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On Optimal Feedforward and ILC:
The Role of Feedback for Optimal

Performance and Inferential Control ?

Jurgen van Zundert ∗ Tom Oomen ∗
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Eindhoven University of Technology, Eindhoven, The Netherlands

(email: j.c.d.v.zundert@tue.nl)

Abstract: The combination of feedback control with inverse model feedforward control or
iterative learning control is known to yield high performance. The aim of this paper is to clarify
the role of feedback in the design of feedforward controllers, with specific attention to the
inferential situation. Recent developments in optimal feedforward control are combined with
feedback control to jointly optimize a single performance criterion. Analysis and application
show that the joint design addresses the specific control objectives. The combined design is
essential in control, and in particular in inferential control.

Keywords: Inferential control, Optimal control, Feedforward control, Feedback control

1. INTRODUCTION

Many control applications involve both feedback and feed-
forward. Both are often tuned separately using specific
approaches and based on different control goals, e.g., dif-
ferent norms. An example is iterative learning control
(ILC) where the feedforward is designed as an add-on to
feedback. This paper addresses the fundamental role of
feedback in combination with feedforward and ILC, both
for regular and inferential control.

The role of feedback is often assumed fixed in feedforward
and ILC design, see e.g. Van der Meulen et al. (2008);
Bristow et al. (2006), but also related approaches in
Boeren et al. (2017). In fact, in Boeren et al. (2017) the
performance of the feedforward controller depends on the
feedback controller which is required to satisfy a certain
assumption. Notable exceptions are Rogers et al. (2007),
where it is advocated to use a 2D framework, and research
on equivalent feedback (Goldsmith, 2002). In the present
paper, the aim is to connect feedback and feedforward
design.

Recent interest in inferential control, e.g. for mechatronics
(Oomen et al., 2015; Ronde et al., 2012; Voorhoeve et al.,
2016), has led to a new interest in controller structures.
Inferential control imposes an additional constraint on how
to design feedforward and feedback that jointly optimize
a single performance criterion, which is not immediate
in such situations as pointed out in Bolder and Oomen
(2016). However, at present limited guidelines are available
how to actually design the controller. In the present paper,
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the joint design of feedback with feedforward/ILC in a
two degrees-of-freedom inferential control architecture is
investigated.

Although there have been important developments in ILC
and feedforward design frameworks, the role of feedback is
often not explicitly addressed. The aim of this paper is to
clarify the role of feedback in the design of feedforward
controllers, with specific attention to both the regular
and the inferential situation. The method follows from
recent developments of norm-optimal ILC and feedforward
algorithms in Van Zundert et al. (2016). The algorithms
are used to show the role of feedback and feedforward
in achieving optimal performance, thereby confirming the
claim related to the assumption SH = 1 in Boeren et al.
(2017). It is also shown that this gives a direct solution
to the inferential control problem, providing a solution
that falls within the controller structures outlined in the
framework of Oomen et al. (2015). As such, the present
paper extends Van Zundert et al. (2016) in these two
aspects.

The outline of the paper is as follows. In section 2, the
regular and inferential control problems are formulated.
The inferential control application of a wafer stage is
presented in section 3. In section 4, the control design
for the regular case z = y is presented. In section 5, the
control design for the inferential case z 6= y is presented.
Application to iterative learning control (ILC) is presented
in section 6. Section 7 contains conclusions.

2. PROBLEM FORMULATION

In this section the control objective is formulated. The
formulation is split into two parts: the standard control
problem with z = y and the inferential control problem
with z 6= y.
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Fig. 1. Two degrees-of-freedom tracking control architec-
ture for z = y with inputs reference trajectory r and
measurement ym. The control objective is tracking r
with y.

2.1 Control for z = y

Consider the system

xk+1 = Axk +Buk +Gwk,

yk = Cyxk +Hywk,

ymk = yk + vk,

(1)

with state xk ∈ Rnx , input uk ∈ Rni , output yk ∈ Rno ,
output measurement ymk ∈ Rno , process noise wk ∈ Rnx ,
and measurement noise vk ∈ Rno , where

w ∼ N (0, σ2
wInx

), v ∼ N (0, σ2
vIno

),

with variances σ2
w, σ

2
v ∈ R+.

