,y]EU + [x,y]EU 1 
XE i YE i ~ 

4)V[ J S [xEG. v x,y E i 1 
yEG.] 

1 

5) (G.,U.) is connected. 
1 1 

The subgraphs (G.,U.) can be constructed by deleting all the vertices c1 1 1 

and all the edges which are incident to these vertices. 

Let (G,U) and (H,C) be graphs and let ~ be a mapping from G onto H: 

~ is called a homomorphic mapping or a homomorphism if: 

1) vh H [(~- 1 (h.), {[x,y] \xE~-I(h.) AyE~-I(h.)A[x,y]EU}) is connected] 
.E 1 1 1 
1 

"(G, U) is homomorphic to (H, C)" if there exists a hom©morphism from 

G onto H. 

Notation: (G, U) > (H, C) 

For example (H, C) can be created by "contraction" of some subgraphs 

(G., u.) of the original graph (G, U) 
1 1 

Consider the homomorphic mapping from (G1uc11) onto (G1uH): 

(G, U) ~ (G1uH, u1 uS UD) 
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Theorem 1: 

In a connected nonseparable graph (G, U) let a segregate set S and two 

associated subsets of G, GI and GII' be chosen such that (GI' UI) defined 

above, is a (chordless) circuit, C. Then, necessary and sufficient conditions 

for (G, U) to be planar are that (GiuH, UI uS uD) and {(GiuGi' UI usiuui)} are 

planar. 

Proof: 1) Assume (G, U) is planar. Then all its subgraphs are planar. Thus 

(HuGI,suuI uD) and {(GiuGi,uI usiuui)}, which are subgraphs of (G,U) 

are planar. 

2) Assume that (HuG
1

, Suu1 uD) and {(GiuGi,UI usiuUi)} are planar (Note 

that form the definition each (G
1

uG., Uius.uu.) and each (G., U.) 
i i i i i 

is connected). Since all (G., U.) have no edges incident to each 
i i 

other, the addition to the planar graph (HuGI' suu
1 

uD) of each 

(G., U.) will remain planar if each (G
1

uG., u
1

us.uu.) is planar. The 
i i i i i 

latter is one of our starting points. Therefore (G, U) is planar. 

In the literature the graph (HuGI'SuUI uD) is often called "pseudo-Hamiltonian 

graph" and each (GiuG., u
1

us.uu.) "decomposed subgraph" of (G, U). Deleting the 
i i i 

set of edges u
1 

decomposes the graph (G, U) into a union of edge-disjoint 

subgraphs, denoted as the "bridges" of C in (G, U). The above-mentioned 

(decomposition) theorem suggests an iterative algorithm for testing1whether a 

graph is planar or not. Given a graph (G, U), we find a circuit C, form the 

corresponding pseudo-Hamiltonian graph and test the planarity of the latter 

graph. The planarity of each decomposed subgraph (i = I, 2, ••• , n) is then 

tested by the decomposition theorem in a subsequent iteration(see fig.2). 



,s / ___ q _____ , 

----

J 

/ 
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u
1

us. uu.) 
1. 1. 

1 
1 

l 

1 

I 
1 

1 

Fig. 1. Partitioning according to theorem !. 
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Planarity-test by itetative decomposition: 

Graph (G, U) 

Construct (optimal) circuit C in 
the graph (G, U) 

gEG
1 

-+--+ g is vertex on C 

G11 = G1uG2u uGn 

S is a segregate set: 

y]EUA((xEGl AyEG
11

)v 

V(yEG
1

AxEG
11

)) ] 

{S.} =set of 
1. 

disjoint cutsets such that: 

s = s
1
us

2
u ••• usn A 

AV[ ]-<'[ (xEG
1

AyEG. )V 
x,y c:."j J 

create (G1uH,Ur us uD)by contraction 
of all (G;,Uj) j=l, •.• m 

-:;;..:..;rl;;_O ----4 ( G ' U) 

For j = 1, •.••. m: create 
(G1uG., uius.uu.) and test 
whethér tfiesé gtaphs are 
planar using all abovementioned 
steps (same procedure) 
If all planar.,.(G, U) planar 

Fig. 2. 

not planar 
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Thus the problem of testing the planarity of an arbitrary graph can be reduced 

essentially to the problem of testing the planarity of a pseudo-Hamiltonian 

graph. The requirements that the latter graph is planar,is equivalent to the 

requirement that its bridges can be mapped on the inside and the outside of 

C in such a manner that no two edges on the same side cross. The vertices of 

a bridge which are connnon to C will be called "vertices of attachment" of the 

bridge. Assume that there are at least two such vertices (otherwise the bridge 

can be separated from C) and that they are ordered in a clockwise sense on C. 

The successive vertices in this ordering divide C into a set of edge-disjoint 

paths. We say that bridge b' does not alternate with bridge b, if all the 

vertices of attachment of b' lie on a path defined by two successive vertices 

attachment of b. Otherwise, we say that b' alternates with b. Notice that in 

a planar graph, the bridges which alternate must be mapped on opposite sides 

of C. On the other hand, bridges which do not alternate are not so constrained 

and may be mapped on either the same or on opposite sides of C. From this 

knowledge the following theorem is clear. 

Theorem 2: 

A pseudo-Hamiltonian graph is planar if and only if its bridges can be 

associated with two disjoint classes I and O, such that no two bridges in the 

same class alternate. 

This theorem expresses the condition that the pseudo-Hamiltonian graph be planar 

in terms of the synnnetric binary relation, "alternation", which is defined on 

the set B of bridges. To examine this relation we form an (undirected) 

alternation graph (G, U ), such that: 
a a 

1) For every element in B there corresponds a vertex in G a 

2) b. alternates with b. +-+ [g., g.]EU 
1 J 1 J a 

It is clear that for every pseudo-Hamiltonian graph, there is a unique alternation 

graph (relative to the circuit C). In general, the alternation graph will 

consist of several connected components. 

