

Exploring DSL evolutionary patterns in practice: a study of
DSL evolution in a large-scale industrial DSL repository
Citation for published version (APA):
Mengerink, J. G. M., van der Sanden, B., Cappers, B. C. M., Serebrenik, A., Schiffelers, R. R. H., & van den
Brand, M. G. J. (2018). Exploring DSL evolutionary patterns in practice: a study of DSL evolution in a large-scale
industrial DSL repository. In S. Hammoudi, L. F. Pires, & B. Selic (Eds.), Proceedings of the 6th International
Conference on Model-Driven Engineering and Software Development: Volume 1: MODELSWARD (pp. 446-
453). SciTePress Digital Library. https://doi.org/10.5220/0006605804460453

DOI:
10.5220/0006605804460453

Document status and date:
Published: 01/01/2018

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.5220/0006605804460453
https://doi.org/10.5220/0006605804460453
https://research.tue.nl/en/publications/09e8162e-590e-4391-b546-1546d31a0aae

Exploring DSL Evolutionary Patterns in Practice
A study of DSL evolution in a large-scale industrial DSL repository

Josh G.M. Mengerink1, Bram van der Sanden1, Bram C.M. Cappers1, Alexander Serebrenik1, Ramon
R.H. Schiffelers1,2 and Mark G.J. van den Brand1,

1Eindhoven University of Technology, The Netherlands
2ASML, Veldhoven, The Netherlands

{j.g.m.mengerink, b.v.d.sanden, b.c.m.cappers, a.serebrenik, r.r.h.schifflers, m.g.j.v.d.brand}@tue.nl,
ramon.schiffelers@asml.com

Keywords: Model Driven Engineering, Evolution, Maintenance

Abstract: Model-driven engineering is used in the design of systems to (a.o.) enable analysis early in the design process.
For instance, by using domain-specific languages, enabling engineers to model systems in terms of their
domain, rather then encoding them into general purpose modeling languages. Domain-specific languages,
like classical software, evolve over time. When domain languages evolve, they may trigger co-evolution of
models, model-to-model transformations, editors (both graphical and textual), and other artifacts that depend
on the domain-specific language. This co-evolution can be tedious and very costly.
In literature, various approaches are proposed towards automated co-evolution. However, these approaches do
not reach full automation. Several other studies have shown that there are theoretical limitations to the level
of automation that can be achieved in certain scenarios. For several scenarios full automation can never be
achieved. We wish to gain insight to which extent practically occurring scenarios can be automated.
To gain this insight, in this paper, we investigate on a large-scale industrial repository, which (co-)evolutionary
scenarios occur in practice, and compare them with the various scenarios and their theoretical automatability.
We then assess whether practically occurring scenarios can be fully automated.

1 An Introduction to Model
Co-Evolution

Model-driven software engineering (MDSE) has
many promises, such as improved productivity and
quality. Among those strengths is the ability to per-
form analysis early in the design process (Schiffelers
et al., 2012), (Karsai et al., 2003). For instance,
computing the expected throughput of a modeled
logistic system, giving feedback earlier in the design
process and increasing productivity.

One way to support such early analysis is to
design domain-specific languages (DSLs) enabling
engineers to model (parts of) systems in terms close to
their knowledge domain. Subsequently, those models
can be transformed into dedicated analysis formal-
isms (Lara and Vangheluwe, 2002) such as mCRL2
(Groote et al., 2007), UPPAAL (Bengtsson et al.,
1995), or SDF (SDF, 2015) using standard model-
to-model transformation techniques (e.g., QVT or
ATL (QVT, 2015; Jouault and Kurtev, 2006; Kolovos
et al., 2008)). Such a two-phase approach (transform-

ation from specification models to analyses models)
has been successfully implemented in various studies
in industry (Schiffelers et al., 2012), (Mohagheghi
et al., 2013).

