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Abstract. Classification of emphysema patterns is believed to be useful
for improved diagnosis and prognosis of chronic obstructive pulmonary
disease. Emphysema patterns can be assessed visually on lung CT scans.
Visual assessment is a complex and time-consuming task performed by
experts, making it unsuitable for obtaining large amounts of labeled data.
We investigate if visual assessment of emphysema can be framed as an
image similarity task that does not require expert. Substituting untrained
annotators for experts makes it possible to label data sets much faster
and at a lower cost. We use crowd annotators to gather similarity triplets
and use t-distributed stochastic triplet embedding to learn an embedding.
The quality of the embedding is evaluated by predicting expert assessed
emphysema patterns. We find that although performance varies due to
low quality triplets and randomness in the embedding, we still achieve a
median F1 score of 0.58 for prediction of four patterns.
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1 Introduction

Emphysema is a lung pathology common to chronic obstructive pulmonary dis-
ease that is a major cause of morbidity and mortality world wide[3]. Emphysema
is characterized by destruction of lung tissue. Lung CT scans can reveal emphy-
sema and visual scoring can be used to rate the extent and type of emphysema in
the lungs [13]. Visual scores can be used for training classifiers to automatically
assess presence and extent of emphysema [14, 9]. However, visual scoring of em-
physema by experts is both expensive and prone to high rater disagreement [13].
Instead of performing a full visual scoring, which requires expert knowledge of
the lungs, we investigate whether it is possible to reduce emphysema assessment
to a simpler task that can be performed by untrained raters, or crowds.



In fields such as computer vision, crowdsourcing - outsourcing simple tasks
to a crowd of online users, often without any specific training - has been used
successfully to gather labels for training and validation of classifiers [4]. Most of
this research focuses on collecting labels that directly characterize the content
of the image, for instance presence of an object or indicating regions of inter-
est. Motivated by the fact that some categorization tasks may be difficult for
non-experts, a few others instead focus on collecting assessments of similarities
between images. For example, Wah et al [12] collect similarities between images
of different bird species, which most people do not know by name, but can eas-
ily assess their visual similarity. The similarities can then be used to learn an
embedding that can aid classification.

Due to the success of crowdsourcing in computer vision, there have also been
several efforts to apply it to medical imaging [6, 2, 8, 1]. Similar to methods from
the computer vision field, these works focus on collecting labels for images, tar-
geting classification or segmentation tasks. For example, the crowd can be asked
to grade retinal images as normal or abnormal [8] or to segment airways in 2D
slices of chest CT images [2]. To the best of our knowledge, this work is the
first to gather crowdsourced similarities for medical images, as well as to apply
a crowdsourcing approach to classification of emphysema patterns.

2 Materials & Methods

2.1 Data

We used 40 chest CT scans from the a national lung cancer screening trial [10]
and visual assessment of emphysema from [13]. Visual assessment is performed by
considering the full 3D volume and splitting each lung in three regions. The top,
middle and lower regions are defined as above carina, between carina and inferior
pulmonary vein, and below inferior pulmonary vein. The volume is assigned a
label indicating the predominant emphysema pattern and each region is assigned
an estimate of the extent of emphysema in the region. The 40 scans were selected
amongst those where raters agreed on visual assessment of both predominant
pattern and emphysema extent in the upper right region. We excluded scans
with panlobular emphysema due to low prevalence. We grouped candidate scans
based on predominant pattern: normal (N), centrilobular (C), paraseptal (P),
mixed (M), and chose ten scans from each group. For the three emphysema
groups (C,P,M) we chose the scans with highest extent, and for the normal
group we chose ten scans at random. We used lung fields segmented from the
scans obtained from [5].

We extracted nine coronal slices from the top region of the right lung of each
scan. The slices were evenly spaced (10mm) and located such that the center
slice coincided with the center slice of the region. In this way we covered a depth
of 80mm and avoided slices at the very boundary of the lungs. An example of
an extracted set of slices is given in Figure 1. The slices are extracted from



a subject with a large extent of centrilobular emphysema. We see that while
texture patterns vary a lot throughout the region, patterns are similar between
neighboring slices. It is also clear that size and shape of the lung region varies
with slice location. To avoid having workers focus on the differences in lung size
and shape, we stratify slices by their location in the lung when sampling triplets.

