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Abstract In this paper, we apply the enhanced local pres-
sure (ELP) model to study crack interaction in hydraulic
fracturing. The method is based on the extended finite
element method (X-FEM) where the pressure and the dis-
placement fields are assumed to be discontinuous over the
fracture exploiting the partition of unity property of finite
element shape functions. The material is fully saturated
and Darcy’s law describes the fluid flow in the material.
The fracture process is described by a cohesive traction-
separation law, whereas the pressure in the fracture is
included by an additional degree of freedom. Interaction of
a hydraulic fracture with a natural fracture is considered by
assuming multiple discontinuities in the domain. The model
is able to capture several processes, such as fracture arrest
on the natural fracture, or hydraulic fractures that cross the
natural fracture. Fluid is able to flow from the hydraulic
fracture into the natural fracture. Two numerical criteria are
implemented to determine whether or not the fracture is
crossing or if fluid diversion occurs. Computational results
showing the performance of the model and the effectiveness
of the two criteria are presented. The influence of the angle
between a hydraulic fracture and a natural fracture on the
interaction behaviour is compared with experimental results
and theoretical data.

Keywords Extended finite element method · Enhanced
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interaction

� J. J. C. Remmers
j.j.c.remmers@tue.nl

1 Department of Mechanical Engineering, Eindhoven
University of Technology, PO BOX 513, 5600 MB,
Eindhoven, The Netherlands

1 Introduction

The technique of hydraulic fracturing can be used to stimu-
late low permeable gas and oil reservoirs. Generating a large
fracture network by injecting fluid under high pressure into
the hydraulic fractures enhances the permeability greatly
and thus increases production rates [1]. Additionally, this
technique can also be used for enhanced heat recovery pur-
poses [2]. In order to achieve an optimal fracture network in
realistic situations, it is necessary to correctly describe the
interaction between hydraulic fractures and the pre-existing
natural fracture network. Tectonic stress rotations tilt the
natural fracture network at the time of the fracture formation
which may result in tilt fractures that are not aligned with the
maximum horizontal stress. Natural fractures may therefore
intersect with hydraulic fractures, altering the propagation
path leading to complex fracture geometries [3].

Lee et al. [4] demonstrated experimentally the influence
of calcite filled natural fractures on the propagation path of
a mechanically induced fracture in shale rocks. Blanton et
al. [5] showed that an induced hydraulic fracture may either
cross a natural fracture, arrest onto the fracture, or fluid
diverts into the natural fracture. These different hydraulic
pathways interacting with a natural fracture are shown
Fig. 1. The experiments show that the inclination angle
between the natural fracture and the hydraulic fracture in
relation to the in situ stress differences is important in
determining which of the phenomena occurs. Zhou et al.
[6] performed similar experiments and demonstrated the
influence of the friction in the natural fracture.

In a theoretical study, Renshaw and Pollard [7] stud-
ied a propagating fracture across an orthogonal interface
and derived an analytical criterion, which was validated by
experiments. The criterion is based on linear elastic fracture
mechanics (LEFM) under the assumption that no slip occurs

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-017-9702-8&domain=pdf
mailto:j.j.c.remmers@tue.nl
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Fig. 1 Possible pathways due to
a hydraulic fracture (HF)
interacting with a natural
fracture (NF)

along the interface before the two fractures merge. The pos-
sibility of the fracture to divert into the natural fracture is
not considered in this study. The criterion has been validated
and extended by means of experiments for non-orthogonal
angles by Gu et al. [8] by solving the criterion numerically.

Another mechanism that causes crack tip branching
occurs when the fracture propagation speed exceeds the
Rayleigh wave speed of the material [9, 10]. Valko and
Economides [11] showed that hydraulic fractures propa-
gate more slowly than the Rayleigh wave speed criterion.
Therefore, branching of a single hydraulic fracture does not
appear and does not have to be considered.

The extended finite element method (X-FEM) is a proven
concept in numerical modelling of crack propagation and
has the advantage that there is no need to remesh the domain
[12], i.e. the topology of the original mesh does not need to
be modified as the crack evolves. By exploiting the partition
of unity property of finite element shape functions, a crack
is represented as a discontinuity in the displacement field
[13]. The discontinuity can simply be placed in arbitrary
locations in the finite element mesh by adding additional
degrees of freedom to existing nodes [14]. Daux et al. [15]
showed that multiple discontinuities can be included in a
similar manner by stacking up one additional set of degrees
of freedom per discontinuity.

Dahi-Taleghani and Olsen [16] developed an X-FEM
based model for the interaction between hydraulic and nat-
ural fractures. The influence of a diverted hydraulic fracture
was compared to the fracture wing that did not interact.
Khoei et al. [17] used a similar approach but included fric-
tional contact based on plasticity theory of friction using
a penalty method. Similar to [16], fracture crossing was
not considered yet in their work. In addition, these X-FEM
models did not consider the porosity of the bulk material.
Nevertheless, the method was applied successfully for frac-
turing in porous materials, see e.g. [18–20], also in combi-
nation with a single hydraulic fracture [21]. The X-FEM has
also been successfully applied to model fluid flow through

existing fracture networks in a porous media [22, 23].
Other methods that considered hydraulic fracturing in porous
media are, e.g. based on interface elements with a cohe-
sive zone [24], remeshing techniques [25] and phase field
approaches [26]. The phase field method incorporates com-
plex fracture patterns and 3D fractures directly into a model
based on the variational approach [27]. X-FEM requires
additional implementation aspects to include these into a
model but it does allow the use of more coarse meshes.

