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A B S T R A C T

A model-based approach to real-time reconstruction of the particle density profile in tokamak plasmas is pre-
sented, based on a dynamic state estimator. Traditionally, the density profile is reconstructed in real-time by
solving an ill-conditioned inversion problem using a measurement at a single point in time. This approach is
sensitive to diagnostics errors and failure. The inclusion of a dynamic model in a real-time estimation algorithm
allows for reliable reconstruction despite diagnostic errors. Predictive simulations show that the model can
reproduce the density evolution of discharges on TCV and ASDEX-Upgrade after tuning of a few parameters.
Offline reconstructions using experimental data from TCV show accurate estimation of the density profile and
show examples of fault detection of interferometry signals.

1. Introduction

A key challenge in tokamak operations is maintaining stable plasma
conditions, remaining within safety limits and accurate control of the
plasma state [1]. Plasma control has expanded in recent years from
control of bulk plasma quantities (such as total plasma current, average
particle density and average temperature) to control of the spatial
distributions of these quantities, e.g. the profiles of temperature, safety
factor and rotation [2–6].

Since the density profile affects the plasma pressure and fusion
power [7], drives radiation, influences the non-inductive current dis-
tribution, determines diagnostics validity (e.g. ECE cut-off), and can
trigger detrimental plasma instabilities [8,9], real-time monitoring and
control of the particle density profile is of great importance for safe,
reliable and high-performance operation of large tokamaks such as
ITER [10–13].

An important challenge can be identified as to enable density con-
trol, namely the reliable real-time reconstruction of the density profile
from diagnostic measurements. Most tokamaks have diagnostics for the
plasma particle density that can be used for monitoring and real-time
control. Often an interferometry system is used, which measures the
line-integrated electron density along one or more laser chords

intersecting the plasma [14,15], but other possibilities include
Thomson scattering [14,16] and reflectometry [14,17].

In control and monitoring of the density, the line-averaged density
is often considered, which is conveniently derived from an inter-
ferometry signal if the chord intersection length is known. Moreover,
there exist data fitting methods for reconstruction of the density profile
for analysis or control that minimize a least-squares criterium or fit
splines on multiple interferometry channels [18–24] or Thomson scat-
tering [25,26] at one point in time.

However, the estimates obtained by these static data fitting methods
are sensitive to diagnostic faults [18,27], notably drifts. For example
fringe jumps occur in an interferometry system if the density fluctuates
rapidly, often when a pellet is injected. This may result in a loss of
control performance or even a loss of density control.

Despite ongoing research on detection and correction of fringe
jumps [19,27,28], no reliable solution is being used on TCV and
ASDEX-Upgrade. Moreover, data fitting methods can suffer from ill-
conditioning, leading to unrealistic profiles with spatial oscillations
[18].

The inclusion of a dynamic model of the density profile evolution in
the profile reconstruction may solve these issues by promoting proxi-
mity of the measured quantities to solutions that are feasible with
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respect to our knowledge of the modeled process. Thereby it can sup-
press unrealistic spatial oscillations in the profile estimate, reject
measurement noise and anticipate for the effects of actuation, such as
fuelling, on the density evolution.

For this purpose, we present a control-oriented model of the plasma
particle density evolution. We prefer a white-box model-based ap-
proach over identifying models from data since nonlinear behaviour
and physical couplings that evolve in time complicate identification of
processes from measurement data. On the other hand, full first-prin-
ciple physics modeling is challenging since

1. transport inside a tokamak plasma LCFS is modeled by the combi-
nation of a set of 1D PDEs for radial transport and a 2D elliptical
PDE for the magnetic equilibrium (see [29,30]) which is difficult
and time-consuming to solve in combination with calculation of the
particle fluxes, and

2. transport outside the tokamak plasma LCFS consists of complex
processes such as wall retention and recycling, neutral particle dy-
namics, and atomic and molecular processes (see [7,31]) which are
all complex to model in themselves, let alone in their interaction.

Because of these complications, heuristic models are better suited
for real-time applications in this case. We present a control-oriented
and real-time nonlinear model for radial (1D) plasma density transport
with additional particle inventories (0D) of the wall and vacuum.
Compared to existing multi inventory (0D) models for density control
[26,32–37], we replace the plasma particle inventory by the spatial
distribution of the plasma density. Moreover, we include the influence
of plasma equilibrium, temperature, current and operational modes
(limited or diverted plasma, low or high confinement [7]) on the
transport processes and diagnostics.

In this paper, we use for the first time a model-based dynamic state
observer for density profile reconstruction. The observer, comprising of
an Extended Kalman filter [38], provides both estimates of the density
profile as well as reality vs. model deviations that persist over multiple
confinement times from multiple diagnostics signals. Here we build
upon earlier work in [39,40], where physics-model-based dynamic state
observers have been applied for real-time estimation of the current and
temperature profiles. In the observer, we employ a threshold method to
detect fringe jumps [27], from the discrepancy between the measured
interferometry signals and the model-based predictions of these mea-
surements.

The proposed dynamic state observer algorithm can be im-
plemented on control systems of existing tokamaks, and used for e.g.
real-time density feedback control and/or deriving whether ECE
channels are in cut-off in real-time. For future tokamaks as ITER, this
model-based design procedure can be performed today with models
extrapolated from existing tokamaks and iterated using the same
methodology as density transport parameters become better known in
the course of ITER operation. We want to emphasize that the purpose of
this paper is not to make statements on the physics of density evolution
in tokamaks. Instead, the objective is to demonstrate that a control-
oriented model can be used to enhance real-time reconstruction of the
density profile.

The remainder of this paper is structured as follows. The control-
oriented model of the density transport and synthetic interferometer
model is introduced in Section 2, along with simulations of a TCV and
an ASDEX-Upgrade discharge. The design of the observer, the detection
of fringe jumps and the offline estimation results on experimental data
are discussed in Section 3. Extensions and future work that is in line
with the proposed solutions are discussed in Section 4. Finally, con-
cluding remarks are given in Section 5.

2. Control-oriented 0+1D model of the particle transport

In this section, a 0D+1D diffusion/drift transport model is

presented for control purposes, with the flexibility to adapt for multiple
devices, multiple diagnostics and multiple actuators. Particle transport
in the plasma, particle flows and sources in the tokamak are modeled in
a heuristic fashion, rather than using complex first-principle transport
models.

Existing physics models of plasma particle transport (e.g. [41,42])
and models used in offline profile reconstruction algorithms (e.g.
ASTRA [30], CRONOS [43]) are not directly suitable for the task of
real-time density reconstruction, since their execution time generally
exceeds the discharge duration. It has been shown in [2–5,39,40] that
low-complexity 1D models can be used for reconstruction and control of
the temperature and safety factor profiles.

Our model consists of a 1D drift-diffusion PDE for radial particle
transport and two 0D ODEs for the time evolution of the inventory of
the wall and the neutral vacuum, all based on particle conservation
laws. This approach is similar to multi inventory (0D) models for con-
troller design on TCV [34], JET [35], TEXT [33] and KSTAR [36], but
here the radial particle transport in the plasma is also modeled. Since
transport on flux surfaces is several orders of magnitude faster than
radial transport (perpendicular to flux surfaces), we may consider radial
plasma transport only [29]. The ionization, recombination and re-
cycling terms are approximated, and the NBI and pellet injection de-
position locations are postulated. See Fig. 1 for a schematic re-
presentation of the modeled transport flows considered in this model.

The particle transport processes change in time due to a variety of
physical factors. The LCFS electron temperature Te,b = Te|ρ=1, elec-
trical current Ip, plasma geometry through 2D equilibrium ψ(R, Z) and
distinct operational regimes (limited or diverted plasma cD ∈ {0, 1},
low or high confinement mode cH ∈ {0, 1}) are included in the model as
a time-varying external input parameter. It is assumed that estimates of
these parameter values are available through real-time 2D equilibrium
reconstruction and other diagnostics.

The PDE is discretized in space and the resulting set of ODEs is then
discretized in time. The relation between plasma density and measured
quantities is included using diagnostics models.

Fig. 1. Schematic representation of the tokamak cross-section in the R-Z plane. Depicted
are the plasma, the wall components, the neutral vacuum and the modeled particle flows.
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2.1. 1D radial plasma transport

Let us start by defining the usual toroidal flux surface label
=ρ Φ πB/tor 0 where Φ is the toroidal magnetic flux and B0 is the va-

cuum toroidal magnetic field strength at the major radius R0, see [29].
By defining ρtor,B as ρtor on the LCFS, a dimensionless flux label ρ can be
introduced, given by

=ρ
ρ

ρ
tor

tor,B (1)

The flux-surface average of a quantity Q is defined as 〈Q〉= ∂/∂V∫Q dV
(see e.g. [30]). We assume a quasi-neutral plasma with a constant ef-
fective charge Zeff = 1, so consisting of hydrogen (isotopes). The
methodology may be extended to time-varying Zeff and/or additional
particle species.

