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Summary

Electromagnetic (EM) scattering from dielectric objects embedded in stratified dielectric
media is relevant for the design of optical integrated circuits, inverse imaging in integrated-
circuit metrology, and the design of metamaterials. Design and optimization for these
applications requires knowledge about the responses of the aforementioned structures to
incident EM waves. Numerical methods are often employed to find this response. To op-
timize one single design, numerous applications of such a numerical method are required.
Numerical methods available to calculate such a response are available, however, the time
required for such a large number of computations is often impractical for design and opti-
mization.

The goal of this research is to find a more efficient numerical method to calculate this
scattering response. The numerical methods in existence can be classified into so-called
global methods and local methods, where local methods such as FEM, FDTD and FIT,
approximate Maxwell’s equations on elements on a mesh or grid and couple these elements.
Global methods, such as domain and boundary integral equations, approximate Maxwell’s
equations on a larger domain at once. The translation symmetry in the transverse direction
of the stratified medium, which is a global symmetry, requires a global method to exploit
it. Our method of choice is a domain-integral equation formulation, which consists of a
field-material interaction that calculates a contrast current density, and Green function
convolutions that calculate the electric field generated by this contrast current density.

The Green function in our integral equation can be represented in the spatial and the
spectral domain. An analytical expression for the Green function exists in the spectral
domain, and it is possible to calculate a spatial-domain Green function through tedious
Sommerfeld integrals for a spatial volume or boundary integral equation. However, we pre-
fer a spectral representation for the Green function. For periodically repeating scattering
objects, the periodicity can be exploited to represent functions on a discrete spectral lattice,
e.g. the periodic volume integral method and rigorous coupled-wave analysis. Contrary
to that, finitely sized scatterers require a continuous spectral domain, hence a discretiza-
tion in the spectral domain is needed. Additionally, the field-material interaction is most
efficiently represented in the spatial domain. Therefore, a discretization in the spatial do-
main is needed as well and a fast way of transforming between spatial and spectral domain
should be available.

The development of a mixed spatial-spectral numerical method takes place in stages
with an increasing difficulty, starting from the two-dimensional case of a homogeneous
background in TE polarization, which yields a scalar problem. To discretize the contrast
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current and the electric field we use a Gabor frame, i.e. a representation in terms of a
sum of weighted Gaussians that are shifted with a uniform spacing and modulated with
a uniform frequency step. Since the Gabor frame consists of frame functions that can be
Fourier transformed analytically, a fast and exact transformation of the electric field and
contrast current density between the spatial and spectral domain exists. The homogeneous-
medium Green function contains branch-cuts along which rapid oscillations occur. These
oscillations are hard to represent accurately with a small number of Gabor coefficients.
To retain an accurate algorithm, we use a scaling of the spectral coordinate to smoothen
these oscillations. The discretized combination of the field material interaction and Green
function convolution are used as a matrix-vector product in an iterative solver. The Gabor
frame allows to compute the matrix-vector product in an amount of time that scales as
O(N logN) with the number of unknowns.

Subsequently a two-dimensional scattering problem with transverse electric polarization
in a layered medium is solved. In a layered medium complex poles can appear in the
Green function. These poles are not integrable, so a coordinate stretch cannot be used
to smoothen the peaks originating from these poles. By representing the contrast current
density and the electric field on a specially chosen path through the complex plane, the poles
can be evaded. The special choice of the path allows for fast transformations to and from
the path. Along the complex-plane path, the poles and oscillations along the branchcuts
are smoothened so that the Gabor frame can be used to accurately and efficiently represent
the Green function. It is shown again that the computational complexity of the matrix-
vector product scales as O(N logN) with respect to the number of unknowns, that scales
with the size of the embedded scatterer.

The same complex-plane spectral path is then used to solve a scattering problem with
TM polarization, which is the first vectorial problem that we tackle. It is well known
that periodic spectral solvers can have difficulties in solving scattering problems with TM
polarization because two functions with spatial discontinuities are convolved in the spectral
domain, a convolution that is not well-defined. We show that also for a continuous spectral
solver such a convolution yields a poor convergence with respect to the range in the spectral
domain that is included in the simulation. To overcome this effect, we apply an auxiliary-
field formulation. Again, this leads to an O(N logN) complexity for the matrix vector
product.

By applying the knowledge gained from the two-dimensional solvers, a three-dimensional
solver has been constructed. The complex-plane path integration in the spectral domain
for the 2D case is replaced by a two-dimensional manifold in the complex plane, which
consists of nine regions. The auxiliary-field formulation is combined with a normal-vector
field formulation for an efficient handling of the field-material interaction for discontinuous
field components at material interfaces. To further increase the computational efficiency,
operations on Gabor coefficients are approximated by faster methods that require a smaller
number of fast Fourier transformations and less overhead. This yields a full-wave three
dimensional solver for stratified dielectric media that scales as O(N logN) on the number
of unknowns and that scales well to large-sized scatterers.
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All algorithms were tested against a finite element method solver to at least three digits
accuracy. For the three dimensional algorithm a computation of the scattering far field is
shown of a grating with a contrast χ = 1.25 consisting of 10 dielectric lines on a substrate.
The size of the problem is λ/4.1×16λ×16λ, and it was discretized using 5.1 ·106 unknowns
and the system was solved in under two hours on a single core of an i7-4600U cpu while
using 10GB of RAM.

The thesis is completed by arguing that the use of Gabor frames is not vital for this
type of spatial-spectral methods. Any discretization in the transverse plane that is a good
approximation in the spatial as well as the spectral domain can yield good accuracy. Ad-
ditionally, when a fast means of Fourier transformation exists between the spatial domain
and a complex path in the spectral domain, then it is suitable to apply in a spatial-spectral
solver. As an example it is shown that a Hermite-interpolation-based discretization can
also yield an efficient algorithm.
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Chapter 1

Introduction

1.1 Wafer metrology

Since the invention of the triode vacuum tube in 1906 [1], the developments in electronic
circuitry progressed at a rapid rate. With an increasing reliability and decreasing costs,
more and more advanced circuitry became achievable. The increasing possibilities allowed
more advanced communication techniques and the advances in communication techniques
also increased the demand for more advanced circuitry. During the second World War, the
state of electronic technology allowed it to be applied for deciphering coded messages in
the first computer, the Colossus at Bletchly park [2]. This opened up a new, major field
where electronic circuits were applied: computing.

During the following years computers consisted of vast numbers of discrete components
and connecting wires, which was hard to manage. One method to cope with this prob-
lem was to integrate multiple components inside a single package. Technically, the first
integrated circuit, the Loewe 3NF that was designed by Manfred von Ardenne, already
dates back to 1925 [3, Chapter 11]. However, it was the invention of semiconductor-based
integrated circuits by Geoffry Dummer in 1956 that made it possible to easily incorporate
vast numbers of components on a single flat piece of semiconductor material [4]. With this
integrated-circuit technology, the required number of production steps does not depend
very strongly on the number of components in a circuit, i.e., just a few production steps
can produce a vast number of components.

Currently, integrated circuits are still constructed on semiconductor material via a
lithographic process. On a flat piece of semiconductor, a so-called wafer, materials can be
deposited or etched away. By applying photosensitve layers and illuminating them with a
pattern that characterizes electronic components, an integrated circuit can be constructed.
The number of integrated components on a single integrated circuit has risen from several
hundreds around 1965 [5] to more than five billion in 2017 [6]. The exponential growth
of this number was already predicted in 1965 by Gordon Moore [7]. To allow such large
quantities of components in a single package, the size of these components has been greatly
reduced as well. Modern integrated circuits for use in computers are produced with a detail
of 10 nm [8].
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To enable cost-effective lithographic production of so many components at this level of
detail, several key parameters in the production process have to be closely monitored. The
critical dimensions (CD) is the width of the smallest features that are produced. A good
control of the CD ensures that the components are not erroneously interrupted when they
are too thin, or touch other components when they are too thick. The alignment of different
layers is critical, since structures and connections in a layer need to connect precisely to the
structures in other layers. This alignment is measured in an overlay measurement. For this
type of measurement it is required that the measurement technique penetrates somewhat
into the layers on the wafer, since that will allow to assess the alignment of a pattern in
one layer with respect to a pattern in another layer. Another parameter is the focus of the
illumination stage. An unfocused beam will not illuminate as precisely as is required. The
illumination dose is also important, since an illumination that is too short or too long can
produce artefacts in the pattern on the wafer.

Keeping the machinery optimally calibrated requires a continual monitoring of the
lithographic process. Therefore, fast measurements are preferred for continual calibrations.
Ideally, a lithography machine is calibrated on each wafer that is produced, such that the
calibration error of the previous wafer is compensated immediately for the next wafer.
Integrated circuits are often produced in many illumination steps on several machines,
so a high accuracy is of vital importance. When a measurement technique allows the
calibration of the lithographic process within the production line at each newly produced
wafer, the accuracy is monitored very well. However, such a mode of calibration requires
measurements with a nanometer-precision instrument at a high speed.

There are several popular measurement techniques for this type of problem.

• Atomic force microscopy (AFM) measures structures down to atom level, by measur-
ing the force between a tip and the sample [9]. The tip is moved over the sample, and
the force between the tip and the sample is recorded. From this data an image can
be constructed of the sample. The accuracy of this method is very high. However,
it takes time to move the tip over the sample and only the surface can be character-
ized. Since only the surface can be measured, a destructive technique is required if
measurements below the surface of the integrated chip are required.

• Scanning electron microscopy (SEM) measures the reflection of a very narrowly fo-
cused electron beam from the surface [10, Chapter 9], [11]. The accuracy of the
method is high and measurements can be carried out moderately fast. The tech-
nique is especially popular for CD measurements, although it can be used for overlay
measurements as well at high voltages [12].

• Scatterometry is an optical technique where details much smaller than the diffraction
limit can be measured [13]. However, the diffracted light that is registered is not di-
rectly related to the shape of the scatterer and it requires a significant computational
effort to recover the calibration parameters. Light of several wavelengths can be used,
so wavelengths can be chosen that penetrate into the integrated circuit, which allows
for very fast non-destructive measurements.
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• Ellipsometry is an optical technique where light with a known polarization is re-
flected from a surface. From the polarization of the reflected light information can
be retrieved about the reflecting surface [14]. In semiconductor manufacturing this
non-destructive process is popular for characterizing the thickness of the deposited
layers [15].

• Soft X-ray works similar to scatterometry [16], but with a much shorter wavelength,
on the order of 10 nm. At the moment, this technique is still rather experimental, but
it has the advantage of employing light at much shorter wavelengths, which allows
for even more precision and non-destructive measurements. A downside is the low
contrast value of materials at these wavelengths. A difficulty with this technique are
the focussing optics, since they are relatively absorbing.

• Hard X-ray employs X-rays with a wavelength much shorter than the detail size
[17]. Here, a transmission approach is followed, instead of measuring the scattering.
Optics are even more difficult at such short wavelengths, and, again, this technique
has not matured to the level of e.g. SEM and scatterometry. However, the technique
promises fast, non-destructive measurements at a high precision.

Figure 1.1: A simplified setup for a scatterometry measurement.

Non-destructiveness of a measurement technique is very important. Therefore, scat-
terometry is a popular method. The method is schematically depicted in Figure 1.1. In
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practice, special metrology targets are constructed on the wafer for these measurements.
One of the challenges for scatterometry is that the scattered light, as it is registered, has
no direct relation to shape of the target, in the sense of e.g. a microscopy image. Given a
certain metrology target, it is possible to compute how the light is scattered in a so-called
forward computation. However, the other way around, the complete shape of the metrol-
ogy target as it is produced by the lithography apparatus cannot be reconstructed directly
from the scattered light, because a lot of the information about the target structure does
not radiate into the far field and is therefore not registered. To reconstruct the shape of
the measured scattering target, the technique of inverse inverse scattering is applied.

In this case, the technique of inverse scattering involves fitting a slightly deformed
metrology target as it is produced by the mis-calibrated lithography machine. A large
number of forward computations is required, each of them corresponding to a different
deformation in the realized metrology target. By comparing the results of the computed
scattered light with the measured scattered light, a good fit can be found to the realized
metrology target. So via the use of prior information about the target, sub-wavelength
features about the metrology target can be recovered. When the dimensions of the realized
target are known, recalibration parameters can be computed. Clearly, a large number of
forward computations are required to recalibrate after measuring a target structure. To
mitigate high-demands on the solver, a library-based approach is often preferred. Such a
library samples the parameter-space of mis-calibrations, which can be interpolated to find
the most suitable recalibration. However, even though the library can be computed outside
of the production process, it is challenging to fill this library in acceptable computation
times.

When the shape of the target is well-chosen, this can yield reliable measurement results.
It is essential that the diffraction pattern is sensitive to the parameters of the metrology
target on which the calibration is carried out. Optimizing the design of such a metrology
target also requires a large number of forward computations. Typically, a periodically
repeating target is chosen, which has the benefit of stronger reflections and a clear distinc-
tion between reflection orders. Another advantage is that a forward computation can be
carried out much faster with the assumption of an infinitely repeating scatterer. This is
important, since these computations are complex and require a significant amount of time
and computational resources.

1.2 Research question

The demands on the accuracy of the scatterometry measurements increases since the fea-
ture size of integrated circuits is still decreasing. The required accuracy of the measurement
technique is already orders of magnitude smaller than the wavelength of the light source.
Additionally, there is a demand for smaller metrology targets, since it can be beneficial
to locate the targets within the integrated circuit, where the space occupied by the target
competes with the space occupied by the integrated circuit itself. At a certain number
of repeating elements and a certain accuracy level, the assumption of infinitely repeating
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metrology target breaks down. Additionally, surface waves that are present in infinitely
repeating structures [18] are not present in finite structures. To obtain some insight into
the limits of this periodicity assumption, forward computations need to be carried out for
the entire metrology target. Although computational methods for this problem exist, the
metrology targets are often too large to conveniently apply them on current computers,
both because of the memory requirements and the computation time. An important dif-
ficulty for the computational methods is that an integrated device is built from a large
number of different materials, stacked as layers on top of each other. For many computa-
tional methods such a multilayered medium requires a significantly larger computational
effort.

Metrology is not the only field where solvers for finite scatterers in multilayered dielec-
tric media are required. Another use for such a solver would be metasurfaces, i.e., the
science of creating surfaces with microscopic objects that interact with electromagnetic
fields on a macroscopic scale by combining all microscopic interactions. Examples include
flat lenses [19, 20, 21, 22]. Also in integrated optics lightwaves interact with each other
via complex structures of e.g. waveguides, that are created with the aid of techniques
similar to those for ordinary integrated circuits [23, 24, 25]. Therefore, these waveguides
are also deposited on a multilayered medium and the design of these also requires a solver
for multilayered media.

The goal of this study is to create an efficient full-wave electromagnetic
solver for finitely sized dielectric objects embedded in a multilayered medium.
Important is the flexibility of this solver. It should be possible to define the shape of the
scatterer independent of the expansion of the electric fields. This requirement leads to a
continuous dependence of the result of a forward computation with respect to the scatterer
geometry, which is advantageous for the fitting procedure in inverse scattering. The solver
should also be very flexible with respect to changes in the multilayered medium, such as
layer thickness and dielectric constant.

The primary goal of this project is to obtain a solver with which the scattering from
large, finite objects embedded in a layered medium can be studied. To do so, both a high
accuracy of 10−3 and a high computational efficiency in both memory and computation
time are required. A secondary goal would be to be able to apply such a solver directly
in the production process, which would require forward computation times in the order of
seconds for complete metrology targets.

1.3 Existing numerical methods

A very large variety of computational methods for electromagnetic scattering problems
exists. We will divide the existing numerical methods in two classes, i.e. in local and
global methods. A local method is based directly on Maxwell’s equations in differential or
integral form. It uses only short-distance interactions and connects local interactions into
a single large system, where interactions at a distance are coupled via a chain of locally
connected interactions. Global methods employ derived formulations. The response of the
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entire system to a single point source in space is computed and therefore all source points
are interacting with all observation points directly. Global methods include Green function
methods and modal methods, which will be discussed shortly in Section 1.3.1-1.3.3. Some
important examples of both methods, will be discussed in the context that we search for a
method that

• is applicable to multilayered media,

• is tailored towards finitely sized objects,

• is efficient for single-wavelength-sized scattering problems.

1.3.1 Local methods

A straightforward version of a local method is the finite difference time domain (FDTD)
method [26, 27, 28]. This method approximates the differential operators in Maxwell’s
equations by finite differences. In a large number of discrete time steps the response of
the system to an incident electromagnetic pulse is found. The strong point is its very
wide range of applicability and ease of implementation. The time-domain nature of FDTD
will yield results for a continuous spectrum of wavelengths. This can be advantageous for
certain problems, but it comes at the cost of incorporating the time dimension explicitly as
a variable in the computation, requiring four dimensions for a problem with three spatial
dimensions.

Finitely sized objects embedded in an infinite space can be incorporated through ap-
plying radiation boundary conditions. These conditions are applied at the boundary of the
simulation domain and guarantee that no waves reflect back at the edge of the open bound-
ary. This mimics the wave-propagation of an infinite homogeneous medium outside the
simulation domain. Both the Mur absorbing boundary [29] and perfectly matched layers
(PMLs) [27, Chapter 7 and 8], [28, Sections 3.2 and 4.2] are popular methods to imple-
ment radiation boundary conditions. Multilayered media can be incorporated as well and
since they extend to infinity, they can be incorporated together with absorbing boundary
conditions, e.g. PMLs. A downside for multilayered media is that the simulation domain
has to extend to all layers of the multilayered medium [29, 30].

Where the FDTD method discretizes the differential form of the Maxwell equations,
the finite integration technique (FIT) discretizes the integral form of the Maxwell equa-
tions [31]. Similar to the FDTD, Cartesian grids are used in the spatial domain and a
marching-on-in-time scheme is used for FIT in the time dimension. Advantages of FIT
are that Maxwell’s laws are not approximated, which leads to e.g. conservations of energy
and charge. However, the approximations are made in the constitutive relations. Again,
radiative boundary conditions are used for finite scatterers in multilayered media.

Another popular local method is the finite-element method (FEM) [32]. In this method
the time dimension is eliminated by assuming a harmonic excitation of the object and a
linear response of the scattering object. The object can be meshed nonuniformly, such that
a finer meshing is possible where the field is singular, such as around corners and edges
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of objects. On each mesh cell a polynomial expansion represents the fields inside the cell
and on its boundary. The field at the boundaries of neighboring cells are coupled to satisfy
the continuity conditions of the Helmholtz equation and the resulting linear equation is
usually solved using a fast, direct solver. Recently, a fast solver was proposed to solve the
pertaining linear system in O(N) operations [33], with N unknowns. However, in most
cases a solver is employed that does not scale that well to large problem sizes. FEM tackles
finitely sized problems with a radiative boundary condition as well.

Both FEM and FDTD are popular choices for scattering problems in metrology [34,
35, 36]. Higher-order basis functions and the absence of the time dimension in FEM are
advantageous for reaching high levels of accuracy [36], although all the results in [34, 35, 36]
rely on the assumption of periodic scatterers to keep the simulation domain small.

Global methods: Free-space methods

An important branch of the global methods uses a Green function, i.e. the response of the
background medium (e.g. vacuum) to a point-like source. However, modal methods do
not use a Green function and an example of such a method, the Fourier modal method, is
briefly described in Section 1.3.3. In most cases, the Green function for a harmonic time
dependence is used. The field at the location of the scatterer is discretized by a set of
basis functions, each of which represents a small part of the field on the complete scatterer.
The Green function is then employed to compute the response of one basis function due
to fields due to another basis function. This leads to a large matrix equation, which can
be solved directly or via iterative techniques. When iterative techniques are used, the full
matrix does not have to be calculated. A method to compute the electric field from a given
source distribution is the only requirement. Both volume integral equations (VIEs) and
surface integral equations (SIEs) follow this approach.

An important example of a VIE is the CGFFT method [37]. Since the Green function
is translation invariant, the integral over the Green function takes the form of a spatial
convolution. The CGFFT method exploits the fact that a convolution over uniformly sam-
pled function values or expansion functions with equal spacing can be computed efficiently
using fast Fourier transformations (FFTs) [38, Section 13.1]. The conjugate-gradient (CG)
iterative technique is used to solve the resulting matrix system [39]. Since the number of
iterations does not depend strongly on the number of basis functions, N , the computation
time for such a scattering problem scales as O(N logN) with the number of unknowns.

A different approach employing a SIE formulation is the Boundary Element Method
(BEM), which is useful for scattering from homogeneous objects [40]. In this surface-
integral formulation, the fields are only treated at the boundaries of the scattering objects.
These boundaries are meshed, e.g. into triangles (Rao Wilton Glisson functions [41]),
to approximate the fields accurately. By approximating the object boundaries by small
triangles, they can be approximated accurately. On each of these triangles a surface-
current is used on both sides, to model the transmission of fields to the other sides. These
surface current densities are modeled through a set of basis functions on each triangle. The
Green functions are used to compute the interactions inside and outside the homogeneous
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objects from triangle to triangle. Boundary conditions are used to match the fields on both
sides of the object boundaries. This results in a matrix equation that can be solved both
directly in O(N3) steps and iteratively in O(N2) steps to find the surface current density
on the mesh and in a post-processing step the fields can be computed at any other location,
when no further optimizations are applied for the matrix-vector product.

For both VIE and SIE formulations optimization schemes exist. Several improvements
have been made on CGFFT, such as the adaptive integral method (AIM) [42] for SIEs
and pre-corrected FFT [43, 44] for VIEs. These methods employ two discretizations, a
fine one for local interactions and a coarser one with equidistant sampling for long-range
interactions. The long range interactions can be approximated on the equidistant grid and
are handled by FFTs comparable to CGFFT, which results in O(N logN) computation
time. Another important method to speed up computation is by making low-rank approx-
imations of the integrals over the Green function by multipoles for interactions at a larger
distance. This so-called fast multipole method [45, 46] only employs the full expression
for the Green function integrals for short distance interaction and employs the approxima-
tion for larger distances, which is significantly faster. Using this method a matrix-vector
product can be computed in O(N3/2) time. For even larger systems, the multi-level fast
multipole algorithm (MLFMA) extends this into a hierarchical structure where the inter-
actions are computed through a tree-structure for both SIE formulations [47] and VIE
formulations [48]. It is possible to compute matrix-vector products with the MLFMA
method in O(N logN) time. Extensions of the method are available for multilayered me-
dia [49]. An alternative to the fast multipole expansion is the fast inhomogeneous plane
wave expansion (FIPWA) [50, 51]. This method computes long-distance interactions using
an expansion in inhomogeneous plane waves, instead of multipoles. Multilevel variants of
this method exist as well. It is interesting to see how the free-space methods mentioned in
Section 1.3.1 can be used for multilayered media [52]. The implementation of the MLFMA
method for multilayered media consists of changing the Green function with one of the
multilayered versions discussed in Section 1.3.2.

There are important differences in the computational complexity between VIEs, such
as CGFFT, and SIEs such as BEM. For scattering from large objects, SIEs have a smaller
number of unknowns than VIEs, since the number of unknowns scales with the surface
area of the scatterer instead of with the volume. On the other hand, a SIE is significantly
more complex, since the surface elements require more intricate testing and basis functions
that project onto the surface, whereas for a VIE all elements are defined already in three-
dimensional coordinate system to which the Green function applies. This leads to a rela-
tively longer computation time per unknown for SIEs. The structures that are encountered
in metrology are often of sizes comparable to or smaller than the wavelengths, for which
the number of unknowns for both a SIE and VIE are comparable. In such cases, and when
the iterative solver converges fast, VIEs are advantageous. For this reason we focus on a
VIE, although a SIE does perform better in some cases, e.g. for scatterers of large size and
large dielectric contrast.
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1.3.2 Global methods: Green function for multilayered media

Most global methods somehow incorporate the Green function. This Green function rep-
resents the electromagnetic field on the whole computational domain radiated by a point
source. By integrating the Green function over a source function, the electromagnetic field
as radiated by the source can be found. A major advantage of the use of the Green function
for the problem at hand is that the multilayered medium can be incorporated directly in
the Green function [53]. When a source is located in a multilayered medium, an integration
over the multilayered medium Green function computes the electromagnetic fields in the
full multi-layered medium, including the reflections at the layer interfaces. In this way, the
computational domain can be limited to the support of the objects in the layered medium.
This could potentially allow for a computational domain of a much smaller size than a
local method would need.

For a homogeneous medium of infinite extent, Green’s function is available in closed
form. However, an analytical expression for the multilayered Green’s function in the spatial
domain does not exist. On the other hand, an analytical expression for the multilayered
Green’s function exists as a function of the spectral variables conjugate to the coordinates
in the transverse plane, i.e. parallel to the layer interfaces. Via a Fourier transformation in
the transverse plane, the result of which in this case is also known as a Sommerfeld integral,
it is possible to compute the Green function in the spatial domain. The computation
of these Sommerfeld integrals [54] is difficult because of branch cuts and poles that are
present in the spectral Green function [55, Chapter 8], [56, Chapter 5], [57, Chapter 4],
[58, Chapter 2].

Several approaches have been proposed to compute Sommerfeld integrals efficiently.
The Green tensor is rotationally invariant in the plane of stratification, a fact which is
often exploited by working in cylindrical coordinates (kρ, φ). The integral over φ is trivial
because of the rotational symmetry, whereas the poles are located in the integral over kρ.
The poles can then be circumvented by a deformation of the integration path into the
complex domain. An important approach that uses such a deformation of the integration
path makes use of the steepest descent path (SDP) [55, 59]. This SDP is chosen such that
there are as few oscillations in the integral as possible, which enables a fast convergence of
the numerical integration. Care has to be taken that the SDP passes some of the poles at
the wrong side of the integration contour, which means that their residual contributions
must be accounted for in a separate step. Since the locations and residues of the poles are
not known analytically, they have to be obtained numerically, which can be cumbersome
for general multilayered media.

A different approach to the deformation of the integration path is to choose the defor-
mation much closer to the real coordinate axis [60, 61]. This has the advantage that the
path can be chosen such that all poles are circumvented at the same side as the original in-
tegration path, and therefore the residues do not have to be added individually. Sometimes
the location of the poles is used to create a path that passes around each individual pole
[61, 62]. These methods have the disadvantage that the integrand is not as well behaved as
on the SDP, so a larger number of quadrature points is needed. However, on the positive
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side, less or no information about the locations and residues of the poles are needed, which
significantly simplifies the whole process and makes it more robust.

A radically different approach to a multilayered medium Green function is the discrete
complex image method (DCIM) [63, 64, 65]. The main idea behind this method is that the
reflection from a perfectly reflecting layer interface can be modeled by adding a fictitious
source on the other side of the interface. It is easy to implement this, for example by adding
a displaced Green function to the original Green function. Reflections from dielectric
media can be implemented by attenuating the reflection depending on the angle at which
the interface is crossed. Multiple layers can be implemented by increasing the number of
reflections, which involves bookkeeping and choosing a suitable truncation to the number
of reflections. A major advantage is that a free-space code can be employed directly when
these reflections are added.

For completeness, it should be noted that Green-function methods are not limited to
time-harmonic problems. Time-dependent Green functions exist as well. They also depend
on the time difference between when a source emits an electric field and the moment when
the electric field is observed. Variants of a time-dependent Green function for multilayered
media are reported in [66, 67, 68].

It might seem that the CGFFT method would not generalize well to multi-layered
media, since the translation symmetry in the direction normal to the layer interfaces is lost.
However, where the integral over the homogeneous-medium Green function can be written
as a single convolution, the reflection from the layer stack above and below a scatterer can
be added as two correlations added to the homogeneous-medium Green function [69]. In
the plane parallel to the layer interfaces, there is still a translation symmetry, so in these
directions we can still use a fast FFT-based implementation.

1.3.3 Global methods: Spectral methods for multilayered media

Since the Green function is known analytically in the spectral domain of the transverse
plane, it can be advantageous to solve the problem in the transverse-plane spectral domain
completely. In principle, the CGFFT method already uses the spectral domain, since the
Green function convolution is sped up using FFTs. However, a true spectral method uses
testing and basis functions completely in the spectral domain. Consequently, even the
shape of the scatterer is transformed to the spectral domain.

An example of such a spectral method is the periodic volume integral method (pVIM),
which employs the spectral Green function directly [70, 71]. This method can be employed
only for scatterers that are periodic in the transverse direction. The periodicity of the
scatterer implies that the electric and magnetic fields are infinitely periodic as well. This
periodicity means that the spectral domain decomposes into a set of discrete Floquet modes.
Since the spectral domain can be represented accurately by a discrete set of modes, the poles
in the Green function are not problematic here, since the chance of a pole coinciding exactly
with one of the mode numbers is negligible. In the direction normal to the layer interfaces,
a spatial discretization is used, that is handled efficiently using Gohberg and Koltracht’s
first-order recursion [72]. The field-material interaction in the transverse direction takes
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the form of a convolution in the spectral domain, which can be computed efficiently using
FFTs. This leads to an O(N logN) matrix vector product.

Another spectral method for periodic scatterers is the rigorous coupled-wave analysis
(RCWA), also known as the Fourier modal method [73, 74]. Here, the decomposition in
separate modes is used as well. The transmission of the modes in the longitudinal direction,
i.e. the direction normal to the layer interfaces, is treated analytically. At every change
of the transverse geometry, when moving in the longitudinal direction, this longitudinal
transmission changes in shape, and therefore a coupling matrix is computed. This approach
leads to a linear system of equations, that is often solved directly. RCWA is very efficient
when the number of transverse changes in the longitudinal direction is small, since then
the number of coupling matrices for the transmission lines is small as well. However, it can
only handle scattering objects with boundaries directed completely in the longitudinal or
the transverse direction. When borders are at a slope in both transverse and longitudinal
direction they need to be approximated by a staircase approximation [75]. A further
disadvantage is that the size of the coupling matrix that needs to be solved increases as
O(N2) for N the number of modes.

A final important spectral method is the C-method [76, 77]. With this method the scat-
tering from a perfectly conducting surface with a periodic modulation is computed. With
the aid of tensor calculus, a coordinate transformation is applied to Maxwell’s equations in
which the surface is aligned with one of the new coordinates. The problem is then solved
in this new coordinate system by using a Fourier expansion similar to RCWA. However it
allows for more general scattering surfaces, which can be beneficial compared to RCWA
[78, 75]. The method has also been generalized to non-conducting materials [79].

An important complication for spectral methods is that spatially discontinuous fields
decay slowly in the spectral domain. In principle, this slow decay is not problematic in it-
self, since most methods make some sort of approximation for a discontinuous field and we
are only interested in the accuracy of the radiating part, which means small wavenumbers.
However, problems can occur when the gratings we are interested in exhibit a discon-
tinuous dielectric constant function. This discontinuous dielectric contrast means that
also the fields are discontinuous for two-dimensional transverse magnetic (TM) and three-
dimensional scattering. In the spatial domain, the contrast current density is computed
by multiplying the contrast function with the electric field and both are discontinuous at
material boundaries. In the spectral domain, such a multiplication is represented by a
convolution, and this convolution does not converge uniformly [80], due to the slow de-
cay of discontinuous functions in the spectral domain. In [81] the Li rules are presented,
which state that the spectral convolution of two functions that have discontinuities at the
same position in the spatial domain, leads to intolerable errors. By a proper reformulation
this can be avoided easily for two-dimensional scattering problems [82, 83]. For three-
dimensional problems, the electric-field component normal to an interface of discontinuous
dielectric constant is discontinuous, but the electric flux density is continuous. However, at
such an interface the tangential components of the electric flux density are discontinuous,
whereas those of the electric field are continuous. This is exploited in [84], by representing
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the fields by a combination of electric flux density and electric fields that is continuous
everywhere via a so-called normal-vector field formulation.

1.4 Thesis outline

We propose to use a combination of a spatial and a spectral discretization. The method
therefore combines strong points of both CGFFT, i.e. the efficient Green function convo-
lution, and strong points of pVIM, i.e., Gohberg and Koltracht’s recursion and the exact
multilayered Green function. In Chapters 2 and 3 the formulation is presented in which
we work. Since the spectral domain does not decompose in discrete modes for a finitely
sized (non-periodic) scatterer, a discretization with continuous functions is required. We
propose to use the Gabor frame to discretize functions and a short summary of Gabor
frames is given in Chapter 4.

In Chapters 2-4 we have set up a guideline along which we devise a full 3D algorithm.
However, we start with simpler two-dimensional problems to test whether the approach
is feasible for full 3D scattering. We first solve a TE-polarized scattering problem in two
dimensions for a homogeneous scatterer in Chapter 5. Since branch cuts are present in
the homogeneous Green function, a coordinate stretch in the spectral domain is applied
to accurately represent this. Subsequently, in Chapter 6, the TE-scattering problem in
a multilayered medium is addressed. Since the multilayered Green function also contains
poles, the coordinate stretch is replaced by a deformation of the path of representation
from the real line into the complex plane. In Chapter 7, the TM-scattering problem in a
multilayered medium is solved, which is the first vectorial scattering problem. A reformu-
lation of the field-material interaction is applied to satisfy the Li rules. This reformulation
is extended to normal-vector fields in Chapter 8, where the method is extended to three
dimensions in a multilayered medium. Chapter 9 shows the scaling of this method to
large simulation domains. Additionally, a simulation result is given for a large scatterer,
combined with an optimization for scatterers that are of large longitudinal extent. An
improvement of the discretization that partly differs from the Gabor frame is proposed in
Chapter 10. This approximation significantly reduces the computation time, while it does
not significantly impact the accuracy. The main idea is to change from the Gabor-frame
representation, which requires a large number of small-sized FFTs and much overhead, to
a list-based representation with a small number of large FFTs and reduced overhead. The
results presented in this chapter can be considered as state of the art. Subsequently, in
Chapter 11, ideas that came up during the construction of the main algorithm are explored
in more detail. The key point here is to put the discretization and the deformation of the
spectral representation onto the complex plane into a broader perspective. A Hermite
interpolation-based discretization is proposed. Various methods are proposed to transform
to and from the complex-plane spectral path, which are applicable to a wider range of paths
for representation in the complex spectral domain. Numerical results for 2D TE-polarized
scattering are shown for an algorithm based on these ideas. The final chapter, Chapter 12,
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contains conclusions and an outlook for further improvements on the methods developed
in this thesis.

Chapters 5, 6, 7, 8, and 10 are word by word copies of published papers. Hence, they
contain abstracts, introductions and conclusions. Additionally, there are slicht deviations
in notation in these chapters.
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Chapter 2

Formulation

2.1 Description of the geometry

A layered medium consists of a stack of N −1 layers of different materials located between
two half spaces and stacked in the z-direction. An example of such a medium is drawn
in Figure 2.1, together with a Cartesian coordinate system and we indicate the position
vector x = (x, y, z) = xx̂+ yŷ + zẑ, where symbols with hats, e.g. x̂ indicate unit vectors.
In this work vectors are distinguishable from scalars by their bold font. We start counting
from n = 0 in the upper half space, the half space where z < 0, towards n = N in the
lower half space, where z > zN . Layer n ranges from zn to zn+1, with thickness dn and the
material has uniform isotropic relative complex permittivity εrb,n. We assume a uniform
permeability µ0 equal to that of free space and no conductivity.

Figure 2.1: A scattering setup for N = 3 and a small finite grating as scatterer.
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In layer i (i ∈ {1, · · · , N − 1}), an object of finite size is embedded. This object
is described by the permittivity function εr(x), where x = (x, y, z) denotes the position
vector. The object is contained within the rectangular box [−Wx,Wx] × [−Wy,Wy] ×
[zmin, zmax], with zi ≤ zmin < zmax ≤ zi+1, which we will call the simulation domain D. In
this work, the object and simulation domain are assumed to be embedded in a single layer.

2.2 Waves in a multilayer medium

We start from Maxwell’s equations to derive equations for waves in a homogeneous medium
in a representation, where we use the spectral domain in the xy plane and the spatial
domain in the z direction. From there we continue by identifying two polarizations for
waves moving through a homogeneous medium in absence of the scatterer. Transmission
and reflection coefficients for both polarizations are combined into a single transmission
and reflection tensor. We derive tensorial transmission and reflection coefficients, and an
expression for the incident field in presence of the multi-layered medium and in absence of
the scatterer.

Throughout this thesis we will use the Fourier transformation along an arbitrary coor-
dinate ξ, defined as

f(kξ) = Fξ [f(ξ)] (kξ) =

∫ ∞

−∞
dξ f(ξ)e−jkξξ, (2.1)

and with inverse

f(ξ) = F−1
kξ

[f(kξ)] (ξ) =
1

2π

∫ ∞

−∞
dkξ f(kξ)e

jkξξ. (2.2)

We will only explicitly write down the Fourier transformation of a function when it is
needed for clarity. When we write k as the argument of a function, its Fourier transform
is intended.

2.2.1 Waves in a homogeneous medium

Let us start from the time (t) dependent Maxwell’s equations [85] in the space-time domain
as

∇× H̃(x, t) = J̃(x, t) + ∂tD̃(x, t)

∇× Ẽ(x, t) = −∂tB̃(x, t),
(2.3)

with electric field Ẽ, magnetic flux density B̃, magnetic field H̃, electric flux density D̃,
and an electric current density J̃, which can act as a source. The current density can be
divided in a source current density J̃s and a contrast current density J̃c, which is induced
by the electric field. We assume absence of the source current density, J̃s = 0 and therefore
we omit the c superscript in the contrast current density. When we assume illumination
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by a time-harmonic source with angular frequency ω, all fields will have an exp(jωt) time-
dependence, which will be left out in the notation. We can write Maxwell’s equations in
the space-frequency domain as

∇×H(x, ω) = J(x, ω) + jωD(x, ω)

∇× E(x, ω) = −jωB(x, ω).
(2.4)

In the absence of free charge, we also have

∇ ·D(x, ω) = 0

∇ ·B(x, ω) = 0.
(2.5)

Since a harmonic time dependence is assumed in a linear system, the ω dependence can be
ignored in the notation, since ω is constant throughout.

In a homogeneous isotropic dielectric layer n we have εr(x) = εrb,n, which we use in
B = µ0H and D = ε0εr(x)E. After eliminating the magnetic field and the electric flux
density, Eq. (2.4) becomes

∇×∇× E = −jωµ0J+ k2
0εr(x)E, (2.6)

where k2
0 = ω2µ0ε0 denotes the wavenumber in vacuum and constant εr(x) = εrb,n. In the

absence of electric current sources, this becomes

∇2E+ εrb,nk
2
0E = 0

∇ · E = 0,
(2.7)

where the second line comes from Eq. (2.5). Solutions to the first line, which is a homoge-
neous Helmholtz equation, are three-dimensional plane waves

E(x) = Ewejkw·x, (2.8)

with complex wave vector kw with kw · kw = εrb,nk
2
0 and complex amplitude Ew. The dot

product is the short-hand notation for kw · x = xkw,x + ykw,y + zkw,z without complex
conjugation. The second line in Eq. (2.7) eliminates one degree of freedom in the direction
of E, such that Ew · kw = 0. This means that there is a two-dimensional freedom of
choice for the direction of Ew, which is called the polarization. Since there is translational
symmetry in the x− y plane in the multi layered medium we distinguish it by employing
the subscript T to denote the part of a vector in this transverse direction, e.g. xT = xx̂+yŷ
and kw,T = kw,xx̂ + kw,yŷ. The propagation in the z direction is characterized by γ2

n =
−k2

w,z = k2
w,T −εrb,nk

2
0, with the branch cut of the square root taken just below the negative

real axis and k2
w,T = kw,T · kw,T . Note that γ is imaginary for propagating waves. The

two solutions corresponding to both Riemann surfaces, i.e. +γn and −γn, determine the
direction of propagation in the z direction. Now the single plane wave of Eq. (2.8) can be
written as

E(xT , z) =

{
Ewejkw,T ·xT−γnz for a wave moving up

Ewejkw,T ·xT+γnz for a wave moving down .
(2.9)
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For waves propagating in the horizontal plane, kw = kw,T both solutions are equal. In
general, the electric field E contains plane waves in all different directions with different
amplitudes. When a collection of waves is given, the electric field can be computed at
height z0. Therefore we divide the total electric field E(xT , z0) in a collection of plane waves
moving up Wu(xw,T , z0) and a collection moving down Wd(xT , z0). These collections can
be Fourier transformed to spectral transverse wavenumber kT ∈ R2, yielding Wu(kT , z0)
and Wd(kT , z0). Where Eq. (2.9) only contains propagating waves, this can be generalized
to include evanescent waves by letting kT ∈ R2. Therefore, the total electric field can be
characterized by the Fourier transform

E(xT , z) =

(
1

2π

)2 ∫
kT∈R2

dkT

[
Wd(kT , z) +Wu(kT , z)

]
ejkT ·xT , (2.10)

The integral over the vectorial quantities is defined as∫
R2

dkTv(x) =

∫ ∞

−∞
dkx

∫ ∞

−∞
dky (vx(kx, ky)x̂+ vy(kx, ky)ŷ + vz(kx, ky)ẑ) . (2.11)

The wave amplitudes Wu(kT , z0) and Wd(kT , z0) in Eq. (2.10) propagate in the z direction
according to Eq. (2.9), so they can be found via

Wd(kT , z) =Wd(kT , z0)e
−γn(z−z0)

Wu(kT , z) =Wu(kT , z0)e
−γn(z0−z).

(2.12)

This notation for wave propagation in the z direction will be kept throughout the rest of
this thesis and by a z-propagating wave we will mean this instead of the plane wave of
Eq. (2.8) and Eq. (2.9).

Since the Wu and Wd are given in terms of kT , we fix the remaining degree of freedom
in the polarization of the plane waves with respect to kT in two polarizations, a transverse
electric (TE or e) and a transverse magnetic (TM or h) polarization [86, Chapter 11]. The
TE polarization is defined such that the electric field lies in the transverse plane and is
perpendicular to kT . We now look at the three components of the electric field, which
together constitute the two field polarizations.

• The electric field component in the z direction is certainly h-polarized.

• The electric field component in the kT direction is also h-polarized.

• The electric field component perpendicular to the ẑ,kT -plane must be e-polarized.

It is clear that for a general vectorV, Vz is certainly h-polarized. In the transverse plane
we can select the h-polarized part from VT by the two-dimensional projection operator Ph

defined as

Ph ·VT = kT
kT ·VT

k2
T

(2.13)
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and the e-polarized part by the projection operator Pe defined as

Pe ·VT = (kT × ẑ)
(kT × ẑ) ·VT

k2
T

. (2.14)

Rank 2 tensors, such as these projection operators can be distinguished by their caligraphic
font. We can separate these projections, both polarizations can be separated in wave Wu

through

Wu,h = Ph ·Wu
T

Wu,e = Pe ·Wu
T + ẑW u

z ,
(2.15)

and a similar seperation for Wd into Wd,h and Wd,e. Since the direction of the e and h
parts are fixed by kT , we sometimes use scalars to denote the amplitude of these waves,
when this is more convenient for notation.

2.2.2 Reflection and transmission at an interface

For the transmission and reflection at a single layer interface, we take a background medium
with N = 1, i.e. two half spaces with a single interface at z = 0. Let us assume that the
upper half space z < 0 has dielectric permittivity εrb,0 and the half space z > 0 has
relative dielectric permittivity εrb,1. When an incident wave Sd(kT , z) moving down in half
space 0 reaches half space 1, it is partly reflected back into half space 0 as Ru(kT , z) and
partly transmitted into layer 1 as Td(kT , z). The transmission and reflection of a wave
through the interface between materials with different permittivities is different for the two
polarizations of a wave [85, Chapter 7].

Since the transmission and reflection depend on the polarization, using Eq. (2.15), we
start by writing down the equations for the e polarized part, which is scalar, i.e.

Ee(kT , z) =

{
Se(kT , z) +Re(kT , z) when z < 0

T e(kT , z) when z > 0.
(2.16)

By ensuring Maxwell’s equations hold in integral form on the interface at z = 0, i.e. by
ensuring boundary conditions, reflection and transmission coefficients can be obtained [85]
such that

Re(kT , z) =re(kT )S
e(kT , 0)e

γ0z

T e(kT , z) =te(kT )S
e(kT , 0)e

−γ1z.
(2.17)

Here re and te signify the reflection and transmission coefficients from the layer interface
at z = 0 for e polarization. For reflections in the h polarized part we have to look at the
H-field, which is directed perpendicular to the ẑ − kT -plane as well for this polarization

Hh(kT , z) =

{
Sh(kT , z) +Rh(kT , z) when z < 0

T h(kT , z) when z > 0.
(2.18)
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This leads to

Rh(kT , z) =rh(kT )S
h(kT , 0)e

γ0z

T h(kT , z) =th(kT )S
h(kT , 0)e

−γ1z.
(2.19)

The transverse part of the electric field corresponding to the magnetic fields Rh, T h and
Sh is identical up to a constant, whereas the z part part gets a minus sign when traveling
in the negative z-direction. The exact form of these coefficients be found in [85, Chapter
7].