Def. A bipartite graph is a graph in which the vertex set G decomposes in to two 

disjoint sets G1 and G2 such that each edge connects an element of G1 
with an element of G2 • 
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Theorem 3: 

The necessary and sufficient condition that the pseudo-Hamiltonian graph be 

planar is that its alternation graph is bipartite. 

The proof follows directly from theorem 2. 

The following procedure may be used to determine whether a graph is bipartite 

or not. Construct a spanning forest of the alternation graph. Assign to an 

arbitrary vertex of the tree the plussign. The vertices which are connected 

with the plussign via one edge obtain a minus-sign (and vice versa). In this 

way the sign of each vertex of the alternation graph is uniquely fixed. The 

graph is bipartite if and only if all remaining edges are incident to two 

vertices with opposite sign. 

Another procedure is the following:Choose a vertex of the alternation graph 

and assign to this vertex the plussign. Assign this minussign to each vertex 

which is connected to the plussign via one edge. If there exists an edge 

between any two elements of this set of minussign-vertices, then the graph 

is not bipartite. If this is not the case, then choose one of the last set of 

assigned vertices and assign the opposite sign to the vertices which are 

connected with the chosen vertex via one edge. If there exists an edge between 

any of these vertices (the last set of assigned vertices) and any other vertex 

with the same sign, then the graph is not bipartite. The procedure is going on 

until all vertices have a sign. It is possible that in a particular step, there 

are no other edges going out from any vertex of the last set of assigned vertices. 

Theo the procedure is started again for the vertices which are .left (which 

have no sign). 

The property of alternation also makes it possible to implement the decomposition 

on the computer using matrix notation. To illustrate this let us consider the 

incidence matrix A of the pseudo-Hamiltonian graph. Arrange the rows and columns 

of this matrix A in such a manner that the property of alternation can be 

determined by inspection. The leading rows and columns correspond to the 

vertices and edges of C in a natural sequence. The edges of attachment of each 

bridge are grouped together and placed next (ending with the bridges consisting 

of only one edge, namely the edge between two vertices of C). 
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To determine whether two bridges alternate. We examine the submatrix of A 

whose rows correspond to the vertices of C, and whose columns correspond 

to the bridges. This matrix is called the attachmentmatrix H, and can be 

divided into submatrices A. of H which correspond to the bridges b. 
1 1 

Let A. and A. be two distinct submatrices of H. Then, A. does not alternate 
1 1 J 

with A., if all 
J 

of the nonzero rows of A. 
1 

are bounded by the same two successive 

nonzero rows of A .• From the above~mentioned theorem 2 we naw can 
J 

state: 

The pseudo-Hamiltonian graph is planar if its attachmentmatrix can be 

partitioned H = [I:O], where no two submatrices A., A. in a partition 
1 J 

I of 0 alternate. 

A partitioning-algorithm of the attachment matrix is given below. 
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Partitioning-algorithm of the attachment matrix H of a pseudo-Hamiltonian graph 

(Note that this algorithm is like the second procedure which tests the 

bipartiteness of the alternation graph). 

n:= n + 1 

I:= ~; O:= ~; 

H':= {A1, A2 , ••• API Ai submatrices of H, 

corresponding to the bridges}; 

n:• O; j:= O; 

HJ = A.j A.EH' arbitrarily 
n i i 

I·= I + HJ 
n 

Hj:= set of all the 
n 

submatrices of H', that 

alternate with a arbitrary 

submatrix (element) of Hj n 

if (n+l) = odd then 
j 

0:• 0 + Hn+l 

else I: = 

j:= J + 1 

n:= 0 

The pseudo-Hamil
tonian graph is not 
planar : 

~-=---tpartitioning ready 
print I 
print 0 

The above-described partitioning of H takes the form 

••• J 
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A; Some graph-theoretical notions 

Before defining the "dual graph", let us define some other notions and 

properties of these notions. 

Nullity (cyclomatic number): 

The nullity of a graph with m edges, n vertices and p components is 

µ = m - n + p. 

Rank: The rank of a graph with m edges, n vertices and p components is n - p. 

Theorem 1: The nullity of a graph is equal to the maximum number of 

independent circuits. 

Proof: Let us build up the graph edge by edge, starting with a graph 

consisting of the vertices of the graph, isolated one from the other. 

Adding a new edge connecting two vertices a and b of the graph which 

are connected by a path in the graph, will increase the nullity by 

one (the nullity will not alter in other cases afb), and the addition 

closes new circuits. Suppose that before adding the edge ek we had 

obtained afundamental basis containing the circuits c
1

, c2 , . . . . ' 
and that after the edge ek has been added we have formed the new 

circuits: Ci, C2, ,,,, Clearly Ci cannot be expressed linearly in 

terms of the c. (since it contains an edge which is not contained 
1 

1.n the Ci); on the other hand Ci, c3, ... can be expressed linearly 

in terms of the ei and Cj. So, each time the nullity is increased 

by one the maximum number of linear independent circuits increases 

by one. 

Corollary 1: A graph contains no circuits if and only if its nullity is zero. 

Corollary 2: A graph possesses a unique circuit if and only if its nullity 

is one. 