2.1.1. Electron density continuity
The evolution of the flux-surface averaged electron density ne(ρ, t)

resulting from radial transport and a net source is modeled as a PDE
[29] on the domain = ∈ ≤ ≤ ≤ ≤Ω t ρ t t t ρ ρ{( , ) ℝ , 0 }0 f e , where the
constant ρe > 1 represents the location of the scrape-off layer edge and
t0 and tf represent the start and end time. The PDE is written as

′
∂
∂

′ +
′

∂
∂

=
V t

n V
V

Γ
ρ

S1 ( ) 1
e

(2)

where Γ(ρ, t) is the radial electron transport flux, S(ρ, t) is the net
electron source and V′ = ∂V/∂ρ with V(ρ) the volume enclosed by a flux
surface. Strictly speaking, ρtor is not defined outside the LCFS due to the
open field lines. However, we choose to artificially prolong ρ up to ρe
and we set ∇ =∇< ≤ =ρ ρ| : |ρ ρ ρ1 1e and ′ = ′< ≤ =V V| : |ρ ρ ρ1 1e .

2.1.2. Radial plasma particle flux
The radial electron flux Γ(ρ, t) is governed by diffusion and a drift

(pinch) velocity [29,44] and is given by

⎜ ⎟= − ′⎛
⎝

∂
∂

+ ⎞
⎠

Γ V G D n
ρ

G νne
e1 0

(3)

where D and ν are the coefficients of diffusion and drift (pinch), and
G1 = 〈(∇ρ)2〉, G0 = 〈|∇ρ|〉 and 〈|∇ρ|〉 = 〈|∇ψ|〉(∂ψ/∂ρ)−1 are geo-
metrical parameters that depend on the ψ(R,Z) equilibrium [29]. The
values for D and ν are estimated to represent the empirical system be-
haviour. Thus, D(ρ,cH) and ν(ρ,Ip,cH) are chosen as simple functions of ρ
and cH, and it is assumed that ν= ν0Ip/Ip,0 to represent the increase of
pinch at higher current, where Ip,0 is the nominal plasma current, being
the programmed flat-top current. An H-mode implies a reduction of
transport in the plasma edge [45] and is reproduced by lower edge
diffusion and a lower drift velocity for cH = 1. In Fig. 2, the chosen
functions D(ρ, cH) and ν(ρ, Ip,0, cH) are depicted for both L- and H-mode.

2.1.3. Domain and boundary conditions
The domain edge ρe is chosen as ρe = 1 + λSOL where the di-

mensionless scrape-off layer width λSOL is assumed to be constant and
estimated a priori as = = =

−λ D πR q c|ρ c sSOL 1, 0 0 95
1

H [31,7], where q95 is
the nominal edge safety factor at 95% of the normalized poloidal flux

and cs is the ion velocity at nominal scrape-off layer temperature. At
TCV and ASDEX-Upgrade, this is 50 keV. The boundary conditions are
∂ne/∂ρ|ρ=0 = 0 and ==n | 0e ρ ρe . The outflux at the domain edge =Γ|ρ ρe is
treated as a source to the vacuum inventory.

2.1.4. Sources
In our model the source is composed of four parts and is written as

= + − − →S S S S Sinj iz rec SOL wall (4)

These four contributions are depicted in Fig. 1 and are modeled as
follows.

• The electron source of ionization of injected neutrals from NBI and
pellets is modeled by their particle deposition locations, and is given
by

= +S Λ ρ Γ t Λ ρ Γ t( ) ( ) ( ) ( )inj NBI NBI pellet pellet (5)

where ΓNBI and Γpellet are the NBI and pellet injection fuelling rates.
The functions ΛNBI(ρ) and Λpellet(ρ) model the spatial deposition of
the ionization of injected neutrals, with
∫ ∫= =Λ dV Λ dV 1V VNBI pelletp p

such that ∫ = +S dV Γ ΓV inj NBI pelletp
,

where ∫= ′V V dρρ
p 0

e is the plasma volume.

• The electron source thermal ionization of other neutrals equals
σv n nn eiz where σv T( )iz e is the ionization cross-section [7] and nn
is the neutral density, but is approximated as

=S σv T Λ N
V

n( ) eiz
iz

e,b iz
v

v (6)

where Te,b = Te|ρ=1 is the LCFS electron temperature, Nv is the
vacuum inventory, Vv = Vr − Vp is the vacuum volume and Vr is the
vessel volume. The function Λiz(ρ, cD) models the product of the
spatial distribution of the neutral density and the ionization cross-

section such that ≈σv T Λ σv T n( ) ( )N
V n

iz
e,b iz

iz
e

v
v

.

• The thermal recombination sink of ions equals σv n ne irec where
σv T( )rec e is the recombination cross-section [7] and ni is the ion
density, but is approximated as

=S σv T Λ n( ) erec rec e,b rec
2 (7)

The function Λrec(ρ) models the spatial distribution of the re-
combination cross-section such that ≈σv T Λ σv T( ) ( )rec e,b rec rec e .

• The particle sink in the scrape-off layer due to wall impact of par-
ticles exiting the plasma through the scrape-off layer is modeled as

=
−

→S
H ρ n

τ
( 1) e

SOL wall
SOL (8)

where H(·) is the Heaviside function and τSOL(cD) is the time constant
for particle loss through the scrape-off layer [31], modeled as

= ⎧
⎨⎩

=
=

−

−τ
πR q c c
g πR q c c

if 0
if 1

s

s
SOL

0 95
1

D

d 0 95
1

D

where gd > 1 is used to model the reduction of net outflow to the
wall in a diverted plasma.

The functions Λiz, Λrec, ΛNBI and Λpellet are chosen ad-hoc in this
study, see Fig. 3, but could be computed using more detailed physics
models of e.g. neutral beam injection [46,47]. The width of Λiz(ρ, cD) is
decreased for cD = 1 to model the decreased ionization depth experi-
enced in a diverted plasma, where the main plasma is located farther
from the wall components due to flux expansion.

2.2. 0D model of the neutral wall inventory

All particles in the tokamak that are not in the plasma are either

Fig. 2. Modeled diffusion D (blue) and drift velocity ν (red) coefficients as a function of ρ.
Solid and dashed lines indicate the coefficients for low confinement (cH = 0) and high
confinement (cH = 1), respectively. (For interpretation of the references to colour in text,
the reader is referred to the web version of the article.)
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assigned to the wall inventory Nw(t) or the neutral vacuum inventory
Nv(t). The wall inflow is formed by the scrape-off layer sink SSOL →wall

and the outflow is denoted by Γrecycle(t), see Fig. 1. The wall particle
inventory balance is given by

= −→
dN

dt
Γ t Γ t( ) ( )w

SOL wall recycle (9)

where ∫=→ →Γ S dVVSOL wall SOL wallp
. The wall recycling outflow Γrecycle(t)

is modeled by a linear term representing outward diffusion of particles
embedded in the wall material and a term representing particle ex-
pulsion due to impacting plasma particles. Hereby, the latter outflow
matches the inflow from the scrape-off layer if the wall inventory Nw

approaches the saturation level Nsat, and is given by

=
−

+
−

→Γ
N c V V N

τ
N
N

Γw
recycle

w v,0 v
1

v

release

w

sat
SOL wall (10)

where Vv,0 = Vr − Vp,0 is the nominal vacuum volume, Vp,0 is the
nominal plasma volume and τrelease is a time constant for the decay of
the wall inventory due to outward diffusion, cw is a dimensionless
constant that determines the steady-state balance between the wall
inventory and vacuum density, and Nsat(cD, cH) is the saturation level of
the wall inventory, modeled as

=
⎧

⎨
⎩

= =
= =
= =

N c c
N c c
N c c
N c c

( , )
if 0, 0
if 1, 0
if 1, 1

sat D H

sat,0 D H

sat,D D H

sat,H D H

where Nsat,D > Nsat,0 to model the absorption of particles by the wall
when the plasma is diverted and Nsat,H < Nsat,D to model the expulsion
of wall particles when the plasma enters an H-mode [48]. The coeffi-
cients Nsat,0, Nsat,0, Nsat,0, τrelease and cwv are difficult to obtain from data,
since no diagnostics exist to measure the wall inventory, and retention
and recycling depend on the wall conditioning. However, they can be
estimated using studies that identify retention [49,50].