Fig. 1. Nine slices extracted from a single volume. There is a large extent of centrilob-
ular emphysema. We can see that neighboring slices tend to have more similar texture
patterns than slices that are far away from each other. White border added for clarity.

2.2 Crowdsourced triplets

We used Amazon MTurk6 to collect similarity triplets. MTurk centers on the
concept of a human intelligence task (HIT), a self-contained task that can be
solved by a worker. We designed our HIT as a set of three image triplets where
the task is to provide similarity assessment of each of the three triplets. A screen-
shot showing part of a HIT is given in Figure 2. We asked workers to choose one
of two images on the right with the most similar disease patterns to the image on
the left. We instructed workers to look for emphysema patterns, defined as areas
of low intensity, and consider the distribution of patterns of these areas: scat-
tered throughout the lung or concentrated. We emphasized that workers should
ignore differences in size and shape of the lung. We asked three different workers
to perform each HIT. We required workers that had at least 1000 previously
approved HITs and a 95% approval rate. The reward for each task was $0.10.

We collected 9720 similarity triplets for 3240 unique image triplets. 150 different
workers worked on the HITs, with a median number of HITs per worker of 6.5
(19.5 similarity triplets). The median work time per HIT was 55 seconds. The
most productive worker submitted 131 HITs and the lowest work time for a HIT
was 4 seconds. More than 92% of the HITs were finished within 30 minutes of
the first HIT being available. The total cost was $388.80.

6 https://www.mturk.com



Fig. 2. Amazon MTurk user interface for collecting the similarity triplets

2.3 Similarity embedding

We used t-distributed stochastic triplet embedding (t-STE) [11] to learn an n-
dimensional Euclidean embedding from the similarity triplets. t-STE searches for
an embedding X that maximizes the probability of observing the given triplets.
Let T be the set of known triplets and ijl ∈ T a triplet indicating that d(i, j) <
d(i, l). The probability of ijl given xi, xj , xl ∈ X is

pijl =

(
1 +

||xi−xj ||2
α

)−α+1
2

(
1 +

||xi−xj ||2
α

)−α+1
2

+
(

1 + ||xi−xl||2
α

)−α+1
2

(1)

The optimization problem is

min
X
−
∑
ijl∈T

log pijl (2)

which is solved with gradient descent using the implementation from Michael
Wilber7.

Crowdsourced similiarity triplets are very likely to contain inconsistent and
redundant triplets. When multiple workers perform the same HIT this is defi-
nitely the case. McFee and Lanckriet [7] give empirical evidence that pruning
triplets for consistency and redundancy reduces computation time without af-
fecting performance. However, they compare against a baseline where directly
disagreeing triplets are removed. Removing triplets where workers disagree re-
moves information about the uncertainty of the triplets. We can implicitly model

7 https://github.com/gcr/cython tste



this uncertainty by keeping all triplets. It can be shown that for x = xi, xj , xl
the conflicting triplets satisfy

∂

∂x
pijl = − ∂

∂x
pilj , (3)

and the sum of the derivatives becomes

∂

∂x
log pijl +

∂

∂x
log pilj =

∂

∂x
pijl

(
1

pijl
− 1

pilj

)
(4)

which will drive the triplets to become equally probable, i.e ||xi−xj || = ||xi−xl||.
In the case where ijl occur cj times and ilj occur cl the gradient will depend on
both the ratio cj/cl and the distances ||xi − xj ||, ||xi − xl||. In this way workers
uncertainty about triplets will be accounted for in the optimization.

We used k-fold cross-validation with a multinomial log-linear model to estimate
the predictive performance of the obtained embeddings. We enforced that each
test fold contained exactly one sample from each class. For four classes with ten
scans each this resulted in 10-fold cross-validation. We used the predominant
pattern from the expert visual scoring of the regions as class labels. The model
was fitted as a neural network with one hidden layer using the multinom function
from the nnet package8.

