
 

Resource-aware and resilient control

Citation for published version (APA):
Dolk, V. S. (2017). Resource-aware and resilient control: with applications to cooperative driving. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven.

Document status and date:
Published: 06/11/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/d0d45c97-cdef-4070-a591-7f8c6657d70d




Resource-aware and Resilient Control with

Applications to Cooperative Driving

Victor Dolk



The researched reported in this thesis is part of the research programme “Integrated

design approach for safety-critical real-time automotive systems” with project number

12698, which is (partly) financed by the Netherlands Organisation for Scientific Rese-

arch (NWO).

A catalogue record is available from the Eindhoven University of Technology Library.

ISBN: 978-90-386-4377-9

Reproduction: Ipskamp Drukkers B.V.

c©2017 by V.S. Dolk. All rights reserved.



Resource-aware and Resilient Control with

Applications to Cooperative Driving

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. F.P.T. Baaijens, voor een
commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen

op maandag 6 november 2017 om 16.00 uur

door

Victor Sebastiaan Dolk

geboren te Breda



Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr. L.P.H. de Goey
promotor: prof.dr.ir. W.P.M.H. Heemels
copromotoren: dr.ir. J. Ploeg

dr. P. Tesi (Rijksuniversiteit Groningen)
leden: prof.dr.ir. K.H. Johansson (KTH)

prof.dr.ir. B. De Schutter (TU Delft)
prof.dr.ir. N. van de Wouw
prof.dr.ir. S. Weiland

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeen-
stemming met de TU/e Gedragscode Wetenschapsbeoefening.



Societal Summary

The number of connected devices is growing at a rapid pace. Due to this gro-
wth, the use of networked systems has become a versatile technology, which is
expected to have a crucial role in making transportation systems, power grids,
buildings and industry more efficient and more sustainable. In particular, wire-
less communication networks have enabled many novel promising applications
including intelligent transport systems (ITS), remote surgery and smart farming
systems. In many of these applications, the network is not only used to facilitate
data exchange but also to manipulate the physical environment via connected
actuators. The resulting systems are also known as cyber-physical systems. It
is generally known that the design of these cyber-physical systems is complex,
as it requires novel integrated design approaches among multiple disciplines.
In addition, a major concern of cyber-physical systems is their vulnerability to
malicious attacks.

Given the benefits and challenges described above, cyber-physical systems
have drawn significant attention in the field of control theory. In particular,
the design of control systems in which the sensor and/or actuator data is trans-
mitted over a shared (possibly wireless) communication network, has become
a prominent topic within the control community. Networked communication
introduces inevitable network-induced imperfections such as packet losses and
communication delays, which in general affect the behavior of the closed-loop
system significantly. The more packets are being transmitted over the wireless
medium, the more severe these network-induced phenomena become. Hence,
there is a strong need for resource-aware control strategies that aim to only uti-
lize the communication resources when actually needed to maintain the desired
closed-loop behavior while being robust to packet losses, communication delays
and potential malicious attacks.

In this thesis, a novel design framework for resource-aware and resilient con-
trol systems is presented. In particular, we study event-triggered control (ETC)
systems in which, in contrast to most conventional digital control setups, the
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transmission of sensor and actuation is determined on the basis of current out-
put measurements. As such, ETC allows to better balance between control per-
formance and utilization of communication resources. The proposed framework
has been experimentally validated on a platoon of cars equipped with Coopera-
tive Adaptive Cruise Control (CACC), which is a promising ITS that allows to
reduce fuel consumption and to improve safety and traffic throughput.
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Resource-aware and Resilient Control with Applications to Coopera-
tive Driving

In the near future, intelligent transportation systems (ITS) equipped with vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication will be used
to optimize traffic flows with respect to throughput, safety and fuel consump-
tion. One promising example of ITS technology is Cooperative Adaptive Cruise
Control (CACC), a driver assistance system, which exploits V2V communica-
tion to enable the formation of vehicle platoons with small inter-vehicle distances
while avoiding amplifications of disturbances along the vehicle string that result
in so-called ghost traffic jams. The design of these and many other safety-
critical networked cyber-physical systems is, however, challenging due to the
inherent imperfections of the (wireless) communication including limited band-
width, time-varying transmission delays, quantization effects, and packet losses.
The more packets are being transmitted over the wireless medium, the more
severe the network-induced phenomena become. This calls for communication
strategies that make careful use of the communication resources. Moreover,
one of the main concerns in networked cyber-physical systems is that they are
vulnerable to malicious attacks. For these reasons, there is a strong need for
integrated design approaches that result in resource-aware and resilient control
systems guaranteeing safe, secure and high-performance operation of (wireless)
networked control systems (NCSs).

To address the problem of robust resource-aware control design, in this the-
sis, the use of event-triggered control (ETC) is examined as opposed to the
conventional time-triggered control (TTC) schemes. In time-triggered control
and communication, the sampling/transmission instants are scheduled at fixed
times that are often equidistantly distributed in time. In the context of (wire-
less) NCSs, these TTC schemes typically result in many redundant transmissions
since transmissions are scheduled regardless of the state of the system. As an
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alternative, it seems more natural to let the transmission instants depend on the
available sensor information to make sure that communication resources are only
used when needed to maintain desired closed-loop properties. In ETC schemes,
the sampling instants are determined on-line by means of well-designed trigge-
ring conditions that depend on output measurements of the system. In this
way, event-triggered control schemes have the potential to better balance (com-
munication) resource utilization and control performance than time-triggered
approaches.

As existing ETC schemes do not satisfy the requirements for cooperative dri-
ving in a platoon including properties such as string stability (attenuation of dis-
turbances along the vehicle string), a positive lower bound on the inter-sampling
times (Zeno-freeness), robustness to time-varying delays and large average inter-
transmission intervals, in this thesis a novel ETC approach is proposed with such
properties. The approach enables to design ETC schemes for a class of nonlinear
systems that result in control performance guarantees and Zeno-freeness on the
other hand despite the presence of disturbances. Moreover, robustness to time-
varying delays in terms of a maximum allowable delay is guaranteed by design as
well. Key to obtaining all these beneficial properties is the unique combination
of dynamic event-triggering conditions and time regularization. Interestingly,
under the same performance and robustness criteria, the positive lower bound
on the inter-sampling times obtained with the proposed ETC strategy is close
to or equal to the maximum allowable transmission intervals of TTC schemes.
However, simulations show that the average transmission intervals generated by
the proposed ETC strategy can be much larger due to the event-based triggering
and thereby leading to less utilization of the communication medium and thus
less congestion of the network. The ideas presented above are extended towards
general multi-agent systems exploiting time-triggered and event-triggered com-
munication with non-uniform delays and addressing consensus, input-to-output
stability and output regulation problems.

ETC strategies that rely on time-regularization often require continuous avai-
lability of output measurements. Therefore, we also present a Riccati-based
approach tailored to linear systems that allows to design novel classes ETC stra-
tegies including dynamic periodic ETC strategies. The benefit of periodic ETC
strategies is that they only need to monitor the outputs of the plant at discrete
instants in time. Therefore, periodic ETC strategies are more easy to imple-
ment in practice. In addition, by exploiting the Riccati-based approach, much
less conservative results can be obtained for linear systems in comparison with
the previous ETC approach.

To demonstrate the potential benefits of the ETC on real-life systems, the
proposed framework is implemented on a platoon of cars equipped with CACC.
The experimental test results confirmed the practical applicability of the ETC
scheme and its potential to reduce the utilization of communication resources
significantly without sacrificing the string stability properties. In fact, the results
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have a high degree of predictability as the experiments match the numerical
simulations closely.

As mentioned before, wireless communication links are often subject to pac-
ket losses, quantization effects and possibly malicious attacks. To deal with
packet losses, we present two types of ETC schemes that, under the assump-
tion that the number of successive packet losses is bounded, can still realize the
desired closed-loop properties. The first type relies on the presence of acknow-
ledgement signals that allow to identify whether or not a transmitted packet has
been dropped. The second type does not require acknowledgement signals.

The use of quantization is typically required in NCSs as well because the bit
rate of (wireless) communication channels is often limited. In this thesis, we
show that the proposed ETC design can be enhanced with dynamic quantizers.
Interestingly, the theoretical results reveal the intuitive trade-off between size
of the data packages per transmission and the number of transmission per time
unit.

At last, (cyber-)security is an important issue in NCSs. As such, it is of
importance that besides the resource-aware requirement, the control strategy
is resilient to malicious attacks. A common type of attack to networked sys-
tems is the so-called denial-of-service (DoS). Attacks of this type are intended
to interfere with the communication channel causing periods in time at which
transmission of data is not possible. We propose an ETC scheme that still leads
to the desired control performance despite the presence of these DoS attacks un-
der the natural assumption that the attackers resources are limited in the sense
that the frequency and the duration of the DoS attacks are bounded.

All results described above form important steps forward to realize resilient
and resource-aware cyber-physical systems including ITSs such as CACC-based
vehicle platooning.
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Chapter 1

Introduction

Over the last decades, the number of connected devices has grown at a rapid
pace. It is expected that this growth continues with predictions ranging from
20.8 billion to 1 trillion connected devices in 2020 [177]. Although these numbers
are nothing more than speculation, many studies reveal the potential benefits
of interconnected/networked systems. For example, in [252], it is shown that
information and communication technology (ICT) can play a crucial role in in-
creasing the efficiency of transport systems, power grids, buildings and industry,
to name a few. In fact, the study in [252] predicts that ICT enables a 15%
reduction of carbon dioxide emissions without the need of major changes in the
current architecture of systems. Besides the environmental benefits, networked
systems offer greater flexibility, lower installation costs and better maintenance
than systems with dedicated point-to-point (wired) links. In particular, the use
of wireless communication is promising due to its ability to overcome the physical
limitations of wired connections.

The growing number of communication and sensor networks and their pos-
sibilities did not go unnoticed by the field of control theory. Control theory is
concerned about the analysis and design of control systems, which are defined
in [169] as follows:

“At its simplest, a control system is a device in which a sensed quan-
tity is used to modify the behavior of a system through computation and
actuation.”

The rise of communication and sensor networks enables many novel control ap-
plications with significant societal impacts, see, e.g., [21, 136, 169]. In fact, due
to the growing complexity of interconnected systems, it is expected that the field
of control theory will be inevitable in the successful operation of large intercon-
nected systems. However, control systems operating over possibly shared and
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wireless communication channels, often referred to as networked control systems
(NCSs), also introduce many challenges that are far from being fully understood,
see also [32, 125, 261] for recent overviews on NCSs. For this reason, there is a
strong need for novel analysis and synthesis tools in control theory to guarantee
safe, secure and well-functioning operation of (wireless) NCSs.

Before elaborating on the specific contributions of this thesis, we first pro-
vide a brief historical overview of important developments that gave rise to the
increasing interest in NCSs.

1.1 Historical background

The technology that initiated the trend of (wired and wireless) networked sy-
stems is packet switching, which was introduced in the mid 60’s [26, 61, 62],
see also Figure 1.1. In essence, packet switching is a communication method
in which data to be transmitted is broken up into small blocks referred to as
packets. By transmitting independent packets instead of a continuous stream
of data via dedicated point-to-point connections as, for example, in the public
switched telephone network, the medium over which the packets are transmitted
can be shared by other users/devices. Moreover, packet switching enhances the
efficiency and robustness of the network in comparison with communication met-
hods that rely on dedicated point-to-point connections. The concept of packet
switching was adopted by the Pentagon’s Advanced Research Projects Agency
Network (ARPANET) program of the United States Department of Defense to
establish the first computer network [197]. The main purpose of the ARPANET
program was to create a network that enables the sharing of computation re-
sources among institutions. Even though the initial idea of ARPANET never
became a success due to the quick rise of affordable personal computers, it did
form the basis for the internet protocol suite (TCP/IP) [53], which constitutes
a key ingredient for what we know today as the internet.

