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Abstract This paper introduces a three-dimensional vol-
umetric representation for safe navigation. It is based on
the OctoMap representation framework that probabilistically
fuses sensor measurements to represent the occupancy prob-
ability of volumes. To achieve safe navigation in a domestic
environment this representation is extended with a model
of the occupancy probability if no sensor measurements are
received, and a proactive approach to deal with unpredictably
moving obstacles that can arise from behind occlusions by
always expecting obstacles to appear on the robot’s path. By
combining the occupancy probability of volumes with the
position uncertainty of the robot, a probability of collision
is obtained. It is shown that by relating this probability to
a safe velocity limit a robot in a real domestic environment
can move close to a certain maximum velocity but decides
to attain a slower safe velocity limit when it must, analogous
to slowing down in traffic when approaching an occluded
intersection.
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1 Introduction

Robots that navigate in indoor, domestic environments face
an environment that encompasses obstacles and uncertain-
ties. Obstacles generally vary in their size and shape and
can be static as well as dynamic. Uncertainty typically arises
from three sources (Berg et al. 2011): (i) sensing uncertainty
due to noisy and false sensor measurements, (ii) uncertainty
about the environment due to (partially) unknown parts of
that environment and (iii) robot position uncertainty due to
localization errors and external disturbances acting on the
robot. In the presence of these characteristics a robot always
needs to guarantee that it is safe, i.e., that it can ensure to
come to a timely stop when a collision is imminent. Safe
navigation can be achieved by moving a robot at very low
velocities, typically below 0.1 m/s. However, by incorporat-
ing knowledge on the environment a robot can move with
higher velocities without becoming unsafe.

A navigation system generally consists of a representa-
tion of the environment, one or more algorithms that search
for a path or trajectory through this environment and gen-
erate motor commands and a policy that coordinates these
algorithms. A three-dimensional representation of the envi-
ronment is a prerequisite to deal with the challenges that a
typical domestic environment poses (Marder-Eppstein et al.
2010). An approximate cell decomposition is a common
and popular approach to represent the environment (Goerzen
et al. 2010; Hornung et al. 2013). Searching and executing
a path in an environment with obstacles and uncertainties is
typically achieved using a planner that finds a path to the
goal that is executed by a reactive algorithm (Goerzen et al.
2010). Such a reactive algorithm controls the robot in real-
time to avoid imminent collisions by stopping or swerving
the robot when an obstacle is known to be on the robot’s
path.
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Fig. 1 A corridor with a doorway that is occluded. In a domestic envi-
ronment this increases the probability of collision for a robot as moving
obstacles such as people can emerge from behind such occlusions

Space that is unknown, due to occlusions and a limited
sensory range, poses a threat to a robot that navigates in
a domestic environment as moving obstacles might emerge
from behind occlusions onto the robot’s path. An exemplary
situation occurs when a robot traverses a corridor as depicted
in Fig. 1. Near unknown space, such as a passage or a door-
way that is occluded to the sensors, an obstacle can suddenly
emerge. This requires the robot to lower its velocity such
that it can guarantee that it will not collide with a possible
incoming obstacle. The robot can increase its velocitywhen a
confined part of the environment, like the part of the corridor
past the doorway, is known to be free as there is no uncer-
tainty arising from any unknown space. A reactive algorithm
that has no information about this threat can approach at a
velocity that does not allow the robot to detect the imminent
collision and react to it to avoid collision. Hence, analogous
to slowing down in hazardous situations in traffic, a repre-
sentation is necessary that allows the robot to decide when it
is able to move at a certain maximum velocity and when it
must maintain a slower pace to ensure safety.

2 Related work and contribution

To achieve safe behavior some approachesmodify the robot’s
planned path or motion using the obstacle representation.
They enlarge obstacles by inflating their representation with
a ‘safe’ distance that encompasses the robot position uncer-
tainty as well as the robot sensing uncertainty (Hsu et al.
2002; Chung et al. 2004). While this may ensure that a robot
keeps a greater distance from obstacles, it may also prohibit

a robot to traverse tight spaces. This is undesirable as tight
spaces such as doorways are typically present in a domes-
tic environment. Other approaches limit the robot’s velocity
based on distance to obstacles on the robot’s path (Linge-
mann et al. 2005) or the amount of clearance on both sides
of the robot (Fox et al. 1997). The former approach will
fail when a moving obstacle emerges from occluded regions,
e.g., a doorway in a corridor as shown in Fig. 1. The latter
approach is conservative in that it will scale down its veloc-
ity in a narrow corridor, while in such a confined part of the
environment the robot could safely drive at higher velocities.

Uncertainties can explicitly be taken into account to
prevent collisions. A range of approaches estimate the prob-
ability of collision of the robot along its path (Missiuro and
Roy 2006; Burns and Brock 2007; Guibas et al. 2009; Berg
et al. 2011; Patil et al. 2012). These approaches plan a path by
sampling the environment for feasible robot configurations
that reduce the probability of collision during the execution of
a path. These approaches result in robot motions with a lower
probability of collision by explicitly considering the robot
position and sensing uncertainty. However, these approaches
do not take into account the uncertainty that arises due to
unknown parts of the environment. In Marder-Eppstein et al.
(2010), a method is introduced that does track the unknown
space in three dimensions. To guarantee safe behavior it is
ensured that the robot never traverses this unknown space.
However, it is assumed that the environment is mostly static,
i.e., it can not ensure safe behavior if an obstacle emerges
from an occluded part of the environment. Furthermore, once
any unknown space is marked as free it will remain free.
This makes the representation over-confident in its assump-
tion that space is free as this space can become occupied
again in a changing environment. Hence, a time-dependent
occupancy probability model is necessary, instead of merely
tracking unknown space.