However, MDSE using DSLs also has challenges.
As metamodels (which underpin DSLs) have become
the central artifact in the design (Mengerink et al.,
2016), (Vissers et al., 2016), their evolution (Favre,
2005) can trigger forced co-evolution of other eco-
system artifacts such as editors (Di Ruscio et al.,
2011), constraints (Khelladi et al., 2016), transforma-
tions (Garcı́a et al., 2013; Levendovszky et al., 2010),
and models (Gruschko et al., 2007; Narayanan et al.,
2009; Cicchetti et al., 2008; Wachsmuth, 2007). This
process is similar to changing source code in response
to API evolution in a traditional software engineering
context (Dig and Johnson, 2005), and results in a
tedious, error-prone, and thus costly process of co-
evolution.

Various approaches have been proposed aiming
to (partially) automate co-evolution of metamodel-
dependent artifacts (Khelladi et al., 2016; Garcı́a

et al., 2013; Levendovszky et al., 2010; Di Ruscio
et al., 2011). In particular, co-evolution of models
has received significant attention (Rose et al., 2009;
Wachsmuth, 2007; Gruschko et al., 2007; Di Rocco
et al., 2012), as models are most numerous artifacts
depending on the metamodel (Vissers et al., 2016).
Furthermore, several studies have also approached the
co-evolution problem from a theoretical stance (Her-
rmannsdörfer and Ratiu, 2009; Sprinkle et al., 2009),
determining the limits of automation. These papers
argue that when the constituting parts (e.g., syntax
and semantics) of DSLs evolve, full automation can
only be achieved in certain cases 1.

In our research, we are working towards improved
automation of model co-evolution, but wonder to
what extent this is feasible. To ascertain the impact of
the fundamental limitations (Sprinkle et al., 2009) in
practice, we wish to understand which of these cases
occur in practice.

The remainder of this paper is structured as fol-
lows: we describe our case study and experiments in
Section 2 and discuss the results in Section 3. We
discuss threats to validity and conclusions in Sections
4 and 5 respectively.

2 Study

2.1 Evolutionary Patterns

To understand what evolutionary patterns exist in
terms of a DSL, we first identify the various compon-
ents of a DSL. Sprinkle et al. (Sprinkle et al., 2009)
have provided a formal definition of a DSL as a tuple
of:

1. Abstract Syntax (i.e., the metamodel), denoted A ;

2. Constraints (e.g., OCL constraints on the
metamodel), denoted C ;

3. A semantic domain, denoted SD;

4. Semantics that map syntax to the semantic do-
main, denoted S .

We then define an evolutionary pattern as a change
of any combination of (1), (2), (3), and/or (4). For
example: syntax only, or syntax and semantics co-
evolution.

1Throughout this paper, the terms cases and patterns
both refer to a particular co-evolution of constituent parts
of a DSL

Figure 1: The relationship between the formal definition of
a language, and various artifacts in a repository.

2.2 Industrial Context

Our research takes place at ASML, provider of litho-
graphy equipment for the semiconductor industry. At
ASML, MDE is used to enable virtual prototyping
to provide feedback early in the design process. In
particular, we perform our case study (cf. (Runeson
and Höst, 2008)) on the CARM ecosystem of DSLs
(Schiffelers et al., 2012). The CARM ecosystem con-
sists of more than 20 DSLS with over 100 model-to-
model transformations, with a revision history of up
to six years. Note that we only study files committed
to the main branch of this repository, as subsequent
states of this branch represent finished products.

In CARM (Schiffelers et al., 2012), we observe
that the definition of a DSL as described by Sprinkle
et al. (Sprinkle et al., 2009) is not present in prac-
tice. Rather than the decomposition described in
Section 2.1, we see that the abstract syntax (A)
and constraints (C) are often combined into a single
metamodel specification (denoted M +).

Furthermore, the semantic domain (SD) is im-
plemented as a second metamodel. Often, this is
the metamodel of an analysis DSL, rather than some
abstract domain with a notion of equivalence (as the
description of Sprinkle et al. (Sprinkle et al., 2009)
suggests). Lastly, the model-to-model transformation
between the specification DSL metamodel (i.e., M +)
and analysis DSL metamodel (SD) takes on the
role of S . These relations (and their evolution) are
illustrated in Figure 1.