Cut-set: 

A cut-set is a set of edges of a connected graph (G, U) such that the 

removal of these edges from (G, U) reduces the rank of (G, U) by one, 

provided that no proper subset of this set reduces the rank of (G, U) by 

one when it is removed from (G, U). 
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Dual graphs: 

(G2, u2) is a dual of (G 1, u1) if there is one-to-one correspondence 

between the edges of the two graphs, such that if (H
1

, E
1
) is any subgraph 

of (G 1, u1) and (Hz, Ez) is the complement of the corresponding subgraph 

of. (G2 , u2), then 

r 2 = R2 - µ1 

where r 2 and R2 are ranks of (Hz, Ez) and (G2 , u2), respectively, and µ
1 

is the nullity of (H 1, E1) 

(Gl,UI) (G2 ,U2) 

r2 = 2 

R2 = 3 

~ 
nl = 

d /i 
(Hl ,El) (Hz,Ez) 

Theorem 2: If (G 1, u1) and (G2 , u2) are dual graphs, circuits in either 

graph correspond one-t~-one with cut-sets in the other. 

Proof: Assume C to be a circuit in (G 1, u1). Consider this circuit as the 

subgraph (H1, E1) in the definition of a dual graph. Since the nullity 

of a circuit is one (theorem 1), the rank of the complement of the 

corresponding subgraph is exactly one less than the rank of graph 

(G2, u2). Since no proper subset of a circuit is a circuit, no 

proper subset of the corresponding set of edges of the circuit reduces 

the rank of (G2 , u2) with one by removing these edges. 
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So the set of edges of the circuit is a cut-set. 

Assume a set of edges to be a cut-set of (G2, u2). Removal of this 

set of edges reduces the rank of (G2, u2) with one, The corresponding 

subgraph in (G1, u1) will have nullity one (according to the 

definition of a dual graph), Since a cut-set is a minimal set, the 

corresponding subgraph in (G1, u1) which contains a circuit (Cor. 2) 

contains no subgraph containing a circuit. Hence this subgraph is 

a circuit itself. Since the edges of this circuit are uniquely 

determined by the edges of the cut-set, this circuit is uniquely 

deterrnined. 
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Let us start from a connected graph (G, U) with the following properties 

J. the relation ris antireflexive (no loops); 

2. U is a set of non-ordered pairs of vertices, called edges, (so the 

graph is nota multigraph). 

a. We first of all give a planarity-test which is based on the theorem of 

Whitney: A graph is planar if and only if it has a dual. 

Write U = T u L in which 

lel= n; IT u LI= m 

T = set of edges which form a spanning tree 

L = set of edges which are the links 

The nodal inciden~ 1 7at~~:~·~ 
be given in the following form: 
= 1 '2' ... ' n 

A = (a .. ) = 
l.J A . 

1 '2' A2 J 22 J = ... ' tp. 

in which the edges which belong to the columns of the matrix A12 form a 

spanning tree. This means that matrix A12 is non-singular, so its inverse 

exists. The edges which belong to the columns of matrix A11 form the set L 

of links. 

Reduced form of the nodal incidence matrix (deletion of one row): 

i = 1,2, ••• n-·1 J = 1,2, •.• ,m. 

Each of the (m-n+l) links of the tree defines a loop of the graph, called 

fundamental loop of the graph. The fundamental loops define a (m-n+l) x m 

matrix Bf; if the edges of the graph are numbered so that the links of the 

tree form the first (m-n+l) edges, and if the fundamental loops are numbered 

corresponding, Bf will be of the form: 

Bf =(Im-n+l F) 
T -1 T in which F = - A11 • (A12) 

T = transponing 

Additions modulo 2. 

Each edge of a spanning tree of a connected graph segregates the vertices 

into two sets; the corresponding cut of the graph consists of that particular 

tree-edge together with certain links of the tree. The set of (n-1) cuts 

obtained in this way from a tree is called the funda.i.nental set of cuts 

and define a (n-1) x m matrix Cf; if the edges of the graph are numbered 

so that the last (n-1) columns correspond to the tree, and if the cuts are 

numbered correspondingly, then Cf will be of the form: 

Cf =(E In-1) 

in which E = - FT = 



b. 

The planar graph (G, U) has a fundamental cut-matrix Cf and a fundamental 

loop-matrix Bf. The dual graph (G*, U*) has a fundamental cut-matrix C~ 

and a fundamental loop-matrix B;. 

From the duality of circuit and cut-set it now is clear that: 

There exists a one-one-corresponding ordering of the 

) * *1 * the graphs (G, U and(G, U 1 such that Cf = Bf and 

The algorithm now is of the following form: 

lit [1] 

incidence matrix (A) 

of the given graph 

dual 

B = c* = (ET T ) 
f f m - n+l 

(A) is planar 

Tutte, W.T., 

Frorn matrices to graphs, 

.--~~~ ...... (A) is not planar 

Can. J of Math., vol. 16, pp. 108-127 (1964). 

The following planarity-test is based on the theorem of McLane: 

Given a nonseparable connected graph (G, U) of m edges and n vertices having 

circuit matrix B. A necessary and sufficient condition for the graph to 

be planar is that it have a circuit-basis together with one additional circuit 

~ogether forming submatrix Bn{ such that this collection of circuits 

contains each edge of the graph exactly twice. 

Testing the rows of the circuit matrix of the graph, taking m-n+2 rows 



-R~-

at a time involves a too big amount of labor. Let us therefore use two 

basic topological properties: 

1 • 

2. 

each row of B (circuit set) corresponds m to the set of edges that 

comprise the boundary of a region produced when the planar graph is 

mapped on the sphere; 

(based on intuition). If all the circuit sets of a planar graph are 

considered, the circuit sets that bound the regions will predominately 

have fewer edges than those circuit sets whose edges do not together 

bound a single region. Consequently one can test the rows of the 

circuit matrix of a planar graph, giving preference to circuit sets 

having a small number of edges, and thereby realize more quickly the 

submatrix B • 
m 

Let us introduce the following definitions 

Def. 1: Edge Ordered Circuit Matrix Be: A circuit matrix of a graph is 

edge ordered when a given row has at least as many l's as the 

preceding row. 