The enhanced local pressure (ELP) model, based on
the X-FEM approach, has been developed specifically for
hydraulic fracturing in very low permeable rocks [28]. The
pressure is assumed to be discontinuous over the fracture to
prevent the necessity to resolve the very steep pressure gra-
dient near the fracture surface. By including an additional
degree of freedom to account for the pressure in the fracture,
it is ensured that all the injected fluid goes into the fracture.
Fluid leakage is included by an analytical solution based on
Terzaghi’s one-dimensional consolidation equation.

In this study, we extend the ELP model to account for
multiple, interacting fractures. These fractures are included
by adding a set of additional degrees of freedom for each
fracture. Upon interaction of a hydraulic fracture with a
natural fracture, the hydraulic fracture can either cross the
natural fracture or fluid can divert into the natural frac-
ture. The former is based on an average stress criterion and
the latter on the opening displacement of the natural frac-
ture. Both can happen simultaneously and are based on the
numerical results so no additional theoretical criterion is
needed. Compared to previously mentioned methods, we
include fracture crossing and fluid diversion simultaneously.
The advantage of X-FEM, i.e. fracture growth irrespective
of the underlying finite element mesh, is exploited with the
ELP model. With the proposed model, it is possible to pre-
dict the interaction mechanics between a hydraulic fracture
and a natural fracture network in a poro-elastic material. We
demonstrate the performance of the model by investigating
four numerical examples.
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2 Model background

In the following section, we describe the background of
the numerical model. The section is subdivided into two
parts, the numerical formulation (paragraph 2.1–2.5) and the
numerical implementation (paragraph 2.6). The kinematic
relations for the displacement and the pressure are described
in a mathematical framework in paragraph 2.1. The balance
equations in the porous material, at the discontinuity, and
the weak form of the problem are given in the paragraphs
2.2–2.4, respectively. In paragraph 2.5 the weak form is dis-
cretized with standard finite element shape functions based
on the partition of unity property of the shape functions [13].
Numerical implementation aspects of the X-FEM hydraulic
fracturing model are discussed in Section 2.6.

2.1 Kinematic relations

We follow the kinematic relations as described in [28]. Con-
sider the body �, which contains m discontinuities, see
Fig. 2a. Each discontinuity �i separates the domain in a
two parts, �+

i and �−
i . We can write the total displace-

ment field at any time t , following a discrete modelling
approach [12, 14, 29], as a continuous displacement field
û(x, t) and m additional displacement fields ũi (x, t). The
total displacement field can be written as [15]

u(x, t) = û(x, t) +
m∑

i=1

H�di
(x)ũi (x, t), (1)

where x is the position of a material point and H�di
is the

Heaviside step function defined across discontinuity i as

H�di
=

{
1 if x ∈ �+

i

0 if x ∈ �−
i .

(2)

The pressure field is decomposed in a similar fashion in a
continuous field p̂(x, t) and m discontinuous pressure fields
p̃i(x, t)

p(x, t) = p̂(x, t) +
m∑

i=1

H�di
(x)p̃i(x, t). (3)

At the discontinuity, inside the crack, the pressure is equal
to variable pdi

(Fig. 2b).

pdi
= p x ∈ �di

. (4)

The displacement jump across discontinuity i is written as

[u]i =[u]+i −[u]−i =
m∑

j=1

[
H�dj

(x+
i )−H�dj

(x−
i )

]
ũj (xi , t),

(5)

where the notations + and − are used for the same location
but located compared to the positive and the negative side of
discontinuity, respectively, see Fig. 3. This can be rewritten as

[u]i = ũi (xi , t)+
m∑

j=1,j �=i

[
H�dj

(x+
i ) − H�dj

(x−
i )

]
ũj (xi , t).

(6)

The first term in this equation is the jump caused by discon-
tinuity i. The second term is the jump caused by the other
discontinuities (j ) in the domain.

2.2 Balance equations

The porous material is considered to be fully saturated
with fluid. Assuming that the contribution of gravity, inertia
and convection can be neglected, the momentum balance is
written as

∇ · σ = 0 x ∈ �. (7)

Fig. 2 a Schematic
representation of body �

crossed by two discontinuities
(dashed lines). The
discontinuities, represented by a
normal vector, divide the body
in a positive and a negative part.
b Schematic representation of a
discontinuity including the local
coordinate system
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Fig. 3 Representation of the opening of body � due to two disconti-
nuities. The colours indicate the positive and negative domains used in
the definition of the Heaviside function, Eq. 2. The points x+

i and x−
i

indicate the locations at the positive and negative side of discontinuity
i, respectively. Colour image online

Here σ is the total stress, which is decomposed in Terzaghi’s
effective stress σe and the hydrostatic pressure p according
to [30]:

σ = σe − αpI {x ∈ � | x /∈ �di
}. (8)

In this equation, α is the Biot coefficient and I is the unit
matrix. The Biot coefficient is defined as