A more formal approach to assess safety can be found
in literature discussing inevitable collision states, e.g.,
in Fraichard and Asama (2003), Bautin et al. (2010), Althoff
et al. (2010), Bouraine et al. (2012) and Althoff and Dolan
(2014). However, these methods assume that a model of the
future is available but do not consider unmodeled obstacles
occurring from behind occlusions. Other methods to assess
safety and threats can be found in, e.g., Eidehall and Peters-
son (2008) and Althoff and Mergel (2011), but these require
position information of other objects as well.

Finally, some approaches explicitly model the uncer-
tainty that arises due to unpredictable moving obstacles, e.g.,
humans (Philippsen et al. 2006, 2008; Rohrmüller et al.
2008). Moving obstacles are extracted from subsequent sen-
sor readings and their position and velocity is estimated to
obtain a probabilistic model that resembles the risk of col-
lision. A moving obstacle can, however, be occluded up
to an imminent collision. Furthermore, these methods limit

123



Auton Robot (2018) 42:601–614 603

themselves to a two-dimensional representation of the envi-
ronment and are therefore not suitable for application in a
domestic environment.

Hence, current approaches that deal with uncertainties to
allow safe navigation are not fully suited for a domestic envi-
ronment. Not all present uncertainties are considered in an
integrated approach and they lack an explicit model to deal
with the uncertainty that arises due to occlusions in an envi-
ronment with unpredictably moving obstacles.

This paper contributes a three-dimensional representation
that allows a motion planner to decide when it can move
at a certain maximum velocity and when it must maintain a
slower pace to ensure safety based on the probability of colli-
sion. This is achieved by explicitly representing the multiple
uncertainties that are present in a domestic environment and
using the probability of collision to determine a safe velocity
limit, analogous to slowing down in hazardous situations in
traffic.

3 Environment representation

In this section the proposed environment representation for
safe navigation is elaborated. First, it will be described how
this representation, based on the OctoMap framework (Hor-
nung et al. 2013) and first introduced in Coenen et al. (2014),
uses probabilistic fusion of sensormeasurements to be robust
against uncertainty in sensing. Secondly, it is described how
uncertainty due to unknown space is represented if no mea-
surements are received and how the probability of obstacles
appearingon the robot’s path frombehindocclusions is repre-
sented using a proactive approach (Alami et al. 2002). These
first two parts results in the representation of the probability
of volumes being occupied by an obstacle. Next, the proba-
bility of the robot occupying a volume is represented using a
model of the robot position uncertainty. Finally, the probabil-
ity occupancy of obstacles and the probability occupancy of
volumes by the robot are combined to represent a probability
of collision. This probability is then related to a safe velocity
limit that the robot must attain in order to guarantee safety.

3.1 Robot sensing uncertainty representation

TheOctoMap framework provides a volumetric octree-based
representation of the environment (Hornung et al. 2013).
It models the environment as free, occupied and unknown
cubic volumes or so-called voxels. Sensor measurements
are integrated probabilistically using occupancy grid map-
ping (Moravec 1988). This technique allows a probabilistic
fusion of multiple sensor measurements making it robust to
noisy and false sensormeasurements. Also, it allows the inte-
gration of measurements from multiple, different sensors.

The occupancy of a voxel is updated as measurements are
received. Each voxel n, with a resolution r , has a probability
P(n) of being occupied. The occupancy probability of all
volumes is typically initialized to unknown, i.e., the uniform
prior P(n) = 0.5. Then, P(n) is updated based on a sensor
specific model as measurements z1:k up to time step k are
received. The update rule for the estimated voxel occupancy,
using the log-odds (L) notation (Moravec 1988), is

L(n | z1:k) = L(n | z1:k−1) + L(n | zk), (1)

with

L(n) = log

[
P(n)

1 − P(n)

]
, (2)

where L(n | z1:k) is the estimated log-odds probability of a
voxel given measurements z1:k , L(n | z1:k−1) is the previ-
ously estimated log-odds probability and L(n | zk) denotes
the log-odds probability of voxel n being occupied given the
measurement zk . The update of occupancy probability is typ-
ically performed in log-odds as using additions is faster than
the multiplications that are necessary when (1) is expressed
in P(n).

L(n | zk) relies on a sensor model that relates the sensor
measurements to the occupancy probability of a voxel:

L(n | zk) =
{
lfree, if n is marked as free

locc, if n is marked as occupied
(3)

Given equally likely measurements (lfree = locc), a voxel
that is marked as free k times needs to be marked as occu-
pied equallymany k times before its occupancy probability is
equal again. This makes the representation unable to change
as quickly as the environment. As discussed in Hornung et al.
(2013), the representation can be made adaptable to a chang-
ing environment by limiting the probability in the update
rule in (1) to a lower and upper bound on the log-odds value,
respectively lmin and lmax or pmin and pmax on the probability.
For more details on the update formula and its background
the reader is referred to Moravec (1988) and Hornung et al.
(2013).

3.2 Environment uncertainty representation

The update rule introduced in (1) models the occupancy
probability of voxels under the assumption that they receive
measurements. However, large parts of the environment typ-
ically yield no measurements as they are occluded to the
robot’s sensors. It is important that the update rule in (1)
also describes the occupancy probability of voxels if no mea-
surements are received. For example, consider a robot that
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moves in an environment such that all voxels n in the repre-
sentation are receiving measurements, either marking voxels
as free or occupied. Then, given a static environment, the
occupancy of the voxels will approach the threshold, i.e.,
either P(n) = pmin or P(n) = pmax. However, it is incor-
rect to assume that the occupancy of those voxels that do
not receive measurements does not change if the environ-
ment is dynamic. In other words, such a representation is
over-confident in its assumption that space is either free or
occupied. Hence, the occupancy of a voxel is more realisti-
callymodeled to becomeunknown again as nomeasurements
are received for some time.