Fig. 1.1. Important developments that gave rise to the increasing interest
in networked control systems

In the beginning of the internet era, distributed (computer) networks were
primarily used as information infrastructure. However, researchers already en-
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visioned the potential benefits of large networks that consist of small intercon-
nected sensors. For this reason, the United States Defense Advanced Research
Projects Agency (DARPA) initiated the Distributed Sensor Network (DSN) pro-
gram in 1979 to identify and tackle the challenges in implementing distribu-
ted/wireless sensor networks (WSN) [57]. Although there was a strong market
demand for WSNs, it was not until twenty years later that the first commercially
available WSNs emerged [57]. This long timespan is explained by the fact that
many challenges in sensor technology, network protocols and energy storage had
to be overcome before production of small and inexpensive sensors on a large
scale was possible. Important milestones that led to affordable WSNs include
the first commercially available lithium-ion batteries by Sony in 1991, see also
[1], which, due to their high energy density, are useful for portable devices, deep
reactive ion-etching (DRIE) invented at Robert Bosch GmbH in 1994, see also
[135], which enabled the production of inexpensive micro-electric-mechanical sy-
stems, and the release of the IEEE 802.15.4 international standard for low-rate
personal area networks in 2003, which focuses on energy efficient inexpensive wi-
reless connections and formed the basis for industrial protocols such as ZigBee,
WirelessHART, ISA100.11a and MiWi. Among these protocols, WirelessHART
was the first open wireless protocol designed for industry, which was released in
2007 [215].

Initially, WSNs were used for monitoring purposes such as wildfire monitoring
[79], air pollution monitoring [257] and structural monitoring [256]. A promising
trend today is to not only use these WSNs for monitoring purposes, but also
for manipulating the physical environment connected to the network. This inte-
raction between networked and physical systems induces many new challenges in
the design of the overall system, see, e.g., [137,169]. In fact, the design of these
so-called cyber-physical systems (CPSs) requires an integrated design approach,
involving multiple disciplines due to its complexity and the presence of many
uncertainties see, e.g., [16]. Hence, current established paradigms and funda-
mental theories in each of these individual disciplines do not suffice to harvest
all the potential benefits of (wireless) networked systems and cyber-physical sy-
stems. As mentioned before, control theory has an important role in the design
of CPSs. However, as we will discuss later on, the design of control systems
in which sensor and/or actuation signals are sent over communication channels
that are shared and/or wireless is far from trivial. For these reasons, the field of
NCSs has received a vast amount of attention from the control community over
the last few decades, see, [30, 32, 118, 125, 261] and the references therein, and
even led to new journals [182].

1.2 Today’s opportunities and challenges

NCSs have a wide range of applications including remote surgery [157], process
industry [216, 255], water management [172], smart power grids [14, 237] and
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intelligent transport systems [27,210]. See also [21,136,169] for recent overviews
of high-impact applications of NCSs. In the sequel, we discuss the applications in
smart power grids and intelligent transport systems in more detail and address
some of the challenges that arise in the control design due to the presence of
networked communication.

1.2.1 Opportunities and challenges

Smart power grids

To realize reliable operation of power grids, it is important that the total power
generation is in balance with the demand and losses. An imbalance causes
frequency deviations, which are not desirable as it effects the efficiency of the
grid and might even lead to power outages. For this reason, it is important to
make sure that the frequency remains close to its nominal value. The traditional
approach to achieve this, is to employ local control algorithms in the sense that
the local power generation is only adjusted according to changes in the local
demand, see, for instance, [35, 127]. Due to the increasing number of local
energy storages such as electric vehicles and renewable energy sources, which
cause larger fluctuations in the power demand and supply, in the near future, this
traditional approach will no longer be suitable for maintaining an efficient and
reliable power grid. For this reason, there is a great interest in developing novel
control architectures that lead to robust and efficient power grids. A promising
direction in solving this problem is the use of distributed control architectures,
which are designed from a multi-agent systems (MAS) perspective and exploit
the communication among control areas, see Figure 1.2 and, e.g., [14,201,237].

Fig. 1.2. Smart power grid.

The introduction of communication in power grids, however, also raises novel
concerns. Due to the increasing dependency on networked communication and
the number of interconnected devices, malicious cyber attacks have become a
serious thread to power grids. In fact, the first example of a power outage caused
by cyber attacks was the power outage in Ukraine, December 2015, which caused
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hundreds of thousands of households to be without electricity [142]. Roughly
speaking, three type of attacks can be distinguished: attacks targeting the avai-
lability of networks, also referred to as denial-of-service (DoS) attacks, attacks
targeting the integrity of data sent over a network, also known as deception
attacks, and attacks targeting the confidentiality of data [246]. From a control
perspective, it is therefore of importance to develop control algorithms that are
resilient and able to detect the presence of these attacks.

Intelligent transportation systems

The worldwide demand for mobility is increasing rapidly. In the mean while,
there is a strong need for a traffic infrastructure that is cleaner, cheaper, more
efficient and safer. Complying with all these necessities is a challenging problem,
as accommodating one of the aspects often comes at the cost of the others. For
example, the expansion of the current infrastructure to accommodate a higher
throughput is in general costly, has a negative impact on the environment and
does not necessarily enhance safety. For this reason, it is of great interest to
develop solutions that are capable of tackling all of the aforementioned aspects
simultaneously. Automated and cooperative (or connected) driving via dedicated
short range communication (DSRC) communication are promising technologies
in this regard since these technologies enable to improve traffic throughput, fuel
consumption and safety without the need for expanding current (road) infra-
structure, see, e.g., [85,108,139,212,213,223,240]. In particular, the combination
of these two technologies, i.e., cooperative automated driving, is expected to be
an adequate approach for realizing a more efficient a traffic infrastructure. For
this reason, the IEEE 802.11p standard was released in 2012 which is used as
basis for the Wireless Access in Vehicular Environment (WAVE) standard in the
United States and the ITS-G5 standard in Europe for low-latency inter-vehicular
communication [86].

A well-known example of a cooperative automated driving system is coope-
rative adaptive cruise control (CACC), see Figure 1.3. The main goal of CACC
systems is to establish vehicle platoons with small inter-vehicle distances while
avoiding the propagation of disturbances along the vehicle string, see also [34,
129, 171, 180, 181, 187, 202, 204, 223, 240]. The latter property is also referred to
as string stability and is important in order to avoid the formation of phantom
traffic jams. Small inter-vehicle distances are desired as they lead to a larger
road capacity and less fuel consumption due to the reduction in aerodynamic
drag. The latter is in particular interesting for heavy-duty vehicles, see also
[12, 13, 38, 107, 238]. A key ingredient to realize small inter-vehicle distances
and achieve string stability simultaneously is the use of vehicle-to-vehicle (V2V)
communication.

The first work that studied the potential impact of V2V communication on
traffic flow and capacity already dates back to the mid ’60 [139]. The first
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successful demonstration of CACC was in 1997 [95, 211]. These experiments
merely focused on showing the practical feasibility of vehicle platooning. In
[171,187], the string stability properties of vehicle platoons equipped with CACC
were experimentally validated. Moreover, it was shown that indeed CACC is
outperforms conventional adaptive cruise control (ACC) systems in attenuating
disturbances along the vehicle string while realizing small time gaps in between
the vehicles. Interestingly, the principle of CACC can also be exploited in the
automation of traffic at intersections, see also Figure 1.3 and [159, 263]. The
latter has successfully been demonstrated during the Grand Cooperative Driving
Challenge (GCDC) 2016. In short, CACC is a proven technology that, due to
V2V communication, enables the formation of vehicle platoons with small inter-
vehicle distances while avoiding amplifications of disturbances along the vehicle
string.

Fig. 1.3. (left) Platoon of vehicle equipped with DSRC and CACC.
(right) Automated intersection crossing based on CACC. These scena-
rios were demonstrated during the Grand Cooperative Driving Challenge
(GCDC) 2016 c©[2016] i-GAME

The use of wireless communication also has drawbacks as it comes with ine-
vitable network-induced imperfections caused by the digital nature of the com-
munication network. To be more concrete, the rate at which data-packages
can be transmitted is limited and the communication channel is subject to
communication delays. In case the transmission rate is too small and/or the
communication delays too large, string stability and other performance pro-
perties might no longer be guaranteed for a given time gap, see, for instance,
[67, 85, 90, 130, 151, 180, 181, 187, 203]. On the other hand, high communication
rates degrade the reliability of the DSRC channel and increase the transmission
delays as reported in [28,134,152], which might also put restrictions on the mini-
mum time gap that can be achieved safely in dense traffic, see also [187]. Hence,
excessive utilization of communication resources might impede the benefits of
CACC with respect to traffic throughput and fuel consumption. In other words,
in order to exploit the full potential of CACC systems, it is important that the
communication resources are only utilized when actually needed to establish a
string-stable platoon and thus to avoid redundant transmissions.
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To deal with the aforementioned issue, Decentralized Congestion Control
(DCC) mechanisms have been proposed for V2V communication in the ETSI
TS 102 687 standard [82]. These mechanisms include transmit power control,
transmit access control and transmit rate control. In particular, the transmit
rate control is expected to be an adequate mechanism to avoid congestion of the
communication channels, see, e.g., [25,234]. However, standardization regarding
CACC systems and the exact employment of the DCC mechanisms is still an
ongoing process and far from conclusive, see also [86] for a recent overview
of standards for cooperative intelligent transport systems. For this reason, it
is of interest to develop CACC systems with mechanisms that aim to reduce
the utilization of communication resources while guaranteeing the reliability (in
terms of packet losses) and the quality of the network (in terms of communication
delays), and the desired control performance (in terms of string stability).

1.2.2 Challenges for control design

As already highlighted in the previous subsection, the introduction of (wireless)
networked communication also has drawbacks due to the inevitable network-
induced imperfections. In general, these imperfections can be divided into the
following five categories:

i) Sampled data: Due to the digital nature of the communication channel,
the communication in NCSs is inherently packet-based. As a consequence,
sensor and actuation data can only be transmitted at discrete instants in
time.

ii) Packet losses: Packet losses often occur due to packet collisions, which
are typically caused by excessive use of the communication channel. Es-
pecially in wireless networks, transmissions might also fail due to physical
imperfections of the communication channel leading to corrupted data.

iii) Quantization: Due to the digital nature of communication channels in
NCSs, only a finite number of bits can be transmitted per time unit. For
this reason, it is necessary to quantize the signals sent over the network.

iv) Time-varying transmission delays: Given the fact that communica-
tion and computation resources are limited and often shared with other
users/tasks, a data package can never be sent and instantaneously be recei-
ved and processed. Moreover, due to uncertainties in the communication
channel and the fact local clocks are typically not synchronized, the sizes
of these delays typically vary in time. As such, time-varying transmissions
delays are inherent to networked communication.

v) Communication constraints: In NCSs, it is in general not possible to
exchange all sensor and actuation data simultaneously. To cope with the
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latter, scheduling protocols are often introduced to coordinate which node
is granted access to the communication medium.

Additionally to these network-induced imperfections, one of the major concerns
in NCSs is cyber-security since the use of (wireless) communication also intro-
duces vulnerabilities with respect to malicious deception and denial-of-service
(DoS) attacks. As already mentioned, deception attacks intend to tamper trans-
mitted data packages by injecting false information, see for more details, e.g.,
[183], and DoS attacks intend to interfere with the communication channel,
which typically causes periods in time in which communication is not possible,
see, for instance, [253]. Let us remark that DoS attacks are closely related to
the occurrence of packet losses (see category i)). However, as we will discuss
in the next section, the characterization and treatment of packet losses due to
malicious attacks are substantially different from those of packet losses caused
by the natural phenomena mentioned in category ii) above.

Obviously, network-induced imperfections and the presence of malicious at-
tacks affect the behavior of the closed-loop system. It is therefore important to
take these imperfections and vulnerabilities into account in the control design.
However, one of the difficulties in doing so is to incorporate both the continu-
ous behavior of the physical system (also referred to as the physical part of the
system) and the discrete/digital behavior of the communication channel (also re-
ferred to as the cyber part of the system). This combination of continuous and
discrete behavior results in mathematical models called hybrid system [98,154],
for which it is in general difficult to assess the stability and performance of the
closed-loop system. Although significant advances have been made in hybrid
system theory over the last two decades, see, for example, [98,106,113,119,154]
and the references therein, providing tight stability and performance bounds for
hybrid systems, thereby quantifying the effect of the aforementioned phenomena,
is far from trivial and far from being fully understood.