α = 1 − K

Ks
, (9)

with K and Ks being the bulk moduli of the porous mate-
rial and the solid constituent, respectively. Neglecting mass
transfer between the two constituents results in the follow-
ing equation for the mass balance [18]

α∇ · vs + ∇ · q + 1

M
ṗ = 0 {x ∈ � | x /∈ �di

}, (10)

where vs is the deformation velocity of the solid skeleton, q
is the seepage flux, and M is the compressibility modulus
defined as

1

M
= φ

Kf
+ 1 − φ

Ks
. (11)

The porosity of the porous material is defined by φ and Kf

is the bulk modulus of the fluid.
The continuity equation for fluid flow within discontinu-

ity i is given by [31]

∇ · vdi
+ ∇ · qdi

+ 1

Kf

ṗdi
= 0 x ∈ �di

. (12)

Here vdi
is defined as a natural extension of the vs field in

the porous material and the seepage flux qdi
. We assume

that the fluid flow can be described as a flow between two
parallel plates. The hydraulic fracturing fluid is considered
to be a Newtonian fluid. Under these assumptions the fluid
flow in the discontinuity is defined as [32]

qdi
= −kdi

∇pdi
with kdi

= u2
ni

12μ
, (13)

where kdi
is the permeability in discontinuity i, defined by

the normal opening of the discontinuity and uni
and by the

dynamic viscosity μ [32]. We refer to [28] for more details
about the balance equation and the corresponding boundary
conditions.

2.3 Constitutive law at the fracture and the interface

The constitutive mechanical behaviour at a fracture is
described by a relationship between the traction at the inter-
face and the displacement jump ud across the fracture [31]:

td = td(ud, κ). (14)

where κ is a history parameter that is equal to the largest
displacement jump reached. It is necessary to perform a lin-
earisation on Eq. 14 in order to use the tangential stiffness
matrix in an incremental iterative solution:

�td = T �ud. (15)

The relation between the traction td and the displacement
jump ud can be any traction-separation relation and is
referred to as the cohesive law. We assume that hydraulic
fractures open in mode-I due to the internal pressurization.
The shear tractions are therefore neglected and an exponen-
tial cohesive law is used that is only a function of the normal
opening un [33]

tn = τult exp

(
−unτult

Gc

)
. (16)

Here is τult the ultimate strength of the material and Gc the
fracture thoughness.

In contact, we assume a penalty constraint in both normal
and shear direction. The linear relation between the traction
and the opening displacement is defined by a stiffness parame-
ter Dn and Ds for the normal and shear direction, respectively.
In contact this gives the following penalty relations

tn = −Dnun if un < 0 (17)

ts = Dsus if un < 0 (18)

In the remainder of this study, natural fractures are described
by these contact relations. We do not consider additional
cohesion in the natural fractures due to filling materials.
However, the framework allows this to be added later.

2.4 Weak form

We derive the weak form for multiple discontinuities by mul-
tiplying the balance equations with admissible test functions
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in the same form as the displacement field and the pressure
field as

η = η̂ +
m∑

k=1

H�dk
η̃k ζ = ζ̂ +

m∑

k=1

H�dk
ζ̃k , (19)

where η and ζ are the admissible displacement and pressure
fields, respectively.

Multiplying the momentum balance in Eq. 7 with test func-
tion η, including boundary conditions and using Gauss’s
theorem, gives the weak form of the momentum balance:

∫

�

∇η̂ : σd� +
m∑

k=1

∫

�

H�dk
∇η̃k : σd�

=
∫

�t

(η̂ +
m∑

k=1

H�dk
η̃k) · tpd�t

−
m∑

j=1

∫

�dj

η̂ ·
[
σ+

j n+
j

]
d�dj

−
m∑

k=1

m∑

j=1

∫

�dj

η̃k ·
[
H�dk

(�+
dj

)σ+
j n+

j

]
d�dj

−
m∑

j=1

∫

�dj

η̂ ·
[
σ−

j n−
j

]
d�dj

−
m∑

k=1

m∑

j=1

∫

�dj

η̃k ·
[
H�dk

(�−
dj

)σ−
j n−

j

]
d�dj

. (20)

Here, we use the notations H�dk
(�+

dj
) and H�dk

(�−
dj

) for
the Heaviside function of variational field k integrated over
discontinuity j for the positive and negative side, respec-
tively. The traction at the interface is equal to tj = σ+

j n+
j =

−σ−
j n−

j where we used nd
j = n+

j = −n−
j . The external

applied traction on the body is given by tp (see Fig. 2a). Sep-
aration of the tractions into one part where the variational
displacement η̃k is acting on discontinuity d�dk

and into one
part for the remainder of discontinuities, i.e. j �= k gives

∫

�

∇η̂ : σd� +
m∑

k=1

∫

�

H�dk
∇η̃k : σd�

=
∫

�t

η̂ · tpd�t +
m∑

k=1

∫

�t

H�dk
η̃k · tpd�t

−
m∑

k=1

∫

�d k

η̃k · tkd�dk
−

m∑

k=1

η̃k

·
⎛

⎝
m∑

j=1,j �=k

∫

�d j

[
H�dk

(�+
dj

)−H�dk
(�−

dj
)
]
tjd�dj

⎞

⎠. (21)