A time-dependent occupancy probability model is added
to the representation to deal with this environment charac-
teristic. Instead of only updating a voxel n if a measurement
is received, it is updated at every time step k that the envi-
ronment is updated. Thereto, the sensor model, introduced in
(3), can be extended with the occupancy probability update
rule

ldec = (k − knz,last)�dec if n isnotmarked, (4)

where knz,last is the time step at which a voxel n received
its last measurement update and �dec indicates the rate of
decay of the probability of a voxel n in ldec/k. The value of
the log-odds value ldec depends on the occupancy of a voxel
according to:

ldec =
{

+ldec, if l < 0, i.e., P(n) < 0.5

0, if l > 0, i.e., P(n) > 0.5
(5)

Hence, if a voxel receives no measurements and P(n) > 0.5
it gradually turns to unknown again, i.e., P(n) = 0.5. This is
visualized for a voxel that is at the lower probability thresh-
old pmin in Fig. 2. The update rule in (5) does not let the
occupancy probability of an occupied voxel decrease from
P(n) > 0.5 to unknown as no measurements are received,

0 2 4 6 8 10 12 14 16 18 20
0

pmin

0.2

0.3

0.4

0.5

free measurements no measurements

k

P
(n

)

lfree = 0.3
Δdec = 0
Δdec = 0.15
Δdec = 0.30

Fig. 2 The occupancy probability of a voxel P(n) decreasing with
lfree = −0.3 according to (3) as it is marked as free at the first ten time
steps and increasing with ldec according to (5) for various �dec as it is
not marked for ten following time steps

since this would require more knowledge of obstacles to dis-
criminate between them. For example, a voxel that belongs to
a static obstacle, e.g., awall, ismore likely to remainoccupied
than a voxel that belongs to a moving obstacle, e.g., a human.
The update rule in (5) is based on amodel that is linear in log-
odds, similar to the sensor measurement update model in (1).
Therefore, the rate of decay�dec can intuitively be chosen as
a rate at which measurements are discarded again, such that
the probability returns to unknown. For example, a measure-
ment that decreases the probability of occupancy is discarded
at the next step the environment is updated and no measure-
ment is received by choosing �dec = lfree. Hence, it takes an
equal amount of time steps to increase from P(n) = pmin

to P(n) = 0.5 if no measurements are received as it took to
get from P(n) = 0.5 to P(n) = pmin when this voxel was
marked as free.

The representation of occupancy probability is three-
dimensional.However, to keep the computational complexity
of the representation tractable the three-dimensional grid of
voxels is projected down to a two-dimensional representa-
tion. Therefore, each column of voxels in the occupancy map
is projected down to a grid cell with occupancy probability
p according to

Pc = max
i

P(ni ), (6)

where c is a grid cell with resolution r . Taking the maximum
occupancy probability is a conservative strategy that is nec-
essary for safe navigation as it ensures that the robot never
underestimates the possibility that a voxel is occupied at any
height in a column.Other possibilities would be summing the
probabilities or taking the average. However, summing the
probabilities of each voxel would make the robot too con-
servative: if Pi = pmin∀i , the cell would probably be free
but the robot would still consider it unsafe. The cell proba-
bility pc could even exceed 1. Averaging the probabilities of
all voxels in a column, on the other hand, would lead to an
overconfident robot: if only a single voxel would be occupied
with probability P = pmax and the remaining voxels of the
column would be free, i.e., P = pmin, taking the average
would indicate that the cell is more likely to be free than to
be occupied, while the occupied voxel actually indicates that
it is probably not safe to go there.

As mentioned, in a domestic environment an obstacle can
move on the robot’s path from behind an occlusion, as illus-
trated in Fig. 1. The occupancy probability model that has
been introduced so far must be extended with a velocity
model to deal with this. This model is based on a proac-
tive approach that is introduced in Alami et al. (2002). By
proactive it is meant that the robot is always expecting that
a moving obstacle can appear on the robot’s path from an
occluded region. This is achieved by inflating the occupancy
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dobs = tstop · vmax
obs

occluded region

field-of-view
robot

vrob Rs

sensor
range

Fig. 3 An obstacle can appear on the robot’s path out of a region that is
occluded to the robot. To represent this possibility the uncertain region
is inflated with the maximum distance the obstacle can travel within the
time the robot needs to come to a stop

probability of cells in the two-dimensional projected map
that are not marked as an obstacle, as depicted in Fig. 3. The
inflation distance dobs depends on the distance that an obsta-
cle can travel within the time the robot needs to come to a
stop, tstop = vrob/am + td , where vrob is the robot’s velocity,
−am is the maximum deceleration and td is the maximum
update delay that is present before an incoming obstacle is
actually detected. The distance an obstacle can travel with a
maximum velocity vmax

obs is now dobs = tstopvmax
obs , which is

conservative as it assumes that an obstacle will maintain its
maximum velocity. However, this assumption is necessary
as any obstacle trajectory is assumed to be unknown.

The cells of the grid map with an occupancy probability
are inflated with the obstacle inflation distance dobs. A grid
map cell can be affected by the inflation of multiple cells.
Hence, these probabilitiesmust bemerged and this is done by
taking the maximum probability of all inflated probabilities.
In practice this means that all inflated cells are regarded as
one potential source of collision risk. By guaranteeing that
the robot is safe in this situation it can also be guaranteed
that it is so in the case of multiple sources of collision risk.