By means of a transmission tensor T (kT ) we can construct a single transmission coef-
ficient that incorporates both polarizations. In a Cartesian coordinate system, the tensor
is given by

T (kT ) =
1

k2
T

 k2
xt

h(kT )− k2
yt

e(kT ) kykxt
h(kT )− kykxt

e(kT ) 0
kykxt

h(kT )− kykxt
e(kT ) k2

yt
h(kT )− k2

xt
e(kT ) 0

0 0 k2
T t

h(kT )

 , (2.20)

and similarly a reflection tensor

R(kT ) =
1

k2
T

 k2
xr

h(kT )− k2
yr

e(kT ) kykx(r
h(kT )− re(kT )) 0

kykx(r
h(kT )− re(kT )) k2

yr
h(kT )− k2

xr
e(kT ) 0

0 0 −k2
T r

h(kT )

 , (2.21)

where the zz element gets a minus sign, since for a reflection the direction of propagation
changes. With the aid of these tensors it is possible to give an equivalent of Eqs. (2.17)
and (2.19) for the electric fields

Ru(kT , z) =R(kT ) · Sd(kT , 0)e
γ0z

Td(kT , z) =T (kT ) · Sd(kT , 0)e
−γ1z.

(2.22)

We will refer to these and similar quantities as reflection and transmission coefficients,
although they are tensor-valued.

2.2.3 A multi-layered medium

To calculate the electric field throughout a multi-layered medium, such as in Figure 2.1, a
similar technique is used as for a single interface. When an incident wave Wi,d

0 (kT , z) is
present in the upper half space, z < z1, the electric field in all layers can be calculated.
In every layer of the multi-layered medium waves are traveling in both directions. In
layer m there exist a wave traveling up Wi,u

m (kT , z) and a wave traveling down Wi,d
m (kT , z).

Similar to the half space reflection coefficients, it is possible to use the boundary conditions
at the layer interfaces to match the amplitudes of all these waves. In [58, Chapter 2] [57,
Chapter 4] [56, Chapter 5], [55, Chapter 8] and [87], methods are given to find scalar
transmission and reflection coefficients for both polarizations in the form of tdmn and tumn to
calculate the transmitted and reflected waves moving down and up respectively in layer n
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generated by a source in layer m. By applying the technique that yields Eq. (2.20), both
polarizations can be combined into tensorial transmission coefficients T d

mn and T u
mn. The

indices of these transmission coefficients are clarified in Figure 2.2, m signifying the layer
where the source is located and n the layer in which the wave is observed. Using these
tensorial transmission coefficients, the electric field in abscence of the scatterer, including
reflections from the complete layer stack, which we call the incident electric field, can be
calculated in layer i as

Wi,d
n (kT , z) =e−γn(z−zn)T d

0n ·W
i,d
0 (kT , z1)

Wi,u
n (kT , z) =e−γn(zn+1−z)T u

0n ·W
i,d
0 (kT , z1)

Ei(x) =

(
1

2π

)2 ∫
k2
T∈R2

dkT

[
Wi,d

n (kT , z) +Wi,u
n (kT , z)

]
ejkT ·xT ,

(2.23)

for zmin < z < zmax, where we used Eq. (2.10) for the last line. In most cases, the incident
wave, Wi,d

0 is chosen to be a plane wave, a case in which W0 becomes a Dirac-delta
distribution in the kT plane. More general incident fields can also be chosen as long as
they are solutions to the Maxwell equations in the upper half space, for example complex
source beams and spherical waves originating from a point source. The connection between
the tensorial transmission coefficients and the reflection coefficients in e.g. Eq. (2.22) is that
for example T u

i,i can be considered as the reflection coefficient from the interface between
layer i and i+ 1 for a wave moving down.

Figure 2.2: Illustration to clarify the definition of the T u
ij and T d

ij transmission coefficients

that can be calculated with the methods in [87, 55]. In the left figure, the source of Wi,d
0

is above the top layer, in the right figure the source is located in layer 2, resulting in both
an upgoing Wu and downgoing Wd wave.
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2.3 The Green function

2.3.1 The spatial integral equation

Until now, we have dealt with waves in the multi-layered medium, without a dielectric
object present. In this section we will add a dielectric object to the formulation. From
here, the focus will be on fields scattered by the dielectric object in the simulation domain.
Therefore, we will sometimes refer to the layered medium as the background medium and
the corresponding relative permittivity will be denoted with an additional subscript b, e.g.
εrb,i for the relative permittivity of the background in layer i.

The incident field Ei in layer n is understood to contain the reflections of the multilayer
medium only, therefore it obeys Eq. (2.6) where εr(x) = εrb,n for zn < z < zn+1 and where
J = 0. It satisfies

∇×∇× Ei(x) = k2
0εrb,nE

i(x). (2.24)

We remind the reader that we assume the scattering object to be located in layer i. The
electric field E(x) in layer i in presence of the scattering object satisfies

∇×∇×E(x) = k2
0εr(x)E(x) = −jωµ0J(x) + k2

0εrb,iE(x) + k2
0(εr(x)− εrb,i)E(x), (2.25)

where we can decompose the electric field as

E(x) = Ei(x) + Es(x), (2.26)

with Es the scattered field. Subtracting Eq. (2.24) from Eq. (2.25) we find

∇×∇× Es(x)− εrb,ik
2
0E

s(x) = −jωµ0J(x) + (εr(x)− εrb,i)k
2
0E

s(x). (2.27)

As a more convenient way to describe the scattering object we define the contrast function
through

χ(x) =
εr(x)

εrb,i
− 1. (2.28)

Note that this contrast function is nonzero only on the scattering object, so χ(x) = 0 when
x /∈ D. Now the (εr(x) − εrb,i)k

2
0E(x) term in Eq. (2.27) can be written in terms of a

synthetic current density. We define this contrast current Jc(x) through

Jc(x) = jωε0εrb,iχ(x)E(x). (2.29)

This equation is known as the field-material interaction. Since other current density sources
are absent, we drop the c subscript in the notation of the contrast current density and we
write

∇×∇× Es(x)− εrb,ik
2
0E

s(x) = −jωµ0J(x). (2.30)

The scattered field is the field that is emitted by the contrast current and it can be calcu-
lated employing the Green tensor G, corresponding to Eq. (2.30). Formally, the scattered
field can then be calculated as

Es(x) =

∫
D
dxG(x|x′) · jωε0εrb,iχ(x′)E(x′). (2.31)
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Combining this with Eq. (2.26) yields the integral equation

Ei(x) = E(x)−
∫
D
dxG(x|x′) · J(x′), (2.32)

where J depends on the electric field E through Eq. (2.29). This is the spatial domain
version of the integral equation we wish to solve. We will first deduce a Green tensor
G for the scattering problem with a homogeneous background permittivity εrb,i. In the
subsequent sections we will generalize this to a multi-layered background by including
reflections from the layer interfaces.

2.3.2 The Green function in a homogeneous medium

We want to find a Green tensor Gh for the electric field from a current source J of Eq. (2.30)
in layer i in absence of the layered medium. Therefore, we look at the three-dimensional
spatial Fourier transform of Eq. (2.30), which results in

k(k · Es(k)) + (εrb,ik
2
0 − k2) ˆEs(k) = jωµ0J(k), (2.33)

with k = kxx̂ + kyŷ + kz ẑ. We can exploit the symmetry of the homogeneous Green
tensor Gh, so it suffices to calculate Gh only for a point source J directed along ẑ, i.e.
J(x) = jωε0εrb,iδ(x)ẑ. We will write Gh

z = Gh · ẑ for the electric field originating from
a point source pointed in the z direction and located at the origin, since it is simple to
translate the source and the Green function afterwards. We arrive at

k(k ·Gh
z (k)) + (εrb,ik

2
0 − k2)Gh

z (k) = −εrb,ik
2
0 ẑ. (2.34)

Clearly, Gh
z lies in the plane spanned by k and ẑ and therefore we will decompose it in

these two directions. We write k = kT k̂T +kz ẑ with k̂T = kT/|kT |, and use it to decompose
this equation in the transverse xy-plane and the z-direction

kT (kT ·Gh
z,T (k) + kzG

h
z,z(k)) + (εrb,ik

2
0 − k2

T − k2
z)G

h
z,T (k)) =0T

kz(kT ·Gh
z,T (k) + kzG

h
z,T (k)) + (εrb,ik

2
0 − k2

T − k2
z)G

h
z,z(k)) =− εrb,ik

2
0.

(2.35)

This set of equations is solved by

Gh
z,T = − kTkz

k2 − εrb,ik2
0

Gh
z,z(k) =

εrb,ik
2
0 − k2

z

k2 − εrb,ik2
0

.

(2.36)

Because of the translation symmetry in the homogeneous background, we can now write
the general expression for the Green function as
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Gh
i,j(k) =


−kikj

k2 − εrb,ik
2
0

if i ̸= j

εrb,ik
2
0 − k2

i

k2 − εrb,ik
2
0

if i = j,
(2.37)

where i, j ∈ {x, y, z}.
Because the translation symmetry in the z direction will be absent in a multi-layered

background, we will perform a Fourier transformation to the spatial z coordinate. We
employ the identity ∫ ∞

−∞
dkz

ejkzz

k2 − εrb,ik2
0

= π
e−γ|z|

γ
,

with γ =
√

k2
x + k2

y − εrb,ik2
0 and the branch cut of the square root chosen just below the

negative real axis. We can explicitly write all components of the Green tensor, i.e.

Gh
x,x(kx, ky, z|z′) =(εrb,ik

2
0 − k2

x)
e−γ|z−z′|

2γ

Gh
x,y(kx, ky, z|z′) =(−kxky)

e−γ|z−z′|

2γ

Gh
x,z(kx, ky, z|z′) =(−jkxγ)

e−γ|z−z′|

2γ

Gh
y,x(kx, ky, z|z′) =(−kykx)

e−γ|z−z′|

2γ

Gh
y,y(kx, ky, z|z′) =(εrb,ik

2
0 − k2

y)
e−γ|z−z′|

2γ

Gh
y,z(kx, ky, z|z′) =(−jkyγ)

e−γ|z−z′|

2γ

Gh
z,x(kx, ky, z|z′) =(−jkxγ)

e−γ|z−z′|

2γ

Gh
z,y(kx, ky, z|z′) =(−jkyγ)

e−γ|z−z′|

2γ

Gh
z,z(kx, ky, z|z′) =

(
γ2 − 2δ(z − z′)

γ

)
e−γ|z−z′|

2γ
.

(2.38)

Once the Green function has been obtained, it can be used to represent the scattered field
as

Es,h(kT , z) =

∫ zmax

zmin

dz′ Gh(kT , z|z′) · J(kT , z
′). (2.39)

Note that the contrast current density J(x, y, z) is nonzero only for zmin ≤ z ≤ zmax.
Since the Green tensor has an absolute value in the exponential function it is convenient
to decompose the integration domain according to where z − z′ is positive and to where
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it is negative. This yields two waves, the wave Wu(kT , z) propagates upwards and has its
sources below z, and the wave propagating downwards, Wd(kT , z), has its sources above
layer z. We write

Es,h(kx, ky, z) = Wu(kx, ky, z) +Wd(kx, ky, z) (2.40)

with

Wu(kx, ky, z) =

{
0 if z > zmax∫ zmax

z
dz′ G(kx, ky, z|z′) · J(kx, ky, z′) if z ≤ zmax

Wd(kx, ky, z) =

{
0 if z < zmin∫ z

zmin
dz′ G(kx, ky, z|z′) · J(kx, ky, z′) if z ≥ zmin.

(2.41)

2.3.3 The Green function in a multi-layered medium

It is possible to incorporate the reflections from the layer above and the layer below layer
i, in which the simulation domain is located, in the Green function.

In Section 2.2.3, the reflection coefficients for a source in layer 0 are introduced. When
a source is located in another layer i, (parts of) a wave can bounce multiple times between
the stack of layers above zi and the stack below zi+1, before it travels away through the
layers above and below the interfaces of layer i. To include this effect we calculate effective
transmission and reflection coefficients T u,eff

i,n (kT ) and T d,eff
i,n (kT ), for transmission from a

source in layer i observed in layer n, including the bouncing between the interfaces of
layer i. Note that, between each bounce in layer i, the wave has traveled distance 2di
and is reflected against both interfaces of layer i, with reflection coefficients T u

ii and T d
ii

respectively. This is sketched in Figure 2.3.

Assume a wave with e polarization is generated in layer i and bounces back and forth
within layer i with scalar reflection coefficients rde(kT ) = T d

ii · Pe against the stack of
layers above layer i and similar rue for the reflection from the stack of layers below layer
i. Employing these reflection coefficients from the whole stacks above and below layer i
ensures that we incorporate all reflections at layer interfaces that are not adjacent to layer
i. The effective reflection coefficient can be calculated through

ru,effe (kT ) =rue (kT )
∞∑
n=0

(
rue (kT )r

d
e(kT )e

−2γidi
)n

=rue (kT )
1

1− rue (kT )rde(kT )e−2γidi
,

(2.42)

where we used the geometric series to find an analytic expression for the sum. Similarly,
an effective reflection coefficient for h polarization can be found. To work with full vector
waves such as in Eq. (2.12), this can be generalized to find effective transmission tensors
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T d,eff
i,n

T d,eff
i,n = T d

i,n·
k2xr

d,eff
h (kT )−k2yr

d,eff
e (kT )

k2
T

kxky(r
d,eff
h (kT )−rd,effe (kT ))

k2
T

0

kykx(r
d,eff
h (kT )−rd,effe (kT ))

k2
T

k2yr
d,eff
h (kT )−k2xr

d,eff
e (kT )

k2
T

0

0 0 rd,effh (kT )

 ,
(2.43)

and similarly for T u,eff
i,n , where T u

i,n and T d
i,n define a transmitted wave moving up or down,

respectively. The wave generated by sources in layer i will generate an upward-traveling
reflection Ku(kT , z) at zi, the interface between layer i− 1 and layer i.

Figure 2.3: The waves, Wu and Wd, generated by the current source J, are reflected
multiple times between zi and zi+1. The sum of all waves propagating up yields Ku(k) and
the sum of all waves propagating down yields Kd(k).

To calculate the complete scattered field, the contributions of the reflections have to
be added to the scattered field in the homogeneous Green function of Eq. (2.39). We will
focus on the downward-directed reflection Kd(kt, z). The downward-directed wave in layer
i is composed of the wave moving up Wu(kT , zi+1) propagated to the layer interface and
the wave moving down Wd(kT , zi) propagated to the layer interface with i+1 and reflected
back up again. This yields

Kd(kT , z) = e−γi(zi−z)T d,eff
ii (kT ) · [Wu(kT , zmax)e

−γi(zi+1−zmax)

+ T u
ii (kT ) ·Wd(kT , zmin)e

−γi(di+zmin−zi)].
(2.44)

A similar expression can be written down for the up-directed waveKu(kT , z). The scattered
electric field at z can now be calculated by adding the homogeneous contributions W from
Eq. (2.41) and the effective reflecting waves Ku and Kd, i.e.

Es(kT , z) = Wu(kT , z) +Wd(kT , z) +Kd(kT , z) +Ku(kT , z) (2.45)

By using the transmission coefficients Ti,n(kT ), it is possible to propagate the scattered
waves to other layers. This makes it possible to treat problems with scattering objects in
multiple layers.
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The Green tensor for a layered medium computes the scattered electromagnetic field
from the contrast current source. Eqs (2.40) and Eq. (2.41) are employed to compute
the scattering from the homogeneous-medium Green funtion Gh. From these results, the
reflections from the multilayered medium can be computed in Eq. (2.44) and added to the
result with the homogeneous Green tensor in Eq. (2.45). We call the concattenation of all
these operations on the contrast current source the result of the layered medium Green
tensor G.

2.4 A spatial spectral integral equation

We conclude this chapter by defining a spatial spectral integral equation which will be the
basis of the rest of this thesis. After stating the equations, we will relate this method to
some other important integral equation and spectral methods.

It is the combination of Eq. (2.45), which is given in the spectral domain and Eq. (2.29),
which is given in the spatial domain, that defines the integral equation. When Eq. (2.45) is
summarized into a single multi-layered Green tensor G(kt, z|z′), then the integral equation
can be written as

Ei(x) =E(x)−F−1
kT

[∫ zmax

zmin

dz′ G(kx, z|z′) · Fx′
T
[J(x′

T , z
′)] (kT )

]
(xT )

J(x) =jωε0εrb,iχ(x)E(x),

(2.46)

where we explicitly wrote down the Fourier transforms that are part of the core of this
algorithm.

Compared to the more conventional spatial integral equation of Eq. (2.32), this spatial
spectral formulation several differences are noticable.

1. A Green tensor as a function of the kT and z coordinate is used.

2. An integration is performed in the z direction only.

3. The convolution in the transverse plane has become a pointwise multiplication.

4. Fourier transformations are added in the transverse direction.

Point by point we will briefly compare these aspects to the literature.
An exact expression for the Green function in the spatial domain does not exist.

Through the use of Sommerfeld integrals [54], the spatial domain integral equation can
be calculated as explained in [58, Chapter 2] [57, Chapter 4] [56, Chapter 5], [55, Chap-
ter 8]. In our spatial spectral formulation these tedious Sommerfeld integrals are avoided.

The second point, the remaining integral in the z-direction can be carried out efficiently
by using the method by Gohberg and Koltracht [72]. This is not the only method, convolu-
tions such as this one could also be carried out efficiently using CGFFT [37] in one direction.
However CGFFT is less flexible in the sense that an equidistant sampling is needed in the
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z direction and calculating FFTs. In principle the Gohberg method can be extended sim-
ply to a non-equidistant sampling in the z direction, which can be advantageous when
the electric field contains singularities. It should be added that non-equidistantly sampled
extensions of the CGFFT method exist as well, such as AIM [42]. However, it is doubtful
whether such a complicated construction yields a faster method than the simple recursive
z convolution of the Gohberg method.

The third point, the fact that the convolution in the transverse plane becomes a point-
wise multiplication is also exploited in e.g. CGFFT [37] in a homogeneous background
medium and in pVIM [70, 71, 88] for a periodically repeating scatterer in a multi-layered
medium. For a multi-layered medium the Green function contains poles, that are hard
to discretize with an equidistant sampling. In the case of CGFFT the poles were absent
and in the case of pVIM the poles were present, but because of the periodic nature of the
problem the spectral domain falls apart into discrete modes, and the chance that a mode
is located exactly at a pole is negligible. This however, is not the case for finite scatterers
and the poles in the Green function are an important problem. A significant part of this
thesis will be devoted to an efficient representation that evades these poles.

To address the fourth point, Fourier transformations are also present in CGFFT and
pVIM. There is a subtle difference between the FFTs in CGFFT, where the FFTs are used
simply as a way to improve the speed of the spatial convolution with the Green function
in a problem that is discretized exclusively in the spatial domain. Similar to that, in
pVIM the discretization is exclusive in the spectral domain and FFTs are used as a way
to improve the speed of the spectral convolution in the field-material interaction. In the
present method the Fourier transformation should transform accurately and fast between
a discretization in the spectral domain and a discretization in the spatial domain.

2.5 Two-dimensional scattering

When a plane wave is incident on a structure with translation symmetry in the y direc-
tion, the scattering problem can be written as a two-dimensional one. We will use two-
dimensional formulations as testcases for the mathematical methods we develop. However,
two-dimensional methods are also useful for practical application because of the greatly
reduced complexity and computation time compared to full three-dimensional problems.

From the Green tensor in Eq. (2.38), we can deduce the Green function for the special
cases in two dimensions for TE (e) and TM (h) polarization, when we assume translation
symmetry in the y direction i.e. χ, J and E are functions of x and z only, independent of
y. This symmetry also implies that ky = 0, since the electric field does not depend on y.
From ky = 0 in Eq. (2.38) and Eq. (2.43) we can deduce that

G2D(kx, z|z′) =

 Gxx(kx, 0, z|z′) 0 Gxz(kx, 0, z|z′)
0 Gyy(kx, 0, z|z′) 0

Gzx(kx, 0, z|z′) 0 Gzz(kx, 0, z|z′)

 . (2.47)

For TE polarization, the incident field points in the y direction. Clearly the two-
dimensional Green function of Eq. (2.47) yields a scattered field pointing in the y direction
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for a contrast current density pointing in the y direction. Therefore all quantities are
pointing in the y direction. Only Gy,y generates the electric field and the TE-polarized
Green function is given by the scalar function

GTE(kx, z|z′) = εrb,ik
2
0

e−γi|z−z′|

2γi
. (2.48)

With a similar argument we observe that for TM polarization, where H is pointing
purely in the y direction, E and J point exclusively in the xz-plane. So for TM polarization
the Green tensor can be written as the two-dimensional tensor

GTM(kx, z|z′) =
(

Gxx(kx, 0, z|z′) Gxz(kx, 0, z|z′)
Gzx(kx, 0, z|z′) Gzz(kx, 0, z|z′)

)
. (2.49)
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Chapter 3

Solution strategy

3.1 Normal-vector fields

3.1.1 Accuracy and discontinuous functions

The purpose of this work is to present a fast iterative solver, that should work well for
scattering from discontinuous objects. To be fast, the result should converge well to the
desired accuracy with respect to all simulation parameters that influence the calculation
time. One of the most important of such parameters is the spectral range kmax at which
the spectral domain kT ∈ [−kmax, kmax]

2 is truncated. Especially for discontinuous scat-
terers, this truncation is important, since the spectral domain representation of the then
discontinuous electric field and contrast function converge slowly to zero as O(1/kmax),
whereas we would like a faster convergence of the final result. We recap the equations that
we want to solve in the electric field integral equation (EFIE) in Eqs. (2.45), (2.29):

Es(kx, ky, z) =

∫
dz′G(kx, ky, z|z′) · J(kx, ky, z′)

J(x, y, z) =jωϵ0ϵrbiχ(x, y, z)E(x, y, z).

(3.1)

In the first line a truncation to kmax does not yield many problems. A truncation of the
contrast current density does not have a large effect on the calculated electric field, since
radiation only occurs for k2

T < εrb,ik
2
0, for larger kT a truncation will produce an error in

the electric field locally only. It is important that the contrast current density is correct for
small kT , since this error would radiate all over the scatterer. However, the truncation of J
or G at kmax both do not influence this directly. The local error of a truncated discontinuity
will only generate a radiating error when it is close to another discontinuity in the dielectric
scatterer, so both local errors can ‘mix’.

There is an inconvenience in the field-material interaction (second line), i.e. when χ
exhibits a discontinuity, also E exhibits a discontinuity at the same position. It was shown
by Lifeng Li in [80, 81] and others [83, 82] that multiplying two functions with a spatial
discontinuity at the same position represented in the spectral domain by Floquet modes
gives rise to truncation errors at low kx and of O(1/kmax). This problem is not unique for
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representations using Fourier modes; in the next section we show that a slow convergence
is also observed with a continuous spectral-domain representation.

3.1.2 Multiplication of discontinuous functions in the spectral
domain

Suppose two pulse functions f1(x) = U(x+b)−U(x−a) and f2(x) = U(x+a)−U(b−X) are
to be multiplied, with U the unit (Heaviside) step function and with a and b real numbers,
with 0 ≤ a << b, where the b cutoff is only included to make the Fourier integrals
converge. In the spatial domain this multiplication simply yields m(x) = f1(x)f2(x) =
U(x+a)U(a−x) without problems. In the spectral domain these functions are represented
by

f1(k) = − j

k

(
−e−jka + ejkb

)
f2(k) = − j

k

(
ejka − e−jkb

)
.

The spectral representation of their spatial product can be represented by a convolution

m(k) =

∫ ∞

−∞
dk′ f1(k − k′)f2(k

′)

= −
∫ ∞

−∞
dk′ 1

k′(k − k′)

(
−e−ja(k−k′) + ejb(k−k′)

)(
ejak

′ − e−jbk′
)
.

(3.2)

Since it just represents a pulse function, this integral evaluates to −(j/k)[− exp(−jak) +
exp(jak)]. We will not analytically solve this integral, since we are interested in the
numerical convergence, not the result. Several features should be noted about this integral.

• The denominator has zeros, but the numerator has them at the same positions. The
integrand is therefore well-behaved.

• For k′ → ±∞, the integrand is bounded by 1/k′2, so it converges.

• The value of b should not influence the result of the exact integral directly, since the
product of f1(x) and f2(x) is governed by the choice of a.

Now we are interested to see what happens when a approaches zero. In that case the pulse-
functions no longer overlap, so their product is simply zero. This holds for the convolution
when kmax → ∞ in

m(k) = 0 =

∫ kmax

−kmax

dk′ −
(
−1 + ejb(k−k′)

) (
1− e−jbk′

)
k(k − k′)

=

∫
dk′ 1− cos bk′ + cos b(k − 2k′) + cos b(k − k′)− j{sin bk′ − sin b(k − 2k′) + sin b(k − k′)}

k′(k − k′)
.

(3.3)
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However, the convergence rate of this integral to large kmax is poor. The numerator is a
periodic function, that averages to 1 through a period of length 2π/b and whose frequency
can be chosen very large by varying b, since b does not influence the result. The parameter
b is merely chosen to make the spectral respresentation continuous. Therefore, it is the
denominator that governs the convergence of this integral for a = 0. Note that for nonzero
a the numerator in Eq. (3.2) averages to zero and therefore the integral converges faster.

Since we truncate the integral at kmax, we would like to see a fast convergence of
the integral, but this cannot be expected because the convergence is governed by the
denominator which decays as 1/k2

max, so its integral converges as 1/kmax over the whole
range of k as is illustrated in Figure 3.1. In the figure it is clearly visible that there is a
significant contribution in m(k) around k = 0, which converges as O(1/kmax), which is not
fast enough for an efficient algorithm. Clearly, this is only the case for a = 0. For nonzero
a the convergence is much faster, since the convergence is not governed by the denominator
only, but also by the numerator in Eq. (3.2), which averages at zero then. We conclude that
Lifeng Li’s results [81] for a Fourier series representation can be generalized to a continuous
spectral representation: the multiplication of functions with spatial discontinuites at the
same position in a continuous spectral-domain representation yields poor convergence as a
function of the spectral domain truncation parameter kmax.

-1.0 -0.5 0.0 0.5 1.0
k/kmax

0.1
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Re(m(k))
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kmax
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0.010
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m(0)
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m(0) for

a=-0.01

1/kmax

Figure 3.1: Illustration of the poor convergence of m(k) for a = 0 and b = 3. In (a) over
the whole range from −kmax to kmax for Re[m(k)] and in (b) the convergence for m(0) as
a function of kmax. The integrals have been computed numerically.

3.1.3 Projections

The poor convergence in the preceding section can be circumvented through a reformulation
[83, 82] such as using normal-vector fields [84, 89, 71]. The key observations are that the
electric field E normal to the boundaries of dielectric objects is discontinuous and that the
electric flux density D tangential to these boundaries is also discontinuous. On the other
hand, the electric field tangential to the boundaries is continuous as is the electric flux
density normal to the boundaries.

By writing PD as a projection operator selecting only the components of vectors normal
to the object boundaries and PE a projection operator selecting only components parallel
to the object boundary with PD +PE = Id we can construct the continuous auxiliary field
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F through

F = PE · E+
1

ε0
PD ·D. (3.4)

Note that there is much freedom in choosing these projection operators, as they are
only fixed around the object boundary. Following the normal-vector field theory developed
in [70, 71, 90, 91], the electric field can be calculated with the operator Cε defined by

E = Cε · F =

(
PE +

1

ε0

1

1 + χ
PD

)
· F = F− 1

ε0

χ

1 + χ
PD · F, (3.5)

where, although formally equal, the rightmost definition is easier to implement, since χ/(1+
χ) is zero outside the support of the contrast. Similarly, the contrast current density J can
be calculated through the operator [χCε]

J = [χCε] · F = jωε0εrb,i

(
χPE +

1

ε0

χ

1 + χ
PD

)
· F (3.6)

We rewrite the EFIE from Eq. (3.1), to combination of terms that individually con-
verges better in the spectral domain, i.e.

Ei(rT , z) = Cε(rT , z) · F(rT , z)−

F−1
kT

[∫ zmax

zmin

dz′ G(kT , z|z′)Fr′T
[[χCε](r′T , z′) · F(r′T , z′)] (kT , z

′)

]
(rT , z).

(3.7)

3.1.4 Example: normal-vector fields on an aligned brick

As an illustration we will show how we have implemented the normal-vector fields for a
rectangular bar aligned with the Cartesian coordinate system. Let the bar be centered
around the origin and have sides in the x, y, and z-direction of length 2Lx, 2Ly, and 2Lz

respectively.
We only use the normal-vector fields in the xy-plane. In the z-direction the discontinuity

can be incorporated in the discretization, since we use a purely spatial discretization in
that direction. We base the projection operators on the normal-vector field n(x, y) defined
through

n(x, y) =

{
n(x, y) = ŷ if |x|/Lx < |y|/Ly

n(x, y) = x̂ if |y|/Ly < |x|/Lx

. (3.8)

Now the projection operator PD can in general be written as

1

ε0
PD(x, y) =

(
n2
x(x, y) nx(x, y)ny(x, y)

nx(x, y)ny(x, y) n2
y(x, y)

)
. (3.9)

Note that for this particular normal-vector field the off-diagonal components are zero.
When the normal-vector field has been chosen, (3.5) and (3.6) can be used to calculate
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the field-material interactions. In Figure 3.2, we show an example of the [Cε](x, y) and
[χCε](x, y) operators. Since only the diagonal components are nonzero for this choice of
normal vector field, we only show their magnitude in the xy plane. The light gray areas in
the xx and yy components corresponds to regions where D is used in auxiliary field Fx and
Fy respectively. The advantage of choosing this particular normal vector field is that it

Figure 3.2: The diagonal elements of the εCε and the Cε operator for the normal-vector
field proposed in Eq. (3.8). Note that the other elements of these tensors are equal to zero.

can be composed from two-dimensional step functions. These step functions, Hr1,r2(x, y),
are defined as 1 left of a line through coordinates r1 and r2 and 0 right of the line, or

Hr1,r2(x, y) =

{
1 if ẑ × (r2 − r1) · x > ẑ × (r2 − r1) · r1
0 if ẑ × (r2 − r1) · x < ẑ × (r2 − r1) · r1.

(3.10)

Using only step functions is of significance, because it is relatively easy to accurately
approximate such a function in an arbitrary discretization. Although more continuous
normal-vector fields than the one in Eq. (3.8) can be used as well, these fields will often
exhibit singularities at the corners of the bar, which are much harder to discretize. In
Appendix A we show how to discretize Hr1,r2 .

3.2 Discretization in the z direction

We carry out a spatial discretization in the z direction that employs triangular or piecewise-
linear (PWL) functions Λn as expansion functions, which are defined as

47



Λn(z) =

{
1− |z−n∆−zmin|

∆
if |z − n∆− zmin| < ∆

0 if |z − n∆− zmin| > ∆
. (3.11)

For notational convenience, we will assume that zmin = −∆ and zmax = Nz∆ throughout
this section, so n = 1 coincides with z = 0. We choose a piecewise-linear discretization
because the field F is a continuous function. When we expand F(kT , z) in these PWL
functions we find

F(kT , z) ≈
Nz∑
n=1

Fn(kT )Λn(z). (3.12)

We use Dirac-delta testing functions in the z direction at the points zmin + n∆ to find
the coefficients Fn(kT ), since it was observed that this leads to a well-conditioned linear
system [92], i.e.

Fn(kT ) =

∫ Nz∆

∆

dz δ(z − n∆)F(kT , z). (3.13)

We use the same method to generate Ei
n(kT ) from Ei(kT , z). By writing the discretized

contrast current as Jn(kT ) = J(kT , zn), the homogeneous Green function convolution in z
in Eq. (2.39) can be rewritten as

Es,h
n (kT ) =

∫ zmax

zmin

dz′
Nz∑
n′=1

Gh(kT , n∆|z′) · Jn′(kT )Λn′(z′)

=ẑJz,n(kT )

+
n∑

n′=2

∫ n′∆−

(n′−1)∆

dz′Gh(kT , n|z′) · Jn′(kT )Λn′(z′)

+
n−1∑
n′=1

∫ (n′+1)∆

n′∆+

dz′Gh(kT , n|z′) · Jn′(kT )Λn′(z′)

+
Nz∑

n′=n+1

∫ n′∆−

(n′−1)∆

dz′Gh(kT , n|z′) · Jn′(kT )Λn′(z′)

+
Nz−1∑
n′=n

∫ (n′+1)∆

n′∆+

dz′Gh(kT , n|z′) · Jn′(kT )Λn′(z′).

Here we used the notation
∫ b−
a

= limξ↑b
∫ ξ

a
and similarly

∫ b

a+
= limξ↓a

∫ b

ξ
, to avoid the

delta function in the zz-component of the homogeneous Green tensor Eq. (2.38). This zz
component is taken into account separately in the ẑJz,n(kT ) term. By taking into account
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the z-dependence of Gh and Λ the above can be written in the form

Es,h
n =ẑJz,n(kT )

+
n∑

n′=2

au,m
n (kT )e

−γ∆(n−n′) +
n−1∑
n′=1

au,e
n (kT )e

−γ∆(n−n′−1)

+
Nz∑

n′=n+1

ad,e
n (kT )e

−γ∆(n−n′−1) +
Nz−1∑
n′=n

au,m
n (kT )e

−γ∆(n−n′)

(3.14)

where we define aα,β
n (kT ) with α = u or d (up or down) and β = m or e (middle or end) by

au,m
n (kT ) =

∫ 0

−∆

dz′ G(kT , 0|z′) · Jn(kT )Λ0(z
′)

au,e
n (kT ) =

∫ 0

−∆

dz′ G(kT , 0|z′) · Jn−1(kT )Λ−1(z
′)

ad,m
n (kT ) =

∫ ∆

0

dz′ G(kT , 0|z′) · Jn(kT )Λ0(z
′)

ad,e
n (kT ) =

∫ ∆

0

dz′ G(kT , 0|z′) · Jn+1(kT )Λ1(z
′)

(3.15)

This set of expressions can be summarized as

au/d,α
n = hα(kT )

 k2
0 − k2

x −kxky ±ikxγ
−kxky k2

0 − k2
y ±ikyγ

±ikxγ ±ikyγ k2
0 + γ2,

 ·

{
Jn(kT ) if α = m

Jn±1(kT ) if α = e,
(3.16)

, where

hm(kT ) =

∫ ∆

0

dz′ (1− z

∆
)
e−γz

2γk2
0

=
e−γ∆ − 1 + ∆γ

2∆γ3k2
0

he(kT ) =

∫ ∆

0

dz′
z

∆

e−γz

2γk2
0

=
(eγ∆ − 1−∆γ)e−γ∆

2∆γ3k2
0

.

(3.17)

We can interpret the second and third terms in the right hand side of Eq. (3.14) as
waves traveling upwards and the fourth and fifth as waves traveling downwards. When we
write the results of these sums as Wu

n(kT ) and Wd
n(kT ), this equation reduces to

Es,h
n (kT ) = ẑJz,n(kT ) +Wu

n(kT ) +Wd
n(kT ) (3.18)

where the Wn(kT ) can be calculated in a recursive manner by employing the relations

Wu
n(kT ) =Wu

n−1(kT )e
γ∆ + au,e

n (kT ) + au,m
n (kT )

Wd
n(kT ) =Wd

n+1(kT )e
γ∆ + ad,e

n (kT ) + ad,m
n (kT )

(3.19)

as I. Gohberg and I. Koltracht pointed out in [72]. This removes the need for repeatedly
computing the full sum in Eq. (3.14). To arrive at the complete scattered field Es

n(kT ),
the reflections should be added according to Eq. (2.45).
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3.3 Discretization in the transverse direction

The main challenge for the formulation in Chapter 2 is the discretization in the transverse (x
and y) directions. The complete integral equation consists of both a contrast multiplication
and a Green-tensor convolution. The contrast multiplication has to be performed in the
spatial domain, whereas the Green-tensor convolution is handled more efficiently in the
spectral domain. Since both the spatial and the spectral domain are used, it is important
to be able to use fast methods to transform between the domains, e.g. based on FFTs.
However, FFTs are not applicable directly to continuous functions. Hence, there is a
need for a discretization that allows for an efficient Fourier transformation between the
two domains and is parsimonious in memory consumption. As an example, consider the
PWL discretization in Section 3.2. By definition, the PWL functions have a discontinuous
derivative, even when a C∞(R) function is discretized with the aid of PWL functions, its
continuity is reduced to C1 and its Fourier transform will decay only according to the
C1(R) continuity in the discretization instead of the superior decay found for most C∞(R)
functions.

To efficiently transform between the spatial and the spectral domain with continuous
functions, we use a Gabor frame as a discretization, which will be explained in Chapter 4. A
Gabor frame is efficient since it exhibits an exponential convergence to continuous functions
and can use analytical frame functions in both domains. However, this is not the only
option, as we will show also that a higher-order (higher than 1) Hermite-spline-based
discretization can be used to efficiently discretize functions. A high-order Hermite-spline-
based approach can exhibit a high-order polynomial convergence in the approximation of
a function and its derivatives. A third option would be to use Slepian functions [93] in
a manner similar to [94]. On that case an orthogonal basis is employed that is localized
in both a spatial square and a spectral-domain disk simultaneously. However, we did not
pursue this option further.

To efficiently discretize the Green tensor in the spectral domain is challenging, since the
Green tensor exhibits branch cuts along which there can be high-frequency oscillations and
in a multilayer medium it can also exhibit poles. The high-frequency oscillations can in
principle be countered by using a finer discretization wherever the number of oscillations is
larger, as is presented in Chapter 5. However, when we go to a multi-layered medium this
approach of finer sampling cannot be applied, because of the poles that can be encountered
in the reflection coefficients Eq. (2.42). Since the poles can be present directly on the
real kT -plane, convergence of the Fourier integrals can only be guaranteed by somehow
mitigating these poles.

In principle, it is possible to analytically remove the poles from the reflection coefficients,
perform the Fourier transform and then add the Fourier transform of the poles separately.
However, this requires the pole locations to be known, and these are not readily available.
Both location and strength of the poles have to be found numerically, which we prefer to
avoid.

We have chosen to represent the electric field and the contrast current density on a
complex path through the spectral domain in Chapter 6. Such a path can be chosen such
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that the oscillations along the branch cuts and the poles are kept at a considerable distance
from the path on which we represent the contrast current density and the electric field. A
major part of this work is to show that an efficient and fast transformation to and from
such a spectral path is available.

Although we make a choice for a particular spectral path, other options are also avail-
able. The main advantage of the path of our choice is a fast transformation to and from
the spatial domain, since most information is contained in regions with a kT -independent
shift into the complex plane, for which an ordinary Fourier transformation can be used.
However, this method has the disadvantage that the spectral path is broken up into three
parts in two dimensions and nine parts in three dimensions, each with their individual
discretization, and which all have to be connected. When a fast, more flexible method is
available to transform directly to a wider range of possible complex-plane paths, this might
lead to a more efficient procedure.

3.4 Iterative solvers

In general, a discretized equation can be written as a set of coefficients Fm that approximate
the field F(x, y, z) through

F(x, y, z) ≈
M∑

m=1

Fmbm(x, y, z). (3.20)

Here the bm(x, y, z) are the functions used to span the function space in which the compo-
nents of F(x, y, z) reside, e.g. Gabor frames in the x, y directions and PWL functions in
the z direction. We can define the scalar product between two sets of coefficients through

⟨{Fm}, {Hn}⟩ =
M∑

m=1

M∑
n=1

Fm ·Hn

∫
D
dx dy dz bm(x, y, z)bn(x, y, z), (3.21)

where D is the computational domain spanned by the support of the basis functions. The
discretized integral equation Eq. (3.7) can be written in discretized form as an M × M
matrix A, and the resulting linear system can be written as

Ei
m =

M∑
m=1

Amn · Fn, (3.22)

where Ei
m is a set of coefficients describing the incident field. This is a matrix equation,

that can be solved by many techniques. The most obvious choice would be to directly
invert Amn. However, since this matrix is typically very large, M will often be much larger
than 106. This is not practical since the computation time for direct matrix inversion
scales as O(M3) in computation time. Iterative techniques are more suitable, since they
only need matrix-vector (matvec) multiplications, which can be calculated faster. Naively
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implemented, the calculation time of such a multiplication scales as O(M2), but by us-
ing efficient techniques this can be scaled down for some problems. We achieve this in
O(M logM) operations through the mixed spatial-spectral formulation of the problem,
when the basis functions allow for fast operations depending on FFTs.

Many different iterative techniques for calculating the solution to Eq. (3.22) are avail-
able. Note that the calculation of a scalar product (Eq. (3.21)) is important to be able to
measure how far a proposed solution has converged. Important aspects for the choice of a
technique are the required number of iterations for convergence, the need for the adjoint
of A, and the memory requirements. Some iterative techniques do not even converge for
more complicated scattering problems, especially when the contrast is high. It is out of
the scope of this thesis to give a broad overview of all the different techniques in existence,
but we will mention the ones important for our application. Since we found programming
the adjoint of A very time consuming, we will focus on methods that do not employ the
adjoint.

One of the first techniques to be developed is the generalized minimal residual (GMRES)
[95, 96]. The idea behind this method is to find a small linear subspace of the complete
space spanned by the {bm(x, y, z)}, in which the solution resides. With each iteration a
projection vector is added to the linear subspace until we expect that the solution can
be represented in the subspace up to a certain accuracy level. Each new vector is chosen
through the Arnoldi iteration, i.e. by letting A work on the previous vector and projecting
out all previous vectors. This allows for a projection of A to a small linear subspace,
this projection is then inverted and yields the approximate solution. Since the matrix in
the projected subspace is much smaller, its inversion is calculated much faster. There are
several advantages to this technique: it does not need the adjoint of A and it is guaranteed
to yield the correct solution in M iterations in infinite precision. The downside is that this
representation needs a copy of all the projection vectors onto the linear subspace, which
are NiM numbers, with Ni the number of iterations. When a large number of iterations is
needed, the memory requirement will become too large.

A variation of the GMRES method is the restarted GMRES [96]. Here GMRES is used
with a smaller number of iterations, so it has only converged partly to the solution. The
partly converged solution is then used as a starting point from which to start GMRES
once more. Each time GMRES is started, a better solution is obtained. This method
has the advantage of using less memory, since it does not save the projection vectors
for all iterations. The downside is that sometimes more iterations are needed and that
convergence in M or less steps is not guaranteed anymore. However, in finite precision
the orthogonality of the subspace in which A is projected gets lost after a large number of
iterations and then a restart can even be advantageous.

Another popular method is based on Conjugate Gradient (CG): the stabilized bi-
Conjugate Gradient method BiCGstab(ℓ) [39, 96, 97, 98]. Since CG requires the adjoint
of A, we did not consider it because of the extra effort of assembling the adjoint. At
each iteration in BiCGstab(ℓ) a set of 2ℓ vectors are calculated on which the error of the
approximated solution is minimized. In the following iteration a new set of vectors is cal-
culated that is conjugate to the old ones with respect to A. Advantages of this method are
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that it only needs ℓM memory space, and that it is easy to monitor the convergence while
running, as opposed to GMRES. However, convergence is again not guaranteed, although
for low contrast this is generally not a problem.
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Chapter 4

The Gabor frame

For the discretization in the transverse direction a method is needed that is efficient both
in the spatial and spectral domains. Additionally a fast way of transforming between these
domains should exist, since these transformations are part of the core of the algoritm. In
this chapter we summarize some important results about the Gabor frame and explain
how it is implemented in our algorithm, showing the applicability in this case. We start
with a definition of the Gabor basis, followed by the Gabor frame which often needs much
fewer coefficients than the Gabor basis to represent the same function accurately and
two methods to calculate the dual window function are presented. Then we illustrate a
fast algorithm to calculate the Gabor coefficients of a function and show how the Fourier
transform of a function represented by Gabor coefficients is calculated. We end with some
numerical examples. This chapter is not meant as a thorough treatment of the Gabor basis
and Gabor frames. An example of such a treatment can be found in [99, 100].