Besides having a thorough understanding of the influence of network-induced
imperfections, it is also important to consider the fact that the control architec-
ture itself affects the quality and the reliability of the network. In particular,
the scheduling of transmission instants can have a significant influence on the
number of packet losses, sizes of the transmission delays and the resilience of
the system. Hence, in NCSs, there is a strong interaction between the cyber
and the physical part of the system. As a consequence, the control design and
the design of the ICT infrastructure of NCS can typically not be regarded as
separate issues without compromising the performance and/or reliability of the
overall system. Hence, the design of high performance and reliable NCSs require
novel integrated design approaches that bridge the gap between the control and
the ICT community.

This thesis addresses the design of resource-aware and resilient control sche-
mes for safety-critical systems. Resource-aware control schemes are control sche-
mes that aim to minimize the utilization of communication resources while achie-



1.3 Event-triggered control systems 9

ving desired stability and performance criteria despite the presence of the afore-
mentioned network-induced imperfections. Resilient control schemes are control
schemes that, despite the vulnerabilities to malicious attacks, lead to desired
stability and performance properties. To be more specific, we address the de-
sign, analysis and validation of ETC schemes that are applicable to output-based
feedback systems, take into account the presence of disturbances and network-
induced imperfections, and that are resilient to malicious DoS attacks.

In the remainder of this chapter, we discuss these topics in more detail and
provide a brief literature review. Moreover, we highlight the obtained contribu-
tions followed together with an outline of the remainder of thesis.

1.3 Event-triggered control systems

1.3.1 General overview

In most traditional (digital) control setups, the instants at which the system’s
outputs are sampled and transmitted are determined purely based on time, often
according to a fixed sampling rate. In general, such a time-triggered control
(TTC) scheme is predictable in the sense that the transmission instants are
known in advance and easy to implement. For these reasons, a significant part
of the literature on NCSs aims at finding time-based specifications such that
the closed-loop system meets the desired stability and performance criteria, see,
e.g., [29, 51, 58, 120, 125, 173, 245]. Since in time-triggered control schemes, the
sampling behavior does not depend on the actual state of the system, these
time-based specifications should hold for all situations (all states) the system
can attain and are therefore typically determined via worst-case estimates. As
a result, time-triggered control schemes often result in redundant transmissions
in the sense that more transmissions are generated than actually needed to
achieve the desired stability and/or performance criteria. Since excessive use of
communication resources affect the quality and reliability of the communication
channel, the latter is typically not desired in the context of NCSs.

In NCSs, where communication resources are often shared with other de-
vices/users, it seems more natural to let the transmission intervals depend on
output measurements of the system with the aim to utilize the communica-
tion resources more efficiently than time-triggered control schemes. Examples
of such resource-aware control strategies include self-triggered control (STC),
see, e.g., [15, 101, 158, 244, 249, 250], and event-triggered control (ETC), see,
e.g., [18, 20, 37, 117, 155, 224, 258] for some early approaches, and [114] for a
recent overview. In ETC schemes, the transmissions instants are driven by
an event-generator, also referred to as the event-triggering mechanism (ETM),
whose events are determined via conditions that depend on current (and pos-
sibly previous) output measurements, see also Figure 1.4. As an example, an
event could be generated whenever the norm of the difference between the most
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recently transmitted output measurement and the current output measurements
exceeds a certain, not necessarily constant, threshold. In STC schemes, the next

Fig. 1.4. Schematic representation of an event-triggered control (ETC)
scheme, where P denotes the plant, C the controller, N the communica-
tion channel, y the output measurement, ŷ the most recently transmitted
output measurement, u the control input, w the disturbance and z the
performance output.

transmission instant is also determined on the basis of output measurements but
already in advance at the current transmission instant. Consequently, STC sche-
mes do not require the acquisition of measurements in between two consecutive
transmissions and do not need to continuously evaluate the triggering condition.
For this reason, STC schemes are in general more suitable for battery-powered
processes than ETC schemes. Moreover, since in STC schemes, the transmission
instants are already known in advance, tasks triggered by STC schemes are in
general easier to schedule than tasks triggered by ETC schemes. ETC schemes
on the other hand, are in particular of interest for wireless safety-critical systems
with unpredictable behavior in which network congestion should be avoided such
as a platoon of vehicle equipped with CACC. In fact, the focus of this thesis will
be on the design of ETC schemes for such safety-critical applications.

Roughly speaking, literature on ETC can be divided into two categories,
namely, optimization based approaches and Lyapunov-based approaches. In the
first category, the ETC design problem is formulated as an optimization problem
in which the performance of the system, similarly as in well-known LQR and
LQG problems, is expressed in terms of for example a quadratic cost, see, e.g.,
[17, 19, 37, 54, 164, 165, 195, 236, 236, 258]. In the second category, which will be
considered in this thesis, the ETC systems are typically described in terms of
an impulsive system, see, e.g., [40, 112], a hybrid system, see, e.g., [72, 191],
or a time-delay system where the delay is described by some piecewise linear
function, see, e.g., [184,205] and the control objectives are expressed in terms of
asymptotic stability, Lp-stability or input-to-state (ISS) stability.

One of the main difficulties of Lyapunov-based ETC schemes is to design
the event-triggering mechanism in such a way that desired performance and
stability criteria are guaranteed together with a positive minimum inter-event
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time (MIET). This positive MIET is an essential property in order to exclude
the occurrence of an infinite number of events in finite time, (also known as
Zeno behavior), and to enable the practical implementation of the ETC system.
Especially for output-based and decentralized control configurations and/or si-
tuations where disturbances are present, guaranteeing a (global) positive MIET
is not trivial. In fact, it has been shown recently in [41] that many ETMs propo-
sed in literature do not lead to systems that have a positive MIET that is robust
to disturbances, or do not guarantee the desired stability and performance pro-
perties. For example, the approaches in [251, 259] do consider input-to-output
stability properties but do not provide a strictly positive MIET for the case
disturbances are present. For output-based and decentralized control configura-
tions, the inter-event times of many ETMs even converge to zero in the absence
of disturbances [41, 78].

To deal with the issue described above, recent works on ETC often employ
time regularization [5,7,44,54,87,117,218,219,225–228], in the sense that the trig-
gering of an event is only allowed after a specific time duration τmiet has elapsed
since the most recent transmission. Hence, in this situation, the MIET is lower-
bounded by τmiet regardless of whether disturbances are present or not. An alter-
native for enforcing a strictly positive MIET is to use of so-called periodic event-
triggered control (PETC) schemes [40,43,54,112,113,117,126,184,243,247,260],
in which the triggering condition is checked at fixed periodic sampling time in-
stants with sampling period h. In this case, the MIET is lower-bounded by the
sampling period h. Of course, the time-constants τmiet and h cannot be chosen
arbitrarily and should be chosen (together with other parameters in the con-
troller) such that the desired stability and performance criteria can still be met.
Only a few works in literature provide design conditions for these time-constants
in combination with output-based ETC schemes under the presence of distur-
bances. These include [9, 40, 44, 72] for ETC schemes with time-regularization
and [40, 43, 112, 113, 243, 247] for PETC schemes.

The majority of the aforementioned works on ETC consider static ETMs. In
these ETMs, the triggering condition is described by an algebraic function that
explicitly depends on the current output measurement and the output measu-
rement that is available at the controller side. Recently, it was shown in [96]
that dynamic ETMs, i.e., ETMs that rely on a dynamic variable instead of a
static expression, can significantly prolong the inter-event times without having
to comprise the performance and stability guarantees with respect to their static
counter part. The concept of dynamic ETMs was introduced in [189] in which
triggering rules for a class of nonlinear systems were presented.

1.3.2 Quantization

Besides reducing the amount of transmissions, it is also of importance to limit
the size of the packages that are transmitted over the network. For this rea-
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Fig. 1.5. Dynamic quantizer.

son, quantization forms an essential part of NCSs, see, e.g., [116, 167, 175]. In
essence, a quantizer is a device that maps a real-valued signal into a piece-wise
constant signal that can only attain a finite number of values, see also Figure
1.5. Each value that the quantized signal can attain corresponds to a quanti-
zation region. As such, by means of quantization, a real-valued measurement
can be encoded into a digital packet consisting of a finite number of bits. As
shown, for example, in [144], desired closed-loop stability properties may no lon-
ger be guaranteed when the control system relies on quantized measurements
due to two reasons. The first reason is that if the measured signal is outside
the range of the quantizer, which is determined by the union of all quantization
regions, then typically the quantization error is large. As a consequence, the
system might exhibit unstable behavior. The second reason is that the accuracy
of the quantized measurement near the equilibrium might be insufficient for the
desired convergence properties. The majority of the literature on quantization
for NCSs considers static quantizers in which the quantization regions are fixed
in advance. To ensure that the feedback information remains within range of
the static quantizer, the quantizer range is typically chosen relatively large with
respect to the sizes of the individual quantizer regions. Hence, in static quanti-
zers, the number of quantization regions is typically large, which implies large
packet sizes and/or multiple packets. In fact, it is often even assumed that the
quantizer range is infinite [242]. However, this requirement is impractical due to
limited bandwidth of the communication channel.

To overcome this requirement, the authors of [48] proposed so-called dynamic
quantizers in which the quantizer regions can be dynamically scaled according
to the available feedback information, see also Figure 1.5. To scale the quantizer
region, a zoom variable is employed to either enlarge the quantizer regions to
avoid saturation (referred to as the zoom-out stage) or to reduce them in order
to extract more precise information (referred to as the zoom-in stage). As such,
dynamic quantizers allow to avoid saturation with only a small number of quan-
tization regions (and thus a small number of bits that need to be communicated).
Hence, in the context of NCS, dynamic quantizers offer a better balance between
the desired control performance, the minimum and average inter-transmission
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intervals and the size of the packages that are transmitted over the network than
static quantizers. However, the use of dynamic quantizers also introduces new
challenges in the stability analysis and practical implementation. For example,
similar as in event-triggered control systems as discussed in Section 1.3.1, Zeno-
behavior, i.e., the accumulation of zoom instants and/or the chattering behavior
between the zoom-in and the zoom-out stages, should be excluded. In addition,
the zoom variable should remain bounded, see also, e.g., [145].

Despite the practical importance of synthesizing both event-triggered con-
trollers and dynamic quantizers for NCS, only a few works in literature have
addressed this problem, see, [141,150,221,229,231]. In [141,150,221,229] availa-
bility of full state measurements is assumed. To the best of our knowledge, only
[231] considers the case of output-based feedback control, however, without the
presence of external disturbances.

1.3.3 Packet losses and Denial-of-Service attacks

As mentioned in Section 1.2.2, the presence of packet losses in NCSs is in general
unavoidable. For this reason, a significant portion of works on time-triggered
NCSs consider the presence of packet losses, see, for instance, [125, 173, 204]
and the references therein. The portion of works on event-triggered NCSs that
consider packet losses is, however, still relatively small.

The presence of packet losses can either be characterized with stochastic dro-
pout models or deterministic dropout models. Examples of ETC strategies that
consider stochastic dropout models include [37, 132, 156, 164,165] in which opti-
mal control approaches for discrete-time systems are adopted. Except for [132],
a key assumption in these works is the presence of an acknowledgment scheme
as, e.g., in transmission control protocols (TCP). By using acknowledgment sig-
nals, it is known whether a transmitted package has been successfully received
or not.

In [103, 104, 138, 184, 251], ETC schemes for continuous-time systems with
deterministic dropout models are considered. To be more precise, it is assumed
that the number of successive packet dropouts is upper-bounded. This upper-
bound is often referred to as the maximum allowable number of successive packet
drops (MANSD). To deal with the presence of packet losses, the authors of [103,
104, 138, 259] proposed to combine time-triggered and event-triggered solutions
in the sense that transmissions are only scheduled in an event-based fashion if
the previous transmission has been successful. Otherwise, the transmissions are
scheduled according to a fixed sampling rate. Clearly, this approach relies on
an acknowledgment scheme as well. In [251] it was shown that the design of a
triggering rule of the form as in [224] can be adapted such that the MANSD
can be tolerated without the need for an acknowledgment scheme, which is,
e.g., the case in the user datagram protocol (UDP). To avoid Zeno-behavior in
the presence of disturbances, [184] considers a periodic event-triggered control
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Fig. 1.6. Schematic representation of a sequence of DoS attacks. The
solid arrows indicate successful transmissions and the dashed arrows trans-
missions that are blocked by the attacker. The gray areas indicate the
presence of a DoS attack.