3.3 Robot position uncertainty representation

The uncertainty that is present in the robot’s position is due
to errors in the estimation of the robot’s position relative to
a map of its environment. As is mentioned in, e.g., Choset
et al. (2005), if the initial pose of the robot is (approximately)
known and a localization algorithm solely needs to track the
position of the robot while moving through the environment,
the position uncertainty can bemodeled as a bivariate normal
(Gaussian) distribution

x ∼ N2(μ,Σ), (7)

with probability density function f (x|μ,Σ), where themean
μ is the robot position at x = (x; y) and Σ is the two-
dimensional covariance matrix. For simplicity, it is hereby
assumed that robot has a circularly shaped platform. As a

result, obstacles can be inflated with the robot radius and
the robot can be considered as a point in the configuration
space. The distribution of the robot’s position is consid-
ered within a prediction interval to limit computation. The
occupancy probability of a cell c by the robot P(c, robot)
is approximated by multiplying the value of the probabil-
ity density function at the center of this cell f (xc|μ,Σ)

by r2/s. Here, r2 denotes the surface of cell c and s is
the factor that normalizes the probabilities within the pre-
diction interval s = ΣcP(c, robot). The resulting discrete
probability distribution is denoted by Nd(c;μ,Σ). Given a
probability of 1 − α the robot’s position is guaranteed to
be in a certain region A centered around the mean μ. The
region A is an ellipsoid with a ‘radius’ k, given by the rela-
tion (x − μ)TΣ−1(x − μ) = k2 that can be deduced from
(7). Given α, the ellipsoid shaped region A follows from

k =
√

χ2
2 (α), where χ2

2α is the upper (100α) percentile from
the two-dimensional chi-squared distribution. For example,
for Σ = [0.1 0; 0 0.1] and α = 0.05, the robot’s position
is located with a probability of p = 0.95 in a circle with a
radius k = √

0.1 · 5.99.

3.4 Combined representation

The environment uncertaintymodel in Sect. 3.2 and the robot
position model in Sect. 3.3 are combined to obtain a proba-
bility of collision. The probability of a cell being occupied by
an obstacle and the probability of that same cell being occu-
pied by the robot are assumed to be independent. Hence, the
probability of collision, i.e., a cell is occupied by both the
robot and an obstacle, is equal to the product of both prob-
abilities. Now, the probability of collision at a specific cell
can be determined according to

P(collision) =
∑
c∈A

Pc · Nd(c;μ,Σ), (8)

This probability of collision must be related to a veloc-
ity limit vsafe that ensures safe navigation. Thereto, the
maximum velocity must be lowered as the probability of
collision increases, analogous to driving in traffic where the
road becomes dangerous. The maximum velocity can be
derived given that drob + dobs < Rs must always hold to
avoid collision. Here, Rs is the limited sensory range and
drob = 1

2am(vrob/am)2+vrobtd is the maximum distance that
the robot travels to come to a stop. Given dobs = tstopvmax

obs ,
the maximum robot velocity is

vmax
rob = −vmax

obs − amtd +
√
a2mt

2
d + (vmax

obs )2 + 2am Rs . (9)

One could argue that to be strictly safe the robot must have a
zero velocity in the presence of a nonzero probability of col-
lision. However, the robot must accept some risk of collision
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0 pmin 0.2 0.3 0.4 0.5 0.6 0.7 0.8 pmax 1
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Fig. 4 The safe velocity limit as a n-degree polynomial function of the
robot’s maximum velocity with n = 0.1 (low risk), n = 1.0 (medium
risk) and n = 10.0 (high risk). A threshold velocity, vthresh = 0.2vrobmax,
allows the robot to move at a limited velocity in the presence of any risk
of collision. The robot can be allowed to move faster by taking more
risk

during navigation as it is generally not absolutely certain that
space is free. This is an inherent consequence of the update
rule in (1) and the clamping threshold pmin on the occupancy
probability. Hence, a threshold velocity vthresh is used, that
allows to robot to drive at a velocity close zero in the presence
of any uncertainty. The choice for vsafe is a trade-off between
moving safely at vthresh or moving faster with more risk of
collision. This trade-off is visualized in Fig. 4 for a poly-
nomial function with different degrees. Of course, the exact
function to relate the probability of collision to a safe veloc-
ity limit is a design choice that depends on the consequences
of collision in a particular scenario.

4 Implementation

4.1 Global and local planner

The environment representation, introduced in Sect. 3, is
implemented in our existing motion planning approach that
has been successfully used in the RoboCup@Home league
over the past years (Lunenburg et al. 2013, 2014). This
approach consists of a global planner that searches for a plan
to the goal and a local planner that computes a velocity such
that this global path is followed.

The global planner uses an A* algorithm that searches for
a cost-optimal path. The costs are encoded in a costmap that
represents the distance to obstacles. A plan is computed at a
fixed frequency of 2 Hz. If the current plan is free, a re-plan is
executed if the estimated time for the newplan is significantly
less. Thisway the robot does not hold on to an old planwhen a
shorter path has become available but switching between two
paths of approximately similar costs is avoided. If the current
plan is blocked and an alternative plan is significantly longer,
the robot will wait before executing this. This ensures that
if a path is blocked for only a short time (e.g., by a moving
obstacle), an unnecessarily long re-plan is not executed. If
the new plan is of approximately equal length to the original

plan it will be executed immediately to avoid unnecessarily
long waiting.

The local planner computes an omni-directional velocity
(vx , vy, vθ ) in the direction of the next pose of the global path
that maximizes velocity while obeying acceleration limits
and the velocity limit that the representation imposes, i.e.,
vsafe as introduced in Sect. 3.4. If the error eθ between the
path and the robot orientation exceeds a certain threshold, an
in-place rotation is performed to keep the robot facing the
driving direction. To avoid discrepancies between the local
and global planner, both use the same global representation.

4.2 Task integration

With the representation, the global and the local planner the
robot can move from a start pose to a target pose. How-
ever, navigation systems typically also address issues such
as recovery behaviors and replanning to make the system
more robust. Nevertheless, navigation is part of a larger task.
Hence, it should not be considered in itself and integration
with other modules is essential to optimize performance.

Therefore, in order to enhance this integration, the naviga-
tion system is coordinatedby a task executer, i.e., the software
component that activates the various subsystems of the robot
to achieve a certain task. This executer has additional knowl-
edge of both the environment and the task so that it can make
more informed decisions about the desired behavior. This
manifests itself in the definition of goals, actively directing
sensors and in recovery behaviors:

Goals Goals can be defined as a pose x, y, θ in the global
coordinate frame or as a semantic query to the robots knowl-
edge base. This query will return a list of possible poses that
meet the requirement. The best target pose is selected based
on distance to travel and proximity to obstacles. Not only do
these queries provide a more intuitive interface (you can ask
the robot to drive to, e.g., ‘the table’ or ‘a shelf that has not
yet been visited’), but they also make navigation more robust
by trying the next pose in the list if a target pose turns out to
be unreachable.