In order to have y track a pre-specified reference trajectory
r, the two degrees-of-freedom control architecture in Fig. 1
is considered where

P
s
=

[
A B
Cy 0

]
, H

s
=

[
A G
Cy Hy

]
.

The control objective is the design of controller Ky to
minimize ey = r− y, with measurement ym of y available.

Remark 1. For notation convenience, it is assumed that
system (1) is time-invariant and without direct feedthrough
from u. However, all results can readily be extended to the
more general case of time-varying systems and systems
with direct feedthrough.

2.2 Control for z 6= y

In inferential control there are no means to directly mea-
sure the point of interest z. Instead, only measurements
y of other locations are available. This control challenge
may arise from undesired flexibility in the system, as in
the printer application of Fig. 2(a), or from the inability
to measure at the desired location, as in the wafer stage
application of Fig. 2(b).

For an inferential setting, z 6= y, (1) is extended with

zk = Czxk.

The extended control architecture is shown in Fig. 3, where

P z s
=

[
A B
Cz 0

]
, Hz s

=

[
A G
Cz 0

]
.

The control objective is the design of Kz to minimize
ez = r − z, with only measurements ym of y available.

y1 y2
z

(a) High accelerations of the print heads induce deformations of the
gantry causing mismatches between measured positions y1, y2 and
the actual print head position z.

sensory

z

(b) In wafer scanner systems, an optical column directs light to the
light sensitive layers of the wafer. The optical column hampers po-
sition measurement of the exposed performance location z. Instead,
the edge of the wafer stage y is measured.

Fig. 2. Examples of inferential control problems. Perfor-
mance location z cannot be measured and only mea-
surements y are available.
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Fig. 3. Two degrees-of-freedom tracking control architec-
ture for inferential control where performance variable
and measurement are different: z 6= y. The control
objective is tracking r with z.

3. WAFER STAGE APPLICATION

Wafer stages are key components in wafer scanners used
for the production of integrated circuits. The stages accu-
rately position the wafer during exposure.

The considered system is a simplified version of the wafer
stage in Fig. 2(b) which is assumed to be a rigid body,
see Fig. 4. The wafer stage is actuated by force F and can
translate in q1, q2 and rotate in φ. The point of interest z
cannot be measured due to the optical column used for
exposure. Instead, the edge of the stage y is measured
with a sensor that is located on the fixed world yielding
measurement ym. Note that if there are no rotations, i.e.,
φ = 0, then z = y, otherwise z 6= y.
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(a) Position y corresponds
with point of interest z:
z = y.
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(b) Rotations of the stage in-
troduce a mismatch in posi-
tion: z 6= y.

Fig. 4. Top view of wafer stage model revealing the
inferential control challenge as z 6= y for φ 6= 0.

Table 1. Parameter values of the wafer stage model.

parameter symbol value unit

mass m 8 kg
inertia I 0.0133 kgm2

spring constant k 104 N/m
damping constant d 100 Ns/m

length l 0.1 m
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Fig. 5. Reference trajectory r of length N = 2001 samples.

A linearized model of the system in Fig. 4 is considered, see
also (Van Zundert et al., 2016, sec. 3.4). The continuous-
time state-space realization of the linearized system dy-

namics with input F , state q =
[
q1 q̇1 φ φ̇

]>
, and output

y is

[
Ac Bc

Cy
c 0

]
=


0 1 0 0 0
0 0 0 0 1

m
0 0 0 1 0

0 0 − 1
2

kl2

I
− 1

2

dl2

I
1
2

l

I
1 0 0 0 0

 .
Assuming zero-order-hold on the input, the discretized
system has a state-space realization

P y s
=

[
A B
Cy 0

]
=

[
eAch A−1

c (A− I)Bc

Cy
c 0

]
,

with sample time h = 0.001 s. The parameters are listed
in Table 1. Furthermore, G = I4 and Hy = 01×4 in (1),
with noise variances σ2

w = 10−6, σ2
v = 10−10.

The reference trajectory r consists of a fourth-order for-
ward and backward motion and is provided in Fig. 5.

4. APPLICATION TO z = y

In this section, it is assumed that performance variable z
can be measured, i.e., z = y (Cz = Cy).
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Fig. 6. Standard feedback/feedforward control.