2.3. 0D model of the neutral vacuum inventory

The particle inflows to the vacuum are the thermal recombination
Srec, wall recycling outflow Γrecycle and gas injection Γvalve, see Fig. 1.
We also include the plasma outflux at the domain edge =Γ|ρ ρe. The
outflows from the vacuum are the ionization Siz and the (cryo)pump
outflow Γpump. The vacuum particle inventory balance is given by

= − +
+ + −

=Γ t Γ t Γ
Γ t Γ t Γ t

( ) ( ) |
( ) ( ) ( )

dN
dt

ρ ρrec iz

recycle valve pump

v
e

(11)

where ∫=Γ S dVVrec recp
and ∫=Γ S dVViz izp

. The (cryo)pump outflow
Γpump(t) is assumed to be proportional to the neutral density and is
given by

=Γ
N V

τ Vpump
v v,0

pump v (12)

where τpump is a time scale that expresses exponential decay of the
neutral density due to pumping, which may depend on the number of
pumps used and the strike point positions.

2.4. Inputs

The gas inflow rate Γvalve(t), NBI fuelling rate ΓNBI(t) and pellet
fuelling rate Γpellet(t) are considered as inputs to the system. They are
constrained to be nonnegative and have upper limits, expressed as

≤ ≤Γ t Γ0 ( )valve valve
max (13)

≤ ≤Γ t Γ0 ( )NBI NBI
max (14)

We assume that the gas inflow rate Γvalve(t) is either proportional to the
actuator input signal, or that the gas valve is feedback controlled to
provide the flow Γvalve(t). The pellet injection fuelling rate Γpellet(t) is a
pulsed signal which takes on either zero or Γpellet

max . Each pulse represents
the arrival of an individual pellet and the time integral of each pulse
equals the number of deposited electrons.

2.5. External input parameter

The coefficients of the model change in time due to a variety of
external factors. These are modeled by a time-varying external input
parameter p(t), defined as

= ′p c c T I V G G Ω[ ]D H e,b p 1 0 (15)

where Te,b = Te|ρ=1 is the electron temperature at the LCFS, Ω is a
matrix that links the density profile to the diagnostic outputs and is
introduced in Section 2.8, and V′, G1, G0, and Ω are determined from an
equilibrium ψ(R, Z). We assume that the parameter values are available
through real-time equilibrium reconstruction (see e.g. [51–53]) and/or
diagnostics.

2.6. Spatial discretization using finite elements

The numerical solution of (2), (9) and (11) is implemented using a
finite element method (see e.g. [54]) for the spatial discretization si-
milar to [55] and a trapezoidal method for the time discretization. The
methodology describing the use of finite elements and the time dis-
cretization are discussed in detail in Appendices A.1 and A.2 respec-
tively, but a brief outline is given here.

First, the electron density is approximated as

∑=
=

n ρ t Λ ρ b t( , ) ( ) ( )e
α

m

α α
1 (16)

where the basis functions Λα : [0, ρe] → [0, 1], α = 1, 2, …, m are
chosen as cubic B-splines with finite support [56]. B-splines are con-
tinuous and differentiable piecewise polynomials on a finite domain
[56]. An example set of basis functions is shown in Fig. 4. The variables

= ⋯b t b t b t( ) [ ( ) ( )]m
T

1 are the time-varying spline coefficients. For
the purpose of control-oriented modeling, a small number of basis
functions (m = 5) with closely-spaced spline knots around the plasma
edge is chosen. The boundary conditions discussed in Section 2.1.3 are
imposed by restricting the values and derivatives of the basis functions
at the boundaries.

Second, an equidistant time discretization tk = t0 + kTs, k= 0, a,
…, N is chosen, where Ts > 0 is the time step and N = (tf − t0)/Ts.

Finally, applying the finite element method and the trapezoidal time
discretization on (2), (9) and (11) as described in Appendices A.1 and

Fig. 3. Example of spatial distributions Λiz (blue), Λrec (red), ΛNBI (green) and Λpellet

(magenta) for a limited plasma. (For interpretation of the references to colour in text, the
reader is referred to the web version of the article.)

Fig. 4. Example of basis functions Λα(ρ), α = 1, b, …, m with m = 5 used to spatially
discretize the electron density (16).
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A.2 yields the system of nonlinear discrete-time ODEs

= +− − − −x f p x B p u( , ) ( )k k k k kd 1 1 d 1 1 (17)

where pk = p(tk), and the state ∈x ℝk
nx and the input ∈u ℝk

nu are
defined as

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

x
b t

N t
N t

u
Γ t
Γ t

Γ t

( )
( )
( )

( )
( )
( )

k

k

k

k

k

k

k

k

w

v

valve

NBI

pellet

with nx = m + 2 and nu = 3. Because of the products of ne, Nw and Nv

in (6), (7) and (10), fd(pk, xk) is a nonlinear function of xk.

2.7. Interferometry measurements

The interferometry output signal is proportional to the line-in-
tegrated electron density along a laser chord intersecting the plasma
(see e.g. [14]). Multiple chords with different line of sight through the
plasma allow to infer the electron density profile. The interferometry
phase signal Δϕ of the cth chord at the sampling time instant tk is de-
noted by ∈ϕΔ ℝk

c and is given by

∫=ϕ c n ρ ψ R Z t dLΔ ( ( ( , )), )k
c

L e kFIR
c (18)

where Lc is the intersection length of the plasma and the cth laser chord,
and the interferometry constant is given by cFIR = λe2/(4πϵ0mec2)
where λ is the laser wavelength, e is the electron charge, ϵ0 is the
permittivity of vacuum, me is the electron rest mass and c is the speed of
light.

2.7.1. Modeling fringe jumps
Fringe jumps are counting errors of the interferometry phase dif-

ference Δϕ and form infrequent jumps at individual output channels.
While fringe jumps are infrequent, their magnitude is sufficiently large
to disturb density estimates and reconstructions. The jump magnitude
in the phase signal equals an integer multiple of 2π, i.e. ∈πk k2 , ℕ. By
incorporating a description of fringe jumps in the measurement, (18) is
replaced by

∫= +ϕ c n ρ ψ R Z t dL πdΔ ( ( ( , ), )) 2k
c

L e k k
c

FIR
c (19)

= +− −d d Δk
c

k
c

k
c

1 1 (20)

where ∈d ℕk
c is the cumulative number of fringe jumps on chord c at

time tk and ∈−Δ ℕk
c

1 is a stochastic variable that represents possibly
multiple jumps on chord c between time tk−1 and tk.

The probability of jumps is known to be strongly correlated with fast
changes of the plasma density [19,28], but obtaining the probability
density function for Δk

c as a function of (the time derivative of) the
plasma density is beyond the scope of this paper. For the present pur-
poses, it is assumed that initially =d 0c

1 and that the expected value
� =[Δ ] 0k

c .

2.8. Synthetic output equation

The measurement output vector of all nFIR available interferometry
chords can, by stacking (19), be represented as ∈y ℝk

nFIR and is given
by

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫

∫
= ⋮ +y

n ρ t dL

n ρ t dL
δd

( , )

( , )
k

L e k

L e k

k

n

1

FIR (21)

where = −δ πc2 FIR
1 and = ⋯ ∈d d d[ ] ℕk k k

n T n1 FIR FIR is the column of the
cumulative number of fringe jumps on all chords at time tk. The fringe
jump state equation of all chords is given by

= +− −d d Δk k k1 1 (22)

where = ⋯ ∈Δ [Δ Δ ] ℕk k k
n T n1 FIR FIR.

The numerical evaluation of the line integrals is discussed in
Appendix A.3. The spatial discretization (16) and an equilibrium ψ(R,
Z) allow to express the line integrals in (21) as a linear combination of
the electron density spline coefficients bk from (16). By evaluating the
line integrals, the synthetic output equation is written as

= +y C p x δd( )k k k k (23)

where = ×C p Ω p( ) [ ( ) 0 ]k k
n 2FIR and Ω(pk) is given by

∫=Ω p Λ ρ ψ R Z dL( ) ( ( ( , )))k L jij
i (24)

It is assumed that ρ(ψ) and ψ(R, Z) are known from real-time 2D equi-
librium reconstruction (see [51–53]).

2.9. Computational time requirements

For real-time control, the sampling interval must be at least an order
of magnitude smaller than the particle confinement time. On TCV, the
particle confinement time τp is at least 10 ms [57]. The sampling fre-
quency of the density feedback controller is 1 ms on TCV [58] and
1.5 ms on ASDEX-Upgrade [19], which is slower than the respective
interferometer sampling frequencies [59,18,60]. Note that typically,
the controller bandwidth used at TCV is below 25 Hz [34]. Currently,
Thomson scattering measurements of the electron density are not
available in real time on TCV and ASDEX-Upgrade. The time resolution
of Thomson scattering is limited by the repetition rate of the laser. The
repetition rate is in itself typically too low for feedback control, but
real-time Thomson scattering measurements may be used to correct the
interferometry signals and enhance profile reconstruction.