Def, 2: Edge Set Vector E : An edge set vector E of an edge ordered circuit 

matrix B of N rows is a column matrix having N elements with its e 
k th element corresponding to the k th row of B , and having 

e 
numerical value equal to the number of 1 's in that row of B 

e 
(Each k th entry of E is the number of 

set of B ). 
e 

edges in the k th circuit 

Def. 3: Circuit Combination Vector Ck: Consider a g;raph of m edges and 

n vertices, which has an edge ordered circuit matrix B of N rows. 
e 

A circuit combination vector of B is a row vector of N elements 
e 

of which m-n+2 elements have value 1 while the remaining elements 

have value 0. 

Def, 4: Primitive Circuit Combination Vector C : A primitive circuit 
---- p 

combination vector is a circuit combination vector in which there is 

no more than one 0 between the first and last 1 entry in the vector. 

Each row of B represents a circuit set having as many edges as, or fewer 
e 

edges than, the circuit set represented by any subsequent row. We are 

interested in evaluating rows of B , m-n+2 at a time. Consequently a set 
e 

of rows under consideration can be represented by the circuit combination 

vector ck. 
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All possible combinations of rows of a circuit matrix taken m-n+2 at a time 

can be represented by a systematic listing of M circuit combination 

v.ectors (f.e. reading columnwise from top to bottom). 

Note that: Ck E = total number of edges (including repeated edges) in the 

circuit sets of Be represented by Ck. 

For a planar graph we know that a submatrix B exists having exactly two m 
1 'sper column (thus m columns gives a total of 2m edges) (McLane). 

Lennna 1: 

Given a nonseperable connected graph (G, U) having m edges and edge set 

vector E. Then (G, U) is planar only if there exists a circuit combination 

vector c. such that: 
J 

C. E = 2m 
J 

If we identify any primitive circuit combination vector in the systematic 

listing of all circuit combination vectors, we observe that each given 

element in all the vectors following the primitive vector is either in the 

same position or moved to the right of the position it occupied in the primitive 

primitive vector. 

Lenuna 2: 

Given edge set vector E a primitive circuit. combination vector C and any p 
subsequent circuit combination vector C (i.e. q>p). If C E =mand 

q p 
Cq E = n, then n>m (mand n being pos. integers). 

Lennna 3: 

Given a nonseperable, connected graph (G, U), having m edges and edge set 

vector E. Consider systematically listed circuit combination vectors 

cl,c2, ••• , cp-1' cp, where cp is a primitive circuit combination vector. 

(G, U) is nonplanar when a) c 1,c2 , ••• Cp-l does not satisfy the above

mentioned theorem of McLane, and b) C E>2m. p 

Proof: for a) The theorem includes necessary conditions for a planar graph 

for b) We note from Lennna 2, all C + listed subsequent to C will 
P r P 

have a product greater than 2m. Hence Lemma 1 is not satisfied. Since 

neither a) nor b) satisfy necessary conditions for a planar graph, the 

graph must be nonplanar. 

Using above-mentioned Lennnas, the planarity-test-algorithm must have the 

following form: 
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circuit matrix B 

of the graph (G, U) 

Form the edge ordered 

circuit matrix B 
e 

Form the edge set vector 

E from B 
e 

Generate circuit combination 

vector ck 

graph (G, U) 

not planar 

k:= k+l 

Form a submatrix B 
m 

(m - n+2 rows corresponding 

to the 1-entries of ck 

column of B m 
1 's 

graph (G, U) 

is planar 
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3.The whirl method 

In the mathematical formulation of the problem we introduced a method of 

taking care of the following constraints: 

1. certain terminals must be at the periphery of the graph; 

2. these terminals have to appear in a previously specified order. 

We will now translate the problem including these requirements into a 

graph like problem, ending up with a structure which is called a "whirl" 

i.e. a set of vertices, a set of arcs, and a set of edges. 

1. Construct the potential graph in the usual way (thus without the extensions 

to examine the constraints). 

2. Determine the simple graph of the obtained graph. This will be the graph 

to test on planarity, since we may conclude from the result whether the 

potential graph is planar. 

3. Take now the - let us say t - terminals that should be at the periphery 

in a specified sequence, and number them in such a way that terminal i 

should be a neighbour of i-1 and i+l (mod t). 

4. If terminal i is connected with terminal i+l by an edge, then replace 

this edge by an are from terminal i to terminal i+l, else add an are from 

terminal i to terminal i+l (mod t). 

We assume that the constructed "whirl" is biconnected (this is not a restriction, 

if we are able to treat the components not containing arcs in the same way. 

We will see that this is true). 

The planarity test is an iterative one, i.e. the test is a special partitioning 

of the whirl in "sub-whirls" which must be partitioned in the same way, until 

only digraphs with vertices of indegree 1 are.left. If the partitioning of 

one of the "whirls" appears to be impossible the original whirl is not planar. 

The partitioning should decline according to the following eight rules: 

1. Search for a path P[x,y] where x and y are the only "periphery" terminals., 

x and y divide the set of arcs into two chains c
1 

and c
2

• The vertices 

are numbered from x to y by "path-indices". 

2. Now we have to consider the sub whirls and subgraphs that are obtained by 

applying the following operations: 
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Remove those edges that have only path vertices as terminal vertices. 

They area first set of subgraphs (each consisting of one edge). 

- Next remove all edges of P[x,y]. This may give several components. For 

each component we examine whether a subset of the vertices of P[x,y] 

is an articulation set for this component. If so then seperate this 

component on these vertices, and consider the connected subgraphs as 

a second set. 

