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Abstract Cloud manufacturing is an emerging service-
oriented manufacturing paradigm that integrates and manages
distributed manufacturing resources through which complex
manufacturing demands with a high degree of customization
can be fulfilled. The process of service selection optimization
and scheduling (SSOS) is an important issue for practical im-
plementation of cloud manufacturing. In this paper, we pro-
pose new mixed-integer programming (MIP) models for solv-
ing the SSOS problem with basic composition structures (i.e.,
sequential, parallel, loop, and selective). Through incorpora-
tion of the proposed MIP models, the SSOS with a mixed
composition structure can be tackled. As transportation is in-
dispensable in cloud manufacturing environment, the models
also optimize routing decisions within a given hybrid hub-
and-spoke transportation network in which the central deci-
sion is to optimally determine whether a shipment between a
pair of distributed manufacturing resources is routed directly
or using hub facilities. Unlike the majority of previous re-
search undertaken in cloud manufacturing, it is assumed that
manufacturing resources are not continuously available for
processing but the start time and end time of their occupancy
interval are known in advance. The performance of the pro-
posed models is evaluated through solving different scenarios
in the SSOS. Moreover, in order to examine the robustness of
the results, a series of sensitivity analysis are conducted on key
parameters. The outcomes of this study demonstrate that the

consideration of transportation and availability not only can
change the results of the SSOS significantly, but also is nec-
essary for obtaining more realistic solutions. The results also
show that routing within a hybrid hub-and-spoke transporta-
tion network, compared with a pure hub-and-spoke network
or a pure direct network, leads to more flexibility and has
advantage of cost and time saving. The level of saving de-
pends on the value of discount factor for decreasing transpor-
tation cost between hub facilities.

Keywords Cloudmanufacturing . Service selection and
scheduling . Service occupancy . Hub-and-spoke
transportation network .Mixed-integer programming

1 Introduction

The manufacturing industry is undergoing a major transfor-
mation due to evolving customer expectations. Traditional
product-oriented manufacturing systems allow customers to
purchase finished products for which customer involvement
in design, engineering, or manufacturing process is at mini-
mum. In today’s customer-centric environment, though, cus-
tomers expect to see customization options in order to have
access to personalized items that fulfill their unique needs. For
example, to meet customer expectations, the number of vari-
eties in automobile vehicle models in the USAwas increased
from 44 in 1969 to 165 in 2006 [23]. According to a study by
[7], almost 81% ofmotorcyclists prefer to have the motorcycle
seats made-to-order. Magnusson and Pasche [40] investigated
a forklift truck manufacturing company which has increased
its customized products up to 25%. Small and medium-sized
enterprises (SMEs) have proven to exhibit a great potential to
fulfill customers’ evolving expectations with their diverse
functionalities, flexibility due to their smaller size compared
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to large manufacturing enterprises, and potential to develop
service-oriented businesses [24, 25, 52, 64]. However, the
lack of powerful platforms that allow (1) interactions between
customers and SMEs [1], and (2) collaboration among geo-
graphically dispersed SMEs in a real-time, on-demand, dy-
namic setting [15, 21], poses challenges in the transformation
process of shifting toward a service-oriented manufacturing
paradigm. Cloud manufacturing provides an attractive solu-
tion for these problems by enabling integration of manufactur-
ing resources of partner SMEs such that they can perform
complex manufacturing tasks cooperatively with a high de-
gree of customization [30, 42, 67], a process that is impossible
to perform in the standard large-scale manufacturing systems.
This platform is an on-demand search and recommendation
tool that identifies all kinds of manufacturing services (such as
design, engineering, machining, testing, and packing) in the
product lifecycle to satisfy customer requirements for custom-
ized manufacturing tasks. However, optimal selection and
scheduling of these services are still quite challenging, espe-
cially considering the transportation aspect across geographi-
cally dispersed SME locations. In this study, we attempt to
answer the following research questions:

(1) How to model service selection and scheduling for cloud
manufacturing tasks with different subtask composition
structures.

(2) How to optimally route a shipment between geographi-
cally dispersed SMEs using hybrid hub-and-spoke trans-
portation network.

(3) How to deal with service occupancy and how to schedule
subtasks onto available services.

Cloud manufacturing, which is also called “cloud-based
design and manufacturing” [63] or “cloud-based global supply
chain” [1], is a new service-oriented business model, which is
enabled by the recent advances in the field of information
technology. Cloud manufacturing utilizes the Internet, big da-
ta, the Internet of Things (IoT), cloud computing, etc., to
virtualize and integrate distributed manufacturing resources
into cloud services and manage them under intelligent control
of a centralizedmanufacturing platform [21, 39, 47, 48, 54, 62,
67, 71]. By interconnecting geographically distributed
manufacturing resources of SMEswith various functionalities,
cloud manufacturing facilitates cooperation, coordination, and
information sharing among partner SMEs. This, in turn, pro-
motes interoperability among SMEs through innovation and
enables them tomaintain a competitive advantage in the global
marketplace as an integrated global virtual enterprise [21, 60].

In a cloud manufacturing setting, a manufacturing cloud
service (MCS) is an encapsulation of one or more physical
manufacturing resources [36]. A resource can perform a cer-
tain manufacturing function involved in the product lifecycle
[47] and is in the form of hardware (e.g., welding machine) or

software (e.g., data analysis tools) [24, 25, 67]. Cloud
manufacturing systems can perform two types of manufactur-
ing tasks: a single-functionality manufacturing task and a
multi-functionality manufacturing task. While the former can
be performed using a single MCS, the latter needs an iterative
task decomposition process for the purpose of dividing a task
into a series of subtasks, such that at least one candidate MCS
for each subtask can be offered. The critical issue with cloud
manufacturing is to complete a multi-functionality task opti-
mally through selection and composition of MCSs among
functionally equivalent MCSs within their available time
frames by also satisfying constraints including transportation
and quality of service (QoS). In a service-oriented environ-
ment, the aforementioned issues are tackled by solving QoS-
aware service selection optimization and scheduling (SSOS)
problem [13, 38]. Also, it is studied as service composition
and optimal selection (SCOS) when the objective is service
composition rather than service scheduling [65, 74].

As opposed to services in some service-oriented environ-
ments such as cloud computing, which can be delivered over
the Internet or virtual network, cloud manufacturing necessi-
tates physical transportation betweenMCSs, hence, additional
constraints to existent service composition and scheduling
problems, in various geographical locations [1, 30].
Although SSOS and SCOS problems in other service-
oriented systems including cloud computing [28, 49, 75] and
manufacturing grid [55, 57] have been well studied, majority
of the proposed approaches cannot be applied to cloud
manufacturing systems due to different QoS metrics and lack
of transportation consideration between manufacturing ser-
vices, which can change the results dramatically. Recently,
transportation has been considered within the context of cloud
manufacturing service composition [13, 38, 72]. However,
these works address only the sequential subtask (or service)
composition structure.

In this paper, the SSOS problem is studied with the consid-
eration of transportation and different composition structures
with service occupancy constraints. The main contributions of
this work are as follows. We develop new mixed-integer pro-
gramming (MIP) models for the SSOS problem in cloud
manufacturing with not only a sequential composition struc-
ture but also with other three basic structures including paral-
lel, loop, and selective, which are commonly observed in
many manufacturing processes. Second, to the best of our
knowledge, this paper is the first to incorporate routing opti-
mization within a given hybrid hub-and-spoke transportation
network in the context of cloud manufacturing. This idea al-
lows the proposed models to trade-off cost, time, etc., and
route a shipment between pairs of distributed manufacturing
services using a direct or the hub-and-spoke transportation
network. Third, we also incorporate service occupancy con-
straints in the proposed MIP models which enables us to ob-
tain more realistic solutions.
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The remainder of this paper is organized as follows. In
Section 2, we provide a review of the related literature. A
simple example is presented in Section 3 to motivate the struc-
ture of MIP models in the subsequent section. The SSOS
problem formulation and mathematical models of the service
selection and scheduling for the different subtask composition
structures are established in Section 4. Computational results
are given in Section 5 and Section 6 concludes this study and
suggests directions for future research.

2 Literature review

In order to ensure that a cloud manufacturing system can per-
form a complicated and customized manufacturing task, solv-
ing the SSOS problem efficiently is becoming increasingly
important. It is more complex compared to several kinds of
traditional shop scheduling or task scheduling problems [11,
69], especially when transportation between different geo-
graphically dispersed locations needs to be taken into account
in the problem solving. The related literature spans three main
streams of research: (1) scheduling, (2) SCOS and SSOS, and
(3) transportation and routing.

In general, scheduling deals with the assignment of limited
resources to activities over time such that one or more
predefined objectives are optimized. The research on schedul-
ing originated from static scheduling approaches which usu-
ally were used to develop shop floor scheduling systems for
mass production. Manne [43] proposed a discrete linear pro-
gramming model for solving the typical job-shop scheduling
problem. Branch-and-bound and branch-and-cut algorithms
were developed by Laporte et al. [29] to solve job sequencing
problem. Banaszak and Zaremba [9] proposed a heuristic
method for integration of process planning and scheduling in
virtual manufacturing systems. Kesen et al. [27] addressed job
scheduling in virtual manufacturing cells as a multi-objective
MIP model in which summation of weighted makespan and
weighted total traveling distance were minimized. A bi-
objective genetic algorithm was developed by Arkat and
Ghahve [6] in order to minimize the makespan and the total
cost of inter- and intra-plant transportation in virtual
manufacturing cells. As traditional scheduling algorithms
rarely consider the virtualization characteristics of MCSs such
as quality and reliability, their practicality cannot be assumed
to be effective in cloud manufacturing environment [73].

SCOS is a process of service composition and match be-
tween MCSs and (sub)tasks. In SSOS, in addition to this pro-
cess, it is determined when a (sub)task starts or ends depend-
ing on some parameters such as its duration, predecessor
(sub)tasks, composition structure, and MCSs’ availability.
Both of SCOS and SSOS are NP-complete [49, 70, 74].
Although many studies have been conducted on SCOS, re-
search about SSOS in cloud manufacturing is just beginning.