4.1 The Gabor basis

The Gabor basis was first introduced by Dennis Gabor in [101]. For its definition we follow
[102] to define the basis functions as

gbmn(x) = g(x−mX)ejKnx, (4.1)

where there is a freedom of choice for the window function g(x). We use the popular
Gaussian window function given by

g(x) = 2
1
4 e

(
−π x2

X2

)
. (4.2)

The 21/4 normalization is customary in the literature. We have used the superscript b

to distinguish the Gabor basis from the Gabor frame that will be defined later on. The
spacing of the window functions for the Gabor basis equals X = 2π

K
. It is this specific

choice of X and K that yields a basis for L2(R) [103]. This is analogous to the discrete
Fourier transformation, where the product of the spectral and spatial sampling rates also
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equals 2π/N . Since this set of functions gmn(x) forms a basis for L2(R) we can write

f(x) =
∞∑

m=−∞

∞∑
n=−∞

fmng
b
mn(x), (4.3)

for every f(x) ∈ L2(R) with Gabor coefficients fmn. These Gabor coefficients can be
calculated via

fmn =

∫ ∞

−∞
dx f(x)ηbmn(x), (4.4)

where the dual basis ηbmn(x), which is also a Gabor basis, is defined in terms of the dual
window function η(x) as

ηbmn(x) = η(x−mX)ejKnx. (4.5)

For the particular choice of Eq. (4.2), the dual window ηb(x) is given by [102, 99]

ηb(x) =
1

X21/4

(
K0

π

)−3
2

∞∑
n+ 1

2
≥|x/X|

(−1)n exp

(
π
x2

X2
− π(n+

1

2
)2
)
, (4.6)

with K0 = 1.85407468 · · · , the complete elliptic integral for modulus
√
1/2), which is

plotted in Figure 4.1. Note that the Fourier transform of Eq. (4.1) forms a similar Gabor
basis in the spectral domain, hence the same constructions can be used and it can be shown
that the dual window function in the spectral domain is just a scaled version of Eq. (4.6).
The main advantage of the Gabor basis is that functions can be written in a mixed spatial

5 5

2

1

1

2

Figure 4.1: The dual window ηb(x) of Eq. (4.6) for X = 1.

and spectral representation. Every basis function is localized in the spatial domain around
mX and in the spectral domain around nK. This behaviour differs considerably from e.g.
the triangle function of a PWL discretization, which is localized in the spatial domain, but
very spread out in the spectral domain.
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4.2 Gabor frames with oversampling

4.2.1 The Gabor frame

As can be seen from Figure 4.1, the dual window function does not decay rapidly for large
x in the spatial domain. All peaks have the same maximum amplitude, but at large x,
they become narrower, at a rate 1/x. The same dual window function is applicable in
the spectral domain, since the spectral dual window is a stretched version of the dual
window Eq. (4.6) in Figure 4.1. Because of this, many significantly contributing Gabor
coefficients are produced by the integral in Eq. (4.4), even when f(x) is itself localized and
rapidly decaying both spatially and spectrally. Hence, many Gabor coefficients contribute
significantly, and the convergence of the sums in Eq. (4.3) is poor, which results in a need
for a relatively large number of basis functions compared to other discretization schemes.
The Balian Low theorem [104, 105, 106, 107] proves that a Gabor basis with exponential
decay does not exist.

However, when oversampling is used, i.e. when the spatial or the spectral sampling
of the function is denser than X ·K = 2π, the Balian Low theorem does not hold and a
more convenient dual window function can be chosen. Although this oversampled set of
functions does not form a basis, it forms a frame, i.e. a set of functions that does span the
whole space, but has redundancy.

The frame is defined through

gmn(x) = g(x− αmX)ejβKnx, (4.7)

with α defining the spatial oversampling and β defining the spectral oversampling such that
αβ < 1. In practice it is convenient to choose rational oversampling, i.e. αβ = q/p with
q, p ∈ N [100]. When αβ = 1 the frame is critically sampled and Eq. (4.7) then coincides
with the equation for the Gabor basis Eq. (4.1) apart from a shift in X = 2π/K. When
αβ > 1, the frame is undersampled and a stable representation is not possible. For αβ < 1,
the frame is oversampled, which means that the representation in Gabor coefficients is not
uniquely determined. However, this non-uniqueness has the advantage of a freedom to
choose the Gabor coefficients in better converging ways. To fix this choice, we calculate
Gabor coefficients in a manner similar to Eq. (4.4), with a dual window. The dual frame
function η(x) for an oversampled frame can be chosen more localized and smooth than
ηb(x) in Eq. (4.6) for a better decay in both the spectral and spatial domain. Although
Gabor coefficients are not uniquely determined for a function in an oversampled frame,
the choice of the dual frame fixes this non-uniqueness. Note that a Wilson basis [108] can
be constructed from an oversampled Gabor frame [109]. A Wilson basis, which is closely
related to the Gabor frame, does not have redundancy. However, the localization of the
basis functions is slightly poorer than the Gaussian basis. Therefore the Gabor frame is
our preferred choice.

Analogous to the dual Gabor basis in Eq. (4.5), the Gabor frame has a dual frame given
by

ηmn(x) = η(x− αmX)ejβKnx, (4.8)
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but since the Gabor coefficients are not uniquely determined, there is freedom of choice
for the dual window function. The specific choice of this window function is critical for a
good decay of the Gabor coefficients at large m and n-indices. For calculations we prefer a
fast exponential decay of the dual window function, both in the spatial and in the spectral
domain, so we can apply a reasonable cut off in the Gabor coefficients.

In Figure 4.2(a & b), several dual window functions are shown for an increasing over-
sampling q, equally divided over both the spatial and spectral domains, α = β =

√
q/p.

Clearly, the dual window with the highest oversampling (q = 5) decays faster. In Fig-
ure 4.2(c & d), the effect is shown of different ratios of oversampling in α = (q/p)r and
β = (q/p)1−r. Clearly, when the spatial oversampling increases, the dual window converges
faster in the spatial domain. However, its Fourier transform converges slower. This indi-
cates that, there is a trade-off between them. For that reason we choose α = β throughout
the rest of this thesis, since it is a reasonable choice that works well in both domains.
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Figure 4.2: The dual window η(x) for different oversampling ratios q/p. All plots with
p = 10, X = 1. Plot (a) and (b) with increasing q and α = β =

√
q/p. Plot (c): the dual

window with q = 5 and the oversampling divided between α and β through ratio r, such
that α = (q/p)r, β = (q/p)(1−r), and (d) the Fourier transform of the dual window in (c).
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4.2.2 Calculation of the dual window through the Zak transform

To be able to compute the dual window function we now give a short summary of the work
by Bastiaans in [100, 110], which is the most well-known method to calculate the dual
window. We will only present the steps used in the calculation, more details can be found
in [100]. The Zak transformation of a function w(x) is defined as

w̃(x, ω;X) =
m=∞∑
m=−∞

w(x+mX)ejmωX , (4.9)

where w̃(x, ω;X) denotes the Zak transform. Again X signifies the window width, which
is considered constant. The inverse Zak transformation is

w(x+mX) =
X

2π

∫ 2π/X

0

dω w̃(x, ω;X)e−iωX . (4.10)

The Zak transform is periodic in the frequency ω with period 2π
X

and quasi periodic in x
with period X. Hence, all the information about the function is contained in the x − ω
rectangle [0, X] × [0, 2π/X] with area 2π. In case of rational oversampling by a factor
q/p ≤ 1 we can calculate the dual window by using the (p × q) matrix-function W with
entries wsr(x, y), given by

wsr(x, y) = η̃

(
(x+ s)

αpX

q
, (y +

r

p
)
K

α
;αX

)
. (4.11)

This is the Zak transform of the dual window η(x). In a similar way we create the (q × p)
matrix G from the Zak transform of the window function g. If one requires that Eqs. (4.3)
and (4.4) hold, one can show that this boils down to the requirement

αX

q
G ·W ∗ = 1q, (4.12)

with the asterisk denoting the conjugate transpose. Consequently, when we decide to
employ a certain window function g, we can find matrices W that satisfy this relation. For
critical sampling, the only solution is ηb(x) from (4.6). Note that this matrix equation is
underdetermined in the case of oversampling. Hence, there is some freedom in the choice
of the solution, but a popular choice [100, 99] is the generalized Moore-Penrose pseudo
inverse to calculate W . It can be shown that this pseudo inverse is the optimum solution
in the sense of minimizing the L2 norm of η [99, Chapter 8][111, 112]. Other criteria to
calculate the pseudo inverse of this matrix yield dual window functions that can be optimal
in other respects, e.g. [99, Chapter 8] [113].

4.2.3 Direct calculation of the dual window

The computation of the dual window by means of the Zak transformation, as explained
in the preceeding section, requires the evaluation of integrals as in Eq. (4.10). Since we
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prefer to avoid computing numerical integrals we continue by explaining how the dual
window can be computed in a more direct manner. We start by giving an approximate
method for critical sampling, i.e. we choose α = β = 1. Subsequently we will give an
approximation for oversampling in Section 4.2.4 and an exact method for critical sampling
in Section 4.2.5, followed by a short discussion about this method and the resemblence
with the Zak-transform method of the preceeding section.

We observe that the inverse Gabor transform of a function f(x), Eq. (4.3) can be seen
as a set of shifted window functions g(x − mX) with a periodic modulation f̊m(x) with
period X

f(x) =
∑

m,n∈Z

g(x−mX)fmne
jKnx =

∑
m∈Z

g(x−mX)f̊m(x). (4.13)

This defines the set of periodic functions f̊m(x) as

f̊m(x) =
∑
n∈Z

fmne
jKnx. (4.14)

We observe that f̊m(x) is defined as a Fourier series. For good convergence in the sum-
mation over n we need smooth functions f̊m(x). When the f̊m(x) are found, the Gabor
coefficients fmn can be calculated and this implicitly defines the dual window function.
Because these functions are periodic, we can divide the non-periodic functions f(x) and
g(x) in Eq.(4.13) into intervals [−X

2
, X

2
]. First we divide f(x) to obtain a sum of functions

fj defined on different unique subdomains of R.

fj :

[
−X

2
,
X

2

]
→ R

∣∣fj(x) = f(x+ jX), (4.15)

We can write this as a vector f with elements fj. Now each element fj(x) covers one part
of the domain of f(x) with width X.

For the set of (shifted) window functions in (4.13) we can use the matrix

Gmn(x) = g(x− (n−m)X), (4.16)

which allows writing (4.13) as

f(x) = G(x) · f̊(x). (4.17)

Since the vector space is infinite-dimensional, this may be difficult to solve formally. In
practice, we can truncate this to a finite size, so this becomes a matrix equation with a
finite matrix and we can find our approximate f̊m(x) as

f̊(x) = G−1(x) · f(x). (4.18)

We can use this G−1(x), to construct η(x) since this function is able to generate f̊(x),
which is only a Fourier transformation away from the Gabor coefficients. To see this, we
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work out fmn, i.e.

fmn =

∫ X
2

−X
2

dx e
2πj
X

xnf̊m(x)

=

∫ X
2

−X
2

dx e
2πj
X

xn
∑
i∈Z

G−1
mi(x)fi(x)

=
∑
i∈Z

∫ X
2

−X
2

dx e
2πj
X

xnG−1
mi(x)f(x− iX)

=
∑
i∈Z

∫ iX+X
2

iX−X
2

dx e
2πj
X

xnG−1
mi(x+ iX)f(x)

=

∫ ∞

−∞
dx e

2πj
X

xnη(x−mX)f(x),

where on the last line we used the definition of the Gabor transformation (4.4). Now we
can write the dual window function η(x) as

η(x−mX) =
∑
i∈Z

G−1
mi(x+ iX)1[(i− 1

2
)X,(i+ 1

2
)X](x), (4.19)

with 1[a,b] equal to 1 on the interval [a, b] and 0 everywhere else. If we approximate this
by taking a finite matrix for G, we arrive at a good approximation for the dual window.

4.2.4 Approximation of η for oversampling

Now that we have found a method to compute the dual window function without oversam-
pling in the preceding section, we explain how this can be generalized to an oversampled
Gabor frame. The main principle behind the calculation is the same as in the previous
section. The main property that changes when there is oversampling is that the f̊m(x)
functions ’overlap’. The spacing between the window functions is smaller than the period
of the periodic functions, as can be seen in Figure 4.3. Here we plotted window functions
with a spacing αX and above each window we drew a rectangle with a width corresponding
to the period of a periodic function in the same color. For critical sampling there is no
overlap, so the periodic function has to contain all information of f(x) over its complete
period. With critical sampling it can therefore happen that the periodic function needs to
be discontinuous when f(x) is continuous, just because f̊m(−X/2) ̸= f̊m(X/2). A discon-
tinuous periodic function will not have a rapidly converging Fourier series in Eq. (4.14).
This is an intuitive explanation of the Balian Low theorem. It should also be clear that
with oversampling a smooth transition can be chosen between the different periodic func-
tions, and, therefore, the coefficients can decay much faster, which yields a better behaved
dual window function.

We will first look at the case where α < 1 and β = 1, where Eq.(4.16) changes to

Gmn(x) = g(x− (m+ αn)X), (4.20)
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Square matrices will yield an ill conditioned matrix that is hard to invert accurately.
Therefore it is better, although not absolutely necessary, to avoid square matrices. If we
want to make an approximation of the matrix Gmn(x) in a certain range of x, we need more
m values than n values, since index m results in a X-sized step in g(x) and n results in an
αX sized step, as can be observed from Eq. (4.20). Therefore more n values are needed
by at least a factor 1

α
. Now for the matrix inversion we again use the Moore-Penrose

pseudo-inverse.

This method is more flexible in the sense that we can now choose α ∈ R. It looks as if
this method is only capable of taking into account spatial oversampling α and no spectral
oversampling β. However, it is possible to approximate the same dual windows that are
found in Section 4.2.2. From Figure 4.3 one can conclude that a dual window obtained by
using the Zak transformation method with α and β can be found both by a transformation
g(x) → g(x/β), η(x) → η(βx), and α → α/β using the approximate method.
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Figure 4.3: A few shifted window functions, with rectangles above the graphs signifying
the length of one period of f̊m(x). In (a) for critical sampling there is no overlap. For (b)
there is overlap because the period, 1/βK is larger, for (c) there is overlap because the
window functions have been shifted closer together at αX.
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This method is also more flexible in the sense that we can use it for exact results for
a finite number of window functions, or window functions that are not all equal, although
we do not investigate this in this thesis.

4.2.5 Exact η for critical sampling - connection with the Zak
transform

It is instructive to see what happens when the Gmn(x) matrix is not truncated in the direct
method of Section 4.2.3. Without oversampling this will be solved in a formal manner. A
result equivalent to Eq. (4.12) is found in the end and we can identify a Zak transformation
in the process.

Without truncation the basic steps are the same, but the problem is the inversion of the
operator G(x) in Eq. (4.18), which we will no longer consider as a finite matrix. We have
to come up with a way to formulate the inverse of this operator. If we define (dropping
the x dependence) Gmn(x) = wm+n, which is allowed since G is Toeplitz, we can define the
inverse G−1

i+ℓ(x) as vi+ℓ

δmk =
∑
ℓ∈Z

Gmℓ(x)G
−1
ℓk (x) =

∑
ℓ∈Z

wm−ℓvℓ−k. (4.21)

Now we can carry out the inverse Fourier transformation of wk =
∫ π

−π
dη w̃(η) e−jηk

and its inverse w̃(η) = (1/2π)
∑

k wke
jηk to find

δmk =
∑
ℓ∈Z

∫ π

−π

∫ π

−π

dηdη′

4π2
w̃(η) v(η′) e−j(m−ℓ)η−j(ℓ−k)η′

=

∫ π

−π

dη

2π
w̃(η) ṽ(η) e−j(m−k)η.

(4.22)

This can only be true when w̃(η)ṽ(η) = 1, or

ṽ(η) =
1

w̃(η)
. (4.23)

From this we can calculate G−1(x). In the integrals in Eq. (4.22) we recognize the Zak
transform of Eq. (4.10). Although ṽ and w̃ are written as function of a single coordinate
we emphasize that the x-dependence was left out in Eq. (4.21). The resemblance between
Eq. (4.23) and Eq. (4.12) for p = q = α = 1 (no oversampling) is now apparent. Since
we would usually choose a window function with exponential spatial decay, its Fourier
transformation will decay, but there is no guarantee that w̃(η) has no zeros. Because this
method is similar to the Zak-transform based approach, the existence of 1/w̃ boils down
to the same conditions as were discussed in [100] for the existence of the function η.

We conclude that our approach is close to the articles of Bastiaans [114, 102, 100,
110], which uses Zak-transforms. For completeness it should be added that an approach
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based on functional analysis was developed by Wexler, Raz and Daubechies [115, 116,
117]. An important difference between the methods is that the method developed by
Bastiaans tries to find an expression to directly evaluate the dual window functions for each
x argument, whereas the methods developed by Daubechies lead to a Gabor expansion of
the dual window. The difference is that a pseudo-inverse of a matrix has to be computed
for each x-argument with the approach that we employ, whereas the functional-analysis
method requires only one pseudo-inverse to find the Gabor coefficients of the dual window.
Afterwards, the dual window can be evaluated as a function of x by evaluating Eq. (4.3).
In principle, the functional-analysis approach evaluates the dual window faster, but the
evaluation of Eq. (4.3) is still relatively slow. Therefore, evaluation through an interpolation
is worthwile for both methods and a difference in performance is only observed in the
initialization time. In practice the computation of the interpolation coefficients with the
method we described throughout this chapter can be evaluated in about a second (on
an Intel i7-4600U CPU), which is satisfactory. Therefore, we did not further pursue the
functional-analysis based approach.

4.3 Computational aspects

4.3.1 Fast transform to and from Gabor coefficients

When we are given a Gabor frame with window function g(x) and dual window η(x) we
can calculate the Gabor coefficients of a function f using the dual frame functions ηmn(x)
by means of Eq. (4.4). Unfortunately calculating all these integrals is a tedious procedure.

Suppose we would like to calculate Gabor coefficients for m ∈ {−Nx, · · · , Nx} and
n ∈ {−Nk, · · · , Nk}. We write down a slightly different version of the periodic functions
of Eq. (4.14) with the spectral oversampling included, i.e.

f̊m(x) =
∞∑

ℓ=−∞

fmℓe
jβℓKx. (4.24)

We can insert this in Eq.(4.4) to find

f̊m(x) =

∫ ∞

−∞
dx′

∞∑
ℓ=−∞

f(x′)η(x′ −mαX)ejβℓK(x−x′)

=
∞∑

n=−∞

∫ ∞

−∞
dx′ f(x′)η(x′ −mαX)δ(x− x′ − 2πn

βK
)

=
∞∑

n=−∞

f(x+ n
2π

βK
)η(x−mαX + n

2π

βK
),

where we have written the summation over ℓ with complex exponentials as a sum of delta
functions, by using the identiy 2π

βK
= X

β
. Since we choose αβ ∈ Q or αβ = p

q
< 1, Eq.
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(4.24) can be rewritten as

f̊m(x) =
Nx∑

n=−Nx

f(x+ αX
p

q
n)η(x− αXm+ nαX

p

q
). (4.25)

Since we want to use the inverse of Eq. (4.24) to calculate the coefficients fmn from f̊m(x)
using FFTs, we do not need to know the f̊m(x) for arbitrary x, but only for certain discrete
xi = i 2π

βKNk
= iαX

Nk

p
q
, where Nk signifies the highest spectral coefficient.

After substituting all this in Eq. (4.25)

f̊m(xi) =
Nx∑

n=−Nx

f

(
αX(

1

Nk

p

q
i+

p

q
n)

)
η

(
αX(

i

Nk

p

q
−m+ n

p

q
)

)
,

we notice that the summation over n is similar to a discrete convolution evaluated at m
except for a factor p/q. When we write n = ℓ+ qk with ℓ ∈ {1, · · · , q} the sum becomes

f̊m(xi) =

q∑
ℓ=1

∞∑
k=−∞

f

(
αX(

1

Nk

p

q
i+

ℓp

q
+ pk)

)
η

(
αX(

p

q

i

Nk

−m+
ℓp

q
+ pk)

)
.

When we now take m = r + ps with r ∈ {0, · · · , p − 1} this reduces to a true discrete
convolution in k and s

f̊r+ps(xi) =

q∑
ℓ=1

∞∑
k=−∞

f

(
αX(

1

Nk

p

q
i+

ℓp

q
+ pk)

)
η

(
αX(

p

q

i

Nk

+
ℓp

q
− r + p(k − s))

)
,

(4.26)
which can be calculated efficiently via FFTs. Since we are only interested in a finite number
of Gabor coefficients, the summation over k can be restricted to k ∈ {−Nx/q, · · · , Nx/q},
since it is of no use to sample the function outside the range where the Gabor coefficients
accurately represent the function f . When we have found the values f̊m(xi), we can eas-
ily calculate the Gabor coefficients fmn by using an FFT to approximate the inverse of
Eq.(4.24) as

fmn =

∫ 2π

0

dxf̊m(x)e
−iβnKx. (4.27)

For this method to yield accurate results, it is important that the function f(x) does
not contain components with a spatial frequency higher than included by the number of
modulation frequencies, i.e. fmn is negligible for |n| > Nk.

To return from Gabor coefficients to a representation in the spatial or spectral domain,
we can reverse all steps from Eq. (4.27) back to Eq. (4.24) to generate the values of the
function sampled at xi. Most inversions are trivial. However, care has to be taken with the
ηmn(x) function, since η(x) was calculated through a pseudo inverse, the matrix is badly
conditioned. But since ηmn(x) is the pseudo inverse of gmn(x), the frame gmn(x) can be
used instead.
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It is possible to calculate an interpolation on points between the sample points as well
by using the Gabor frame equivalent to Eq. (4.3), i.e.

f(x) =
∑
m,n

fmngmn(x), (4.28)

which requires performing a sum over all coefficients for each point x. Since Gabor coeffi-
cients are used, this is an interpolation with exponential decay in the spectral domain and
can be useful when high precision is required at only a few evaluation points. However, it
is often more efficient to use the FFT-based algorithm, since it provides the entire range
of values at an equidistant lattice and points in between can be interpolated e.g. through
a Hermite spline.

4.3.2 Gabor representation of the spectral domain

Having defined the Gabor coefficients and transformations for spatial functions, we would
like to define a similar frame for the corresponding spectral representations i.e. Fourier
transforms. It turns out that the Fourier transform of the frame functions itself forms a
Gabor frame very similar to the spatial Gabor frame. Therefore it is our frame of choice
in the spectral domain. In this section we will use hats to emphasize when a function or
its Gabor coefficients are defined in the spectral domain. Since we will show in this section
that Gabor coefficients in the spectral and the spatial domain are very closely related
and that their transformation is fast, we will not distinguish between spatial and spectral
coefficients after this section and the tilde notation will be dropped for coefficients as well
as functions.

When we use the Gaussian window function of Eq. (4.2), we can use its Fourier trans-
form to form a frame for spectral functions. We will call this function g(k) and for a
Gaussian window g(x) it is a Gaussian window as well, i.e.

ĝ(k) = 2
1
4T exp

(
−π

K2
k2

)
. (4.29)

For the frame we can then write

gmn(k) = g(k −mβK)e−iknαX . (4.30)

The similarity between this function and Eq. (4.7) is obvious. Now we can find a dual
window η(k) for the spectral domain as well with the constructions of one of the preceding
sections.

Of course we need a way to proceed from the spectral Gabor coefficients to the spatial
Gabor coefficients. So we calculate the Fourier transform of gmn(x) giving

ĝmn(k) = ĝ(k − nβK)e−jkαmX e2πjβαmn = gnm(k)e
2πjβαmn.

This allows us to go from spatial coefficients fmn of a function f(x) to spectral coeffi-
cients f̂mn via the transformation
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f̂mn = fnme
−2πjβαmn, (4.31)

that can be used in e.g.

f̂(kx) =
∞∑

m=−∞

∞∑
n=−∞

f̂mnĝ
b
mn(kx). (4.32)

The numerical implementation of this Fourier transformation is simple. The advantage
is that we can now use functions spatially as well as spectrally in our algorithm, since
coefficients are identical except for a factor and a transposition. For this reason we will
drop the hat notation for spectral Gabor coefficients.

4.3.3 Numerical examples

To acquire a feeling for the capabilities of Gabor frame representations, we will discuss
numerical examples in this section. We begin by showing the performance of Gabor frames
with different oversampling in representing three simple functions: the constant function
c(x), the Heaviside step function H(x), and a modulated and shifted Gaussian pulse gt(x)
given by

gt(x) = e(x−
2
3
)2+ 3

2
jx. (4.33)

First we discretize these functions using the Gabor frames of Figure 4.2, with X = 1,
p = 10, q ∈ {5, 6, · · · , 10}, and α = β =

√
q/p. The coefficients are restricted to m,n ∈

{−3, · · · , 3} in Eq. (4.7). On the first row in Figure 4.4 we show the original functions.
On the second row we show how these functions are approximated by the Gabor basis
(q = 10) and two Gabor frames (q = 5, q = 8). Clearly, with more oversampling, lower q,
the range for x on which the approximation holds is smaller. Also it is clear that the Gabor
basis (q = 10) performs much poorer than the frames. On the bottom row, the error in
these approximations is shown. Clearly, the error somewhat depends on the function that
is approximated, although all oversampled frames perform well in general. The largest
oversampling does not automatically yield the best approximation. This can be partly
explained by the fact that a larger oversampling yields a smaller spectral window spacing
βK, and therefore decreases the interval of the spectral domain that is included in the
representation.

From Figure 4.4 it is clear that using a frame with q = 2, p = 3 with α = β =
√
2/3

contains enough oversampling to yield good results. We prefer to choose low p and q since
some algorithms, such as the fast Gabor transform of Section 4.3.1, are less efficient for
large p and q.

Figure 4.5 illustrates how Gabor expansions depend on the number of included Ga-
bor coefficients. Here the number of spatial coefficients is defined by Mx through m ∈
{−Mx, · · · ,Mx} in Eq. (4.7) and similarly the spectral range of coefficients through n ∈
{−Nx, · · · , Nx}. In the first column the constant function c(x) = 1 is sampled with an
increasing number of spatial coefficients Mx. In the spatial domain, the approximation
is accurate over a range with increasing number of samples. When these sets of Gabor
coefficients are transformed to the spectral domain, the coefficients should approximate a
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Dirac-delta distribution. For an increasing number of spatial coefficients, the distribution
becomes narrower around kx = 0. However, the decay in the spectral domain remains the
same for large kx.

In the second column in Figure 4.5, the Heaviside step function is sampled with an
increasing number of spectral samples Nx. With an increasing number of spectral samples,
the transition from 0 to 1 becomes narrower. However, similar to the Gibbs phenomenon,
the oscillations do not decrease in amplitude.

In the third column, the modulated Gaussian pulse gt(x) in Eq. (4.33) is sampled
over an increasingly long range. Since this function has an effectively finite support, the
function can be well represented by a finite number of coefficients. Clearly, with increasing
Mx, the approximation becomes better and both the representation in Gabor coefficients
and in Fourier-transformed coefficients converge well to the function.
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Chapter 5

The Gabor frame as a discretization
for the 2D transverse-electric
scattering-problem domain integral
equation1

5.1 Abstract

We apply the Gabor frame as a projection method to numerically solve a 2D transverse-
electric-polarized domain-integral equation for a homogeneous medium. Since the Gabor
frame is spatially as well as spectrally very well convergent, it is convenient to use for solving
a domain integral equation. The mixed spatial and spectral nature of the Gabor frame
creates a natural and fast way to Fourier transform a function. In the spectral domain we
employ a coordinate scaling to smoothen the branch cut found in the Green function. We
have developed algorithms to perform multiplication and convolution efficiently, scaling as
O(N logN) on the number of Gabor coefficients, yielding an overall algorithm that also
scales as O(N logN).

5.2 Introduction

Numerical modeling of electromagnetic scattering by dielectric objects is important in many
fields. To efficiently design and optimize many types of optical structures, accurate and fast
numerical schemes are required to characterize their optical properties. We are interested
in modeling the electromagnetic scattering from a finitely-sized dielectric structure that is
illuminated by an incoming field. This type of problem includes electromagnetic band gap
materials and other metamaterials [119] that can be built using dielectric objects, dielec-
tric diffractive optics [120] such as dielectric binary diffractive lenses [121], and photonic
integrated circuits [24, 25] such as grating couplers and polarization converters.

1This chapter was first published as the article [118].
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Many numerical methods (solvers) that have been developed can solve this type of prob-
lem. In general, a trade-off between flexibility, accuracy and speed of a numerical method
is made. A class of solvers that does not exploit symmetries includes local methods, such
as finite difference time domain (FDTD)[26], finite element method (FEM)[32], and finite
integration technique (FIT)[122]. The flexibility of these methods has led to a widespread
use of these approaches in commerical software.

Here, we are interested in the scattering from a dielectric object of finite size in a
homogeneous background medium. We choose to employ a global method, an integral
equation approach. With this approach it is possible to exploit the translation symmetry
of the homogeneous background medium. Because of this symmetry, the Green function
is a function of only the distance between source and observer. As a consequence, the
spatial-domain convolution between the contrast current density and the Green function
can be performed in the spectral domain, where it is simply a pointwise multiplication.
This pointwise multiplication can in principle be performed much faster than a convolution
and therefore it can lead to an efficient algorithm.

Historically, the Conjugate Gradient Fast Fourier Transform (CGFFT) [37] was pio-
neering the exploitation of a spectral representation for a fast convolution. Even though
CGFFT is a spatial method, with the use of FFTs the convolution is performed in a discrete
spectral domain, which is fast. Improvements on this method are the Adaptive Integral
Method (AIM) [42] and pre-corrected FFT (pFFT) [43], which use a meshing to accurately
describe the scatterer and a grid of multipoles that approximate the radiation from the
mesh at a large distance. On this grid FFTs can be used again for efficiency.

The translation symmetry can also be exploited by using a spectral discretization of
the problem. Although we are interested in aperiodic problems, it is fascinating to see that
for periodic problems several algorithms exist that are based on a spectral representation.
A key ingredient is that periodicity inherently leads to a discrete set of modes as a basis
for the spectral domain. This is exploited in Rigorous Coupled Wave Analysis (RCWA)
[74, 73], the C-method [76, 123] and the Periodic Volume Integral Method (PVIM) [71].

Based on these periodic solvers it is possible to calculate the scattering by aperiodic
scatterers as well. For example by using Perfectly Matched Layers (PMLs), where a scat-
terer of finite size is placed inside a box with absorbing sides that can be periodically
repeated and solved with a periodic solver [124]. However, we are looking for a method
that applies a discretization directly in the spectral domain.

Inspired by the success of CGFFT, AIM and pFFT, we understand the need for some
sort of equidistant grid in the discretization. To achieve more flexibility, we intend to build
an algorithm similar to meshless methods, so our discretization should be continuous in
the spatial domain as well. Also inspired by the succes of the aforementioned periodic
spectral methods, we would like to use a spectral discretization. The method should work
for aperiodic scatterers, so we need to find a discretization that is continuous in the spectral
domain as well.

A discretization with a Gabor frame [102, 100, 99] fits these requirements. We explicitly
choose the Gabor frame over the Gabor basis, because within the Gabor frame the con-
vergence of the discretization is much better than the Gabor basis, where the convergence
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is hindered by the Balian Low theorem [106, 107]. The Gabor frame consists of a set of
window functions defined on a uniform grid that are modulated by a set of equidistant
frequencies. By a Fourier transformation, the spatial Gabor frame yields a spectral Gabor
frame as well. Because the Gabor frame employs window functions, it has the advantage of
being localized spatially as well as spectrally. Moreover, a transformation from the spatial
to the spectral domain is almost trivial. Because there is a discrete translation symmetry
in the equidistant window functions, several fast methods exist to perform calculations on
functions represented by a Gabor frame based on the FFT [99, 100, 125].

The Gabor frame has been used before to solve diffraction problems by line or surface
scatterers as a source for Gaussian Beams [126, 127, 128, 129]. These articles show that this
method can be very useful for efficient calculation of the scattered field at a large distance
(in terms of wavelengths), owing to an efficient long-distance approximation. However, to
solve a domain integral equation we need to calculate the field at short distances as well, so
this approximation is not beneficial. Related to the Gabor frame is the Wilson basis [109].
There are some reports on using the Wilson basis [130] as a discretization for electric fields
or to solve a problem using projection methods [131], but none of them mentions an opti-
mized numerical structure that uses this type of basis and testing functions. Optimization
is vital for this method to become competitive compared to other numerical methods in
the sense of calculation time.

Here we show a first version of an algorithm that uses the Gabor frame in a domain
integral equation. We use the Gabor frame in only one direction of the two-dimensional
transverse-electric (TE) scattering problem and use a spatial discretization in the other di-
rection just as in [71]. This also allows us to compare the accuracy for both discretizations.

5.3 The Domain Integral Equation

5.3.1 Problem Formulation

Consider a dielectric object described by a permittivity function in the x-z plane, i.e.
εr(x, z), illuminated by an incident electromagnetic field with the electric field polarized in
the y direction, i.e. TE polarization. The permittivity function is different from 1 in the
region bounded by x ∈ [−W,W ], z ∈ [0, d] and we define the contrast function,

χ(x, z) = εr(x, z)− 1, (5.1)

where the background medium is vacuum. Owing to the two-dimensional configuration
and the polarization of the electric field, the total electric field has only a y-component,
E(x, z) = E(x, z)ŷ. The scattering setup is shown in Fig. 5.1.

We define the contrast current density by the relation J = jωε0χE and will make the
distinction between the incoming field Ei, the scattered field Es and the contrast current
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Figure 5.1: The 2D scattering problem

densities2J i and Js they induce in the dielectric scatterer

E(x, z) =Ei(x, z) + Es(x, z),

J i/s(x, z) =jωε0χ(x, z)E
i/s(x, z).

(5.2)

The Fourier transformation in the x direction is defined by

φ̂(kx) = Fx[φ(x)](kx) =

∫ ∞

−∞
dx φ(x)e−jkxx, (5.3)

and its inverse

φ(x) = F−1
kx

[φ̂(kx)](x) =
1

2π

∫ ∞

−∞
dkx φ̂(k)e

jkxx. (5.4)

We will use kx as a variable for all spectral functions and x as a variable for spatial functions,
dropping the hat for convenience.

5.3.2 The integral form of the 2D TE scattering problem

The Maxwell equations [85], assuming time convention ejωt, are given by

∇×H = jωD

∇× E = −jωB.
(5.5)

2The formulation with J i, the current induced by the incoming field, is somewhat uncommon in the
literature. It has the advantage that both left and right hand side in the integral equation, Eq. (5.8), decay
in a similar fashion at the end of the simulation region, where the Gabor frame ends. With a traditional
formulation, the result of the Green function convolution decays differently from the incident field, that is
then discretized directly in the spatial domain. This would lead to intolerable artifacts at the end of the
simulation domain.
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In a dielectric material we have B = µ0H and D = ε0(1 + χ)E. The spectral domain
Green function for the 2D transverse electric problem can be written as

G(kx, z|z′) =
e−γ|z′−z|

2γ
, (5.6)

where γ2 = k2
x − k2

0 and k2
0 = ω2ε0µ0.

We can express the scattered field by the integral representation3

Es(kx, z) =
1

jωε0

∫ d

0

dz′G(kx, z|z′)k2
0J(kx, z

′), (5.7)

which together with Eq. (5.2) can be written as

− k2
0χ(x, z)F−1

kx

[∫ d

0

dz′ G(kx, z|z′)J i(kx, z
′)

]
(x) =

−Js(x, z) + k2
0χ(x, z)F−1

kx

[∫ d

0

dz′ G(kx, z|z′)Js(kx, z
′)

]
(x),

(5.8)

with the advantage that the contrast current density J is compactly supported, since the
contrast χ has a finite support. Now the left-hand side depends on the known incident field
Ei(kx, z) and the right-hand side can be viewed as an operator working on the scattered
current, which we want to calculate. With the Fourier transforms we emphasize that we
want to do the convolution in the x-direction in the spectral domain. In the z direction
the convolution is done spatially.

5.3.3 Discretization along the z direction

Along the z direction we will use piecewise-linear functions Λn as expansion functions.
These expansion functions are given by

Λn(z) =

{
1− |z−n∆|

∆
if |z − n∆| < ∆

0 if |z − n∆| > ∆
, (5.9)

with ∆ the step size in the z discretization. This discretization is convenient, because
the electric field is continuous and the contrast density is continuous in regions where χ
is continous. When the contrast current density J(kx, z) is expanded into the expansion
functions, we obtain

J(kx, z) ≈
Nz∑
n=0

Jn(kx)Λn(z), (5.10)

where Nz is the total number of expansion functions in the z direction. We use Dirac-delta
testing functions in the z direction to find the coefficients4Jn(kx), since it was observed

3Note that the Green function is defined slightly different from Chapter 2
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that this leads to a well-conditioned linear system for a similar formulation for periodic
scattering problems [71]. Now we have set up the sets of testing and expansion functions,
they will be used on the integral equation Eq. (5.8). Because the Green function is semi-
separable in z, it is advantageous to write

Es
n(kx) =

∫ n∆

0

dz′
n+1∑
n′=0

G(kx, n∆|z′)k2
0Jn′(kx)Λn′(z′)+

+

∫ d

n∆

dz′
Nz∑

n′=n−1

G(kx, n∆|z′)k2
0Jn′(kx)Λn′(z′)

= Ku
n(kx) +Kd

n(kx).

Here the integral is split along z′ in the two integrals Ku
n(kx) and Kd

n(kx). There exists a
recursive algorithm to find these two integrals using the fact that Jn(kx) is nonzero only
on the support of the contrast source. We will only perform the calculation for Ku

n , since
Kd

n is similar. Working this out we find

Ku
n+1(kx) =Ku

n(kx)e
−γ∆ −Jn(kx)

∫ ∆

0

dz′k2
0Λ0(z

′)
e−γ(∆−z′)

2γ

−Jn+1(kx)

∫ ∆

0

dz′k2
0Λ1(z

′)
e−γ(∆−z′)

2γ

=Ku
n(kx)e

−γ∆ +Jn(kx)I
u
m(kx) + Jn+1(kx)I

u
e (kx),

(5.11)

where Ium and Iue are introduced for the result of the integrals over z′. With this method

we can calculate K
u/d
n (kx) for all n in only Nz steps. This yields an algorithm of linear

complexity in Nz.

5.3.4 Far-field intensity

In the end we are interested in the far field due to the contrast source. Since the electric
field at a large distance is needed, we use a different method than in the previous section
to calculate this.

We start again from the integral representation in Eq. (5.7). Using the discretization
in the z direction this is written as

Es(kx, z) =
j

ωε0

∫ ∆

−∆

dz′
Nz∑
n=0

k2
0Jn(kx)

e−j
√

k20−k2x|n∆+z′−z|

2
√

k2
0 − k2

x

Λ(z′). (5.12)

By taking the inverse Fourier transformation in the x direction and by changing to polar
coordinates x = R cosφ, z = R sinφ > 0 in the limit R → ∞, we obtain

Es(R,φ) =
j

2ωε0

Nz∑
n=0

k2
0Jn(−R cosφ)ejk0n∆sinφ2− 2 cos(∆ sinφ)

∆ sin2 φ
(I0(R) + jH0(R)),

4Jn(kx) is the contrast current density at z = n∆ and should not be mistaken for a Bessel function
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with I0 the Bessel function of the first kind of order zero and H0 the Struve function of
order zero.

The field strength depends on the distance and owing to energy conservation the field
strength will decay as 1/

√
R. Therefore, we will employ the scattering strength S(φ) as a

function of the angle φ, defined as

S(φ) = lim
R→∞

R|Es(R,φ)|2. (5.13)

5.4 Discretization in the x direction via a Gabor frame

To discretize Eq. (5.8) in the x-direction we will employ a Gabor frame. We begin with
a short description of the way we have implemented the Gabor frame. Then we list the
mathematical operations needed to apply on functions represented using a Gabor frame
and explain their implementation. We end by discussing the uniqueness of the numerical
solution.

5.4.1 Definition

Following the exposition in [99] to introduce the Gabor frame and its properties, we show
how we have implemented the Gabor frame. A Gabor transformation makes extensive use
of a window function g(x), for which we choose here the Gaussian

g(x) = 2
1
4 e

(
−π x2

X2

)
, (5.14)

with X the parameter that defines the width of the window function. The Gabor frame is
defined by

gmn(x) = g(x−mαX)ejnβKx, (5.15)

with the modulation step size K, defined by KX = 2π, and α and β two constants defining
the oversampling, obeying αβ ≤ 1. Function values of a function f(x) that is represented
by Gabor coefficients fmn can be calculated by

f(x) =
∞∑

m=−∞

∞∑
n=−∞

fmngmn(x) =
∑
m,n

fmngmn(x). (5.16)

Here the m sum is over spatial windows and the n sum is over the modulation frequencies,
in practice these sums are truncated. To calculate the coefficients fmn of a given function
f(x) it is common to write

fmn =

∫ ∞

−∞
dx f(x)η∗mn(x), (5.17)

where we introduced the dual window function η(x) that forms the dual frame to gmn(x).
Here ∗ denotes complex conjugation. The indices have a meaning similar to Eq. (5.15), i.e.

ηmn(x) = η(x−mαX)ejnβKx. (5.18)
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Several methods to calculate a dual window function η(x) are described in [99, 100].

5.4.2 The choice for the Gabor frame

From Eq. (5.17) it is clear that the dual window function η(x) is very important to achieve
an efficient representation of a function. The Balian Low theorem states that a good dual
window only exists when oversampling is employed (αβ < 1 in Eq. (5.17)) [106, 107].
The dual window of an oversampled Gabor frame can be chosen in a way that it decays
exponentially both spatially and spectrally [99, 100, 125]. We use the dual window obtained
through the Moore-Penrose inverse, since it is the one most commonly used and it exhibits
good convergence.

After the construction of a dual window, it is possible to calculate the Gabor coefficients
of functions by Eq. (5.17). There are faster ways to calculate Gabor coefficients for
rational oversampling αβ = q/p with p > q ∈ N. In that case it is possible to use
FFTs in O(pn log n) operations, with n the total number of Gabor coefficients [125, 100].
This method is faster, but it uses an equidistant sampling on the function from which it
calculates the Gabor coefficients, so it only works well for sufficiently smooth functions.

When functions have discontinuities, we should evaluate the integrals in Eq. (5.17), but
we found that this is a very slow method. Another option is to approximate this result by
using oversampling in the FFT method to calculate the coefficients fmn of f(x) for a broader
range of n and later discard the extra coefficients. When more modulation frequencies are
used, the function is sampled on a finer lattice and therefore the approximation error is
smaller.

5.4.3 Building blocks

To solve an integral equation using the method outlined in Section 5.3.2, we need methods
to manipulate functions represented by Gabor coefficients. It is of course important that
these algorithms scale well, O(N logN) or better, where N denotes the number of Gabor
coefficients.

From Eq. (5.11) and Eq. (5.2) we see that the following operations on Gabor coefficients
are required

• Addition

• Multiplication by a scalar

• Fourier transformation and inverse Fourier transformation

• Multiplication by a set of Gabor coefficients

• Convolution with a set of Gabor coefficients

• Inner product
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The first two operations are trivial and can be performed per coefficient. The convolution
can be calculated using a combination of a Fourier transformation, a spectral multiplication
and an inverse Fourier transformation. In the following we explain how to calculate the
Fourier transform, the multiplication, and inner product on sets of Gabor coefficients.

5.4.4 Fourier transform

A very convenient property of the Gabor frame functions is that their Fourier transform
also yields a Gabor frame. We define a spectral frame function ĝnm(k) by

ĝnm(k) = Fx[gmn(x)](k) = ĝ(k − nβK)e−jmαXke−2πjαβmn, (5.19)

with the spectral window function ĝ(k) = Fx[g(x)](k).

On the level of Gabor coefficients, the Fourier transform f̂(k) of the function f(x) can
be represented by

f̂(k) =
∑
m,n

f̂mnĝmn(k), (5.20)

where

f̂mn = fnme
2πjαβmn. (5.21)

With this definition of a spectral Gabor frame, the operation of Fourier transformation
is computationally very easy and can be done in O(N) steps, where N is the total number
of Gabor coefficients. Of course it would have been possible to use a different Gabor frame
for the spectral representation, but this one has the advantage that a Fourier transform can
be obtained from the simple relation Eq. (5.21). When the spectral frame is not simply
the Fourier transform of the spatial frame, such a simple relationship does not exist.

5.4.5 Multiplication of two sets of Gabor coefficients

Although there exists an easy and very fast way to calculate a Fourier transform of a
function, with Gabor coefficients it is the multiplication of functions that takes most of the
time. When we multiply function v(x) and w(x) their product, f(x) can be written as

f(x) = v(x)w(x) =
∑
m,n

∑
k,l

vmnwklgmn(x)gkl(x). (5.22)

When we define the functions Aj(x) = g(x)g(x − jαX), we can compute its Gabor
transform Aj,pq, where the x-dependence in Aj(x) is replaced with Gabor indices pq. These
coefficients are useful for the calculation of the product

gmn(x)gkl(x) =
∑
r,s

Ak−m;r−m,s−n−l grs(x)e
2πjαβm(n+l−s).
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Now we would like to calculate the Gabor coefficients fmn of f(x) directly from vmn and
wmn. We can use Aj;pq in Eq. (5.22) to obtain

f(x) =
∑
r,s

∑
m,n

∑
k,l

Ak−m;r−m,s−n−l vmn wkl grs(x)e
2πjαβm(n+l−s). (5.23)

After two variable substitutions, a = n+ l and b = k −m

frs =
B∑

b=−B

∑
m,a

Tb;m,a Ab;r−m,s−ae
2πjαβm(a−s) (5.24)

is obtained, with

Tb;m,a =
∑
n

vmnwm+b,a−n, (5.25)

and B defining the truncation number in the b summation. The Tb;m,a can be calculated
efficiently using FFTs, because they are calculated from a discrete convolution in n. B
does not need to be large, because Ab(x) decays quickly when the overlap between the
window functions is small. For example with α = β =

√
2/3 oversampling and the window

function as in Eq. (5.14) we find |A±3(x)|L2 < 10−5|A0(x)|L2 . In our case a sum of 5 terms
(B = 2) would already be enough for an accuracy much better than 10−4 in this sum.
So T is only needed for a small number of b values. The number of significant m and a
combinations is of the order N , the total number of coefficients of the input functions.

