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1 Introduction

Highly convection-dominated thermally-driven problems appear frequently
in the engineering practice. Their investigation often involves the necessity
of direct simulation of transition to turbulence which requires high accuracy
of spatial and time discretization. In the present study numerical simula-
tion of unsteady plumes is presented performed with a spectral element
algorithm. The spectral element method (SEM), proposed by Patera [1], is
a high-order Galerkin type method which demonstrates excellent properties
(small numerical diffusion and dispersion error) with respect to convection-
dominated problems (see Timmermans & van de Vosse[2]). A major prob-
lem related to such high-order methods is that the resulting matrix is quite
full in comparison to low-order methods. Because of this their application
to fluid flow problems is often combined with some splitting procedure al-
lowing the decomposition of the Navier-Stokes and energy equations into a
set of positive definite symmetric algebraic systems which can be efficiently
solved by means of iterative methods (see for example Karniadakis et al.
3)).

The direct numerical simulation of unsteady plumes induced by heated
bodies is a relatively recent research topic. This problem is of practical
importance in relation to, for example, the cooling of electronic devices and
the heat transfer from pipes in heat exchange systems. A very extensive
study of the buoyant plumes over a line heat source in the interior of a
rectangular cavity is presented by Desrayaud and Lauriat [4]. The way to
chaos of such flows is studied in details showing an intermittent scenario
after a two-frequencies-locked state. Bastiaans et al. [5] present large-eddy
simulations of transient plumes using different subgrid models.
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In the present study a modified splitting procedure combined with spec-
tral element discretization is developed and some preliminary results of the
direct numerical simulation of unsteady plumes in a square cavity induced
by a finite-area heat source on its bottom are performed. From preliminary
experiments (see van de Burgt [6]) and large-eddy simulations (see Basiaans
et al. [5]) it is found that the flow deviates from laminar at Rayleigh num-
ber about B = 10%. Therefore in this study calculation are performed at
108 < R < 10°. At R = 10® the flow is clearly laminar and then it develops
undergoing the first and the second bifurcation toward a two-frequencies
locked state at R = 10°.

2 Governing equations

The equations for natural convection in a 2-D domain 2 (belonging to the
x-y plane) presuming an incompressible flow with constant fluid properties
except for the density in the buoyancy term, which is supposed to be linearly
dependent on the temperature, read:

Ju

ap t(w¥)u=—-Vp+RPrTg+ Prv2u (1)
Vau=0 (2)
%% + (u.Y)T = V*T (3)

with u, p and T the dimensionless velocity, pressure and temperature re-
spectively, R = (g[)’q”l[l)/(/\/iz/), Pr = v/k the Rayleigh and Prandt] num-
bers, g = (0,1). Here g is the acceleration of gravity, [ is the characteristic
length, ¢” is the specific heat flux, 3 is the thermal expansion coefficient, A is
the thermal conductivity, & is the thermal diffusivity and v is the kinematic
viscosity of the fluid.

All the numerical experiments presented below are performed in a square
2-D domain with dimensionless length 1. No-slip boundary conditions for
the velocity are imposed on all the walls of the cavity. The side and bottom
walls are adiabatic except for an area centered at the midpoint of the bottom
where the flux is prescribed. On the top wall zero temperature is prescribed.

3 Numerical algorithm

There are three main problems related to the numerical solution of the
system (1) - (3). The first one concerns the treatment of the convection
operators because of their non-linearity and asymmetry. The second prob-
lem is related to the coupling between the velocity and temperature via
the source term in the momentum equation and the convection part of the



@; Transactions on Engineering Sciences vol 5, © 1994 WIT Press, www.witpress.com, ISSN 1743-3533

Heat Transfer 149

energy equation. The third one is how to impose the incompressibility con-
straint and how to calculate the pressure.

Since the convection operator is suitable for an explicit treatment, in
the present technique a so-called operator-splitting approach is adopted. It
is discussed in details by Maday et al.[7]. If the convection part of (1) - (3)
is splitted in this manner and the resulting diffusion problem is discretized
in time with a second-order backward difference scheme the following semi-
discrete system appears:

Jumt! — 4a” !

= —Vp"t!' + PrVviut! 4 RPrT" g (4)

2t
Vot =0 (5)
3T+ — 4T 4 Tt
2A1 : = v (6)

Here the quantities marked by ~are the corresponding quantities at level
n-i (i =0, 1), convected according to the following equation:
aﬁgﬂ = (u(s).V)Q" ™, 0<s<(i+1)At, 1=0,1
s

where @ is either u or 7.