Table 1 summarizes the related literature of SCOS and SSOS.
For solving the SCOS problem, Tao et al. [56] proposed full
connection-based parallel adaptive chaos optimization with
reflex migration as a novel parallel intelligent algorithm. Liu
et al. [37] tackled the problem of multi-task oriented SCOS
with a new composition pattern for improving the success rate
of QoS requirement satisfaction. Tian et al. [58] solved the
SCOS problem for motorcycle design and assembly applica-
tion using a discrete hybrid bee colony algorithm. The SCOS
problem based on QoS and energy consumption was modeled
as a multi-objective problem by Xiang et al. [65]. Wang et al.
[61] addressed the selection strategy of machining equipment
in cloud manufacturing system and used an improved particle
swarm optimization algorithm to help clients effectively select
the machining equipment. In Jin et al. [26], a genetic
algorithm-based approach was applied to investigate the
SCOS when there are potential quality correlations among
MCSs. Lartigau et al. [30] extended the scope of the SCOS
problem to the geographical locations of manufacturing ser-
vices taking geo-perspective transportation into consideration
and optimized the problem using an adapted artificial bee
colony algorithm. The issue of measuring fuzzy QoS and
selecting the best MCSs considering design preference was
studied by Zheng et al. [72]. Zhou and Yao [74] discussed
reputation evaluation during QoS-aware service composition
process by introduction of a time decay function. Liu and
Zhang [33] provided an approach which allows functionally
equivalent MCSs to establish a group of synergistic services
for performing each manufacturing subtask cooperatively. For
the purpose of considering both horizontal and sequential col-
laboration between MCSs, networked collaboration-based
QoS evaluation model was proposed [68]. Xiang et al. [66]
suggested two phases based on case library for the SCOS with
large-scale composed solutions. Many of the above works
have focused on the service composition (instead of service
scheduling) perspective of cloud manufacturing only by sup-
posing a common assumption that MCSs are available all the
time and can be used upon request. However, this assumption
does not hold true in many real-world scenarios because an
MCS’ availability is constantly changing over time based on
previously assigned tasks, unpredictable failures, and so on.

Cheng et al. [17] investigated multi-task-oriented SSOS in
cloud manufacturing system taking correlation among virtual
resources into account to provide more profit for an enterprise
with deadline-constrained delivery. In this work, the necessity
of transportation between manufacturing services was
neglected. Li et al. [31] addressed task scheduling for cloud
manufacturing resources with cost minimization, load
balancing, and processing time minimization as objective
functions. Different from most of the literature on cloud
manufacturing service composition, Cao et al. [13] explicitly
considered service occupancy during the process of SSOS.
They ingeniously converted the process into a multi-stage
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graph and solved it using a modified ant colony optimization
algorithm. Very recently, based on service composition idea, a
workload-based multi-task scheduling model for cloud
manufacturing was designed by Liu et al. [38] that incorpo-
rates workload modeling, service efficiency, and quantity as
well as transportation issues. The developed models in the last
three studies dealt with only particular service composition
structures and their credibility cannot be maintained for all
basic structures especially in the present of transportation.

Although the notion of transportation is a fundamental re-
quirement in the SCOS and SSOS, according to Table 1, there
are few works that have considered its effect on QoS metric
and the process of service selection and scheduling. In addi-
tion, these limited works usually address only a “direct trans-
portation” network, in which a point-to-point transportation
between different locations is realized [41, 45]. Another alter-
native strategy that often emerges in practical situations is a
hub-and-spoke network, where hubs as consolidation facilities
provide indirect transportation between spokes (i.e., non-hubs)
[12, 46]. A direct and hub-and-spoke network have the advan-
tage of fast speed [32] and economies of scale [20], respective-
ly. To gain benefit from both types of transportation network, a
hybrid hub-and-spoke network can be used wherein the most
important decision is whether to route a shipment via a hub or
directly to its destination [22]. Many authors have investigated
this routing problem which bears some relevance to this study.
Aykin [8] developed a mathematical formulation for determin-
ing the hub locations and routing decisions together. Liu et al.

[34] studied a mixed truck delivery system that allows both
direct and hub-and-spoke transportation and delineated vehicle
routings using a heuristic algorithm. Hsu and Hsieh [22] for-
mulated direct versus hub-and-spoke routing problem as a
two-objective model and determined Pareto optimal solutions
based on a trade-off between transportation and inventory
costs. Çetiner et al. [14] established an iterative two-stage al-
gorithm so that in the first stage, hub locations are specified
and the second stage solves routing problems. Then, the algo-
rithm iterates between two stages with a heuristic updating
mechanism to attain a route-compatible hub network.
Mahmutoğulları and Kara [41] presented mathematical
models for the different versions of hub location problem with
allowed direct transportation between spokes.

In conclusion, there is still a considerable gap between the
SSOS requirements (regarding transportation involvement, ba-
sic composition structures, and service scheduling especially
when services are not available all the time) and the efficiency
of solutions to fulfill them. Thus, the SSOS needs further re-
search and investigation and cloudmanufacturing communities
needtoconsider realisticpoints in theirproposedmodels tomake
cloudmanufacturing commercially feasible in the near future.

3 An example

Assume that a cloud manufacturing platform provides a
service-oriented collaborative manufacturing system to 25

Table 1 A chronological literature review on SCOS and SSOS at a glance

Author(s) Consideration of Composition structure Objectives functions Algorithm

Scheduling Transportation Sequential Parallel Loop Selective Cost Time Quality etc.

Tao et al. [56] – – ✓ ✓ – – ✓ ✓ – ✓ Chaos optimization

Liu et al. [37] – – ✓ ✓ ✓ ✓ ✓ ✓ – ✓ Genetic algorithm

Tian et al. [58] – – ✓ ✓ ✓ ✓ ✓ ✓ – ✓ Artificial bee colony

Xiang et al. [65] – – ✓ ✓ ✓ ✓ ✓ ✓ – ✓ Group leader algorithm

Wang et al. [61] – ✓ ✓ – – – ✓ ✓ ✓ – Particle swarm optimization

Cheng et al. [17] ✓ – ✓ – – – ✓ ✓ – – Genetic algorithm

Jin et al. [26] – – ✓ ✓ ✓ ✓ ✓ ✓ – ✓ Genetic algorithm

Lartigau et al. [30] – ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ Artificial bee colony

Li et al. [31] ✓ ✓ ✓ ✓ – – ✓ ✓ – ✓ Subtask-scheduling heuristic

Zheng et al. [72] – ✓ ✓ – – – ✓ ✓ – ✓ Particle swarm optimization

Zhou and Yao [74] – – ✓ – – – ✓ ✓ – ✓ Artificial bee colony

Liu and Zhang [33] – – ✓ ✓ – – ✓ ✓ – ✓ Genetic algorithm

Xue et al. [68] – – ✓ – – – ✓ ✓ ✓ ✓ Genetic-artificial bee colony

Xiang et al. [66] – – ✓ ✓ – – – – – ✓ Case-library-based heuristic

Cao et al. [13] ✓ ✓ ✓ – – – ✓ ✓ ✓ ✓ Ant colony optimization

Liu et al. [38] ✓ ✓ ✓ – – – ✓ ✓ ✓ ✓ Workload-based heuristic

The current study ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – Branch-and-Cut
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SMEs working in the motorcycle production industry in
the USA. Each SME is located in a different city and is
equipped with one or two manufacturing resources. We use
the well-known Civil Aeronautics Board (CAB) dataset
[46] for city locations and inter-city distances; see the
Appendix. As shown in Fig. 1, Baltimore, Chicago, Los
Angeles, and Pittsburg are hub cities and a shipment be-
tween two different cities can be routed through direct or
hub-and-spoke network. An example of online motorcycle
production (OMP) is considered to illustrate the problem
setting. A customer submits an OMP task, denoted by
TOMP, and requests customized motorcycle for less than
$Cmax, within Tmax days, and average quality level of at
least Qmin% which for instance can be obtained using qual-
ity grading system shown in Table 2.

For satisfying the TOPM, according to Fig. 2, the platform
executes the below three main processes:

& Task decomposition: the task is firstly decomposed into
several subtasks such that at least one candidate MCS for
each subtask can be provided. For the TOMP example, 11
subtasks have been extracted (Fig. 3) such that some sub-
tasks have parallel structures, some are in loop and so on.

& Service discovery and matching: the platform performs
this process to find out all candidate MCSs for each

sub task . Nex t , they are poo led in to Cloud
Manufacturing Qualified Service Set (CMQSS). In
Table 3, we have designed the output of service discov-
ery and matching process for the TOMP. Note that the
CMQSS for each subtask includes those MCSs with
given manufacturing cost and/or manufacturing time.

& Service selection optimization and scheduling (SSOS):
the platform simultaneously selects an MCS from cor-
responding CMQSS of each subtask, schedules sub-
tasks onto the available time frames of selected
MCSs, and routes required transportations in a given
hybrid hub-and-spoke network such that the overall
QoS of the manufacturing composite cloud service
(MCCS) is optimized and the associated constraints
are fulfilled. Theoretically, by multiplying the number
of candidate MCSs for all the subtasks, the total num-
ber of possible MCCSs can be calculated which is
equal to ∏11

s¼1 Rsj j ¼ 4� 5�⋯� 2 ¼ 172; 800 for
the TOMP example. Note that Rs denotes the CMQSS
for the sth subtask. In order to find the optimal MCCS
among all possible MCCSs, the platform needs a suit-
able model that not only is valid for a task with a
mixed subtasks’ composition structure, but also can
optimize transportation routes and is able to consider
service occupancy.
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Table 2 An example of quality
grading system for the TOPM Letter grade Quality level range (%) Description

A+ 90–100 Excellent: an excellent product, only marginal errors

A 75–89 Very good: some errors, but overall still outstanding product

A− 60–74 Good: good and sound understanding but some basic errors

B 45–60 Fair: product fulfill minimum requirements

C Below 45 Fail: product does not fulfill even minimum requirements
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4 The SSOS problem formulation

In formulating the SSOS, we assume that the task decompo-
sition and service discovery processes have already been com-
pleted since they are broad topics and largely beyond the
scope of the current study. The indices, parameters, and vari-
ables used to formulate the SSOS process are described in
Table 4.