TCV has a total of 14 interferometry chords, while ASDEX-Upgrade
has 6 chords. Presently, the evaluation of (17) and (23) with nx = 7 and
nFIR = 14 and Ts = 1 ms, for which details are given in Appendices
A.1–A.3, takes 2 ms of computational time. Here, MATLAB using an
Intel®Core™2 DUO E6600 at 2.40 GHz PC running Windows 7 was used.
On TCV, the energy confinement time τe is between 2 ms and 50 ms
[61–63] and the particle confinement time τp from 5τe up to 10τe [57].
Implementation on a tokamak control system can easily reduce the
computational time to below a cycling time of 1 ms, satisfying the re-
quired time resolution.

2.10. TCV and ASDEX-Upgrade simulation: qualitative model validation

To validate the model, we present simulations of the model and
compare them with measurement data from TCV and ASDEX-Upgrade.

First we use the parameter signals, equilibrium reconstruction and
gas valve input signal from TCV shot #45109 as a test case to simulate a
TCV discharge. The model coefficients are chosen to be representative
for a typical discharge in the TCV tokamak. In Fig. 5, the simulated
density with Thomson scattering measurements are shown. The plasma
is diverted at t= 0.25 s and enters a high confinement mode around
t= 0.5 s. Note that the Thomson scattering data is mapped to ρtor loci
using an (offline) equilibrium. The errorbars represent the sample
standard deviation of binned data, in bins with a ρtor = 0.05 width and
covering three consecutive time points.

The simulation replicates the measurement with reasonable simi-
larity. The decay of plasma density after the plasma is diverted is not
accurately followed: the model assumes an instantaneous change of
configuration and transport, whereas the evolution of the strike point
location towards their stationary location takes longer. The decay of
plasma density therefore takes longer than modeled. Similarly, the rise
of plasma density during the low to high confinement mode transition is
not accurately followed: again, the model assumes and instantaneous
change of transport dynamics, whereas the low to high confinement
transition is a more complex process. There is a good agreement before
1.6 s between the Thomson scattering measurements and the simulated
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density profiles (Fig. 5(c)). After 1.6 s, the measured density increases,
while the simulated density does not, see Fig. 5(b). Here, the model
simulation shows a slight decay of the plasma density which is caused
by the decreasing plasma current and increasing plasma volume. It is
not clear what causes the increase of the measured density, nor what
needs to be modeled to reproduce such behaviour with the model. Note
that the wall retention model (10) is a severe simplification of reality. It
is challenging to estimate the coefficients Nsat and cwv a priori to predict
the absolute value of the plasma density and the wall inventory, both
transiently and in flat-top for various discharge scenarios.

Second, we use the parameter signals, equilibrium reconstruction
and input signals from ASDEX-Upgrade shot #32527 as a test case to
simulate an ASDEX-Upgrade discharge. The model coefficients are now
chosen to be representative for a standard H-mode discharge in ASDEX-
Upgrade. Note that the wall saturation inventory Nsat,H was taken as
1.8 × 1022 atoms, as was also identified for ASDEX-Upgrade H-mode
discharges [49]. In Fig. 6, the simulated plasma density, plasma in-
ventory and wall inventory are shown and compared to interferometry
and Thomson scattering measurements. The plasma is diverted at
t = 0.5 s and enters a high confinement mode around t = 1.8 s. Note
that the Thomson scattering data is mapped to ρtor loci using an offline
available equilibrium.

Here, the simulation replicates the interferometry and Thomson
scattering measurements best during the high confinement mode.
During ramp-up, the density is not well replicated. Since the plasma
particle inventory is small compared to the total integrated valve inflow
in ASDEX-Upgrade [49,50], the simulated plasma density is very sen-
sitive to the chosen model equations. Predominantly the wall and
pumping models (10) and (12) play a large role in the evolution of the
plasma density. After t= 4 s, the simulated plasma density starts to
increase with respect to the interferometry measurements due to an

increase of the temperature and later drops following the closing of the
gas valve. Here, the ionization source model incorporates the known
temperature dependency on the ionization rate, see Eq. (6). In the
current formulation of the model, particularly the particle flows outside
the main plasma, it is challenging to reproduce the insensitivity of the
plasma density to the partial closing of the gas valve around t= 5 s,
which is attributed to inefficient fueling in the high-temperature H-
mode. In the future, we would like to include this effect in a self-
consistent real-time capable model. This will require better modeling of
the ionization distribution, particle losses in the scrape-off layer and the
particle recycling flows. The density profile at t= 3 s is replicated with
good accuracy and shows the pedestal typically seen in high confine-
ment plasmas. Both the simulated profile and simulated synthetic

Fig. 5. Nominal simulation of TCV plasma using plasma parameters and the mass flow of
the gas puff (in red) signal from TCV shot #45109 (a). The plasma current is normalized
to 300 kA. The simulated density time traces and Thomson scattering points at three loci
of ρtor are shown in (b). The simulated density profiles with Thomson scattering points at
three time points are shown in (c). Note that error bars are provided with the Thomson
scattering data; these represent the sample standard deviation of the data. (For inter-
pretation of the references to colour in text, the reader is referred to the web version of
the article.)

Fig. 6. Nominal simulation of an AUG plasma using equilibrium and input data from AUG
shot #32527 (a). The simulated line-integrated density (solid) and measurements from
AUG shot #32527 (dashed) are shown in (b)–(e) for four interferometer chords. The
simulated wall inventory and plasma inventory are shown in (c). The simulated density
profiles at t = 1.5 s and t = 3 s are shown in (g), together with Thomson scattering
measurements. The line-integrated densities and interferometry measurements at
t = 1.5 s and t = 3 s are shown in (h). (For interpretation of the coloured lines in the
figure, the reader is referred to the web version of the article.)
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interferometer line-integrated density signals show at t= 3 s match
with the Thomson scattering measurements and the interferometer
data, respectively.

Although selfconsistent modeling and simulation of a complete
discharge on two tokamaks is challenging, we emphasize that the
ability of the model to produce smooth density profiles is highly valu-
able for the reconstruction algorithm discussed in the next chapter.

3. Dynamic state observer design using Kalman filtering

In this section, the problem of reconstructing the density profile as
well as modeling errors/disturbances in real-time is addressed. Here,
we will use our knowledge of the process captured in the model, as
introduced in Section 2, to complement real-time diagnostics.

We begin this section by introducing the basic working of an ob-
server applied to the density reconstruction problem. Next, a solution to
compensate for systematic modeling errors is shown. Subsequently, the
observer equations and a method for detecting fringe jumps within the
observer from characteristics of this type of sensor error are described.
Next, the tuning possibilities and reconstruction tradeoffs of the ob-
server are discussed. At the end of this section, tests of the observer
density reconstruction based on simulated data, as well as reconstruc-
tions using experimental data are presented.

The dynamic state observer, or Kalman filter [38], is a tool widely
used in the systems & control community [64] for estimating the in-
ternal state of a dynamical system in real-time by combining mea-
surements with a model of the system. While a Kalman filter is a
minimum-variance estimator for linear dynamical systems, an Extended
Kalman filter (EKF) is a linearized, and therefore sub-optimal version of
the Kalman filter for nonlinear dynamical systems [38]. No guarantees
can be given about the stability and estimation accuracy of the EKF, but
it is considered the de facto standard for estimation of nonlinear systems
and is widely used [64]. We apply the EKF to estimate the density
profile and modeling errors/disturbances in real-time with inter-
ferometry diagnostics (18). More specifically, the EKF iteratively pro-
duces estimates x̂k k of the system state xk at every measurement sample
yk using the state estimate at the previous time step − −x̂k k1 1. A block
scheme of the proposed dynamic state observer is depicted in Fig. 7. At
every iteration of the EKF, a one-sample ahead prediction is made based
on the nonlinear model (17) and (22) and a forward diagnostics model
(23) given a state estimate at the previous time step. The state estimate
is updated with information from the measurement sample yk.

The control-oriented model (17), (22) and (23) is augmented with
an additive random-walk state disturbance to represent modeling er-
rors, similar to [39]. This allows the observer to effectively estimate
modeling errors in real-time as systematic differences between mea-
surements and model-based predictions of the measured quantities. The
advantage of this method over adapting the model coefficients is that
the observer equations remain stable, whereas adaptive parameter es-
timation methods [65,66] introduce extra nonlinearity and may be

unstable depending on the chosen time step.

3.1. Extended Kalman filter for estimation of state and disturbances

In this subsection, the Extended Kalman filter (EKF) [38] including
a state disturbance model is described.

In order to derive the EKF equations we need to model stochastic
behavior of our system (17) and (23) with associated covariance ma-
trices. First, the diagnostics noise is represented by an additive zero-
mean white measurement noise vk with covariance matrix Rk on the
output yk. Furthermore, uncertainty on the evolution of the density,
wall inventory and vacuum inventory is modeled as an additive zero-
mean process noise wk

x with covariance matrix Qk
x on the state xk. Fi-

nally, additive unknown disturbances ∈ζ ℝk
m are modeled on the

plasma density state equation. These disturbances are assumed to be
constant ζk+1 = ζk. For estimating these disturbance in the EKF, a
white noise signal is added to the evolution equation, yielding

= ++ζ ζ wk k k
ζ

1 where wk
ζ is a zero-mean white noise with covariance

matrix Qk
ζ .