The exponential factor in Eq. (5.24) has only p different values for a q/p = αβ over-
sampled Gabor frame. We can exploit this, by carrying out the m summation for every
different value of s ∈ {1 . . . p} individually. Then we can use that the m and a summation
can be written as a convolution and therefore this summation can be done efficiently using
FFTs as well. The total complexity scales like NpB logN , with N the total number of
Gabor coefficients.

5.4.6 Inner products

The L2(R) inner product of functions f(x) and h(x) can in principle be calculated from

< f, h >=

∫ ∞

−∞
dx f(x)h∗(x) =

∑
k,l,m,n

fklh
∗
mn

∫ ∞

−∞
dx gkl(x)g

∗
mn(x). (5.26)

Because of the spectral and spatial translation symmetry, the inner product between the
frame functions gmn(x) and gkl(x) can be further simplified to

< gkl, gmn > =

∫ ∞

−∞
dx g(x− αkX)g∗(x− αmX)ej(l−n)βKx

= e2πjαβk(l−n)

∫ ∞

−∞
dx g(x)g∗(x− α(m− k)X)ei(l−n)βKx

= e2πjαβk(l−n)Mk−m,l−n,

(5.27)
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so it can be used to calculate the inner product

< f, h >=
∑

k,l,m,n

fklh
∗
mne

2πjαβk(l−n)Mk−m,l−n. (5.28)

Here we see the same exponential e2πjαβk(l−n) as in the multiplication. Because of the
rational oversampling there are only p unique sequences for the exponential as a function
of (l − n). Now the discrete convolution of hmn, with e2πjαβk(l−n)Mk−m,l−n, can be done
using FFTs again for each of these p unique discrete convolution kernels.

The methods described in the previous subsections are exact, except for the multipli-
cation and inner products of coefficients, which converge exponentially with the number of
terms included.

5.4.7 The discrete formulation

By discretizing Eq. (5.8) as described in Sections 5.3.3 and 5.4, our problem can be written
as

A ◦ Js = −(1 + A) ◦ J i, (5.29)

with

J i/s(kx, z) =
M∑

m=−M

N∑
n=−N

Nz∑
ℓ=0

J
i/s
mn,ℓ gmn(kx)Λp(z).

The operation A◦ then represents the Green function G convolution and contrast k2
0χ

multiplication and an subtraction of J , as in the right-hand side of Eq. (5.8).
When we view Js and A ◦ J i as lists of numbers, then the operator A can be viewed as

a matrix and we can write A · j = b.
Normally one would continue by inverting this matrix, but this matrix is not invertible

because of the oversampling in the Gabor frame. It is for example possible to write a
function that is zero everywhere, with non-vanishing coefficients; in other words the matrix
A defined through a Gabor-frame representation has a nontrivial null-space. However, since
we make a fixed choice for a certain dual window η (see Section 5.4.1), the representation
of every function in the Gabor frame becomes unique. We used GMres to solve the overall
linear system.

5.5 Singular behaviour of the Green function

When we calculate the Gabor coefficients of K
u/d
n (kx) for every n recursively according

to Eq. (5.11), there can be severe discontinuities in the derivative of K
u/d
n (kx) around

kx = ±k0. The main reason is the first term in Eq. (5.11)

Ku(kx, z) = Ku(kx, z −∆)e−γ∆ + · · · = Ku(kx, 0)e
−n∆γ + . . . , (5.30)
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Figure 5.2: The spectrum (real part: solid, imaginary part: dashed) of a wave (k0 = 1)
emanating from an electric-field point source at z = 0, exp−γz. In (a) through (d) we
subsequently plotted the spectrum at z = 0, z = 0.03λ, z = 0.12λ, z = 3.2λ. It can be
clearly seen how the smoothness deteriorates for large z near kx = ±k0.

with z = n∆ the height where we would like to evaluate the field. In the present discussion
we ignore everything related to current density.

In Fig. 5.2(a) we show a spectral representation of an electric field due to a point source
in the plane of the source. In Fig. 5.2(b) we show the field of this point source propagated
one ∆ step in the z direction. The discontinuous derivative is clearly visible, but does not
look severe. After propagating further in the z-direction (Fig. 5.2(c)), the discontinuity in
the derivative becomes more severe. After several wavelengths of z propation, oscillations
start to appear in Ku(kx, z) for kx between −k0 and k0 in Eq. (5.30), as is shown in
Fig. 5.2(d).

The strong discontinuity of its derivative makes it hard to represent this function by
Gabor coefficients, because a finite set of Gabor coefficients is limited in its spectral rep-
resentation. It is important to note that although the function e−γz is highly oscillatory
for large z, its inverse Fourier transform F−1

kx
[e−γz](x) is continuous, but extends to large

distances in x. This implies that it should still be possible to find a good representation
by Gabor coefficients that holds only in the simulation domain x ∈ [−W,W ]. Intuitively,
one would truncate the number of spatial Gabor coefficients. However, it is inaccurate
to multiply spatially-truncated representations of e−γ∆, as would be done in the recursive
algorithm Eq. (5.11). The error results from the fact that a spectral multiplication corre-
sponds to a spatial convolution. Spatially (the inverse Fourier transform of) e−γ∆ does not
have a bounded support. For a convolution of two functions with infinite spatial support,
information about the entire support of these functions is needed. For this reason we would
need the Gabor coefficients to represent the function over the entire x-axis, which takes an
infinite number of coefficients.
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A more convenient method is to use a coordinate scaling in the spectral domain. The
goal of the scaling is to allow for an accurate and efficient representation of the field
K

u/d
n (kx). In principle there are many choices for a scaling function that would work, but

there is also a 1/γ singularity in the Green function Eq. (5.6). We will incorporate the 1/γ
singularity in the Jacobian of the scaling, so it will be canceled. Scaling a function that is
represented using Gabor coefficients is not a trivial task, since it is part of the core of the
algorithm, and it needs to result in fast calculations.

5.5.1 The scaled coordinates

Fig. 5.3(b) shows an example for an unscaled e−γH/γ. The many oscillations and the two
asymptotes make it difficult to represent this function using a Gabor frame. We want
to make a good approximation of the Green function of waves generated at z = 0 that
propagate all the way to z = H, which is the largest distance and therefore the worst case.
We make use of three scaling functions s1, s2 and s3, which will be optimized for different
parts of the spectral domain. From this set of functions one scaling function s will be
composed, which uses the most appropriate scaling function for every part of the kx axis.

We choose the first part of the scaling function for |kx| < k0 such that the 1
γ
factor is

incorporated in the Jacobian of the scaling by using a sine transformation

kx(τ) = s1(τ) = k0 sin(cπτ/2). (5.31)

The second part of the scaling function works just outside that region, for |kx| > k0,
and it can be seen as a continuation of the scaling function s1

s2(τ) =

{
k0 cosh(cπ(τ − 1/c)/2) if τ > 1/c

−k0 cosh(cπ(τ + 1/c)/2) if τ < −1/c.
(5.32)

These scaling functions s1 and s2 will also smoothen the oscillations in e−γH when the
constant c is choosen small enough, depending on H and k0. To decide on a value for c
the 1/γ derivative is most important when H is small. When the simulation height H
gets larger e−γH becomes the governing factor to determine c. A simple plot of e−γH as in
Fig. 5.3(c) can show whether or not the choice for the constant c is good; it should show
a well sampled continuous curve.

The third part of the scaling function has the constraint that the derivative of the
scaling function should never exceed one. Otherwise information from the input function
is lost due to a coarser sampling in the scaled coordinates. It is defined by

s3(τ) = τ + d, (5.33)

with d a constant that allows to shift this function to make the transition to the other
scaling functions continuously differentiable. In Fig. 5.3(a) we show how to put these
functions together: the scaling function is put together such that for every kx = s(τ) the
scaling function with the smallest derivative is used, and that transitions between the three
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scaling functions are smooth. For large values of c (small H) another region with scaling
function s3 in the middle is possible.

With this scaling an efficient representation of the electric field over the complete x
axis with a limited number of kx functions is made. Around the points kx = ±k0 we have
already compensated the 1/γ singularity in the Greens function with the Jacobian. This
has the advantage that we do not have to worry about asymptotes, since the function is
bounded now. For the region with scaling function s3 we still need to incorporate the 1/γ,
but it is well behaved there.

-k0
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0

s3 s2 s1 s2 s3

s(�)

�
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Figure 5.3: (a) A typical scaling function for k0 = 1. (b) The unscaled e−7.5γ/γ. (c) The
scaled e−7.5γ (the factor 1/γ disappears with the Jacobian).
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5.5.2 Interpolating to and from the scaled coordinates

From equidistant to scaled

With the algorithm from [100] we can go from a spectral-domain current with equidistant
kx sampling, Jn(km) = Jn(m∆k) with m ∈ Z, to Gabor coefficients Jn;i,j and back again.
What we need is to have function values J̃n;m = Jn(τm) on the non-equidistant scaled
coordinates τm = s(m∆k) as well with s(kx) the scaling function. To obtain that, we need
to interpolate the equidistant sampling in a smart manner, since linear interpolation leads
to intolerably large errors. The tilde will denote functions on the scaled coordinates.

From Figs. 5.4(a) and (b) it is clear that the sampling rate is not high enough to get a
good approximation of the current density with the algorithm from [100] by using a high-
order interpolation only. To get a better approximation we use oversampling: we pad the
Gabor coefficients with zeroes for high |j| in Jn;i,j and then transform the Gabor coefficients
to an equistant sampling. In Figs. 5.4(c) and (d) it is shown that the combination of
oversampling and a fifth order Hermite [132] interpolation reduces the error to a tolerable
level.

x

f(x)

(a)

x

|f - f  |v

(b)

x

|f - f  |v

(c)

x

|f - f  |v

(d)

Figure 5.4: (a) Solid line: fV (x) a sine function as validation. Dotted: A linear interpo-
lation f of the validation fV , dashed: A third order Hermite spline interpolation f of the
validation fV . (b) The absolute error of the approximations |f(x)− fV (x)|: linear interpo-
lation (dotted), 3rd order Hermite interpolation (dashed), 5th order Hermite interpolation
(solid). (c) The same for double sampling. (d) The same for quadruple sampling.
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From scaled to equidistant

To go back from the scaled coordinates to equidistant coordinates, the total number of
samples is reduced, especially around the singularities. We need to be careful not to throw
away any important information in the process of resampling.

We transform directly from the scaled spectral coordinates to equidistant spatial co-
ordinates on the interval x ∈ [−W,W ], since only spatially we are able to make a good
approximation using a finite number of Gabor coefficients. Let us start from the inverse
Fourier transform of the scaled-coordinate electric field

En(xm) =

∫ ∞

−∞
dτ Js(τ)Ên(s(τ))e

js(τ)xm =

∫ ∞

−∞
dτẼn(τ)e

js(τ)xm , (5.34)

with Js(τ) = Hs(τ)/γ with Hs(τ) the Jacobian of the scaling function s, chosen to
incorporate the 1/γ factor from the Green function in Eq. (5.6). The xm values are on an
equidistant grid, such that this list can be used to transform to Gabor coefficients. The
bounded function Ẽn(τ) = Js(τ)En(s(τ)) is defined by the list of function values on τm
through a linear interpolation

Ẽn(τ) =
∑
m

Λm(τ)En;mJs(τ), (5.35)

with Λ the piecewise-linear function in Eq. (5.9), with ∆ = ∆k and En;m = E(s(m∆k)) =
E(τm), a list of function values as described in Section 5.5.2. The Jacobian is chosen in
such a way so as to cancel the 1/γ in the Green function Eq. (5.6). The linear interpolation
is not ideal, but since we are downsampling, the error from this approximation is less of a
problem than before, while upsampling.

Now we need to calculate the Fourier integral Eq. (5.34). Using an FFT would be
desirable, but this is not possible because of the scaling. What we can do is approximate
the integral in Eq. (5.34) by

E(xm, zn) ≈
1

2π

∞∑
n=−∞

ejn∆kxm

∫ (n+ 1
2
)∆k

(n− 1
2
)∆k

dkẼn(s
−1(k)). (5.36)

Here we recognize a discrete Fourier transform with sampling distance ∆k and function
values given by the integral. The problem here is that we make the approximation∫ (l+ 1

2
)∆k

(l− 1
2
)∆k

dkẼn(s
−1(k))ejkxm ≈ ejl∆kxm

∫ (l+ 1
2
)∆k

(l− 1
2
)∆k

dkẼn(s
−1(k)),

which only works for |xm| small. When there are many samples in Ẽn(k) in the range of
one ∆k- integral, and when |xm| is larger, this approximation breaks down. Note that the
scaling function has been choosen in such a way that the integral on the right-hand side
is approximated very well. The problem is that we make a poor approximation when the
complex exponential is put outside the integral.
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When Ẽn(s
−1(k)) is multiplied by eXℓk, we should see a shift over Xℓ in its Fourier

transform. Since we can calculate the Fourier transform of Ẽn(s
−1(k)) accurately around

xm ≈ 0 (Eq.(5.36)), we can calculate the Fourier transform around Xℓ accurately as well
by

En;ℓ(xm) ≈
1

2π

∑
l

ejn∆k(xm−Xℓ)

∫ (l+ 1
2
)∆k

(l− 1
2
)∆k

dkẼn;ℓ(s
−1(k))ejkXℓ , (5.37)

which gives us approximations accurate around each Xℓ value. To calculate from this the
electric field accurately at xm a linear interpolation is employed. First we choose ℓ such
that Xℓ < xm < Xℓ+1, then the field at xm can be found by

En(xm) =
(xm −Xℓ)En;ℓ(xm, zn) + (Xℓ+1 − xm)En;ℓ+1(xm)

Xℓ+1 −Xℓ

. (5.38)

We used this linear ℓ interpolation with 9 different spatial sampling points x0. This was
enough to get a 3 · 10−3 relative error on a practical example of a contrast current. This
will be enough for our purpose, but we can improve the accuracy by using higher order
Hermite interpolations and by taking more Xℓ values.

It is important to remark here that the distance between the samples that make up
Ẽn(τ) is less than or equal to ∆k. This means that for the part that is scaled using s3, the
sampling is the same for the FFT. For the parts with s1 and s2 there is downsampling.

To summarize, our algorithm consists of the following steps:

• Start with a list of scaled spectral samples of a function, Ẽn;m.

• Interpolate using Eq. (5.35)

• Multiply the interpolation by exponentials En;ℓ(τm) = ejXℓs
−1(τm)En(τm).

• Integrate over the scaled interpolation function to obtain a list with (a coarser)
equidistant sampling for every value of ℓ (the integral in Eq. (5.37)).

• Use an FFT on each ℓ’s list to get results that are a good approximation around Xℓ.

• Interpolate between the result ℓ and ℓ+ 1 using Eq. (5.38).

5.5.3 Various representations

Now to solve the integral equation Eq. (5.8), the challenge is to multiply by the contrast
current in the spatial domain and multiply by the various parts of the Green function (e.g.
Eq. (5.11)) in the spectral domain.

We start from a spatial representation of the electric field En(x), spatial because it needs
to be multiplied by the contrast function Eq. (5.1) to arrive at the current distribution
Jn(x) = χn(x)En(x). The Gabor coefficients of χ are calculated using the fast algorithm
in [100] to approximate Eq. (5.17). Cutting off the highest spectral parts of the current
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distribution does not deteriorate the accuracy very much, so we might as well bound it
spectrally. This means that Gabor coefficients are the most convenient representation for
Jn(x).

To calculate the convolution of the Green function with the current distribution we
would like to use spectral domain in the x direction (see Eq. (5.11)). The choice of the
scaled coordinates both compensates the divergent 1/γ in the Green function, and takes
care of rapid oscillations in the Green function for large z propagation.

In Fig. 5.5 the flow of our algorithm through the various representations is represented.
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e γΔ

Figure 5.5: The various transformations and representations we have explained in Section
5.5. The thickness of the arrows signifies the speed of the transformation qualitatively.
Thicker means faster. The black arrows signify the different transformations that are
actually used in the algorithm, the grey ones are possible, but not used.

5.6 Results

We tested the accuracy of our algorithm on a circular scatterer, a rectangular scatterer
and a small grating described in Table 5.1.

The incoming field is defined as Ei(x, z) = E0 exp(jk0(x cos θ + z sin θ)), with E0 =
1V/m. For the circle an analytical solution exists [133], which was used to validate our
results. For the rectangle we used a numerical solution calculated using the JCMWave
software package as a reference [134]. In the z-direction we choose ∆ = 0.05m. In the
x-direction we used a Gabor frame with 13 (m ∈ {−6, . . . , 6}) spatial windows and 7
(n ∈ {−3, . . . , 3}) modulation frequencies (see Eq. (5.16)). The oversampling was at
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Parameters Circle Rectangle Grating
εr of object 2 2 2
dimension of object (m) r = 1.35 2.0× 5.0 five blocks, 1× 1.4, spacing 2
wavenumber k0 (m−1) 1.45 0.7388 1.5
angle of incidence θ 270◦ 0◦ 45◦

validation Analytic solution JCMWave None

Table 5.1: Specification of the validation cases

αβ = 2/3 and X = 0.5m (see Eq. (5.15)). This means that per meter there are are around
17 coefficients in the x direction and 20 in the z direction. We used 16 ℓ values in going
from scaled spectral sampling to the equidistant spatial sampling (see Section 5.5.2).
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Figure 5.6: The real part of χE(x, z) (which is proportional to the contrast current), for
(a) the circle and (b) the rectangle.

In Fig. 5.6 we show the real part of the simulation results for circle and the rectangle.
Figs. 5.7(a),(b) show the absolute value of the difference between the electric field E from
the validation results and χE from our simulations. It can be clearly seen that in the two
different directions the approximation error has a different character, because we used a
different discretization scheme. Especially for the circle it looks like the error is quite large,
but this is mainly due to the Gibbs ringing around the discontinuity in the contrast source
as can be seen in Fig. 5.7(c). This Gibbs ringing around the discontinuities is not a large
problem, since sources with a rapid spatial oscillation do not radiate. In the cut along the
line x = 0 (Fig. 5.7(d)) the simulation and validation overlap very well.

We have also calculated the far-field scattered intensity against the angle as explained
in Section 5.3.4 for the circle. Fig. 5.8(a) shows the scattering intensity versus the angle.
Note that the angle of incidence is −π/2 and that the angle φ is only taken from −π/2 to
π/2 because of the symmetry. In Fig. 5.8(b) we plotted the error of our simulation results
(solid). We also calculated the scattering intensity from the contrast current calculated
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Figure 5.7: In (a) and (b) we plotted the absolute value of the difference (error) between
the electric field from the validation E and χE from our simulation results for the circle
resp. the rectangle. At the scatterer these should coincide, because χ = 1 on the scatterer.
In (c) we plotted the real (solid) and imaginary (dotted) part of E from validation (grey)
and χE (black) from our simulation at z = −0.2 for the circle. In (d) we did the same for
a vertical cut along x = 0 for the rectangle.

using the analytic results, but discretized by our discretization. This gives an idea of the
maximum reachable accuracy with the given discretization parameters.

To calculate the scattering intensity we only use the part of the contrast current with a
wavenumber smaller than k0. This means that most of the current in the spectral domain
does not radiate, so it does not contribute, since there are 1.18 Gabor coefficients per unit
wavevector.

The spatial sampling range in x is larger than the width of the scatterer, with this
Gabor frame W ≈ 3.5 for the circle and the rectangle. This is because the Gabor frame
needs extra samples at the sides for a good approximation, because the dual window γ (Eq.
(5.18)) is a few times X wider. This can be seen in Fig. 5.9(a), which has been created with
a low number of spatial windows, so artifacts are visible at the edges. From Fig. 5.9(b)
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Figure 5.8: (a) The scattering intensity as calculated from the contrast current. (b) The
absolute value of the difference between the scattering intensity S and validation data SV ,
the solid line is with the contrast current from the simulation, the dashed line is with the
contrast current from the exact solution, represented by the same discretization as the
simulation.

it is clear that this also yields an increased error for scattering intensity. By simulation
error we mean the absolute difference between the calculated scattering strength S and
the validation SV , where the absolute value of S is found in Fig. 5.8(a). By discretization
error we mean the difference between the SV and the scattering radiated by the contrast
current from our validation data discretized with the indicated settings.

The Gabor coefficients seem to be quite efficient compared to piecewise-linear sampling
in the z direction. When we coarsen the sampling distance in the z direction from ∆ = 0.05
to ∆ = 0.1 the error in the scattering increases by a factor of three (see Fig. 5.9(c)). While
reducing the number of modulation frequencies does not affect the error in the reflection
very much, it does add some (non-radiating) high-frequency noise to the contrast current
(see Fig. 5.9(d)). It seems that the accuracy is limited by the z-discretization.

We can improve on the interpolation by oversampling in the x direction. We use 16
times oversampling and making that number smaller increases the error considerably (see
Fig. 5.9(e)). Fig. 5.9(f) shows the approximation error from approximating an electric field
(with magnitude 0.01) with 5 vs. 9 Xℓ interpolation points. The location of these Xℓ

values is clearly visible from the dips in the error.

As an example of larger structures that our code is capable of simulating the scattering
from, we have included the finite grating structure. From the current distribution in
Fig. 5.10(a) it can be seen that there is a significant mutual coupling between the rectangles
in this example. This object is larger than the previous two simulated objects, measuring
two by one half wavelength and it shows that our algorithm is useful for larger objects as
well. In Fig. 5.10(b) we can not only identify the first three diffraction orders, we also see
scattering at different angles due to the mutual coupling and the finite size of the grating.

To show how our code scales to finer discretizations we increased the number of mod-
ulation frequencies, the range of n in (5.15), several times and measured the time taken
for applying the operator A (Eq. (5.29)) once, as shown in Fig. 5.11. The results suggest
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that the scaling is even better than O(N logN), because O(N) operations still dominate
for this small simulation size. Therefore the logN factor will only show up for even higher
numbers of Gabor coefficients, where the FFTs will in the end dominate the speed of this
operator.
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Figure 5.9: In (b),(c),(d) and (e) the solid line depicts simulation error and the dashed
line discretization error. (a) The contrast function discretized with 9 windows. (b) The
resulting scattering strength error. (c) The scattering strength error with δ = 0.1, (d)
The scattering strength error with 5 modulation frequencies. (e) The scattering strength
error with 8 spatial correction points Xℓ. (f) Plot of relative error of spectral-spatial
transformation, solid: ℓ ∈ {−2, . . . 2}, dashed: ℓ ∈ {−4, . . . , 4}.
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Figure 5.10: (a) The real part of the contrast current density in the grating. (b) The far
field scattering intensity from the grating.

5.7 Conclusion

We have constructed an algorithm that solves a 2D domain integral equation for TE po-
larization in a homogeneous background discretized by a Gabor frame in one direction.
The number of numerical operations of this method scales as O(NzNx logNx), with Nx the
number of samples in the x direction and Nz the number of samples in the z direction. The
best efficiency is reached in the direction where the Gabor frame was employed. Because
of the lower accuracy of the piecewise-linear discretization in the z direction, more samples
per meter are needed in that direction. This clearly shows the value of using the Gabor
frame as a discretization.

For every spatial discretization using Gabor frames, there exists a spectral Gabor frame
where the individual coefficients are directly mapped onto each other. When we have a spa-
tial discretization of a function with Gabor coefficients, we automatically have a discretiza-
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Figure 5.11: Dots indicate computation time of one matrix vector product of operator A
versus the number of Gabor coefficients for an increasing number of modulation frequencies
in the Gabor frame. Solid line indicates a reference of O(N logN) behavior.

tion of its Fourier transform. This is very convenient, because the Fourier transformation
is exact and fast.

With other choices of expansion functions, the Fourier transformation is often a difficult
step. For example a piecewise-linear discretization creates high-frequency spectral compo-
nents artificially and the Fourier transformation is only an approximation. With the use
of a Gabor frame, the most important approximation that we make is the discretization
of the problem, the rest can be done (almost) exactly. The downside is that the Gabor
frame is not very suitable for discretizing discontinuous(ly differentiable) functions, but, al-
though the spectral Green function is not continuously differentiable, we can work around
that by using a coordinate stretch. The method of coordinate stretching is an effective
method to cope with the discontinuity of the derivative in eγ|z| and the branch points in
1/γ simultaneously.

For a discretization with a finer resolution in the x direction, this method scales very
well as O(NxNz logNx). However, a relatively large minimum number of Gabor frames is
always needed for small simulation regions.

94



Chapter 6

A domain integral equation approach
for simulating two dimensional
transverse electric scattering in a
layered medium with a Gabor frame
discretization1

6.1 Abstract

We solve the 2D transverse-electrically polarized domain-integral equation in a layered
background medium by applying a Gabor frame as a projection method. This algorithm
employs both a spatial and a spectral discretization of the electric field and the contrast
current in the direction of the layer extent. In the spectral domain we use a representation
in the complex plane that avoids the poles and branch cuts found in the Green function.
Because of the special choice of the complex-plane path in the spectral domain and because
of the choice to use a Gabor frame to represent functions on this path, fast algorithms
based on FFTs are available to transform to and from the spectral domain, yielding an
O(N logN) scaling in computation time.

6.2 Introduction

For several applications in electrical engineering it is vital to have fast and accurate models
to calculate the scattering of electromagnetic waves from dielectric structures of finite size.
Among these are metrology for integrated circuit production [136, 137], various elements
on nanophotonic chips [24, 25] and metamaterials [138]. For these applications, structures
are often embedded in a host medium with multiple layers of different materials.

1This chapter was first published as the article [135].
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Many numerical methods have already been developed for the characterization of elec-
tromagnetic scattering in a multi-layered medium, e.g. local formulations such as finite
difference time domain (FDTD) [26] and the Finite Element Method (FEM) [32, 134].
Global formulations that employ a Green function exist in both a time-domain formula-
tion and a time-harmonic formulation. In the time domain the Green function can be
generalized to multilayered media as well [66, 67, 68]. Since we are interested in scattering
from monochromatic light sources, we are interested in a time-harmonic formulation. Such
an integral formulation requires solving a nonhomogeneous matrix equation, which can be
solved efficiently with an iterative solver, especially when the matrix-vector product can
be computed rapidly. One popular approach is to speed up this matrix vector product by
decomposing the Green function into long-range and short-range interactions, combined
with a hierarchical division of the simulation domain. Examples of such methods for a
homogeneous medium are the Fast Multipole Method (FMM) [45] and the Fast Inhomo-
geneous Plane Wave Algorithm (FIPWA) [50, 51]. Extensions to multilayer media exists
both for FMM [139] and for FIPWA [52]. Another popular approach for fast matrix vector
products exploits the observation that the Green function in a layered medium exhibits a
translation symmetry in the direction parallel to the layer interfaces. We will focus on a
method that exploits this translation symmetry.

A domain integral formulation consists of two parts. The first part is the calculation
of the contrast current density from the electric field and the contrast function. The
second part is an integral over the product of the Green function and the contrast current
density that yields the scattered electric field. For homogeneous media, the spatial Green
function is readily obtained. Among the free-space methods that employ the Green function
in the spatial domain and exploit the translation symmetry are the Conjugate Gradient
Fast Fourier Transform CGFFT [37] and its enhancements, such as the Adaptive Integral
Method (AIM) [42] and the pre-corrected FFT [43].

To use similar methods in stratified media, the multi-layered Green function is required.
The main differences between the two-dimensional free-space Green function and the two-
dimensional stratified-medium Green function are the reflections and transmissions at the
layer interfaces in layered media. For stratified media, an exact expression for the Green
function in the spectral domain can be derived, so in principle it is possible to calculate
the Green function completely in the spatial domain via a Fourier transform. However,
calculating the pertaining Fourier integral is far from trivial, since there are branch cuts
and poles present in the Green function. Several methods exist to calculate these so-called
Sommerfeld integrals e.g. the Discrete Complex Image Method (DCIM) [65], the steepest
descent path (SDP) [59], Sommerfeld tail extrapolation [140], and a method based on a
perfectly matched layer [141, 142].

An alternative approach is to consider the so-called spectral methods, in which the exact
spectral-domain Green function is employed directly. For periodically repeating scattering
structures, such as optical gratings, several spectral methods have already been developed.
Important examples are the Rigorous Coupled Wave Analysis (RCWA), also called the
Fourier Modal Method [74, 73], and some periodic-volume-integral-equation-based methods
(PVIE) [92]. Then, the periodicity can be exploited because the periodicity implies a
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discrete spectral domain and therefore an obvious and well-performing discretization of
the spectral domain exists. These methods can be adapted to solve a-periodic structures
as well, for example via perfectly matched layers (PML) [124] or supercell techniques, but
even then these solvers are in essence periodic.

Here we present a mixed spatial-spectral method that is completely a-periodic in na-
ture. This also implies that the spectral domain is now continuous instead of discrete.
Consequently, branch cuts and poles in the spectral Green function need to be treated
carefully. We demonstrate an approach that employs a representation of the fields in the
spectral-domain complex plane, that avoids the poles found in the Green function. This
representation has been specifically chosen such that the Green functions consist of smooth
functions with an effectively limited support, while still allowing for efficient transforma-
tions to and from the spectral domain with O(N logN) computational complexity, for N
degrees of freedom. The finite support in both the spectral and the spatial domain allows
for a convenient discretization in terms of Gabor frames. Owing to the Gabor frames, all
operations are of O(N logN) complexity or less, thus yielding an O(N logN) scaling with
the number of unknowns.

We start this paper with details about the formulation, after which we present the dis-
cretization scheme. Subsequently, the spectral complex-plane path and the representation
of the Green functions on this path are illustrated. We conclude with three numerical
examples to demonstrate the proposed scheme.

6.3 Formulation

6.3.1 Problem definition

Consider a layered medium, i.e. a structure of N − 1 horizontal layers stacked in the z-
direction, with relative permitivities εr,n and thicknesses dn. The space below the stack has
permittivity εr,N and above the stack has permittivity εr,0. In layer i a two-dimensional
dielectric object in the x− z plane is described by the permittivity function εr(x, z). The
object is contained within the rectangle x ∈ [−W,W ], z ∈ [zmin, zmax], which we call the
simulation domain. Figure 6.1 (a) shows our scattering setup for N = 3 and i = 1.

Due to the two-dimensional configuration and the polarization of the incoming field,
only the y componenent of the electric field is nonzero, which turns our problem into a
scalar problem E(x, z) = ŷE(x, z). Putting this into the Maxwell equations [85] with time
convention exp(jωt) yields a second order differential equation.

We make a distinction between the incident electric field Ei, which solves the problem in
abscence of the scattering object, and the field scattered by the object Es. The combination
of these fields yields the total electric field E = Ei + Es in the simulation domain.

The contrast function in layer i is defined by

χ(x, z) =
εr(x, z)

εr,i
− 1 (6.1)
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The contrast current density can be obtained through J(x, z) = jωε0εr,iχ(x, z)E(x, z).
Similarly J i(x, z) = jωε0εr,iχ(x, z)E

i(x, z) and Js(x, z) = jωε0εr,iχ(x, z)E
s(x, z) are ob-

tained from the incident and scattered part of the electric field.

(a)

(b)

Figure 6.1: (a) The scattering setup. (b) The source of reflections including the definition
of the different K waves.

6.3.2 The homogeneous medium Green function

With the Green function the field radiated by a contrast current can be calculated. The
Green function will be represented in the spectral domain in the x-direction. The spectral
domain is defined through the Fourier transformation

φ(kx) = Fx[φ(x)](kx) =

∫ ∞

−∞
dx φ(x)e−jkxx. (6.2)
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and its inverse F−1. We use the variable kx for the spectral domain. Whenever a function
has x as its argument the spatial version of the function is meant, when kx is used as an
argument its Fourier transform is meant.

We will start working on the problem within one layer, i.e. we assume a homogeneous
dielectric constant in the background layer. By adding reflection and transmission coeffi-
cients we will turn this into the solution for a multi layered problem in Section 6.3.3. In
a homogeneous medium the Green function, Gh, for a contrast current density J can be
written as

Gh(kx, z|z′) =
e−γ|z′−z|

2γ
, (6.3)

where γ =
√
k2
x − k2

b and kb = ω
√
ε0εr,iµ0 with standard branch cut in the square root.

Again i indicates the layer in which the simulation domain is located, and the h subscript
will indicate the homogeneous part in this context.

We can calculate the scattered electric field Eh from current source J (not yet taking
reflections into account) by

Eh(kx, z) =

∫ z

zmin

dz′
e−γ(z−z′)

2jωε0εr,iγ
J(kx, z

′)+∫ zmax

z

dz′
e−γ(z′−z)

2jωε0εr,iγ
J(kx, z

′)

= Kh,d(kx, z) +Kh,u(kx, z).

(6.4)

Here we recognize that the factor 1/2jωε0εr,iγ factor calculates the spectral electric field
from the spectral current density at the same altitude and that the factor e−γz propagates
this over an altitude displacement z in the z-direction. We will call e−γz the propagation
function in medium i. The first term in Eq. (6.4) represents a wave moving down from
the source, which we will denote by Kh,d, and the second term a wave moving up denoted
by Kh,u.

6.3.3 Reflections from layer interfaces

In a multi-layered medium we have to include reflections from the layer interfaces to arrive
at the complete scattered field Es from a current source. With the use of [58, Chapter 2]
and [87, Chapter 5], we can calculate the reflection coefficient from the stack of layers
above layer i, Rd(kx) and from the stack below layer i, Ru(kx)

2

From Figure 6.1(b), we deduce how the scattered field Es can be constructed from
the homogeneous field Eh together with a sum of all reflections. For the upward directed
part of Es, i.e Ks,u, two contributions can be identified. First, there is the homogeneous
part, indicated by 1⃝ in Fig. 6.1(b) and denoted by Kh,u(kx, z). Second, there is a set
of reflections that propagates upward from the layer interface below at zi+1 2⃝- 4⃝. Now
we write the sum of all upward-directed reflections 2⃝- 4⃝ as a single effective reflection

2This notations is different from the notation in Chapter 2, where they were called Tii.
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coefficient Reff,u, multiplied by a single effective downward directed wave Keff,d 5⃝, 6⃝. The
sum of all reflections can then be propagated through the medium using the propagation
function e−γ(zi+1−z), yielding

Ks,u(kx, z) = Kh,u(kx, z) + e−γ(zi+1−z)Reff,u(kx)K
eff,d(kx, zi+1). (6.5)

Now the effective downward directed wave, Keff,d is defined as the sum of the homogeneous
downward directed wave 5⃝, and the reflection of the upward-directed wave 6⃝, i.e.

Keff,d(kx, zi) = Kh,d(kx, zi+1) +Rd(kx)e
−γdiKh,u(kx, zi). (6.6)

The reflection generated by the effective downward-directed Keff,d reflects upwards with
reflection coefficient Ru. Thereafter it can bounce back and forth several times between
the layer interfaces at zi and zi+1, where it propagates a distance 2di between each bounce
and is reflected with both Ru and Rd. The first bounce is indicated by 7⃝ and 8⃝. This
behavior is summarized in a single effective reflection coefficient Reff,u as

Reff,u = Ru(kx)
∞∑
n=0

(
Ru(kx)R

d(kx)e
−2γdi

)n
.

This sum can be calculated using the geometric series [55, Section 2.1]

Reff,u(kx) =
Ru(kx)

1−Ru(kx)Rd(kx)e−2γdi
. (6.7)

Similarly, the down-directed wave is defined through

Ks,d(kx, z) =Kh,d(kx, z) + e−γ(z−zi)Reff,d(kx)K
eff,u(kx, zi)

Reff,d(kx) =
Rd(kx)

1−Rd(kx)Ru(kx)e−2γdi

Keff,u(kx, zi) =Kh,u(kx, zi) +Ru(kx)e
−γdiKh,d(kx, zi+1).

(6.8)

The sum of all upward and downward directed waves equals the scattered field Es(kx, z) =
Ks,u(kx, z) +Ks,d(kx, z), which includes the homogeneous contribution of the Green func-
tion and reflections from the layer interfaces. We are now able to calculate the field in-
cluding reflections as a function of a current source. When we call G[J ](kx, z) the integral
operator that calculates the scattered field Es generated by current source J , we can write
down the integral equation as

Js(x, z) =jωε0εr,iχ(x, z)E
s(x, z)

=jωε0εr,iχ(x, z)F−1
kx

{
G[J i + Js](kx, z)

}
(x, z),

(6.9)

where Js is the unknown part of the contrast current density. Again, J i is known and is
obtained through J i(x, z) = jωε0εr,iχ(x, z)E

i(x, z). The equation can be ordered with the
unknown Js on the right-hand side as

jωε0εr,iχ(x, z)F−1
kx

{
G[J i](kx, z)

}
(x, z) =

− Js + jωε0εr,iχ(x, z)F−1
kx

{G[Js](kx, z)} (x, z).
(6.10)

Note that this formulation is somewhat different from that in other papers, e.g. [143].
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6.4 Discretization

6.4.1 The z direction: Piecewise-linear functions

We use piecewise-linear (PWL) expansion functions as discretization in the z direction.
The expansion functions are

Λn(z) =

{
1− |z−n∆−zmin|

∆
if |z − n∆− zmin| < ∆

0 if |z − n∆− zmin| > ∆
, (6.11)

with ∆ the step size in the z discretization. For testing we use Dirac-delta functions, since
these lead to a well-conditioned problem [71]. We use a subscript n to indicate the basis
function to which a field corresponds e.g. En(kx) = E(kx, zmin+n∆). The maximum value
for n is Nz = (zmax − zmin)/∆. Now we can approximate for example the electric field
using these expansion function by

E(kx, z) ≈
Nz∑
n=0

En(kx)Λn(z). (6.12)

With the use of this discretization in the z direction we can write the integral with Gh in
Eq. (6.4) in more detail as

Kh,u
n (kx) =

∫ zmin+n∆

zmin

dz′
n+1∑
n′=0

Gh(kx, n∆|z′)k2
bJn′(kx)Λn′(z′).

We use a recursive algorithm [72] to find the result of the integral for each n. We find

Kh,u
n+1(kx) =Kh,u

n (kx)e
−γ∆

− Jn(kx)

∫ ∆

0

dz′k2
bΛ0(z

′)
e−γ(∆−z′)

2γ

− Jn+1(kx)

∫ ∆

0

dz′k2
bΛ1(z

′)
e−γ(∆−z′)

2γ

= Kh,u
n (kx)e

−γ∆ + Jn(kx)h
u
m(kx) + Jn+1(kx)h

u
e (kx),

(6.13)

where we introduced hu
m(kx) and hu

e (kx) for the result of the integrals over z′, here the m
and e subscript stand for integrals to the middle or to the end of basis function Λn(z). In
the other direction, Kh,d

n+1(kx) is defined as

Kh,d
n−1(kx) =Kh,d

n (kx)e
−γ∆

− Jn(kx)

∫ 0

−∆

dz′k2
bΛ0(z

′)
e−γ(z′−∆)

2γ

− Jn+1(kx)

∫ 0

−∆

dz′k2
bΛ−1(z

′)
e−γ(z′−∆)

2γ

= Kh,d
n (kx)e

−γ∆ + Jn(kx)h
d
m(kx) + Jn−1(kx)h

d
e(kx),

(6.14)
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The discretized scattered field Es
n(kx) can be calculated by adding the terms that represent

the reflections in Eq. (6.5) to the homogeneous waves K
h,u/d
n (kx).

6.4.2 The x direction: Gabor frames

For the discretization in the x direction we use a Gabor frame in the spatial as well as
the spectral domain. The Gabor frame is defined in the exposition [99, Chapter 8] and
Chapter 4. We employ the Gaussian window function

g(x) = 2
1
4 e

(
−π x2

X2

)
, (6.15)

where X defines the width of the window function. The Gabor frame is defined as

gmn(x) = g(x−mαX)ejnβKx, (6.16)

where K = 2π/X the spectral window distance and α and β define the oversampling. We
use rational oversampling where αβ = p/q with p < q and p, q ∈ N. In principle, the
Gabor coefficients can be calculated from the dual frame ηmn(x) by

fmn =

∫ ∞

−∞
dx f(x)ηmn(x), (6.17)

where the dual frame is found from

ηmn(x) = η(x−mαX)ejnβKx. (6.18)

When there is oversampling there is a freedom of choice for the dual window η. The
dual window η we use to calculate Gabor coefficients is the one obtained by using the
Moore-Penrose inverse [99, 100].

The spectral Gabor frame is simply the Fourier transform of the Gabor frame in Eq.
(6.16). More details can be found in [118].

6.5 Complex-plane spectral path

6.5.1 Poles, branch cuts and rapid oscillations

From Eq. (6.9) it is clear that Fourier transformations are an essential part of the presented
algorithm, since the contrast multiplication should be executed in the spatial domain and
the Green function operator can be handled in the spectral domain. It is however difficult
to represent the Green function G, for which an exact definition only exists in the spec-
tral domain, because G contains poles, branch cuts, and rapid oscillations in the spectral
domain. It is therefore not trivial to represent the Green function efficiently in terms of
Gabor frames. Calculation of the Green operator in the spatial domain, through so-called
Sommerfeld integrals, is possible but tedious. We would like to find an efficient represen-
tation of J , E and G in the spectral domain to compute G working on J . We have several
requirements for this representation.
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1. We aim for a straightforward representation in which we can contain the complete
integral operator G. We do not want to take the poles and branch cuts into account
separately.

2. A fast transformation to the spectral-domain representation should be available for
J and a fast transformation back to the spatial domain for E.

3. Since a spectral multiplication corresponds to a spatial convolution, we need the
representation to hold over the entire spatial domain. Otherwise, subsequent convo-
lutions will induce errors.

4. We need the fields only in the simulation domain. A representation that holds over
the entire spatial domain will be inefficient, as it carries more information than we
need.

There is clearly some tension between points 3 and 4. A method to solve these issues
is to represent functions not on the real spectral axis, but in the spectral complex plane.

The first challenge is that the Green operator G contains branch cuts in the effective
reflection coefficients starting at k2

x = ω2µ0ε0 and k2
x = ω2µ0εN towards kx = ±j∞ as

indicated in Fig. 6.2.(a).
Additionally, the effective transmission and reflection coefficients (6.7) can also have

poles corresponding to guided waves. In [55, Chapter 2.7] and [60] bounds are given within
which the poles are located. For a lossless multi-layered medium it can be shown that the
poles must have a distance of at least k0 = ω

√
max{ε0, εrb,N}µ0 from kx = 0 and that they

lie on the real kx axis. It was shown that for lossy media the poles also have a minimum
distance away from kx = 0 and can be found in solely in the northwest and southeast
quadrants of the complex plane.

The last difficulty in the Green function are rapid oscillations. The propagation function
exp(−γz) oscillates rapidly for −Re(kb) < kx < Re(kb) at large z, since γ =

√
k2
x − k2

b has
a dominant imaginary part on this range. It is hard to capture these oscillations with a
small number of Gabor coefficients.

6.5.2 Functions in the complex plane

In [55, Chapter 2.7] several methods are mentioned for integration paths that avoid the
poles and branch cuts to calculate Sommerfeld integrals efficiently. Since the discontinuities
in the reflection coefficients are located in the northwest and southeast quadrant of the
complex plane, we would like to discretize functions on a path through the southwest and
northeast quadrant. We want to represent all functions in the spectral domain on such an
integration path to bypass the poles and branch cuts.

The key observation is the complex shift

F [f ](kx ± jA) =

∫ ∞

−∞
f(x)e−j(kx±jA)xdx = F [f(x)e∓Ax](kx). (6.19)
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We see that it is possible to generate a shift of a coordinate in the complex spectral
domain of ±jA, by multiplying the spatial representation by e∓Ax and then carrying out
a standard real-axis Fourier transform. As mentioned before, the Gabor frame allows for
fast and efficient Fourier transformations and multiplications of functions.

To arrive at an integration path passing through the southeast and northwest quadrants
we have to split the spectral domain integration path into pieces that we will handle sepa-
rately. The path we choose can be written as the union of three line segments, parametrized
by the real-valued parameter τ , see Figure 6.2.(a), i.e.

kx(τ) ∈


τ − jA if τ < −A

(1 + j)τ if − A ≤ τ < A

τ + jA if τ > A.

(6.20)

This path is also used in [61] and the path also bears some resemblance to the steepest-
decent path used in [59].

In principle, we should also integrate over the line segments [−∞,−∞−jA] and [∞,∞+
jA] to close the contour, but asymptotically all functions of interest are zero on these
intervals, so we can safely ignore them owing to Jordan’s lemma. We chose A small
compared to the complete spectral range that we discretize, so there is only a little bit of
information contained in the middle part of this representation. Although there is some
freedom for the choice of A within which the overall algorithm performs well, we found that
the choice AW ≈ 3, with W the width of the simulation domain, will yield satisfactory
results in general. An optimal choice for A will somewhat vary, depending on the shape of
the simulation domain and the required accuracy.

We can identify three types of functions that are part of the Green function that we
need to represent on this complex path. These three types are the propagation function
exp(−γz), the current to field functions hu

m, h
d
m, h

u
e and hd

e (Eq. (6.13)), and the reflection
coefficients Reff,u and Reff,d (Eq. (6.7)). As can be seen in Fig. 6.2(b), the propagation

function is much better behaved on the complex path and the same holds for h
u/d
m/e(kx),

since these functions consist of a z-integral over the propagation function. Fig. 6.2(c)
shows the effect of going around the poles on the complex path: the poles are smoothened
as well. The obstacles mentioned in Section 6.5.1 have disappeared through the use of this
complex spectral path.