4.1 Manufacturing tasks, SMEs, and services

A manufacturing task is decomposed into a number of
subtasks such that each one can be performed using an
MCS. It has a certain subtask composition structure which
is usually a combination of sequential, parallel, loop, and
selective structures. In this paper, a task is denoted as Task
(LStart, LEnd, SComp_Str) in which LStart and LEnd denote the
location of the workblank supplier and customer, respec-
tively, and SComp_Str expresses subtasks’ composition
structure. Also, it is assumed that there are I registered
SMEs, i.e., SMEi (1 ≤ i ≤ I), where SMEi provides NSi
different MCSs in the product lifecycle. Hence, the total
number of services is equal toTNS = ∑i ∈ INSi. MCSr
(1 ≤ r ≤ TNS) is formulated as MCSr (Lr, PRr, [SOTr

EOTr]) where Lr denotes its location, PRr is its pass rate
and [SOTr EOTr] indicates its occupied time interval. Note
that for the sake of simplicity but without loss of gener-
ality, we assume that at most there is only one interval of
service occupancy. The CMQSS for sth subtask is defined
as Rs (MCSr (MCsr, MTsr), MCSk (MCsk, MTsk), …) in
which MCsr and MTsr are manufacturing cost and time
for performing sth subtask using MCSr, respectively.

4.2 Service selection optimization

For each subtask, several functionally equivalent MCSs but
with different QoS metrics can exist. It is a realistic point of
view and accords with the fact that different SMEs may have
different performance in fulfilling a given subtask in terms of
various QoS metrics [19, 38] even if they use the same re-
sources. As a result, many possible solutions may be discov-
ered for constructing anMCCSwhichmakes service selection
optimization difficult. To differentiate MCS candidates in a
CMQSS, we consider cost, time, and quality metrics which
are among the most important optimization criteria of the
SSOS process in service-oriented manufacturing systems
[13, 35]. For an MCS, cost and time metrics are defined as
the cost associated with utilizing of the MCS and the time

Fig. 3 Manufacturing process in
the customized motorcycle
production
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interval between manufacturing start time and manufacturing
end time, respectively. Also, quality metric can be measured
based on pass rate [13]. In this paper, we use average pass rate
for evaluating the product quality level. In order to find the
optimal MCSS, a QoS metric for an MCSS should be derived
from aggregating the corresponding metrics of all selected
MCSs. Aggregation of QoSs (without involvement of trans-
portation and service occupancy) for basic subtask composi-
tion structures (Fig. 4) is summarized in Table 5. While the
sequential structure means subtasks perform in turns, the par-
allel structure implies that subtasks can be performed at the
same time. In the loop structure, subtasks should be performed
repetitively NLoop + 1 times and the selective structure repre-
sents one of subtasks is selected according to the specific
evaluation. A manufacturing task which combines more than
one basic structure has a mixed composition structure.

4.3 Routing in a hybrid hub-and-spoke transportation
network

The most elementary method in developing transportation
networks is establishing a direct connection between each
origin–destination (O–D). The dramatic growth of network
development costs is a major weakness of this approach. A

Table 4 The notations used in formulating the SSOS problem

Indices

a, b Index of cost, time, and quality objective functions
(a, b = C, T, Q)

i, j Index of geographical location of manufacturing SMEs
(i, j = 1,…, I)

r, k Index of MCSs (r, k = 1,…, K)

s, u Index of manufacturing subtasks (s, u = 1,…, S)

o, p Index of supplying and delivering subtasks in addition to
manufacturing subtasks (o, p = start, 1,…, S, end)

h, g Index of hub facility locations in the hybrid hub-and-spoke
transportation network (h, g = 1,…, H)

n, v Index of number of cycles in the loop composition structure
(n, v = 1,…, NLoop + 1)

Parameters

MCsr Manufacturing cost for performing sth subtask using
rth MCS ($)

MTsr Manufacturing time for performing sth subtask using
rth MCS (day)

Distij Geographical distance between city i and j (km)

TCij Transportation cost between city i and j for unit weight ($/kg)

TTij Transportation time between city i and j (day)

Wop Transportation weight between oth and pth subtasks (kg)

PRr Pass rate for rth MCS (%)

Rs Cloud manufacturing qualified service set for sth subtask

Lr Location of rth MCS

LHub Location of hub facilities in the hybrid hub-and-spoke
transportation network

LStart Location of the workblank supplier (where transportation
starts)

LEnd Location of the customer (where transportation ends)

VCh Variable cost of using hub facility h ($)

SOTr Start of the occupied time for rth MCS

EOTr End of the occupied time for rth MCS

NSi Number of provided MCSs by the SME located in city i

TNS Total number of provided MCSs by all SMEs

NLoop Number of cycles in the loop composition structure

Pros Corresponding probability for selecting sth subtask in the
selective composition structure

wC Cost preference weight

wT Time preference weight

wQ Quality preference weight

Cmax Maximum cost that the customer is willing to pay

Tmax Product delivery deadline specified by the customer

Qmin Minimum acceptable quality level specified by the customer

α Discount factor to decrease transportation cost between hub
facilities

UTC Transportation cost for unit distance ($/km)

UTT Transportation time for unit distance (day/km)

SComp_Str Subtasks’ composition structure

M A large positive number

Binary decision variables

xsr 1 if sth subtask is performed using rth MCS; 0 otherwise

yih 1 if city is by hub h; 0 otherwise

Table 4 (continued)

λsr 1 if sth subtask is performed using rth MCS before
starting its occupied time; 0 otherwise

λsrn 1 if sth subtask is performed using rth MCS before
starting its occupied time and in the nth cycle of the loop
composition structure; 0 otherwise

zijop
1 if oth and pth subtasks are performed in city i and j
respectively and hence there is a shipment between
these cities; 0 otherwise

dijop
1 if oth and pth subtasks are performed in city i and j
respectively and there is a direct transportation
between these cities; 0 otherwise

f ijhgop

1 if oth and pth subtasks are performed in city i and j
respectively and there is a hub-and-spoke transportation
between these cities with the routing i→hub
h→hub g→j; 0 otherwise

Continuous decision variables
TPS Task completion time in the parallel composition structure

(day)
STSs Start time of manufacturing process of sth subtask
ETSs End time of manufacturing process of sth subtask
wts Waiting time before starting manufacturing process of

sth subtask (day)
CSSs Corresponding cost in the selective composition structure

if sth subtask is selected among alternative subtasks ($)
TSSs Task completion time in the selective composition structure

if sth subtask is selected among alternative subtasks (day)
wtsn Waiting time before starting manufacturing process of sth

subtask in the nth cycle of the loop structure (day)
STSsn Start time of manufacturing process of sth subtask in the

nth cycle of the loop composition structure
ETSsn End time of manufacturing process of sth subtask in the

nth cycle of the loop composition structure
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direct transportation should be utilized when there is a tight
delivery lead-time or when the commodities need to be isolat-
ed. If these criteria are not satisfied, then transportation costs
can be reduced by utilizing a hub-and-spoke network which
consolidates commodities from different origin cities at hubs
and transports them in bulk between hubs. This consolidation
and increased volume of hub to hub commodities bring the
advantage of economies of scale for transportation and dis-
counts its cost between two hub cities by a factorα (0 ≤α ≤ 1).
However, due to commodities consolidation at hub cities and
routing each O–D transportation via hub(s), some commodi-
ties travel longer paths when compared to the distance be-
tween their O–D [41]. Obviously, this also results in longer
transportation time.

Since a cloud manufacturing platform deals with sev-
eral manufacturing tasks over time, the amount of trans-
portation between different cities can be very significant
and hard to manage. Thus, unlike the literature of the
SSOS that neglects transportation or just considers a di-
rect transportation between each O–D, we have supposed
that the platform routes all required transportation in a

given hybrid hub-and-spoke network. In this network,
for transporting commodities between city i and j (where
oth and pth subtasks of a manufacturing task are per-
formed respectively), there are three routing alternative
as follows (see Fig. 1):

& Routing directly from city i to j. In order to select this
alternative, dijop as a binary decision variable will be equal
to 1. Note that we include subscript of subtasks to differen-
tiate probable multiple transportations between two cities.

& Routing through one hub, which can be used when
both city i and j are served by the same hub facility,
e.g., hub h. This means the routing is i → h → j and
f ijhhop will be equal to 1.

& Routing through two hubs, which can be used when city i
and j are served by different hubs, e.g., hub h and g, re-
spectively. The routing consists of three parts: collecting
commodities from city i to hub h, transporting commodi-
ties between hub h and hub g, and distributing commod-
ities from hub g to the destination city j. This means the

routing is i → h → g → j and f ijhgop will be equal to 1.

(a) Sequential Structure

(c) Loop Structure (d) Selective Structure

(b) Parallel Structure

ST1 ... STSstart end start ...

ST1

STS

end

ST1 ... STSstart end

NLoop

start ...