(PETC) scheme. In a similar manner as in [251], it was shown that the design
of such a PETC rule can be adapted to tolerate a MANSD without the need
for an acknowledgment scheme. A significant drawback of the aforementioned
approaches is that they rely on the availability of full state information which is
often not the case in practice.

As mentioned in Section 1.6, packet losses might be caused by denial-of-
service (DoS) attacks, see also Figure 1.6. To cope with this type of malicious
attacks, it is important that no assumptions regarding the underlying jamming
strategy of the attacker are made as, in practice, this strategy is often not
known. In the context of event-triggered control systems, stochastic packet
dropout models are not suitable for characterizing the presence of DoS attacks
since they impose a certain structure on the sequence of DoS attacks and thereby
only capture a class of jamming strategies. However, it is reasonable to assume
that the resources of the attacker are not infinite and that several provisions
can be taken to mitigate these DoS attacks. For this reason, the authors of
[63, 64] proposed to characterize the presence of DoS attacks in terms of the
frequency and the duration of the attacker’s actions. This characterization allows
to capture a wide class of DoS attacks including trivial, periodic, random and
protocol-aware jamming attacks [65, 253]. The approaches presented in [63, 64]
are restricted to the case of static state feedback as well. Results on deterministic
packet dropout models that rely on a MANSD bound might also be exploited to
deal with the presence of DoS attacks. However, this approach typically leads
to conservative results.

1.3.4 Multi-agent systems

The decentralized coordination of multi-agent systems (MAS) is an extensively
studied control problem due to its wide variety of applications. Especially in the
last few decades, there is a growing interest in MAS due to the emerging field
of NCSs which enable cooperative control solutions in ad hoc networks with re-
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latively inexpensive hardware. These cooperative control solutions are relevant
for, e.g., intelligent transportation systems, power grids, smart farms with un-
manned air vehicles (UAVs) (see Figure 1.7), building automation and aerospace
applications. In multi-agent control problems, agents have to cooperate in order
to achieve a certain common objective as each individual agent typically employs
a local control law and does not have access to the full states of all the agents.

Fig. 1.7. Smart farming with unmanned air vehicles (UAVs) c©[2017]
Avular B.V.

It is obvious that communication among agents is crucial for achieving the
common control objective. Despite the latter fact, the majority of the litera-
ture on MAS considers often only a subset of the network-induced imperfections
discussed in Section 1.2.2. For example, in [67,146,222,230], non-uniform time-
varying delays are considered, but the communication is assumed to be continu-
ous. As such, the sampled-data nature of the communication links is not taken
into account. In contrast, [69,93,94,104,105,133,140,148,160,185,206,251,262]
proposed event-triggered control (ETC) strategies for MAS that aim to reduce
the utilization of communication resources and thereby do take into account the
packet-based nature of the communication channel. However, the ETC approa-
ches presented in [69, 93, 105, 133, 140, 148, 160, 185] do not consider delays and
the approaches in [206, 262] assume that the delays are uniform and constant.
Notable exceptions include [94, 104, 251]. As pointed out in [104, 251], one of
the main issues in MAS is dealing with inconsistent information among agents.
In [94], this issue is avoided by compensating for the effect of the delay upon
arrival of new information. This approach requires that the internal clocks of all
agents are perfectly synchronized. In [104,251], transmission protocols that rely
on acknowledgment and permission signals have been proposed in order to avoid
state inconsistencies. To be more specific, by means of these acknowledgment
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and permission signals, the information available at each individual agent is up-
dated simultaneously. However, the latter approach might put a burden on the
communication channel. For this reason, [104] also considered the case without
permission signals in which state inconsistencies are present.

Hence, from the discussions in this sections, it is clear that several important
problems are open and require attention before the implementation of NCSs in
many applications, which need formal stability, performance and safety guaran-
tees.

1.4 Objectives and contributions

Based on the observations above, the general objective of this thesis can be
stated as

Develop tools for the design of resource-aware and resilient control stra-
tegies for safety-critical networked control systems and provide proof-of-
concepts in real-life applications.

As advocated in Section 1.3.1, ETC is an adequate method to avoid excessive
use of communication resources in safety-critical NCSs. However, as pointed
out in the concise literature review provided above, design and analysis tools for
ETC schemes that are applicable to output-based feedback systems that take
into account the presence of disturbances and network-induced imperfections
and that are resilient to malicious attacks, are lacking. Hence, we can refine the
general objective in terms of the following research objectives:

(i) To develop novel design frameworks for event-triggered control algorithms
for output-based feedback systems that aim to reduce the utilization of
communication resources and take into account the inevitable network-
induced imperfections. (Chapter 2-5)

(ii) To develop resilient event-triggered control algorithms for output-based
feedback systems that, in addition to the resource-aware requirement, re-
alize desired closed-loop behavior despite the presence of malicious denial-
of-service attacks. (Chapter 6)

(iii) To develop event-triggered control algorithms for multi-agent systems.
(Chapter 7)

(iv) To experimental validate of the proposed resource-aware control strategy
on a relevant safety-critical system. (Chapter 7)

Next, we discuss the contribution of each chapter in addressing these objecti-
ves.
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1.4.1 Contributions of the individual chapters

Chapter 2 presents a novel ETC strategy, which results in guaranteed finite
Lp-gains and a strictly positive lower bounds on the inter-event times. To be
more specific, the presented ETC approach is suitable for a class of nonlinear
feedback systems, can be synthesized in an output-based and/or decentralized
form, takes the specific medium access protocols into account, and is robust
to (variable) transmission delays by design. Interestingly, in contrast with the
majority of existing event-generators that only use static conditions, the newly
proposed event-triggering conditions are based on dynamic elements, which have
several advantages including larger average inter-event times (for the same stabi-
lity and/or performance guarantees). The developed theory leads to families of
event-triggered controllers that correspond to different trade-offs between (mini-
mum and average) inter-event times, maximum allowable delays and Lp-gains.
In addition, it is shown that for linear systems, the provided design conditions
can be verified systematically based on Linear Matrix Inequalities (LMIs).

Chapter 3 proposes new static and dynamic continuous event-generators
(which require continuous measuring of the plant output) and periodic event-
generators (which only require periodic sampling of the plant output) for linear
control systems with communication delays. All event-generators we propose
lead to closed-loop systems which are globally exponentially stable with a gua-
ranteed decay rate, L2-stable with a guaranteed L2-gain, and have a guaranteed
positive minimum inter-event time. By using new Riccati-based analysis tools
tailored to linear systems, the conservatism in our decay rate and L2-gain esti-
mates is small. The dynamic event-generators even further reduce this conser-
vatism, and as a result typically generate significantly fewer events than their
static counterparts, while guaranteeing the same control performance.

Chapter 4 presents event-triggering and dynamic quantization mechanisms
for linear control systems that ensure an input-to-state stability (ISS) property
of a set around the origin with respect to the external disturbances. The pro-
posed approach prevents the occurrence of Zeno behavior in the transmission
instants and the quantization updates. An additional feature of the proposed
scheme is that transmission instants can only be generated when the sampling
error becomes larger than the quantizer error bound, which helps in avoiding
redundant usage of the network. Interestingly, the proposed design strategy re-
veals the intuitive trade-off between the amount of transmissions and the number
of quantization regions (and thereby the size of each transmitted data package).

Chapter 5 considers ETC systems in the presence of packet losses. Despite
the existence of techniques to mitigate packet collisions, the presence of pac-
ket losses in wireless communication networks is in general unavoidable. For
this reason, it is of importance that also in the presence of packet losses, ETC
strategies are able to reduce the utilization of communication resources while
guaranteeing desired stability and performance criteria and a strictly positive
lower bound on the inter-event times. In Chapter 5, we propose ETC strategies
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for a class on nonlinear systems that take into account presence of potential pac-
ket losses. To be more specific, we consider two types of control configurations,
namely, configurations with an acknowledgment scheme (as, e.g., in the trans-
mission control protocol (TCP)) and configurations without an acknowledgment
scheme (as, e.g., in the user datagram protocol (UDP)).

Chapter 6 presents a systematic design framework for dynamic event-triggered
control (ETC) strategies applicable to a class of nonlinear output-based feedback
systems under Denial-of-Service (DoS) attacks. These malicious DoS attacks are
intended to interfere with the communication channel causing periods in time at
which transmission of measurement data is impossible. We show that the pro-
posed ETC scheme, if well designed, can tolerate a class of DoS signals charac-
terized by frequency and duration properties without jeopardizing the stability,
performance and Zeno-freeness of the ETC system. In fact, the design procedure
of the ETC condition allows trade-offs between performance, robustness to DoS
attacks and utilization of communication resources.

Chapter 7 considers a class of nonlinear multi-agent systems (MAS) subject
to disturbances and the inevitable imperfections induced by packet-based net-
worked communication. These imperfections include non-uniform time-varying
transmission delays, limited communication resources and communication con-
straints. To reduce the utilization of communication resources, we propose a
dynamic event-triggered control scheme resulting in aperiodic transmission of
information. Under suitable conditions, the designed event-triggered control-
lers leads to a broad range of performance and stability properties (which are
expressed in terms of dissipativity conditions [241, 254]), strictly positive lower
bounds on the inter-event times and robustness for non-uniform time-varying
delays in terms of maximum allowable delays. Moreover, the framework allows
for the consideration of destination protocols that are shown to connect to net-
work scheduling protocols. Interestingly, the same concept is applicable in the
context of packet losses and denial-of-service attacks

In Chapter 8, we experimentally validate the benefits of using ETC by me-
ans of a platoon of three passenger vehicles equipped with Cooperative Adaptive
Cruise Control (CACC) systems. We indeed show that CACC systems based on
Dedicated Short Range Communication (DSRC) enable the formation of vehi-
cle platoons with small inter-vehicle distances while avoiding amplifications of
disturbances along the vehicle string. By means of ETC, excessive utilization of
communication resources, which jeopardizes the reliability of the DSRC channel,
is avoided while (string-)stability properties are still guaranteed.

In addition to these main chapters, we provide the main conclusions of thesis
and recommendations in Chapter 9 and all mathematical proofs are included in
the appendix.
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Chapter 2

Output-based and Decentralized

Dynamic Event-triggered Control

with Guaranteed Lp-gain

Performance and Zeno-freeness

Abstract – Networked control systems are often subject to limited communication resour-

ces. By only communicating output measurements when needed, event-triggered control is

an adequate method to reduce the usage of communication resources while retaining desired

closed-loop performance. In this chapter, a novel event-triggered control (ETC) strategy for

a class of nonlinear feedback systems is proposed that can simultaneously guarantee a finite

Lp-gain and a strictly positive lower bound on the inter-event times. The new ETC scheme can

be synthesized in an output-based and/or decentralized form, takes the specific medium access

protocols into account, and is robust to (variable) transmission delays by design. Interestingly,

in contrast with the majority of existing event-generators that only use static conditions the

newly proposed event-triggering conditions are based on dynamic elements, which has several

advantages including larger average inter-event times. The developed theory leads to families

of event-triggered controllers that correspond to different trade-offs between (minimum and

average) inter-event times, maximum allowable delays and Lp-gains. A linear and a nonlinear

numerical example will illustrate all the benefits of this new dynamic ETC scheme.