3 Experiments & Results

3.1 Simulated similarity triplets

To estimate how many triplets are needed to reveal an underlying pattern we
performed a simulation experiment. We defined a distance function that en-
codes a similarity hierarchy of visually assessed patterns and emphysema extent.
Paraseptal emphysema often appear as a small number of large holes, whereas
centrilobular emphysema often appear as a large number of small holes. We
therefore expect most raters will consider normal and centrilobular patterns
more similar than normal and paraseptal patterns. We also expect both cen-
trilobular and paraseptal patterns to be considered more similar to the mixed
pattern than to each other. For images with the same pattern class we used
absolute distance on emphysema extent. This simple distance function does not
account for variability in patterns and it is unlikely that image based similar-
ity triplets will match the visual assessment perfectly. However, it does provide
some insight into the amount of triplets necessary. We used three sets of ran-
domly selected triplets with sizes of 120, 240, and 360. For each set of triplets we
generated 100 2D embeddings and estimated the prediction performance of the
embedding with the multinomial model described above. We used the F1 score
to measure performance

F1 = 2 · precision · recall

precision + recall
. (5)

8 https://cran.r-project.org/web/packages/nnet
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Fig. 3. Example embeddings from simulated triplets. Left: 120 triplets. Right: 240
triplets. While there is no overlap between emphysema and normal classes in both
cases, there is some overlap between emphysema classes for 120 triplets.

The median F1 score for 120 triplets was 0.8 and improved to 0.9 for 240 triplets
and to 1.0 for 360 triplets. There was some variation in performance for 120 and
240 triplets, whereas almost all 360 triplet embeddings gave perfect prediction.
Representative embeddings for 120 and 240 triplets are given in figure 3. We can
see that the embedding matches the distance function quite well, with normal
and paraseptal being furthest from each other and mixed in between centrilob-
ular and paraseptal. We also see some class overlap for 120 triplets and almost
no overlap for 240 triplets. We used these results to guide the crowdsourcing to
gather relatively many triplets for a small number of scans.

3.2 Crowdsourced similarity triplets

We estimated the quality of the crowdsourced triplets by measuring the agree-
ment with a small set of validation triplets. The validation triplets were labeled
by one of the authors and consist of 52 triplets that the authors view as easy
to reproduce. The overall agreement was 71% with a large variation between
workers. We expected most workers to work on one or more validation triplets.
However, due to the large number of workers only 41% of workers worked on
a validation triplet and only 11% on more than two validation triplets. While
agreement was lower than anticipated, and some workers had very poor agree-
ment, we decided to include all triplets.

We varied the embedding dimensionality d from 1 − 10. We set α = max(d −
1, 1) for all experiments and used a random initialization of t-STE. From the
similarity triplets we learned an embedding of slices. Due to the stratification of
triplets by slice location it is not meaningful to embed different slice locations



simultaneously. We therefore concatenated the slice feature vectors to obtain
a region embedding. We normalized each slice embedding to avoid that slice
locations with numerically large distances dominated the region embedding. As
an alternative to embedding each slice location separately we added triplets
between slice locations and embedded all slice locations simultaneously. The
extra triplets were derived by exploiting that neighboring slices in a region, in
general, are more similar than slices further away from each other. This ”neighbor
similarity” was encoded with the distance function

d(slicei, slicei+1) < d(slicei, slicei+3), i ∈ [1 : 6],

d(slicei, slicei−1) < d(slicei, slicei−3), i ∈ [4 : 9],

and the corresponding triplets were added to T . We refer to the first approach as
stratified and the second as combined. All embeddings were repeated 100 times
to account for variability arising from the random initialization of t-STE.
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Fig. 4. Distribution of mean F1 scores for classification of emphysema type. Left strat-
ified, right combined. The dashed red line indicate random performance (F1 = 0.25).