By including these noises and disturbances in our system (17), (22)
and (23), the augmented system is written as

= + + +− − − − −x f p x B ζ B u w( , )k k k ζ k k k
x

d 1 1 1 d 1 1 (25)

= +− −ζ ζ wk k k
ζ

1 1 (26)

= +− −d d Δk k k1 1 (27)

= + +y C p x δd v( )k k k k k (28)

where Bζ is chosen as = × ×B I[ 0 ]ζ m m m T2 such that each disturbance
entry influences one variable of the electron density. Let us define the
augmented state ∈ +x ℝk

n mx as =x x ζ[ ]k k
T

k
T T and
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The EKF equations for the system (25)–(28) consist of a prediction
and an update step. First, the predicted augmented state −x̂k k 1, the
predicted fringe jump state −d̂k k 1 are based on a forward evaluation of
the dynamics (25)–(27) given the state estimates at the previous time
step and are given by

= ⎡

⎣
⎢

⎤

⎦
⎥ +−

− − −

− −
−x

f p x

ζ
Gˆ

( , ˆ )
ˆ uk k

k k k

k k
k1

d 1 1 1

1 1
1

(29)

=− − −d dˆ ˆk k k k1 1 1 (30)

The covariance matrix Pk∣k−1 of the prediction error of the augmented
state xk∣k−1 is given by

= +− − − − − −P F P F Qk k k k k k
T

k1 1 1 1 1 1 (31)

Next, in the update step, the prediction is adjusted according the
measurement sample yk. The innovation residual is the difference be-
tween the measurement sample and the prediction of the measured
quantity, and is based on the output equation (28). The innovation
residual zk, its covariance matrix Sk and the near-optimal Kalman gain Lk
are given by

= − −− −xz y H δdˆ ˆk k k k k k k1 1 (32)

= + −S R H P Hk k k k k k
T

1 (33)

= −
−L P H Sk k k k

T
k1

1 (34)

Finally, the updated estimate x̂k k of the augmented state, its covariance

Fig. 7. Block diagram of the dynamic state estimator. The state estimator combines
measurements with a model to reconstruct the density profile in real-time, to be used for
feedback control of the density. We detect fringe jumps from the difference between
measurements and model-based predictions of the measured quantities.
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matrix Pk∣k and the estimated fringe jump state d̂k k are given by

�= + −− −x x L z δ zˆ ˆ ( [Δ ])k k k k k k k k1 1 (35)

�= +− −d d zˆ ˆ [Δ ]k k k k k k1 1 (36)

= − −P I L H P( )k k k k k k 1 (37)

where � − z[Δ ]k k1 denotes the expected value of fringe jumps at time tk
given zk, as discussed in the next subsection.

The EKF (29)–(37) iteratively produces estimates of the augmented
state x̂k k, its associated covariance matrix Pk∣k and estimates of the
fringe jump state d̂k k, based on the measurements yk, the inputs uk and
the initial values x̂0 0 and =d̂ 00 0 , where k = 1, …, N. The computa-
tional speed of the EKF is dominated by (29). Because the EKF uses a
linearization of the nonlinear dynamics (25) in (31), the expressions for
the matrices Pk∣k−1 (31), Sk (33) and Pk∣k (37) are approximations of the
true covariance of the prediction error �

− −− − − −x x x x[( ˆ )( ˆ ) ]k k k k k k k k
T

1 1 1 1 , the true covariance of the innova-
tion residual � z z[ ]k k

T and the true covariance of the estimation error
� − −x x x x[( ˆ )( ˆ ) ]k k k k k k k k

T respectively. No a priori guarantees can be
given about the stability and estimation accuracy of the EKF and results
have to be checked a posteriori.

Note also that the fringe jump state prediction (30) equals its esti-
mate at the previous time step since we do not anticipate for fringe
jumps. In Section 3.3, the estimation tradeoffs involved with choosing
the covariance matrices Q Q,k

x
k
ζ and Rk are discussed.

Naturally, the estimated density profile can be computed using the
density profile parametrization (16), by substituting the updated state
estimate x̂k k in (16). For the results analysis in Sections 3.4 and 3.5,
confidence bounds are plotted on the estimated profiles. These re-
present the standard deviation of the profile estimation error. They are
denoted as σ(ρ, tk) and are computed from the a posteriori covariance
matrix Pk∣k (37) as

∑=
=

σ ρ t Λ ρ p( , ) ( )k
α

m

α α k k
1

,
(38)

where pα,k∣k, α= 1, 2, …, m are the diagonal elements of the covariance
matrix Pk∣k (37). Also, the updated interferometer signals are presented
in the figures of Sections 3.4 and 3.5. These are the synthetic inter-
ferometer signals (23), evaluated using the updated estimates x̂k k and
d̂k k, i.e.

= +y C p x δdˆ ( ) ˆ ˆ
k k k k k k k (39)

These represent the estimated measurement, based on the updated state
estimates.

3.2. Fringe jump detection

Sensor errors can be detected from the innovation residual zk, since
it is the difference between measurements, containing the sensor errors,
and the model-based prediction of the measured quantity. We choose to
flag a fringe jump on the cth interferometry channel when both the
absolute value of the innovation z| |k

c exceeds a threshold and its time
difference − −z z| |k

c
k
c

1 exceeds a threshold.
Since fringe jumps have a magnitude of an integer multiple of δ on

an interferometry channel, the cth channel is flagged to contain a jump
if both the magnitude of the innovation z| |k

c and its time difference
− −z z| |k

c
k
c

1 exceed the thresholds γδ and κδ respectively, where zk
c is the

c-th element of the innovation zk. Recall from Section 2.7 that
= −δ πc2 FIR

1 . The constants γ ∈ (0, 1) and κ ∈ (0, 1) set the detection
sensitivity, where lower values of γ and κ increase the sensitivity, but
also increase the false alarm probability. The expected value of fringe
jumps at time tk is composed of contributions of individual chords and
is written as � �= …− − −[ ]z z[Δ ] [ Δ Δ ]͠k k k k

n T
k1 1

1
1

FIR . The detected jump on
chord c is denoted by � − z[Δ ]k

c
k1 and is now chosen as

� ≈ ⎧
⎨⎩

− ≥
− ≪−

−

−
z

w z z z κδ
z z κδ

[Δ ]
( ) if | |
0 if | |k

c
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k
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k
c

k
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k
c

k
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1

1 (40)

where the estimated jump magnitude w z( )k
c is chosen as a truncation

function and is defined as = ⎡
⎢⎢

− ⎤
⎥⎥

w z z γ( ) sgn( )k
c

k
c z

δ
k
c

where ⌈a⌉ is the

smallest integer larger then or equal to ∈a ℝ. The corrected innovation
residual is denoted by z͠k

c and is given by

�= − −z z δ z[Δ ]͠ kc k
c

k
c

k
c

1 (41)

Effectively, (41) is a modification of a wrapping (or modulo) operator
applied on zk

c. In fact, (41) reduces to =z z δ(mod )͠ kc k
c for γ = 1 and if

− ≥−z z κδ| |k
c

k
c

1 . We choose γ = 0.9 and κ = 0.5. The satisfactory re-
sponse of the corrected innovation z͠k

c to an example innovation signal
zk

c containing both jumps and ramps is shown in Fig. 8, including also
the signals w z( )k

c and − ≥−z z κδ| |k
c

k
c

1 . The detected jump (40) is sub-
tracted from the innovation residual in (41) (also in (35)) and stored in
the fringe jump state d̂k in (36).

3.3. Design of the covariance matrices

The estimation accuracy and estimation convergence speed of an
EKF is determined by the choice of the covariance matrices Q Q,k

x
k
ζ and

Rk (see e.g. [38]).
The measurement covariance matrix Rk is chosen a priori as the

sample covariance of high-pass diagnostic data. The covariance is in-
creased on distrusted output channels or channels whose numerical
evaluation of the line-integrals are sensitive to errors in the equilibrium
reconstruction, as discussed in Section 2.7. In this way, the EKF esti-
mates rely less on interferometry chords deemed unreliable.