ST1

STS

end

Fig. 4 Four basic subtask
composition structures (adapted
from [55])

Table 5 The aggregation of QoS metrics for the basic subtask composition structures: transportation and service occupancy have not been considered
(adapted from [55])

QoS
metric

Sequential
structure

Parallel structure Loop structure Selective structure

Cost

∑
S

s¼1
∑
r∈Rs

MCsrxsr ∑
S

s¼1
∑
r∈Rs

MCsrxsr NLoop ∑
S

s¼1
∑
r∈Rs

MCsrxsr ∑
S

s¼1
Pros ∑

r∈Rs

MCsrxsr

Time

∑
S

s¼1
∑
r∈Rs

MTsrxsr Max ∑
S

s¼1
∑
r∈Rs

MTsrxsr

� �
NLoop ∑

S

s¼1
∑
r∈Rs

MTsrxsr ∑
S

s¼1
Pros ∑

r∈Rs

MTsrxsr

Quality
1
S ∑

S

s¼1
∑
r∈Rs

PRsrxsr 1
S ∑

S

s¼1
∑
r∈Rs

PRsrxsr 1
S ∑

S

s¼1
∑
r∈Rs

PRsrxsr 1
S ∑

S

s¼1
Pros ∑

r∈Rs

PRsrxsr
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The platform needs an efficient way to explore route
decision-making on whether a shipment should be routed di-
rectly or through hubs facilities. A suitable approach for this
decision-making can be realized based on a trade-off between
cost and time. Transportation cost (for unit weight) and trans-
portation time between city i and j are calculated through the
following formulas where Distij is geographical distance be-
tween the cities, and UTC and UTT are transportation cost and
transportation time for unit distance, respectively.

TCij ¼ Distij � UTC ð1Þ
TTij ¼ Distij � UTT ð2Þ

Taking for example the routing through two hubs, transpor-
tation cost is TCih + αTChg + TCgj and transportation time
equals to TTih + TThg + TTgj. It is worth to mention that trans-
portation cost and time will be zero if two successive
manufacturing subtasks are performed within the same city.

4.4 Service occupancy consideration

Most past literature on the SSOS or SCOS problems assumes
that MCSs are continuously available all the time. This avail-
ability assumption cannot be justified if maintenance require-
ments, breakdowns, or other constraints (that cause services
be partially occupied) have to be addressed. With consider-
ation of service occupancy in the process of service selection
and scheduling, not only the value of some QoS metrics can
be changed but also the difficulty in finding a feasible solution
may be increased. However, the obtained solution would be
more realistic and practical due to taking the availability of
services into account.

For the explanation of service occupancy involvement,
suppose that MCSr has been selected to perform sth subtask
of a manufacturing task. As depicted in Fig. 5, six different
cases can be imagined when the subtask manufacturing inter-
val and the service occupancy interval are compared.
Although there is no overlap between mentioned intervals in
the first and the last cases, the other cases at least have a partial
overlap area. The existence of overlap means that the current
service scheduling is invalid. In the case 1, manufacturing pro-
cess is finished before the service occupancy starts. Also, in the

case 6, manufacturing process is started after the service occu-
pancy ends. These two cases provide valid service scheduling
and can be formulated as a simple if-then rule: IF ETSs ≤ SOTr
OR STSs ≥ EOTr THEN service scheduling is valid.

4.5 The mathematical models for the SSOS problem

In this subsection, the developed MIP models for the SSOS
problem with basic subtask composition structures (shown in
Fig. 4) and consideration of transportation and service occu-
pancy are presented. The assumptions in the models are listed
below:

& For all manufacturing services, there is need for
transportation.

& Transportation cost and transportation time within the
same city are zero.

& Hub facilities have already been established and there is a
variable cost for using a hub facility.

The main decisions which are addressed by the models
include the following: selecting the optimal MCS for
performing each subtask, the optimal routing alternative for
transporting commodities between different cities and sched-
uling subtasks over available time of the selectedMCSs. Also,
the objective functions (corresponding to QoS metrics) for
solving the SSOS problem are to fulfill a manufacturing task
with the lowest possible cost, in the shortest completion time
and with the highest quality product.

4.5.1 The MIP model for the sequential subtask composition
structure

The objective function (3) minimizes the total cost which
includes both manufacturing cost and transportation cost.
While the former usually is calculated based on the quot-
ed price by an SME to perform a given subtask, the latter
depends on different factors such as transportation dis-
tance and transportation cost for unit distance (as formu-
lated in (1)), weight of commodities needed to be
transported, and more importantly, the way commodities
are routed to their destination. Also, we have defined a

Case 1 Case 6

Time

Case 2 Case 3 Case 4

Case 5

Service Occupancy Interval

SOTr EOTrSTSs ETSs STSs ETSs

Subtask Manufacturing 

Interval

Subtask Manufacturing 

Interval

Fig. 5 Different cases in the comparison of manufacturing and service occupancy intervals: obviously, just one of these cases occurs in a time
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variable cost for using a hub facility in routing a shipment
through a hub-and-spoke network which is calculated
through the last term in (3).

Min CSeq ¼ ∑
S

s¼1
∑
r∈Rs

MCsrxsr þ ∑
S

o¼start
∑
I

i¼1
∑
I

j¼1
TCijWo;oþ1d

ij
o;oþ1

þ ∑
S

o¼start
∑
I

i¼1
∑
I

j¼1
∑
H

h¼1
∑
H

g¼1
TCih þ αTChg þ TCgj
� �

Wo;oþ1 f
ijhg
o;oþ1

þ ∑
H

h¼1
VChyhh

ð3Þ

The objective function (4) minimizes the task completion time
which encompasses three parts: manufacturing time, transporta-
tion time, and waiting time. Manufacturing time, which is prom-
ised by SMEs after sending manufacturing subtask invitations,
includes setup time, processing time, and maintenance time.
According to formula (2), transportation time itself depends on
the geographical distance that should be traveled, transportation
time for unit distance and how to route a shipment in a hybrid
hub-and-spoke transportation network. Also, service occupancy
can result in waiting time before the start of a manufacturing
process. In some cases, it would be a time-saving method to wait
for utilizing a currently occupied MCS instead of having trans-
portation to use another MCSs located in distant places.

Min TSeq ¼ ∑
S

s¼1
∑
r∈Rs

MTsrxsr þ ∑
S

o¼start
∑
I

i¼1
∑
I

j¼1
TTijd

ij
o;oþ1

þ ∑
S

o¼start
∑
I

i¼1
∑
I

j¼1
∑
H

h¼1
∑
H

g¼1
TTih þ TThg þ TTgj
� �

f ijhgo;oþ1 þ ∑
S

s¼1
wts

ð4Þ

The quality of the product is maximized through calculating
average pass rate of the selected MCSs as presented in the objec-
tive function (5).

Max QSeq ¼
1

S
∑
S

s¼1
∑
r∈Rs

PRrxsr ð5Þ

The aim of the model is to simultaneously optimize the
mentioned objective functions subject to the following con-
straints. Constraint (6) imposes that there is a shipment from
the location of the workblank supplier to the location where
the first subtask is performed. Constraint (7) states that

transportation should be considered between the locations of
selected MCSs for performing two successive subtasks. The
necessity of transportation from the location of the last MCS
to the location of the customer is expressed using constraint
(8). Constraint (9) ensures that a subtask should be performed
by exactly one MCS.

xsr≤zLstart ;Lrstart;s s ¼ 1;∀r∈Rs ð6Þ

xsr þ xsþ1;k ≤1þ zLr ;Lks;sþ1 ∀s < S; r∈Rs; k∈Rsþ1 ð7Þ

xsr≤zLr ;Lends;end s ¼ S;∀r∈Rs ð8Þ

∑
r∈Rs

xsr ¼ 1 ∀s ð9Þ

Constraint (10) is equality for decision-making on routing a
shipment directly or through hub facilities. For the routing via
hubs, constraint (11) assures that the origin and destination
cities are served by hub facilities. The inequality constraint
(12) indicates that city i is served by hub h only if hub h selected
to be used in routing shipments between different cities.

∑
H

h¼1
∑
H

g¼1
f ijhgo;oþ1 þ dijo;oþ1 ¼ zijo;oþ1 ∀o; i; j ð10Þ

yih þ yjg≥2 f
ijhg
o;oþ1 ∀o; i; j; h; g ð11Þ

yih≤yhh ∀i; h ð12Þ

In the sequential subtask composition structure (Fig. 4a),
sth subtask (i.e., STs) cannot be performed until completion of
the preceding subtask (i.e., STs − 1). As Fig. 6 shows, trans-
portation time and waiting time may be required between two
consecutive subtasks. Constraints (13) and (14) calculate the
starting time and ending time of subtasks, respectively. In
order to determine the starting time of a given subtask,
manufacturing time, transportation time, and waiting time
for all previous subtasks should be summed with its waiting
time. Also, ending time of a subtask equals its starting time
plus the corresponding manufacturing time.

∑
I

i¼1
∑
I

j¼1
TTijd

ij
start;1 þ ∑

I

i¼1
∑
I

j¼1
∑
H

h¼1
∑
H

g¼1
TTih þ TThg þ TTgj
� �

f ijhgstart;1 þ ∑
u−1

s¼1
∑
r∈Rs

MTsrxsr

þ ∑
u−1

o¼1
∑
I

i¼1
∑
I

j¼1
TTijd

ij
o;oþ1 þ ∑

u−1

o¼1
∑
I

i¼1
∑
I

j¼1
∑
H

h¼1
∑
H

g¼1
TTih þ TThg þ TTgj
� �

f ijhgo;oþ1 þ ∑
u

s¼1
wts ¼ STSu

∀u ð13Þ

STSu þ ∑
k∈Ru

MTukxuk ¼ ETSu ∀u ð14Þ
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Constraints (15) and (16) schedule a subtask to start after or
to finish before occupancy of the selected MCS, respectively.
Using variable λ, the model guarantees that only one of these
constraints can be active for each subtask. Constraints (17–20)
express that the QoS requirements (specified by the customer)
in terms of cost, time, and quality should be satisfied.
Constraints (20) enforces the binary and non-negativity re-
strictions on the related decision variables.

STSu þMλuk ≥EOTkxuk ∀u; k∈Ru ð15Þ

ETSu≤SOTkxuk þM 1−λukð Þ ∀u; k∈Ru ð16Þ

CSeq≤Cmax ð17Þ

TSeq≤Tmax ð18Þ

QSeq≥Qmin ð19Þ
xsr;λuk ; yih; z

ij
op; d

ij
op; f

ijhg
op ∈ 0; 1f g&wts; STSu;ETSu≥0

∀i; j; r; k; s; u; o; p; h; g
ð20Þ

4.5.2 The MIP model for the parallel subtask composition
structure

In the parallel subtask composition structure (Fig. 4b), all
subtasks (i.e., ST1, …, STs) can be performed concurrently.
The objective function (21) minimizes the maximum time
required for performing parallel subtasks. The completion
time of each subtask is calculated trough summation of trans-
portation time between the supplier and the subtask, waiting

time before the related manufacturing process starts,
manufacturing time and the required time for transporting
the subtask’s output to the delivery location. Note that the
objective function (21) is of the mini-max type and imposes
non-linearity to the model.