Observing this practical organisation of DSLs at
ASML, we limit ourselves to combinations of evolu-
tions of:

1. Syntax-defining metamodel, M +;

2. The semantics-defining transformation, S ;

name : String
Ecosystem

TransformationRevision

name : String
abstract File abstract Revision

namespace : String
MetaModelRevision

MetaModel

Transformation

revisionOf

timestamp : int
Snapshot

revisions
1..1 1..*

0..*

m
odifiedFiles

parent

1

1..*

snapshots

files1..*

allFiles1..*

prev, next

0..1

inputs

outputs

0..*0..*

prev, next
0..1

Figure 2: A graphical representation of the metamodel we
use to specify the evolution history of our ecosystem.

3. The metamodel defining the semantic domain,
SD.

This results in a total of seven cases (= 23− 1),
which excludes the pattern where nothing evolves.

2.3 Experimental Setup

In the spirit of MDE, we reconstruct the evolution
history of DSLs as a model. For this purpose we have
designed the metamodel illustrated in Figure 2. On
this metamodel, we subsequently define patterns of
interest.

The all-encompassing concept in the metamodel
is the Ecosystem. An ecosystem consists of various
Files such as MetaModels and Transformations.
As the files evolve over time, Snapshots represent
the state of the ecosystem at a particular point in
time, as indicated in the timestamp attribute. In a
snapshot, various files are modified, as encoded in
the modifiedFiles reference. A snapshot also has a
reference to files that were “carried over” from earlier
revisions, by means of the allFiles reference.

Revision is a version of a file at a particular
point in time. Similar to the distinction between two
types of Files: Metamodels and transformations,
we distinguish between MetaModelRevisions and
TransformationRevisions. Since the namespace
of a DSL, as well as the input and the output of
the transformations, can evolve in time, we repres-
ent them as attributes of MetaModelRevisions and
TransformationRevisions rather than Metamodel
and Transformation.

timestamp = 1
:Snapshot

timestamp = 2
:Snapshot

namespace = “Av1”
:MetaModelRevision

:TransformationRevision

namespace = “Bv1”
:MetaModelRevision

allFiles

m
od

ifi
ed

Fi
le
s

m
odifiedFiles

m
odifiedFiles

next

prev

output

inputoutput

name = “Example”
:Ecosystem

revisions

revisions

Figure 3: An object diagram (also known as instance dia-
gram) of a model conforming to the metamodel in Figure 2.
Specifically, an instance of Ecosystem is presented. For
clarity, several edges have been omitted but do recall that
Snapshot.modifiedFiles⊆ Snapshot.allFiles.
This model shows two subsequent snapshots of the repos-
itory (at times t = 1 and t = 2). In snapshot 1, DSL B is
modified, in snapshot 2, DSL A and a transformation from
A to B are modified.

Subsequently, we can reconstruct the revision
history as a model in our metamodel. In Figure 3,
we present an example fragment of such a model.
As stated in Section 2.2, the constituting parts of
our DSL are in practice present as two DSLs A and
B (representing M + and SD) and a transformation
between them (representing S). Such a pattern is also
illustrated in Figure 3, where we see the pattern of an
evolving syntax and semantics, but the semantic do-
main does not evolve. From the reconstructed model
of our repository, we wish to extract for evolutionary
pattern, how many Revisions evolve according to
that pattern.

To encode the various combinations in which syn-
tax, semantics, and semantic domain can change, we
create configurations, which are boolean triples
encoding the particular combination of interest. For
every combination we create one such triple:

Configuration : B×B×B

For example, the pattern in which syntax changes,
semantic changes, but the semantic domain does not,
is encoded as 〈true, true, f alse〉. We also refer to this
configuration as Q110. The only configuration which
we are not interested in is 〈 f alse, f alse, f alse〉, as
there is no (co-)evolution.