Multiplying the mass balance in Eq. 10 with test function ζ

gives

−
∫

�

α(ζ̂ +
m∑

k=1

H�dk
ζ̃k)∇ · vsd�

+
∫

�

∇(ζ̂ +
m∑

k=1

H�dk
ζ̃k) ·qd�−

∫

�

1

M
(ζ̂ +

m∑

k=1

H�dk
ζ̃k)

∂p

∂t
d�

=
∫

�f

(ζ̂ +
m∑

k=1

H�dk
ζ̃k)ffd�f, (22)

where ff is the external applied fluid flux (see Fig. 2).
These equation must be satisfied for all the variations of
η and ζ . Separating the balance equations in a continuous
part (η̃k = 0 ∀ k = 1..m and ζ̃k = 0 ∀ k = 1..m):

∫

�

(∇η̂) : σd� =
∫

�t

η̂ · tpd�t, (23)

−
∫

�

αζ̂∇ · vsd� +
∫

�

∇ ζ̂ · qd� −
∫

�

1

M
ζ̂

∂p

∂t
d� =

∫

�f

ζ̂ ffd�f.

(24)

The same can be done for the m discontinuous equations,
with (η̂ = 0 and ζ̂ = 0), giving

∫

�

H�dk
∇η̃k : σd�

=
∫

�t

H�dk
η̃k · tpd�t −

∫

�d k

η̃k · tkd�dk

−η̃k ·
⎛

⎝
m∑

j=1,j �=k

∫

�d j

[
H�dk

(�+
dj

)− H�dk
(�−

dj
)
]
tj d�dj

⎞

⎠, (25)

−
∫

�

αH�dk
ζ̃∇ · vsd� +

∫

�

H�dk
∇ ζ̃ · qd� − ∫

�
1
M
H�dk

ζ̃
∂p
∂t

d�

=
∫

�f

H�dk
ζ̃ ffd�f, (26)

which must hold for k = 1...m. The last balance equation is
conservation of mass for the fluid flow in the discontinuity
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given in Eq. 12. In a weak form, multiplied by a test function
ψ , and integrated over the fracture this is written as

m∑

j=1

∫

�dj

ψq+
�d

· nd
j d�dj

−
m∑

j=1

∫

�dj

ψq−
�d

· nd
j d�

+
m∑

j=1

∫

�dj

1

12μ
([u]j · nd

j )
3 ∂ψ

∂s
· ∂pdj

∂s
d�dj

+
m∑

j=1

∫

�dj

ψ ˙[u]j · nd
j d�dj

+
m∑

j=1

∫

�dj

ψ[u]j · nd
j 〈

∂ ˙[u]j · sd
j

∂s
〉d�dj

+
m∑

j=1

∫

�dj

ψ
[u]j · nd

j

Kf
˙pdj

d�dj
=

m∑

j=1

ψQ
j

in|Sd . (27)

The first two terms represent the analytical calculated
fluid leakage. The third term is the tangential fluid flow
based on lubrication theory. Term four and five are repre-
senting the opening rate terms in normal and shear direction,
respectively, the sixth term is the compressibility of the fluid
within the fracture, and the last term is the fluid injection
within the fracture. The vector sd

j represents the tangential
vector at discontinuity surface j . In the remainder of this
study, we neglect the fifth term representing the volume
change due to elongation of the discontinuity surface in tan-
gential direction. We assume that this contribution is small
compared to the volume of the opening of the fracture in
mode I.

2.5 Discretization

The spatial discretization of the balance equations is based
on the partition of unity property of finite element shape
functions as described in the work of Babuška and Melenk
[13]. The displacement field, the pressure field, the pressure
in the fracture and the variational forms are discretized sim-
ilarly following the Bubnov-Galerkin approach for a single
element by:

η = Nη̂ +
m∑

k=1

H�dk
Nη̃

k
, u = N û +

m∑

k=1

H�dk
N ũk ,

ζ = Hζ̂ +
m∑

k=1

H�dk
Hζ̃

k
, p= H p̂ +

m∑

k=1

H�dk
H p̃

k
, (28)

ψ = V ψ , pd = V p
d
,

where N , H , and V are matrices containing the standard
shape functions for respectively, the nodal displacement, the
pressure, and the pressure in the fracture for all nodes that

support the element. Note that the shape functions for the
nodal displacement and the pressure are two-dimensional
functions while the pressure in the fracture is described in a
one-dimensional domain (Fig. 4). The terms û and p̂ contain
the degrees of freedom of the continuous displacement and
pressure fields, respectively. While ũ and p̃ contain the val-
ues of the enhanced nodes. The term p

d
contains the nodal

values of the pressure in the discontinuity. We use the under-
line to distinguish between the field variable and the discrete
values. The discretized strain in the bulk can be derived by
differentiation

ε = Bû +
m∑

k=1

H�dk
Bũ, (29)

where B contains the spatial derivative of the standard shape
functions. Filling in the discretized form in the balance
Eqs. 23–26 give the continuous equations as

∫

�

BT σd� =
∫

�t

NT tpd�, (30)

−
∫

�

αH T mT ∇u̇d� +
∫

�

∇H T qd�−
∫

�

1

M
H T ṗd�=

∫

�f

H T ffd�f,

(31)

and k = 1...m discontinuous equations
∫

�

H�dk
BT σd�

=
∫

�t

H�dk
NT tpd�t −

∫

�dk

NT tkd�dk
(32)