Directing sensors Actively directing sensors, e.g., gaze
direction, greatly enhances the environment representation.
Since the task of the robotmayput additional requirements on
the gaze direction, the gaze direction itself is also controlled
by the task executer. Under normal operation, the robot looks
to the current path at a fixed distance in front of him. If an
obstacle is encountered on the path, the robot will turn its
attention to this obstacle.

Recovery behaviorsAs is also mentioned in, e.g., Marder-
Eppstein et al. (2010), even with a good navigation system
the robot can still get stuck in some situations, exposing the
need for recovery behaviors. Especially in cluttered, dynamic
environments, the robot may not be able to clear all obstacles
that are no longer there. By explicitly looking at obstacles,
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the probability of moving obstacles and sensor noise being
cleared increases significantly. The currently used recov-
ery behaviors include clearing the space around the robot
if the local planner is stuck and resetting the representation
to its default state, consisting only of obstacles and unknown
space, if no valid global plan is possible. The task executer
decides when these behaviors are executed, easing integra-
tion of possible future behaviors such as asking people to
move out of the way or removing obstacles by itself.

5 Experimental results

The navigation approach in this paper is verified using the
AMIGO robot, a domestic service robot developed by Eind-
hoven University of Technology. AMIGO competes in the
RoboCup@Home League. This annual competition, where
domestic service robots compete in performing household
tasks, is part of the international RoboCup project (Kitano
et al. 1997). AMIGO has a four-wheeled omni-directional
base that is capable of navigating through wheelchair-
accessible areas. Its torso is equipped with two anthropo-
morphic arms to perform manipulation tasks. To extend the
reach of the arms the torso is connected to the circular base
with a lifting mechanism. In this study the arms are not
used. A Hokuyo UTM-30LX Laser Scanner, positioned at
the front-side of its base, provides a 220◦ view at 30 cm
above the ground. AMIGO uses adaptive Monte Carlo local-
ization (AMCL) (Fox 2001) to localize itself on a static, a
priori map. A Microsoft Kinect mounted with a pan-tilt unit
on top is used to provide three-dimensional pointcloud data.

Simulations have been performed in a scenario based
on the 2013 RoboCup@Home League set-up and experi-
ments have been performed in a domestic environment in
the Robotics Lab of the Eindhoven University of Technol-
ogy as well as in the university library. The parameters are
set according to Table 1. The computation time to update
the representation is approximately 0.35 s. As it can take
up to two updates before an obstacle is detected, the maxi-
mum delay is set to 0.7 s and as a result, the maximum robot
velocity, computed according to (9) is 0.7 m/s. The voxel
resolution of the representation is r = 0.05 m, such that
AMIGO can still fit through the narrowest doorway with a

Table 1 Different model parameters used in experiments

Sensors Environment Robot

lfree −1.10 (p = 0.25) vmax
obs 1.0 m/s vmax

rob 0.7 m/s

locc +0.85 (p = 0.70) Rs 3.2 m vthresh 0.2vmax
rob

lmin −1.40 (p = 0.20) td 0.7 s am 0.5 m/s2

lmax +2.20 (p = 0.90) r 0.05 m σ 2
x , σ

2
y 0.1 m

α 0.05

Fig. 5 A model of the 2013 RoboCup@Home League set-up used
for the simulation experiments. The blue dots indicate the predefined
goal locations that are randomly visited by AMIGO. The areas that are
marked red indicate regions where an obstacle can cross with AMIGO

width of 80 cm. The covariance terms of the position uncer-
tainty model are based on the covariance matrix provided by
the AMCL module. For simplicity, the maximum variance
obtained from previous tests with AMIGO is used.

5.1 Results of simulation experiment

Simulations are performed with AMIGO in a model of the
RoboCup@Home League 2013 set-up, as shown in Fig. 5.
The representation is tested for the velocity risk profiles n =
{0.1, 1, 10}, probability decay rates�dec = {0.0, 0.15, 0.30}
and with and without taking into account moving obstacles,
vmax
obs = {0.0, 1.0} m/s. The position uncertainty is modeled
according to the parameters in Table 1 for all tests.

In a first test the robot drives through the corridor, as
shown in Fig. 5, while an obstacle appears from the occluded
doorway on its right, thereby blocking the robot’s path. This
simulation demonstrates the effect of taking obstacle veloc-
ities into account as well as the difference between the low,
medium and high risk velocity functions. To focus on these
two effects, the rate of probability decay is not considered in
this test. The velocity profile along the path is presented in
Fig. 6. At the beginning of the test the part in front of the robot
is unknown and hence it moves at the speed defined by the
velocity threshold. When the obstacle velocity is taken into
account, i.e., vmax

obs = 1.0 m/s, the unknown area is inflated.
Since this unknown area behind the robot is inflated past the
robot footprint, the threshold velocity for vmax

obs = 1.0 m/s
must be attained longer than for vmax

obs = 0.0 m/s. Near
the doorway the test with vmax

obs = 0.0 m/s disregards the
increased probability of collision due to moving obstacles
resulting in a collision for a medium (n = 1) and high
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Fig. 6 The velocity of AMIGOwith (upper figure) and without (lower
figure) taking the obstacle velocity into account, respectively vmax

obs =
1.0m/s and vmax

obs = 0.0m/s, along the same path through the corridor of
the simulation environment. Halfway the corridor an obstacle entered
on AMIGO’s path from an occluded doorway, indicated by the black
line at 6.25 m. In the upper plot, the robot stops before colliding with
the obstacle, regardless of the velocity function. In the lower plot, the
robot collides with the obstacle if a medium or high risk velocity profile
is used

(n = 10) risk velocity profile. For n = 10 the robot even
failed to recognize the obstacle and hit it with maximum
velocity. Due to the position uncertainty the robot typically
moves at a velocity near its threshold for a low risk velocity
profile, thereby giving it enough time to detect the obstacle
and to stop in time. The test with vmax

obs = 1.0 m/s shows that
a velocity near the maximum velocity, i.e., vmax

rob = 0.7 m/s,
is possible without collision.