Note that the common ground between every
configuration of interest is that each one has at least
one artifact that evolves. In terms of our model this
means that we can iterate over every Snapshot, and
at least one artifact relevant for the pattern is in the

Data: An ecosystem e, and a configuration
Con f

Result: A collection of all revisions that play a
part in Con f

1 results← /0

2 foreach snapshot : Snapshot ∈ e.snapshots do
3 foreach revision : Revision ∈

snapshot.modifiedFiles do
4 if evolvesAsPattern(revision, Conf)

then
5 results← results∪〈Con f ,revision〉
6 end
7 end
8 end
9 return results
Algorithm 1: Iterate over every Revision to
see if it plays a part in a particular pattern.
We can iterate over modifiedFiles only, be-
cause every Revision is uniquely contained in the
modifiedFiles relation of a Snapshot.

modifiedFiles of that snapshot. This knowledge is
used in Algorithm 1.

This leaves the problem of identifying whether a
revision plays a part in a pattern as described by a
configuration. This identification is given by means
of the evolvesAsPattern function:

evolvesAsPattern(r : Revision,c : Con f iguration) =

evolvesAsSyntax(r,c) ∨
evolvesAsSemantics(r,c) ∨
evolvesAsSemanticDomain(r,c)

It is important to note that we consider all input
metamodels of a transformation together to specify
syntax, and all output metamodels of a transformation
together to specify the semantic domain. This means
that:

• The syntax, or semantic domain is considered
to change, if any of its composing
MetaModelRevisions change.

• The syntax, or semantic domain is considered
to stay the same if none of its composing
MetaModelRevisions change.

For more informations about the constituent func-
tions, we refer to the algorithms in the appendix.
Algorithm 2 for evolvesAsSyntax, 3 for evolvesAsSe-
mantics, and 4 for evolvesAsSemanticDomain.

The result from Algorithm 1 then contains, per
configuration, all the revisions of files that evolve
according to that configuration. The results of this
analysis are presented in Section 3.

2.4 Mining Git

In order to perform our analyses, we extract relevant
files the git version-control system at ASML. At
ASML, the GIT repository makes use of a master
branch that represents finished states. Features are de-
veloped in separate branched and merged into master
once completed. In this work, we limit ourselves to
the main branch of the repository as commits to this
branch should represent the full intended change to
the ecosystem.

On the main branch, starting with the earliest com-
mit, we look at subsequent commits to the ecosystem
and determine which files were added, changed, or
deleted. This earliest-first approach allows us to deal
with merges as regular commits.

2.5 Instance Model Creation

To create an instance of the metamodel in Figure 2,
we take the following steps. Starting with the earliest
commit to the main branch, we create a snapshot S0
for this commit. All files in that commit are added to
both the “modifiedFiles” and ‘allFiles‘ of S0.

For every subsequent commit (including merges)
to the main branch ,we create a snapshot Si with
a timestamp corresponding to the commit. Sub-
sequently:

• Every file added or modified in that commit is
added to both the “modifiedFiles” and ‘allFiles‘
of Si.

• Files from the “allFiles” of the previous version
(Si−1) that were not added/modified/deleted in this
commit are added to the “allFiles” of Si.

For subsequent snapshots, the “next” and “prev”
relations are set.

Once the above relations have all been initialized,
we can begin creating the “input” and “output” rela-
tions of the various transformations as described in
Section 2. For instance, in the example illustated
in Figure 3, we parse a TransformationRevision, and
find that it has “Av1” and “Bv1” as input and output
respectively. As the TransformationRevision resides
at timestamp t = 2, we have to search backwards
(starting at t = 2) through all snapshots for MetaMod-
elRevisions with the appropriate names. In Figure 3,
this means that we use the “Av1” at time t = 2, and
“Bv1” at time t = 1.

After the “input” and “output” relations have been
properly created, we can begin our pattern-analysis.