The choice of the covariance matrices Qk
x and Qk

ζ is a design tradeoff
between estimation accuracy, estimation convergence speed and noise
level of the estimated state. Furthermore, the choice of the spatial
structure of Qk

x and Qk
ζ determines the smoothness of the estimated

profiles and the spatial correlation of the disturbance estimates.
The process covariance matrix Qk

x is chosen as a symmetric Toeplitz
(constant-diagonals) matrix, with a descending first row. Its entries
reflect the amount of uncertainty on the state evolution. Increasing the

Fig. 8. An example of an innovation signal zk
c corrupted by a positive jump at t = 0.55 s,

a double negative jump at t = 0.6 s and ramps/drifts between t = 0.65 s and t = 0.9 s is
given in (a). The corrected innovation residual z͠k

c is also plotted. The estimated magni-

tude w z( )k
c and the time difference condition − ≥−z z κδ| |k

c
k
c

1 are shown in (b). Observe

that in (b), the jumps in the corrupted zk
c exceed both the magnitude threshold and the

ramp threshold. Consecutively, they are flagged as fringe jumps and are corrected for as
desired. Note also in (b) that the ramps in zk

c are correctly not flagged as fringe jumps

since they do not exceed the time difference threshold even if they exceed the magnitude
threshold. (For interpretation of the colour legends in the figure, the reader is referred to
the web version of the article.)
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values of Qk
x increases the Kalman gain Lk (see (31) and (34)) and

thereby improves the estimation accuracy, but also increases the am-
plification of measurement noise to the state estimate. The values of the
first row determine the spatial correlation of the estimated profile and
are chosen as exponentially decaying values. Increasing the decay
width causes the profile estimates to be more spatially correlated and
thus smooth, but decreases the estimation convergence speed.

The disturbance covariance matrix Qk
ζ is chosen as the product of a

diagonal matrix QD and a symmetric Toeplitz matrix QT with a unit
diagonal and a descending first row. The entries of QD determine the
rate at which the estimated state disturbances ζ̂k change. Increasing
these increases the convergence speed of estimated model errors/dis-
turbances. The values of the first row of QT determine the spatial cor-
relation of the estimated disturbances and are chosen as exponentially
decaying values. Increasing this decay width promotes smoothness of
the estimated disturbances [39]. An example of the matrices Rk, QT and
Qk

x is given in Fig. 9. In Section 3.4.1, the effects of two different set-
tings is investigated.

3.4. Observer performance with simulated data

In this subsection, the estimation performance of the EKF on si-
mulated data for TCV is assessed. The comparison allows to assess the
estimation quality with respect to the simulated density. Results for two
different settings of the Kalman gain (34) and different numbers of
interferometry chords are presented.

3.4.1. Estimation quality and tuning tradeoffs for different observer gains
In order to assess the performance of the observer, two cases in

which the observer estimates a simulated density profile with two dif-
ferent settings of the observer gain are shown. The system (17) is si-
mulated and the observer (29)–(40) is applied to the simulated diag-
nostic signals (23). Some model coefficients (see Table 1) used in the
observer are perturbed with respect to those used in the simulation,
representing inaccurate knowledge of the transport processes, to assess
the ability of the observer to estimate the density in the presence of
modeling uncertainties. The simulation uses input and parameter data
from TCV shot #41953 to recreate a realistic discharge scenario. White
noise with the sample covariance of high-pass measurements of TCV
shot #41953 is added to (23) as measurement noise.

The simulation results for the cases of high and low Kalman gain are
shown in Figs. 10 and 11, respectively. As expected from the discussion
in Section 3.3, a high Kalman gain yields accurate estimates of the
density, as seen in the estimation error (Fig. 10(c)), density profile
(Fig. 10(f)) and the spatial profile of the measurements (Fig. 10(g)), but
these estimates are affected by the measurement noise (Fig. 10(c)(d)).
On the other hand, a low Kalman gain yields less accurate estimates of
the density, as seen in the estimation error (Fig. 11(c)), density profiles

(Fig. 11(f)) and the spatial profile of the measurements (Fig. 11(g)), but
these estimates contain less measurement noise (Fig. 11(c)(d)). How-
ever, in both cases the estimation error is favourably small and the
disturbance estimate ζ̂k k compensates for systematic modeling errors
formed by the perturbed coefficients.

While either choice for the Kalman gain used in this section has its
advantages and drawbacks, optimal settings follow from requirements.
We feel that an intermediate setting provides the best estimation

Fig. 9. Graphical representation of the matrices Rk

(a), QT (b) and Qk
x (c). (For interpretation of the

colour scales in the figure, the reader is referred to
the web version of the article.)

Table 1
Model perturbations.

Coefficient Unit Nominal Perturbed

D [m2/s] 1 0.8
ν [m2/s] 10 5
Nsat [#] 3 × 1019 6 × 1019

σv T( )iz e,b [m3/s] 1 × 10−14 2 × 10−14

Fig. 10. Observer results for simulated data. A high Kalman gain is used. The input and
parameter data of TCV shot #41953 are shown in (a). The estimated central and average
density are shown in (b), with simulated densities in black. The elements of the corrected
innovation residual �− −z δ z[Δ ]k k k1 (see (35)) are shown in (d), individually offset at
intervals of 1 × 1019 m−2. The estimated disturbance is shown in (e). The estimated
density profiles with confidence bounds (38) at t = 0.25 s (blue) and t = 1 s (magenta)
are shown in (f), with simulated profiles in black. The measurements and updated mea-
surements (39) at these time slices are shown in (g). (For interpretation of the references
to colour in text, the reader is referred to the web version of the article.)
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accuracy and an acceptable noise level in the estimated density. In this
case, we proceed with an intermediate gain with respect to the gains
used in this section.

3.4.2. Estimation quality for different numbers of interferometry channels
The number of interferometry channels nFIR is different for each

tokamak. Existing density profile reconstruction methods require
m ≤ nFIR to invert Ω(pk) in (23) and provide the static mapping →y x̂k k.
The observer (29)–(40) with m= 5 is applied on the system simulation
from Section 3.4.1 for different subsets of the 14 interferometry chan-
nels of TCV. Again, the observer uses the perturbed coefficients with
respect to those used in the simulation, see Table 1. In Fig. 12, the
observer performance is shown using either a central channel #7, a side
channel #11, three channels #3, #7, #11, and all 14 channels. In case
of using a single channel, the profile shape is entirely deduced from the
model known to the observer. Consequently, the estimation error (see

Fig. 12(b)) is large and there are large differences between the simu-
lated and estimated profile. While 14 output channels provide the best
accuracy, only three channels already provide a small steady-state es-
timation error. This result can be attributed to the smoothness of the
profile predicted by the model, while the update step keeps the pre-
dicted density evolution from drifting away from the measurements.

3.5. Observer performance with experimental data

In this section, the estimation performance of the observer on ex-
perimental interferometer data of TCV is assessed and compared to
Thomson scattering measurements. Quantitative statements on the ac-
curacy of estimated density profiles with respect to Thomson scattering
points are challenging, since the error bars provided with the Thomson
scattering measurement only account for noise. They do not account for
inaccuracies in equilibria, which are used to map the measurement
locations to ρtor loci.

3.5.1. Low density L-mode shot
The performance of the observer on measurement data from TCV

shot #47675 is shown in Fig. 13. This shot contains two consecutive
fringe jumps on chord #10. All 14 channels except three central and
one outer malfunctioning chords are used to estimate the density. The
model coefficients used in the observer are those chosen in Section
2.10, which were found to be representative for a typical discharge in
TCV. Up to 0.6 s, the estimated density profiles lie close to the Thomson
scattering measurements, see Fig. 13(b) and (e)). After 0.6 s, the density
is estimated to increase, although this is not visible in the Thomson
scattering measurements, see Fig. 13(b) and (e)). The cause for these
may be in inaccurate evaluation of the line integrals (see Section 2.7)
due to inaccurate reconstructed equilibria. Note that the measured and
estimated interferometer signals match well at the low-field side in-
terferometer chords, but show large discrepancies at the high-field side
interferometer chords. In Fig. 13(f), the low-field side interferometer is
#1 and the high-field side interferometer is #14. Accordingly, the in-
novation residuals are large for the high-field side interferometers,
which are the uppermost traces in Fig. 13(c). A quantitative analysis of
the propagation of equilibrium reconstruction errors to the evaluation
of the line-integrals is beyond the scope of this paper.

Two consecutive fringe jumps around t= 0.33 s on chord #10 are
correctly flagged and corrected (see Fig. 13(f)). Note that the mal-
function of three central chords (#8, #9 and #10) implies that the

Fig. 11. Observer results for simulated data. A low Kalman gain is used. The input and
parameter data of TCV shot #41953 are shown in (a). The estimated central and average
density are shown in (b), with simulated densities in black. The elements of the in-
novation residual �− −z δ z[Δ ]k k k1 (see (35)) are shown in (d), individually offset at
intervals of 1 × 1019 m−2. The estimated disturbance is shown in (e). The estimated
density profiles with confidence bounds (38) at t = 0.25 (blue) and t = 1 (magenta) are
shown in (f), with simulated profiles in black. The measurements and updated mea-
surements (39) at these time slices are shown in (g). (For interpretation of the references
to colour in text, the reader is referred to the web version of the article.)