3. The whirl is not planar, if now c1 and c2 are still in one component. 

4. We'll call the whirl containing c
1 

s
1 

and the one containing c
2 

s
2

• The 

other are numbered s3' s4,•••,sp. 

5. Assign to each subgraph S. an array L. of the indices of the path-vertices 
l. l. 

contained in S.~l. =min {L.} m. = max {L.} 
l. l. l. l. l. 

6. Construct an auxiliary graph (H, U'): 

H={S1,s2,•••,s }~ [S.,S.]EU 1.+-+3:( ) L L [(l.<B<m.)A(l.<a<m.)J 
p 1 i J a,,B E ix j 1 l. J J 

7. Test whether (H, U') is bipartite, and if so divide H into two sets H1 
and H2 such that 

[ a, ~]EU'-+-+( (aEH1AbEH2)v (aEH2AbEHl)) 

else the whirl is not planar. 

8. Split the whirl into two whirls by 

1. replacing all edges of P[x,y] by two parallel arcs with opposite 

orientations. 

2 •. Seperate the whirl now on the vertices of P[x,y] 

(this is an articulation set) in such a way that each whirl contains a 

cycle and one whirl contains all SiEH1 and the other all SiEH2. 

We end this description by adding two remarks: 

- the big advantage of this method is that it gives as a result a face

oriented representation of the graph, hut is is a relatively slow test, 

since it always consists of a number of partitions that is equal to the 

nurnber of edges minus the nurnber of vertices; 

- if one wants to test a graph instead of a whirl, this is possible by 

starting with replacing an arbitrary edge by two parallel arcs with 

opposite orientations. 



-88-

REFERENCES 

[2] Fisher,G.J.,Wing,O.,"Computer Recognition and Ex.traction of 

Planar Graphs from the Incidence Matrix", IEEE Transactions 

on Circuit Theory, CT-13, nr.2, pp.154-163, June, 1966. 

[3] Dambit,J.J.,"Einbettung von Graphen in die Ebene", 

Wissensch. Zeitschrift der T.H. Ilmenau, nr.3, 1971,pp.63-70 

[4] Dunn, and Chan, "An Algorithm fot testing the Planarity of 

a Graph", IEEE Transactions on Circuit Theory, CT-15,nr.2, 

pp.166-168, JUNE, 1968. 

[5] Chung, S.H., Roe, P. H., "Algorithms for Testing the Planarity 

of a Graph",13th Midwest Symposium on Circuit Theory,pp. 

VII.4.1.-12., 1970 

[6] Yoshida,K.,Ohta,T.,"Topological lay-out of a monolithic IC", 

Electronics and Conununications in Japan, Vol 52-C 12, 1969. 



-89-

Vll.THE PLANARISATION OF NONPLANAR NETWORKS 

1. TERMINALVALUES 

A convenient way of describing an n-terminal-network is by the n x n

resistance- or n x n-conductance-matrix. For some reason the latter is 

chosen, and it will be called the S-matrix. 

il(t) S 11 512······ 51n v 1 (t) 

i2.(t) 821 522 ·· ·· ···52n v2 (t) 

= or I = s v 

i (t) s nl 8n2··· .. ·· 5nn vn(t) n 

( 1) 

In these equations the current entering the network via terminal p is 

denoted by i (t), while v (t) is the voltage between terminal q and some 
p q 

freely chosen reference. 

Two n-terminal-networks are called equivalent if and only if their S-matrices 

are identical. 

The S-matrix always enJoys two properties which are direct consequences of 

the Kirchhoff-laws: 

- The Kirchhoff-current-law says that, irrespective of the terminal-voltages, 

the sum of all entering currents is o. This means for a voltage-vector 

(o,o, •••• ,v., •••• o), that we have: 
J 

n n 

L: i. (t) = l. 0 + L: s .. = 0 
l.J 

(2) 

i=I i=l 

- Since the choice of the reference-voltage has no influence on the currents, 

we can write for arbitrary a 

i. (t) l. 

n 

L: {s ... v. (t)} 
• 1 l.J J J= 

n 

= L {s .. (v.(t) + a)} = 
j = 1 l.J J 

n 

L: 
j=I 

n 

{ s . . • v. ( t)} + a ~ s .. 
1.J J l.J j=t 
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and ccnclude 

n 

L: 
j=I 

s .. = 0 
l.J 

(3) 

We now direct our attention to special classes of n-terminal-networks. The 

star connected-R-networks represent one of these classes. 

A star connected-R-network, for short a "star", is an n-terminal-network, 

consisting of n conductances and one node which is not available as a terminal 

and with which every terminal is connected by means of one conductance. The 

conductance between terminal i and the "inner node" is denoted by G .• 
l. 

Let the auxiliary entity G be defined by 

G= ~ 
if:î 

G. 
l. 

The entries of the S-matrix of such a network are: 

G.G. 
s .. = ~ J for ifj 

l.J 

s .. 
l.J 

G: 
i for i=j 

= Gi - G 

(4) 

(5) 

Note that, if the networkstructure is a star, the correspondence between 

the network and its S-matrix is one-one [5] • 

At this moment we fulfil the first part of our promise and define the 

terminalvalue ~· for stars: 
l. 

G. 
l. q,. = -

1 '12 

Using (6) and (2) or (3) we can rewrite (5) as: 

(6) 
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s .. - <jJ .<jl. for if.j 
1.J 1. J 

(7) 
n 

s .. = </lil: <jip for i=j 
1.J 

p=l 

p;&i 

So far our discussion of star-networks. We now proceed with the polygon

connected-R-networks, here called "polygons". This is an n-terminal-network 

without "inner nodes" in which each terminal is connected with every other 

terminal by one conductance. The number of conductances is equal to ~n(n-1). 