2.1 Introduction

Networked control systems (NCSs) are distributed systems consisting of plants
and controllers of which sensor and actuation data is transmitted over shared

This chapter is based on [71, 72].
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(wired or wireless) communication networks. These NCSs offer many advan-
tages compared to conventional control systems in which sensor and actuation
data is transmitted over dedicated point-to-point (wired) links. In particular,
NCSs offer reduced installation costs, greater flexibility and better maintaina-
bility. Additionally, wireless communication is able to overcome the physical
limitations of employing wired links. However, the usage of wireless communi-
cation also comes with inevitable network-induced imperfections. Indeed, since
networked communication is inherently digital (packet-based), sensor and actua-
tion data need to be quantized and cannot be transmitted continuously, but only
at discrete time instants. Because the communication medium is often shared by
multiple sensor, controller and actuator nodes, communication constraints are
obviously also present. For this reason, there is a need for a medium access pro-
tocol, which governs the access of the nodes to the network, in order to prevent
package dropouts, see, e.g., [120,125,173,245]. Furthermore, NCSs are typically
subject to variable transmission delays which are in some cases further amplified
by high occupation rates of the network.

In traditional (networked) control setups, the transmission instants are deter-
mined purely based on time. In fact, in standard digital sampled-data control
the transmissions are often triggered periodically in time, possibly with some
jitter and delays in the communication. This time-triggered communication
approach is predictable and easy to implement. For these reasons, a large por-
tion of the NCS literature aims at finding time-based specifications such that the
closed-loop system meets the desired stability and performance criteria, see, e.g.,
[29, 51, 120, 125, 173, 245]. However, a time-triggered approach often results in
redundant transmissions, as many transmissions will occur at times when this is
not actually needed to achieve the desired stability and performance properties.
This is due to the fact that time-based specifications are typically determined
via worst-case estimates and should hold for all situations (all states) the system
can attain.

As an alternative, it seems more natural to let the transmission intervals
depend on the state of the system, thereby determining the actual need of having
to use the communication resources. This resource-aware control view seems
more appealing to deal with the scarcity of communication resources, especially
when the control systems share the communication network with other devices
and users. Examples of resource-aware control strategies include self-triggered
control, see [15, 101, 158, 244, 249, 250], and event-triggered control, see [18, 20,
54, 117, 155, 224] for some early approaches, and see [114] for a recent overview.

In an event-triggered control approach, the transmission times are determi-
ned on-line, using well-designed event conditions based on, e.g., output measu-
rements of the system. As such, event-triggered control (ETC) is much better
equipped than time-triggered control to balance resource utilization and control
performance. One of the main difficulties of ETC is to design the event-triggering
mechanism (ETM) in such a way that global asymptotic stability (GAS) (in
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absence of disturbances) and/or finite Lp-stability (for p ∈ [1,∞)) are guaran-
teed together with a positive minimum inter-event time (MIET), especially for
output-based and decentralized control configurations and the situation where
disturbances are present [41,78]. This positive MIET is an essential property in
order to exclude Zeno behavior (the occurrence of an infinite number of events
in finite time), and to enable practical implementation of the ETC system. As
such, an important problem is the construction of ETMs satisfying the following
properties:

(i) Zeno-freeness in the sense of the existence of strictly positive MIETs, even
in the presence of disturbances.

(ii) GAS in absence of disturbances and guaranteed Lp-stability with finite Lp-
gains (for p ∈ [1,∞)) with respect to a disturbance w and a certain per-
formance output z.

Achieving these two requirements simultaneously is not trivial, as it has been
shown recently in [41] that many ETMs do not lead to systems that have a
positive MIET that is robust to disturbances, or do not guarantee GAS or Lp-
stability with finite Lp-gains (where p ∈ [1,∞)). For example, the approaches
in [251, 259] consider Lp-gains, however they do not provide a strictly positive
MIET for the case that w 6= 0.

Even in the absence of disturbances, inter-event times of many ETMs con-
verge to zero in case of output-based and decentralized control configurations
[41, 78]. For this reason, recent works on ETC employ either time regulariza-
tion [5,7,54,87,117,218,219,225–228], in the sense that the triggering condition
is only checked after a specific time duration δ since the last transmission has
elapsed, or periodic event-triggered control (PETC) [54,112,117,126,164,184], in
the sense that the triggering condition is checked at fixed periodic sampling time
instants with sampling period h, such that the MIET is larger than or equal to δ
or h, respectively. However, only a few of these works provide Lp-stability ana-
lyses in case of output-based and decentralized event-triggered control. These
include [112, 126] and [184], all using PETC schemes.

In this chapter, building upon the work of [51, 120], and extending our pre-
liminary work [71] that focussed on the centralized state-feedback case only, a
novel time-regularized event-triggered control strategy is introduced that does
satisfy the above mentioned criteria. Our new method uses the unique com-
bination of dynamic event-triggering conditions [96, 191] and time regulariza-
tion [5,7,87,112,117,225–228]. Unlike [96,191], which consider the state-feedback
case where neither delays nor disturbances are present, here we consider the
output-based and/or decentralized case with delays and disturbances. The use
of dynamic ETMs is a key ingredient, as static ETMs (which are studied in the
majority of the ETC literature) in combination with time-regularization, often
reduce to approximately time-triggered periodic communication, in presence of
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disturbances when the state is close to the origin which typically leads to redun-
dant transmission instants, see, e.g., Example 3 in [41] or the numerical example
in [71]. Under the same stability and performance properties, our dynamic ETC
scheme does not exhibit this undesirable behavior and satisfies next to (i)-(ii),
also the following properties:

(iii) When the system is close to the desired equilibrium, the transmission in-
stants do not unnecessarily become (almost) equidistantly distributed in
time with inter-transmission intervals close to the enforced lower bounds
δ or h, as mentioned before.

(iv) Robust performance in the sense that the guarantees on GAS and/or the
Lp-gains also hold in the presence of (variable) transmission delays (within
certain bounds).

(v) Output-based and/or decentralized (asynchronous and multi-network) form
(in the sense that multiple networks can be present in the system).

A starting point of our results is the work [120], which leads in the context of
NCSs to time-based specifications in terms of a so-called maximum allowable
transmission interval (MATI) and a maximum allowable delay (MAD). The re-
sulting trade-off curves in [120] specify that as long as the transmission intervals
are smaller than the MATI and the delays are smaller than the (corresponding)
MAD, specific upper bounds on the Lp-gains are guaranteed. Hence, the MATI
and the MAD are bounds used to express the timing specifications. Interestingly,
for a given Lp-gain, the MIET and the MAD of the ETC strategy proposed here
are close to or equal to the MATI and MAD in [51, 120] corresponding to the
same Lp-gain. However, simulations show that the average transmission inter-
val of the proposed strategy is much larger due to the event-based triggering.
Hence, the ETC method also achieves the following property, which is a general
requirement for any ETC scheme:

(vi) Effectively achieve the same control performance, but significantly reduce
the number of transmissions compared to control strategies using time-
based specifications, with the MIET close to the available MATI bounds
but the average inter-event times much larger.

Although we do not prove this analytically in the present chapter, we show
through numerical examples that the proposed dynamic ETC scheme indeed
displays this property in situations where the conventional (static) ETC schemes
fail. In fact, the newly proposed ETC scheme satisfies all the six criteria (i)-
(vi), which is, to the best of our knowledge, the first time that this has been
accomplished. Moreover, the corresponding event-triggering conditions can be
constructed via a systematic procedure allowing trade-offs among performance
in terms of Lp-gains, robustness in terms of MADs, and network utilization,
which will be demonstrated by means of two numerical examples.
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The remainder of this chapter is organized as follows. After presenting the
necessary preliminaries and notational conventions in Section 2.1.1, we introduce
the decentralized networked control setup and the problem statement in Section
2.2, which are formalized in Section 2.3 by deriving a complete mathematical
model of the closed-loop system. In Section 2.4 we derive conditions for the
proposed event-triggering strategy such that stability or Lp-gain properties can
be guaranteed. Section 2.5 shows how an ETM can be designed systematically
and implemented. Finally, we illustrate the presented theory with two numerical
examples in Section 2.6, and provide conclusions in Section 2.7.

2.1.1 Definitions and Preliminaries

The following notational conventions are used in this chapter. N denotes the
set of all non-negative integers, N>0 denotes the set of all positive integers, R
denotes the field of all real numbers and R>0 denotes the set of all non-negative
reals. For N ∈ N, we write the set {1, 2, . . . , N} as N̄ . For N vectors xi ∈
R

ni , i ∈ N̄ , we denote the vector obtained by stacking all vectors in one (column)

vector x ∈ Rn with n =
∑N

i=1 ni by (x1, x2, . . . , xN ), i.e., (x1, x2, . . . , xN ) =
[
x⊤1 x⊤2 · · · x⊤N

]⊤
. The vectors in RN consisting of all ones and zeros are

denoted by 1N and 0N , respectively. By | · | and 〈·, ·〉 we denote the Euclidean
norm and the usual inner product of real vectors, respectively. With ēi we denote
the compound vector of all ej, j ∈ N̄ /{i}, i.e., ēi = (e1, . . . , ei−1, ei+1, . . . , eN ).
For a real symmetric matrix A, λmax(A) denotes the largest eigenvalue of A.
IN denotes the identity matrix of dimension N × N and, if N is clear for the
context, we write I. 0N×M denotes an N ×M matrix with all entries equal to
zero. The expression diag(A1, A2, . . . , AN ) with matrices Ai ∈ Rni×mi denotes a
block-diagonal matrix. A function α : R>0 → R>0 is said to be of class K if it is
continuous, strictly increasing and α(0) = 0. It is said to be of class K∞ if it is of
class K and it is unbounded. A continuous function β : R>0×R>0 → R>0 is said
to be of class KL if, for each fixed s, the mapping r 7→ β(r, s) belongs to class
K and for each fixed r, the mapping s → β(r, s) is decreasing and β(r, s) → 0
as s → ∞. A continuous function γ : R>0 × R>0 × R>0 → R>0 is said to be
of class KLL if, for each r > 0, both γ(·, ·, r) and γ(·, r, ·) belong to class KL.
A function f : Rn → Rn is said to be locally Lipschitz continuous if for each
x0 ∈ Rn there exist constants δ > 0 and L > 0 such that for all x ∈ Rn we
have that |x − x0| 6 δ ⇒ |f(x) − f(x0)| 6 L|x − x0|. A function f : Rn → Rn

is said to be linearly bounded if there exists a constant L > 0 such that for all
x ∈ Rn, we have that |f(x)| 6 L|x|. A set-valued mapping from a set X to a set
Y , associates, with every point x ∈ X , a subset of Y . The notation F : X ⇒ Y ,
indicates that F is a set-valued mapping from X to Y with M(x) ⊂ Y for all
x ∈ X .

In this chapter, we will model network control systems (NCSs) as a hybrid
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system H of the form

ξ̇ = F (ξ, w), when ξ ∈ C, (2.1a)

ξ+ ∈ G(ξ), when ξ ∈ D, (2.1b)

where F describes the flow dynamics, G the jump dynamics, C the flow set and
D the jump set. We now recall some definitions given in [98] on the solutions of
such hybrid system.

Definition 2.1. A compact hybrid time domain is a set D =
⋃J−1

j=0 [tj , tj+1]×
{j} ⊂ R>0 × N with J ∈ N>0 and 0 = t0 6 t1 . . . 6 tJ . A hybrid time domain
is a set D ⊂ R>0 × N such that D ∩ ([0, T ]× {0, 1, . . . , J}) is a compact hybrid
time domain for each (T, J) ∈ D.

Definition 2.2. A hybrid trajectory is a pair (dom ξ, ξ) consisting of a hybrid
time domain dom ξ and a function ξ defined on dom ξ that is absolutely conti-
nuous in t on (dom ξ) ∩ (R>0 × {j}) for each j ∈ N.

Definition 2.3. For the hybrid system H given by the state space Rn, the
(disturbance) input space Rnw and the data (F,G,C,D), where the flow map
F : Rn × Rnw → Rn, the jump map G : Rn ⇒ Rn, and the flow set C and the
jump set D are subsets of Rn, a hybrid trajectory (dom ξ, ξ) with ξ : dom ξ → Rn

is a solution to H for a locally integrable input function w : R>0 → R
nw , if

1) for all j ∈ N and for almost all t ∈ Ij := {t ∈ R>0 | (t, j) ∈ dom ξ}, we
have ξ(t, j) ∈ C and ξ̇(t, j) = F (ξ(t, j), w(t)).