−NT

⎛

⎝
m∑

j=1,j �=k

∫

�dj

[
H�dk

(�+
dj

)− H�dk
(�−

dj
)
]
tj d�dj

⎞

⎠

−
∫

�

αH�dk
H T mT ∇u̇d� +

∫

�

H�dk
∇H T · qd�

−
∫

�

1

M
H�dk

H T ∂p

∂t
d� =

∫

�f

H�dk
H T ffd�f, (33)

Fig. 4 Four nodal element with crossed by a discontinuity (dashed line)
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with the vector m in the two-dimensional situations being
defined as m = ( 1, 1, 0 )T . Finally the discretized form
of the mass balance in the discontinuity is given as

m∑

j=1

∫

�d j

V T
(
q+

�d
+q−

�d

)
· nd

j d�dj

+
m∑

j=1

∫

�d j

V T
[u]j · nd

j

Kf
V ṗdj

d�dj
+

m∑

j=1

∫

�d j

V T ˙[u]j · nd
j d�dj

+
m∑

j=1

∫

�d j

1

12μ
([u]j ·nd

j )
3∂V T

∂s
· ∂V

∂s
pdj

d�dj
=

m∑

j=1

ψQ
j

in|Sd .

(34)

These final equations can be linearized in a standard way
and solved using a Newton-Raphson iterative method. More
details about the constitutive equations, linearization and
time integration can be found in [28].

2.6 Numerical implementation

Each discontinuity is able to propagate. The position and
the direction of propagation are governed by two unique
level sets [34]. The direction of propagation is based on the
Camacho-Ortiz equivalent traction [35] defined as

teq(θ) =
√

< tn >2 + 1

β
t2
s with <tn>=

{
0 if tn ≤ 0
tn if tn > 0

.

(35)

Here, θ is the propagation direction and tn and ts are the nor-
mal and shear traction in the direction of θ . The parameter
β is a scaling factor which is typically set at 2.3 [35]. The
equivalent traction teq can be calculated for every angle θ for
a given stress state σ av. The angle for which the equivalent
traction exceeds the maximum allowable traction τult of the
material is the direction of propagation. Additional details
about the equivalent traction can be found in [36]. We use a
non-local approach to calculate an average stress defined as
[33]

σ av =
nint∑

i=1

wi

wtot
σ e,i with wtot =

nint∑

j=1

wj . (36)

Here, nint is the number of integration points in the domain,
σ e,i is the current effective stress state in integration point i

which has a Gaussian weighting function defined as

wi = (2π)
2
3

l3
a

e

−r2
i

2l2a , (37)

with ri being the distance between the crack tip and the
integration point ni , and la being a length scale parameter
defining how fast the weight factor decays as a function of
the distance between the integration points and the crack tip.

A discontinuity is assumed to propagate in a straight
line through an element and always ends on the element
boundary or at another discontinuity. The discontinuity can
propagate through multiple elements within one single time-
step. Upon the interaction of two discontinuities, there are
two requirements on the numerical implementation, i.e. (i)
two discontinuities must be connected once a tip is in the
vicinity of another discontinuity and (ii) the connecting tip
must be stopped from further propagating. We determine
the event of connecting the two discontinuities by counting
the number of elements between a tip and the nearest dis-
continuity. The number of elements is an input parameter of
the simulation in which zero means that two discontinuities
connect when the tip propagates into an element that already
contains a discontinuity. This is often an undesirable situa-
tion since a small distance between a tip and a discontinuity
may lead to an ill-conditioned system. In our simulations we
therefore chose to connect two discontinuities if there is one
element in between (Fig. 5).

An additional crossing checkpoint is added at the oppo-
site side of the interacting discontinuity. An average stress
(Eq. 36) is calculated in the checkpoint and is used to deter-
mine whether the discontinuity crosses the existing crack
(Fig. 5). Note that the stress is only averaged at the side
of the checkpoint. A new discontinuity nucleates, and thus
crosses, when the average stress violates the same crite-
rion as was used for the determination of crack propagation
(Eq. 35). The new discontinuity is given an initial length of
three elements to prevent instantaneous interaction with the
neighbouring discontinuity.

In the case of interacting fractures, the Heaviside enrich-
ment given in Eq. 2 is no longer valid when there are
two or more enrichments present in one element [15]. The
common way to solve this problem is by introducing a spe-
cial junction enrichment function present in the multiple

Fig. 5 Situation when two discontinuities are in the vicinity of each
other. The connecting tip is stopped from propagating after connect-
ing. The average stress in the crossing checkpoint determines if the
discontinuity crosses. Colour image online
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Fig. 6 A finite element mesh containing two discontinuities. Integra-
tion points lying in the cut off region have a Heaviside value of zero
for the green discontinuity. Nodes with a double enrichment, due to the
two discontinuities, are shown in green

enriched elements. This would lead to additional terms in
the kinematic relations in Eqs. 1, 3 and 6. To avoid this, we
implement a modified Heaviside enrichment by evaluating
whether an integration point belonging to multiple discon-
tinuities is cut off by one of the discontinuities (Fig. 6).
Integration points that lie in the shaded purple region do not
have a contribution to the displacement field of the green
discontinuity. In these integration points, the values for the
Heaviside of this discontinuity are therefore set to zero.
Hence, the kinematic relations do not have to be modified.