Table 1: Number of revisions evolving according to a
particular configuration

Reference M +

evolves
S
evolves

SD
evolves

#

Q010 no yes no 865
Q100 yes no no 368
Q001 no no yes 344
Q111 yes yes yes 296
Q110 yes yes no 86
Q011 no yes yes 84
Q101 yes no yes 0

B

A

A

A

C
C

Time

Tr
an

sf
or

m
at

io
ns

Figure 4: Illustration showing the modification of model-
to-model transformations over time (Q010). Each row
represents a transformation, and each column represents a
moment in time. Columns are sorted chronologically, and
rows are sorted by initial creation of the transformation. A
cell is colored red if the given transformation changed at
that moment in time. Names of transformations have been
omitted for reasons of confidentiality.
Observe that various transformations are often created
together (A), and maintained together (B). Also, once a
transformation is modified, various revisions ensue in rapid
succession (C).

3 Discussion of Results

Using the analysis from Section 2, we have obtain
the results which are presented in Table 1. In Sec-
tions 3.1 through 3.4 we discuss the most frequently
occuring cases in more detail.

3.1 Redefinition of Semantics (Q010)

As the semantics-only DSL evolution case (Q010) has
the most occurences, we can say that the semantic
definitions of DSLs are the most volatile part. Plotting
the changes over time as illustrated in Figure 4, we
can see that the evolution frequency of the various
transformations seems to decrease over time. This

enforces our intuition that DSL semantics stabilize
over time.

Interesting in Figure 4 is the large vertical column
(encircled in blue), in which a majority of trans-
formation seems to have been updated. Upon closer
(manual) inspection, a new website for document-
ation was introduced, and all error messages were
refactored to include appropriate links to this site.
This, in essence, was not an update to the semantics.
These log-related updates appear to be the only non-
semantical updates performed.

To ensure that these non-semantical updates do
now invalidate our findings, we further analyzed to
what extent they are present in our data. An analysis
of these non-semantical updates shows that of the
17187 differences that were observed 57 are cre-
ations of new log-statements, 201 are modifications
of existing log-expressions, and 1 removal of a log
statement. The total of 259 non-semantical changes
thus constitutes approximately 1.5% (259/17187) of
the observed data, which leads us to conclude that
our results are not invalidated by presence of non-
semantical changes.

The observed volatility (the fact that most DSL
evolutions are semantics-based), creates the necessity
to incorporate semantics into the co-evolution process
of models. Interestingly, the work of Sprinkle et al.
(Sprinkle et al., 2009) does not discuss the funda-
mental limitations of model co-evolution in response
to evolution of only DSL semantics.

The question we remain with is: given a model m1
for M +, does a model m2 exists that has equivalent
semantics using the new semantical definition S2?

∃m2∈M2
[S2(m2)≡ S1(m1)]

In practice, we observe that identity = is frequently
used as a notion of equivalence (≡). In this case,
existence of such an m2 basically boils down to the
question if the image (I) of the original semantic
function is a subset of the image of the updated
semantic function:

I(S1)⊆ I(S2)

In general, this problem is undecidable. Take for
instance I(S1) to be 〈true, f alse〉, and let S2 map pro-
grams to true, if and only if that program terminates
(the Halting problem). As the Halting problem is
undecidable, as a result I(S2) is undecidable. Hence,
it is undecidable whether I(S1)⊆ I(S2).

An interesting piece of future work would be to
further investigate the nature of the S1 to S2 evolution.

3.2 Syntax-only DSL evolution (Q100)

The second most frequent occurring change are syn-
tactic only in nature (Q100). In total, 368 revisions

evolved according to this pattern. We have already
studies the different kinds of syntactic changes that
typically occur in practice (Mengerink et al., 2016),
(Vissers et al., 2016). Furthermore, various ap-
proaches exist that perform syntactic model co-
evolution in response to syntax-only DSL evolution
(Eda, 2015; Rose et al., 2010; Di Rocco et al., 2012).

Upon more detailed study of the automation of
this case, Sprinkle et al. (Sprinkle et al., 2009) argue
that semantic model co-evolution is possible in a
large number of cases. More specifically, for additive
evolutions, it is always possible, and for subtractive
changes it depends on the specific context.

In our previous work (Mengerink et al., 2016)
we have observed that additive change make up
approximately 37% of syntactic DSL evolution, and
that 22% of syntax evolutions is subtractive in nature.
Moreover, we have looked into changes (i.e., a
change to a value in the metamodel is neither additive
nor subtractive). This category makes up the remain-
ing 41% of DSL evolutions. Additional research
is required to ascertain the automatability of these
syntax changes.