6.5.3 Transforming to and from the complex spectral path

For the spectral domain representations on the outer parts in Eq. (6.20), i.e. |τ | > A we
use Eq. (6.19). We will adopt the notation fL(τ) = f(τ−jA) and fR(τ) = f(τ+jA) for the
representation on the left and on the right part of the complex spectral path, respectively.

To calculate the spatial representation of a function from a spectral representation we
employ Eq. (6.19) the other way around. However, here we also have to enforce the end of
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(a) (b)

(c)

Figure 6.2: (a) The spectral path in the complex plane. (b) Better behavior of the propa-
gation function. (c) Better behavior for the effective reflection coefficient.

the domain at τ = ±A by means of cutoff functions c defined by

cL(τ) =U(A− τ)

cR(τ) =U(τ − A),
(6.21)

with U the Heaviside step function. We can now calculate the contribution of fL/R to the
spatial domain by

f(x) = eAxF−1
τ [cL(τ)fL(τ)](x)+

e−AxF−1
τ [cR(τ)fR(k)](x) +

∫ A+jA

−A−jA

dkx f(kx)e
jkxx,

(6.22)

where the first two terms can be readily computed using Gabor-frame based operations
and where the integral in the last term is still there since we did not yet describe the
discretization of the middle part of the integral.

An important remark on the middle part of the complex integration path is that it does
not contain much information. Optimization for speed is not crucial on the middle part
as long as the the time spent to calculate its contribution is negligible compared to the
time needed for the left and right parts. The applied method only needs to be ’accurate
enough’.
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When we assume that there are no poles in a range of
√
2A around 0 (otherwise we

can choose a smaller value for A), we can employ a Taylor series to approximate functions
in this part of the spectral domain. The Taylor series has the advantage that we can use
derivatives around kx = 0 to make a continuation into the complex plane.

To calculate the derivatives of a function f(kx) represented by Gabor coefficients fmn

we define

f̃d = f (d)(0) =
∑
m,n

fmng
(d)
mn(0), (6.23)

where index d runs over the derivatives. Here the derivatives from the spectral Gabor
frame can be easily calculated from Eq. (6.16). To calculate the spatial contribution due
to the derivatives f̃d, the Taylor series is used to approximate f(kx) around kx = 0. From

f(kx) =
∑
d

kd
xf̃d
d!

(6.24)

we can write the integral in Eq. (6.22) as∫ A+jA

−A−jA

dkx f(kx)e
jkxx =

∑
d

f̃d
d!
id(x) (6.25)

where

id(x) =

∫ A+jA

−A−jA

dkx (kx)
dejkxx. (6.26)

The Gabor coefficients of the id(x) functions can be computed during the initialization
phase of our algorithm. Additionally, the Taylor series of the product of two functions is
needed when multiplying quantities that are represented on the spectral path, such as in
Eqs (6.4)-(6.8). This product can be obtained through the general Leibnitz rule:

˜(fh)d(0) =
∑
m

d!

(d−m)!m!
f̃d−mh̃d. (6.27)

We typically need around 10 terms in the Taylor series for a simulation region of one
wavelength in the z direction and three digits precision.

6.6 Approximation of functions

The functions that make up the Green operator G, i.e. hm/e, R
eff and e−γ∆, need to be

approximated accurately on the complex-plane spectral path. Additionally, in the spatial
domain χ has to be approximated using Gabor coefficients. We will now give some details
on how we obtain approximations for these functions.
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6.6.1 General remarks

We use the same methods as Bastiaans employs in [100] to calculate the Gabor coefficients
for a function efficiently. To increase the accuracy we use some oversampling, i.e. we
calculate Gabor coefficients for a larger range of index n in Eq. (6.17), and then discard
the coefficients with large n, which we do not need. This leads to a finer sampling of the
function and therefore to a higher accuracy. Typically oversampling by a factor of four
yields three digits precision.

The functions fL(τ) and fR(τ) are defined on the Im(k) = ∓A and Re(kx) < −A and
Re(kx) > A respectively (see Eq. (6.20)). However, since we use limited number of Gabor
coefficients, the approximation of the function can not just stop abruptly at Re(kx) = ∓A.
Beyond ∓A the fL/R have to be attenuated smoothly. As we illustrate in Figure 6.3, the
approximation on the solid line is continued for some distance along the dashed line to let
fL/R be smooth at Im(kx) = ∓A. Continuing the function fL/R on the dashed line with an
attenuating factor is not always possible, since γ has branch cuts located at kx = ±k∓ jA
with k > 0, making approximations discontinuous at some point beyond Re(kx) > 0,
Re(kx) < 0 respectively. The Gibbs ringing created by such a discontinuity significantly
deteriorates the accuracy of the fL/R approximation, since the Gibbs ringing carries over
some distance. For this reason it is important that the functions to be approximated are
made continuous along the complete attenuating region.

Figure 6.3: Branchcuts can interfere with the attenuating parts of fL/R(kx)

6.6.2 Propagation function

The ∆-distance propagation function exp(−γ∆) is multiplied by itself Nz times during the
recursion in Eq. (6.13). To guarantee numerical stability, this function has to be equal to
or smaller than 1 in modulus everywhere. In the domains of fL and fR this function is well
behaved, but it exhibits branch cuts at kx = ∓jA. Avoiding the branch cut by continuing
on the other Riemann surface lets the function increase beyond one, as is shown in Fig.
6.4.a.

107



(a) (b)

Figure 6.4: (a) A plot of the propagation function e−γ∆ on the line kx = k − jA. Its
absolute value is clearly larger than one for k < 0. (b) The continuation using Eq. (6.28)
for different values of α. For α = 1 and α = 30 the absolute value of the propagation
function stays below 1. However, for α = 30 the function is not smooth enough for good
approximation with Gabor coefficients.

We solve this issue by multiplying a linear continuation of fL/R beyond kx = ±A/2±jA
by a Gaussian. For fR we calculate the Gabor coefficients from the function

f c
R(τ) =

{
e−γ∆ if τ > A/2

(aτ + b)e−α(τ−A/2)2 if τ ≤ A/2,
(6.28)

where a and b are fitted so that the function has a continuous derivative at τ = A/2 and α
is chosen such that this function will just be smaller than 1 for all kx with Im(kx) = ∓A,
as is shown in Fig. 6.4 (b). When α is large, the transition is very fast and the Gabor
frame may need too many coefficients. When α is small, f c

R increases to values larger than
one, potentially destabilizing our algorithm. We use a numerical optimization to find the
largest α for which the approximation does not increase beyond 1.

6.6.3 Reflection coefficients

For the reflection coefficients the continuation of the function beyond τ = ±A is difficult,
because we can expect to encounter poles in that region. However, we do not have the
requirement of the function being smaller than 1, so we can use the same technique as
applied for the propagation in Eq. (6.28) function but now with α = 1.

Another critical point is that an analytic expression for the reflection coefficients does
not exist in general. Therefore, we cannot calculate the derivatives for f̃d analytically. The
way we approximate the derivatives is by fitting a power series through the values of f
at different km. From this power series we can approximate the derivatives. We define
km = −

√
2Am/M, . . . ,

√
2Am/M for m ∈ {−M,−M + 1, . . . ,M − 1,M}, with 2M + 1
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larger than the total required number of derivatives. Now we can calculate fit values
fm = f(km).

If the Taylor series Eq. (6.24) is to hold, then we enforce:

fm =
2M∑
d=0

kd
mf̃d
d!

=
2M∑
d=0

Km,df̃d, (6.29)

which is a matrix equation on the right, with Km,d = kd
m/d!. This Vandermonde system

can be solved by (pseudo-)inverting the matrix, which yields the coefficients f̃d. Since this
Vandermonde system is small, ill conditioning is not a problem.

6.6.4 Cut function and contrast function

The cut functions cL/R(k) in Eq. (6.21) and the contrast function χ(x) Eq. (6.1) are the
only discontinuous functions present in the numerical scheme. This means that we can-
not simply use the fast Gabor transformation to calculate their coefficients, because this
method requires samples of the function on an equidistant grid and can therefore not sam-
ple discontinuities accurately. In principle we would have to calculate the integrals in Eq.
(6.17), which is challenging. The easiest way out is to use massive oversampling (by a
factor of 1000 or more) with the fast algorithm of [100]. Since this function needs to be
calculated only once, during initialization, its computation time is not very critical.

6.7 Summary of the algorithm

We will now summarize the steps that need to be carried out for the complete algorithm.
We have ordered these steps in a list to emphasize the chronological order of these opera-
tions.

• Gabor frame Set up the Gabor frame in both the spatial and spectral domains, i.e.
calculate an interpolation list of the dual window function in Eq. (6.18) in both the
spectral and spatial domains. Initialize the multiplication operation on the spatial
and spectral Gabor frame by calculating the Ak;lm in Eq. (26) of [118].

• Spectral path Initialize the spectral path by calculating spectral Gabor coefficients
of cut-off functions cL and cR in Eq. (6.21), spatial Gabor coefficients of the id(x) inte-
grals in Eq. (6.26) and spatial Gabor coefficients of the exponential factors exp(±Ax)
that are required in Eq. (6.19) and Eq. (6.22).

• Green function Discretize all parts the Green function on the complex spectral
path using the continuation technique and other directives in Sections 6.6.2 and
6.6.3. The Green function consists of exp(−γ∆), hu

e and hu
m in Eq. (6.13), hu

d and
hd
m in Eq. (6.14), Reff,u in Eq. (6.7), Reff,d in Eq. (6.8), exp(−γdi)R

u in Eq. (6.6) and
exp(−γdi)R

d in Eq. (6.8).
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• Initialize problem Calculate Gabor coefficients corresponding to χ in Eq. (6.1).
Calculate the incoming electric field by using e.g. [87, Chapter 5] and use it to
calculate the left hand side of Eq. (6.10).

• Solve problem Use an iterative solver, e.g. BiCGStab(2), to solve the integral
equation in Eq. (6.10) for Js. The matrix vector product on the right-hand side is
computed in the following steps:

1. Transform the contrast current density to the spectral path, Eq. (6.19) and Eq.
(6.23).

2. Compute the homogeneous waves Kh,u and Kh,d, Eqs (6.13)-(6.14).

3. Compute Keff,u Eq. (6.6) and Keff,u in Eq. (6.8) to find Es = Ks,u + Ks,d

through Eqs (6.5)-(6.8).

4. Transform back to the spatial domain, Eq. (6.22) and Eq. (6.25).

5. Multiply by the contrast function.

6. Add the result to Js in the spatial domain.

• Postprocess When Js is calculated, the contrast current density J = J i + Js can
be calculated and this can be used to compute various other quantities, such as the
scattered field Es = G[J ].

6.8 Numerical results

6.8.1 Accuracy

We have simulated two cases to validate our code. The first case consists of two blocks
embedded in a three-layer medium as depicted on the left-hand side of Figure 6.5. The
second case consists of eight lines on top of a silicon substrate and is depicted on the
right-hand side of Figure 6.5.

The first case was validated using JCMWave software package [134], which uses a finite-
element algorithm. The second case was validated using the algorithm of [124], which uses
RCWA with PMLs.

For both simulations we used a Gabor frame with window width of X = 250 nm and
α = β =

√
2/3 oversampling. For the first case we used 13 spatial window functions and

25 modulation frequencies, which is a total of 325 unknowns per sample in z. To increase
the accuracy we used a a factor 1.5 oversampling in the spectral domain. In the z direction
we used 21 samples in z. This results in one unknown per 5 nm in the z direction and
one unknown per 8 nm in the x-direction. For the second test case we used nine spatial
windows, since the contrast source extends over a wider range in the x-direction. For case
two a spectral oversampling of 1.2 was already sufficient. In Figure 6.6 we show the electric
field strength around the objects for both cases.
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Figure 6.5: Top: the first testcase, bottom: the second testcase

From Figure 6.7, it can be clearly seen that the results from this algorithm coincide
with the reference results up to a relative difference of around 10−3. Only around the edges
of the blocks a somewhat larger error is observed, because the analytic Gabor frame cannot
exactly represent the jump in the second derivative of the electric field.

We choose to plot the error for both cases at the edge of the blocks, since the scat-
tered field generally behaves worse around discontinuities. However, we observed that the
error remains more or less constant across the whole simulation domain. The difference
between the reference solution and our simulation results can be tightened by increasing
the sampling.

6.8.2 Computational efficiency

To study the performance of the proposed algorithm, we first consider the convergence of
the iterative solver BiCGstab(2) [97, 98], since fast convergence is critical to computational
efficiency. We have used the scattering setup of the first testcase in Figure 6.5, but with
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Figure 6.6: The absolute value of the scattered field Es. Top: the first testcase. Bottom:
the second testcase.

the dielectric constant of the objects increased to εr = 30. We show results with a higher
contrast χ since a high contrast usually requires more iterations, and with a low contrast
the convergence is too fast for an insightful plot. Figure 6.8 shows that the residual error
converges rapidly and that the convergence is not very sensitive to the discretization in the
x direction.

Another important aspect of this type of algorithm is the computation time. In [144],
several methods have been tested for scattering problems in multilayered media. According
to this article, the most competitive methods seem to be RCWA (or Fourier Modal Method)
and FEM. Other methods mentioned here are FDTD implementations, which all scored
poorly in accuracy, a hybrid method utilizing both FEM and RCWA, and a volume integral
method (VIM) that was accurate but slower than some of the competition. Therefore, we
focus on FEM and RCWA e.g. in [134, 145, 146].

To compare the present method to RCWA and FEM, we have first plotted timing results
of the other methods in Figure 6.9. On the vertical axis we put the relative computation
time divided by the number of discretization points, Nx, so a horizontal line corresponds
to an O(Nx) algorithm, with Nx proportional to the number of unknowns used in the x-
direction. Some of the results are generated for periodic scatterers, which is in principle a
different class of solver. However, the scaling of the computational efficiency is the same
as their a-periodic counterparts that use PMLs or supercell techniques. In this graph
we clearly see that RCWA is computationally more intense than O(Nx logNx), where Nx

represents the number of harmonic functions in the x-direction. RCWA scales as O(N2
x) or

O(N3
x), depending on the implementation. For FEM, there are two variables, the number of

mesh elements Nt and the polynomial refinement Np. Since with FEM the discretization
is in two directions we compare its performance by putting Nx equal to Nx =

√
Nt or

Nx =
√
Np on the horizontal axis.

We would like to emphasize that in [33] a FEM-algorithm has been published that scales
linearly as O(Nx) for a 3D case. Although this is somewhat superior to the O(Nx logNx)
scaling in the present method, FEM has the downside of having to discretize the entire
multilayer domain and added PMLs, whereas the present method only discretizes at po-
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x x

Figure 6.7: Left: The electric field for the first case, for z = zmin at the top of the blocks
as defined in Fig. 6.1; Right the second case at the interface between the layers; zmax.
Top: The electric field (real part, black; imaginary part, gray) plotted at a cross section
as depicted in Figure 6.5. The reference data (thin) and the simulation results (thick,
dashed) are plotted through each other. Bottom: The absolute value of the electric field
(gray) and the difference between the reference solution and the solution obtained by Gabor
coefficients (black).

sitions where objects are located. There are cases where this advantage will outweigh the
O(logNx) penalty of the present method, for example in the second testcase. For that
testcase, FEM needs a region of at least 1220 nm in the z-direction to be discretized, while
the present algorithm only uses 70 nm of discretized space in the z-direction.

In Figure 6.10 we have plotted the computation time of the present method against
the timing of a RCWA implementation [124] for the scattering case on the right-hand side
of Figure 6.5. We used 20 discretization steps in the z direction for the present method
and 20 slices for RCWA to mimic slanted-boundaries behavior. In the case of RCWA
the wavenumber of the highest harmonic function was calculated through 2π/HW , H
being the number of harmonics, from 1 tot 512 and W = 1900 nm the period of the
simulation domain. For the present method, we increased the spectral range by increasing
the number of the n-index basis function in Eq. (6.16). Clearly, for RCWA the difference
in computation time between TE and TM polarization is small, which justifies that we
compare our method against results for TM polarization in Figure 6.9. Although RCWA
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Figure 6.8: The convergence of the BiCGStab(2) algorithm for the first testcase with an
increased contrast and for the unchanged second testcase of Figure 6.5.

is noticeably faster for a small number of harmonics, this spectral range is too low to
accurately capture the details of the problem. When a large spectral range is required,
either for higher accuracy and/or for a larger simulation domain, the present method is
clearly beneficial.

6.8.3 Application to a grating coupler

As a final example we show results for a grating coupler that was inspired by [23]. The
application to this type of problem is challenging, since a grating coupler is a device that
couples an incident field to a guided wave and therefore it shows the accuracy of the
presented method for guided waves. The dielectric waveguide consists of a thin high-
contrast layer deposited on a thick low-contrast layer. Waves are coupled into the high
contrast layer through a set of grooves, as illustrated in Figure 6.11. The dimensions of
this grating coupler were not further optimized for this particular wavelength to the extent
of what was done in [23].

To characterize this setup, a Gabor frame with window width X = 1550nm and α =
β =

√
2/3 truncated to 17 window functions with 241 modulation frequencies was used

in the x-direction. In the z-direction 21 basis functions were used with a width of 3.5 nm
to span the height of the grooves. The Taylor series in the spectral integration path was
truncated at 33 terms. The required computation time to solve the complete problem was
560 seconds. Again, this result was validated against results generated with the FEM-
algorithm JCMWave [134], which yielded a relative error of 4.6×10−5 between the present
algorithm and the FEM reference. Figure 6.12 clearly shows that a guided wave is induced
in the high-contrast layer that travels to the left.

The convergence of the accuracy against different discretization parameters is shown
in Figure 6.13. For each of the figures all simulated parameters are kept at the values
mentioned above, except for the one in which a parameter sweep is performed. In Fig-
ure 6.13(a), the convergence is shown against the number of modulation frequencies in
the Gabor frame. The number of modulation frequencies ranges from 11 to 241, which
corresponds to a sampling frequency of 120 nm down to 5.2 nm. In Figure 6.13(b), the
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Figure 6.9: The scaling of computation time with the number of unknowns in the x-
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origins of the data are Ehret: [145] on a periodic problem, Burger: [134] on an a-periodic
problem, Solano: [146] on a periodic problem, Besbes: [144] on an a-periodic problem.

convergence is shown against the number of PWL functions that discretize the z-direction
in the range from 2 to 21. This corresponds to a width ∆ of the PWL function, Eq. (6.11),
from 70 nm to 3.5 nm. In Figure 6.13(c), the convergence is shown against the number of
terms in the Taylor series Eq. (6.25). Since the calculation time is not significantly affected
by the number of terms, the safest strategy is to use a rather large number of terms in the
Taylor series. Clearly, a truncation at 8 terms is already sufficient. For a large number of
terms in the Taylor series, the accuracy is limited via the PWL basis and the Gabor frame.

6.9 Conclusion

We have presented an algorithm capable of calculating the scattering from 2D dielectric
objects embedded in a layered medium, using a fully a-periodic approach under illumination
of a TE-polarized wave based on a domain integral equation. The use of a Gabor frame
makes it possible to efficiently approximate functions in both the spatial and the spectral
domain simultaneously, which we exploit by carrying out the contrast multiplication in the
spatial domain and the Green operator in the spectral domain.

In the spectral domain we use a representation on a path in the complex spectral plane
instead of on the real axis. An advantage of this complex spectral path is that the Green
operator is smoother and therefore easier to approximate. The particular choice for this
path allows for a fast FFT-based transformation between the spatial representation and
the complex-path spectral representation. The computation time of the resulting algorithm
scales as O(Nx logNx).
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Figure 6.11: A gratingcoupler for TE mode waves.

Figure 6.12: The real part of the scattered electric field in the gratingcoupler of Figure 6.11.
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Chapter 7

The 2D TM scattering problem for
finite dielectric objects in a dielectric
stratified medium employing Gabor
frames in a domain integral equation1

7.1 Introduction

The simulation of electromagnetic scattering from finitely sized dielectric objects in a mul-
tilayered dielectric medium has several important applications. Among these applications
are metrology for integrated-circuit production [148], metamaterials [138], and elements on
nanophotonic chips [23]. Fast and accurate numerical methods are very important in these
fields of research.

In a preceding article [135] (Chapter 6), we proposed a method to calculate the scatter-
ing from a two-dimensional dielectric object illuminated by a wave with transverse electric
(TE) polarization in a layered medium. We used a domain integral equation to solve the
scattering problem. There are two key ingredients to this method. The first is the use of
a Gabor frame as a discretization, which ensures a fast and exact Fourier transformation.
The second key ingredient is the use of a specially chosen path through the complex plane
in the spectral domain on which we discretize the fields. On this path we are able to
circumvent the poles and branchcuts that are present in the Green function.

In this article we show that the same ingredients can also be used for solving 2D
scattering problems with Transverse Magnetic (TM) polarization. The challenge with TM
polarization is that the electric field is discontinuous wherever the contrast function is
discontinuous. After Lalanne and Granet discovered a method to accurately calculate the
TM-polarized scattering from an object [83, 82], Li put this into a rigorous framework [81],
which resulted in the so-called Li factorization rules. The key point of these articles is that
when two functions with discontinuities at the same spatial position are approximated

1This chapter was first published as the article [147].
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by a Fourier series, the product of the Fourier series does not converge well. Lalanne
[83] solves the issue by replacing the discontinuous contrast operator by the inverse of
a truncated inverse contrast operator. Granet [82] avoids the multiplication of functions
with discontinuities at the same positions altogether by a reformulation. The way Granet
handles spatial discontinuites can also be applied in the differential method formulation,
where a generalization to more arbitrary shapes in three dimensions exists as the normal-
vector-field formulation [84, 89]. This class of methods to handle spatial discontinuites is
not unique to each spectral method, they are applicable to many different spectral methods
such as the Rigorous Coupled-Wave Analysis (RCWA) also known as the Fourier Modal
Method [74, 73], the periodic Volume Integral Method (pVIM) [92, 71] and the Differential
Method [149].

We show that slow convergence of multiplications of functions with discontinuities at
the same positions is also an issue when functions are represented by Gabor coefficients.
However, following [82] we replace the electric field by an auxiliary field that is continuous.
Multiplication of the discontinuous contrast function with this continuous auxiliary field
yields a well-converging solution similar to the periodic case in [82]. We consider two
validation cases to demonstrate that this spatial-spectral approach yields accurate results.

7.2 Formulation

7.2.1 Problem description

Consider a two-dimensional dielectric object of finite size, described in the x-z plane by its
relative permittivity function εr(x, z). This dielectric object is embedded in one layer of a
multilayered medium defined by N − 1 layers with dielectric constants εrb,n in the region
between zn and zn+1 and thickness dn = zn+1− zn. This is illustrated in Figure 7.1. Above
the top layer there is vacuum εrb,0 = 1 and below the lowest layer there is a halfspace with
relative permitivity εrb,N . We assume that the dielectric object is completely embedded in
layer i. We define the contrast function χ(x, z) by

χ(x, z) =
εr(x, z)

εrb,i
− 1, (7.1)

which is nonzero only inside the object. The simulation domain with bounds −W ≤ x ≤ W
and zi ≤ zmin ≤ z ≤ zmax ≤ zi+1 contains the dielectric object completely.

We define the incoming field Ei as the field in the multilayer medium in absence of the
scatterer. This field has transverse magnetic (TM) polarization, i.e. its magnetic field Hi is
directed in the transverse y direction, so the Ei field lies in the x-z plane. Since scattering
will keep H pointing in the y direction, Ey = 0 everywhere, which turns this problem into
a two-dimensional one. When we define the total electric field E as the solution to this
scattering problem, the scattered field Es can be found from Ei = E− Es.
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Figure 7.1: Scattering setup. A TM polarized field is incident on a dielectric object located
in layer i of a multilayered background medium.

7.2.2 The integral equation in the spatial domain

For ejωt time convention, the integral equation can be written as the combination 2

Ei(x, z) =E(x, z)− Es(x, z) = E(x, z)−∫ W

−W

dx′
∫ zmax

zmin

dz′
k2
0

jωε0εrb,i
G(x, z|x′, z′) · J(x′, z′)

J(x, z) =jωε0εrb,iχ(x, z)E(x, z),

(7.2)

where the G denotes the rank-two Green-function tensor in x and z, J = (Jx, Jz) defines
the contrast current density and k2

0 = ω2ε0µ0 defines the squared wavenumber in vacuum.
With the first of these equations we can compute the scattered field from the contrast
current density. The integrals of the integral equation are in the form of an integration
with the Green tensor. The second equation will be called the field-material interaction.

2Note that this formulation is different from the one presented in Chapters 5 and 6. Previously a
current-based formulation of the integral equation was employed that evades multiplications with two
functions that are nonzero at the edge of the simulation domain. Such a multiplication leads to artifacts
originating from the truncation of the Gabor frame, visible in the solution as strong oscillations at the edge
of the domain. In this formulation such multiplications are needed in the transformation to the spatial
domain, where exp(±Ax) is multiplied with EL/R(x) in Eq. (6.22), but the problem can also be avoided
by discretizing exp(±Ax) for a larger range of M in Eq. (4.3). In this way the artifacts induced by the
multiplication are located outside of the simulation domain.
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In the x direction, the calculation of the scattered field can be handled most efficiently
in the spectral domain, since there we can exploit the x-directed translation symmetry in
the layered background medium. In the z direction, perpendicular to the layer interfaces,
it is most convenient to work in the spatial domain, since there is no translation symmetry.
For the field-material interaction we work in the spatial domain in both directions.

In the next sections we will first discuss the Green function operator (Section 7.2.3).
Then we describe how we discretize (7.2) (Section 7.2.4) and afterwards we will explain
how we can accurately compute the field material interaction (Section 7.2.5).

7.2.3 The Green operator in the spectral domain

We use the Fourier transformation defined by

f(kx) = Fx[f(x)](kx) =

∫ ∞

−∞
dx f(x)e−jkxx. (7.3)

In the spectral domain, we write functions with kx as an argument and in the spatial
domain with argument x. The Fourier transform of a function will be meant when the
argument has changed from x to kx and vice versa.

The Green operator can be written as a sum of two parts. The first part, Gh, represents
the radiation into a homogeneous space with background dielectric constant εrb,i. The
second part represents the reflections at the layer interfaces. The scattered field due to the
homogeneous part of the Green function can be written as

Eh(kx, z) =
k2
0

jωε0εrb,i

∫ zmax

zmin

dz′ Gh(kx, z|z′) · J(kx, z), (7.4)

where the homogeneous Green function is given by

Gh(kx, z|z′) = −
(

k2
0εrb,i − k2

x jkx∂z
jkx∂z k2

0εrb,i + ∂2
z

)
e−γ|z−z′|

2γk2
0

, (7.5)

with γ2 = εrb,ik
2
0 − k2

x. Note how we can identify a propagating part e−γ|z−z′| in Gh, that
governs how the electric field propagates and/or decays over a distance |z − z′| in the z
direction.

The second part of the Green operator adds the reflections, originating from the layer
interfaces, to the scattered electric field, i.e.

k2
0

jωε0εrb,i
(G ◦ J)(kx, z) = Es(kx, z) = Eh(kx, z)

+
(
Ru,u(kx) · Eh(kx, zmin) +Ru,d(kx) · Eh(kx, zmax)

)
e−γ(z−zmin)

+
(
Rd,d(kx) · Eh(kx, zmax) +Rd,u(kx) · Eh(kx, zmin)

)
e−γ(zmax−z).

(7.6)

Here the Rα,β denote the effective reflection coefficients, see [87, Chapter 5], from the
layers below and above layer i including the offsets zmin−zi and zmax−zi+1. Here β = u/d
(up/down) denotes the z propagation direction of the wave which generates the reflection
and α denotes the direction in which the reflected wave itself propagates [135].
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7.2.4 Discretization and spectral path

For discretization in the x-direction we employ the Gabor frame as defined in [99] Chapter
8, with Gaussian window function

g(x) = 2
1
4 e

(
−π x2

X2

)
, (7.7)

where X defines the width of the window function. For better convergence, rational over-
sampling by a factor 1/αβ is employed, with the Gabor frame defined by

gmn(x) = g(x−mαX)ejnβKx, (7.8)

where K = 2π/X, the spectral step. To calculate Gabor coefficients, we use the dual frame
found from the Moore-Penrose inverse [99, 100]. More details on the use of Gabor frames
as a discretization for integral equations can be found in [118, 135].

Following the approach of [72, 150, 71], we use piecewise-linear expansion functions in
the z direction

Λn(z) =

{
1− |z−n∆−zmin|

∆
if |z − n∆− zmin| < ∆

0 if |z − n∆− zmin| > ∆
. (7.9)

For the test functions we use Dirac delta functions at z = n∆+ zmin. In [135] (Chapter 6)
it is explained how the z′-integral in (7.4) can be computed efficiently.

In the x direction we use the Gabor frame as a basis and its dual to test, as explained
in [118] (Chapter 5). There it is also explained that in the spectral domain we do not
represent functions on the real axis, but instead on the path, τ ∈ R,

kx(τ) ∈


τ − jA if τ < −A

(1 + j)τ if − A ≤ τ < A

τ + jA if τ > A

. (7.10)

For A we choose a fixed value such that AW ≈ 3. When a function f(x) is transformed
to the spectral domain, it is split up into fL(kx), fM(kx) and fR(kx), each corresponding
to one of the subsequent cases in (7.10). For fL(kx) and fR(kx) we use Gabor frames to
represent these functions and for the middle part fM(kx) we use a Taylor series. Since A is
small compared to the total spectral range in which information is contained, the middle
part contains little information and the Taylor series can be truncated after a few terms.

7.2.5 The field-material interaction

The main difficulty encountered in the TM scattering problem compared to the TE scat-
tering problem is that the electric field has discontinuities wherever the contrast function
has discontinuities. The electric field for TE scattering is continuous, so there we do not
encounter this problem.
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For RCWA it was pointed out in [83, 82, 81] that the convergence of a spatial-domain
multiplication of two functions with a discontinuity at the same position is poor. In a
spectral basis, such as in RCWA, this spatial multiplication is represented in the spectral
domain by a convolution. When both functions have a spatial discontinuity, their spec-
tral convergence is poor and the convergence of their convolution cannot be guaranteed.
Wherever the contrast function is discontinuous, the electric field also has a discontinuous
component, which leads to poor convergence in the field-material interaction in (7.2).

Although we use the Gabor frame instead of a Fourier series as a discretization, the
same convergence problem comes into play. A function f(x) represented by a set of Gabor
coefficients fmn can be written as

f(x) =
∞∑

m=−∞

∞∑
n=−∞

fmng(x−mαX)ejnβKx

=
∞∑

m=−∞

f̊m(x)g(x−mαX),

(7.11)

with

f̊m(x) =
∞∑

n=−∞

fmne
jnβKx. (7.12)

Now f̊m(x) is the resulting periodic function of the Fourier series in n, so a Gabor-frame
representation can be seen as a collection inm of Fourier series in n. If f(x) is discontinuous,
then also (some of) the f̊m(x) are discontinuous. For a spatial multiplication, products
with f̊m(x) are required and therefore again poor convergence is obtained with the Gabor
frame when both functions have discontinuities at the same locations. In Figure 7.2 we
illustrate this effect for a Heaviside step function. We use the tilde here to denote a
truncated Gabor approximation of a function. Since the Heaviside step function H(x)
equals its square: H(x) = H2(x), no noticeable difference should be visible between the

Gabor approximated H̃ and the Gabor approximated square ˜̃H ∗ H̃. Obviously, there
is a significant difference visible in Figure 7.2, hence the multiplication of discontinuous
functions represented by Gabor coefficients is not accurate. An important difference is that
the location of the step has shifted to the right. When this convolution would be applied
to the field-material interaction, this would lead to a significantly smaller contrast current
density and therefore to inaccurate results. For a good approximation these functions
should overlap, since the same discretization is used on both. Although this example is
different from the example used in [81], it is obvious that a significant error is made in the
multiplication of discontinuous functions.

A reformulation of the problem is possible such that only one function is discontinuous
[82, 92, 88, 71]. Let us consider a rectangular scatterer that is aligned with the layer
interfaces. The electric-field component normal to a material interface is discontinuous
and the electric field parallel to the interface is continuous. However, the electric flux
density D = εrε0E normal to a material interface is continuous, whereas the electric flux
density parallel to the interface is discontinuous [85], Section 1.5. According to the Li
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Figure 7.2: Step functions approximated by Gabor coefficients truncated to m ∈ −6, . . . , 6
and n ∈ −6, . . . , 6 in a Gabor frame with X = 1 and α = β =

√
2/3. Solid line: a direct

approximation of the step function. Dashed line: An approximation of the square of the
Gabor-represented step function, computed by a truncated convolution.

rules [81], we should select the continuous components. Let us assume the scattering from
a rectangular object aligned with the coordinates. The discontinuity at the top and the
bottom of the rectangle can be dealt with in the spatial z discretization. However, at the
left and right side of the rectangle, Ex(x, z) is discontinuous along the x coordinate and
therefore the Li rules are violated, so poor convergence can be expected for these interfaces.
Now Dx(x, z) and Ez(x, z) are continuous at the sides of the of the rectangle

To address the problem of convergence we define the field F(x, z) = x̂Dx(x, z)/ε0εrb,i+
ẑEz(x, z). We can calculate the electric field from F by

E = Lχ · F =

(
1

1+χ
0

0 1

)
· F (7.13)

and

J = Mχ · F = jωε0εrb,i

(
1− 1

1+χ
0

0 χ

)
· F. (7.14)

Following the notation in [92], we rewrite (7.2) in a single equation as

Ei = Lχ · F− k2
0G ◦ (Mχ · F). (7.15)

In the next section this formulation will be shown to converge much better when we use
Gabor frames in the x direction compared to the case where the Li rules have been ignored,
i.e. when we choose

Lχ = Id (7.16)

Mχ = χ Id, (7.17)

with Id the 2 × 2 identity matrix. We note that more general objects can in principle be
treated by using normal-vector fields [84, 151, 89, 90].
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7.3 Results

7.3.1 Accuracy

(a)

(b)

Figure 7.3: (a) The first usecase consists of two blocks in a layered medium. (b) A grating
coupler consisting of grooves in a thin high-contrast medium on top of a thick low-contrast
layer.

We have validated the above outlined algorithm against the JCMWave software package
[134] for two different usecases. We aimed for a relative accuracy of 10−3, since engineering
parameters like the material properties are often determined with less or similar precision
for most practical applications. The simulation parameters were chosen with this criterion
in mind and optimized for speed. The first usecase, Figure 7.3(a), consists of two blocks
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Figure 7.4: The real part of (a) the scattered electric field in the x-direction and (b) the
electric field in the z-direction.

in a layered medium. This is a relatively low-contrast case, since the difference in relative
permitivity between the background, εrb,1 = 3, and the blocks, with εr = 4, is small.

Figure 7.4 presents the real part of the scattered electric field Es(x, z) for the geometry
in Fig. 7.3 (a) excited by a normally incident plane wave of unit amplitude. The first
figure represents the x-directed component of the electric field and the second figure shows
the z-directed component. For this simulation we used one piecewise-linear basis function
((7.9)) per 2.5 nm in the z direction. In the x direction a Gabor frame was chosen with
X = 250 nm in (7.7), α = β =

√
3/2 in (7.8), and index m ∈ {−5, . . . , 5} and index

n ∈ {−6, . . . , 6} in (7.8), totalling 143 Gabor coefficients in the x direction, equaling one
coefficient per 15.7 nm on a simulation domain at some distance around the object. We
chose the discretization in both x- and z-directions such that it contributed approximately
the same error to the end result. Clearly, the Gabor coefficients in the x direction are more
efficient in accurately discretizing the problem than the piecewise-linear functions in the
z direction in the sense that a coarser discretization can be applied. We used 40% extra
Gabor coefficients in the spectral domain for a finer sampling of the auxiliary field in (7.4).

Figure 7.5 shows a comparison with respect to JCMWave for the case in Figure 7.3 (a),
in Figure (a) and (b) through the middle of the blocks at z = 100 nm, and in (c) and (d)
at z = 10 nm, just below the upper interface. Results with the auxiliary field formula-
tion ((7.13) and (7.14)) and without the auxiliary field formulation ((7.16) and (7.17)) are
shown, so they can be compared. In Figure 7.5 (a) we show the electric field Ex,V (x, 100nm)
from the JCMWave validation, Fx(x, 100nm)/(1 + χ(x, 100nm)) from the presented algo-
rithm with auxiliary field formulation, and Ex(x, 100nm). It is clear that the accuracy
found by using the auxiliary field formulation is much better, although we observe some
Gibbs ringing in the auxiliary field formulation as well in Figure 7.5(b). The disconti-
nuity of the dielectric object induces the Gibbs phenomenon on the solution. Since this
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Figure 7.5: The electric field for the case in Figure 7.3 (a). In (a),(b) it is Ex at z = 100 nm
and in (c),(d) it is Ez at z = 10 nm. (a),(c) show field strength. With old formulation we
mean results obtained without the auxiliary field formulation ((7.16) and (7.17)), and with
the new formulation the described algorithm with auxiliary field formulation F is meant
((7.13) and (7.14)). (b),(d) show the difference between simulation and reference.
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Gibbs error has a very high frequency, it does not radiate very far away from the blocks.
For example, in scattering calculations this error does not contribute to the long-distance
scattering. On the blocks, the Gibbs phenomenon dominates the error, but at a distance
the Gibbs ringing is attenuated, so only the error that really radiates dominates there. In
Figures 7.5 (c) and (d) we have plotted the electric field 10 nm below the upper layer.
Here the Gibbs phenomenon does not play a role anymore and the results obtained using
the auxiliary field formulation ((7.13) and (7.14)) have a relative accuracy better than
10−3. However, without the auxiliary-field formulation, the error is at least two orders of
magnitude larger.

The second usecase, Figure 7.3(b), was inspired by [23], where several setups for grat-
ing couplers with TE polarization were introduced. We have chosen the grating coupler
geometry and angle of incidence such that it couples TM waves efficiently into the same
multilayer medium. However, the geometry was not optimized for optimal coupling to the
same degree as in the original article.

The electric field of the second test case is presented in Figure 7.6 for excitation by a
plane wave of unit amplitude. It can be clearly seen that the incoming waves couple to a
right-travelling wave trapped within the 220 nm high-contrast layer. Since the simulation
domain can be limited to the grooves in the multi-layer medium, the simulation domain
was chosen from z = 0 tot z = 70 nm in 15 piecewise-linear expansion functions, which
equals one basis function per 4.6 nm. In the x direction a Gabor frame was chosen with
X = 1550 nm in (7.7), α = β =

√
3/2 in (7.8), and index m ∈ {−7, . . . , 7} and index

n ∈ {−40, . . . , 40} in (7.8), totalling 1215 Gabor coefficients in the x direction, which
equals one coefficient per 15.6 nm on a simulation domain around the object.

These results were also validated using JCMWave. In Figure 7.6 (c), the difference
between JCMWave and results obtained with the present algorithm are shown. The re-
sults obtained with the auxiliary field formulation ((7.13) and (7.14)) agree well up to a
level of 10−3, however, the iterative solver did not converge to even 1 digit precision in
300 iterations3for the formulation without auxiliary field ((7.16) and (7.17)), whereas the
auxiliary field formulation converged in fewer than 25 iterations with BiCGStab(2) [39].
We calculated the error from the field strengths at the lower side of the high-contrast layer
at z = 220nm to reduce the Gibbs ringing. From this we can conclude that the amplitude
of the wave coupled into the layer agrees with the JCMWave results for the auxiliary field
formulation.

7.3.2 Computation time

To see how the computation time of our algorithm scales when the discretization is re-
fined, we have refined the discretization both in the x direction and the z direction, while
keeping the discretization in the other direction constant. Figure 7.7 shows that the com-
putation time scales as O(Nz) in the z-direction, with Nz the number of piecewise-linear

3This indicates that the formulation with (7.16) and (7.17) yields an approximation error in the field-
material interaction that is is so large that condition number of the resulting matrix equation is significantly
altered.
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Figure 7.6: The x-directed scattered field Es
x(x, z) for an incoming field of unit amplitude;

(a) the real part, (b) the absolute value, (c) top line: the |E| field at z = 220nm, bottom
line: the absolute difference with the JCMWave results.
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basis function in the z direction, starting from the reference at Nz = 21 piecewise-linear
functions. The same figure also shows an O(Nx logNx) dependence with Nx corresponding
to the range of n in the number of included Gabor frame functions ((7.8)), starting from
the reference Nx = 143 frame functions.
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Figure 7.7: Scaling of the computation time for the case in Figure 7.3 (a), with on the x
axis the factor with which the numbers of unknowns Nx and Nz were increased compared
to the results in Figure 7.4 and Figure 7.5, where Nx = 143 unknowns and Nz = 21
unknowns.

7.4 Conclusion

We have succesfully reformulated the two-dimensional TM scattering problem for finitely
sized dielectric scatterers in a dielectric layered medium with a volume integral equation
in a mixed spatial and spectral basis in terms of a continuous auxiliary field F ((7.13) and
(7.14)), which leads to a satisfactory convergence. A formulation without such a continuous
field ((7.16) and (7.17)), which violates the Li rules, shows much poorer accuracy in one
test case and in the other test case convergence of the iterative solver was not reached.

We showed numerical evidence that the computation time scales as O(NxNz logNx)
with respect to refinements in the discretization.

For two cases we have shown that the proposed algorithm, that employs a discretization
on a path through the complex spectral plane, combined with a Gabor frame, can be used
for TM polarization.

This algorithm is capable of characterizing both the scattering from dielectric objects
and the coupling of waves into a dielectric layer via a grating coupler.
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Chapter 8

A 3D spatial spectral integral
equation method for electromagnetic
scattering from finite objects in a
layered medium1

8.1 Abstract

The generalization of a two-dimensional spatial spectral volume integral equation to a
three-dimensional version for electromagnetic scattering from dielectric objects in a strat-
ified dielectric medium is explained. In the spectral domain, the Green function, contrast
current density, and scattered electric field are represented on a complex integration man-
ifold that evades the poles and branch cuts that are present in the Green function. In the
spatial domain, the field-material interactions are reformulated by employing a normal-
vector field approach, which obeys the Li factorization rules. Numerical evidence is shown
that the computation time of this method scales as O(N logN) with the number of un-
knowns. The accuracy of the method for three representative examples is compared to a
finite-element method reference.

8.2 Introduction

Efficient solvers for electromagnetic scattering in stratified media are important in e.g.
metrology [153, Chapter 18], metamaterials [19, 138], and integrated optics [25]. Espe-
cially for three-dimensional structures, where the number of unknowns is often very large,
there is a demand for fast solvers, for which the computed complexity scales well for large
numbers of unknowns. A good strategy to find a potentially efficient algorithm is to ex-
ploit symmetries. For stratified media such a symmetry is the translation symmetry in the

1This chapter was submitted as an article for the journal Optical and Quantum Electronics [152].
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layered background medium. This symmetry can be exploited via the use of the Green
function in a volume integral formulation.

In a stratified dielectric medium, an analytic expression exists for the Green function in
the electromagnetic case, as a function of one spatial coordinate in the direction of stratifi-
cation and two spectral coordinates in the two directions perpendicular to the stratification
[53]. It is advantageous to use the stratified-medium Green function, since it incorporates
the response of the multilayer medium analytically. Therefore, little computation time or
memory is used for computing the scattered electromagnetic field throughout the entire
layered stack, since the electric field on a domain slightly larger than the scattering object
suffices. It is possible, using Sommerfeld [54] or Fourier integrals, to transform the Green
function completely to the spatial domain and then use it in an integral-equation method
[55, Chapter 8], [56, Chapter 5], [57, Chapter 4],[58, Chapter 2]. However, these Sommer-
feld integrals are often tedious to compute, because of poles and branch cuts present in the
Green function that can be located on or close to the integration path. Since the Green
function has to be re-calculated for every modification in the multilayer medium, caching
the Green function in a library is only advantageous when the exact same multilayered
medium is used many times.

It is also possible to use the Green function directly in the spectral domain, where it
is known analytically. For a periodically repeating object, the Green function decomposes
into a discrete set of modes as derived in for example [92, 71]. Poles and oscillations along
branch cuts in the Green function [55, 56] can be avoided on such a discrete set of modes
since the modes and locations of the poles will most likely not coincide. However, for a
finite scatterer the spectral domain is continuous and now the contribution of the poles
and oscillations along the branch cuts are hard to discretize [118, 135]. Deformations of the
Sommerfeld integration path to a complex-plane path [60, 61, 59, 62] can help to evade these
poles and branch cuts. In [135] an algorithm for two-dimensional electromagnetic scattering
with TE polarization in a multilayered medium is presented, where both contrast-current
density and scattered field are represented on a path in the complex plane of the spectral
domain. It is this path that allows for the use of Gohberg’s and Koltracht’s [72] fast,
flexible and recursive Green-function convolution in the stratification direction.