In the model, we distinguish between two types of dis-
continuities. Discontinuities that possess the ELP degree of
freedom are hydraulic fractures. The second type are dis-
continuities that do not possess this degree of freedom and
can therefore be considered as a closed natural fracture.
When two hydraulic fractures interact, the mass balance in
Eq. 34 is combined. The possibility of fluid diversion occurs
when a hydraulic fracture interacts with a natural fracture.
The ELP degree of freedom pd is added to the interact-
ing element but not in the remainder of the natural fracture
(Fig. 7). Fluid can divert into the natural fractures if a diver-
sion criterion is violated. We propose that the criterion is

violated if the opening displacement in all integration points
in an element is positive, as shown in Fig. 7.

The nucleation criterion for an element with an added
checkpoint and the diversion criterion for an element in a
natural fracture are formulated as:

Nucleation if teq > τult (38)

Diversion if un > 0 (39)

3 Results

The performance of the model is demonstrated in four
examples. Pore pressure is not considered in the first three
examples in order to focus on the interaction behaviour and
the performance of the crossing and diversion criterion. In
the first example, we illustrate the performance of the crite-
rion, and we investigate the influence of the shear stiffness
parameter in the second example. The third example con-
sists of a comparison with an experiment and a theoretical
crossing criterion. In the fourth example, we do include pore
pressure and show a propagating hydraulic fracture coming
in contact with a small fracture network.

3.1 Performance of the crossing and diversion criterion

To illustrate the performance of the crossing and diversion
criterion, we consider a hydraulic fracture growing perpen-
dicular into a natural fracture (Fig. 8). The hydraulic fracture
is propagating from a circular hole with a radius of 7 mm.
The squared specimen has a width and height of 300 mm,
Young’s modulus of 30 GPa and a Poisson’s ration of 0.25.
The in situ stresses are σv = −20 MPa and σh = −12 MPa.
The hydraulic fracture is characterized by τult = 5 MPa and
a fracture toughness Gc = 0.01125 Pa m. The behaviour of
the natural fracture is described by the penalty relation with
stiffness parameters Dn = 103 MPa and Ds = 5 · 103 MPa.
Fluid is injected in the natural fracture with constant inflow
rate of Qin = 0.0075 mm2/s and the fluid has a dynamic

Fig. 7 Schematic representation of a hydraulic fracture interacting
with a natural fracture. From left to right, the hydraulic fracture inter-
acts with the natural fracture and the ELP degree of freedom pd is
added to the interacting elements. The diversion criterion is evaluated

in the integration points. In the right image the criterion is violated in
the right element. Therefore, the ELP degree of freedom is extended to
the right
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Fig. 8 Scheme of a hydraulic
fracture, indicated with the solid
line, propagating from a circular
hole into the direction of a
natural fracture

viscosity of 0.001 Pa s. An implicit time stepping scheme is
used with a time-step of 1 s.

We demonstrate the effect of the crossing and diver-
sion implementation by comparing two simulations. In the
first simulation, we include both criteria. In the second, we
prohibit crossing and fracture growth after the hydraulic
fracture merged with the natural fracture. Thus, the only
path for fluid to distribute is to divert into the natural frac-
ture. In Fig. 9, the deformed mesh after 300 s of fluid
injection is shown with the pressure in the fracture as con-
tour. It is evident that with the crossing criterion the fracture
propagated through the natural fracture as expected (Fig.
9a). Without the crossing criterion the fluid diverted into
the natural fracture (Fig. 9b). The pressure in the fracture
with crossing included is lower than the pressure when the
fluid is forced to go into the natural fracture. This is a
consequence of the natural fracture being perpendicular to σv.

Injection pressure over time shows similar behaviour, as
shown in Fig. 10. In the case without the crossing mech-
anism, this leads to improbable magnitudes of injection
pressure since fracture crossing would be energetically more
favourable. The first drop in pressure (after ± 90 s) in the
case without crossing is caused by fluid diverting mainly in
the left wing of the natural fracture. Once the left wing is
filled with fluid the pressure has to slightly build up again,
after which the right wing is also completely filled with fluid
(after ± 180 s). The preference of which wing will fill first
is in this case a numerical artefact. Even though the problem
is symmetric, the FE mesh is unstructured. As a result, one
of the two sides opens first.

3.2 Influence of the shear stiffness

The magnitude of the shear stiffness is one of the key param-
eters in transferring stress from the hydraulic fracture across
the natural fracture which can lead to fracture crossing.
The magnitude of stress that is transferred is finite when
described by the Coulomb friction law. We use a simplified
penalty stiffness law to describe the friction, as explained
in Section 2.3. The penalty law leads to an infinite fric-
tion which increases linearly with the shear displacement
according to stiffness parameter Ds. In this example, we
show the effect of this shear stiffness on the fracture propa-
gation. We consider the same specimen and material proper-
ties as in Example 3.1. The only parameters that are varied
are stiffness values of the natural fracture. Also the natural
fracture is placed further away from the hydraulic fracture
at distance of five centimetre in y-direction measured from
the centre of the circle.