We write G .. for the conductance between the terminal i and j. 
1.' J 

Again we express the matrix-entries in the conductancevalues: 

s .. = - G •• 
1.J 1.,] 

n 

sij = 2: 
p=l 

G. 
1. 'p 

p;&i 

for i;&j 

for i=j 

It is also true, that in case we are dealing with polygon-nctworks the 

the correspondence between the network and its S-matrix is one-one. 

At this point let us agree upon the following convention: 

(8) 

- We consider the indices as residue-classes (rood n); this means that we make 

no difference between p and q, when p - q = k.n for some integer k. We 

write p i5 q. 

Consider now polygons that satisfy the following conditions: 

- The value of 

G. G. 
i,x i,y 

G 
(9) 

x,y 
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is. independent of the choice of x and y. Of course cases with x :: i, 

y : i and x = y are excluded, since G .. does not have a meaning. 
]_' ]_ 

We will refer to this kind of polygons as T-polygons. 

The set of conditions (9) is highly redundant. In the appendix we will 

give an equivalent system of mutually independent equations. 

The special property (9) of a T-polygon makes it possible to associate with 

every terminal i a value.: the terminal-value l/!. 
]_ 

(10) 

The importance of this definition becomes clear when we look at the identity: 

lj;.i)J. 
]_ J 

j-;:-' j~ 
= lui,j lui,p 

_r;:-' 
l"'j ,p 

J-::--J~ 
l"'i ,j l"'j ,p 

-~ 
l'"'i,p 

With this equation and (2) or (3), we have for T-polygons: 

s .. = - Ij;. ib. for i:fj 
l.J i·J 

n 

s .. = wi:E l/Jp for i=j 
l.J 

p=l 

p.,&i 

(11) 

Comparing (7) and (11) with each ether we carne to the conclusion that every 

star is transformable into a T-polygon, and conversely that every T-polygon 

is transformable into a star. In bath cases we only have to take the 

terminalvalues of corresponding terminals identical. 

Now the question arises: "Are there polygon-networks, having an equivalent 

star without being a T-polygon?" The answer will be clear from the following 

reasoning: 

Suppose there is such a polygon, then find its equivalent star. Si.nee every 

star can be transformed into an equivalent T-polygon, it is possible to give a 

T-polygon equivalent to the original polygon which was not a T-polygon. 
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This contradicts with the one-one-correspondence between polygons and their 

S-matrices. 

The main theorem is proved naw: 

EVERY STAR IS TRANSFORMABLE INTO A POLYGON AND A POLYGON IS 

TRANSFORMABLE INTO A STAR IF AND ONLY IF THE POLYGON IS A 

T-POLYGON. 

The transformationformulas are: 

i=l 

G 
G. 

l. 
<P· = -

l. {è 

j~J~ n 

G •• = q,.q,. 
l.,J l. J 

n 
_ lui,x "ui,y 

iµi - ~Gx,y' I: ij!. ='l' 
1. 

G. = \ji.'l' 
l. l. 

= l: G •• + \IJ~ 
1.,J ']. i=l j=l 

n j,i 

2: Ij!. =-fG' • 1 l. vu 
i.= 

The iast formula will be clear after noting that 

Sometimes it will be profitable to permit negative conductances. 

In case G .. < o we write 
1. 'J 

(12) 

(13) 

At the end of a procedure like (13) the exponent of -1 will be even. If 

it is quadruple, we replace it by a plus-signand otherwise by a minus-sign. 

However, it is possible that the situation with G = o occurs. Since the 

S-matrix is not properly defined then, the presented approach is not 

adequate. For T-polygons the corresponding case is '11= o. This condition 

is equivalent to: 

n 

2: 
i=2 

G. 
2-t.E. , -1 
G 

1 'p 

Every star with G 1 o is transformable into a polygon and a polygon is 

transformable into a star if and only if the polygon is a T-polygon with 

n 

L: 
i=2 

G. 
2-t.E. , -1 
G 

1 'p 
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2 . PLANAR EQUIVALENTS OF POLYGONS 

It is sometimes desirable to have a planar equivalent for a certain non-planar 

network. In this section we will search for such equivalents in case the 

original network is an n-polygon. Using the concept of terminal-values one 

can find them, when n ~ 7. The cases n = 4 and n = 5 we re al ready known [l , 2]. 

A solution for n = 6 was communicated tö us by S. Tirtoprodjo. 

The case n = 7 is rather complicated for a one-colour-figure. This is the reason 

for not presenting it here. After seeing how the procedure works for n = 4,5 

and 6, n ~ 7 will give no extra difficulties. The structure of the resulting 

planar equivalent is shown in fig. 4. 

The arbitrary 4-polygon of fig. la will not be in general a T-polygon. 

Nevertheless we will give it terminal-values derived from only four of 

the six conductances e.g. G1, 3 , G1, 4 , G3 , 4 and G2 , 4 : 

fufu 
ljJ - ' ' 

l - {Ç: 

W3 
Gl ,3 

\); 
l 

lj;4 = 
Gl ,4 

l/Jl 

G2 4 
l/12 = ~ 

tV4 

Ijl l/Jl + l/12 + l/13 + l/14 

We replace the two ether conductances G
1 2 and G2 3 by parallel-circuits 
' ' (fig. lb) in such a way that we are left with a T-polygon and two parallel-

conductances. After transforming the T-polygon into a star,we have the planar 

network of fig. Ic, which is equivalent to the original 4-polygon. 
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In= 5 

Naw we derive the terminal-values from five of the ten conductances (fig. 2a). 