Fig. 12. Observer response to different number of interferometry channels. The simulated
density is shown as a black dashed line. Reconstructed densities using either central
channel #7 (blue), side channel #11 (magenta), three channels #3, #7, #11 (green), all
14 channels (cyan). The density profiles at t = 1 s are shown in the lower figure. In case
of a single channel, the profile shape is deduced from the model. In case of multiple
channels, the profile shape is reconstructed from the measurements. The reconstruction
quality is best when all channels are used. (For interpretation of the references to colour
in text, the reader is referred to the web version of the article.)
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central density must be extrapolated by the observer from the other
chords using the model.

3.5.2. High density H-mode shot
The performance of the observer on measurement data from TCV

shot #48656 is shown in Fig. 14. All 14 channels are used to estimate
the density. Multiple fringe jumps occur on interferometer channel
#14, although they are all corrected, see Fig. 14(c) and (f). The esti-
mated density profiles lie close to the Thomson scattering measure-
ments, see Fig. 14(b) and (e)). However, discrepancies can be seen
when the estimated profile shapes are compared to the Thomson scat-
tering measurements, see Fig. 14(e). Yet, the measured interferometer
and synthetic estimated interferometer signals at these time slices

match to a high degree, see Fig. 14(f). These discrepancies might be
caused by inaccurate equilibrium reconstruction and evaluation of the
line-integrals. Note that equilibria are used both to evaluate the line-
integrals, as well as to map the Thomson scattering points to ρtor loci.
Errors in reconstructed equilibrium may propagate in different ways to
these to applications. Inaccurate reconstruction of the location of the
magnetic axis because of inaccuracies in the free source terms in the
equilibrium reconstruction problem due to inaccurate pressure mea-
surements can lead to inaccurate evaluation of the central inter-
ferometer line-integrals. In Fig. 15, the density profiles obtained by the
observer are compared to profiles obtained by a static least-squares fit
of interferometry data using the measurement matrix Ω(pk), see Eq.

Fig. 13. Observer results for experimental data of TCV shot #47675. The input and
parameter data of this shot are shown in (a). The estimated central and average density
are shown in (b) together with the Thomson scattering measurements at ρtor = 0.1. The
elements of the innovation residual �− −z δ z[Δ ]k k k1 (see (35)) are shown in (c), in-
dividually offset at intervals of 1 × 1019 m−2. The estimated disturbance is shown in (d).
The estimated density profiles with confidence bounds (38) and Thomson scattering
measurements at three time slices are shown in (e). The interferometer measurements and
synthetic estimated interferometer signals (39) at these time slices are shown in (f). The
error bars on the Thomson scattering measurements represent the sample standard de-
viation of the data in bins with a ρtor = 0.05 width and covering three consecutive time
points. (For interpretation of the coloured lines in the figure, the reader is referred to the
web version of the article.)

Fig. 14. Observer results for experimental data of TCV shot #48656. The input and
parameter data of this shot are shown in (a). The estimated central and average density
are shown in (b) together with the Thomson scattering measurements at ρtor = 0.1. The
elements of the innovation residual �− −z δ z[Δ ]k k k1 (see (35)) are shown in (c), in-
dividually offset at intervals of 1 × 1019 m−2. The estimated disturbance is shown in (d).
The estimated density profiles with confidence bounds (38) and Thomson scattering
measurements at three time slices are shown in (e). The interferometer measurements and
synthetic estimated interferometer signals (39) at these time slices are shown in (f).
Again, the error bars on Thomson scattering measurements represent the sample standard
deviation of the data in bins with a ρtor = 0.05 width and covering three consecutive time
points. (For interpretation of the coloured lines in the figure, the reader is referred to the
web version of the article.)
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(24). The least-squares fit uses a minimum amount of Tikhonov reg-
ularization to suppress spatial oscillations at the plasma edge. However,
the fringe jumps on the edge chord #14 after 0.6 s cause the profile fit
to display a steep internal gradient. Recall from Fig. 14 that although
the estimated profiles from the observer show shape discrepancies with
respect to the Thomson scattering measurements, its measured and
updated interferometry signals show remarkable similarity. The dif-
ferences between the profiles are most likely related to the ill-condi-
tioned least-squares fit which requires regularization, and to the pro-
pagation of equilibrium errors to the calculation of line-integrals and
the mapping Thomson scattering points.

Still, the inclusion of Thomson scattering measurements into a real-
time implementation of the observer using a common real-time re-
constructed equilibrium could produce more accurate density profile
estimates. When comparing their respective advantages and dis-
advantages, we can note that Thomson scattering density measure-
ments provide better spatial resolution and do not suffer from fringe
jumps when compared to interferometry measurements. However,
Thomson scattering measurements are typically available at a lower
sample frequency. When employing both diagnostics appropriately in
an observer, the combined advantages could compensate for their re-
spective drawbacks.

4. Future extensions and research

It is known that the fuelling efficiency of the gas valve decreases
with increasing electron temperature in the SOL, since the ionization
depth decreases with increasing electron temperature [67,42]. This is

problematic for ITER and different actuators must be used instead for
density control at high plasma temperature. Pellet injection is foreseen
to provide fuelling at high temperature, while the strike point positions
could influence the pumping and ECRH influences the peaking of the
density profile. In the future we will extend the modeled ionization (6)
with a temperature-dependent ionization distribution. This will allow
the design of controllers which are able to deal with the changing
fuelling efficiency of available actuators. Moreover we may model the
effect of the strike point locations on pumping, and the pump-out me-
chanism: the influence of ECRH on the density transport.

Additional diagnostics systems such as Thomson scattering,
Bremsstrahlung, reflectometry and polarimetry may be incorporated in
the observer for even more reliable real-time density profile estimation.
The detection of fringe jumps may be improved by incorporating the
measurement residuals of neighbouring interferometry chords, or in-
cluding information from other diagnostics such as Thomson scattering.

The observer will be implemented on tokamak control systems in
the near future, and tested against more detailed physics codes for
ITER.

5. Conclusion

A model-based approach to the design of a real-time plasma density
profile reconstruction algorithm has been presented.

A control-oriented model was derived from a spatially discretized
plasma transport equation which takes main particle transport channels
into account. Simulation results show that the model is able to re-
produce the evolution of interferometry signals during a TCV and an
ASDEX-Upgrade discharge with gas fuelling, by tuning the appropriate
coefficients.

Based on this model, an extended Kalman filter was designed that
estimates the density profile, state disturbances as well as fringe jumps
in the interferometry signals. The state disturbance estimates form an
effective way to compensate for model-reality mismatches, even with
significant mismatch between the model assumed in the algorithm and
the model used to simulate the system. Reconstructions on simulated
data as well as offline reconstruction simulations on experimental data
show that the observer estimates the density profile with an accuracy
that is comparable to static fits when compared to Thomson scattering
measurements. Yet, the proposed method provides profiles that are
physically more realistic, whereas static fits can have spatial oscillations
caused by their ill-conditioned inversion problem. It is shown that the
estimation accuracy increases with the number of measurement chan-
nels used and increases with a well-chosen observer gain. In the light of
scarce diagnostics on future reactors, additional and improved self-
consistent modeling of radial transport and particle recycling could
further improve the estimation accuracy. The extensions mentioned in
Section 4 as well as implementation, testing and validation on tokamak
control systems are planned for the near future.

Acknowledgements

The work has been carried out within the framework of the
EUROfusion Consortium and has received funding from the EURATOM
research and training programme 2014–2018 under Grant Agreement
No. 633053. The views and opinions expressed herein do not necessa-
rily reflect those of the European Commission. This work was supported
in part by the Netherlands Organization for Scientific Research via F.
Felici's VENI grant: “Control of plasma profiles in a fusion reactor” (No.
680.47.436). The authors gratefully acknowledge Josef Kamleitner of
SPC-EPFL for providing the GTI code to compute the interferometry
matrix, and Wouter Vijvers of FOM-DIFFER and Alexander Mlynek of
IPP Garching for useful discussions.

Fig. 15. Comparison of density profiles obtained by the observer, by a static least-squares
fit of interferometry data and Thomson scattering measurements for TCV shot #48656.
Again, the error bars on Thomson scattering measurements represent the sample standard
deviation of the data in bins with a ρtor = 0.05 width and covering three consecutive time
points. Note that both the estimated density profiles and the least-squares fit use inter-
ferometry data, but no Thomson scattering data. (For interpretation of the coloured lines
in the figure, the reader is referred to the web version of the article.)
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Appendix A. Numerical implementation

This appendix will treat the details of the numerical implementation, including the spatial and temporal discretization of the radial particle
density transport equation (2) as well as some measures which have been taken to render the problem computationally efficient for real-time
applications. Appendix A.1 treats the spatial discretization of the PDE using finite elements and Appendix A.2 shows the time discretization. Finally,
Appendix A.3 shows how the line-integrals of the electron density in (21) are efficiently evaluated.