To determine the effect of the shear stress transfer, the
shear stiffness is varied between 0.0 and 20.0 GPa. A
penalty stiffness of 10.0 GPa is used. The length of the
hydraulic fracture, including the cohesive zone, is plotted
against the time in Fig. 11a. We observe almost identical
fracture growth during the first stage of hydraulic fractur-
ing. The natural fracture is too far away to influence the
propagation. In the vicinity of the natural fracture, approxi-
mately 10.0 mm, there is a minor influence (Fig. 11b). There
is some strength loss due to the imperfect natural fracture,
leading to accelerated fracture propagation with lower shear
stiffness.

Fig. 9 Plots of the pressure in
the fracture after 300 s of fluid
injection. The deformed mesh is
magnified 10 times. The black
line in Figure (a) indicates the
location of the closed natural
fracture. Note that the hydraulic
fracture with crossing
propagated further than shown
in the image
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Fig. 10 Injection pressure over time shown for the simulations with
and without the fracture crossing criterion. The fluid is forced to divert
into the natural fracture leading to higher injection pressures

There are two possibilities for the fracture to grow further
after the merging with the natural fracture. The fluid can
divert into the natural fracture and eventually grow the nat-
ural fracture or the hydraulic fracture must cross the natural
fracture. We did not observe fluid diverting into the natural
fracture. Fluid diversion is unfavourable since the maximum
confining stress must be overcome to open the natural frac-
ture. In Fig. 11c, it is shown that after merging, the pressure
is building up in the hydraulic fracture. This leads to stress

Fig. 12 Scheme for the interaction example. Fluid is injected in the
centre of the hydraulic fracture. The centre of the natural fracture
is, independent of the interaction angle, located 45 mm above the
hydraulic fracture

transfer across the natural fracture and eventually to frac-
ture nucleation. The speed of stress transfer depends on the
magnitude of the shear stiffness (Fig. 11d). Only with zero
shear stiffness we did not observe fracture crossing.

Fig. 11 Various numerical
results for different stiffness
parameter Ds. The influence of
the stiffness parameter is
demonstrated and crossing is
observed at an earlier time
requiring less injection pressure
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Fig. 13 Contour plot for
fracture diversion with
�σ = 6 MPa and θi = 30◦

3.3 Influence of the interaction angle and the in situ
stress

It is known that the ratio between in situ stresses and the
angle between a hydraulic fracture and a natural fracture are
important to predict whether the hydraulic fracture crosses,
diverts or arrests on the natural fracture. This relation is
shown in experimental results [5, 6] and is described with a
crossing criterion by Gu et al. [8]. In this example, we com-
pare our numerical results with the crossing criterion. We
vary the in situ stress by varying σh while keeping σv equal
to - 20 MPa. The orientation of the natural fracture is also
varied between θi = 90◦ and θi = 15◦ (see Fig. 12). The
remainder of the material properties are identical to those
used in Example 3.1.

To interpret the results we distinguish between four dif-
ferent length measurements, i.e. the length of the hydraulic
fracture, the length the natural fracture, the part of the
hydraulic fracture that has crossed the natural fracture, and
the part of the natural fracture that is filled with fluid. These
results are shown for each interaction angle measured in
Fig. 14. It can be seen that high interaction angles show
mainly crossing of the hydraulic fracture. In some cases, the
length of the crossed hydraulic fracture (shown in the blue
bar) is small. We attribute this to the loss of friction due to
the crossed fracture, which leads to relaxation of strain tan-
gential to the natural fracture. Since a penalty friction law is
used, there is a lower stress transfer across the natural frac-
ture. The bottom part of the hydraulic fracture then becomes
the favourable growth direction. The results of the low
interaction angles show diversion of fluid into the natural
fracture. Only the right wing of the natural fracture, which is
not feeling pressure exerted by the hydraulic fracture, that is
filled with fluid (Fig. 13). In none of our results the natural
fracture propagated. The bottom part of the hydraulic frac-
ture propagates as soon as the right wing is filled with fluid.
Interaction angles varying between θi = 50◦ and θi = 60◦
show crack arrest.

In Fig. 15, we have extracted from Fig. 14 whether cross-
ing, arrest or diversion of the fracture occurred for the
various interaction angles and stress differences simulated.
Apart from one outlier, we see a trend from fracture crossing
to arrest and finally diversion with decreasing interaction
angle. This tendency is also observed in the experiments.
The influence of the stress difference is less pronounced.
This is attributed to the friction law which does not pos-
sess the same properties as a Coulomb friction, which
would better represent friction in rocks. There is no explicit
relation between the magnitude of the friction and the nor-
mal stress to the natural fracture in our penalty friction
law.

The tendency of crossing or diversion for various fric-
tion coefficients based on the crossing criterion from Gu
et al. [8] is also shown in Fig. 15. The region right to the
curve represents crossing. The left region indicated diver-
sion except close to the line, where crack arrest is expected.
The criterion does not distinguish between diversion or
arrest. Our results are in the proximity of μ = 2.0 and
μ = 1.5. Rocks typically do not possess such a high friction
coefficient [8]. It is likely that we overestimate the magni-
tude of the friction due to our penalty friction law. However,
the trend from diversion to crack arrest and finally cross-
ing as the interaction increases is visible in our numerical
results.