In a second simulation AMIGO drives to random loca-
tions, within a set of predefined locations as depicted in
Fig. 5, for 30min. Obstacles are modeled to move at ran-
dom time intervals over predefined paths that will intersect
with AMIGO, resulting in areas with an increased risk of
collision similar to the test in the corridor. By navigating
over a longer timespan the influence of the rate of probabil-
ity decay (�dec) can be determined on the performance. As
a measurement of performance the number of collisions and
the average velocity during the test is reported in Table 2.

The results show that the rate of probability decay has a
noticeable influence on the number of collisions. For�dec =
0.15 the number of collisions drops significantly: compared
to �dec = 0.0, the number of collisions using vmax

obs =
1.0 m/s, the number of collisions decreases from 1 to 0 for a
low risk velocity profile, from 5 to 0 for a medium risk veloc-
ity profile and from 9 to 3 for a high risk velocity profile. The
difference with tests with �dec = 0.3 is not significant: the
only difference occurs with vmax

obs = 1.0 m/s and a high risk
velocity profile, where the number of collisions decreases
from 3 to 1. Furthermore, the tests with a low risk velocity
function, i.e., n = 0.1, resulted in a robot that appeared too
conservative as it was not able to achieve its goal position in
most situations. Hence, accepting some risk results in a robot

Table 2 Simulation test results

Rate of change vsafe profile

Low risk
(n = 0.1)

Medium risk
(n = 1)

High risk
(n = 10)

vmax
obs = 1.0 m

s

�dec = 0.3 ncoll = 0 ncoll = 0 ncoll = 1

v̄ = 0.11 v̄ = 0.24 v̄ = 0.30

�dec = 0.15 ncoll = 0 ncoll = 0 ncoll = 3

v̄ = 0.14 v̄ = 0.27 v̄ = 0.32

�dec = 0.0 ncoll = 1 ncoll = 5 ncoll = 9

v̄ = 0.19 v̄ = 0.30 v̄ = 0.35

vmax
obs = 0.0 m

s

�dec = 0.3 ncoll = 0 ncoll = 3 ncoll = 7

v̄ = 0.13 v̄ = 0.26 v̄ = 0.31

�dec = 0.15 ncoll = 0 ncoll = 3 ncoll = 7

v̄ = 0.14 v̄ = 0.29 v̄ = 0.35

�dec = 0.0 ncoll = 4 ncoll = 12 ncoll = 14

v̄ = 0.20 v̄ = 0.33 v̄ = 0.43

Bold values indicate the best simulation results in this table: no colli-
sions and an average velocity of 0.27 m/s. Therefore, the parameters
used to obtain these results (n = 1, vmax

obs = 1.0 m/s,�dec = 0.15) are used
in the experiments described in Sects. 5.2 and 5.3

that navigates with a higher average velocity without neces-
sarily increasing the number of collisions. In a few occasions,
a moving obstacle was not completely cleared before it was
out of the sensor view and therefore cluttered the environ-
ment, preventing the robot from reaching its goal. A model
for the decrease in occupancy probability for occupied vol-
umes, as discussed in Sect. 3.2, would alleviate this problem.

It can be concluded that the increased probability of col-
lision due to moving obstacles must be taken into account
and the probability of occupancy must be time-dependent in
order to navigate without collision. Furthermore, the trade-
off between velocity and the probability of collision is clear.
Accepting some risk of collision during navigation, i.e.,
choosing a medium risk velocity limit (see Fig. 4), results
in a robot that moves at its maximum velocity if it can and at
its velocity threshold when it must to ensure safety.

5.2 Validation in a laboratory experiment

The proposed environment representation is validated by an
experiment on the robot in a domestic environment. This
environment, shown in Fig. 7a, is a partial replica of the
2103 RoboCup@Home League set-up on a slightly smaller
scale (0.9:1). In the experiment the robot visits a set of
waypoints numbered w1–w7. The robot is initialized with
a three-dimensional map, as depicted in Fig. 7b, and a static
map for localization, as depicted in Fig. 7c, that both are
generated off-line. A variety of challenging obstacles are
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Fig. 7 An experiment with AMIGO in a real domestic environment.
The robot drives to a number of predefined waypoints (see Fig. 7c) in
the environment depicted in Fig. 7a, b. The resulting velocity profile
can be seen in Fig. 7d where a decrease in velocity due to occlusions
is marked cyan, a velocity difference due to a changing environment
is marked green and a decreasing velocity due to a narrow passage is
marked red. a Test set-up at the Robotics Lab of Eindhoven University
of Technology. b Robot visualization. c Footprints on the localization
map.dThe robot velocity along the executed path during the experiment

present, that are not in the a priori map, such as a pair of
mini wooden shoes between w3 and w4, the IV pole and
overhanging sidetable near the hospital bed at w4 and the
desk chairs near w5 and w6. The parameter set as used in the
simulation experiments is used for the experiment and, based
on the simulation test results, the variable parameters are set
to vmax

obs = 1.0 m/s, �dec = 0.15 and n = 1.
AMIGO navigated without collision in the domestic envi-

ronment. In Fig. 7c the robot’s footprint on the localization
map and its executed path are shown at every second. The
velocity along the executed path is displayed in Fig. 7d.
The three-dimensional representation correctly represented
the obstacles encountered during the run. At parts with an
increased probability of collision due to occlusions, e.g., near
the doorway in the corridor, the robot lowered its velocity,

Fig. 8 AMIGO driving through the university library

allowing it to stop in time if an obstacle suddenly appears
on its path. In narrow passages the robot lowered its velocity
to its threshold to be robust against position uncertainty. The
effect of the probability decay rate �dec is noticeable near
w4 and w5. The space near these waypoints is marked as
free as the robot approaches. However, as the robot contin-
ues to its next waypoint the space becomes unknown again
as it is out of sensor range. Hence, a lower velocity limit is
present. In open and known space, such as at the beginning
of the corridor and near w5, the robot achieved velocities
near its maximum velocity. The sudden decreases in veloc-
ity between waypoints are the results of in-place rotations to
keep the robot facing its driving direction.