The first challenge in the three-dimensional case is that, instead of one, now two di-
rections perpendicular to the stratification direction need to be handled. The complex
integration path is turned into a complex integration manifold and since the transforma-
tion from the spatial domain to the complex integration manifold is part of the core of the
algorithm, transformations back and forth need to be computationally efficient. We show
an integration plane consisting of nine regions of three distinct types and show transfor-
mations to and from the spatial domain that can be computed in O(N logN) operations,
where N is the number of spectral unknowns.

The second challenge is that the discontinuity of both the permittivity and the electric
field at material interfaces leads to poor convergence in spectral formulations [80]. This
effect was also observed for a Gabor-frame based solver for TM-polarized scattering [147].
For periodic scattering problems with a discrete spectral expansion a reformulation of the
field-material interactions corrects this poor rate of convergence [82, 83], which is explained
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in more detail in [81] introducing the so-called Li rules. In [147] it is shown that the same
mechanism can also be used for a continuous spectral expansion and the algorithm of [135]
is extended to efficiently deal with the discontinuous field-material interaction in a way
that does abide by these Li rules. Here, we propose a generalization of this method to
three dimensions. Inspired by [91], we show that a normal-vector field formulation [84] can
be used for three-dimensional scattering to replace the field-material interaction.

We start by a brief formulation of the volume integral equation in Section 8.3. Sub-
sequently, we give a more detailed explanation of the discretization, with emphasis on
the complex-plane spectral domain representation in Sections 8.4 and 8.5, followed by a
short summary of the normal-vector field framework in Section 8.6. The applicability of the
present algorithm is highlighted by three numerical examples, with numerical evidence that
the computation time scales as O(N logN) with the number of unknowns and comparison
against a finite-element reference calculation in Section 8.7.

8.3 The volume integral equation

Consider a stratified dielectric medium where homogeneous layers with different relative
permittivities are stacked in the z-direction. Layer n is located between zn and zn+1 and
has relative permittivity εrb,n. Index n = 0 coincides with the top half space, z < 0, and
index n = NL with the half-space z > zNL+1 below all layers, an example of which is
also illustrated in Figure 8.1. In layer i a three-dimensional dielectric object is contained
within the simulation domain D = [−Wx,Wx] × [−Wy,Wy] × [zmin, zmax], with zi ≤ zmin

and zmax ≤ zi+1. This dielectric object is characterized by a relative permittivity function
εr(x), with x = (x, y, z), or more conveniently by the contrast function

χ(x) =
εr(x)

εrb,i
− 1, (8.1)

which is nonzero only inside the object.
An incident electromagnetic field originates from the upper half-space at arbitrary

angle and with arbitrary polarization. The electric field in presence of the multilayered
background medium εrb,n, but in absence of the dielectric object can be readily calculated
[55, 87] and is denoted as Ei(x). The dielectric object generates a scattered field Es(x)
that together with the incident field Ei(x) adds up to the total electric field E(x), i.e.

E(x) = Ei(x) + Es(x). (8.2)

The scattered field Es(x) can be calculated via the multilayer Green tensor G through

Es(x) =

∫
D
dx′ G(x|x′) · J(x′), (8.3)

where the contrast current density J(x) is given by the field-material interaction

J(x) = jωε0εrb,iχ(x)E(x), (8.4)
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Figure 8.1: An illustration of a possible scattering setup

which is again nonzero only in the scattering object. Combining Eqs. (8.2), (8.3) and
Eq. (8.4) yields the integral equation that we propose to solve

Ei(x) = E(x)−
∫
D
dx′ G(x|x′) · [jωε0εrb,iχ(x′)E(x′)] . (8.5)

However, for an efficient numerical scheme several refinements have to be made.

8.4 The spectral domain representation

8.4.1 The Green function

Computing the three-dimensional integral in Eq. (8.3) involves, when implemented naively,
an O(N2) matrix-vector product, with N = NxNyNz the total number of unknowns. This
matrix-vector product can be employed in an iterative solver. Analogous to [118, 135, 147],
we represent the Green function, the contrast current density J, and scattered field Es in
the spectral domain in the transverse xy-plane. We denote coordinates in the transverse
plane as xT = (x, y), and in the spectral domain as kT = (kx, ky). We use a Fourier
transformation defined as

f(kξ) = Fξ [f(ξ)] (kξ) =

∫ ∞

−∞
dξ f(ξ)e−jkξξ, (8.6)

where we distinguish functions in the spectral domain by arguments containing kx, ky and
kT and in the spatial domain by the arguments x and y and xT .
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In the spectral domain, a spatial convolution can be executed with O(NxNy) complexity,
with Nα the number of unknowns used in direction α. The transverse convolution in Eq.
(8.5) can be carried out efficiently. The remaining integration in the z-direction can be
calculated in O(Nz) time via the recursive algorithm proposed by Gohberg and Koltracht
[72].

The multilayer Green tensor in Eq. (8.3), can be separated in a homogeneous-medium
part yielding Es,h and reflected waves moving up, Ku, and down, Kd. The homogeneous-
medium part of the scattered field is given by

Es,h(kT , z) =

∫ zmax

zmin

dz′ Gh(kT , z|z′) · J(kT , z
′), (8.7)

where the homogeneous-medium Green tensor is given in Cartesian components (x, y, z),
respectively, as

Gh(kx, ky, z|z′) =

 εrb,ik
2
0 − k2

x −kxky −kxγ
−kxky εrb,ik

2
0 − k2

y −kyγ
−kxγ −kyγ γ2 − 2γδ(z − z′)

 e−γ|z−z′|

2γ
. (8.8)

Here, k0 is the wave number k0 = ω
√
µ0ε0 and γ is defined as γ =

√
k2
T − εrb,ik2

0, where
kT = (kx, ky, 0) so k2

T = k2
x + k2

y. Note that the factor exp(−γ|z − z′|) propagates (and/or
attenuates) the electric field over a distance |z − z′|, and will therefore be referred to as
the propagation function.

Now the scattered field Es can be found by adding reflected waves Ku/d from the layer
interfaces to the homogeneous scattered field Es,h, where u and d refer to waves moving
up or down respectively. Consequently, we have

Es(kT , z) = Es,h(kT , z)+(
Ru,u(kT , z)E

s,h(kT , zmin) +Ru,d(kT , z)E
s,h(kT , zmax)

)
e−γ(z−zmin)+(

Rd,u(kT , z)E
s,h(kT , zmin) +Rd,d(kT , z)E

s,h(kT , zmax)
)
e−γ(zmax−z)

(8.9)

with Rα,β(kT , z) the three-dimensional effective reflection coefficient that contains both h
and e polarization, which can be calculated from the effective reflection coefficients for h
polarization rα,βh (kT ) [135], and for e polarization rα,βe (kT ) [147] as

Rα,β =


k2xr

α,β
e (kT )−k2yr

α,β
h (kT )

k2
T

kxky(r
α,β
e (kT )−rα,β

h (kT ))

k2
T

0

kykx(r
α,β
e (kT )−rα,β

h (kT ))

k2
T

k2yr
α,β
e (kT )−k2xr

α,β
h (kT )

k2
T

0

0 0 rα,βe (kT )

 . (8.10)

This matrix projects the e and h polarized parts of the electric field onto effective trans-
mission coefficients rα,βe and rα,βh , respectively. The definition of these effective reflection
coefficients is given in [135, 147], which is based on the expositions about multilayer media
in [57, Chapter 4], [58, Chapter 2], [87].
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Since the field-material interaction in Eq. (8.4) is calculated in the spatial domain and
the Green-function operation in Eq. (8.9) in the spectral domain, we need a fast and efficient
means of transforming the current density J(xT , z) to the spectral domain and the scattered
field Es(kT , z) back to the spatial domain. We propose to use a two-dimensional Gabor
frame in the transverse plane, since a Gabor frame is efficient to represent the operation of
Fourier transformation. It can be represented analytically by a mere transposition of the
coefficient matrix in O(NxNy) operations [118].

8.4.2 The Gabor frame

We use a Gabor frame with Gaussian window function

g(x, y) = 2
1
2 exp

(
−π

x2

X2
− π

y2

Y 2

)
, (8.11)

with width X in the x-direction and Y in the y-direction. This defines the oversampled
two-dimensional Gabor frame as

gmn(x) = g(x−mxαX, y −myαY )ejnxβKxx+jnyβKyy, (8.12)

with two-dimensional indices m = (mx,my) and n = (nx, ny). Here, the spectral spacing is
Kx = 2π/X and Ky = 2π/Y and rational oversampling αxβx < 1 and 1 > αyβy ∈ Q. The
number of coefficients in m and n is allowed to differ for both directions. Gabor coefficients
can be calculated as

fmn =

∫ ∞

−∞
dx

∫ ∞

−∞
dy f(x, y)ηmn(x, y), (8.13)

with dual frame

ηmn(x, y) = η(x−mxαX)η(y −myαY )ejnxβKxx+jnyβKyy. (8.14)

There is freedom of choice for the dual window function η(x), but we choose the dual
frame function calculated via the Moore Penrose inverse [99, 100], since it is widely used
and exhibits a convenient exponential decay in both the spatial and spectral domain.

We use the Fourier transform of Eq. (8.12) to discretize functions in the spectral domain.
This has the advantage that the operation of Fourier transformation reduces to merely
a tranposition of coefficients. Details on operations such as Fourier transformation and
multiplication of Gabor-represented functions can be found in [118] for one dimension and
the generalization to two dimensions is straightforward. The one-dimensional operations
can be done for both the x and y direction consecutively.

8.5 A complex-plane deformation of the integration

manifold

In the z-direction, the integration with the Green tensor in Eq. (8.7) is discretized com-
pletely in the spatial domain. Since it was shown that a piecewise-linear discretization
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in the z-direction is effective [118, 135, 147], we propose to use it here as well. In the
z-direction, the basis functions are then defined as

Λℓ(z) =

{
1− |z−ℓ∆z−zmin|

∆z
if |z − ℓ∆z − zmin| < ∆z

0 if |z − ℓ∆z − zmin| > ∆z

, (8.15)

with ∆z the discretization step in the z-direction.

For the discretization in the xy plane, a method similar to the two-dimensional cases
in [135, 147] is proposed. The Green function contains poles due to the effective reflection
coefficients and many oscillations along the branch cuts may occur. Both these poles and
oscillations cannot be represented efficiently in a Gabor frame representation. In the two-
dimensional case, these problems can be circumvented by representing the Green-function
in the transverse direction in Eq. (8.9) on a path in the spectral complex plane. For
three-dimensional problems, this path can be generalized to a two-dimensional integration
manifold in the transverse kT coordinates on which the transformation back to the spatial
domain takes place. In the kx-direction, the complex spectral path is defined by the function
τx(kx), with kx ∈ R and τx ∈ C as

τx(kx) ∈


kx − jAx if kx < −Ax

(1 + j)kx if − Ax ≤ kx < Ax

kx + jAx if kx > Ax.

(8.16)

and a similar definition for τy(ky) with Ay defining the imaginary displacement along the
ky-direction. Here, Ax and Ay are constants that can be chosen individually. Numerical
experiments show that a choice such that AxWx and AyWy are in the range 2 . . . 5, yields
optimal accuracy, with Wx and Wy as in Figure 8.1. With the coordinate change from kT

to τT , Eqs (8.7) and (8.9) contain smooth functions and these can be used in combination
with the Gabor-frame discretization.

This complex spectral manifold divides the complex kT domain into nine regions as
depicted in Figure 8.2. All functions in the spectral domain will be represented on this
τT manifold. With the aid of Jordan’s lemma, the Fourier transformation to the spatial
domain can be carried out over the τT manifold. Closing the contour at kT → ∞ is not
needed, since the representation using Gabor frames converges to zero rapidly outside the
simulation domain.

8.5.1 Discretization in regions of Type 1

Most information is contained in regions of Type 1, since Ax and Ay are relatively small
compared to the complete spectral range to be discretized. The contrast current density
is transformed to the complex spectral integration manifold via

J(kx + jAx, ky + jAy, z) = FxT
[J(xT , z)e

−xAx−yAy ](kT ), (8.17)
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Figure 8.2: The complex-plane integration domain in the spectral domain consisting of
nine regions, of three types.

for the northeast (NE) quadrant, i.e. kx ≥ Ax∧ky ≥ Ay, and similarly for the other regions
of Type 1. Analogously, the transformation of the scattered field back to the spatial domain
is obtained as

Es,NE(xT , z) = e−xAx−yAyF−1
kT

[cNE(kT )E
s,NE(kx + jAx, ky + jAy, z)](xT ), (8.18)

with the cut-off function cNE(kT ) equalling 1 on the NE region and zero elsewhere. The
Fourier transformation can be performed in O(NxNy) operations and the operation of
multiplication in O(NxNy logNxNy) operations, for functions represented by NxNy Ga-
bor coefficients. Therefore, the total of these operations allows for an O(NxNy logNxNy)
computational complexity.

All this means that the scattered electric field Es is represented by a five-dimensional
array of coefficients Es,NE

m,n,l, with mx, nx and my, ny corresponding to the Gabor frame on
the coordinates, kx+jAx and ky+jAy respectively. The ℓ index corresponds to a piecewise-
linear (PWL) representation in the z-direction. The scattered electric field in region NE is
then approximated as

Es,NE(kx + jAx, ky + jAy, z) ≈
∑
m,n

Nz∑
ℓ=1

gm,n(kx, ky)Λℓ(z)E
s
m,n,ℓ. (8.19)

The Green function consists of several parts, some of which are depending on the
complex propagation constant γ(kT ) =

√
−εrb,ik2

0 + k2
T . On the real kxky-plane γ(kT )

touches, but does not cross, two branch cuts at kT = (0, 0) in the case of lossless media.
For lossy media the branchcuts are located at some distance from the origin. For both
cases, the τ path passes just in between these two branchcuts. However, when a Type-1
region such as the NE-region is continued to the complete (kx + jAx, ky + jAy) plane, a
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branch cut is crossed just outside the NE region, as illustrated in Figure 8.3. The branch
cut is located on a straight line through τT = (0 + jAx, 0 + jAy) and the direction of
the line depends on the choice of Ax and Ay. The continuous nature of a Gabor-frame
representation does not allow for an abrupt stop of the discretization domain at the borders
of a Type-1 region. Therefore, such a Gabor-frame representation of the Green function
exhibits significant Gibbs ringing from the branch cut that spreads into the Type-1 regions.
For a two-dimensional case, this is described in [135], where a linear continuation of the
Green function is proposed that suppresses strong Gibbs ringing.

Figure 8.3: A function f represented in the NE regions on τ(kx, ky) = (kx+ jAx, ky + jAy)
that depends on γ(τ(kT )) contains a branchcut on a straight line through the kx < 0∨ky < 0
region. On the regions indicated with solid and striped grey the original function f is
discretized and on regions indicated by fine lines the continuations f c,x, f c,xy and f c,y

are discretized, the discontinuity of the branch cut is therefore avoided by the continuous
functions.

In three dimensions, this issue can also be resolved by making a first-order continuation
of the functions to eliminate the branch cut. Since the branch cut can be located close to
the kx = 0 or ky = 0 axes, and the function values are needed at kx > Ax and ky > Ay, we
start the continuation of the functions in the middle at kc

x = Ax/2 and kc
y = Ay/2. Then

the Gibbs phenomenon from the discontinuous second derivative will be at a short distance
from kx = Ax and ky = Ay, where Region NE begins. For the continuation of a function
f(kx, ky) along the ky-axis we choose

f c,x(kT ) =

[
f(

Ax

2
, ky) + (kx −

Ax

2
)∂kxf(

Ax

2
, ky)

]
e−α(kx−Ax/2)2 , (8.20)
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for kx < Ax/2 and ky > Ay/2. Similarly f c,y(kx, ky) can be constructed for kx > Ax/2 and
ky < Ay/2, which is illustrated in Figure 8.3. The Gaussian factor is added to make the
continuation decay to zero slowly. The third part, kx < Ax/2, ky < Ay/2 is a continuation
of f c,y into

f c,xy(kT ) =

[
f c,y(

Ax

2
, ky) + (kx −

Ax

2
)∂kxf

c,y(
Ax

2
, ky)

]
e−α(ky−Ay/2)2 . (8.21)

Note that this expression equals the expression obtained from continuing f c,x onto this
domain. The derivative of the function f is calculated using a forward finite-difference
method, with a difference of 10−4Ax or 10−4Ay for the x and y direction, respectively. For
most functions, α = min(X2, Y 2) is a good choice. However, for one part of the Green
function, notably the propagation function e−γ∆z , care has to be taken that its absolute
value does not exceed one in the continuation. By increasing the value of α, this condition
can always be satisfied. More details can be found in [135].

A general remark about the importance of this continuation is appropriate. In princi-
ple, the Gibbs phenomenon in a Gabor frame representation is not of much significance,
unless two functions with discontinuities at the same position are multiplied. The Li rules
[81] state that when two functions with spatial discontinuities at the same position are
multiplied to form a convolution in the spectral domain, the convergence of this convo-
lution is poor. The Li rules also apply to Gabor frames [147] and since the spatial and
spectral domain are both represented by a Gabor frame, a spatial version of the Li rules
is also applicable to the Gabor frame. These spatial Li rules state that when two spec-
tral functions with discontinuities are multiplied in a Gabor-frame representation, a poor
convergence is observed. Now when the NE region of the electric field with its branch
cut is multiplied by the cut-off function cNE(kT ) in Eq. (8.18), which is discontinuous at
kx = Ax and at ky = Ay, functions are multiplied for which the locations of discontinuities
almost touch each other. This leads to near-violation of the spatial Li rules. Since the
discontinuities are not exactly at the same location, a high sampling would in principle
solve this issue. However, this would require an excessive sample density that is avoided
by the continuation of the Green function parts proposed in Eqs (8.20) and (8.21).

8.5.2 Discretization in regions of Type 2

First we will approximate the contrast current density in kx around kx = 0 with a Taylor
expansion that is found through a Vandermonde matrix. This Taylor expansion is then
applied to find corresponding values of the contrast current density on the line Im(τx) =
Re(τx), on which a PWL basis is used as a discretization. This PWL basis consists of
2Ns+1 basis functions, sampled at p(1+j)A/Ns, with p ∈ {−Ns, . . . , Ns}. Afterwards, we
give a means to directly Fourier transform from the discretized N region to spatial-domain
Gabor coefficients. We will only consider the northern (N) region of the complex spectral
integration manifold since the E, W, and S region follow by analogy.

For the calculation of the current density in the N region, function values of JN are
available at the lines τx = kx± jAx, which were calculated via the Gabor representation in
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the NE and NW regions. The analyticity of J allows to produce a Taylor expansion of J
around kx = 0 from values at the lines Im(τx) = ±Ax. Afterwards, this Taylor expansion
is used to calculate values of the contrast current density at the line Re(τx) = Im(τx),
where they are needed for discretization in the N region, as is shown in Figure 8.4. Close
to kx = 0, JN can be approximated as

JN(kx, ky, z) ≈
4Nv+1∑
n=0

kn
x

n!
an(ky, z), (8.22)

where an(ky, z) = ∂n
kx
JN(kx, ky, z), and 4Nv +2 is the total number of terms in this Taylor

expansion. Values for JN(kx±jAx, ky) can be obtained from the results for the NE and NW
regions, by using a fast Gabor transformation [118, 100] that yields values at kx = n∆kx ±
jAx for n ∈ Z, with ∆kx the spectral sample spacing corresponding to the Gabor frame.
Values for an can be found by solving a small Vandermonde system [38, Chapter 2.8]. By
constructing the vector k of kx values as k = (−Nv∆kx − jAx, . . . , Nv∆kx − jAx,−Nv∆kx +
jAx, . . . , Nv∆kx + jAx)

T , this Vandermonde system can be written as a matrix equation
K · a = j(ky, z) = JN(k, ky, z). The element K

mn
of the m’th row and n’th column of

matrix K is given by K
mn

= (km)
n, the n’th power of element m in k. We solve this

system by using the inverse of K, i.e.

a(ky, z) = K−1 · j(ky, z). (8.23)

Now that it is possible to express the Taylor coefficients an in terms of the 2Nν+1 samples
on the NW-region, i.e. J(kx− jAx, ky+ jAy, z), and the 2Nν +1 samples in the NE-region,
i.e. J(kx+jAx, ky+jAy, z), they can be used to evaluate the Taylor expansion in Eq. (8.22)
on the N-region, where Im(τx) = Re(τx). We will write this as a matrix-vector product
using the matrix T . The matrix T transforms from a Taylor series to an equidistant
sampling on the line [−Ax − jAx, Ax + jAx]. The elements are T

pm
= ((1 + j)pAx/Ns)

m,

where p ∈ {−Ns, . . . , Ns} and where m ∈ {0, . . . , 4Nν + 1}, i.e.
JN
p (ky, z) = [T · a(ky, z)]p = [T ·K−1 · j(ky, z)]p. (8.24)

We use the array of numbers JN
p,my ,ny ,ℓ

to represent the current in the N region of the
complex integration domain. Index p ∈ {−Ns, Ns} points to the set of piecewise-linear
basis functions that are used in the kx-direction on the line τx((1 + j)pA/Ns). In the ky-
direction we use a Gabor frame, denoted here by indices my and ny. This means that the
y dependence in Eq. (8.24) is replaced by this set of Gabor indices. Again, a set of Nz

PWL functions is used in the z-direction denoted by the index ℓ.
Having dealt with the transformation to the N region, we will now deal with the trans-

formation from the N region back to its spatial-domain counterpart. After multiplication
of the contrast current density JN

p,my ,ny,ℓ
with the Green function (see Section 8.4.1), the

contribution of the North part of the scattered electric field yields Es,N
p,my ,ny ,ℓ

. From this
array we can make an approximation on the N region of the scattered electric field

Es,N(kx + jkx, ky + jAy, z) ≈
Ns∑

p=−Ns

Λsx,p(kx)
∑
ny ,my

gmy ,ny(ky)
Nz∑
ℓ=1

Λz,ℓ(z)E
s,N
p,my ,ny ,ℓ

. (8.25)
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Figure 8.4: Illustration of the expansion for Nν = 1 of the six known values (dark grey
circles) from the NE and NW regions to values for the N region (light-gray circles).

Here Λsx,p are piecewise-linear (PWL) basis functions

Λsx,p(k) =

{
1− |k−p∆kx |

∆kx
if |k − p∆kx | < ∆kx

0 if |k − p∆kx | > ∆kx

, (8.26)

with width ∆kx = Ax/Ns in the kx-direction. To transform the N region of the scattered
electric field Es,N

p,my ,ny ,ℓ
back to the spatial domain where it is discretized in the Gabor frame

with coefficients Es,N
m,n,l, we use the Fourier transforms of the PWL functions in Eqs. (8.26)

and (8.25), i.e.

INp (x) =

∫ Ax

−Ax

dkx τ
′(kx) Λp(kx)e

jτx(kx)x. (8.27)

Since the x direction is discretized by using Gabor coefficients in the spatial domain,
the x-dependence of this function INp (x) must be transformed into Gabor coefficients
INp,mx,nx

. These Gabor coefficients are calculated during initialization of the algorithm
via e.g. Eq. (8.13) or a fast Gabor transformation. Now the contribution of the N region
to the scattered electric field in the spatial domain is given by

Es
m,n,l = · · ·+

Ns∑
p=−Ns

Es,N
p,my ,ny ,ℓ

INp,mx,nx
(8.28)

where the dots indicate the contributions from the other eight regions to the scattered
field.

Similar to regions of Type 1, some parts of the Green function are discretized by using
a continuation such as in Eq. (8.20), to avoid a branch cut. For example, for the N region
the continuation is only needed in the y-direction, since a Gabor frame is employed in
this direction only and a PWL discretization does not suffer from Gibbs ringing. The
construction for a one-dimensional continuation is described in more detail in [135].

8.5.3 Discretization in the region of Type 3

For the middle (M) region, a two-dimensional version of the construction for the N region is
used. Since the generalization is fairly straightforward, we will not write it down explicitly.
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The only difference here is that we use a total number of 2Nm + 1 PWL functions per
direction. We use a different number of PWL functions in this region since, depending
on the simulation parameters, the accuracy can depend significantly on the choice of Nm.
Since the middle part contains information of waves with small kT , it contains information
about waves traveling almost parallel to the z-direction. Especially for scatterers that are
larger in the z-direction, a larger Nm is required.

An important remark on the use of Vandermonde matrices is that they are generally
ill-conditioned when a uniform sampling is used, such as is the case in the NE and NW
regions. In principle, this could lead to a poor conditioning of the K matrix and therefore
to an unstable inversion when the matrix is increased in size. However, the amount of
information on the interval kT ∈ [−Ax, Ax]× [−Ay, Ay] is so small that large matrices are
not needed.

There are two reasons that a relatively large number of PWL basis functions (typically
Nm > 10 and Ns > 10) is needed in regions of Type 2 and 3. The first is that a PWL
basis is relatively inefficient compared to a Gabor frame. For the second reason we have
to look at both the spatial and the spectral domain. Since the contrast current density
J is confined to a finite region only, its Fourier transform is fairly smooth. However,
the scattered electric field Es is not confined to the simulation domain, and therefore its
Fourier transform is much less smooth. On the Type-1 and Type-2 regions this lack of
smoothness is compensated by a representation in terms of complex spectral coordinates
τ , where the Green function is much smoother. However, the Type-3 region is not shifted
as far into the complex plane as the Type-1 and Type-2 regions, and therefore the Green
function is less smooth in this region. Since the Green function is implemented recursively,
for intermediate results, i.e. the scattered field in between zmin and zmax, this lack of
smoothness should be represented accurately. Afterwards, when the transformation to the
spatial domain is performed, this roughness on the M region corresponds to contributions
outside the simulation domain. However, ignoring the roughness is not an option since
it leads to accumulating errors in the recursive handling of the Green function. This is
especially important when zmax − zmin is large compared to the wavelength.

8.5.4 Correspondence between simulation parameters and accu-
racy

Since there are many simulation parameters, it is not trivial to find a combination of values
for these parameters that produces both a good accuracy and a short computation time.
This list is intended to clarify which simulation parameters influence which part of the
algorithm. This list is intended as a general guideline for optimal results.

1. Start with a Gabor frame with X = Y = λ, the wavelength of the light source, and
α = β =

√
2/3.

2. Choose mx > 3 + Wx/αX and similarly my > 3 + Wy/αY . Choose nx = ny >
5maxx∈D(1 + χ(x)), which guarantees at least 11 unknowns per wavelength per di-
rection. Test whether a function (e.g. a Gaussian with width X), can be represented
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with the required accuracy over the entire simulation domain D. When the accuracy
is too low everywhere, increase n, when the accuracy is too low at the boundary of
D only, increase m.

3. Start at Ax = 3/Wx and Ay = 3/Wy, Nv = 1, Ns = 10 and Nm = 10. Test whether
a set of spatially and spectrally localized functions (e.g. modulated Gaussians that
are shifted along the entire simulation domain) can be transformed to the complex
spectral integration manifold and back again with the required accuracy. Note that
the exponential function in Eq. (8.17) reduces the accuracy of the Gabor frame.
Therefore, a simultaneous decrease of Ax and increase of m improves the accuracy in
the transformation between the spatial and spectral domain. Especially when a high
accuracy is needed, Nν may have to be increased when the error in the N, E, S, W
and M regions is too large. Also an increase in Ns and Nm can be considered when
the error in the PWL interpolation is found to be too large.

4. The Green function (Eq. (8.8)) contains a factor γ−1, that has a strongly peaked
behavior around |kT | =

√
εrb,ik0. Test whether the function γ−1 is represented ac-

curately enough by the Gabor frame with the current parameters. Otherwise Ax

can be increased (which decreases the accuracy in the previous step) or m can be
increased (which increases the computation time, but does not affect the accuracy in
the previous step).

5. Especially for large zmax − zmin, a lot of information is stored in the M region, which
contains information about waves traveling in a narrow cone around the z axis. The
main culprit here is the function e−γ(zmax−zmin) in Eq. (8.8). Choose Nm such that
this function can be well approximated in the M region.

6. Another simulation can be run with lower n values. When both results agree well,
convergence in the spectral range n has been reached, otherwise n should be increased
for higher accuracy.

Many of the steps in this list can be automated. It is not necessary to manually carry out
this procedure for every simulation.

8.6 Efficient field-material interaction

Formulating the field-material interaction as proposed in Eq. (8.4) yields poor convergence
since it violates the Li rules [81]. We propose to use a normal-vector field approach2[84, 91].
In [147] it is shown that when the Li rules are satisfied, good convergence is reached in a
continuous spectral discretization in a formulation similar to the RCWA formulation by
Granet [82]. We follow the same approach as [84, 70, 71, 91, 90] in constructing normal-
vector fields and the following is intended as a short summary of that method.

2A more detailed description and an example can be found in Section 3.1
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When the permittivity is discontinuous at a material interface, it is observed that
the electric field E normal to the surface is discontinuous, but the electric flux density
D normal to such a surface is continuous. Therefore, in the field-material interaction in
Eq. (8.4), both χ and the normal component of E are discontinuous and multiplication
of two discontinuous functions represented by Gabor coefficients shows poor convergence
[147], since it violates the Li rules [81]. An auxiliary field F is introduced that is composed
of D in the direction normal to every surface of discontinuous χ and E parallel to each
of those surfaces. Since this fixes the choice of F only at the boundaries of dielectric
objects, there is much freedom in choosing it away from the interfaces. Normal-vector
fields [84, 154, 155, 91] can be a good tool to systematically construct an auxiliary field F.

Since we use Gabor coefficients only in the transverse plane, we apply the normal-
vector field formulation only in the transverse plane. For objects with interfaces that are
not aligned with the z or transverse plane, a staircasing approximation is needed. When
NT (x) is a vector field of unit amplitude that is directed normal to the transverse part of
all discontinuous surfaces in χ and when α(x) is a scalar function that equals one at these
discontinuities, these functions can be used to construct the desired auxiliary field F as

F(x) = E(x) +NT (x)

[(
α(x)

ε0εrb,i
D(x)− E(x)

)
·NT (x)

]
. (8.29)

The field-material interaction in Eq. (8.4) can be re-written as

J(xT , z) = [χCε](xT , z)F(xT , z), (8.30)

and the electric field can be recovered from

E(xT , z) = [Cε](xT , z)F(xT , z), (8.31)

where the Cartesian component i of the electric field due to the Cartesian component j of
auxiliary field F is calculated by employing the operator Cε defined as

[Cε(x)]ij = δij +NT,i(x)NT,j(x)

[
1

α(x)(1 + χ(x))
− 1

]
(8.32)

with δij denoting the Kronecker delta and similarly

[χCε(x)]ij = jωε0εrb,iχ(x)[Cε(x)]ij. (8.33)

More details and examples of this construction can be found in [91].

8.7 Numerical results

We have chosen three test cases to validate the present algorithm. As a reference to
validate our results we use the commercial FEM code JCMWave [134]. Our goal is to
achieve an accuracy of 10−3, which is sufficient in our applications, e.g. due to measure-
ment noise or fabrication tolerances. To achieve high accuracy in the validation, we use
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(a) (b)

(c)

Figure 8.5: (a) The scattering setup for a small, low-contrast 100 nm cube embedded in a
multilayered medium. (b) A cylinder, embedded in the same multilayered medium. (c) A
finite grating consisting of six repeating blocks located on top of a substrate.

a relatively small, low-contrast scatterer in the first test case. A small dielectric cube is
embedded in a dielectric medium as shown in Figure 8.5(a), together with the remain-
ing details of the setup. The incident wave is characterized by Cartesian wavenumber
k = (−k0 sin(70

◦), 0, k0 cos(70
◦)), with the electric field polarized in the xz-plane and with

unit amplitude.

We choose a Gabor frame with X = Y = 80 nm, α = β =
√

2/3. For the highest
accuracy we use a Gabor frame, Eq. (8.12), restricted tomx,my ∈ {−7, . . . , 7} and nx, ny ∈
{−10, . . . , 10}, which amounts to one basis function per 3.1 nm. In the z-direction we use
a step size of 2.5 nm. For the sampling of the regions of Type 2 and 3 we use Nν = 2,
Ns = Nm = 15.

With these simulation parameters, the simulation domain in the xy-plane extends over
a larger region than the scatterer itself, as is visible in Figure 8.6(a). In this figure, the
norm of E is shown on the plane z = 100 nm. In Figure 8.6(b) the absolute difference
between results from the present algorithm and the JCMWave reference are shown. Over
large regions of the simulation domain the absolute difference is smaller than 10−5. From
y = −50 nm to y = 50 nm and close to the edges of the cube agreement between both
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simulations is not as good as on the rest of the simulation domain. This is caused by
Gibbs-ringing at the discontinuities in the electric field, especially in the x-component.
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Figure 8.6: The electric field at the z = 100 nm plane for the scattering case in Fig. 8.5(a).
In Figure (a) |E| is plotted for an incident plane wave with unit amplitude and in Figure
(b) this is compared to the results obtained using JCMWave.

Since this Gibbs ringing has a very small spatial period, it does not radiate into the
far field. Because the far field is the most interesting for the application, we use the far
field as a reference for the accuracy of the method. As can be observed in Figure 8.7,
the error in the far field is much lower than in the near field, because the abscence of the
Gibbs ringing. The average relative difference with an L2-norm in the far field data equals
4 · 10−5. Clearly, the far-field results agree much better than the near-field results. The
small size of the scatterer and its low contrast results in a far field pattern that does not
vary much with the angle. This example is therefore somewhat uninteresting, however, it
has the advantage that the FEM reference could achieve a high accuracy in a multilayered
scattering problem.

In Figure 8.8, we show how both the accuracy and the computation time scale with
the number of unknowns used in the calculation. The horizontal axis in Figure 8.8(a)
contains the sample density, which was lowered by decreasing the range of the n-index in
Eq. (8.12), where nx, ny ∈ {−r, . . . , r} from r = 10 down to r = 1. This corresponds to

a sample density 1/∆x = 1/∆y = (2r + 1)/
√

α/βX. The other simulation parameters
were kept constant throughout this sweep. The results suggest that the computation time
scales as O(1/∆x∆y) = O(NxNy). Since FFTs are used, we expect an O(NxNy log(NxNy))
behaviour, but the logarithms are apparently negligible compared to other parts of the
algorithm at this simulation size. Figure 8.8(b) shows a clear O(Nz) behaviour, which is
expected from Gohberg and Koltracht’s recursion [72].

The second example for which we provide computational data consists of a circular
dielectric cylinder embedded in a multilayered medium as is described in Figure 8.5(b). In
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Figure 8.7: The far field for the case in Fig. 8.5(a) as a function of the transverse wavenum-
ber kT/k0, scattered back into the half-space z < 0. In (a) the magnitude |Es| of the
scattered electric field is shown. In (b) the difference between a JCMWave validation run
and the present algorithm is shown. An average relative error of 4 · 10−5 was observed.
Since an interpolation of the reference data is used that is not accurate at the edge of the
radiation circle, the far field data is truncated for large kT .

Figure 8.9, the electric field is shown at z = 10 nm for X = Y = 100 nm, α = β =
√

2/3
and mx,my ∈ {−4, . . . , 4} and nx, ny ∈ {−7, . . . , 7}, which amounts to one basis function
per 5.1 nm. In the z-direction, 41 basis functions are used with step size ∆z = 2.5 nm.
For the sampling of the regions of Type 2 and 3 we use Nν = 2, Ns = Nm = 15. From
Figure 8.9(b) it is clear that the difference between the result from the present algorithm
and the JCMWave reference is somewhat larger than for the previous case. However, this
is due to a less accurate reference that was calculated with a lower order p-refinement.

In Figure 8.10, the absolute value of the far field reflected into the upper half-space is
plotted. The relative error for the simulation in the far field is 2.8 · 10−3, which is signifi-
cantly larger than for the cubic scatterer, because of the reference, with lower accuracy.

We have calculated the far field with a finer discretization, to show the convergence
of the algorithm. We emphasize that the present algorithm was not developed for small
computational domains. However, for a small computational domain a more accurate
validation result was feasible than for a very large computational domain. The reason that
the present algorithm is relatively slow for small simulation domains is that there exists a
lower limit on the number of unknowns in the x and y-direction, since the Gabor frame (as
we choose it) is inaccurate over a range of at least three window widths αX (see Eq. (8.12))
distance from the point at which the Gabor frame ends. Therefore, at least seven windows
are needed for an accuracy of 10−3 in the middle of the computational domain, both for the
spatial index mx and for the spectral index nx in Eq. (8.12). Consequently, at least seven
values for index mx and seven values for index nx are needed, which amounts to a total of
49 coefficients per direction at minimum. Since we use a Gabor frame in two dimensions,
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Figure 8.8: In Figure (a) both the computation time and the relative error in the far field,
computed as the average of Figure 8.7(b) for a range of nx and ny for the Gabor frame. In
(b) the same is shown, but now for different sampling ∆z in the z-direction.

a minimum of 2401 unknowns is needed for a minimum simulation domain. Note that we
assumed the use of a Gabor frame with α = β =

√
2/3 and the Moore-Penrose inverse to

calculate the dual window, where the accuracy increases exponentially with the distance
to the truncated coefficients for this choice [156] for sufficiently smooth functions. This
effect only applies to small simulation domains. For large simulation domains, the number
of unknowns at the edge of the simulation domain is negligible.

The third and final example for which we computed the scattered electric field consists of
six dielectric blocks of 350× 500× 100 nm deposited on a slightly lossy dielectric substrate
as shown in Figure 8.5(c). In Figure 8.11, the electric field is shown at z = 10 nm for
X = Y = 500 nm, α = β =

√
2/3 and mx ∈ {−7, . . . , 7}, my ∈ {−4, . . . , 4} and

nx, ny ∈ {−7, . . . , 7}, which amounts to one basis function per 27 nm. In the z-direction,
21 basis functions are used with stepsize ∆z = 5 nm. For the sampling of the regions of
Type 2 and 3 we use Nν = 2, Ns = Nm = 20. Since the scatterer is larger than in the
previous examples, it was efficient to choose larger window widths X and Y , which results
a coarser sampling. From Figure 8.11(b) it is clear that this coarser sampling generates
a somewhat more pronounced Gibbs ringing from the edges. However, in the far field,
which is shown in Figure 8.12, the average relative difference with the JCMWave reference
calculation is similar to that for the cylinder case, i.e. 2.5 × 10−3, where the estimated
relative accuracy of the reference calculation was of the order of 2 × 10−3. Even though
the scatterer extends much wider in the xy plane, the number of unknowns in the xy-plane
was increased by only a factor of 5/3, while the accuracy in the far field remained similar.
This clearly shows that the present method performs better for scatterers larger than a
wavelength in size.
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Figure 8.9: The electric field in the plane z = 10 nm plane for the scattering case in
Fig. 8.5(b). In Figure (a) |E| is plotted for an incident plane wave with unit amplitude
and in Figure (b) this is compared with the results obtained from JCMWave.

8.8 Conclusion

A volume integral equation for 3D scattering from finite dielectric objects embedded in
a dielectric layered medium was presented in the mixed spatial and spectral domain and
an algorithm based on Gabor frames was presented for the discretization. The algorithm
employs a mixed spatial-spectral formulation and Gabor frames for the discretization. A
representation of the Green function, contrast current density, and scattered electric field
on a complex integration manifold is employed in the spectral domain. A normal-vector
field formulation in the transverse spatial domain is employed to improve the convergence
in the field-material interaction.

The accuracy of the present algorithm was compared to a FEM algorithm. The results
of both algorithms in the far field agree with each other up to a relative error of 4× 10−5

in one small numerical example. In the other two examples an agreement up to 2.8 ×
10−3 and 2.5 × 10−3 were observed, because the FEM algorithm did not fully converge
with the computational resources at hand. Numerical evidence was presented that the
computational complexity of the present algorithm scales as O(N logN) with the number
of unknowns.
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Figure 8.10: The far field for the case in Fig. 8.5(b) as a function of the transverse wavenum-
ber kT/k0, scattered back into the half-space z < 0. In (a) the magnitude |Es| of the
scattered electric field is shown. In (b) the difference between a JCMWave validation run
and the present algorithm is shown. An average relative error of 2.8 · 10−3 was observed.
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Figure 8.11: The electric field in the plane z = 10 nm plane for the scattering setup in
Fig. 8.5(c). In Figure (a) |E| is plotted for a normally incident plane wave with unit
amplitude and in Figure (b) this is compared with the results obtained using JCMWave.
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Figure 8.12: The far field for the case in Fig. 8.5(c) as a function of the transverse wavenum-
ber kT/k0, scattered back into the half-space z < 0. In (a) the magnitude |Es| of the
scattered electric field is shown. In (b) the difference between a JCMWave validation run
and the present algorithm is shown. An average relative error of 2.5 · 10−3 was observed.
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Chapter 9

Scaling to large simulation domains

In this chapter we will demonstrate that the algorithm of Chapters 6 to 8 can be applied
to simulation domains of large size, without loss of accuracy, or excessive computational
costs. First simulation domains of large transverse extent are covered in Section 9.1.
Subsequently, in Section 9.2 a singular value decomposition is introduced for the M region
of the complex-plane spectral domain integration manifold of Chapter 8. This singular
value decomposition is particularly useful for simulation domains with large longitudinal
extent. The discretization error originating from the other parts of the complex-plane
spectral domain integration manifolds is controllable when the sampling rate in the spatial
domain is kept constant, which is shown in Section 9.3. We end this chapter by showing
numerical results for a scatterer of large transverse extent.

9.1 Scaling to large domain in the transverse direction
1

9.1.1 Identifying potential problems

For a wide applicability of the algorithm based on a complex spectral path deformation
of the integral equation, it is important to show that it can be applied to large simulation
domains. Since the discretization and complex spectral path is the same in the x and y
direction for both two and three-dimensional problems, we will focus on 2D problems for
notational efficiency.

The scaling to larger simulation domains is not trivial, since the exponentials of the form
exp(±Ax) in Eq.(6.22) may lead to instabilities in the algorithm for large x ∈ [−W,W ].
Since we can make a choice for the simulation parameters where AW = c is a constant,
independent of the simulation width W , the exponential factors will then be limited to
exp(c). However, this means that A ∝ 1/W and consequently for larger simulation domains
the deviation from the real kx axis on the complex-plane path is smaller. This means that

1The content of this section was presented at the Progress In Electromagnetic Research Symposium
(PIERS) 2017 [157]
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for larger simulation domains functions are evaluated closer to the branch cuts and poles
in the Green function. On the other hand, a larger W also means that the spectral domain
is sampled finer, since the spectral sampling density is directly proportional to the size of
the simulation domain W . The remaining part of this section is devoted to identifying the
parts of the Green function that could become problematic. For each of these parts we will
demonstrate numerically that the finer sampling compensates for the smaller distance to
the poles and branch cuts.

In the 3D Green function for a homogeneous medium, Eq. (2.38), two potential problems
can be identified in the xz component. The other components do not show any additional
poles or branch cuts, so we will ignore them. These potential problems are displayed in
boxes in

Gh
x,z(kx, kx, z|z′) = (εrb,ik

2
0 − k2

x) e
−γ|z−z′| 1

2γ
. (9.1)

All of these are related to the branch cuts in γ. In a multilayered medium, reflection
coefficients come into play. In principle, the reflection coefficient between two interfaces is a
continuous function, but in the calculation of the effective reflection coefficients, Eq. (2.42),
a factor of

1

1− rue (kT )rde(kT )e−2γdi
(9.2)

is present, where poles can be encountered, when |rue | = |rde | = 1 which happens when kT

corresponds to an angle larger than the critical angle and when |kT | < εrb,ik0, i.e. such
that γ is purely imaginary.

9.1.2 Branch cuts in γ and 1/γ

To show that the branch cuts in γ are not problematic, we will plot γ for several values
of A with k0 = 1 and εrb,i = 1, such that γ(kx) =

√
k2
x − 1. Decreasing A corresponds

to larger simulation domains and therefore the sampling density increases in the spectral
domain. Therefore, we use a scaling on the kx axis around the branch point at kx = 1
given by kx(κ) = 1 + Aκ + jA. This scaling is chosen such that the sampling density
in κ is constant with respect to changes in A. This means that when all lines converge,
a constant sampling density on the κ-axis corresponds to a constant discretization error
when the simulation domain is increased.

Since γ(kx(κ))|κ=0 =
√

1− (1− jA)2 ≈
√
2jA we also use a scaling on the y-axis by a

factor of 1/
√
A. From the results of this procedure, as presented in Figure 9.1, it is clear

the results converge to a single line for different values of A.

The same procedure is followed for the 1/γ function. Since 1/γ(kx(κ))|κ=0 =
1/
√

1− (1− jA)2 ≈ 1/
√
2jA the variable on the y axis is now scaled by a factor of

√
A.

In Figure 9.2 a good convergence is observed as well.
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Figure 9.1: Plot showing the shape of the γ function against coordinates that are scaled to
correspond to a fixed sampling density for large simulation domains. Left shows the real
part and right shows the imaginary part of this function.
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Figure 9.2: Plot showing the shape of the 1/γ function against coordinates that are scaled
to correspond to a fixed sampling density for large simulation domains. Left shows the real
part and right shows the imaginary part of this function.