2) for all (t, j) ∈ dom ξ such that (t, j + 1) ∈ dom ξ, we have ξ(t, j) ∈ D and
ξ(t, j + 1) ∈ G(ξ(t, j)).

For the motivation and more details on these definitions, the interested reader
is referred to [98]. We will often not mention dom ξ explicitly, and understand
that with each hybrid trajectory ξ comes a hybrid time domain dom ξ.

In addition, for p ∈ R>1, we introduce the Lp-norm of a function ξ defined on

a hybrid time domain dom ξ =
⋃J−1

j=0 [tj , tj+1] × {j} with J possibly ∞ and/or
tJ = ∞ by

‖ξ‖Lp
=





J−1∑

j=0

∫ tj+1

tj

|ξ(t, j)|pdt





1/p

(2.2)

provided the right-hand side is well-defined and finite. In case ‖ξ‖Lp
is finite,

we say that ξ ∈ Lp. Note that this definition is essentially identical to the usual
Lp-norm in case a function is defined on a subset of R>0.

Lemma 2.1. Consider a, b ∈ R and some constant ε > 0, then it holds that
2ab 6 (1/ε)a2 + εb2.



2.2 NCS setup and problem statement 29

2.2 NCS setup and problem statement

In this section, we introduce the (decentralized) event-triggered NCS with com-
munication constraints caused by network limitations and network-induced im-
perfections such as varying transmission delays. Based on this description, we
also provide the problem statement considered in this chapter.

2.2.1 Networked control configuration

In this chapter, we consider the networked control configuration shown in Figure
2.1 which consists of a continuous-time nonlinear plant P and a controller C
which are connected via N independent communication networks. In an NCS,
in contrast to conventional control setups that rely on dedicated point-to-point
links, the sensor and/or actuator data is communicated over (wireless) networks
in a package-based manner. The plant P is given by

P :

{

ẋp = fp(xp, û, w)

y = gp(xp),
(2.3)

where xp ∈ Rnp denotes the plant state, w ∈ Rnw is a disturbance input, û ∈ Rnu

represents a vector of the most recently received control signals and y ∈ Rny is
the output of P . The controller C is given by

C :

{

ẋc = fc(xc, ŷ)

u = gc(xc),
(2.4)

where xc ∈ Rnc denotes the controller state, ŷ ∈ Rny represents a vector of most
recently received sensor data and u ∈ Rnu represents a vector of control signals.
The functions fp and fc are assumed to be continuous and the functions gp and
gc are assumed to be continuously differentiable.

The communication of sensor and actuator data between P and C is (possibly)
performed via multiple networks N1, N2, . . . ,NN that operate asynchronously
and independently. To facilitate the description and analysis of the decentralized
event-triggered control setup, we define v := (y, u) ∈ Rnv and v̂ := (ŷ, û) ∈ Rnv

with nv := ny + nu. For simplicity of exposition, we assume (possibly after
reordering) that v = (v1, v2, . . . , vN ) and v̂ = (v̂1, v̂2, . . . , v̂N ) and that vi, i ∈ N̄ ,
is communicated over the network Ni, i ∈ N̄ .

2.2.2 Communication networks and protocols

In the networked control configuration of Figure 2.1, output vi is sampled and
transmitted over the network Ni, i ∈ N̄ , to the plant P or controller C, at
transmission times tij , j ∈ N, satisfying 0 6 ti0 < ti1 < ti2 < . . .. The update of v̂i
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Fig. 2.1. Networked control setup consisting of a plant P and a controller
C, connected via N independent communication networks Ni, i ∈ N̄ .

corresponding to transmission time tij occurs after a communication delay of τ ij
time units. See [120] for a more detailed discussion on communication delays.

In this chapter, we consider the so-called small-delay case, meaning that
reception of new information occurs before the next transmission is due. In
fact, we assume that the communication delays in each network Ni, i ∈ N̄ , are
upper-bounded by a maximum allowable delay (MAD). To be more precise, we
adopt the following standing assumption.

Assumption 2.1. The transmission delays in network Ni, i ∈ N̄, satisfy 0 6

τ ij 6 τ imad 6 τ imiet, for all j ∈ N, where τ imad denotes the maximum allowable

delay of network Ni and where τ imiet denotes a lower-bound on the minimum
inter-event time of network Ni, i.e., τ

i
miet 6 infj∈N(t

i
j+1 − tij).

An update of v̂i at t
i
j + τ ij for some i ∈ N̄ and j ∈ N, can be described as

v̂i((t
i
j + τ ij)

+) = vi(t
i
j) + hi(j, ei(t

i
j)), (2.5)

where ei ∈ Rnv,i denotes the network-induced error ei := v̂i − vi and where
e := v̂ − v = (e1, e2, . . . , eN). The functions hi, i ∈ N̄ , can be used to model
medium access protocols as described in [51, 120, 173]. These medium access
protocols are typically employed in case networkNi is shared by multiple (sensor
or actuator) nodes where each of these nodes correspond to a subset of the entries
of vi/v̂i, i ∈ N̄ .

Remark 2.1. In the ETC literature, the standard case that is typically considered
is that each network updates asynchronously according to v̂i((t

i
j+τ

i
j)

+) = vi(t
i
j),

which corresponds to hi(j, ei) = 0, for all i ∈ N̄ , j ∈ N and all ei ∈ Rnv,i .
However, by building upon [51, 120, 173], a framework can be obtained that
allows us to study next to this standard sampled-data ETC setup, also other
access protocols including the Round-Robin (RR) and the Try-Once-Discard
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(TOD) protocols in one framework without additional burden. Therefore, we
decided to present the work at this level of generality. We envision that the
combination of ETC and medium access protocols could be valuable in future
extensions and particular applications.

Remark 2.2. For simplicity of exposition, we focus here on the control configu-
ration as in Figure 2.1. However, the ETC method presented in this work also
applies to other configurations such as the case of static state feedback control
and the case where either û = u or ŷ = y, meaning that the corresponding sig-
nals are not transmitted over a (shared) network, but are continuously available.
These configurations can all be captured in the same hybrid model as presented
in Section 2.3.2 on which our ETC design is based. To illustrate this flexibility,
we will consider two numerical examples in which û = u in Section 2.6.

2.2.3 Problem statement

As motivated in the introduction, in most NCSs it is desirable to reduce the
usage of communication resources as much as possible (while still guaranteeing
the required stability and performance properties). Therefore, we consider event-
triggered communication as illustrated in Figure 2.1.

The problem considered in this work is to derive a systematic methodology
for the design of triggering conditions such that the criteria (i)-(vi) discussed in
the introduction are met. A more rigorous problem formulation is provided in the
next section, based on a complete mathematical model for the event-triggered
closed-loop NCS.

2.3 Mathematical Model of the Event-triggered

Control Setup

2.3.1 Event-triggering mechanism

In this work, for each network Ni, i ∈ N̄ , the proposed event-triggering mecha-
nism takes the form

ti0 = 0, tij+1 := inf
{
t > tij + τ imiet | ηi(t) 6 0

}
, (2.6)

for i ∈ N̄ and for all j ∈ N, where τ imiet ∈ R>0 is a lower bound on the MIET
(see also Standing Assumption 2.1) and ηi ∈ R>0 is an auxiliary variable. The
variable ηi will evolve according to

η̇i = Ψi(oi), (2.7)

for i ∈ N̄ , for some well-designed function Ψi, which we will specify in Section
2.4. Let us already remark that the argument oi represents locally available infor-
mation only, such as vi, ei and some other local variables, which are introduced
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in Section 2.3.2. In this manner, the event generators will have a decentrali-
zed and output-based structure and thereby enable satisfaction of property (v)
mentioned in the introduction. Note that the state variables ηi, i ∈ N̄ , evolve in-
dependently of each other and thus the transmissions for the networksNi, i ∈ N̄ ,
are indeed triggered asynchronously and independently. Observe that by taking
τ imiet ∈ R>0, i ∈ N̄ , the adopted time regularization imposes that the next event
can only take place after at least a fixed amount of time τ imiet > 0 has elapsed,
i.e., tij+1 − tij > τ imiet, for each j ∈ N. In this way, so-called Zeno behavior is
excluded from the ETC system and property (i) mentioned in the introduction
is satisfied. Moreover, observe that Standing Assumption 2.1 is indeed valid for
the event-triggered system if τ imiet is designed such that τ imiet > τ imad, for all
i ∈ N̄ . As we will show in Section 2.4, the time τ imiet can be taken close to or,
under some conditions, equal to the MATI bounds as derived in [51,120,173,245].
As such, the smallest inter-transmission times (lower bounded by the MIET) in
the ETC scheme are always close to or equal to the largest inter-transmission
times (MATI) in time-based triggering with the consequence that the resource
utilization of the ETC scheme will never be worse than the triggering based on
time-based specifications (MATI), as in [51, 120, 173, 245]. In addition, we will
show that the average inter-transmission times are typically much larger in the
novel ETC schemes that we will propose. This corresponds to property (vi)
mentioned in the introduction. Finally, notice that a dynamic event-triggering
mechanism (2.6)-(2.7) is employed which, as we will discuss in Remark 2.4 and
show in the numerical examples, is important in realizing property (iii) mentio-
ned in the introduction. The satisfaction of properties (ii) and (iv) follow from
the analysis in Section 2.4.

2.3.2 Hybrid model

In order to analyze asymptotic stability and Lp-stability in the next section,
we model the NCS employing event-triggered communication by means of the
hybrid system framework as developed in [98, 100], which was also employed
in [5, 7, 51, 110, 120, 173,191] in the context of NCSs.

To provide this hybrid model, we assume that the value of v̂i evolves accor-
ding to a zero-order hold model, meaning that v̂i is kept constant between the
update times tij + τ ij and tij+1 + τ ij+1 for all j ∈ N, i.e.,

˙̂vi(t) = 0, t ∈ (tij + τ ij , t
i
j+1 + τ ij+1]. (2.8)

By means of (2.5), following [120], we can write the jump dynamics of ei at an
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update event as follows

ei((t
i
j + τ ij)

+) = v̂i((t
i
j + τ ij)

+)− vi(t
i
j + τ ij)

= hi(j, ei(t
i
j)) + vi(t

i
j)− v̂i(t

i
j)

− vi(t
i
j + τ ij) + v̂i(t

i
j + τ ij)

= hi(j, ei(t
i
j))− ei(t

i
j) + ei(t

i
j + τ ij). (2.9)

Notice that we used the fact that v̂i(t
i
j) = v̂i(t

i
j + τ ij), for each j ∈ N, due to the

zero-order hold assumption and Standing Assumption 2.1. Here we consider v̂i
and ei as left-continuous signals in the sense that for all t > 0, v̂i(t) = lims↑t v̂i(s).