Constraint (22) ensures that there are shipments from the
location of the workblank supplier to the location where sub-
tasks are performed and also from these locations to the de-
livery location. In the parallel structure, an MCS can perform
at most one subtask which is guaranteed through constraint
(23). This constraint is considered due to the possibility of
concurrent subtasks and differs from the exclusivity of ser-
vices in cloud computing environment which means a service
is utilized at most once, regardless of subtask composition
structure and number of subtasks in the SSOS process. The
exclusivity of cloud computing services can be justified by the
fact that the unit of time in the process is usually seconds or
even milliseconds [50]. However, in a cloud manufacturing
system, the unit of time is usually days and reutilizing of an
MCS for performing different subtasks not only is possible
when the MCS is available but also can improve some QoS
metrics. For example, the completion time and cost objective
functions decrease significantly if two consecutive subtasks
can be performed by MCSs located within the same city.
Therefore, there is no constraint related to the exclusivity of
MCSs in the proposedMIPmodels. Constraint (24) calculates
the starting time of parallel manufacturing subtasks.
Moreover, constraints (9–12) as well as constraints (14–20)
are used in a similar manner as the MIP model for the
sequential structure.

Min CPar ¼ 3ð Þ

Min TPar ¼ Max
∀s

∑
I

j¼1
TTLstart ; jd

Lstart ; j
start;s þ ∑

I

j¼1
∑
H

h¼1
∑
H

g¼1
TTLstart ;h þ TThg þ TTg; j
� �

f Lstart ;jhgstart;s

þ wts þ ∑
r∈Rs

MTsrxsr

þ ∑
I

i¼1
TTi;Lend d

i;Lend
s;end þ ∑

I

i¼1
∑
H

h¼1
∑
H

g¼1
TTi;h þ TThg þ TTg;Lend

� �
f i;Lend ;hgs;end

0
BBBBB@
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Max QPar = (5)
Subject to:

zLstart ;Lrstart;s þ zLr ;Lends;end ≥2xsr ∀s; r∈Rs ð22Þ

∑
S

s¼1
xsr ≤1 ∀r ð23Þ
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start;s þ ∑
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� �

f Lstart ;jhgstart;s

þ wts ¼ STSs ∀s

ð24Þ

(9–12) and (14–20).
To linearize the objective function (21), its mini-max

structure should be removed. For this purpose, we use a

common trick in linear programming. First, a new con-
tinuous and non-negative variable TPS that denotes task
completion time in the parallel structure is added to the
model. Then, in addition to optimizing (3) and (5), the
model minimizes TPS subject to the conditions that TPS
must be at least as large as the completion time for the
first subtask, TPS must be at least as large as the com-
pletion time for the second subtask, and so on, for each
subtask. Therefore, the objective function (21) is re-
placed by (25) and a set of new constraints, as formulat-
ed in (26), are added to the original constraints of the
model.

MinTPar ¼ TPS ð25Þ
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≤TPS ∀s ð26Þ

4.5.3 The MIP model for the loop subtask composition
structure

Figure 4c illustrates that manufacturing subtasks in the
loop subtask composition structure are performed NLoop

times and there are more than one entry or exit point.
From transportation perspective in the loop structure,
two different situations can be investigated: (1) forward
transportation toward the locations where the next subtask
is performed (like as the sequential structure), and (2)
reverse transportation from the location where the last
subtask (i.e., STS) is performed to the location where the
first subtask (i.e., ST1) is accomplished.

The objective function (27) minimizes the total cost.
The first two terms calculate transportation cost between
the supplier and the first subtask. Since all subtasks as
well as the forward transportation between consecutive
subtasks in the loop structure are performed NLoop + 1
times, the related manufacturing and transportation cost
are multiplied by NLoop + 1. Also, the reverse transporta-
tion cost between the last and the first subtask is multi-
plied by NLoop. The last two terms in (27) determine

transportation cost between the last subtask and the deliv-
ery location, and variable cost of using hub facilities, re-
spectively. The task completion time is minimized using
the objective function (28) which can be described by
replacing the cost in explanation of (27) by time. Note
that waiting time of subtasks in all cycles are considered
in calculating the completion time. The product quality in
the loop structure is evaluated similar to the sequential or
parallel structure.

Constraint (29) ensures that there is a shipment be-
tween the locations where the last and the first subtasks
are performed. Constraint (30) determines the starting
time of manufacturing subtasks in all cycles of the loop
structure. To calculate the starting time for a given sub-
task in the nth cycle, following terms must be summed:
transportation time between the supplier and the first sub-
task; manufacturing time, forward transportation time,
waiting time, and reverse transportation time in the all
n-1 previous cycles; manufacturing time, transportation
time, and waiting time of the all previous subtasks in
the current cycle and finally waiting time for that task in
the current cycle. Constraints (31–33) are similar to
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constraints (14–16) and constraint 34 enforces the binary
and non-negativity restrictions on the related decision var-

iables. Constraints (6–12) remain valid in the loop struc-
ture as well.

CLoop ¼
∑
I

j¼1
TCLstart ; jWstart;1d

Lstart ; j
start;1 þ ∑

I

j¼1
∑
H

h¼1
∑
H

g¼1
TCLstart ;h þ αTChg þ TCgj
� �

Wstart;1 f
Lstart ;jhg
start;1

 !

þ NLoop þ 1
� �

∑
S

s¼1
∑
r∈Rs

MCsrxsr þ ∑
S−1

o¼1
∑
I

i¼1
∑
I

j¼1
TCijWo;oþ1d

ij
o;oþ1 þ ∑

S−1

o¼1
∑
I

i¼1
∑
I

j¼1
∑
H

h¼1
∑
H

g¼1
TCih þ αTChg þ TCgj
� �

Wo;oþ1 f
ijhg
o;oþ1

 !

þNLoop ∑
I

i¼1
∑
I

j¼1
TCijWS1d

ij
S1 þ ∑

I

i¼1
∑
I

j¼1
∑
H

h¼1
∑
H

g¼1
TCih þ αTChg þ TCgj
� �

WS1 f
ijhg
S1

 !

þ ∑
I

i¼1
TCi;LendWS;endd

i;Lend
S;end þ ∑

I

i¼1
∑
H

h¼1
∑
H

g¼1
TCi;h þ αTChg þ TCg;Lend

� �
WS;end f

i;Lendhg
S;end

 !
þ ∑

H

h¼1
VChyhh

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð27Þ

TLoop ¼
∑
I

j¼1
TTLstart ; jd

Lstart ; j
start;1 þ ∑

I

j¼1
∑
H

h¼1
∑
H

g¼1
TTLstart ;h þ TThg þ TTgj
� �

f Lstart ;jhgstart;1

 !

þ NLoop þ 1
� �

∑
S

s¼1
∑
r∈Rs

MTsrxsr þ ∑
S−1

o¼1
∑
I

i¼1
∑
I

j¼1
TTijd

ij
o;oþ1 þ ∑

S−1

o¼1
∑
I

i¼1
∑
I

j¼1
∑
H

h¼1
∑
H

g¼1
TTih þ TThg þ TTgj
� �

f ijhgo;oþ1

 !

þNLoop ∑
I

i¼1
∑
I

j¼1
TTijd

ij
S1 þ ∑

I

i¼1
∑
I

j¼1
∑
H

h¼1
∑
H

g¼1
TTih þ TThg þ TTgj
� �

f ijhgS1

 !

þ ∑
I

i¼1
TTi;Lendd

i;Lend
S;end þ ∑

I

i¼1
∑
H

h¼1
∑
H

g¼1
TTi;h þ TThg þ TTg;Lend

� �
f i;Lend;hgS;end

 !
þ ∑

S

s¼1
∑

NLoopþ1

n¼1
wtsn

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð28Þ

Max QLoop = (5).
Subject to:
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(6–12) and (17–19).

4.5.4 The MIP model for the selective subtask composition
structure

Figure 4d depicts the selective subtask composition struc-
ture in which one subtask is selected among number of
alternative subtasks. Indeed, manufacturing subtasks are
performed exclusively and it is unknown which subtask
will be chosen. However, we know that sth subtask is se-

lected with the probability of Pros such that ∑S
s¼1Pros ¼ 1:

Therefore, the expected cost, time, and quality level can be
calculated through the objective functions (35–37), respec-
tively. Two new continuous and non-negative variables,
i.e., CSSs and TSSs, have been defined in the selective
structure which are determined based on constraints (38–
39). CSSs stands for imposed cost when sth subtask is se-
lected (to accomplish the requested manufacturing task)
and includes transportation cost between the supplier and
the location where the subtask is performed, subtask
manufacturing cost, and transportation cost between the

subtask and the delivery location. Also, TSSs expresses
the task completion time if sth subtask is selected. It com-
prises waiting time and manufacturing time as well as the
corresponding time for transportation between the supplier,
the subtask and the delivery location. As formulated in the
model, some constraints of the sequential and parallel
structures are repeated in the selective structure, such as
routing in the hybrid hub-and-spoke transportation net-
work and service scheduling.
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(9–12), (14–20), (22), (24), CSSs ≥ 0, and TSSs ≥ 0.

4.5.5 Dealing with the mixed subtask composition structure

Usually, computing and manufacturing tasks—especially
those that are more complex—have the mixed subtask com-
position structure which means a combination of four basic
structures, namely sequential, parallel, loop, and selective. In

cloud computing environment, a task with the mixed structure
can be simplified or transformed to the sequential structure
using the methods proposed in Ardagna and Pernici [5].
However, their proposed methods cannot be applied directly
to cloud manufacturing environment due to necessity of trans-
portation between MCSs.