3.3 Evolution of the semantic domain
(Q001)

The third most frequent case is evolution of the
semantic domain. We expected the semantic domains
(i.e., our analysis DSLs) to be fairly stable over
time. The number of occurences (344) were nearly
as numerous as the syntactic evolutions (368), which
surprised us. This led us to investigate the evolution
of semantic domain DSLs further.

When intersecting all revisions that evolve as
syntax (Q100) and the revisions that evolve as a
semantic domain (Q001), we observe 309 revisions
are in both sets. Upon further inspection, it turns out
that transformations are often multi-step. That is, a
DSL A is transformed into a DSL B, which in turn
is transformed into a DSL C. In this case, when B
evolves, it acts both as semantic domain, and as a
syntax definition. Please note that this is distinct from
pattern Q101.

3.4 Everything evolves (Q111)

The last major case (with over 200 occurrences),
is Q111. Here, we have to acknowledge a threat
to validity, as distinct evolutions may be obscured,
e.g., by our interpretation of git merges, skewing the
observations we make. The number of occurrences in
Q111 may thus be attributed to various other cases,
meaning that the various other cases become more

significant. However, to confirm this, more in-depth
research is needed, which we mark as future work.

4 Threats to Validity

As with any repository mining work, there are
some inherent threats (Bird et al., 2009). In particular,
our assumption that a commit corresponds to a piece
of work may lead to skewing of our results. However,
as the set of files were consistent after every commit,
we have confidence that this is not the case. Non-
etheless, we envision future work to further analyze
whether our results are indeed skewed.

Furthermore, we have inspected the change of a
file, but not how that file was changed. This leads
to some additional false positives, as described in
Section 3.1. Further research is needed to perform
a more in-depth analysis of the various changes.

5 Conclusion

In this work, we have investigated the evolution
of DSLs in a large-scale industrial MDSE ecosystem.
We conclude that, in our case study, of the various
constituent parts of a DSL that can evolve:

The most common type of DSL evolution is
redefinition of its semantics.

Also, by mapping the automatability of semantic-
preserving co-evolution to the Halting problem, we
have argued that

Automatability of semantic-preserving
model co-evolution in response to DSL semantic
evolution is undecidable in general.

Further analysis of the semantic redefinition of
languages over time (Figure 4 showed that, in our
case-study, the frequency of changes per transforma-
tion seems to decrease over time (barring exceptions).
Leading us to conjecture:

DSL semantics stabilize over time.

Lastly, we feel that this work shows that the
evolution of DSL semantics plays a more dominant
role in DSL evolution, where in literature, syntax is
often assumed to be the more dominant.

More research into the role of DSL semantics
in
(co-)evolution is needed

As future work, we envision investigating whether
certain types always precede/succeed each other. For
instance, is syntax evolution normally followed by
semantic redefinition, rather than changing the syntax
and semantics together in one go. Additionally, as
stated in Section 3.1, there is a need to investigate the
nature of DSL semantic change, in order to ascertain
if for some of these changes automation of model of
co-evolution is possible. Furthermore, additional case
studies are necessary to determine if the results in this
study can be generalized.

REFERENCES

(2015). Edapt. https://www.eclipse.org/edapt/.
Accessed: 2015-04-07.

(2015). QVTo. http://www.eclipse.org/mmt/
?project=qvto. Accessed: 2015-04-07.

(2015). SDF. http://www.es.ele.tue.nl/sdf3/. Ac-
cessed: 2015-04-07.

Bengtsson, J., Larsen, K. G., Larsson, F., Pettersson, P.,
and Yi, W. (1995). UPPAAL - a tool suite for
automatic verification of real-time systems. In Hybrid
Systems III: Verification and Control, Proceedings of
the DIMACS/SYCON Workshop, pages 232–243.

Bird, C., Rigby, P. C., Barr, E. T., Hamilton, D. J., Germán,
D. M., and Devanbu, P. T. (2009). The promises and
perils of mining git. In MSR, pages 1–10.