We choose the inner conductances G1, 3 , G1, 4 , c2 , 4 , c
2

,
5 

and G
3

, 5 , for then the 

parallel circuits will form the periphery of the network: 

ij; l 
_fu fu rc;: 
- ~G3,5

1 

~G2,~ 

1);2 = 
G2,4 

ij; l 
Gl ,4 

1);3 
G3 5 

1);2 = ~ 
G2,5 

1);5 
G3 5 

ij; l 
= __ ,_ 

Gl ,3 

1);4 
G2,4 

1);5 
G2,5 

Ijl = ij; l + 1);2 + 1);3 + ij; 4 + 1);5 

Again we replace the other conductances in the same way as before 

(G .. by (G .. - ij;.ij;.)// ij;.ij;.) (fig. 2b) and we obtain a T-polygon with five 
i,J i,J i J i J 

additional conductances. After transforming the T-polygon, the planar 

network of fig. 2c is left. 

This case is more complicated because we need six conductances to determine 

six terminal-values. This leaves nine conductances to be replaced by 

parallel circuits. It is impossible to keep the extra conductances at the 

periphery of the network. Therefore we choose our six in such a way that 

we can follow the same procedure in the resulting network: 

Fig. 3a gives the original configuration. We derive the terminalvalues from: 

G1 , 3 , G1 , 5 , G3, 5 , G1 , 4 , G3, 6 and c2 , 5 in the usual way. This gives tht~ 

T-polygon drawn with full lines (ij;.ij;.) in fig 3b. 
i J 



To obtain equivalence to fig. 3a, we have to add the conductances 

indicated by the dotted lines (G .. - ~.~.). In fig. 3c we have transformed 
i,J 1 J 

the T-polygon into a star and now we can treat the 4-polygons 1 - 2 - S - 6, 

3 - 4 - S - 2 and 5 - 6 - S - 4 as we did above (n = 4). Fig. 3d gives the 

configuration of the resulting planar network. 
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3 . CONCLUDING REMARKS 

The introduction of terminal-values bas made it possible to prove the main 

theorem in an easier way as with the existing methods [3, 4, 5, 6] and 

gives practical formulas to perform the star-polygon-transformation. But 

it has ether advantages. One of these is presented in section 2 where 

planar equivalents for polygons are given. This way of searching planar 

equivalents is not restricted to polygons. Both elementary Kuratowsky

graphs [7] , for example, can be transformed in planar networks. To 

conclude from the fameus theorem in this paper [7] that every.RLC-network 

has a planar equivalent appears to be wrong after careful examination, 

but the restrictions are not very streng. 

In applications, for example in energy-distributions, it often occurs that 

the conductance values in a polygon are not all different from each other. 

Let us take an n-gon with only two different conductance values G1 and G2 • 

With the concept of terminal values in mind, we know that this polygon is 

transformable into a star if and only if (n-1) conductances with value G1 
come together in one node and all the ether conductances have the value G2 • 

This structure is easy to recognise in a polygon-network. 

It will be easy to find ether examples of the application of terminal values, but 

we hope that the above is sufficient to convince the reader of the power 

of this concept. 
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APPENDIX 

In fact we did prove in section I that a polygon is transformable into a 

star if and only if 

G. G. 
1,x 1,y = 

G x,y 

G. G. 1,v 1,u 
G 

(A) 
v,u 

for all 1, x, y, u and v with i~x, i~v, iiy, i~u, x~y and viu (mod n). 

The set of conditions (A) is equivalent to 

G. k 
.-2:.?._ ·
G j, k 

G. 1 _i_,_ 
G. 1 

J ' 

for all i, j, k and 1 with iik, jik, i~l and j~l (mod n). 

Proof: 

From (A) follows (B), for 

G. k G .. i, i,J = 
G. 1 G. . Gi k G. 1 
i, 1,J + __ ,_ = --!.L 

Gj ,k Gj,l Gj,k Gj,l 

(A) is also consequence of (B): 

G. G. G. 
~ = _2:.LJ:. .+ ~ 
G G G u,x u,y u,x 

G. G. 
l. 'v +-- ~ 

G G u,v x,u 

G. 
-2iX.. 
G x,y 

G. G. 

G. 
~G 
G i,v 
u,v 

G. 
l. 'x l. ,y l. ,y 

G -G-
x,y u,y 

G. 
= -2iX.. 

G u,y 

G. 
l. ,y 

-G-
x,y 

G. 

G. 
-2iX.. 
G x,y 

G. 
~ 
G u,v 

G. G. 1,u l. 'v 
G u,v 

G. G. 

(B) 

G. 
l. 'v 

G. 

+ 

1,v 
= -2:..!1. l. ,x l. ,y 

G G G u,v u,y x,y 

G. G. 
l. 'u = -2:..!1. -G- G x,u x,y 

G. G. 
l. 'v l. 

= G u,v 
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. Hence, the set (B) is also sufficient for the transformability, but the 

conditions in (B) are not independent. In the following two steps we will 

come to a set with a minimal number of conditions. Since every Y - ~ -

transformation is always possible in bath directions, we take n > 3. 

The set (B) is equivalent to 

G. G. + 1 l.' J l. 'J (C) 
G. Gi + l. + 1 'j 1 'j + 1 

for all l. and J with j~i-1, jJi and jii+l. (mod n) 

Proof: The derivation of (C) from (B) is simple, but we have also to prove 

that (C) implies (B): 

G .. + 2 G. 3 G .• + 4 ( C) -+ _i ... ,_i _____ = _i...:;,_i_+ ____ = _i .... ,_i ___ _ 
G. i,i + n - 2 

= .••••••• = ------------
Gi + I,i + 2 Gi + 1,i + 3 Gi + 1,1 + 4 Gi + I,i + n - 2 

G. 
-+ _i .... , __ P __ _ 

G. 
l. + 1, p 

G. G. Gi. + l = _i __ ,_r ___ or ~ = , r 

Gi + 1, r Gi,p Gi + 1, p 
for p~i, rii 

p$i+I, and rii+I (mod n) 