9.1.3 Oscillations in the propagation function exp(−γ|z − z′|)

It is not directly the presence of branch cuts in the propagation function that gives rise
to problems, rather the presence of oscillations along the branch cut. The number of
oscillations is related to the propagation distance |z − z′|, which is not directly related to
A. However, a large A has the effect of damping the oscillations with the highest frequency,
since the oscillations are present on the real kx axis and dissipate quickly with increasing
distance..

This behavior is clearly visible in Figure 9.3, where a plot has been made for g(kx) =
exp(−zγ(kx)), with z = 20. For large A, more oscillations are visible, because a larger
part of the kx range is plotted since kx = 1 + Aκ + jA. For smaller A, the number of
oscillations decreases, although the amplitude increases. Convergence to a limiting function
is therefore not observed, but clearly a smaller A yields a propagation function that is easier
to discretize for a fixed z, since the number of oscillations decreases. On the other hand
we can conclude that for a simulation domain that is small in the x direction (Large A)
and large in the z direction, the method breaks down, since that yields a large number of
undamped oscillations. Therefore a simulation width W should not be chosen too small. In
our numerical examples we observed that a simulation of about two wavelengths is usually
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enough for a good accuracy. A much smaller simulation domain is not realistic, since the
middle part of the complex spectral path in Eq. (6.20) becomes too large for large A. This
is mainly because the information density in the Green function requires several samples
per wavenumber

√
εrb,ik0, and when the simulation domain W is too small, this is not

satisfied.
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Figure 9.3: Plot showing the shape of the propagation function g(x) = exp(−20γ) against
coordinates that are scaled to correspond to a fixed sampling density for large simulation
domains. Left shows the real part and right shows the imaginary part of this function.

9.1.4 Poles in the effective reflection coefficients

A pole, such as found in the effective reflection coefficients (e.g. Eq. (2.42)) can be modeled
by the function p(k) = 1/(k2 − 1). For the poles we use a scaling factor of A on the y
axis. The same procedure as in Section 9.1.3 can be carried out for this function and in
Figure 9.4 we see that all graphs coincide, which means that also poles are not problematic.

To conclude, none of the potential causes mentioned above gives rise to problems for
scaling to large simulation domains. Therefore, we conclude that scaling to larger simula-
tion domains will not harm the accuracy of the discretization on the complex-plane path
deformation under the conditions that AW is constant and that the sampling on the x-axis
remains constant, which means that the sampling rate on the kx axis is proportional to W .
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Figure 9.4: Plot showing the shape of the propagation function p(k) = 1/(k − 1) against
coordinates that are scaled to correspond to a fixed sampling density for large simulation
domains. Left shows the real part and right shows the imaginary part of this function.
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9.2 A singular value decomposition for Region M 2

9.2.1 Abstract

With a 3D spatial spectral integral-equation method for EM scattering from finite objects,
a significant part of the computation time is spent on a middle region around the origin of
the spectral domain. Especially when the scatterer extends to more than a wavelength in
the stratification direction, a fine discretization for this region is required, which consumes
much computation time in the transformation to the spatial domain. Numerical evidence
is shown that the information in the middle region of the spectral domain is almost linearly
dependent. Therefore, a truncated singular-value decomposition is proposed to make the
computation time largely independent of the discretization of this middle region. For a
practical example the increased computational efficiency and the approximation error of
the singular-value decomposition are shown.

9.2.2 Introduction

Previously a 2D and 3D spatial spectral integral equation methods for electromagnetic scat-
tering from dielectric objects in multilayered media were proposed [118, 159, 152] (Chapters
5-8). This approach is based on handling the field-material interaction in the spatial do-
main and the Green function in the spectral domain. Fourier transformations are needed
to transform the contrast current density and the electric field between the spatial and
spectral domain. The scattered electric field is computed from the contrast current density
by a recursive set of multiplications by several parts of the Green function.

The Green function contains branch cuts and poles. To avoid these singularities the
contrast current density and scattered electric field are therefore represented on a manifold
that is deformed slightly into the complex plane. This deformation decomposes each of the
two transverse spectral directions into three parts, two parts containing most information
and a small part connecting them. In total, this yields nine different regions. Although the
connecting part is small, still a significant amount of computation time is spent on trans-
forming information represented in this part to the spatial domain. Since the connecting
part contains information about waves traveling close to the stratification direction, a fine
discretization is needed especially for objects with a large extent in this direction. Each
basis function in this connecting part is Fourier transformed individually, although the
contained information is largely redundant. We propose a singular-value decomposition to
remove the redundancy and speed up these computations.

9.2.3 Spectral path

We use the formulation for electromagnetic scattering as explained in [135, 152] (Chap-
ters 2, 6 and 8. In these articles, the branch cuts and poles in the Green function are evaded

2This section has been accepted for the International Conference on Electromagnetics in Advanced
Applications ICEAA 2017 Proceedings [158]
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by representing the contrast current density, the electric field and the Green function in
the spectral domain on a path

τα(kα) ∈


kα − jA if kα < −A

(1 + j)kα if − A ≤ kα < A

kα + jA if kα > A,

(9.3)

with α ∈ {x, y}. The kxky plane is then divided into nine regions as shown in Figure 9.5,
where we will focus on the middle region indicated by M. In the z direction, a piecewise-
linear (PWL) expansion in the spatial domain is employed.

Figure 9.5: Subdivision of the kx − ky plane with piecewise-constant and piecewise-linear
imaginary shifts.

9.2.4 Discretization of the middle region

2D: one-dimensional Taylor series

Gabor frames are used as a discretization for the contrast current density on the regions
kα < −A and kα > A. In the figure M stands for middle and the other capital letters
abbreviate the wind directions. For the two-dimensional algorithms in [159, 135, 147]
(Chapters 6 and 7), where the y direction is absent, a Taylor-series approximation with
Na + 1 terms is employed on the connecting part −A < kx < A. A function f(kx) is
approximated on the spectral path of Eq. (9.3) for kx ∈ [−A,A] by

f(τx(kx)) ≈
Na∑
n=0

f (n)(0)

n!
τx(kx)

n. (9.4)

So, instead of function values on the path τx, the derivatives at kx = 0 are kept as a
representation. In the spectral domain, we multiply the contrast current density and the
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Green function. The result m(kx) of multiplying two functions, say g(kx) and h(kx), where
the derivatives of these functions are known, can then be calculated by the Leibnitz rule
as

m(n)(0) =
n∑

ℓ=0

n!

(ℓ− n)!ℓ!
g(ℓ−n)(0)h(n)(0). (9.5)

Since Na derivatives are needed, the number of operations for such a multiplication scales
as O(N2

a ) for the number of terms in the Taylor series. For problems without features
extending more than a wavelength in the z-direction, around ten terms are required in the
Taylor series. Even though this Taylor series is computationally not very efficient, it does
not significantly contribute to the overall computation time, owing to the small number of
terms in the truncated Taylor series.

3D: Piecewise-linear functions

For a 3D algorithm, functions are represented on complex paths τx and τy, in the kx
and ky direction, respectively. Although a two-dimensional Taylor series would be able
to represent the Green function and contrast current density on the region (kx, ky) ∈
[−A,A]2, the quadratic computational complexity in the multiplication in Eq. (9.5) makes
it inefficient for a generalization to two dimensions. Therefore, the Taylor-series approach
was replaced by a PWL discretization for the 3D algorithm in [152] (Chapter 8). With
the PWL discretization, a function f(τx(kx), τy(ky)) is approximated by a list of function
values fnx,ny = f(τx(nxA/Np), τy(nyA/Np)) as

f(τx(kx),τy(ky)) ≈
Np∑

nx=−Np

Np∑
ny=−Np

Λnx(kx)Λny(ky)fnx,ny ,
(9.6)

where

Λn(k) = max{0, 1− |xNp/A− n|}. (9.7)

With these basis functions most terms in the sum of Eq. 9.6 are zero. Therefore, the
multiplication operation simply becomes a pointwise multiplication, which scales linearly
with the number of basis functions in Region M, instead of quadratically in Eq. (9.5).

9.2.5 Transformation to the spatial domain

Transformation of PWL functions

To transform the representation on Region M in Eq. (9.6) to the spatial domain as needed
for the electric field, we use the Fourier integrals over the complex spectral path restricted
to M, i.e.

Ln(x) =
1

2π

∫ A

−A

dk Λn(k)e
j(1+j)kx. (9.8)
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Figure 9.6: A set of Ln(x) for Np = 20, red signifying n = 1 and purple n = 41, and
A = 5.6× 10−3. These integrals are cut off at x = ±6 corresponding to the discretization
used in the spatial domain.

Consequently, fM(x), i.e. the contribution of region M to the spatial domain, can be
written as

fM(x) =

Np∑
nx=−Np

Np∑
ny=−Np

fnx,nyLnx(x)Lny(y). (9.9)

Now we rewrite this into a matrix formulation. First, let f represent the size (2Np+1)2

vector of fnx,ny coefficients. The spatial domain is discretized via the discretization operator
S into Ns basis functions bm(x, y). For example, we denote the discretized version of the
arbitrary function t(x, y) as tm = S ◦ t(x, y), such that t(x, y) =

∑Ns

m=0 tmbm(x, y). We use
this discretization operator to calculate Lm,(nx,ny) = S ◦ (Lnx(x)Lny(y)), such that

Lnx(x)Lny(y) =
Ns∑
m=1

Lm,(nx,ny)bm(x, y), (9.10)

where we will use the notation L for the Ns×(2Np+1)2 matrix, with in general Ns >> N2
p .

A discretized counterpart of Eq. (9.9) can be computed by computing fM = L · f , which
yields a vector of lengthNs. This matrix-vector product has to be computed, which requires
O(NsN

2
p ) operations. Especially for large, but realistic, Np this becomes the dominating

contribution to the computation time, as will be shown in Section 9.2.6.

Singular-value decomposition

In Figure 9.6, a set of Fourier transforms of the PWL basis functions, Ln, as defined in
Eq.(9.8) are shown. Clearly, there is considerable redundancy in this set. For a large
distance from x = 0, these integrals Ln(x) are less redundant. However, they are only
required for small x where the scattering object is located. This suggests that the sum-
mation in Eq. (9.9) can be accelerated by a truncated singular-value decomposition (SVD)
[38, Chapter 2.6] at initialization.
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The matrix L can be decomposed into

L = U · Σ · V T , (9.11)

where many entries in the diagonal (2Np + 1)2 matrix Σ are negligible. The elements are
said to be negligible when they are smaller than threshhold ϵ, and will then be set to zero.
Afterwards, Nt ≤ (2Np + 1)2 significant entries in the diagonal matrix remain. Now L can

be approximated by L ≈ (Ũ · Σ̃) · Ṽ T
, where Ṽ

T
is an Nt × (2Np + 1)2 matrix and (Ũ · Σ̃)

is an Ns ×Nt matrix.
Because there is a significant redundancy in the system, usually we choose Nt <<

(2Np + 1)2, computing

fM = (Ũ · Σ̃) · (Ṽ T · f) (9.12)

will require only O(Nt(N
2
p +Ns)) operations instead of O(N2

pNs). Since the spectral Region
M is of small size, compared to the complete spectral range included in the simulation, it
represents only a small amount of information compared to the number of spatial basis
functions Ns. For this reason Nt does not show a significant increase after a certain number
PWL basis function Np, as will be shown next.

9.2.6 Impact on accuracy

The idea to apply the SVD on the region M in the spectral domain is tested by computing
the scattering from a dielectric block of 400 × 400 × 800 nm illuminated by an incident
plane wave with wavelength λ = 425 nm as shown in Figure 9.7(a). The amplitude of
the scattered electric field, |E|, in the far field is plotted against the transverse part of
the wavenumber (kx, ky), and k0 = 2π/λ in Figure 9.7(b). For large Np, the rank of the
truncated SVD increases to a value that is independent of Np and depends merely on the
error level ϵ as is shown in Figure 9.8(a). Without the SVD, the computation time increases
significantly with large Np. However, when the truncated SVD is used, the computation
time does not depend strongly on Np as can be observed in Figure 9.8(b). We did not
include the computation time of the SVD in these results, but this number was small
compared to the total computation time and in principle the SVD-decomposition can be
cached. To show how the truncated SVD influences the accuracy of the far field, we have
plotted the L2-norm of the relative difference in the far-field data for different truncation
thresholds ϵ and numbers of PWL basis function Np. A reference was calculated with
ϵ = 10−7 and Np = 40. In Figure 9.8(c), it can be observed that the error due to the use of
the SVD can be made small, when Np is chosen large enough. For an error level of 10−3 a
truncation threshold ϵ = 10−2 is already sufficient, since region M contributes only a part
of the complete electric field, to which all regions in Figure 9.5 contribute.

9.2.7 Conclusion

The Fourier transformation from the spectral domain to the spatial domain of a small
patch of the spectral domain can take up more than half of the computation time. A
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(a) (b)

Figure 9.7: (a) Scattering setup, (b) the upwards-directed electric-field amplitude in the
far field, |E(kx, ky)| (a.u.) from this scattering setup.

truncated singular-value decomposition was used to speed up the computation of this
Fourier transform, so the time spent on this part was reduced to less than 10%, with an
error level of 10−3.

Numerical evidence was shown that the rank of the singular-value decomposition and
therefore the computation time depends weakly on the fineness of the discretization on this
part of the spectral domain.

9.3 Scaling to large longitudinal distances

We will now demonstrate how the accuracy in the present algorithm scales to large simula-
tion regions in the z direction. To save space, we will assume in this section zmin = 0 and
a background permittivity εrb,i = 1. We deal with the lossless case, since the propagation
function becomes smoother with increasing losses, so the lossless case is the hardest.

The main difficulties with the spectral discretization is that for large zmax the vertical
propagation function, e−γzmax , which exhibits many oscillations in the domain kx ∈ [−k0, k0]
and a sharp cutoff for |kx| larger than k0. Although the complex spectral path smooths
these effects, their behavior for large z must be investigated. In the spatial domain, this
propagation function is very well behaved. At a large distance, the number of oscillations
within the simulation domain will even decrease to an almost constant function since the
wave front is almost flat. The contributions of the spectral oscillations are only visible at
horizontal values in the xy-plane that are outside our simulation domain.

The oscillations in the spectral domain are caused by γ being purely imaginary (for
non dissipative media) in the range kx ∈ [−k0, k0]. On the complex spectral path and for
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Figure 9.8: (a) The size of the significant part of the SVD truncated at ϵ with Np basis
functions. (b) The percentage of the total computation time that is spent on region M.
With SVD the computation time was between 290 and 350 seconds on a single core of a 3.1
GHz Xeon E5-2687 processor, without SVD this increased up to 950 seconds with Np = 25.
(c) The error in the region M discretization relative to the complete far-field result as in
Figure 9.7(b)

small A, γ can be approximated as

γ =
√

(kx ± jA)2 − k2
0 ≈ jγr − A|kx|/γr, (9.13)

where γr equals γ(Re(kx))/j, which is real-valued for |kx| < k0. The A/γr term is com-
pletely real and therefore it is a factor that dampens

exp(−γz) ≈ e−jγrz e−A|kx|z/γr . (9.14)

The approximation in Eq. (9.13) allows us to clearly identify the two main influencing
factors of the absolute discretization error as is shown in Figure 9.9. The first is that for
large z the propagation function exp(−jγrz) in Eq. (9.14) becomes increasingly oscillatory,
which makes the discretization with a Gabor frame exhibit a large error. The second factor
is that this function is dampened exponentially by exp(−A|kx|z) in Eq. (9.14) for large z
and nonzero kx, the absolute discretization error decreases with the exponential damping
of the function itself. For small kx the damping is small, but this falls in the middle
region of the complex spectral path, the shaded region in the Figure 9.5, where a different
discretization is employed. The question is whether the damping will compensate for the
increased number of oscillations for large propagation distances to keep the absolute error
small enough.
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Figure 9.9: The propagation function exp(−γz) for k0 = 1 plotted for different zmax values.

When we fix the simulation range W and increase the propagation distance z, we
observe that first the approximation error increases because the number of oscillations
increases. When the propagation distance is increased even further we observe that the
propagation function as a whole tends to zero, except in a decreasing area around kx = 0.
However, Gabor coefficients are not used in the middle part around kx = 0, so at kx = ±A,
where the Gabor-represented part starts, the whole propagation function converges to zero,
including its error. From this observation we expect there to be a maximum in the absolute
approximation error for exp(−γz) at a certain z for each width W of the domain. In
Figure 9.10 (a) and (b) this maximum is clearly visible. Here we see the absolute error in the
discretization of exp(−γz) on the left part of the complex spectral path, for different sizes
of the simulation domain as a function of the propagation distance z. These plots have been
made for λ = 425nm, a Gabor frame with T = 300nm, α = β = q/p = 2/3 oversampling
in the Gabor frame, and the Gabor coefficients were truncated at M = {4, 6, 8, 12, 16, 24}
and N = 9 for m ∈ {−M, · · · ,M} and for n ∈ {−N,N} in Eq. (4.3). The L2 norm of
the propagation function on the real kx-axis, to which all these absolute errors should be
compared, is of the order 1.0 · 107 · · · 1.4 · 107 and depends weakly on A. It is important
to find the position z = p(W ) of the maximum in the error as a function of W , in order
to test whether there are certain combinations of z and W where an increase in both W
and zmax can increase the maximum error in the propagation function. When W increases,
the maximum absolute error of the approximation is found at z = p(W ) and the error
should decrease along this curve for a stable scaling to large simulation domains. This
would mean that, when the simulation width (W ) increases, the absolute error in the
propagation function is bounded by a decreasing function for any longitudinal distance z.

Although we were not able to find an analytical expression for this function p(W ),
we have two strong arguments and numerical evidence concerning the behavior of this
function. The first argument is a renormalization argument. Assume that A∗, Z∗ and W ∗

are such that the maximum error is reached for simulation width W ∗. Now we would like
to find the propagation distance that maximizes the error for simulation width 2W ∗. From
the assumption that Z∗ and A∗ have values at which the damping starts to take over,
it follows that exp(−A∗kz) has a strong damping for larger k. We can assume that the
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input Damping Oscillations
W Z k-range damping exponent significant oscillations sampling significant
W ∗ Z∗ A∗ . . . 2A∗ −A∗2Z∗ · · · − 2A∗2Z∗ yes reference reference yes
2W ∗ Z∗ A∗ . . . 2A∗ −A∗2/2Z∗ . . . (−A∗2Z∗) yes same double no
2W ∗ 2Z∗ A∗ . . . 2A∗ −A∗2Z∗ . . . (−2A∗2Z∗) yes double doube yes
2W ∗ 4Z∗ A∗ . . . 2A∗ −2A∗2Z∗ . . . (−4A∗2Z∗) no quadruple double yes
2W ∗ Z∗ A/2∗ . . . A∗ −A∗2/4Z∗ . . . (−A∗2/2Z∗) yes half double no
2W ∗ 2Z∗ A/2∗ . . . A∗ −A∗2/2Z∗ . . . (−2A∗2Z∗) yes same doube no
2W ∗ 4Z∗ A/2∗ . . . A∗ −A∗2Z∗ . . . (−2A∗2Z∗) yes double double yes

Table 9.1: Table identifying where approximation errors can be expected during renormal-
ization

largest part of the error originates from k ∈ [A∗, 2A∗], since the damping for k > 2A∗ will
be dominating anyway.

In Table 9.1 we show where significant contributions to the approximation error can
be expected. The first row shows the reference at W ∗, A∗ from which we start and the
kx interval A∗, 2A∗ where the discretization error is the largest. We assume that these
values represent a maximum in error. The columns ‘significant’ indicate whether or not
a maximum error can be expected based on the damping or based on the number of
oscillations per sample, respectively.

The rows with (2W ∗, Z∗) show that the error will be significantly lower because of
the increased sampling, even though there is less damping. The rows with (2W ∗, 2Z∗)
show a possibly significant contribution for k ∈ [A∗, 2A∗], but not for k ∈ [A∗/2, A∗].
However, the largest contribution to the error should be in k ∈ [A∗/2, A∗], otherwise some
further propagation in Z will still increase the error and hence this is not the maximum.
The rows with (2W ∗, 4Z∗) show a significant contribution to the error for k ∈ [A∗/2, A∗],
with significant damping for larger k. Since this is the same situation as for (W ∗, Z∗)
we conclude from the renormalization that the largest error for 2W ∗ can be expected
at Z = 4Z∗. Consequently, the maximum error can be expected at Z = αW 2, with α
a constant that we can determine numerically and which depends on the details of the
discretization.

A second argument why the maximum of the error can be expected near Z = αW 2

follows from a spatial perspective. Spatially, the propagation function can be looked upon
as an electric field point source that radiates uniformly. Our approach divides the spectral
domain in three parts, of which fL and fR represent left- and right-propagating waves,
respectively. For kx on the real line, we can rigorously pose this, but since we have moved
a little bit into the complex plane, this is no longer entirely true. However, waves moving
to the right are still heavily damped for negative kx and vice versa.

On the complex spectral path, we can distinguish between contributions propagating
largely in the z direction, which are mainly represented in the middle part of the integration
path and waves moving to the left or to the right for a negative or positive real part of
kx, respectively. An angle φ can be defined between which waves are represented by the
middle part or by the left and right parts of the complex integration path. This angle
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depends on A according to

sinφ =
A

k0
, (9.15)

since the left and right parts start at Re(kx) = ±A.
The left and right parts of the propagation function discretization are damped at large

propagation distances because their contribution is outside the simulation domain, as illus-
trated in Fig. 9.11. At a large longitudinal distance, the left and right parts are negligible,
so it is the middle part of that carries the information of the propagation function and in
the middle part |kx| <

√
2A.

When the simulation width W increases, A decreases and with it the angle φ. Since a
doubling of W leads to halving A and therefore also to halving φ (when φ is sufficiently
small), the propagation distance z over which the outer parts contain a significant contri-
bution is quadrupled. Consequently, the significant z-range for the left and right parts of
the propagation function again behaves as Z = αW 2. Since the largest approximation er-
ror can again be expected towards the end of this range, because there the highest number
of oscillations can be observed in the propagation function, the maximum in the error is
again expected to be reached around Z = αW 2.

In Figure 9.10(a) and (b), we show the absolute error in the propagation function
for different simulation region sizes and different propagation distances with and without
oversampling. In Figure 9.10(c) we show that for larger simulation regions (where sin(φ) ≈
φ) the maximum error can indeed be found along a line Z ∝ W 2. It is also clearly visible in
Figure 9.10(d) that the absolute error decreases along this line whenW increases. From this
trend we can conclude that an increase of the simulation region with a constant sampling
density of Gabor coefficients will not deteriorate the accuracy of this representation of the
Green function for the homogeneous medium, Eq. (2.38).

Throughout this whole discussion we ignored the number of coefficients needed for the
middle part. For the middle part there is a need for an increasing number of derivatives
when Ztot increases. We observed that for realistic simulation sizes from a few to tens
of wavelengths the time needed to evaluate the middle part is negligible compared to the
outer parts for 2D simulations, when the SVD decomposition in Section 9.2 is employed.

9.4 Numerical example: large grating

To conclude this chapter, we show the result for scattering from a dielectric grating with
a varying number of repeating elements. The scattering setup is shown in Figure 9.12.
We are interested to know the number of repeating elements after which an infinitely
repeating scatterer is a good approximation of this scattering setup. The far-field scattering
is computed for N ∈ {2, 4, 6, 10, 16, 25, 36} repeating elements. We have chosen a Gabor
frame with a window width X = 500 nm. The range of Gabor coefficients was chosen in
the x direction mx ∈ {−Mx, · · · ,Mx} and nx ∈ {−Nx, · · · , Nx} in Eq. (4.3) and similarly
in the y direction. In the x direction Mx is varied with the number of repeating elements
Mx ∈ {4, 7, 7, 13, 16, 25, 40}, the other numbers are constant: My = 4, Nx = Ny = 7.
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For N = 6 we have compared the far field with a reference result that was computed
by using the finite element method implementation JCMWave [134], with an estimated
error of 3 · 10−3. An L2 difference of 3 · 10−3 was observed between the present algorithm
and the results computed with FEM. The optimizations discussed in Chapter 10 were also
employed.

In Figure 9.13(a), (b) and (c) the absolute value of the x, y and z-components of the
electric field are shown for N = 36 repeating elements, for a cross section computed at
the layer interface. In the middle, the electric field around every block looks very similar.
At the end, some waves scattering from the edges are visible. To get a better idea of
the far-field scattering from this setup, we show the far field for N = 6 and N = 36 in
Figure 9.14(a) and (b), respectively. The zeroth and first diffraction orders can be clearly
recognized as indicated.

With an increasing number of repeating elements, the maxima become more localized
and the peak amplitude increases as can be seen in Figure 9.14. To see how the far field
converges when the number of repeating elements increases, we look at the ratio between
the first and zeroth order maximum, since that converges for large N . In Figure 9.15(a) the
convergence of this ratio is clearly visible. Although we do not know to which value this
ratio converges, we have found a fitted value of 0.4977 as the result for an infinite grating.
In Figure 9.15(b) the deviation of E1/E0 from the fitted value is shown for varying N . In
Figure 9.15(c) the kx value of the first-order maximum is shown. From the dimensions of
the problem it can be deduced that for the infinite case the maximum should be located
at kx = 425/700k0 = 8.976 · 106nm−1. The convergence to this value for a large number
of repeating elements is illustrated in Figure 9.15(d). We conclude that at around 10
repeating elements the difference between the far-field scattering from a finite or infinite
grating with these dimensions becomes smaller than the accuracy of the simulations, i.e.
3 · 10−3.

We conclude by remarking that the computation of the largest scattering case was done
on a laptop with an i7-4600U processor in less than 15 minutes, for a simulation domain
larger than 60λ× 5λ× λ/5. The algorithm required a total memory of 13 Gb.
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Figure 9.10: The absolute error in the discretization of the right part of the complex
plane spectral integration path for the propagation function exp(−γz) over range z with
simulation width W . These errors should be compared to 1.0 · 107 · · · 1.4 · 107, which is the
L2 norm of the propagation function itself. (a) Without oversampling, (b) with a factor 4
oversampling, i.e. 4 times as much Gabor coefficients are computed. (c) The absolute error
in a log10 Z, log10 W . The line is a fit to the maximum values in the direction Z ∝ W 2.
(d) The absolute discretization error along the line for different oversampling factors
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Figure 9.11: Illustration to clarify which part of the representation dominates which part
of the simulation domain. Because of the move into the complex domain, the transition
between the regions is smoother than implied in the picture.

Figure 9.12: The scattering setup. The number of repeating N elements is varied.
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Figure 9.14: The log |Eα(kx, ky)| for the radiating wavenumbers in the Ewald circle k2 < k2
0.

In (a) for N = 6 repeating elements and in (b) for N = 36 repeating elements.

2 5 10 20
N

0.50

0.51

0.52

0.53

0.54

E1/E0

2 5 10 20
N

5.×10-4
0.001

0.005

0.010

0.050

0.100

E1/E0 relative to

value for N->∞

2 5 10 20
N

8.0×106

8.2×106

8.4×106

8.6×106

8.8×106

9.0×106
kx,max

2 5 10 20
N

5.×10-4
0.001

0.005

0.010

0.050

0.100

kx,max relative to

value for N->∞

Figure 9.15: (a) The ration between the zeroth and first order maxima, E1/E0. (b) The
relative difference of this ratio to a fit for an infinite number of repeating elements (N →
∞), given by |E1/E0 − 0.4977|/0.4977. (c) The kx coordinate of the maximum. (d)
The relative difference of this coordinate to the value for an infinitely repeating scatterer
(N → ∞), given by 8.976 · 106nm−1.
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Chapter 10

Fast operations for a
Gabor-frame-based integral equation
with equidistant sampling 1

10.1 Abstract

We consider the computation time of a 3D Gabor-frame based spatial spectral integral
equation solver for scattering from dielectric objects embedded in a multi-layer medium.
Based on the Gabor frame, a new set of basis functions is proposed, together with a set
of equidistant Dirac-delta test functions. Using this construction, we approximate the
operations of Fourier transformation and pointwise multiplication by a method that is
significantly faster than the original method. A numerical example is included where the
computation time is reduced by a factor of 15, while preserving accuracy.

10.2 Introduction

Spatial spectral solvers for computing the scattering from dielectric objects embedded in a
multilayered medium are presented in [135, 147, 152] (Chapters 6-8). These methods rely
on the Gabor frame and a discretization in both the spatial and the spectral domain. In
the spectral domain, a deformation to a complex manifold is employed on which the Green
function is smooth enough to allow for a Gabor-frame representation. The main advantage
of the Gabor frame is that the Fourier transformation is represented analytically by a
simple transposition of the Gabor-coefficient matrix. The downside of the Gabor frame
is that the operation of multiplication is represented through an operator that contains
a large number of small-sized FFTs and considerable overhead in reordering coefficients
[118].

1This chapter was submitted as an article for the journal IEEE Antennas and Wireless Propagation
Letters [160].
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In general, a fast matrix-vector product2 requires a suitable discretization method.
In particular, this method should allow for both a rapid multiplication of functions and
a rapid Fourier transformation to and from the spectral domain. A fast multiplication
can be achieved when product of basisfunctions are bi-orthogonal to the test functions,
since that allows for a coefficient-wise multiplication. Conversely, when they are not bi-
orthogognal, each multiplication between two basis functions requires testing with multiple
test functions, which is undesirable. The products of Gabor frame functions and the dual
Gabor frame functions as test function are not bi-orthogonal. Secondly, a fairly rapid
Fourier transformation can be achieved when the test functions are all identical and spaced
uniformly, since that allows the use of FFTs. Additionally, the basis functions should also
decay sufficiently fast, to allow for a truncation to a small region in the spatial and spectral
domain.

We show how the electric field and contrast current density can be represented by a set
of basis functions that are related to a Gabor frame and a set of Dirac-delta test functions
related to the same Gabor frame that together satisfy the above conditions. In a numerical
example, we demonstrate the decrease in computation time and compare results for both
discretization methods with comparable accuracy.

10.3 Gabor frame - definitions

We define the Gabor frame [99], starting with the Fourier transform

φ̂(k) =

∫ ∞

−∞
dx φ(x)e−jkx. (10.1)

For the Gabor frame we follow the definition in [100], i.e.

gmn(x) = g(x−mαX)ejβKnx, (10.2)

with m,n ∈ Z and where we use the window function

g(x) = 2
1
4 e

(
−π x2

X2

)
. (10.3)

Here, X = 2π
K

is the spacing of the window functions in the spatial domain for an exact

frame. In this article, we assume a rational oversampling with α = β =
√
p/q, and choose

p = 2 and q = 3. The dual window, η(x), is calculated with the aid of the Moore Penrose
pseudo-inverse and the method described in [99, 100]. When we have chosen a frame and
a dual window, we can calculate the Gabor coefficients of a (square-integrable) function f
as

fmn =

∫
R

dx ηmn(x)f(x) (10.4)

2In the sence of Section 3.4
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and function values from Gabor coefficients via

f(x) =
∑

m,n∈Z

fmngmn(x). (10.5)

In practice, the number of Gabor coefficients is truncated to m ∈ {−M, · · · ,M} and
n ∈ {−N, · · · , N}, which yields a total number of 2L + 1 coefficients. By taking the
Fourier transformation of the frame function gmn(x), a spectral frame is defined as

ĝnm(k) = ĝ(k − nβK)ejαXmke−2πjαβmn. (10.6)

10.4 Basis functions

10.4.1 Representation using lists

In [100], Bastiaans describes the fast Gabor transformation B, that calculates the Gabor
coefficients of a function from an uniformly sampled function. This algorithm can also be
inverted to obtain B−1, to calculate a list of uniformly sampled function values from a set
of Gabor coefficients. The uniformly sampled lists will be denoted in boldface. Since the
lists are defined in connection with a particular Gabor frame, the sampling is restricted,
i.e. the sampling operator S samples a function according to that Gabor frame

f = S ◦ f = {f(ℓ∆x), ℓ ∈ −L, · · · , L}, (10.7)

with L as defined above and where ∆x depends on the parameters defining the Gabor
frame via

∆x =
X

β(2N + 1)
. (10.8)

10.4.2 Shape of the basis functions

A continuous function is approximated by a set of weighted basis functions. In the context
of Gabor frames, the most obvious choice for a basis are the frame functions of Eq. (10.2),
which were used in [135, 147, 152, 118]. However, here we will not use the Gabor frame
directly as a basis. Instead, we derive the basis functions from the fast Gabor transfor-
mation B of entries to uniformly sampled lists. Since the list representation is tied to the
Gabor frame via B, we can compute the Gabor coefficients for each list. The coefficients (in
ℓ2(R)) are related to a continuous function (in L2(R)) via Eq. (10.5). Therefore, we define
basis functions corresponding to the list bi = {0, · · · , 1, · · · , 0} with a one at position i,
that can be found by means of

bi(x) =
M∑

m=−M

N∑
n=−N

gmn(x) {B ◦ bi}mn , (10.9)
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Figure 10.1: Several basis functions for a Gabor frame with X = 50nm, M = 7, N = 6,
L = 97.

where the circle denotes the application of an operator.

In Fig. 10.1, we have plotted several of these basis functions. Several interesting features
can be observed about these functions. The basis functions have zeroes at the ∆x grid,
except at x = i∆x, where they are one for i < pN/q. The reason is that they are produced
by B and B−1 on the bi list defined for the ∆x grid. Another observation is that, for high
index i, the basis functions are very small. This is caused by the redundancy in the Gabor
frame. We also observe that, although these basis functions look similar, they are not one
function that is merely shifted in position. There are subtle differences between the basis
functions. The final observation that we mention is that bi(x) resembles a sinc function,
which decays slowly. However, outside the simulation domain, bi(x) decays much faster
than the sinc function. In Fig. 10.2(a) and (b), we have also plotted several basis functions
in the spectral domain, where it is clearly visible how these basis functions b̂i(kx) resemble
truncated complex exponentials, since they are produced by functions resembling Dirac-
Delta distributions. It is interesting to notice that the truncation has a smooth transition,
so the bi functions rapidly decay to zero at the ends of the simulation domain in the spatial
domain.

10.4.3 Testing functions and inner products

In the Gabor-frame discretization we used the dual Gabor frame as test functions, which
works well, since the dual Gabor frame is dual to the Gabor frame with respect to the
L2(R) norm. For the set of bi(x) basis functions we use Dirac delta test functions on the
∆x lattice, a set which is dual with respect to the L2(R) norm as well.

An L2(R)-based inner product was employed for the Gabor-frame based method. The
computation of an L2-based inner product was not used here, since all basis functions are
slightly different, i.e. they are not simply shifted copies of each other. This means that
⟨bi|bj⟩L2(R) has a different value for each i and j and there is for example no translation
symmetry in the sense that ⟨bi|bj⟩L2(R) ̸= ⟨bi+m|bj+m⟩L2(R).

With the Dirac-delta testing procedure, the test functions are ti(x) = δ(x − i∆x). As
we mentioned before, the basis functions are such that that ⟨bi|tj⟩L2(R) = δij, i.e. they are
bi-orthogonal for i, j < p/qL. Since bi(x) and tj(x) are biorthogonal, we choose the ℓ2
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Figure 10.2: (a) The Fourier transform of basis functions of the frame in Figure 10.1.
(b) The difference between two spectral basis functions and their corresponding complex
exponentials.

inner product

⟨f |h⟩ = ∆x

L∑
i=−L

fihi ≈ ⟨f |h⟩L2 =

∫ ∞

−∞
dxf(x)h(x) (10.10)

with f and h discretized from smooth functions f(x) and h(x), respectively by Eq. (10.7).
¿ Clearly, Eq. (10.10) is equivalent to numerically evaluating the integral in the L2 in-
ner product between f(x) and h(x) by N equidistant samples. ¿ Therefore, Eq. (10.10)
converges to the L2 inner product when N increases.

10.5 Operations

10.5.1 Multiplication

First, we emphasize that the multiplication operation is non-linear. Consequently, when
two functions can be represented well in a Gabor frame, their product is not necessarily well
represented in the same Gabor frame. The reason for this is that a spatial multiplication
is equivalent to a spectral convolution. For that reason the product of two functions
potentially has twice the spectral support of the original functions.

An approximation has to be made to fit the product in the space spanned by the
Gabor-frame of the original functions. In the Gabor-frame formulation [118] an (almost)
exact multiplication was implemented, but in the end the spectral range is truncated. This
is equivalent to an exact multiplication followed by testing with a finite number of test
functions.
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We apply this procedure to find a multiplication operation with the basis bi(x), and
test functions ti(x). The procedure for multiplying lists f and g then becomes

(fg)i =

∫ ∞

x=−∞
dx

∑
j,k

fjgkbj(x)bk(x)ti(x) = figi, (10.11)

where we used the property that bi(j∆x) = δij. We would like to emphasize that it is the
choice of the test function that yields this simple form of multiplication.

10.5.2 Fourier transformation

The advantage of a uniformly sampled list-based approach is that multiplication is a very
fast operation. However, now the Fourier transformation is slower. It is possible to imple-
ment the Fourier transformation by succesively applying a fast Gabor transformation B, a
Fourier transformation F on Gabor coefficients and then an inverse Gabor transformation
B̂−1, i.e.

f̂ = B̂−1 ◦ F ◦ B ◦ f . (10.12)

The main drawback is the use of the relatively slow operations B and B̂−1. For a more
optimized method, we exploit the fact that without truncation

∞∑
m=−∞

∞∑
n=−∞

gmn(x
′)ηmn(x) = δ(x− x′), (10.13)

and therefore, using Eq. (4.31), we can write its Fourier transformation in x′ as

∞∑
m,n=−∞

ĝnm(kx)e
2πjαβmnηmn(x) = e−jkxx. (10.14)

Now, the Fourier transformation of a function f can be approximated by

f̂(kx) =

∫ ∞

−∞
dx

∞∑
m,n=−∞

f(x)ĝnm(kx)e
2πjαβmnηmn(x)

≈ ∆x

∞∑
m,n=−∞

ℓ=L∑
ℓ=−L

f(ℓ∆x)ηmn(ℓ∆x)ĝnm(kx)e
2πjαβmn.

(10.15)

In this expression, we recognize the Gabor transformation, Eq. (10.4), as the integral
over x, which is replaced by a sum in the second line. This approximation holds when
the sampling in Eq. (10.7) approximates f well. This discretized Gabor transformation
equals the operator B. The fact that we wrote ĝnm(kx)e

2πjαβmn instead of gmn(x) exactly
represents the Fourier transformation operator F . And finally, the summation over m,n
represents the inverse Gabor transformation of Eq. (10.5). The integral in Eq. (10.15) is
evaluated on the uniform grid kx ∈ {−L∆k, · · · , L∆k} and therefore the m,n summation
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equals B̂−1, i.e. the inverse Gabor transformation operator in the spectral domain. Here
∆k = K/α(2N + 1) is the spectral-domain counterpart of ∆x. Hence we identified all
operators of Eq. (10.12) in Eq. (10.15) and both are equal up to the discretization error in
f .

When we apply the discretized version of Eq. (10.14) to the second line of Eq. (10.15),
we can write

f̂m =
L∑

n=−L

fne
−j∆x∆kmn =

L∑
n=−L

fn exp(−2πjmn
p

q(2L+ 1)
), (10.16)

which looks similar to a discrete Fourier transformation. However, it is the oversampling
factor p/q makes the difference.

In case (2L+ 1)/p ∈ N, this can be calculated as the Fast Fourier Transform (FFT) of
size q/p(2L+ 1) of f † in

f †n =
N∑

n=1

f(n mod (2L+1)q/p). (10.17)

Since this FFT is of smaller size than the list f , it is extended to the full size, 2L + 1, by
periodically expanding f̂ †.

There is a subtle difference between Eq. (10.12) and Eq. (10.16). The difference is that
in Eq. (10.13) an infinite sum is taken over m and n. When this sum is truncated, as is
done in Eq. (10.12), this yields a good approximation of a Dirac delta function only for a
part of the domain of x and x′ that is as wide as the region where the bi(x) peak is close
to one (see Fig. 10.1(b)). Hence, this sets the coefficients fi for large |i| to zero. The main
cause of differences between the Gabor-based Fourier transformation and the FFT-based
Fourier transformation is the periodic continuation of functions at the edges of the domain
in the region where the basis functions are close to zero.

To demonstrate the range over which the approximated Gabor transform is accurate,
we apply the Fourier transformation operator on the modulated and shifted Gaussian pulse
exp{(x − x0)

2 + jk0x}. This pulse function is localized around (x0, k0) in spatial-spectral
plane. We compare the discretized pulse function with a pulse function transformed to and
from the spectral domain via Eq. (10.16). In Figure 10.3, the relative error is shown as a
function of the location of the pulse (x0, k0) in the x − k-plane. Clearly, there is a four-
digit accuracy over most of the domain, which corresponds to the accuracy up to which
the dual window η(x) was computed. For large k0 and x0 the accuracy is lower, because
of the oversampling and the periodic continuation of functions. Therefore, we conclude
that modulated Gaussian pulses can be accurately transformed back and forth from the
spectral domain and since a discretization based on Gabor frames that consist of Gaussian
pulses delivers accurate results, this method will be accurate as well.
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Figure 10.3: The relative error for the Fourier transform in a Gabor frame with M = 15
and N = 13 for a Gaussian pulse function located at a position in the spatial-spectral
x− k-plane.

10.6 Application to a three-dimensional scattering prob-

lem

We exchanged the Gabor-frame discretization in [152] (Chapter 8) with the proposed list-
based discretization. The Green function and the contrast function are not continuous
enough to discretize by simply sampling them according to Eq. (10.7). Note that list-
based representations of these functions are only calculated during the initialization of the
algorithm, not during each iteration of the iterative solver. Therefore, the computation
time of these lists is not very critical. We find a better approximation for these functions
by taking the Gabor coefficients as they were calculated in [152] and transform them to
the list-based representation through B−1.

The convergence of this method was tested on the first test case of [152], a dielectric cube
embedded in a layered medium. Timing and accuracy results are displayed in Figure 10.4
for the two methods of Fourier transformation in Eq. (10.12) and in Eq. (10.16). Both
employ the multiplication in Eq. (10.11). Clearly, the latter Fourier transformation requires
much less computation time, while the results are very close in terms of accuracy. In
the example, the difference between the results with different Fourier transformations is
smaller than the error from the simulations itself, indicated by the circles in Figure 10.4.
This implies that it is the discretization that governs the accuracy of the result, not the
type of Fourier transformation that is being applied.

To show the applicability of this method to a larger problem, we compute the far
field due to scattering from a finite grating consisting of 12 bars of relative permittivity
εr = 2.25 in vacuum placed on a half space with εr = 20.21− 1.8j with a normal incident
plane wave of unit amplitude as depicted in Figure 10.5(a). A Gabor frame with a window
width of 1 micron was used that was truncated at M = 7 and N = 16 in both the x
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Figure 10.4: Scaling of the computation time and accuracy with the number of unknowns
for different samplings in the xy plane, realized by truncating the Gabor frame at N ∈
{1, 4, 7, 10}. The relative error is computed against a JCMWave [134] reference calculation
as described in [152] (Chapter 8). The dashed lines indicate linear scaling of computation
time.

and y directions. In Fig. 10.5(b) and (c), the near and far field are depicted. In the
far field, the relative L2(R2) difference between results obtained with Eq. (10.16) and the
algorithm in [152] was estimated at settings where the latter reached a 3 × 10−3 relative
error. The computation time required with the present method was 105 minutes, using
the Fourier transform in Eq. (10.12) it was 54 hours, and the time required by employing
a Gabor-based multiplication [135] was estimated to be longer than 40 days based on the
time required for a single multiplication. All computation times pertain to a single core of
a 3.1 GHz Intel Xeon E5 2687W processor.

Since our complex path formulation works with a Gabor frame, and when Gabor-
frame functions (modulated gaussians) can be accurately transformed with this newly
developed Fourier-transform it will work. So this discretization should hold for discretizing
the complete EM-scattering problem from dielectric objects. To show this, we show the
electric field generated by a line source J(x, z) = δ(z)Π(x/100nm) observed at z = 250nm
and λ = 245nm calculated using frame r′ in Figure 10.6. The relative error in this plot is
a bit larger than 10−3. The reason is that a coarser spectral sampling is used compared
to the direct Gabor coefficient multiplication. With this algorithm oversampling is not
possible in the spectral domain, therefore the sampling in the spectral domain is much
coarser than with the Gabor coefficient method. However, choosing a large oversampling
has a larger penalty for the number of operations than simply choosing a larger spatial
simulation domain. We verified that choosing the simulation domain twice as large does
indeed lower the relative error below 10−3.

We have benchmarked the calculation-time within Mathematica for a Fourier transform
with Gabor frame r. The FFT-based method was 15 times faster with our Mathematica
based algorithm, however, this is not a good indicator for performance in more optimized
programming languages such as Fortran.
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(a)

y-component of electric field (V/m)

(b)

x-component of far field (A.U.)

(c)

Figure 10.5: (a) A scattering setup of 12 dielectric lines on a dielectric halfspace. In (b)
y-component of the electric field is plotted at z = 20 nm. In (c) the x-component of the
far field is given that scatters back.