Cicchetti, A., Di Ruscio, D., Eramo, R., and Pierantonio,
A. (2008). Automating co-evolution in model-driven
engineering. In IEEE Enterprise Distributed Object
Computing Conference, pages 222–231.

Di Rocco, J., Iovino, L., and Pierantonio, A. (2012).
Bridging state-based differencing and co-evolution. In
Models and Evolution, pages 15–20. ACM.

Di Ruscio, D., Lämmel, R., and Pierantonio, A. (2011).
Automated co-evolution of GMF editor models. In
SLE, volume 6563 of LNCS, pages 143–162. Springer.

Dig, D. and Johnson, R. (2005). The role of refactorings in
api evolution. In 21st IEEE International Conference
on Software Maintenance (ICSM’05), pages 389–398.

Favre, J.-M. (2005). Languages evolve too! changing
the software time scale. In Principles of Software
Evolution, pages 33–42.

Garcı́a, J., Diaz, O., and Azanza, M. (2013). Model
transformation co-evolution: A semi-automatic ap-
proach. In SLE, volume 7745 of LNCS, pages 144–
163. Springer.

Groote, J. F., Mathijssen, A., Reniers, M., Usenko, Y., and
van Weerdenburg, M. (2007). The formal specifica-
tion language mcrl2. In Methods for Modelling Soft-
ware Systems (MMOSS), number 06351 in Dagstuhl
Seminar Proceedings. Dagstuhl.

Gruschko, B., Kolovos, D., and Paige, R. (2007). Towards
synchronizing models with evolving metamodels. In
Workshop on Model-Driven Software Evolution.

Herrmannsdörfer, M. and Ratiu, D. (2009). Limita-
tions of automating model migration in response to
metamodel adaptation. In MSE, Workshops and
Symposia at MODELS, volume 6002 of LNCS, pages
205–219. Springer.

Jouault, F. and Kurtev, I. (2006). Transforming models with
atl. In Bruel, J.-M., editor, Satellite Events at the
MoDELS 2005 Conference, volume 3844 of LNCS,
pages 128–138. Springer.

Karsai, G., Sztipanovits, J., Ledeczi, A., and Bapty, T.
(2003). Model-integrated development of embedded
software. Proceedings of the IEEE, 91(1):145–164.

Khelladi, D. E., Hebig, R., Bendraou, R., Robin, J., and
Gervais, M.-P. (2016). Metamodel and constraints
co-evolution: A semi automatic maintenance of OCL
constraints. In ICSR, pages 333–349. Springer.

Kolovos, D. S., Paige, R. F., and Polack, F. A. C. (2008).
The Epsilon Transformation Language, pages 46–60.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Lara, J. d. and Vangheluwe, H. (2002). Atom3: A tool
for multi-formalism and meta-modelling. In Kutsche,
R.-D. and Weber, H., editors, FASE, pages 174–188,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Levendovszky, T., Balasubramanian, D., Narayanan, A.,
and Karsai, G. (2010). A novel approach to semi-
automated evolution of dsml model transformation. In
SLE, volume 5969 of LNCS, pages 23–41. Springer.

Mengerink, J. G. M., Serebrenik, A., Schiffelers, R. R. H.,
and van den Brand, M. G. J. (2016). A complete
operator library for DSL evolution specification. In
ICSME 2016, Raleigh, NC, USA, pages 144–154.

Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez,
M. A., Nordmoen, B., and Fritzsche, M. (2013).
Where does model-driven engineering help? experi-
ences from three industrial cases. Software & Systems
Modeling, 12(3):619–639.

Narayanan, A., Levendovszky, T., Balasubramanian, D.,
and Karsai, G. (2009). Automatic domain model mi-
gration to manage metamodel evolution. In MoDELS,
volume 5795 of LNCS, pages 706–711. Springer.

Rose, L. M., Kolovos, D. S., Paige, R. F., and Polack,
F. A. (2010). Model migration with Epsilon Flock.
In ICMT, volume 6142 of LNCS, pages 184–198.
Springer.