Taking into account the stability regions of the multistep schemes a 3-
step Runge-Kutta scheme is used to solve (7). For the convection of the
temperature a second-order extrapolation for the velocity at the moments

t"+7 (r=(m+0As, m=0,M-1;0=0,1/3,1/2,1) is used:
u™’ = (1 + /At u™ — 7/Atu™! (8)

The velocity/ pressure saddle-point problem (4)-(5) can be solved with
an implicit source term. This is performed with a projection procedure
including the following steps:

1. Calculation of an intermediate velocity field u* by choosing the pres-
sure at the previous time level:

3u” —4a” + o
2A1

= —Vp" + PrVv*u” + RPrT™tg (9)

2. An equation for the pressure correction p® = p"*! — p™ is obtained
by subtracting (9) from the original equation (4):

3/2(0" —u) — AtPrVi(u"t! —ut) = —AtVp° (10)

Further, applying divergence to both sides and taking into account (5)
yields:

3V.u*
Vig = 11
1= 55 (11)
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which is a Poisson equation for the quantity: ¢ = p¢ + PrV.u*.
3. u* is projected on a divergence-free subspace by subtracting of its
rotation-free part:

u"t! = u* — 2/3AtVyq (12)

The corresponding pressure is calculated from:
p"t=p" + qg— Prv.au’ (13)

As it is proved by Timmermans et al.[8] these velocity and pressure sat-
isfy the original saddle-point problem. The details concerning the boundary
conditions for the equations above can be found also there.

As mentioned above, a spectral element discretization is applied to the
semi-discrete system (9)-(13). The SEM is a high-order Galerkin tech-
nique which uses the Gauss-Lobatto points as collocation and integration
points (resulting in a diagonal mass matrix). Similarly to the classical fi-
nite element methods it also allows decomposition of the physical domain
into isoparametric quadrilaterals. More details can be found in Maday &
Patera[9]. The scheme described above is extensively discussed and vali-

dated by Minev et al. [10].

4 Results

difference in vertical velocily
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time

Figure 1: R = 10° a) the spectral element mesh; b) relative difference in
the vertical velocity.

First, the result of the simulation of a laminar plume at R = 109 is compared
with the numerical result obtained under the same conditions by Bastiaans
et al . [5]. In the SEM simulation a mesh of 4 x 4 spectral elements of
8 order (33 x 33 points) is used (see fig la) while by Bastiaans a mesh of
77 x 77 points and an explicit finite-volume technique is used. For the sake
of consistency in both studies the source on the bottom is taken as a smooth
Gaussian hill: T /dn = e(-192z=20)*) with z, the centre. The history of
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the relative difference in the vertical velocity components in the centre of
the cavity, as found with both methods, is presented in fig. 1b. The result
indicates that the velocity differs less than 2.5%; besides the temperature
in sample points differs less then 2%.

power

“00s o006 008 0.1 012 014 016 018 02 o 100 200 300 400 500 600 700 800
time frequency

Figure 2: R = 10® a) history of the horizontal component of the velocity;
b) corresponding power spectrum.

1 L
a)

b)
Figure 3: R = 10%; isotherms.

Next, the flow at R = 10°® is simulated prescribing a heat source:
AT /On = e(-400(z=20)*) and using a mesh of 8 x 8 spectral elements of
8 order and At = 2.5 x 107°. After a relatively short transience it reaches
a steady state. In order to study its stability a disturbance is introduced
shifting smoothly the centre of the source for half a period with a physi-
cally relevant frequency 200 (see fig. 5b) and an amplitude 0.01. The flow
responds with two frequencies oscillations: about 68 and 176 respectively,
which are damped after a certain time. This can be clearly seen in fig. 2
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where the graphics of the horizontal component of the velocity in the centre
of the cavity is presented together with the corresponding power spectrum.
The temperature isolines at the beginning and the end of this development
are presented in fig. 3.

power

t / 0 100 200 300 400 500 600
frequency

a) b)

Figure 4: R = 2 x 10® a) isotherms at t = 0.05; b) the power spectrum of
the horizontal component of the velocity in the centre.

The result at R = 108 is used as an initial condition for the simulations
at R = 2x10% and R = 10°. At the first value the flow clearly undergoes the
first bifurcation showing a quasi-steady oscillatory behaviour - see fig. 4a.
A single frequency of about 220 can be recognized on the power- spectrum
diagram presented in fig. 4b. Further increase of the Rayleigh number to
R = 10° gives rise of two incommensurate frequencies of about 161 and
234 (see fig. 5). The structure of the flow is more complicated now - see
fig. 6 where the isotherms and the streamlines at the dimensionless time
instant 0.05 are presented. The plume is stuck to the right wall and the flow
resembles the flow in a differentially -heated cavity at low Rayleigh number.
This is also observed in the preliminary experiments.

5 Conclusions

The application of high-order spectral element methods to natural convec-
tion problems is quite efficient if it is combined with a high-order splitting
procedure for time integration. The present study illustrates this with di-
rect numerical simulation of thermal plumes induced by a local heat source
on the bottom of a square cavity. The results are in a good agreement with
some preliminary experiments and large-eddy simulations. The numerical
technique splits the continuous initial formulation in two Helmholtz equa-
tions for the velocity and temperature respectively and one Poisson equation
for the pressure which can be efficiently solved with iterative solvers. More-
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over, it allows the usage of a non-staggered grid for the pressure and velocity
(see [8]).

The further investigations will include simulations at larger Rayleigh
numbers in order to study the full scenario of the transition. 3-D numerical
simulations will also be performed in order to study the 3-D effects in this
process.
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Figure 5: R = 10° a) history of the horizontal component of the velocity;

b) corresponding power spectrum.
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Figure 6: R = 10° a) Isotherms; b) streamlines at t = 0.05.
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