4.1 Analysis

A common control architecture consisting of feedback
controller CFB and feedforward f is shown in Fig. 6.
Implementation of this controller in the diagram of Fig. 1
yields

ey = S(r − Pf)− SHw + SPCFBv, (2)

with sensitivity S =
(
I + PCFB

)−1
.

The first term in (2) is completely deterministic and can
be influenced by both feedback and feedforward. Note that
the term cannot be fully eliminated using feedback CFB

since S = 0 is not feasible due to Bode’s sensitivity integral
(Seron et al., 1997). In contrast, the term can be fully
eliminated by feedforward f = P−1r.

The second and third term in (2) are stochastic and can
therefore not be completely eliminated. Both terms can
only be influenced by feedback. Assuming that the first
term in (2) is eliminated by feedforward f = P−1r and
that there is no measurement noise, i.e., v = 0, then
ey = −SHw. This error has minimal variance if it is white.
This imposes the condition

SH = 1, (3)

corresponding to Assumption 2.1 in Boeren et al. (2017).

4.2 Optimal control

The optimal control law is derived from norm-optimal ILC.

ILC Given data ej , fj of current trial j, norm-optimal
ILC determines feedforward fj+1 for next trial j+1 that
minimizes

‖ej+1‖2we
+ ‖fj+1‖2wf

+ ‖fj+1 − fj‖2w∆f
, (4)

with we, wf , w∆f ∈ R+, where ‖(·)‖2w = (·)>w(·). A
common solution method for norm-optimal ILC is lifted
ILC which is based on describing input-output relations in
lifted/supervector notation (Moore, 1993). In Van Zundert
et al. (2016) it is shown that the computation time of
the lifted solution method grows as O(N3), with N the
task length. Moreover, an alternative resource-efficient
solution method based on Riccati equations is presented.
The method yields exactly the same results, but the
computation time grows as O(N). In the remainder of this
section and section 5, the focus is on feedforward control.
See section 6 for ILC.

Feedforward Feedforward can be seen as a special case
of ILC in which only one trial is performed, i.e., with
w∆f = 0. Consequently, (4) reduces to the LQ criterion

N−1∑
k=0

(eyk)>Q(eyk) + (uk)>R(uk). (5)

The weights are selected as Q = we = 1010, R = wf =
10−10 to minimize ey with minimal restriction on u. The
optimal resource-efficient solution is given by Lemma 2.
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Fig. 7. Perfect tracking for (8) on the system without noise
( ) deteriorates under the presence of noise ( ).

Lemma 2. (Optimal feedforward). Input u for (1) with
w, v = 0 that minimizes (5) is given by

u∗k = −Kk xk + Lg
kgk+1, (6)

with

Pk = −A>Pk+1B(R+B>Pk+1B)−1B>Pk+1A

+A>Pk+1A+ (Cy)>Q(Cy), PN = 0nx×nx ,

gk =
(
−A>Pk+1

(
I +BR−1B>Pk+1

)−1
BR−1B>

+A>
)
gk+1 + (Cy)>Qrk, qN = 0nx×1,

Kk =
(
R+B>Pk+1B

)−1
B>Pk+1A,

Lg
k =

(
R+B>Pk+1B

)−1
B>.

(7)

Proof. Follows from setting w∆f = 0 and D = 0 in
Theorem 6 of Van Zundert et al. (2016).

Next, optimal input (6) is used for design of Ky in Fig. 1.

4.3 Feedforward approach

For the case without noise, i.e., v, w = 0, (2) reduces to

ey = S(r − Pf)

which is completely deterministic. Perfect tracking can be
obtained through feedforward only by selecting, see also
Lemma 2,

uk = f∗k , (8)

with

f∗k = −Kk x
∗
k + Lg

kgk+1. (9)

Since (1) is completely deterministic for v, w = 0, optimal
state x∗ can be calculated a priori as

x∗k+1 = (A−BKk)x∗k +BLg
kgk+1. (10)

Note that this approach is also followed in Van Zundert
et al. (2016) for feedforward design.

Fig. 7 shows excellent tracking for (8) on the wafer stage
system of section 3 without noise (v, w = 0). Note that

ey = 0 if Q
R → ∞ in (5), whereas (7) requires R > 0

to avoid singularity. The results confirm the analysis in
section 4.1 that the first term in (2) can be fully eliminated
by feedforward.