In order to formulate the dynamics of the event-triggered NCS in terms of
flow and jump equations as in [98, 100], we will introduce as in [120] additio-
nal states li ∈ {0, 1}, si ∈ Rni , κi,∈ N and τi ∈ R>0, i ∈ N̄ . The variable
li is a boolean, which keeps track of whether the next event in network Ni

is a transmission event or an update event, indicated by li = 0 and li = 1,
respectively. The variable si serves as a memory variable to store the value
hi(j, ei(t

i
j)) − ei(t

i
j) (present in (2.9)) at the moment of a transmission at time

tij and is used to model the update event at time tij + τ ij . The integer vari-
able κi is used to keep track of the total amount of transmissions in network
Ni over time and the timer variable τi, i ∈ N̄ , is adopted to capture the time
elapsed since the last transmissions and to assure that Standing Assumption
2.1 remains valid. Consider the state vector ξ := (x, e, τ, κ, s, l, η) ∈ X with
X := {(x, e, τ, κ, s, l, η) ∈ Rnx × Rnv × RN

>0 × NN × Rnv × {0, 1}N × RN
>0},

and the vectors τ := (τ1, τ2, . . . , τN ) ∈ RN
>0, κ := (κ1, κ2, . . . , κN ) ∈ NN , s :=

(s1, s2, . . . , sN ) ∈ Rnv , l := (l1, l2, . . . , lN) ∈ {0, 1}N and η := (η1, η2, . . . , ηN ) ∈
RN

>0. By combining these new state variables with (2.3), (2.4) and (2.7), the
flow dynamics of the interconnection (P , C,N1, . . . ,NN ) is given by

F (ξ, w) :=
(
f(x, e, w), g(x, e, w),1N ,0N ,0N ,0N ,Ψ(v, e, τ, κ, s, l, η)

)
, (2.10)

where Ψ(v, e, τ, κ, s, l, η) = (Ψ1(o1),Ψ2(o2), . . . ,ΨN (oN )) with oi =
(
vi, ei, τi, κi,

si, li, ηi
)
∈ Oi := Rnv,i ×{0, 1}×Rnv,i ×Rnv,i ×R>0×R>0, and where f(x, e, w)

is given by

f(x, e, w) =

[
fp(xp, gc(xc) + Γue, w)
fc(xc, gp(xp) + Γye)

]

, (2.11)

where Γy :=
[
Iny

0ny×nu

]
and Γu :=

[
0nu×ny

Inu

]
. To obtain the expression

for g(x, e, w), observe that due to (2.8) we have that ė = −v̇. By combining this
fact with (2.3) and (2.4), we obtain that

g(x, e, w) =

[

− ∂gp
∂xp

(xp)fp(xp, gc(xc) + Γue, w)

− ∂gc
∂xc

(xc)fc(xc, gp(xp) + Γye)

]

. (2.12)
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The corresponding flow set is given by

C :=
⋂

i∈N̄

Ci (2.13)

with

Ci :=
{
ξ ∈ X |

((
τi 6 τ imiet ∨ ηi > 0

)
∧ li = 0

)

∨
(
0 6 τi 6 τ imad ∧ li = 1

)}
, (2.14)

for i ∈ N̄ .
To define the jump map, we introduce the notation Γi ∈ RN×N , represen-

ting a matrix of which the ii-th (diagonal) entry is equal to one and all other
entries are zero, and Γ̄i ∈ Rnv×nv is a diagonal matrix consisting of diagonal
elements being zero for the indices corresponding to the networks N1, . . . ,Ni−1,
Ni+1, . . . ,NN and one for the network Ni. In particular,

(
Γ̄i

)

jj
=

{

1,
∑i−1

l=1 nv,l < j 6
∑i

l=1 nv,l,

0, otherwise.

The jump dynamics is given by ξ+ ∈ G(ξ) with jump map G(ξ) =
⋃N

i=1Gi(ξ),
where

Gi(ξ) :=







{G0,i(ξ)}, when ξ ∈ Di ∧ li = 0

{G1,i(ξ)}, when ξ ∈ Di ∧ li = 1

∅, when ξ /∈ Di

(2.15)

and

G0,i(ξ) :=













x
e

(IN − Γi)τ
κ+ Γi1N

Γ̄i(h(κ, e)− e) + (Inv
− Γ̄i)s

l + Γi1N

η













, (2.16)

G1,i(ξ) :=
(
x, Γ̄is+ e, τ, κ, (Inv

− Γ̄i)s, l − Γi1N , η
)
, (2.17)

where h(κ, e) = (h1(κ1, e1), h2(κ2, e2), . . . , hN (κN , eN )). The function G0,i des-
cribes how the entire state ξ jumps when network Ni grants access to one of
its nodes to transmit. Note that the memory state si is assigned the value
hi(κi, ei)− ei, which corresponds to the term hi(j, ei(t

i
j))− ei(t

i
j) in (2.9), while

the transmission error ei remains the same. Furthermore, observe that li jumps
to the value 1, which ensures that the next event in network Ni can only be an
update event (thereby guaranteeing the small-delay assumption as described in
Standing Assumption 1). The function G1,i describes how ξ jumps when in Ni
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an update event occurs. Observe that the reset of ei as described by this part
of the jump map corresponds to (2.9) and that li toggles back to 0, enforcing
a transmission event as the next event in network Ni. Also important to note
is that the jump for si when li = 1 can be chosen arbitrarily from a modeling
point of view since no information needs to be stored at the moment of an up-
date event. We arbitrate here the update s+i = 0. The corresponding jump set
is given by

D :=
⋃

i∈N̄

Di, (2.18)

where

Di :=
{
ξ ∈ X |

(
τi > τ imiet ∧ ηi 6 0 ∧ li = 0

)
∨ (li = 1)

}
. (2.19)

By means of definitions (2.10)-(2.19) presented above, we can now obtain the
hybrid model H =(F,G,C,D) as in (2.1) representing the entire decentralized
ETC setup as illustrated in Figure 2.1.

Definition 2.4. For the hybrid system H with w = 0, the set given by E :=
{ξ ∈ X | x = 0nx

, e = s = 0nv
, η = 0N} is said to be uniformly globally asymp-

totically stable (UGAS) if there exists a function β ∈ KLL such that, for any
initial condition ξ(0, 0) ∈ X0 with X0 = {ξ ∈ X | l = 0N}, all corresponding
solutions ξ as in Definition 2.3 satisfy

| (x(t, j), e(t, j), s(t, j), η(t, j)) | 6 β (| (x(0, 0), e(0, 0), s(0, 0), η(0, 0)) |, t, j)

for all (t, j) ∈ dom ξ. The set E is said to be uniformly globally exponentially
stable (UGES) if β can be taken of the form β(r, t, k) = Mr exp(−̺(t+ k)) for
some M > 0 and ̺ > 0 in the inequality above.

In case of the disturbance w being present, the performance of the hybrid
system H might be defined as the level of disturbance attenuation with respect
to some output variable

z = q(x,w). (2.20)

Definition 2.5. The hybrid system H is said to be Lp-stable from input w to
output z with an Lp-gain less than or equal to θ, if there exists a K∞-function β
such that for any exogenous input w ∈ Lp, and any initial condition ξ(0, 0) ∈ X0

with X0 = {ξ ∈ X | l = 0N}, each corresponding solution to H satisfies

‖z‖Lp
6 β(| (x(0, 0), e(0, 0), s(0, 0), η(0, 0)) |) + θ‖w‖Lp

. (2.21)

The problem that we loosely formulated at the end of Section 2.2 can now
be formally given as follows.

Problem 2.1. Given a controller (2.4) for the plant (2.3) and a desired Lp-gain
θ ∈ R>0 in case disturbances are present, determine the values of τ imiet ∈ R>0,
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the function Ψi in the event generator given by (2.6) and (2.7), and values of
the maximum allowable delays τ imad, for each network Ni, i ∈ N̄ , such that the
system H is UGAS (and sometimes even UGES) in case w = 0 and/or, in
the presence of disturbances, Lp-stable with an Lp-gain less than or equal to θ,
with a strictly positive τ imiet to assure Zeno-freeness and with large (average)
inter-event times tij+1 − tij , j ∈ N.

2.4 ETM design conditions with stability and

Lp-gain guarantees

In Sections 2.4.1 and 2.4.2, conditions are presented such that the ETM given
by (2.6) and (2.7) ensures UGAS (and sometimes even UGES) in case w = 0
and Lp-stability with a desired Lp-gain in case disturbances are present for the
system H. In both cases, in order to specify suitable τ imiet, τ

i
mad and Ψi, for

all i ∈ N̄ , for the ETM given by (2.6)-(2.7), we need to consider the following
condition.

Condition 2.1. ([120]) For each i ∈ N̄ , there exist a function W̃i : N×{0, 1}×
Rnv,i × Rnv,i → R>0 with W̃i(κi, li, ·, ·) locally Lipschitz for all fixed κi ∈ N and
li ∈ {0, 1}, K∞-functions β

W,i
and β̄W,i, and 0 < λi < 1 such that for all κi ∈ N,

li ∈ {0, 1}, si ∈ Rnv,i and all ei ∈ Rnv,i , it holds that

W̃i(κi + 1, 1, ei, hi(κi, ei)− ei) 6 λiW̃i(κi, 0, ei, si), (2.22)

W̃i(κi, 0, si + ei, 0) 6 W̃i(κi, 1, ei, si), (2.23)

and
β
W̃ ,i

(|(ei, si)|) 6 W̃i(κi, li, ei, si) 6 β̄W̃ ,i(|(ei, si)|), (2.24)

The construction of the functions and constants mentioned in Condition 2.1
depends on which local medium access protocols are employed and can be done
systematically. More details on this construction are provided in Section 2.5.2,
see also [120].

2.4.1 Stability analysis

In order to guarantee UGAS or UGES, consider the following addition to Con-
dition 2.1. For the sake of brevity, we sometimes omit the arguments of
W̃i(κi, li, ei, si).

Condition 2.2. For each i ∈ N̄ , there exist continuous functions Hli,i : R
nx ×

R(nv−nv,i) → R and constants Lli,i > 0, for li ∈ {0, 1}, such that for all κi ∈ N,
li ∈ {0, 1}, si ∈ Rnv,i , x ∈ Rnx , and almost all ei ∈ Rnv,i it holds that

〈

∂W̃i

∂ei
, gi(x, ei, 0)

〉

6 Lli,iW̃i +Hli,i(x, ēi). (2.25)
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Furthermore, there exists a locally Lipschitz function Ṽ : Rnx → R>0, K∞-
functions β

Ṽ
and β̄Ṽ , positive definite functions ρ̃ : R>0 → R>0 and σli,i :

R>0 → R>0, positive semi-definite functions ˜̺i : Rnv,i → R>0 and constants
γli,i > 0, li ∈ {0, 1}, i ∈ N̄ , such that for all κ ∈ NN , l ∈ {0, 1}N , s, e ∈ Rnv ,
and almost all x ∈ Rnx , it holds that

〈

∇Ṽ (x), f(x, e, 0)
〉

6 −ρ̃(|x|) +
N∑

i=1

(

− ˜̺i(vi)

−H2
li,i(x, e)− σli,i(W̃i) + γ2li,iW̃

2
i

)

, (2.26)

and for all x ∈ Rnx

β
Ṽ
(|x|) 6 Ṽ (x) 6 β̄Ṽ (|x|). (2.27)

The condition (2.26) is essentially a scaled L2-gain condition from (W̃1, W̃2,
. . . , W̃N ) to (Hl1,1, Hl2,2, . . . , HlN ,N), which in the special case of a centralized
control configuration, i.e., when taking N = 1, is similar to the conditions used
in [51,120,173]. In fact, the inequalities (2.25)-(2.26) recover the conditions used
in [120] for N = 1 and form a generalization for the decentralized multi-network
case (N > 1). Consider now functions φli,i : R>0 → R>0, with i ∈ N̄ and
li ∈ {0, 1}, which evolve according to

d

dτi
φli,i =

{

−2Lli,iφli,i − γli,i(φ
2
li,i

+ 1), for τi ∈ [0, τ imiet]

0, for τi > τ imiet,
(2.28)

where Lli,i and γli,i are constants given in Condition 2.2 and the initial conditions
φli,i(0) are still to be specified.

Theorem 2.2. Consider the system H that satisfies Condition 2.1 and Condi-
tion 2.2. Suppose the following statements hold for each i ∈ N̄ :

(i) There exist positive real constants τ imiet and τ imad with τ imiet > τ imad

satisfying

γ0,iφ0,i(τ
i
miet) > λ2i γ1,iφ1,i(0), (2.29)

γ1,iφ1,i(τi) > γ0,iφ0,i(τi), for all τi ∈ [0, τ imad], (2.30)

where φ0,i and φ1,i evolve according to (2.28) for some fixed initial conditions
φli,i(0) that satisfy γ1,iφ1,i(0) > γ0,iφ0,i(0) > λ2i γ1,iφ1,i(0) > 0, and with λi as
in (2.22).