In this paper, the MIP models for the basic subtask compo-
sition structures have been proposed which consider transpor-
tation and service occupancy. The vast majority of manufactur-
ing tasks with the mixed structure can be modeled through
incorporation of these models. Figure 7 illustrates how the
TOMP task with the mixed structure can be transformed to the
sequential using the proposed MIP models. To this end, al-
though constraints (9–12) are valid for all basic structures, a
number of dedicated constraints (as discussed in the previous
subsections) must be considered for the subset of subtasks with
a given basic composition structure. Also, for the mixed struc-
ture, some obvious modifications have to be made in schedul-
ing subtasks over (available) MCSs. For example, as shown in
Fig. 7, the loop structure comes after the parallel structure.
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Thus, TPar (which denotes the completion time of subtasks in
the parallel structure) is added to left-hand side of constraint
(30) when this constraint is used for calculating start (and also
end) time of manufacturing process for subtasks in the loop
structure. Such modifications are necessary to apply for sub-
tasks in the sequential and selective structures as well. Note that
the cost objective function for the mixed structure (CMix) can
easily be obtained by summation of cost objective functions of
all basic structures, i.e., CMix = CPar + CLoop + CSeq + CSel. The
same manner is applied for calculating the time and quality
objective functions.

4.5.6 Formulating the overall objective function

The established MIP models for solving the SSOS are multi-
objective optimization problems in which they simultaneously
minimize cost and time, and maximize the product quality.
Generally, in this kind of problem, it is not possible to find a
solution where all the three objective functions are optimized.
Instead, the overall objective function (OOF) can be opti-
mized. For this purpose, simple additive weighting (SAW)
technique as one of the simplest, natural and most widely used
techniques is applied in this study. SAW includes two steps:
normalization and aggregation.

Normalization: since there may be a significant differ-
ence in the objective functions’ range and their unit of
measurement, various objective functions (OFs) cannot

be summed directly when calculating the OOF. Also, the
objective functions are categorized in two, namely positive
OF (e.g., quality) and negative OF (e.g., cost and time). A
positive OF means that the bigger the value of the OF, the
higher the interest of customers, and it is normalized using
(40). A negative OF means that the lower the value of the
OF, the higher the interest of customers, and it is normal-
ized using (41). Note that through (41) and (42), the value
of OFs are scaled into real value between 0 and 1 where
ofa,max as the maximum and ofa,min as the minimum value
of ofa in all possible MCCSs need to be determined [26,
56]. To this end, the payoff table method [10] is used in
which each OF is first optimized individually. Then, the
table is established such that ath row of the table represents
value of all OFs calculated at the point where the ofa ob-
tained its optimal value [18]. Therefore, as indicated in
Table 6, the diagonal of the payoff table includes compo-
nents of the ideal OFs. On the other hand, the worst value
of the ath column can be considered as an estimate of the
lower bound (resp., upper bound) of the ofa if it is a posi-
tive (resp., negative) objective function.

OFþ
a ¼

of a−of a;min

of a;max−of a;min
of a;max≠of a;min

1 of a;max ¼ of a;min

8<
: ð40Þ

CSe q, TSe q, QSe q

FPP

PPP

EI

BI

PP BPI FA MT

MBP

MPP

EPP endstart

start Par FA MT endLoop Sel

CPar, TPar, QPar CSe l, TSe l, QSe lCLoop, TLoop, QLoop

Fig. 7 Transforming the TOMP with the mixed subtask composition structure to the sequential structure
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OF−
a ¼

of a;max−of a
of a;max−of a;min

of a;max≠of a;min

1 of a;max ¼ of a;min

8<
: ð41Þ

Aggregation: in this step, a weighted summation is used in
order to optimize all OFs simultaneously subject to constraints of
the SSOS problem. For this purpose, the scaled values of the OFs
are multiplied with a weight preference and then are summed.
Therefore, the OOF of an MCCS solution is calculated based on

(42) with the new constraint∑Q
a¼Cwa ¼ 1, in which the weights

are adopted to control the relative importance of the OFs.

Max OFF ¼ wCOFC þ wTOFT þ wQOFQ ð42Þ

5 Computational results

In order to evaluate the performance and the efficiency of the
proposed MIP models, the TOMP manufacturing task (present-
ed in Section 3) as an example of customized motorcycle
production is considered. The models for tackling the corre-
sponding SSOS problems are coded in GAMS 23.5.2 optimi-
zation software and solved to global optimality using CPLEX
solver on a 2.27 GHz CPU personal computer with 4 GB of
RAM, and in Windows 7 Operating System. The aim of the
study is to determine the tactical level decisions related to
service selection and scheduling which include: selecting the
optimal MCS for performing each subtask, routing optimiza-
tion in the given hub-and-spoke transportation network, and
delineating when each subtask starts and ends with the con-
sideration of service occupancy.

Table 7 shows the default parameters in solving the SSOS
for the TOMP. Although the value of Wop, Cmac, Tmax, Qmin,
UTC, andUTT parameters have been selected based on the real-
world setting, we have determined the value of remaining
parameters randomly. According to Table 7, the task is defined
as TOMP (23, 10, [5 Par, 2 Loop, 2 Seq, 2 Sel]) that means
transportation starts from Seattle (the supplier location) and 11
different manufacturing subtasks need to be performed before
transportation ends in Houston (the customer location). In the
TOMP, FPP, PPP, EPP, EI, and BI subtasks have the parallel

structure, PP and PI subtasks are in the loop structure, FA and
MT are performed in the sequential structure, and MBP and
MPP have the selective structure. In addition, data of the case
SMEs, and their MCSs as well as inter-city geographical dis-
tances between the USA cities have been presented in Table 3
and Appendix, respectively. These tables include only atomic
parameters which can be used to calculate other composite
parameters such as TCi,j and TTi,j based on their definition.
For instance, TCij = Distij × UTC, then TC25, 14 = 923.2 ×
0.003 = 2.77 which is equal to transportation cost for unit
weight between Washington D.C. and Miami.

To examine the robustness of results to some key parame-
ters or constraints in the SSOS, the following six scenarios are
taken into account.

& Scenario 1 is a general case which is used as a benchmark
for comparing the results of all scenarios.

& Transportation is excluded in scenario 2 to investigate
whether it has any effect on the results of SSOS.

& In scenario 3, it is assumed that MCSs are available all the
time and the cloud platform have access to them when
required. In other words, there is no occupancy interval
for MCSs.

& In scenario 4, the deadline for delivering the product is
Tmax = 12 which means the optimal SSOS solution must
be selected among the ones that satisfy the tight time
constraint.

& Routing through the hub-and-spoke (H&S) transportation
network is not allowed in scenario 5 and all shipments
need to be routed directly.

& Routing through the direct transportation network is not
allowed in scenario 6 and all shipments need to be routed
in the H&S network.

Table 8 demonstrates range value of the ideal solution,
obtained from the corresponding payoff table, as well as the
value of OOF for all scenarios. As an example, in scenario 1,
the cost OF lower bound is $9822.53 that can be calculated
when wC = 1, and wT = wQ = 0 and its upper bound equals to
Cmax = $12,000. Moreover, the time OF is between 11.66 and
14 days, and the quality OF falls in the range of 81 to 87%.
Using SAW technique and according to formula (42), the
value of OOF is equal to 0.73 for scenario 1. Among all

Table 6 The payoff table in the SSOS: ofa,b is the value of ofa at the point that ofb obtained its optimal value

– Cost ($) Time (day) Quality (%)

Min (cost) ofC,C = ofC,min ofT,C ofQ,C
Min (Time) ofC,T ofT,T = ofT,min ofQ,T
Max (quality) ofC,Q ofT,Q ofQ,Q = ofQ,max
Upper/lower bound ofC,max = Max {ofC,T, ofC,Q} ofT,max = Max {ofT,C, ofT,Q} ofQ,min = Min {ofQ,C, ofQ,T}

Range value of the ideal solution [ofC,min ofC,max] [ofT,min ofT,max] [ofQ,min ofQ,max]
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scenarios, scenario 2 leads to the higher value of OOF, which
is followed by scenario 3 and scenario 1.

Table 9 provides the CPU time and details of cost, time and
quality OFs in solving the SSOS problem for different scenarios.
The following noteworthy points can be deduced from this table.

& The global optimal solutions are achieved under 200 s for
all scenarios. This amount of time is appropriate as only
tactical level of decisions are made by the proposed MIP
models. The CPU time in scenarios 2 and 5 where trans-
portation has been excluded or is possible only through
direct network is significantly less than those scenarios
benefiting from H&S network. Also, it is inferred that
the models need the most CPU time to find the optimal
solution if both direct and H&S transportation networks
can be used (as in scenario 1).

& The time complexity of the proposed MIP models in the
worst case is the same as that for exhaustive search [51]
which means it is exponential on the number of subtasks,
the size of qualified service sets, etc. However, when using
CPLEX, the running time is usually better than exhaustive
search as CPLEX uses cutting planes (in branch-and-cut

algorithms) to tighten the linear programming relaxations.
Also, it may apply certain heuristics for finding an integer-
feasible solution. That is why CPLEX can solve small and
medium-sized SSOS problems optimally in reasonable
computational time.

& When no transportation is involved (scenario 2), cost and
time OFs have the lowest values (i.e., $6900 and 7.24 days)
and the highest quality OF (i.e., 87%) can be obtained. Two
main reasons can be put forward to explain this outcome.
The first one is that transportation cost and transportation
time are omitted that results in a considerable decrease in
the value of correspondingOFs. Secondly, themodel is able
to select MCSs completely based on QoS of MCSs them-
selves without the consideration of transportation and its
effect on the value of OFs. For example, MCSs with the
highest pass rate can be selected for consecutive subtasks
even if they are geographically very distant from each other.
However, physical transportation between MCSs is an im-
portant characteristic of cloudmanufacturing and the role of
transportation in the SSOS process is not deniable.
Therefore, the results of scenario 2 lack practicality for
cloud manufacturing environment.