5.3 Experiences in a real world experiment

Although the experiment in the previous section clearly
demonstrates the caution that the robot takes in case of
risk of collisions due to occlusions, to a dynamic environ-
ment and narrow passages, the environment itself actually is
static without any people moving around. Since the robot
is supposed to navigate through a domestic environment,
a second experiment has been conducted. This has taken
place in the library of the Eindhoven University of Technol-
ogy (see Fig. 8). The library is much larger (approximately
70 m × 40 m) than the environment in Sect. 5.2 and much
more challenging because of the amount op people walking
around: the floor where the experiment was performed can
host up to 300 people. Furhtermore, paths being blocked by,
e.g., chairs and bags located at random locations pose addi-
tional challenges.

The first step to obtain a clean default Octomap of the
environment was to make a localization map (see Fig. 9).
Subsequently, thismapwas post-processed to removepeople,
chairs, bags and other non-stationary objects. Furthermore,
overhanging desks were included. The result can be seen
in Fig. 10a. Finally, this was extruded to obtain a default
Octomap, see Fig. 10b.

In this environment, a number of interesting locations was
defined as if the robotwas showingpeople theway to, e.g., the
elevator, the copier or the location of certain books. Using a
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Fig. 9 The localization map of the university library and the paths
AMIGO took during the experiments. The goal locations are denoted
in blue

Fig. 10 The localization map was post-processed as an intermediate
step. People, chairs and bagswere removed and overhanging deskswere
included. Subsequently, this map was extruded to produce the default
Octomap. a The processed map. b The default Octomap

smartphone, a user could select a location and the robotwould
show him the way. In case there was no pending goal request,
the robot would select one at random. This way, the robot
covered a total of 2.9 km in this environment. Although this
is by far not asmuch as in, e.g.,Marder-Eppstein et al. (2010),
a number of conclusions can be drawn from this experiment.

The representation approach presented in Sect. 3 works.
Even difficult objects such as the legs of the deskchairs were
generally perceived well, as can be seen in Fig. 11a. How-
ever, slight variations in the robot localization could have as a
result that multiple voxels in the vicinity of the legs received
an ‘occupied’measurement but not enough to reach the upper
threshold. In that case, the chair would not be mapped cor-
rectly (see, Fig. 11b) but usually the robot would still drive
around the chair. If the available space was very tight, never-
theless, the robot would slightly touch the chairs. The bags of
students that were on the floor were detected correctly every
time.

On a few occasions, however, this was not the case (see
Fig. 11b).

During the experiments, many people were walking
around in the library. Especially around lunch time, there

Fig. 11 Overlay of the camera image and the Octomap and costmap.
Usually, chairs and their legs were mapped correctly but occasionally
the legs did not appear in the Octomap. a The chair has been mapped
correctly. b The chair has not been mapped correctly

Fig. 12 An example where a moving person has left some ‘clutter’ in
the Octomap. aView from the robot: it can easily pass through between
the people and the chairs.bHowever, this is prevented by someoccupied
voxels that are the remainder of a person who has just walked by

weremany people taking a close look at the robot and thereby
obstructing its path. In many situations, the robot was still
able to continue after a replan. On a number of occasions,
however, the robot was stuck and a recovery behavior, either
clearing the Octomap in the vicinity of the robot (nineteen
times) or resetting the entire costmap (eighteen times) had to
be invoked, which solved the problem in all but four cases.
Moving people demonstrated a shortcoming of this represen-
tation: since the voxels are all independent, the representation
might get cluttered if not all voxels of a moving obstacle are
cleared. An example of this can be seen in Fig. 12: a couple of
floating occupied voxels just outside the sensor range Rs that
are the remainder of a person passing by prevent the robot
from planning a path forward (Fig. 12b), although there is
clearly enough space to pass through the chairs on the left
and the people on the right, as can be seen in the robot’s view
(Fig. 12a). Associating this data with people tracked using,
e.g., a laser rangefinder as is done in Rohrmüller et al. (2008)
could prevent these issues.

The behavior demonstrated in the lab experiment was
also visible in this experiment, particularly the lower veloci-
ties due to narrow passages and occluded areas. The former
proved to be effective to avoid collisions, however, the latter
proved to be too conservative: due to the cluttered environ-
ment, therewere always (small) unknownareas in the vicinity
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Fig. 13 Three approximately similar paths (upper plot) result in sig-
nificantly varying velocities (lower plot) for vmax

obs = 1.0 m/s, vmax
obs =

0.5 m/s and vmax
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Table 3 The average robot
velocity v̄ for varying vmax

obs . If
vmax
obs = 1.0 m/s, v̄ ≈ vthresh
which is considered too
conservative

vmax
obs (m/s) v̄ (m/s)

1.0 0.13

0.5 0.17

0.0 0.28

of the robot because the sensors could not see beyond bags
or the legs of people or chairs. After inflation, these caused
the robot to drive at the minimum velocity vthresh most of
the time. To illustrate this effect, the experiment was con-
ducted with three different values for vmax

obs . In Fig. 13, the
robot passes through the same part of the environment with
vmax
obs = 1.0 m/s, vmax

obs = 0.5 m/s and vmax
obs = 0.0 m/s.