Fig. 7 also shows the results for (8) on the true system
with noise (v, w 6= 0). Clearly, the high performance is
deteriorated by the noise. Note that since (8) consists of
feedforward only, CFB = 0, S = 1 in (2) such that

ey = (r − Pf)−Hw = −Hw, (11)

since (8) eliminates the first term as shown without noise.
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|e
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Fig. 8. The spectrum of ey for (12) ( ) is flat confirming
optimality, whereas for (8) ( ) it is colored confirm-
ing non-optimality.

4.4 Combined feedforward and feedback

The previous section shows that feedforward control can
eliminate all reference induced errors, but cannot com-
pensate for noise induced errors. In contrast, feedback
control can compensate for noise induced errors, see also
section 4.1. A key observation is that (6) includes state
feedback on state x, but that this is not exploited in (8)
by replacing x with x∗ in (10) assuming a noise free system.
In the proposed approach, feedback in (6) is exploited to
suppress the noise induced errors.

Combined feedforward and optimal state feedback Opti-
mal control law (6) can be rewritten as

uk = −Kk∆xk + f∗k , (12)

with f∗k in (9) and

∆xk = xk − x∗k
the deviation of the true state from the optimal state
(10). Control input (12) consists of feedforward and state
feedback, and assumes that x is available. Since (12) uses
state x rather than ym for feedback, v is not fed back in
(2) such that

ey = S(r − Pf)− SHw.
Feedforward f∗ eliminates all reference induced errors,
i.e., the first term, as shown by section 4.3. Since the
feedback control is optimal it satisfies (3), and yields
minimal variance on ey by creating SH = 1.

The spectrum of ey for application on the wafer stage
system of section 3 is shown in Fig. 8. The figure shows
that the feedback control in (12) yields a flat spectrum of
ey, confirming whiteness and thus optimality. Fig. 8 also
shows that the spectrum of ey is not flat for (8), indicating
non-optimality of the feedforward only approach.

Combined feedforward and output feedback Control (12)
assumes that true state x is available, which is generally
not the case. Therefore, x is replaced by an estimate x̂
that is obtained through a Kalman filter on the measurable
output ym as given by Lemma 3.

Lemma 3. (Kalman filter). State x and output y of system
(1) can be estimated from ym by

x̂k+1 = Ax̂k +Buk + Lk(ymk − ŷk),

ŷk = Cyx̂k,
(13)

with gain matrix

Lk = (Xk(Cy)> + N̄)(CyXk(Cy)> + R̄)−1,
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Fig. 9. Optimal feedforward control and observer based
output feedback control implementation. The feed-
back control is based on state estimate ∆x̂ obtained
through a Kalman filter from measurement ym.
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Fig. 10. Innovation ym−ŷ of the Kalman filter (13) under
control (14) has a flat spectrum confirming optimality.

where X is the solution of the discrete-time dynamic
Riccati equation

Xk+1 = −AXk(Cy)>(CyXk(Cy)> +Rn)−1CyXkA
>

+AXkA
> +Qn, X0 = 0nx×nx ,

and

R̄ = Rn +HyNn +N>n (Hy)> +HyQn(Hy)>,

N̄ = G(Qn(Hy)> +Nn),

Qn = σ2
wInx

, Rn = σ2
vIno

, Nn = 0nx×no
.

Proof. See, for example, Anderson and Moore (1989).

Replacing ∆x in (12) by ∆x̂k = x̂k − x∗k yields

uk = −Kk∆x̂k + f∗k . (14)

This combination of feedforward control and observer
based output feedback control is similar to linear quadratic
Gaussian (LQG) control, with the key difference that here
an explicit split in feedback and feedforward is made. The
complete control structure is shown in Fig. 9.

Controller (14) consists of feedforward and feedback. Feed-
forward f∗ eliminates all reference induced errors, as
shown in section 4.3. Feedback control −Kk∆x̂k yields
minimal variance on ey if v = 0 since then x̂ = x and
(11) is recovered. Similar as for the traditional feedback
controller, optimality of Kalman filter (13) is achieved
when the input, i.e., innovation ym−ŷ, is white.

Fig. 10 and Fig. 11 show the results for (14) on the wafer
stage application of section 3. Fig. 10 shows that the inno-
vation indeed has a flat spectrum, confirming optimality of
the Kalman filter. Fig. 11 shows that the combined feedfor-
ward/feedback approach (14) outperforms the feedforward
only approach (8) since it compensates for disturbances
through feedback.