3.4 Interaction with a fracture network

In this final example, we consider a hydraulic fracture prop-
agating towards a small network consisting of three natural
fractures that are in contact (Fig. 16). The two larger natural
fractures have a length of 40 mm and make an angle of 30◦
with the x-axis. The smaller natural fracture is perpendicular to
both of the larger fractures. The specimen is now considered
to be a low permeable rock with an intrinsic permeability of
Kint = 10−21 m2. The solid grains have a compressibil-
ity of Ks = 30 GPa and the fluid compressibility is taken
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Fig. 14 Overview of the different simulation results. The height of the bars indicate the length of respectively the hydraulic fracture, the natural
fracture, the crossed fracture and the length of the natural fracture filled with diverted fluid

as Kf = 3.6 GPa. The remainder of the material proper-
ties and boundary conditions are identical to those used in
example 3.1. The initial pore pressure is set as zero.

The contour plot of the pore pressure in the bulk for four
different time-steps is shown in Fig. 17. In Fig. 17a, the
hydraulic fracture propagated and a low pressure in front of
the cohesive zone can be seen. This is a result of tension due
the pressurisation of the hydraulic fracture and leads to fluid
being attracted towards the region under tension. After 8 s
of fluid injection, the hydraulic fracture crossed the bottom
natural fracture (Fig. 17b). The angle between the middle

natural fracture and the direction of σv is such that crossing
is not likely to occur. This is also observed in Fig. 17c. Fluid
diverted from the hydraulic fracture into the natural fracture
network. Fluid diversion stops when the fluid front reaches
the top natural fracture. Tension is being generated at the
top surface due to the friction law. This can also be seen at
the low pressure in Fig. 17c. Finally, a new cohesive zone
nucleates and the hydraulic fracture propagates away from
the natural fracture network (Fig. 17d).

A discontinuous injection pressure development over
time is shown in Fig. 18. On the one hand, this is caused by
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Fig. 15 The numerical results
whether fluid diversion, crack
arrest or fracture crossing occurs
due to varying interaction angles
and stress differences are shown
with the point markers. The
crossing criterion from Gu et al.
[8] for various friction
coefficients is shown with the
lines. The region right of a line
indicates crossing

Fig. 16 Scheme for the
interaction with a small fracture
network

Fig. 17 Contour plot of the
pore pressure in the bulk at four
different time instances. The
solid black lines indicate the
locations of the natural
fractures. The deformed mesh is
magnified 50 times
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Fig. 18 Injection pressure for various times in the simulation of a
hydraulic fracture interacting with a natural fracture network

numerical aspects such as the size of the time-step and mesh
resolution. On the other hand, the pressure decrease at 8 s
and at 18 s is caused by the fracture propagating away from
the natural fractures and after 10 s a decrease is observed
due to fluid having the possibility to divert into the middle
natural fracture.

4 Conclusions

Based on the enhanced local pressure model, we present
a numerical model to investigate the interaction of multiple
cracks in hydraulic fracturing. There is no limit to the amount
of fractures. Interaction and propagation can take place in
arbitrary locations and directions. The criterion whether or
not a fracture crosses a natural fracture is determined by an
average stress criterion. Fluid is also given the possibility to
divert into a natural fracture based on a criterion that exam-
ines whether the natural fracture opens. These two criteria
are checked simultaneously and the competition between
them determines the interaction behaviour. The fracture pro-
cess is modelled by a cohesive zone model. With the ELP
model the injected fluid flow goes exclusively in the fracture
and steep pressure gradients near the fracture surface are
reconstructed based on Terzaghi’s consolidation solution.

Four examples are presented to illustrate the implemen-
tation of the criteria and to show the performance of the
numerical model. The first example shows the effect of the
crossing and diversion implementation. A hydraulic fracture
propagated perpendicular onto the natural fracture with the
in situ stress taken such that crossing of the natural frac-
ture is preferred. As expected, the hydraulic fracture indeed
crosses the natural fracture. The simulation was repeated but
now the crossing criterion is not included in the model. This
leads to fluid diversion into the natural fracture and has as
a consequence that the required injection pressure is much
higher. In the second example, the effect of the implemented

friction law is shown. The penalty friction leads to an imper-
fect natural fracture. With a higher stiffness, the interaction
took place earlier and also the fracture crosses the natural
fracture at an earlier time requiring less injection pressure.
The behaviour observed in these two examples is consistent
with what would be expected from the chosen geometry and
the boundary conditions. The influence of the interaction
angle and the in situ stress conditions is studied in the third
example. These results are compared with experimental data
and with a theoretical crossing criterion. A trend from frac-
ture crossing to arrest and fluid diversion is observed with a
decreasing interaction angle. This is in line with the experi-
ments and the theoretical criterion. In the last example, poro
elasticity is included and a hydraulic fracture interacting
with a small natural fracture network is studied. Due to ten-
sion, a low pore pressure is observed in front of the cohesive
zone. Fracture crossing and fluid diversion are both shown
depending which natural fracture was interacting with the
hydraulic fracture.

The proposed model is suitable to simulate complex
hydraulic fracture patterns in fully saturated porous media.
The simplified friction law leads to some discrepancy but
the global fracture behaviour satisfies expectations and
experimental results. Slip behaviour is not considered but
could be included by replacing the friction law with a plas-
ticity based friction law. This and considering shear failure
is left for future research.
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