Rose, L. M., Paige, R. F., Kolovos, D. S., and Polack, F.
A. C. (2009). An analysis of approaches to model
migration. In MoDSE-MCCM, pages 6–15.

Runeson, P. and Höst, M. (2008). Guidelines for conducting
and reporting case study research in software engin-
eering. Empirical Software Engineering, 14(2):131.

Schiffelers, R. R. H., Alberts, W., and Voeten, J. P. M.
(2012). Model-based specification, analysis and syn-
thesis of servo controllers for lithoscanners. In 6th
International Workshop on Multi-Paradigm Modeling,
pages 55–60. ACM.

Sprinkle, J., Gray, J., and Mernik, M. (2009). Funda-
mental limitations in domain-specific modeling lan-
guage evolution. Technical report, Technical Report#
Tr-0908311, University of Arizona.

Vissers, Y., Mengerink, J. G. M., Schiffelers, R. R. H.,
Serebrenik, A., and Reniers, M. A. (2016). Mainten-
ance of specification models in industry using edapt.
In FDL, pages 1–6.

Wachsmuth, G. (2007). Metamodel adaptation and model
co-adaptation. In ECOOP, volume 4609 of LNCS,
pages 600–624. Springer.

APPENDIX

Data: A revision r, and a configuration
Con f = 〈Cx,Cy,Cz〉

Result: true iff r fulfills the role of syntactic
definition and adheres to Con f

1 if ¬(r instanceof MetaModelRevision)
then

2 return false
3 end
4 Scurr← r.parent
5 if Cy then
6 Q← Scurr.modi f iedFiles
7 else
8 Q← Scurr.prev.allFiles
9 end

10 if Cz then
result
← result ∧ ∃y:TransformationRevision [

x ∈ input(y) ∧ y ∈ Q ∧
out put(y) ∩ Scurr.modi f ied f iles 6= /0]

11 else
result
← result ∧ ∃y:TransformationRevision [

x ∈ input(y) ∧ y ∈ Q ∧ out put(y) 6= /0∧
out put(y) ∩ Scurr.modi f ied f iles = /0]

12 end
13 return result
Algorithm 2: Checks if a given Revision is a
syntactic definition that adheres to a provided con-
figuration.

Data: A revision r, and a configuration
Con f = 〈Cx,Cy,Cz〉

Result: true iff r fulfills the role of semantic
mapping

1 if ¬(r instanceof TransformRevision)
then

2 return false
/* Avoid empty domain rule */

3 result← (inputs(y) 6= /0)∧ (out puts(y) 6= /0)
4 Smod ← r.parent.modi f iedFiles
5 if Cx then
6 result← result ∧ (inputs(y)∩Smod 6= /0)
7 else
8 result← result ∧ (inputs(y)∩Smod = /0)
9 end

10 if Cz then
11 result← result ∧ (out puts(y)∩Smod 6= /0)
12 else
13 result← result ∧ (out puts(y)∩Smod = /0)
14 end
15 return result
Algorithm 3: Checks if a given Revision is a
semantic transformation that adheres to a provided
configuration.

Data: A revision r, and a configuration
Con f = 〈Cx,Cy,Cz〉

Result: true iff r fulfills the role of syntactic
definition and adheres to Con f

1 if ¬(r instanceof MetaModelRevision)
then

2 return false
3 end
4 Scurr← r.parent if Cy then
5 Q← Scurr.modi f iedFiles
6 else
7 Q← Scurr.prev.allFiles
8 end
9 if Cx then

result ← result ∧ ∃y:TransformationRevision [

z ∈ out put(y) ∧ y ∈ Q ∧
input(y) ∩ Scurr.modi f ied f iles 6= /0]

10 else
result
← result ∧∃y:TransformationRevision [

z ∈ input(y) ∧ y ∈ Q ∧ input(y) 6= /0∧
input(y) ∩ Scurr.modi f ied f iles = /0]

11 end
12 return result
Algorithm 4: Checks if a given Revision is a se-
mantic domain definition that adheres to a provided
configuration.