& A comparison between scenarios 1 and 3 can shed light on
the influence of incorporating service occupancy on the
outcome results of the SSOS process. As expected, the
CPU time has been decreased and the value of all OFs
have been improved when service occupancy is not con-
sidered due to the fact that more flexibility leads to better
overall performance of cloud manufacturing system. It is
also worth to notice that since all MCSs are available upon
request, scenario 3 has zero waiting time which is the most
important reason for the decrease in the time OF.
Nonetheless, as MCSs may not be available during certain
time interval(s) due to stochastic or deterministic reasons,
scenario 3 dose not accord with most real industrial

Table 7 Default atomic parameters in solving the SSOS for the TOMP (except for special statements)

Parameters Value Unit Type Parameters Value Unit Type

I 25 Integer Prosel [0.6, 0.4] Decimal

K 30 Integer wC 0.4 Decimal

S 11 Integer wT 0.4 Decimal

H 4 Integer wQ 0.2 Decimal

Wop 40 if o ≤ 6 and 200 if o ≥ 7 kg Decimal Cmax 12,000 $ Decimal

LHub 2, 4, 12, 20 Integer Tmax 14 Day Decimal

LStart 23 Integer Qmin 75 % Decimal

LEnd 10 Integer α 0.6 Decimal

VCh 100 for all h $ Decimal UTC 0.003 $/km Decimal

NLoop 1 Integer UTT 463 × 10−6 Day/km Decimal

TNS 35 Integer SComp_Str [5 Par, 2 Loop, 2 Seq, 2 Sel] Integer

Table 8 Range value of the ideal solution and the value of OOF for all
scenarios

Scenario number Range value of the ideal solution OOF

Cost ($) Time (day) Quality (%)

Scenario 1 [9822.53 12,000] [11.66 14] [0.81 0.87] 0.73

Scenario 2 [5780 12,000] [6.76 14] [0.77 0.92] 0.83

Scenario 3 [9616.58 12,000] [9.58 14] [0.81 0.91] 0.81

Scenario 4 [10,968 12,000] [11.66 12] [0.79 83] 0.71

Scenario 5 [10,064.10 12,000] [11.66 14] [0.82 0.87] 0.72

Scenario 6 [10,392.80 12,000] [11.96 14] [0.80 0.87] 0.64
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settings and its results lack practicality for cloud
manufacturing environment, as like as scenario 2.

& In order to investigate the effect of the tight time constraint
on the results of SSOS process, scenarios 1 and 4 can be
compared. Although the time OF in scenario 4 is almost
equal to its ideal value (i.e., 11.66 as shown in Table 8) and
satisfies the time constraint, the cost OF has been in-
creased by almost 16%. This means that minimization of
cost OF and time OF are in conflict with each other. In
addition, the quality OF has been decreased from 85% in
scenario 1 to 82% in scenario 4. The results indicate that
for shortening the product delivery time, the model has to
worsen the value of other OFs.

& As is clear from comparing scenarios 1, 5, and 6, the
hybrid H&S transportation network is more efficient than
pure direct or pure H&S networks. It can be considered as
an H&S network, which gains from economies of scale,
allowing some transportations to be routed directly when-
ever beneficial, e.g., transporting commodities in the
shorter time for completing a subtask before the related
service occupancy gets started. Thus, the hybrid H&S po-
tentially has advantages in terms of cost and time savings.
The results of Table 9 reveal that it reduces almost 2 and
6% of the cost OF compared with pure direct and pure
H&S networks, respectively. It has also more than 4%
improvement in the time OF in comparison to pure H&S
network.

In the rest of the paper, we only report results for scenario 1
which not only considers service occupancy and transportation,
but also routes shipments in the hybrid H&S network. Figure 8
shows how the model routes shipments between different cit-
ies. In Section 4.3, we have mentioned three different alterna-
tives for transporting commodities between a pair of cities,
namely, routing directly, through one hub, and through two
hubs. Since distances in the CAB dataset (which has been used
in this paper for city locations and inter-city distances) satisfy
triangular inequality (i.e, Distij ≤ Distih + Disthj, for all i, j, h),

the model will never route shipments through one hub. This is
because according to (1), transportation cost is a function
of distance and routing through one hub cannot decrease
cost in comparison with direct routing. However, in routing
through two hubs, α as a discount factor decreases trans-
portation cost between hubs. In these cases, the model
trade-off cost and time to select the best alternative. For
instance, in order to transport commodities between city 4
and 18 (where PP and PI subtasks are performed, respective-
ly), the optimal routing is 4 → 4 → 2 → 18, as indicated in
Fig. 8. On the other hand, for transporting commodities be-
tween city 12 and 4 (where FPP and PP subtasks are per-
formed, respectively), the best alternative is direct routing
12 → 4 regardless both of the cities can be hub facilities. In
this case, α × TC12,4 + VC12 ≥ TC12,4 and that is why the
model has selected direct routing alternative.

According to the results of Table 9 for scenario 1, more
than 36% of the cost OF and almost 21% of the time OF
are related to transportation. This reveals the great impact
of transportation in the SSOS process. For the purpose of
mitigating the impact of transportation, there is an overall
trend that the subtasks are performed by geographically
close MCSs. Figure 8 illustrates, although few subtasks
are performed by MCSs located in the western part of the
USA, the majority of them are fulfilled by MCSs located in
the eastern half of the country. Also, it is preferred that
adjacent subtasks are performed within the same city as
this approach does not impose transportation cost and
transportation time. Indeed, only when an SME cannot
provide all required MCSs with acceptable QoS, some of
subtasks will be performed by other SMEs. Accordingly,
as shown in Fig. 8, both BI and PP subtasks are performed
by MCSs located in city 4 (Chicago).

Figure 9 demonstrates the Gantt chart for the TOMP after
completion of the SSOS process. It shows what state (occu-
pied, busy with a subtask, idle) each MCS is in at any given
time, and selected MCSs for performing all the subtasks. The
Gantt chart also indicates schedule of the subtasks ontoMCSs,

Table 9 Computational results for solving the SSOS problem on all scenarios

Scenario number CPU (s) Cost ($) Time (day) Quality (%)

Manufacturing Transportation Variable Total Manufacturing Transportation Waiting Total

Direct H&S Direct H&S

Scenario 1 198 6369.00 2560.26 835.38 200.00 9964.64 7.88 1.68 0.98 2.17 12.71 85

Scenario 2 38 6900.00 0.00 0.00 0.00 6900.00 7.02 0.00 0.00 0.22 7.24 87

Scenario 3 137 6139.00 2685.04 793.42 200.00 9817.46 6.98 2.13 1.27 0.00 10.38 87

Scenario 4 166 6833.00 3281.48 1199.58 200.00 11,514.06 7.76 2.03 1.12 0.77 11.68 82

Scenario 5 80 6369.00 3775.88 0.00 0.00 10,144.88 7.88 2.62 0.00 2.21 12.71 85

Scenario 6 169 6345.00 0.00 3969.69 300.00 10,614.69 7.92 0.00 3.61 1.76 13.29 86

62 Int J Adv Manuf Technol (2018) 95:43–70



10

14

16

17

23

15

21

1

18

25`

4 2

Direct Transportation

Spoke to Hub Transportation

Hub to Hub Transportation

Hub

Spoke

12

xsr= [xFPP,13 xPPP,17 xEPP,1 xEI,18 xBI,4 xPP,5 xPI,21 xFA,19 xMT,29 xMBP,24 xMPP,16] 
Lr= [L13=12, L17=15,L1=1, L 18=16, L4 =4, L5=4,L21=18, L19 =17, L29 =25, L24 =21,L16=14] 

Fig. 8 Routing shipments in the hybrid H&S transportation network for scenario 1: transportation starts from city 23 (Seattle) and ends in city 10
(Houston)

Manufacturing Time Occupied Time Direct Transportation H&S Transportation Waiting Time

Legend:

Parallel

EPP

BI

FPP

EI

FA

PI

FPP

EI

BI

Loop

PPP

MT

PPP

EPP

Sequential

PP

MPP

MBP

Selective

PP

PI

PP

PP

FA

PI

PI

MT

MBP

MPP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

4

5

13

16

17

18

19

21

24

29

DAY

M
C

S
 I

N
D

E
X

Fig. 9 The Gantt chart for the SSOS of the TOMP: only involved MCSs have been shown

Int J Adv Manuf Technol (2018) 95:43–70 63



start time and finish time of all the subtasks, and the comple-
tion time of the TOMP. It can be seen that there is no time
conflict between manufacturing times and MCS’s occupied
time. Moreover, in the bottom of the figure, the details of
transportation time and waiting time have been shown for all
the subtasks with different composition structures.

5.1 Sensitivity analysis on key parameters

Input data and parameters can have a great influence on the
results of heuristics and exact algorithms [3, 44]. Sensitivity
analysis is conducted in this section to analyze the robustness
of the proposed MIP models and gain greater insight regard-
ing the influence of some key parameters on the results of the
SSOS process. Among the numerous input parameters of the
proposed models, MCsr, MTsr, Cmax, Tmax, Qmin, α, LHub, and
wc are considered here for the purpose of sensitivity analysis.