10.7 Conclusion

A point-wise multiplication and FFT-based Fourier transform operation were proposed
based on a discretization by Gabor frames. An improvement to the algorithm in [152] is
proposed that is at least 15 times faster for two represntative computational examples.
Numerical evidence was shown that the approximation error is negligible compared to the
discretization error.
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Figure 10.6: Performance of a caculation using frame r′. In (a) Blue and yellow are the real
and imaginary part of numerical integration. Green and orange are the results generated
with the presented method.

Addendum

To clarify the differences between the algorithm for 2D TM scattering in Chapter 7, the
algorithm for 3D scattering in Chapter 8, and the algorithm presented in this chapter we
present a schematic overview of the employed discretizations in Figure 10.7. The algorithm
in Chapter 7 only employs the Gabor-frame discretization. In the description of this
algorithm different names are used for the contrast function, Lχ corresponds to Cε and
Mχ corresponds to χCε. The algorithm in Chapter 8 uses an equidistant sampled list for
all operations except the Fourier transformation and the inverse Fourier transformation.
A detour is taken via Gabor transforms to apply the Fourier transformation on Gabor
coefficients. Initially, all components of the Green function, the reflection coefficients and
contrast functions are all discretized via the Gabor frame. Afterwards, an inverse Gabor
transform is employed to transform them to lists with equidistant sampling. The only
thing that has changed in this chapter is that the Fourier transformation is carried out
directly on the lists with equidistant samples with the method described in Section 10.5.2.
The method in this chapter does not follow the detour via the Gabor transformations, it
employs the direct Fourier transformation that is described in this chapter.
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Chapter 11

Alternatives to the discretization and
the integration path

11.1 Motivation

Although our objective of building a fully functional solver for three-dimensional scattering
from finite dielectric objects in a multilayered dielectric medium was reached, we show that
there are alternative approaches available for some of the choices that were made during
the development. Most of the development time was spent in a rush towards a fully three-
dimensional solver. During the development there were sometimes several options available
to continue the development, where it was not clear in advance which method would yield
the best results. To make fast progress, the safest option was mostly chosen. In this section
we show an alternative to the Gabor discretization of Chapter 4 and an alternative to the
complex spectral path in Eq. (6.20) in Chapter 6.

The formulation in Chapter 2 is extended with a PWL-based discretization in the
z direction in Chapter 3, a scheme that is particularly efficient for the Green function
operator. We take this as the starting point for this chapter. We will present an alternative
approach, which treats the transverse direction differently from Chapters 4 to 10.

In the transverse direction(s), a Gabor frame-discretization was proposed in Chapter 4.
The reason we chose this discretization was that functions are represented in the spatial
and spectral domain simultaneously and that a Fourier transformation is represented by
merely a reordering of coefficients. In Section 11.2 a Hermite interpolation scheme will be
presented as an example of an alternative discretization. We introduce this discretization
to demonstrate that the Gabor frame, with its complicated implementation, is not required
for this formulation.

The formulation requires a Fourier transformation of the contrast current density to the
spectral domain, a discretization of the Green tensor in the spectral domain and an inverse
Fourier transformation of the scattered electric field back to the spatial domain, where the
field-material interaction is computed. Since the spatial Green tensor decays slowly for
large distances, the spectral Green tensor contains singularities that are hard to discretize
in the spectral domain. In Chapter 5, a coordinate scaling was employed to handle the
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Green function in a homogeneous medium. In Chapters 6-10, a contour deformation into
the complex plane was employed to handle the Green tensor for a multilayered medium.
Compared to real spectral coordinates, it takes extra time to compute the transformation
to and from the complex-plane spectral path, i.e. the number of Fourier transformations
is doubled for 2D simulations and quadrupled for 3D simulations. When the number of
Fourier transformations can be reduced, this can be advantageous for the computation
time and memory requirements.

Within the current formulation, very large improvements (factors of 10 or more) in
computation time cannot be expected from choosing alternative complex paths, since a
large part of the computation time is already spent on the FFTs and multiplications for
the Green function. However, the algorithm can be made considerably more elegant by
finding an alternative to the spectral representation in the nine regions of Chapter 8. In
Section 11.3 we focus on alternative integration paths and transformations. The main goal
of such an alternative path is to devise a more elegant algorithm. A more elegant algorithm
often allows for more flexibility and a faster development of further improvements.

11.2 Alternative transverse basis

11.2.1 General thoughts about the discretization

The discretization in the transverse directions is vital for the efficiency of the algorithms
developed in Chapters 5 to 10, since both the accuracy and the computational complexity
strongly depend on it. Several properties can be identified that a discretization should
exhibit.

1. The number of required basis functions should be small.

2. An accurate implementation of Fourier transformation should be available.

3. A rapid means of Fourier transformation should be available.

4. Fast addition and multiplication operators should be available for the discretized
equation.

The analytical Gabor-frame discretization satisfies point 1 for large scatterers, although
the broad window functions makes it less efficient for small scatterers. Since the Gabor
frame is a simultaneous discretization of the spatial and spectral domain, the second and
third point are very well satisfied. The largest downside is that it is hampered by a slow
multiplication operator in point 4.

The list-based representation of Chapter 10 improves the multiplication time at the cost
of a slightly slower Fourier transformation. This considerably reduces the computational
complexity, with negligible approximations made.

Although there is a significant difference in computation time, both the aforementioned
discretizations are closely related in terms of discretization via a Gabor frame. Entirely
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different discretizations are also possible. A discrete translation invariance in the basis
functions is advantageous, since that often allows the use of FFTs in the numerical imple-
mentation. As an example we will consider Hermite interpolation in this section and argue
that it also satisfies the four points mentioned above.

11.2.2 Hermite interpolation

The Hermite interpolation [161, Section 2.11] interpolates a function where the function
values and (a number of) derivatives are known. In this section we assume that the function
is sampled on an equidistant ∆x lattice and that at each of the lattice points the function
value and derivatives are known, such that a function is represented by coefficients fnr
given by

fnr = f (r)(n∆x), (11.1)

with n ∈ {−Nx, · · · , Nx} and degree r ∈ {0, · · · , R − 1}. To produce the interpolation
between two sampling points, e.g. x = 0 and x = ∆x, scaled polynomials hrj(x) are used
on this interval defined as

hrj(x) =
2R−2∑
ℓ=0

ηrj,ℓx
ℓ, (11.2)

with indices r ∈ {0, · · · , R−1} and j ∈ {0, 1}. The coefficients ηrj,ℓ are chosen such that all

h
(q)
rj (0) = 0 and h

(q)
rj (1) = 0, with q, r ∈ {0, · · · , R− 1} with the exception that h

(r)
rj (j) = 1.

In Figure 11.1, some examples are shown for these hrj(x) functions. From these hrj(x)
polynomials, the basis functions for the interpolation bnr(x) can be obtained as

bnr(x) =


0 if x < (n− 1)∆x

∆r
xhr1(x/∆x − n− 1) if (n− 1)∆x ≤ x < (n)∆x

∆r
xhr0(x/∆x − n) if n∆x ≤ x < (n+ 1)∆x

0 if x > (n+ 1)∆x.

(11.3)
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Figure 11.1: (a) The hrj(x) function for order R=1. (b) Scaled h0j(x) function for order
R=3.
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Here again n ∈ {−Nx, · · · , Nx} and r ∈ {0, · · · , R−1}. In Figure 11.2 some example basis
functions are shown. Now the interpolation with the coefficients from Eq .(11.1) is simply
given by

f(x) ≈
Nx∑

n=−Nx

R−1∑
r=0

fnrbnr(x). (11.4)

The addition of two functions a(x) = b(x)+c(x) is trivially represented by anr = bnr+cnr.

-3 -2 -1 1 2 3
x

-0.2

0.2

0.4

0.6

0.8

1.0

bmn(x)

b0,0

b0,1

b1,0

b-2,1

Figure 11.2: Hermite-interpolation basisfunctions for ∆x = 1 and R = 2.

The multiplication of functions, a(x) = b(x) c(x) is represented by coefficients computed
from the generalized Leibnitz rule

anr =
r∑

ℓ=0

r!

(r − ℓ)! ℓ!
bn,(r−ℓ) cnℓ. (11.5)

The computation of all coefficients anr requires O(R2Nx) operations. Therefore, we con-
clude that the fourth point on the list in Section 11.2.1 is satisfied by the Hermite inter-
polation as long as R is restricted to a small integer, i.e., R ∈ {2, · · · 5}.

11.2.3 Fourier transformation

In the spectral domain, we use Hermite interpolation as well. The Fourier transform of the
approximated function in Eq. (11.4) is calculated analytically. The uniform sampling in
the spatial domain is exploited in this Fourier transformation by employing FFTs. These
FFTs dictate that (derivatives of) the analytic Fourier transformation are evaluated at
an equidistant lattice in the spectral domain with lattice constant ∆k = 2π/(2Nx + 1).
From the analytically transformed values on this lattice in the spectral domain, a new
Hermite interpolation can be devised in the spectral domain. Therefore, the analytic
Fourier transform is only evaluated at an equidistant lattice in the spectral domain, and
in between a Hermite-interpolated is used. Therefore, some approximation error is made.
This is illustrated in Figure 11.3.
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Figure 11.3: An analytic algorithm exists to compute function values and R−1 derivatives
on an equidistant lattice. These values are then used in a new Hermite interpolation, from
which some approximation error results.

In the spectral domain, the Hermite interpolation is computed at Nx lattice points. The
equidistant sampling in the representation of Eq. (11.1) and Eq. (11.4) allows to compute
the Fourier transform as

f̂(kx) ≈
∫ ∞

−∞
dx

Nx∑
n=−Nx

R−1∑
r=0

fnrbnr(x)e
−jkxx, (11.6)

where we used a hat on top of the function symbol to indicate the spectral domain. We
propose to use Hermite interpolation in the spectral domain as well, with sampling distance
∆k = 2π/(Nx∆x). The coefficients in the spectral domain, f̂st through Eq. (11.1), can be
computed efficiently as

f̂st = f̂ (t)(s∆k) =

∫ ∞

−∞

Nx∑
n=−Nx

R−1∑
r=0

fnrbnr(x)(−jx)te−js∆kx

=
Nx∑

n=−Nx

R−1∑
r=0

[(−jn∆x)
tfnr]e

−2πj sn/Nx

∫ ∞

−∞
(jx)te−js∆kxb0r(x).

(11.7)

Here we recognize a discrete Fourier transform in the sum over n, which can be calculated
rapidly with the FFT algorithm. The integrals can be calculated during initialization,
which yields a discrete Fourier transformation from n to s for each r and t value. There-
fore, the computational efficiency scales as O(R2Nx logNx). Since the number of deriva-
tives should be chosen rather small, R ∈ {2, · · · , 5} and Nx large, this algorithm scales
well to large numbers of unknowns. We conclude that also the third point on the list in
Section 11.2.1 is satisfied by the Hermite interpolation.

11.2.4 Tests of the Hermite interpolation

Showing that the Hermite interpolation satisfies the third and fourth point on the list in
Section 11.2.1, leaves the first two points. We now provide numerical evidence that the
first two points are also satisfied.
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We test the Hermite interpolation on a continuous function consisting of three modu-
lated Gaussians, which is shown in Figure 11.4(a). In Figure 11.4(b) we show the function
approximated by a Hermite interpolation of very low order R = 1. In Figure 11.4(c) the
L2[−3, 3] error is shown on the double logarithmic scale for functions that are Hermite
interpolated. The lines show the trend for dense sampling (small ∆x). A polynomial con-
vergence is observed with a convergence of order 2R. For a relative error of 10−3, the
R = 1 sampling requires more than 10 times more samples than the sampling with R = 5.
Although the high-R sampling is not as efficient as the Gabor-frame discretization shown
in Figure 11.4(d), both methods perform well. It should be noted that the large window
widths, where the Gabor frame has a clear advantage, are only efficient for very large sim-
ulation domains. Since the Gabor frame decays slowly to zero at the ends of the simulation
domain, several extra windows are required to allow for this decay. Clearly, the Hermite
interpolation is a competitive discretization and point one on the list in Section 11.2.1 is
satisfied.

It remains to be determined how accurate the Fourier transformation associated with
Hermite interpolation performs. As explained in Section 11.2.3, the forward Fourier trans-
formation and inverse Fourier transformation contain an approximation where a new Her-
mite interpolation basis is used in the spectral and spatial domain, respectively. For this
test, a simulation domain with Nx = 200 and ∆x = 1 is chosen. This corresponds to a
∆k = 2π/401 in the spectral domain. We check how a modulated Gaussian is transformed
from the spatial to the spectral domain and back with Eq. (11.7) and its inverse, i.e., a full
round in Figure 11.3. The Gaussian is chosen as

gX,K(x) = exp
(
−(x−X)2/401 + jKx

)
, (11.8)

and we will use the symbol g̃X,K(x) to denote the back-and-forth transformed Gaussian.
This function g̃X,K(x) approximates gK,X(x) best for small X and small K, since then gX,K

exhibits the slowest oscillation in the spectral and spatial domain, respectively. A sample
of g̃X,K and its approximation error are shown in Figure 11.5. As a measure of the total
error in the approximation, we use the relative error based on the L2[−X,X]-norm. In
Figure 11.6, we show how the approximation error depends on the position in the XK-
plane. When a relative error of 10−3 is required, the useful domain for R = 1 is negligible.
For larger R, the domain expands quickly to almost the complete simulation domain for
R = 4. Therefore, we conclude that an accurate approximation also satisfies point two
in Section 11.2.1 and therefore all points on the list in Section 11.2.1 are satisfied, when
the proper value for R is chosen. Note that a small R corresponds to a low accuracy
and that a large R corresponds to slow Fourier transformations, so a trade off between
both is necessary. For our purpose, R = 4 is a proper choice. Strictly speaking, we have
only shown numerical evidence for modulated Gaussian functions, but since these are the
basis functions for the Gabor frame, any function that is important within the current
formulation can be transformed.
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Figure 11.4: (a) Function used for testing, given by exp(−π(x+ 2)2) + exp(−π(x− 2)2) +
exp(−π(x+ 1)2 + jx). (b) Function approximated with ∆x = 0.3 and R = 1. (c) Relative
L2 error of approximation with Hermite interpolation for different R and ∆x values. (d)
Relative L2 error of approximation with a Gabor frame. Here ∆x = αT/N , with N the
range of the n-sum in Eq.(4.3), which is equivalent to a sample spacing of ∆x/R in (c).
Again we used an α =

√
2/3 oversampling for the Gabor frame.
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Figure 11.5: (a) A plot of g̃70,0.4(x) for R = 2. (b) The absolute error in g̃70,0.4(x), compared
with the original function g70,0.4(x).

11.3 A continuous path in the spectral domain

11.3.1 Introduction

The main challenge with the spectral path is the transformation from the spatial domain
to the complex-plane integration path in the spectral domain and back. Until now, we
have used a path consisting of three distinct parts, each with a separate discretization. A
major part of the work in this thesis consists of finding ways to transform back and forth
to this path and representing functions accurately on this path. We now try to generalize
the methods of transformation to methods that are applicable to more general choices for
the path in the complex plane.

We begin by showing a more general way to represent a class of fast transformations
between the spatial domain and the complex spectral path. This class of fast transforma-
tions assumes the availability of a rapid means of Fourier transformation, multiplication
and summation. Then we will shown how the transformations to and from the complex
spectral path that was used in Chapters 6 to 10 can be represented in this form. After-
wards, several alternative approaches to such a transformation are proposed and discussed.
Based on these alternative transformations, a continuous path in the spectral domain is
proposed and tested.

11.3.2 Transformations to and from a complex spectral path

We are interested in small path deformations k → τ(k), with real-valued k, that can
be described by τ(k) = k + jc(k). We assume c(k) to be real valued and to have values,
bounded by a number of the order of ∆k, the resolution of the discretization in the spectral
domain. The transformations that interest us are the transformation of a function f(x)
from the spatial domain to the complex spectral path

f(τ(k)) =

∫ ∞

−∞
dx f(x)e−jxkec(k)x (11.9)
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Figure 11.6: The log10 of the relative error in the approximation of the Fourier transform
of the modulated Gaussian in Eq. (11.8) as a function of the location of its peak in the
spatial and spectral domain. (a) R = 1 (b) R = 2 (c) R = 3 (d) R = 4. Notice the different
scales in the legends.
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and the transformation from the spectral path back to the spatial domain

f(x) =

∫ ∞

−∞
dk (1 + jc′(k))f(τ(k))ejxke−c(k)x, (11.10)

which is found by means of a substitution k → τ(k) in the Fourier integral of f(k). The
difference between the integrals in Eqs. (11.9) and (11.10) is minor, i.e., the multiplication
with the factor (1 + jc′(k)) does not pose a problem and then we are left with two inte-
grals of the same form. Both integrals resemble a Fourier integral, except for the factor
exp(±c(k)x). Since we assume that a rapid Fourier transformation is available (cf. Section
11.2.1), we will approximate Eqs. (11.9) and (11.10) as a sum of Fourier transformations.
When we approximate

ec(k)x ≈
N∑

n=1

an(x)bn(k)

e−c(k)x ≈
N∑

n=1

ain(x)b
i
n(k),

(11.11)

where the functions an(x), a
i
n(x), bn(k), and bin(k) remain to be defined and where the

superscript i indicates the functions for the inverse transformation. Such approximations
are available, since c(k) is assumed to be small, i.e., on the order of the spectral resolution
2π/Wx, and in the spatial domain functions are not evaluated outside of the simulation
domain, i.e. we have |x| < Wx. This means that exp(±c(k)x) is bounded. With the
path deformation as in Chapter 6, this approximation of the integral in Eq. (11.9) is
usually chosen such that 0.05 < exp(±c(k)x) < 20 for x in the simulation domain. The
transformations of a function f to and from the spectral path in Eq. (11.9) and Eq. (11.10)
can then be rewritten as

f(τ(k)) =
N∑

n=0

bn(k)

∫ ∞

−∞
dx an(x)f(x)e

−jxk (11.12)

f(x) =
N∑

n=0

ain(x)

∫ ∞

−∞
dk (1 + jc′(k))bin(k)f(k)e

jxk. (11.13)

These are sums of ordinary Fourier integrals. So when the functions f(x) or f(k) are
represented by a Hermite interpolation, they can be computed efficiently, with the aid of
the Fourier transformation in Eq. (11.7) and its inverse. The Hermite interpolation of a(x),
ai(x), b(k) and bi(k) can be computed during initialization. Hence, these transformation
consist of N + 1 FFTs and therefore a small N is highly important. The challenge is to
find an efficient approximation Eq. (11.11) in a small number of terms.

11.3.3 The piecewise path

We cannot completely fit the piecewise path that was introduced in Chapter 6 into the
picture of Section 11.3.2. The reason is that this method utilizes three distinct represen-
tations with distinct discretizations, fL, fM , and fR, for each of the three parts of the
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complex path in the spectral domain, whereas the method in Section 11.3.2 uses only a
single representation with a single discretization in the spectral domain. We now associate
the L subscript with the spectral representation on the left horizontal part of the integra-
tion path in Figure 6.2(a) and the first line in Eq. (6.20). We associate the R subscript
with the right horizontal part in Figure 6.2(a) and the third line in Eq. (6.20). For the
middle part an optimized Fourier transformation was not used, so we will not dwell further
on the second line in Eq. (6.20). This notation is applied in Eqs. (11.13) and (11.12) to
yield expressions Eq. (6.19) and Eq. (6.22)

aL(x) = aiR(x) =eAx

aR(x) = aiL(x) =e−Ax

bL(k) = bR(k) =1

biL(k) = biR(−k) =

{
1 if (k < A)

0 if (k ≥ A).

(11.14)

For the middle part (M) of the path, fast methods of Fourier transforming are not applied.
The transformation to the spectral domain is approximated from the fit of a Taylor series to
data points and the transformation back to the spatial domain is carried out by computing
the integrals in Eq. (11.10) directly. This method is not very optimized, but since the M-
part is small, not much computation time is used. A more optimized method was presented
in Section 9.2.

11.3.4 Approximation by Taylor series

It is possible to approximate exp(±c(k)x) via a Taylor series as

ec(k)x ≈
N∑

n=0

cn(k)
xn

n!

e−c(k)x ≈
N∑

n=0

cn(k)
(−x)n

n!
.

(11.15)

When compared to Eq. (11.11), we can identify an(x) = xn/n!, ain(x) = (−x)n/n! and
bn(k) = bin(k) = cn(k). An advantage of this method is that it allows for more general path
shapes, whereas the piecewise path in Section 11.3.3 uses the fact that c(k) is constant
over most of the domain. It is advantageous to use a smooth path deformation, since
that will yield a smooth f(τ(k)) and therefore splitting up the spectral domain in different
parts is no longer needed. Throughout the rest of this chapter we will therefore use the
continuously prametrized path

τ(k) = k + jc(k) = k + jA erf(s
√

π/2 k/A), (11.16)

where the parameter A again has the meaning of the amplitude of the deformation and s
defines the slope of c(k) around 0. In Figure 11.7 c(k) is plotted for Eq. (11.16).
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Figure 11.8: (a) The analytic Fourier transform of Gaussian pulse f(k) = Fk[exp(0.1(x−
10)2)](x) is sampled and then numerically transformed to the spatial domain using trans-
formation Eq. (11.13) with approximation Eq. (11.15) for N = 2. (b) Approximation error
for the same Gaussian pulse, transformed with higher-order Taylor approximations.

Next, we evaluate the accuracy of the Taylor-based version of the transformation to
the spatial domain, i.e. Eq.(11.13), for the analytic Fourier transform of a Gaussian pulse
that equals f(k) = Fk[exp(0.1(x − 10)2)](x). The numerical data is based on Hermite
interpolation-based Fourier transforms with Nx = 38, ∆x = 4/3, R = 4, ∆k = A = 0.612.
In Figure 11.8(a), the result of the transformation to the spatial domain is shown. A very
low order Taylor-approximation with N = 2 was applied, which results in a visible error.
In Figure 11.8(b), the absolute error is shown for transforming this same Gaussian pulse
with higher-order Taylor approximations. Clearly, the error is larger for large x. This was
to be expected, since the truncated Taylor series in Eq. (11.15) loses accuracy for large x.

Instead of using the Taylor series in Eq. (11.15) as a power series to approximate
exp(−c(k)x), we have also used a fitted power series that is more accurate for large ar-
guments, at the cost of the accuracy for small arguments. In Figure 11.9(a) we see the
approximation of exp(Ax), which corresponds to exp(−c(k)x) for large values of k. Clearly,
the fitted approximation has a wider range of validity. This is tested by transforming the
spectral representation of a set of Gaussian pulses to the spatial domain. This set of pulses
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Figure 11.9: (a) An approximation of exp(Ax) valid for x ∈ [−40, 40] compared to a Taylor
series with the same number of terms. (b) A set of Gaussian pulses, whose representation
on the spectral path is used as an input for the transformation from the path in Eq. (11.16)
to the spatial domain. (c) The error made in the transformation to the spatial domain
using Eq. (11.13) for a fitted polynomial and a Taylor series.

∑3
n=−3 exp(0.1(x− 10n)2) is shown in Figure 11.9(b). In Figure 11.9(c), the fitted approx-

imation performs better for large x. With higher numbers of terms the accuracy of the fit
and the Taylor series improves.

11.3.5 Approximation by analytical expansion

A second approach to transform to and from the complex spectral integration path em-
ploys the assumption that the Fourier transform of a function is an analytic function and
can therefore be continued analytically. This is especially useful for calculating the trans-
formation from the spatial to the spectral domain in Eq. (11.12). For the transformation
of the scattered electric field back to the spatial domain this method is less reliable, since
the Green function is not analytic close to real kx-axis for lossless background media.
Therefore, we focus on the transformation from the spatial to the spectral domain.

Assume that we would like to calculate f(k∗) and its derivatives at k∗ ∈ C, while values
or derivatives of f are known only at some nearby points {f (d1)(k1), f

(d2)(k2), · · · , f (dN )(kN)}.
For example, the values are computed with the aid of the rapid Hermite-interpolation-based
Fourier transformation Eq. (11.7), which yields values and derivatives up to order R− 1 at
an equidistant grid, where we then select values closest to k∗, from which we approximate
f . The analyticity of f(k) implies that a Taylor expansion tf around k∗ can be made, i.e.

tf (k) =
Nt∑
n=0

wn
(k − k∗)n

n!
. (11.17)

The weights in the Taylor expansion can be found from solving the associated Vandermonde
system

t
(dn)
f (kn) = f (dn)(kn)
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for wn. This technique is closely related to the Taylor series for the middle part in Eq. (6.29),
where more information about solving such Vandermonde systems is given. When the
Vandermonde system is solved, the coefficients wn are then simply a list of derivatives.
Again, since this is a small Vandermonde system, problems with a poorly conditioned
system are avoided.

In the case of Hermite interpolation, this analytical continuation is especially useful,
since functions are represented by an equidistant list of the function values and R − 1
derivatives. The Hermite interpolation already uses the analyticity of the functions, since
the basis functions are a local power-series expansion. This implies that an analytical
expansion holds up to a distance on the order of the resolution ∆k. Therefore, the result
of a single Fourier transformation, which yields values on the real k axis, can be analyti-
cally expanded to any complex deformation, provided that the imaginary part of the path
deformation is of the same order as ∆k.

A numerical example is calculated for a modulated Gaussian pulse

g(x) = e−0.1(x+15)2+0.4jx. (11.18)

We have chosen k∗ = j∆k, and the Hermite interpolation of Figure 11.8 is used. The Fourier
transformation of Eq. (11.7) is applied to find a numerical approximation of g(k) and the
result is analytically expanded into the complex plane to g(k + j∆k). Figure 11.10(a)
shows g(k + j∆k) and an approximation where only g(0)(0), · · · , g(3)(0) were used to find
the approximation for Nt = 4. In Figure 11.10(b), the difference between this numerical
representation and two higher-order approximations, where g(0)(−∆k), · · · , g(3)(−∆k) and
g(0)(∆k), · · · , g(3)(∆k) were added to the expansion for Nt = 12 for the middle line and
values at ±2∆k were added for a total of 20 terms in the Taylor expansion for the lower
line. In Figure 11.10(c) it can be observed that this approximation is also succesful for
derivatives. The link between such an analytical expansion and the function an(x) and
bn(x) in Eq. (11.12) is that we can choose

an(x) = (jx)dnej(kn−k∗)x

bn(x) = 1.
(11.19)

11.4 Numerical example: 2D transverse electric scat-

tering in a homogeneous medium

Here, we demonstrate that the methods described in Sections 11.2 and 11.3 can be applied
to an actual electromagnetic scattering problem. We apply the method to the problem of
2D TE scattering from a rectangular object with εr = 4 and dimensions 250× 100 nm in
the x and z directions, embedded in vacuum, as depicted in Figure 11.11. The incident
field is propagating along the z-axis. Note that this case resembles the second example in
Chapter 6 for a single scattering block.

A fourth-order Hermite interpolation is used (R = 4) to discretize the electric field
in the x-direction. The Hermite interpolation is chosen such that ∆x = 13.3 nm, and
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Figure 11.10: (a) A Fourier transformed modulated Gaussian pulse evaluated at com-
plex coordinates, and its 4th order Taylor approximation. (b) The error for higher order
approximations. (c) The error in the derivative for higher order approximations.
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Figure 11.11: The scattering setup for 2D transverse electric scattering.

Nx = 30. This yields a simulation domain of 800 nm in width. Since the multiplication
with the Green function in the spectral domain is comparable to a convolution in the
spatial domain, the Green function has to be accurately discretized over a range that is
twice as large as the scatterer, i.e. 500 nm in the present case. With the Gabor frame it
was possible to choose a larger number of coefficients in the spectral domain, but this is
not easily realizable with a Hermite interpolation, hence we choose to use the relatively
large simulation domain of width 800 nm. In the z-direction 41 PWL basis functions were
used with a ∆ = 2.5 nm interval as explained in Section 3.2. In the spectral, domain a
continuous complex integration path was chosen as

τ(k) = k + j∆kerf

( √
π

4∆k

k

)
. (11.20)

The transformation to the spectral domain was carried out by applying the method in
Section 11.3.5, where Nt was chosen to be 12, with derivative 0 to R − 1 at points {k −
∆k, 0, k + ∆k}. For the transformation to the spatial domain the method in 11.3.4 was
used with a Taylor series of six terms. For simplicity, we preferred the Taylor series over
the fitted polynomial.

To accurately approximate the contrast function, we discretized this function in the
spectral domain, and multiplied it by the function exp((−.08kx/k0)

8). In this way, the
Gibbs phenomenon at the edges of the object is somewhat suppressed.

In Figure 11.12 simulation results with this Hermite-interpolation method are shown,
compared against a JCMWave [134] validation. Clearly, the results agree up to three digits
precision, although some Gibbs phenomenon is visible at the edges of the object. However,
this effect is smaller here than in earlier cases, since the contrast function was multiplied
by a smoothing factor.

We have compared these results with the Gabor-frame based algorithm of Chapter 6. To
reach a comparable accuracy, the contrast functions was discretized by a Gabor frame with
window width X = 150 nm and the coefficients spanning m ∈ {−5, 5} and n ∈ {−12, 12}
in Eq. (4.3). The total number of Gabor coefficients then equals 275, whereas the Hermite-
interpolation based formulation required 244 basis functions. However, the Gabor frame
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Figure 11.12: (a) The scattered electric field Es at the bottom of the rectangular block.
(b) The difference compared to a JCMWave validation.

requires a single coefficient per 4.9 nm, where the Hermite interpolation required a single
unknown per 3.33 nm in the x-direction.

Clearly, both methods have have their advantages. The Gabor-frame based method
needs a lower sampling resolution, as was already observed in Fig. 11.4(c) and (d). For
smaller scatterering problems, such as this one, the Gabor frame is less efficient, since
it requires a relatively large minimum number of coefficients. For completion we include
timing results: with the mentioned settings both algorithms required 16 seconds. How-
ever, the Hermite-interpolation based method was implemented in Mathematica and the
improvements of Chapter 10 were not implemented for the Gabor-frame based method,
which hampers a true comparison of these computation times.

11.5 Discussion

In this chapter, an alternative for the Gabor-frame based discretization has been proposed:
the Hermite interpolation. Although the Hermite interpolation is not as efficient as the
Gabor frame for large structures, it requires fewer unknowns for smaller scattering problems
such as in Fig. 11.12. Probably the most important lesson from this chapter is that the
Gabor frame is certainly not the only possibility for the formulation in Chapter 2 and
experiments with other discretizations should be considered. In Section 11.2.1, a list of
requirements for an efficient discretization are mentioned.

A significant advantage of the Hermite interpolation is that it allows evaluating the
interpolation quickly at any point, since there are only 2R basis functions contributing
to each point in space. This is a significant disadvantage of the Gabor frame, i.e., the
slow decay of the window functions often requires the sum in Eq. (4.3) to be evaluated
over a hundred or more coefficients for 2D simulations and over 10,000 for 3D simulations.
Therefore, it is much easier to extract data from Hermite-interpolated data than from
Gabor-frame represented data.

Another important lesson from this chapter is that alternative integration paths are
feasible. Implementing such a path requires different transformations to and from the
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complex-plane spectral integration path. Examples have been given of such transforma-
tions, but there will be other options. The major advantage of a path consisting of a
single domain, instead of the three in Eq. (6.20), is that it can be handled more elegantly,
especially for 3D problems. The spectral domain is then represented by just one discretiza-
tion instead of nine distinct discretizations on the nine parts of the manifold for 3D in
Fig. 9.5. However, for scatterers that are large in the z direction, where a lot of informa-
tion is contained around kx = 0, a more detailed discretization around kx = 0 can still be
advantageous, see Sections 9.2 and 9.3.

The transformation to the spectral domain in Section 11.3.5 is more efficient, in the
sense that it requires only one Fourier transformation, instead of two. However, the trans-
formation to the spectral domain in Section 11.3.4 is less efficient, since it required six
Fourier transformations, which is more than the two required in the old formulation in
Chapter 6. Since all information is now stored in a single spectral representation, the
memory requirements have halved with respect to the old formulation where the spectral
domain was divided in a left and right part, both of the size of the simulation domain.

Although the efficiency with respect to computational resources of the method in this
chapter and that of Chapter 6 is roughly comparable, their elegance is not. The time spent
on programming and debugging was about half a year for the method in Chapter 6 and
about three days for the method in this chapter. This might not be a fair comparison, since
the development of the method in this chapter largely benefited from the knowledge gained
in Chapters 5 to 10, but that certainly does not compensate for the complete difference.
The method of this chapter is still a good alternative, since new options can be implemented
with significantly less effort, which can speed up scientific progress.
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Chapter 12

Conclusions and outlook

12.1 Conclusions

The main result of this work is a new computational approach to compute the electro-
magnetic scattering from finite dielectric objects embedded in a dielectric multilayered
medium. Algorithms were created for 2D scattering with both transverse electric and
transverse magnetic polarization and for fully vectorial 3D scattering.

In the directions transverse to the layers, a translation symmetry is present in the
multilayered background medium. This translation symmetry is exploited by applying the
Green function multiplication in the spectral domain and the field-material interaction
in the spatial domain. Hence, a discretization was needed for both the spatial and the
spectral domain. By utilizing basis functions with a discrete translation symmetry, e.g.
Gabor frames, the FFT algorithm could be applied to speed up operations on the data. The
computational complexity of the present algorithm scales as O(N logN) and the memory
requirements scale as O(N), with N the number of unknowns.

The application of the Gabor frame for the discretization of this integral equation
has had several advantages during the development of this algorithm. The exact Fourier
transformation associated with the Gabor transformation allowed monitoring the error of
functions and fields in both domains simultaneously. This gave much insight into the causes
of large approximation errors. The Gabor frame allows for the truncation of functions in
the spatial domain with control of its behaviour in the spectral domain and vice versa.
Since some functions, among which the contrast function, are discontinuous, such control
is vital for effective representations.

The spatial spectral method outlined in this thesis follows from two main ideas. The
first idea behind this method is that the discretization should be accurate over a broad
range around the origin in both the spectral and the spatial domain simultaneously. The
second idea is that it should be closely monitored that any manipulation of functions in
one domain does not deteriorate the accuracy in the other domain. For example, when
two functions with complementary jumps are multiplied in the spatial domain, a very slow
convergence is observed in the spectral domain. In the spectral domain this multiplication
is represented by a poorly converging convolution, which violates the second idea.
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The deformation of the discretization path into the complex plane allows for the use
of Gohberg and Koltracht’s efficient first-order recursion in the stacking direction of the
multilayer medium. This method is extraordinarily efficient, since it does not require a
Fourier transformation in the z-direction. The formulation with the complex spectral path
and Gabor frames does not so much remove the need for Sommerfeld integrals, it samples
them efficiently which allows us to include them into each iteration of the iterative solver,
while maintaining a good computational efficiency.

The efficiency of the algorithm allows for accurate fully vectorial simulation of scat-
tering from large dielectric objects in multilayered media. Throughout this thesis, several
numerical examples have been shown where the present method reaches relative errors of
10−3 or better. The main challenge to validate the three dimensional method was the gen-
eration of accurate validation results via other methods, not the accuracy of the present
algorithm.

12.2 Outlook

12.2.1 Validation against experiments

The algorithm for 2D TE polarized scattering in a multilayered medium is tested against
two solvers in Chapter 6, FEM and RCWA. The other algorithms are tested against FEM
only. In principle the FEM implementation we use [134], is a well-established implementa-
tion that has been tested against experimental data. Therefore, a good agreement between
both methods implies that the presented method will also agree well with experimental
data. For the two-dimensional algorithms the results obtained with a FEM implementa-
tion are computed with a very fine sampling and high number of polynomials and can
be considered very accurate, at least six digits accuracy or more. However, for the three-
dimensional algorithm such a fine discretization and such a high polynomial refinement
was not achievable.

In Chapter 8 only one result is presented, where the FEM solver had converged to the
accuracy of 10−3, which is the accuracy goal that we strive for. On all other cases the
memory requirements for such precise simulations exceeded the 256GB memory that was
available on the computation server. This has made it impossible to compare the proposed
solver up to a relative accuracy of more than ∼ 3·10−3 against other data on all but one tiny
example problem. In our opinion the best way to more rigorously test this method would
be to test it directly against experimental data. Another approach for better validation
would be to compare it against canonical objects for which analytical results are available,
such as a sphere embedded in a homogeneous medium.

12.2.2 Scatterers in multiple layers

It is certainly possible to extend this method to scatterers that are embedded in multiple
layers. For periodically repeated scatterers, such a solver was applied in [71]. From a
theoretical point of view, such a generalization is not very challenging. However, it requires
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an update of the bookkeeping in the way the propagation in the z-direction is managed.
Such an improved bookkeeping can then also include an non-uniform discretization in
the z-direction, which can improve the convergence around corner singularities. Another
improvement that can be added is a higher-order discretization in the z direction than the
PWL discretization that is used in the present implementation. A higher order Hermite
interpolation, or a Chebyshev interpolation such as in [162, 163], can then be included.

12.2.3 Error control

The present algorithm contains a large number of parameters, each of which has influence
on the overall accuracy. Obtaining good results from the algorithm often includes some
trial-and-error experiments to find simulation parameters that yield good results. It would
be very beneficial to automate the choice of as many parameters as possible.

It would be worthwhile to search for a way to calculate an approximated contribution
to the simulation error for each simulation parameter. With such estimations it is possible
to generate a good set of simulation parameters in much less time. This would also make
the algorithm useful for a user with a less detailed knowledge about the algorithm.

12.2.4 Improving the rate of convergence of the iterative solver

An important downside of the present formulation is that the iterative solver converges very
slowly for large objects with high dielectric contrast. An examples of a large, high contrast
object is a full model of the dielectric grating coupler that is found in [23] for integrated
optics purposes. Including preconditioners to the solver can substantially increase the rate
of convergence for an iterative solver [164, 165].

12.2.5 Other spectral manifolds

The present method decomposes the two-dimensional spectral plane into four large regions
and five smaller connecting regions. The choice for this representation manifold was in-
spired by the discretization path for the two-dimensional scattering cases. We choose this
manifold since the implementation was the most straightforward.

A simple change would be to change from the four regions NE, NW, SE and SW,
each spanning 90 degrees of the kx − ky plane, to three parts each spanning 120 degrees
and four interconnecting regions. This could reduce both the memory requirements and
computation time, at the cost of a marginal loss of accuracy. However, the implementation
is less straightforward, since it no longer aligns with the Cartesian axes.

In Chapter 11, other methods of transformation and continuous paths are discussed. It
is worthwile to look for different manifolds with more efficient transformations back and
forth. The present method requires four full-size FFTs per transformation to or from the
spectral domain. If this could be reduced, significant improvements are to be expected in
both CPU time and memory requirements.
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12.2.6 Locally refined sampling

It can be advantageous to use a refined sampling on certain locations in the spatial and/or
spectral domain. In principle, an example is the sampling in the middle part for the
complex spectral path in Eq. (6.20). In the spatial domain, singularities are found around
corners of scatterers. A refined sampling can be advantageous at these corners for higher
accuracy.

It is hard to implement such a refinement scheme efficiently with a Gabor-frame dis-
cretization. This is because evaluation of a discretized field at a single point is very slow,
since many coefficients contribute. However, with the Hermite interpolation, the field can
be evaluated locally very efficiently, and local refinements might be achievable.

12.2.7 Optimized programming

Currently, the programming of the algorithms has been performed with an emphasis on
modularity and readability. This is perfect for prototyping, where the modularity is very
advantageous for experimenting with e.g. different discretization methods. For readability,
a functional-programming approach has been taken. Both these methods are certainly not
optimal for execution speed. Once a certain approach has been settled and when large
changes to the basis of the code are not expected, both the modularity and functional
programming can be sacrificed for a more speed-optimized approach.
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Appendix A

Gabor coefficients of a step function

Both for the cut function in the spectral domain Eq. (6.21) and for the contrast function
in the spatial domain (2.28) it is desirable to find Gabor coefficients for the Heaviside
step function H(x). The problem with such a discontinuous function is that with an
equidistant sampling the information about the precise position of the discontinuity gets
lost. Therefore, the fast method to calculate Gabor coefficients from a sampled list does not
produce accurate results. This can be resolved by using heavy oversampling, typically with
a factor of thousand or more. However, this uses lots of computation time and memory.
In principle, it is also possible to compute Gabor coefficients by using the integral (4.4).
However, the integral has to be calculated for every individual Gabor coefficient and the
integral converges slowly. Therefore, it is desirable to find a more efficient method.

A.1 Step function in one dimension

We divide the Heaviside step function H(x) in a discontinuous part with an effectively
finite support that will be handled in the spectral domain

Hk(x) =

{
e−νx2

if x > 0

0 if x < 0
, (A.1)

and in a continuous part with infinite support that will be handled directly in the spatial
domain

Hx(x) =

{
1− e−νx2

if x > 0

0 if x < 0,
(A.2)

with ν a parameter that can be chosen for a balance between the continuity in Eq. (A.2)
and the size of support in Eq. (A.1). The Hx(x) function is continuously differentiable in
the spatial domain and Hk(x) is continuously differentiable in the spectral domain since
it effectively has finite support in the spatial domain. For Hx(x) there is no difficulty in
calculating the Gabor coefficients.

The Hk(x) function is discontinuous, but its Fourier transform is continuous. We can
calculate its Fourier transform analytically via
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Hk(k) =

∫ ∞

0

dk e−νx2

ejxk =

√
π

4ν
e−k2/4ν

[
1 + jerfc(

√
ν
−jk

2ν
)

]
. (A.3)

This function is continuous in k, so we can readily calculate its Gabor coefficients over
the range where they are needed. When we have its Gabor coefficients in the spectral
domain, we can Fourier transform them and add them to the Gabor coefficients of Hx(x).
This yields an accurate representation of H(x) in terms of Gabor coefficients. Of course
it is possible to shift the position of the discontinuity by convolving with δ(X − x), which
in the spectral domain corresponds to a multiplication by e−kX , which is continuous and
therefore straightforward to discretize.

A.2 Cut function in two dimensions

For the three-dimensional algorithm in Chapter 8 of this thesis, Gabor coefficients for a
step function in two dimensions is required. We define a two-dimensional step function
Hr1,r2(x) in the two-dimensional coordinates x = (x, y) by r1 = (x1, y1) and r2 = (x2, y2)
by the definition that Hr1,r2 = 1 left of the line through r1, r2 and zero right of that line
as illustrated in Figure A.1. We define new coordinates through the basis vectors

b =
r1 − r2
|r2 − r1|

a =b× ẑ,

(A.4)

so that x = (xa + d0)a + xbb, where xa signifies the distance from x to the discontinuity
as is illustrated in Figure A.1 and where d0 is obtained from d0 = a · r1 = a · r2.

Figure A.1: A visualization of the variables involved in the calculation of the scaled coor-
dinates.

In principle, we would like to use the same construction as we did in the previous
section. So again, we decompose Hr1,r2 into a spatial part Hr1,r2,x and a spectral part
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Hr1,r2,x. The spatial part can be defined as

Hx(xa, xb) =

{
1− e−νx2

a if xa > 0

0 if xa < 0,
. (A.5)

where xa = x ·a−d0 and xb = x ·b, with x = (x, y), the position coordinate in the original
system.

Special care has to be taken in the spectral domain, since in the spectral domain the
function has to be continuous in both directions, where it was defined as a continuous
function only in one direction in the previous section in (A.3). Therefore, we multiply
this function in the spatial domain by e−µx2

b , which ensures that its Fourier transform is
continuous and does not contain a δ function in the b direction. This spectral part in two
dimensions in the spatial domain is then given by

Hk,r1,r2(ka, kb) =

√
π2

4νµ
e−k2a/4ν−k2b/4µ

[
1 + jerfc(

√
ν
−jka
2ν

)

]
, (A.6)

where ka = k · a and kb = k · b. This function is continuous in both the spatial and the
spectral domain, and can be accurately discretized for a proper choice of µ without heavy
oversampling. We choose 1/µ = max(Wx,Wy), since it yields good results for the cases
we considered. To discretize this function in the spectral domain, we calculate four times
more spatial samples (index m in Eq. (4.1)) for a finer sampling and therefore a higher
accuracy. Afterwards we discard the excess Gabor coefficients.

The next step is to Fourier transform the Gabor coefficients back to the spatial domain.
Since we used a e−µx2

b to make Eq. (A.6) continuous, this has to be compensated again by
a factor of eµx

2
b . To summarize this, Gabor coefficients of the Heaviside step function are

found through

Hr1,r2(x) = eµ(x·b)
2Fk [Hk,r1,r2(k · a,k · b)] (x) +Hx,r1,r2(x · a− d0,x · b). (A.7)

A.3 Gabor coefficients of a disc

For completeness, we also include how we compute the Gabor coefficients of a disc with
radius R and amplitude 1. Since this function is discontinuous in the spatial domain, it is
discretized in the spectral domain by function H◦

R(kT ) via

H◦
R(kT ) = 2πR

J1(|kt|R)

kt

. (A.8)

Here J1(k) denotes the Bessel function of the first kind of order one. Since this function
is continuous, it can be easily discretized using a Gabor transform. Later the result can
be transformed to the spatial domain through a Fourier transformation, to arrive at a
discretized circle in the spatial domain. A displacement of the center of this disc by vector
xT,0 can be achieved by multiplying by exp(−jxT,0 · kT ) in the spectral domain.
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