In case vmax
obs = 1.0 m/s, the robot velocity hardly exceeds

the lower bound vthresh = 0.14 m/s, which is even in
this environment not sufficient. This is confirmed by the
average velocities for the different vmax

obs , as can be seen in
Table 3.

A major difference with the lab experiment was the
library floor, which provided less grip than the carpet in the
lab experiment. The local planner proved not sufficiently
robust for the resulting slip and therefore caused oscilla-
tions. This manifested itself especially in the orientation
with an amplitude around 0.2 rad/s. However, a larger prob-
lem that was caused by both slip and some inaccuracies
in the localization map was a large localization error. This
error occasionally exceeded 0.8 m and 0.16 rad, which is
much more than originally modeled with σ 2

x , σ 2
y = 0.1 m.

Since this method only has a global representation method
and does not rely on a local collision map, this error can
cause the robot either to get stuck (see Fig. 14) or to
cause collisions. In this experiment, the localization error

Fig. 14 An example where the robot gets stuck due to a localization
error. a A localization error occurs. b As a result, the robot gets stuck

resulted in imminent collisions on two occasions which is
not acceptable in the application. This illustrates the need
for a local representation as well, as was already argued
in Moore et al. (2009).

6 Discussion

6.1 Parameters

Inflating the obstacle representations often implies that a
more or less arbitrary (exponentional) decay function is used.
One of themotivations of this research was to eliminate these
arbitrary functions and tuning parameters by modeling the
various sources of uncertainty of an environment separately.
Although many parameters such as the maximum obstacle
velocity, the maximum sensor range, maximum update delay
and robot velocity and acceleration are well-defined, there
are still parameters that are not directly related to a measur-
able physical quantity. Most notably, the probability decay
rate �dec and the function relating the probability of colli-
sions to a safe velocity (see Fig. 4) are selected empirically
by doing the extensive simulations presented in Sect. 5.1.
Future research should provide the necessary insights to
relate these model parameters to measurable quantities as
well.

6.2 Independency of measurements

As a result of the time dependency of the environment repre-
sentation in this work, the free space becomes unknown over
time but occupied space remains occupied. Hence, if certain
voxels of dynamic obstacles are not cleared correctly, these
will impedemotion planner andmight cause the robot to take
unnecessary detours or even prevent the robot from reach-
ing its goal. Simply forgetting obstacles over time, on the
other hand, might also lead to unsafe situations. This prob-
lem is inherent to the independency of the voxels. Therefore,
a representation significantly benefits if measurements are
associated with the objects in the environment: if the robot
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detects that an obstacle has moved away from its path, it can
immediately clear all associated voxels. Furthermore, this
enables to explicitly account for additional properties such
as movement of obstacles.

7 Conclusions and future work

The proposed volumetric representation allows a robot to
safely navigate in a domestic environment. It probabilisti-
cally models the occupancy of volumes as sensor measure-
ments are received and, as opposed to typical representations,
also if no measurements are received. Furthermore, the prob-
ability of moving obstacles appearing on the robot’s path
from behind occlusions is taken into account. These prob-
abilities are combined with a model of the robot position
uncertainty to form a probability of collision. Based on this
probability a safe velocity limit is defined.

Extensive simulations have demonstrated that this app-
roach results in the desired behaviour, i.e., the robot moves
with velocities up to the maximum of 0.7 m/s if this is safe
but slows down in case of narrow passages or uncertain areas
of the environment. This has been confirmed by laboratory
experiments, where the same behavior was demonstrated and
challenging obstacles such as small objects on the floor or
overhanging tableswere successfully avoided. This approach
also worked in a real-world experiment, performed in the
university library. However, it was found that the inflation of
the uncertain areas was still too conservative. Furthermore,
the approach was not sufficiently robust against localization
errors.

Several directions can be indicated for improvement of
the current approach in future work. A number of conserva-
tive assumptions were necessary to ensure safe navigation, in
particular (i) obstaclesmaymaintain theirmaximumvelocity
if they occur on the robot’s path, (ii) obstacles never disap-
pear, hence the probability of occupied obstacles P > 0.5
does not decrease over time and (iii) dynamic obstacles can
emerge at any height from every voxel, thus the maximum
occupancy probability of a column is inflated . By includ-
ing more information, e.g., (i) obstacles are not adversary
and will try to avoid collisions, (ii) certain obstacles such
as humans may move away over time and (iii) there are no
flying obstacles, these assumptions can be relaxed to result
in more efficient robot navigation. The representation can be
improved by adding explicit obstaclemodels of, e.g., humans
as proposed in Philippsen et al. (2006), Philippsen et al.
(2008) and Rohrmüller et al. (2008), but also of static parts
of the environment, e.g., walls. By discriminating in obstacle
representations, the probability of their presence can bemod-
eled separately and thus more accurately. In turn, this will
allow a less conservative velocity limit. Furthermore, an actu-
ated sensor can be controlled to actively reduce uncertainty

in the vicinity of the robot instead of always looking forward
on the robot’s path. This will decrease the collision probabil-
ity and thereby increase the safe velocity limit. For example,
at start-up the robot is then able to directly face the uncertain
space in front of its base, while during navigation it can look
further ahead. The position uncertainty can also be modeled
more accurately. It is now represented with a normal distri-
bution based on an a priori determined maximum variance,
while directly using the covariance matrix from the AMCL
module is more accurate because this is updated based on the
sensor measurements. Additional robustness against local-
ization errors can be added by a local representation, i.e.,
directly reacting to measurements. Better performance of the
total system can be achieved by an improved local planner.
Finally, deeper insight in the choice of model parameters
is desirable. It would be particularly useful to investigate
how to measure the probability decay rate �dec of a cer-
tain environment and how to relate the safe velocity vsafe to
the probability of collision P(n). Although those parameters
depend on the environment as well as the specific applica-
tion at hand, a theoretical and extended simulative analysis
in different environment set-ups can reduce heuristic tuning
of parameters and make the presented method better gener-
alizable.
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