( 1 1 ) 

Be r > p (this is no restriction!), then 

G 
r,r + 

G p,r + 
= 

G r,r + 2 
G p,r + 2 

G 
r,r + 3 = 

G 
p,r + 3 

•••••••• = 
G r,p -
G p,p -

(2') 

From (1 ') we also get: 

G 1 , r 
G 

1 'p + 1 p - p -= G G + 1 p,r p,p 

G G l,p - 1 G 1 G p + 1, r p,r p + p,p - = 
G G p,r p,p - 1 = G G G G 1 1 , r p + 1 , r p + 1 'p - 1 p,p + p -

Dividing the last two members of this equation by Gp,p + 1 Gp,p _ 1 gives: 
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G G 1,r G G 1, r G G p,p - p + 
= p,E + p -

+ 
r,p + 

= 
r,p -

(3 ') G G G G G G p,p - p,p + 1 p,p + p,p - p,p + p,p -

We are now able to continue the sequence (2 1): 

G + G 2 G G + G 
2 r;r r,r + r,p - r,p r,E + = = ........ = = = = G G G G G p,r + p,r + 2 p,p - p,p + p,p + 2 

G r,r -= ........ 
G p,r -

This completes the proof because this sequence contains all the equations of (B). 

We can write the set (C) also in the following way: 

c n, 1 

cl 2 
' 

c?,2 

c n,2 

........ 

........ 
c 

3 1, n -
c 

3 2,n -

c n,n - 3 

where C .. standsfor the equation 
1. 'J 

G. . . 
1.,1. + J + l 

G. . . 2 = _i __ ,_i_+~J~+ ___ _ 

Gi + I,i + j + 1 Gi + I,i + j + 2 

We allege now that every equation occurs twice in the set (C) 

Proof: 
c + _c_n_--=j_+_.q._.,_n_-_.J._· +_q.._+ ..... J .... · +_1 _ 

n - J + q ,j G . · · l 

= Gn-j+q,n-j+q+j+2 
G • • • 2 

+ 

n-J+q+J,n-J+q+J+ n-J+q+I,n-J+q+J+ 

G . n-J+q,n+q+I 
G • 1 n-J+q+I,n+q+ 

G . 
n+q+I ,n-J+q = 

G 2 . n+q+ ,n-J+q 

G . q+I ,n+q-J = 
G 2 . q+ ,n+q-J 

= 
G • 2 _n_-... J_+_.q ... ,_n_+_q.._+ __ + 

Gn-j+q+l,n+q+2 

G 1 . n+q+ ,n-J+q+l + 

G 2 . n+q+ ,n-J+q+l 

G 1 • q+ ,n-J+q+l + 

G 2 . q+ ,n-J+q+l 
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G 
q+l,q+l+n-j-2+1 = 

Gq+2,q+l+n-j-2+1 

This last equation is precisely C 
q+l ,n-j-2 

Gq+l,q+l+n-j-2+2 

Gq+2,q+l+n-j-2+2 

Thus, it is enough to check the equations contained in the following tables: 

in case n is odd: 

c· 
n, 1 

in case n l.S even: cl , 1 

c2, 1 

c· 
n, 1 

c n,2 

c1,2 

c2 2 
' 

c n,2 

........ 

........ 

........ 

cl 'n-3 
-2-

c2'n-3 
2 

c n'n-3 
T 

c 1 'n-4 
2 

c 2'n-4 
2 

c n n-4 
2'_2_ 

c n'n-4 
-2-

(D) 

c l'n-2 
-2-

c 2'n-2 
-2-

c 
n n-2 (D) 

2'2 

The conditions in these tables are independent, for, if one reads the 

equations column after column, and each column downward, then we meet in 

every equation a conductance which did not appear before, namely G. ·+· 2 . 
l.,l. J+ 

The total number of equations in (D) is ~n(n-3), and this number does not 

surprise us: 

- a polygon is determined by its ~n(n-1) conductances: !n(n-I) degrees of 

freedom 

- a star is determined by its n conductances: n degrees of freedom 

- a T-polygon is equivalent to a star, and cannot have more then n degrees 

of freedom. 
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This means that the minimal set of conditions must c 

!n(n-3) independent equations. 

The set (D) is also easily found by inspection: 

We write the equations 

G G = G G p,q p-1,q+l p-1,q p,q+l ' 

,in ~n(n-1)-n = 

choosing for q first p+l, while p runs from 1 to n. Then we take for q p+2 and 

again p runs from 1 to n. We continue in. t.his way until we have 

~n(n-3) equations (fig. 5) [ 2 J . 
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CAPTIONS OF FIGURES 

Fig. 

Fig. la 

Fig. lb 

Fig. Ic 

Fig. 2 

Fig. 2a 

Fig. 2b 

Fig. lc 

Fig. 3 

Fig. 3a 

Fig. 3b 

Fig. 3c 

Fig. 3d 

Fig. 4 

Fig. 5 

A planar transformation of a 4-gon 

A general 4-gon 

Splitting of the 4-gon in a T-4-gon and residual conductances 

The planar equivalent·of a 4-gon 

A planar transformation of a 5-gon 

A general 5-gon 

Splitting of the 5-gon in a T-5-gon and residual conductances 

The planar equivalent of a 5-gon 

A planar transformation of a 6-gon 

A general 6-gon 

Splitting of the 6-gon in a T-6-gon (full lines) and residual 

conductances (dotted lines) 

The network af ter transformation of the T-6-gon 

The planar equivalent of a 6-gon 

The structure of a planar equivalent of a general T-7-gon 

A sub-network of a T-polygon. 
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c 

FIG. 1 
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a 

b 

c 

FIG. 2 
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3 

FIG. 4 
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