In order to explore whether variations in MCsr and MTsr
parameters for the selected MCSs (in scenario 1) can change
the optimal solution, we have increased them by β, γ ∈ {5, 10,
20, 50%}, respectively. WhenMCsr parameters increase by β,
the increase in the cost OF is between 3 and 14% and the
quality OF decreases between 4 and 7% (see Fig. 10a). The
interesting point here is that the time OF remains constant
irrespective of the value of β. The phenomenon can be ex-
plained as follows. For β ∈ {5, 10%}, the optimal MCSs are
same with scenario 1 and, therefore, variation in both the time
and quality OFsmust be zero. Also, the increase in the cost OF
is equal to β times of manufacturing cost (i.e., $6369.00)
divided by the cost OF (i.e., $9964.64). However, for β ∈
{20, 50%}, decrease in the quality OF means different
MCSs have been selected and, hence, the increase in the cost
OF would not necessarily be equal to β times of manufactur-
ing cost divided by the cost OF. Why variation in time OF is
still zero? According to Table 3, the MT subtask can be per-
formed using three different MCSs, two of them located in the
western and one of them in the eastern part of the USA. As
indicated in Fig. 8, the predecessor subtask of MT are

performed in the east and it would not be cost-effective (re-
garding transportation cost) if the MT is done in the west of
the country. Therefore, the model selects MCS29 located in
Washington D.C. (on the east) for performing the MT. Since
this MCS is not available during [5 11] interval and the pre-
decessor subtask is performed after the 5th day, theMTcannot
be started sooner than the 11th day. On the other hand, with
the consideration of transportation cost, the model also selects
those MCSs located in the east for performing the successor
subtasks of MT. Note that for these subtasks, only one MCS
located in the east exists in the relevant CMQSS.
Consequently, the time OF dose not undergo any change even
when MCsr parameters increase up to 50%. The
abovementioned phenomenon reveal the importance and
non-negligible influence of transportation and service occu-
pancy considerations in the SSOS. Figure 10b demonstrates
that increasingMTsr parameters by γ increases the time OF by
about 0.4–4% and the cost OF by about 1.3–6.8%. The effect
of variation in MTsr parameters on the quality OF is less than
1.2% increase or decrease which can be caused by selecting
different MCSs compared to scenario 1.

In the real-world situations, customers’ requirements usu-
ally include some constraints regarding cost, delivery time,
and quality. There is an implicit assumption that a faster prod-
uct delivery imposes more cost or decreases quality, creating a
trade-off between them affecting the SSOS process. The re-
sults of sensitivity analysis onCmax, Tmax, andQmin have been
tabulated in Table 10 which are consistent with the results of
range value of the ideal solution shown in Table 8. Indeed,
there is no feasible solution for scenario 1 if Cmax < $9822.53
or Tmax < 11.66 days, orQmin > 87% and the TOMP is regarded
as being unsuccessfully performed. Table 10 also indicates
less CPU time is needed to detect the infeasibility and the
required CPU time will be increased when Cmax, Tmax, and
Qmin approach the upper bound of their range value. In addi-
tion, although increase in Cmax (resp. Tmax) causes the higher
cost (resp. time) OF, it improves the value of other two OFs.
When the value ofQmin is increased from 75 to 85%, not only

Fig. 10 The effect of increase in a MCsr parameters by β% and b MTsr parameters by γ% on the OFs
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the time OF remains constant, but also only about 1% im-
provement in the quality OF can be obtained that costs almost
3% increase in the cost OF.

One of the parameters in the proposed MIP models that
could affect the outcomes of routing optimization in the hy-
brid H&S transportation network is α which was set at 0.6
throughout the computational results. The impacts of chang-
ing α on the cost and time OFs as well as the percentage of
using the direct or H&S transportation networks have been
depicted in Fig. 11. The smaller α is the less the cost OF
and the higher the time OF as there are more shipments that
are routed through the H&S network. Conversely, by α ≥ 0.8,
cost saving is zero and the model routes all shipments using
the direct network. This results in higher cost OF and lower
time OF. Therefore, the value of α has a significant impact on
the OFs and routing decisions.

We have also checked the impact of changing LHub on the
results of the SSOS. To this end, for different value of α, the
optimal location of hub facilities (in the CAB dataset) have
been extracted from the literature of uncapacitated single al-
location hub location problem. In order to investigate further

details of this problem, one can refer to [2, 4, 59]. Table 11
shows by increasing the number of hub facilities, the proposed
model needs more CPU time. Moreover, the results demon-
strate that the cost OF is more sensitive to LHub compared to
the time and quality OFs. A comparison between the cost OF
in Fig. 11a and Table 11 reveals that the lower cost can be
obtained when city 2 (i.e., Baltimore) is a hub.

Finally, we have investigated the impact of increasing wC on

the value of all OFs forwhich the constraint∑Q
a¼Cwa ¼ 1 should

be satisfied. According to the results of scenario 1 in Table 8, the
percentage variation in the range value of the ideal solution for
quality OF is significantly lower than other two OFs.We use this
fact to fix wQ at its default value, i.e., wQ = 0.2, and therefore
wT = 0.8 − wC. Consequently, increasing wC means decreasing
wT. Figure 12 illustrates that increasingwC improves that value of
cost and quality OFs and worsens the value of time OF. Also, for
wC ≥ 0.2, the OFF has an ascending trend. The figure, which
actually depicts a subset of Pareto optimal solutions, can be ben-
eficial for the customer when trading-off between different OFs.
For instance, in the case of changing preference weights from
wC = 0.2, wT = 0.6, wQ = 0.2 to wC = wT = 0.4 and wQ = 0.2, the
product delivery time is increased by almost 1 day but the cus-
tomer can save more than $1500 and will receive the product
with almost 3.5% higher quality.

6 Conclusion

Cloud manufacturing paradigm has become a hot topic in the
last 5 years and has attracted the attention of both academia and
industry. It represents the future directions of advance
manufacturing technologies in which, on the one hand, cus-
tomers can request customized and complex manufacturing
tasks on demand, and on the other hand, integration of geo-
graphically dispersed manufacturing resources is enabled for
the purpose of collaboration of partner SMEs. In this way, they
can fulfill the requested complex tasks cooperatively with a
high degree of customization, a process that is impossible

Fig. 11 The impact of changing α on a the cost OF and the percentage of using H&S network b the time OF and the percentage of using direct network

Table 10 The results of sensitivity analysis on Cmax, Tmax, and Qmin

Parameter Value CPU (s) Cost ($) Time (day) Quality (%)

Cmax 9750 108 Infeasible Infeasible Infeasible

10,000 196 9822.53 12.77 83

10,250 188 9839.20 12.71 83

10,500 204 9964.64 12.71 85

Tmax 11.5 125 Infeasible Infeasible Infeasible

12.0 187 11,514.06 11.68 82

12.5 245 11,514.06 11.68 82

13.0 247 9964.64 12.71 85

Qmin 75 198 9964.64 12.71 85

80 230 10,248.56 12.71 86

85 245 10,248.56 12.71 86

90 101 Infeasible Infeasible Infeasible
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nowadays due to product-oriented business models of the stan-
dard large-scale manufacturing systems. Meanwhile, the pro-
cess of SSOS is considered as an important step toward prac-
tical implementation of cloud manufacturing so that its ultimate
goals are performing a task optimally through selection of
MCSs, routing shipments between them and scheduling sub-
tasks into the available time frames of the selected MCSs.

Although complex manufacturing tasks usually have a
mixed structure, it is not possible to provide a general
mathematical model for such tasks as changing the order
of composition structures will results in significantly dif-
ferent outcomes. In this paper, motivated from shortcom-
ings in the literature, we have proposed four multi-
objective MIP models for solving the SSOS with a se-
quential, parallel, loop, and selective subtasks’ composi-
tion structures, respectively. These MIP models act as el-
ementary models such that through their incorporation,
the SSOS of any task with a mixed structures can be
solved. As mentioned previously, the models also consid-
er service occupancy and transportation between MCSs.
For service occupancy, we have assumed that an MCS is
subject to at most one occupied interval which its start
time and end time are known in advance. From transpor-
tation point of view, for the first time in the context of
cloud manufacturing, the proposed models optimize
routing decisions within a given hybrid hub-and-spoke
network. In order to convert the multi-objective models

into single objective problems, SAW technique is applied.
To this end, we use the payoff table method for normali-
zation of the OFs. Afterwards, their scaled values are
multiplied with a weight preference and then are summed
into the OOF.

For evaluating the performance of the models, an ex-
ample of customized motorcycle production was consid-
ered. Also, six scenarios as well as a series of sensitivity
analysis were designed to examine the robustness of the
results. The outcomes demonstrated the usefulness and
applicability of the proposed models for solving the
SSOS problem. Furthermore, the results showed the great
influence of transportation and service occupancy consid-
erations in the SSOS such that without them the obtained
solutions lack practicality for cloud manufacturing envi-
ronment. It was also revealed that the hybrid H&S, in
comparison with pure transportation networks, potentially
has advantages in terms of cost and time savings. The
level of savings mainly depends on the value of α.

The main limitation of this paper is that the proposed
MIP models do not consider dynamic nature of the cloud-
based environment. In a cloud manufacturing system, the
services are dynamic which means the total number of
services as well as parameters (such as cost and quality)
for a given service are changed over time. On the other
hand, customer requirements are subject to continuous
changes. Therefore, for solving the SSOS problem, the
dynamics from both parameters of services and customer
requirements must be taken into account [16]. As a con-
sequence, cloud manufacturing service selection becomes
a question not only of “who” but also of “when”. To
answer this question, supply–demand matching simulator
(SDMSim) developed by Tao et al. [53] and the proposed
MIP models can be combined where, for each time peri-
od, the SDMSim reveals correlations between services
and subtasks, and the MIP models find optimal MCCS,
routing and subtasks scheduling. Another limitation of the
current study relates to deterministic MIP models and a

Fig. 12 The impact of increasing wc on a the value of cost and time OFs b the value of quality OF and OOF

Table 11 The results of sensitivity analysis on LHub

α LHub CPU (s) Cost ($) Time (day) Quality (%)

0.2 4, 12, 17, 20, 24 343 9579.19 12.71 86

0.4 1, 4, 12, 17, 18, 20 564 9796.27 12.71 86

0.6 2, 4, 12, 20 198 9964.64 12.71 85

0.8 2, 4, 5, 12, 20 293 10,144.88 12.71 85

1.0 4, 5, 8, 20 204 10,144.88 12.71 85
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future research direction is developing stochastic models
to evaluate how sensitive the results are to variations or
uncertainty in parameters. Moreover, as CPLEX solver
cannot solve the large-sized SSOS problems in reasonable
computational time, heuristic, and metaheuristic algo-
rithms can be applied to search for optimal or near-
optimal solution(s).
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