Figure 4 shows the mean F1 score over all classes for increasing embedding
dimension for stratified and combined embeddings. Best median performance
was achieved with D8 for stratified (F1 = 0.58) and with D9 for combined
(F1 = 0.55). In both plots we see a large variation in performance. Adding the
extra triplets for combined embedding seems to make performance more similar
across dimensions, but does not decrease variation within each dimension. The
direct source of the variation is the random initialization of t-STE. However,
as the simulation showed, having a large consistent set of triplets will drive the
variation in prediction performance to 0. The extra triplets for combined, that
as subset is consistent, did not reduce variation, so the main underlying cause
is likely having too many inconsistent triplets.



Figure 5 show performance by class. In all cases we see best performance on
centrilobular and normal. For D > 5 we see consistently higher performance on
centrilobular than on normal. Performance on centrilobular seems to be the main
cause for the higher mean scores at D8 and D9. Treating mixed and paraseptal
as one pattern makes the performance similar to performance on centrilobular
(results not shown). This indicates that the main difficulty is in distinguishing
paraseptal and mixed.
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Fig. 5. F1 scores for classification of emphysema type. Left for stratified, right for
combined. The dashed red line indicate random performance (F1 = 0.25). Symbols
indicate median values and bars indicate ±1 median absolute deviation.

4 Discussion & Conclusion

Although there was large variation in prediction performance, it was in all but
a few cases substantially better than random. The results from the simulation
experiment show that more triplets improve median prediction performance and
reduce variance. However, the simulation experiment uses triplets that perfectly
encodes a distance function on patterns. While more crowdsourced triplets might
improve performance and reduce variance, it is possible that higher quality set
of triplets is needed to see significant gains.

Pruning triplets could improve quality. Directly inconsistent triplets, i.e. ijl, ilj ∈
T , can arise from poorly performing workers or difficult decisions. If we assume
they represent difficult decisions, then they contain important information that
we would like to keep. Pruning triplets is shown by [7] to be NP-hard and can
only be solved approximately. Using the information from the direct inconsis-
tencies to guide the pruning could be an interesting approach to improve the
quality of the triplet set.



Direct inconsistencies due to poorly performing workers should not guide any-
thing, but be removed. One approach is to rank workers and discard triplets from
the least trustworthy workers. Ranking could be done by ensuring all workers
perform tasks with a reference. Alternatively, it could be based on how well each
worker agree with other workers. The first case requires expert labels and that
each worker perform a minimum number of reference tasks. The second case re-
quires that workers perform a large number of tasks and that tasks overlap with
many different workers. In the future we intend to use one or both approaches
to improve the quality of the triplet set.

An alternative to filtering triplets from poorly performing workers is to only
enlist high performing workers. This could be done by splitting the tasks into
many small sets and only allow the best performing workers to work on a new set.
In this way the workforce would be trained to solve the tasks to our specification.
Another option is recruiting workers that find the tasks worth doing beyond
the financial gain. One worker expressed interest in working more on this type
of tasks and asked“Am I qualified to be a pulmonologist now?”. Compared to
many other crowdsourcing tasks, medical image analysis seems like a good fit for
community research, where people outside the traditional research community
play an active part. It requires a larger degree of openness and communication
about the research process but could be a tool to recruit high quality workers.

In this work we aimed at keeping HITs as simple as possible, hence the choice
of collecting triplets. Instead of similarity triplets it is possible to ask workers to
label the images. We believe that asking untrained workers to assess emphysema
pattern and extent would be overly optimistic. However, focusing on a few simple
questions might work well, for example ”Are there dark holes in the lung?”, ”Are
holes present in more than a third of the lung?”, ”Are the holes predominantly at
the boundary of the lung?”. These types of questions correspond to a model we
have of emphysema and could be used to derive emphysema pattern and extent
labels. The downside is that we need to know exactly what we want answered
at the risk of missing important unknowns in the data.

Regardless of the high variance in performance, we conclude that untrained
crowd workers can perform emphysema assessment when it is framed as a ques-
tion of image similarity. No quality assurance, beyond requiring that workers
had experience with MTurk, was performed. It is likely that large improvements
can be gained by quality assurance of similarity triplets.
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