In summary: controller Ky with optimal feedforward re-
quires feedback control to whiten trial-varying distur-
bances and a Kalman filter to whiten measurement noise.
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Fig. 11. The combined feedback and feedforward approach
(14) ( ) achieves high performance, outperforming
the feedforward only approach (8) ( ).
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Fig. 12. The performance in terms of ez for (14) is poor
when based on Cy ( ), but good when based on Cz

( ).
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Fig. 13. Controller implementation in an inferential setting
z 6= y, where the feedforward is optimized for z and
the feedback for y.

5. APPLICATION TO z 6= y

In this section, the inferential control problem is consid-
ered where performance variable z differs from output y,
i.e., z 6= y. Here,

Cz =
[
1 0 2

5 l 0
]
.

Fig. 11 shows that (14) yields excellent performance in
terms of ey. However, Fig. 12 shows that the performance
in terms of ez = r − z is poor. The results indicate the
importance of proper control architecture design.

The performance is often improved by design of feedfor-
ward f∗ for z such that it minimizes ez, see Fig. 13. How-
ever, the design in Fig. 13 creates a hazardous situation
since the feedforward regulates for z, while the feedback
regulates for y. Indeed, if the feedforward is optimal and
yields ez = 0, then it is counteracted by feedback control
since generally ey 6= 0 if ez = 0 and the high performance
of feedforward is deteriorated. Instead, feedback and feed-
forward control should have a common objective.

Both the feedback and feedforward control should be
designed for z as shown in Fig. 14. The combined feedback
and feedforward design proposed in section 4 guarantees a
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Fig. 14. Controller implementation in an inferential setting
z 6= y, where both feedback and feedforward are
explicitly designed for z.

common objective for feedback and feedforward. For z 6= y,
criterion (5) changes to

N−1∑
k=0

(ezk)>Q(ezk) + (uk)>R(uk). (15)

The optimal solution that minimizes (15) directly follows
from replacing Cy in Lemma 2 with Cz. Note that this
indeed affects both feedback K and feedforward f∗ in (14),
see also Fig. 14. Importantly, Lemma 3 remains unchanged
since it uses measurement ym and should therefore be
based on Cy.

Fig. 12 shows the results for the combined control ap-
proach based on criterion (15). As a result of the common
objective in feedback and feedforward, the explicit design
for z outperforms the design for y in terms of ez.

In summary: a two degrees-of-freedom control architecture
is crucial in inferential control, in conjunction with the
whitening of the feedback and Kalman filter of section 4.

6. ITERATIVE LEARNING CONTROL

In this section, the combined design in an ILC setting
is analyzed. Whereas inverse model feedforward requires
high quality models, ILC can compensate for model mis-
matches.

The inferential case z 6= y is of particular interest due to
the feedback mechanism over trials present in the feedfor-
ward update. As pointed out in Bolder and Oomen (2016),
the feedback action on y is iteratively compensated by the
feedforward update, resulting in counteracting feedback
and feedforward action. Similar as for feedforward, both
feedback and ILC should be designed on z. The ILC
performance objective in terms of ezk,j+1 reads

N−1∑
k=0

(ezk,j+1)>we(e
z
k,j+1) + (uk,j+1)>wu(uk,j+1)

+ (uk,j+1 − uk,j)>w∆u(uk,j+1 − uk,j),
where j indicates the current trial and j+1 the next trial.
The solution is a straightforward extension of the results
for the feedforward case, see section 4 and section 5.

7. CONCLUSION

For the regular case z = y, the combined feedback and
feedforward controller Ky should be designed such that
trial-varying disturbances are whitened by feedback.

For the inferential case z 6= y, a two degrees-of-freedom
control architecture is crucial, in conjunction with the
whitening of feedback. Norm-optimal ILC automatically

provides this solution, but care should be taken, see also
(Doyle, 1978).

In ILC, the rationale is that the system model is approxi-
mate, which is compensated through iterations, motivating
that alternative frameworks may be essential, see also
Doyle (1978). Still, the results are of conceptual interest:
1) SH = 1 is a sensible assumption/control goal for distur-
bance rejection, and 2) inferential control needs additional
attention on controller structures.
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