A.1 Spatial discretization using a finite-element method

The infinite-dimensional problem of the PDE (2) in the spatial coordinate ρ is transformed into a finite-dimensional problem using the finite-
element method (see, e.g. [54]) similar to [55]. An important advantage of using a finite element method is that it allows efficient computation of the
dynamics, required for real-time applications, and also that the order of spatial derivatives of the elements involved are, as we will see, one order
lower than the order of the PDE.

The resulting system of ODEs will contain the physical quantities in the parameter = ′p t c c T I V G G Ω( ) [ ]D H e,b p 1 0 defined in Section 2.5,
which lies in the parameter spaceP , i.e. ∈p t( ) P . For reasons of brevity, the parameter space is not explicitly specified, but the letterP is used to
indicate functional dependencies of the parameter p(t) in the remainder of this paper.

Consider our time-varying, inhomogeneous PDE (2) on the domain = ∈ ≤ ≤ ≤ ≤Ω t ρ t t t ρ ρ{( , ) ℝ , 0 }0 f e
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′ +
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with the radial particle flux Γ given by (3) and the net electron source S given by (4).
First, we approximate the electron density by
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where the basis functions Λα : [0, ρe] → [0, 1], α = 1, …, m are chosen as cubic B-splines with a finite support [56]. The knot sequence is denoted by
ρ1 < ρ2 < ⋯ < ρm−1 < ρm and we fix ρ1 = 0, ρm−1 = 1 and ρm = ρe. The boundary conditions ∂ne/∂ρ|ρ=0 = 0 and ==n | 0e ρ ρe of Section 2.1.3
are satisfied by choosing the basis functions Λα as the appropriate linear combination of the B-splines [56] such that ∂Λα/∂ρ|ρ=0 = 0 and Λα(ρe) = 0
for every α= 1, …, m. For the purpose of control-oriented modeling, a small number of density states (m = 5) with closely-spaced knots near the
plasma edge is chosen, see Fig. 4 for an example of basis functions.

By substituting the electron density parameterization (A.2) in (A.1), (3) and (4), the electron density continuity is written as
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where the net electron source S is written as
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Projecting (A.3) onto a set of test functions Ψβ : [0, ρe] → [0, 1], β = 1,…, m and integrating over the spatial domain yields the weak formulation
of (A.1). The test functions Ψβ(ρ), β = 1, …, m with ∑ == Ψ ρ( ) 1β

m
β1 are chosen as cubic B-splines with a finite support on the same knot sequence

ρ1 < ⋯ < ρm. The weak form can be formulated for every β = 1, 2, …, m and is written as
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Note that integration by parts is used which reduces the order of the maximum radial derivative to be evaluated. The weak form is now written2 as
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2 For ease of notation, the i, jth element of a matrix ∈ ×A ℝm n or a matrix function → ×A: ℝm nU is denoted as [A]ij, where i ∈ {1, …, m}, j ∈ {1, …, n} andU is the argument space.
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which can also be written in vector form
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where the elements of the matrices functions → = …×M H J L β m, , , : ℝ , 1, ,β
m mP and → ×P: ℝm 2P are defined as
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in (A.8) reduces to ′ +( )Ψ V G D G νΛβ

dΛ
dρ α

ρ
1 0

α

e

since ′ ==V | 0ρ 0 . This resulting term represents particle flux Γ at

the domain boundary ρe in the weak formulation (A.6). Therefore Γ ρe has been added as an inflow to the vacuum inventory (11). Note the nonlinear
terms in (A.6).

Next, the wall and vacuum particle inventory balances (9) and (11) are written as
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Finally, (A.6) is premultiplied by M−1 and stacked with (A.12)–(A.13) to get the nonlinear system of ODEs
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where state vector ∈x t( ) ℝnx with nx = m+ 2 and the input vector ∈u t( ) ℝnu with nu = 3 are defined as
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The matrix function → ×A: ℝn nx xP , the vector function × →f : ℝ ℝn nx xP and the matrix ∈ ×B ℝn nx u are defined as
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To quickly compute (A.18)–(A.20), the integrals in (A.7)–(A.11) and (A.14)–(A.16) can be precomputed if the integrands do not depend on time,
i.e. if all time- and space-dependent variables are written as (a sum of) products of time-varying variables and functions of ρ. This was naturally done
for the electron density in (A.2) but is also done for ν, V′ and the mode-dependent D, ν0, Nsat, τSOL, Λiz. The time-varying part of V′ is separated as e.g.

′ = ≈∂
∂V ρV t2 ( )V

ρ p . For example, (A.7) is written as a product M = 2Vp(t)ZM where the matrix ∈ ×Z ℝm m
M does not depend on time and is given by
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Next, this integral and (A.8)–(A.11) and (A.14)–(A.16) are numerically evaluated using Legendre-Gauss quadrature [68] as is also done in [40], for
each combination of the switching parameters cD × cH ∈ {0, 1} × {0, 1}.

A.2 Time discretization using a trapezoidal method

The system of continuous-time ODEs (A.17) can be discretized in time. Consider an equidistant time grid tk = t0 + kTs, k ∈ {0, 1, …, N} where
Ts > 0 is the time step and = − ∈N t t T( )/ ℕf 0 s . We choose a finite difference approximation of the time derivative ≈ −+dx dt x x T/ | ( )/t k k1 sk and
apply the trapezoidal method on (A.17) to get
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where the discrete-time state, input and parameter are defined as xk = x(tk), uk = u(tk) and pk = p(tk) respectively, and θ ∈ [0, 1] is a discretization
parameter3. We choose θ= 1/2. For practical reasons, the approximations pk+1 ≈ pk and uk+1 ≈ uk are applied. To obtain a scheme that requires no
iterations, we set f(pk+1, xk+1) ≈ f(pk, xk). To ensure stability of the scheme given the latter choice, the time step must be sufficiently small. Since
most dynamics in the right-hand side of Eq. (A.17) are linear in the state x, the scheme is found to be stable in practical use with the time step of 1 ms
used for TCV simulations and 1.5 ms for ASDEX-Upgrade simulations, presented in Sections 2.10, 3.4 and 3.5.

Rewriting (A.21) and applying these approximations yields the nonlinear system of difference equations

= +− − − −x f p x B p u( , ) ( )k k k k kd 1 1 d 1 1 (A.22)

where × →f : ℝ ℝn n
d

x xP and → ×B : ℝn n
d x uP are defined as

= − −
+

−f p x I θT A p θ T A p x
T f p x

( , ) ( ( )) [(1 ) ( )
( , )]

k k k k k

k k

d s
1

s

s

= − −B p I θT A p T B( ) ( ( ))k kd s
1

s

A.3 Numerical evaluation of line integrals

The spatial discretization (A.2) and an equilibrium ψ(R,Z) allow to write the line integrals in the measurement equation (23) as a linear com-
bination of the state xk. The output equation (23) is given by

= +y C p x δd( )k k k k

where = ×C p Ω p( ) [ ( ) 0 ]k k
n 2FIR and the matrix function → ×Ω: ℝn mFIRP is defined as

∫=Ω Λ ρ r Z[ ] ( ( , ))dLiα L α
i (A.23)

First, the spatial distribution of ψ is assumed to be available from real-time 2D equilibrium reconstruction on a rectangular R-Z grid of the plasma
cross-section (see e.g. [51,53]). It is assumed that ρ(ψ) is known.

Next, the integrals are divided in intervals of subsequent points = = …X R Z p n[ ] , 1, ,p
i

p
i

p
i T( ) ( ) ( )

p which are defined as the intersections between the
ith chord and the rectangular grid lines.

3 This is a generalization of the trapezoidal rule; θ= 1/2 yields the trapezoidal rule, whereas θ= 0 and θ = 1 yield the forward and backward Euler method respectively.
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∫∑=
=

−
+Ω Λ ρ X[ ] ( ( ))dLiα

p

n

X

X
α

1

1

p
i
p
ip

( )
1

( )

Finally, the integrals in (A.23) are numerically evaluated using the trapezoidal method as

∑≈
+

=

−
+Ω

Λ ρ X Λ ρ X
L[ ]

( ( )) ( ( ))
2iα

p

n
α p

i
α p

i

p
i

1

1
1

( ) ( )
( )

p

where Λ ρ X( ( ))α p
i( ) is approximated by a linear interpolation between the function values Λα(ρ(X)) evaluated at the two R-Z grid points adjacent to the

chord-grid intersection point Xp
i( ), and = + = … −+L X X p n( ) ( ) , 1, , 1p

i
p
i

p
i( )

1
( ) 2 ( ) 2

p is the distance between subsequent chord-grid intersection points.
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