(ii) There exist a function Ψi : R
nv,i×Rnv,i×R>0×N×Rnv,i×{0, 1}×R>0 →

R with Ψi(·, ·, ·, ·, ·, ·, ηi) locally Lipschitz for all ηi ∈ R>0 and a locally Lipschitz
K∞ function δηi

: R>0 → R>0, such that for all ξ ∈ X

Ψi(oi) 6Mi(ξ)− δηi
(|ηi|), (2.31)
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and for all ξ ∈ X with 0 6 τi 6 τ imiet

Ψi(oi) + δηi
(ηi) > 0, (2.32)

where oi = (vi, ei, τi, κi, si, li, ηi) and where

Mi(ξ) =

{

M1,i(ξ), for τi ∈ [0, τ imiet]

M2,i(ξ), for τi > τi > τ imiet

(2.33)

with

M1,i(ξ) : = ˜̺i(vi) +
(

Hli,i(x, ēi)− γli,iφli,iW̃i

)2

, (2.34)

M2,i(ξ) : = ˜̺i(vi) +H2
0,i(x, ēi)− 2γ0,iφ0,iW̃iH0,i(x, ēi)

−
(
γ20,i + 2γ0,iφ0,iL0,i

)
W̃ 2

i . (2.35)

Then the event generator given by (2.6) and (2.7) assures that for the hybrid
system H, described by (2.1) and (2.10)-(2.18), the set E, as defined in Definition
2.4, is UGAS. If, in addition, for each i ∈ N̄ there exist strictly positive numbers
b1,i, b2,i, c1, c2, c4,i and c5,i such that for all r ∈ R>0, βW̃ ,i

(r) = b1,ir, β̄W̃ ,i(r) =

b2,ir, βṼ
(r) = c1r

2, β̄Ṽ (r) = c2r
2, ρ̃(r) > c3r

2, δηi
(r) > c4,ir and σli(r) > c5,ir

2,
li = 0, 1, then the set E is UGES.

The proof is given in the appendix. Observe that the functions Ψi only de-
pend on the local (state) variables oi ∈ Oi and not on the entire state ξ according
to (2.31). This is needed to warrant output-based decentralized implementation
of the event generators.

2.4.2 Lp-gain performance Analysis

A convenient way to analyze the Lp-gain of a control system is by constructing
a so-called storage function S, which is positive semi-definite, and satisfies the
dissipation inequality Ṡ 6 θp|w|p − |q(x,w)|p during flow and S+ 6 S at jumps,
where θp|w|p − |q(x,w)|p is the supply rate, θ an upper bound for the Lp-gain
and q(x,w) as in (2.20) [241]. In order to construct such a storage function, we
first consider the following conditions.

Condition 2.3. ([51, 120]) For each i ∈ N̄ , there exist continuous functions
Hli,i : R

nx ×R(nv−nv,i) ×Rnw → R and constants Lli,i > 0, for li ∈ {0, 1}, such
that for all κi ∈ N, li ∈ {0, 1}, si ∈ Rnv,i , x ∈ Rnx , and almost all ei ∈ Rnv,i it
holds that 〈

∂W̃i

∂ei
, gi(x, ei, w)

〉

6 Lli,iW̃i +Hli,i(x, ēi, w). (2.36)

Furthermore, there exist a locally Lipschitz function Ṽ : Rnx → R>0, K∞-
functions β

Ṽ
and β̄Ṽ , positive semi-definite functions ˜̺i : R

nv,i → R>0, i ∈ N̄ ,
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and constants αi, γli,i > 0, li ∈ {0, 1}, i ∈ N̄ , such that for all κ ∈ N, s, e ∈ Rnv ,
w ∈ R

nw , l ∈ {0, 1}N and almost all x ∈ R
nx , it holds that

〈

∇Ṽ (x), f(x, e, w)
〉

6

N∑

i=1

(

− ˜̺i(vi)−H2
li,i(x, ēi, w)

+ γ2li,iW̃
2
i

)

+ µ̃(θp|w|p − |q(x,w)|p), (2.37)

for some constants µ̃ > 0 and θ > 0, and for all x ∈ Rnx it holds that

β
Ṽ
(|x|) 6 Ṽ (x) 6 β̄Ṽ (|x|). (2.38)

Theorem 2.3. Consider the system H that satisfies Condition 2.1, Condition
2.3 and condition (i) of Theorem 2.2. Suppose there exists a function Ψi :
Rnv,i×Rnv,i×R>0×N×Rnv,i×{0, 1}×R>0 → R×R>0 → R with Ψi(·, ·, ·, ·, ·, ·, ηi)
locally Lipschitz for all ηi ∈ R>0 for each i ∈ N̄ that satisfies for all ξ ∈ X

Ψi(oi) 6Mi(ξ, w) (2.39)

and
Ψi(oi) > 0, when 0 6 τi 6 τ imiet, (2.40)

where oi = (vi, ei, τi, κi, si, li, ηi) and where

Mi(ξ, w) =

{

M1,i(ξ, w), for 0 6 τi 6 τ imiet

M2,i(ξ, w), for τi > τ imiet

with

M1,i(ξ, w) :=˜̺i(vi) +
(

Hli,i(x, ēi, w)− γli,iφli,iW̃i

)2

, (2.41)

M2,i(ξ, w) :=˜̺i(vi) +H2
0,i(x, ēi, w)− 2γ0,iφ0,iW̃iH0,i(x, ēi, w)

−
(
γ20,i + 2γ0,iφ0,iL0,i

)
W̃ 2

i . (2.42)

Then the event-generator given by (2.6) and (2.7) guarantees that the system
H, described by (2.1) and (2.10)-(2.18), is Lp-stable with respect to input w and
output z according to (2.20) with an Lp-gain less than or equal to θ.

The proof is given in the appendix.

Remark 2.3. The conditions presented in this section can also be used to de-
termine time-based stability and Lp-gain conditions for decentralized (multiple-
networks) time-triggered NCSs in terms of τ imati and τ imad. Indeed, by taking
˜̺i(yi, ui) = 0, for all i ∈ N̄ , and τ imati = τ imiet, where τ imiet and τ imad fol-
low from (2.29) and (2.30), respectively, for each Ni

(
τ imati, τ

i
mad

)
-conditions are

obtained guaranteeing UGAS/UGES of E and an Lp-gain less than or equal to θ.
If we consider the centralized (single-network) time-triggered case, i.e., N = 1,
we recover the results presented in [120].
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2.5 Design of event generators

In this section we will demonstrate how to construct the event generator as
in (2.6)-(2.7) through the definition of the functions Ψi : Oi → R, i ∈ N̄ ,
satisfying (2.31) and (2.32) in case we can assume that w = 0 and the control
objective is to guarantee UGAS of E , or satisfying (2.39) and (2.40) in case w 6= 0
and the control objective is to guarantee Lp stability.

2.5.1 General design considerations

As already mentioned, due to the decentralized control setup, only local infor-
mation oi ∈ Oi is available at each ETM. Hence, the functions Ψi, i ∈ N̄, have to
be constructed such that they only depend on locally available variables. To do
so, we first need to derive lower-bounds for the functionsM1,i andM2,i, as given
in (2.34) and (2.35), respectively, which only depend on these local variables. A
lower bound for the function M1,i can easily be obtained from (2.34), namely

M1,i(ξ) > ˜̺i(vi). (2.43)

By employing Lemma 2.1, we can derive a lower bound for M2,i in (2.35) as

M2,i(ξ) > ˜̺i +H2
0,i −H2

0,i −
(

γ0,iφ0,iW̃i

)2

− (γ20,i + 2γ0,iφ0,iL0,i)W̃
2
i

> ˜̺i − γ0,i
(
2φ0,iL0,i + γ0,i(1 + φ20,i)

)
W̃ 2

i . (2.44)

By combining (2.32), (2.43) and (2.44), we can now define the functions Ψi,
i ∈ N̄ , which satisfy (2.31), as

Ψi(oi) = ˜̺i(vi)− δηi
(ηi)− (1− ωi(τi))γ̄iW̃

2
i , (2.45)

where

ωi(τi) :=

{

1, for 0 6 τi 6 τ imiet

0, for τi > τ imiet,
(2.46)

and where γ̄i = γ0,i
(
2φ0,iL0,i + γ0,i(1 + φ20,i)

)
, which is, given (2.28), a constant

for τi > τ imiet. Due to (2.45) and (2.46), the flow map F as given in (2.10) is
discontinuous in τi. However, since τ̇i = 1, this does not cause any problems in
the existence of solutions.

For the Lp-stability case, we can define Ψi similar to (2.45), namely, by taking
δηi

(ηi) = 0.

Remark 2.4. The functions ˜̺i, i ∈ N̄ , can be arbitrary semi-positive definite
functions. From (2.31), (2.34) and (2.35) for the UGAS case and from (2.39),
(2.41) and (2.42) for the Lp-stability case, we can see that if ˜̺i, i ∈ N̄ , is chosen
positive definite, the bound on Ψi becomes less stringent than the case where
˜̺i = 0, i ∈ N̄ , in the sense that Ψi can be chosen larger with respect to the
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arguments ui and yi. From (2.7), we can see that if Ψi is larger, it will in general
take longer before ηi in (2.6) becomes non-positive. The drawback is that the
bound on the derivative of V given by (2.26) becomes more stringent as well.
As a consequence, γli,i, for i ∈ N̄ and li ∈ {0, 1}, have to increase which implies
that τ imiet and τ

i
mad will decrease. Note, however, that only for the situation that

yi and ui are relatively small for 0 6 τi 6 τ imiet and Ψi < 0 for τi > τ imiet, inter-
event times close to τ imiet can be expected. Typically, this situation corresponds
to the case that the disturbance is close to zero for 0 6 τi 6 τ imiet and is large
for τi > τ imiet. Due to this dependency on τi, this worst-case disturbance is
unlikely to occur in a practical setting. Thus, by choosing ˜̺i larger, we can
derive a triggering condition which in general yields larger inter-event times on
average (up to a certain point). Hence, this discussion already reveals that there
is a trade-off between the guaranteed minimum inter-event times, robustness in
terms of MADs and the expected average inter-event times.

Remark 2.5. The conditions given by (2.32) and (2.40) assure that ηi(t) >

0 when 0 6 τi 6 τ imiet. Hence, the dynamic triggering mechanism given by
(2.6) and (2.7) can be modified to a static triggering mechanism as follows,

ti0 = 0, tij+1 := inf
{
t > tij + τ imiet | Ψi(oi) 6 0

}
, (2.47)

where Ψi as in (2.45) with δηi
(ηi) = 0. Observe that according to this triggering

condition, a transmission event takes place in network Ni, each time ηi(t) starts
decreasing in contrast to the dynamic triggering mechanism given by (2.6) and
(2.7). Hence, the dynamic triggering condition outperforms its static alternative
in any case with respect to the inter-event times.

Remark 2.6. In the specific case where no delays and no disturbances are present,
where only one network with one node is considered, and where we employ the
static triggering condition given by (2.47), we recover the design in [5].

2.5.2 Construction of Lyapunov and storage Functions

To construct the Lyapunov and storage functions Ṽ and W̃i, and the constants
as presented in Condition 2.1-2.3, we are inspired by the results in [110, 120].
The starting points are based on well known conditions, as used in [51,173,245]
for the delay-free case.

Condition 2.4. All protocols are UGES, in the sense that for each i ∈ N̄ there
exists a function Wi : N × Rnv,i → R>0 that is locally Lipschitz in its second
argument such that for all κi ∈ N and all ei ∈ Rnv,i it holds that

αW,i|ei| 6Wi(κi, ei) 6 ᾱW,i|ei| (2.48a)

Wi(κi + 1, hi(κi, ei)) 6 λiWi(κi, ei) (2.48b)

for constants 0 < αW,i 6 ᾱW,i and 0 < λi < 1.
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For the standard sampled-data (SD) systems where hi(κi, ei) = 0 for all
κi ∈ N, ei ∈ R

nv,i , we can take Wi(κi, ei) = |ei| and λi > 0 arbitrary small. The
Try-Once-Discard protocol (TOD), the Round-Robin protocol (RR) and many
more are also known to satisfy the above mentioned conditions, see [120, 173]
for details on how to construct the corresponding functions Wi. Additional to
Condition 2.4, we require that for all κi ∈ N, ei ∈ Rnv,i

Wi(κi + 1, ei) 6 λW,iWi(κi, ei) (2.49)

for some constant λW,i > 1, and that for almost all ei ∈ Rnv,i and all κi ∈ N

∣
∣
∣
∣

∂Wi

∂ei
(κi, ei)

∣
∣
∣
∣
6 ci (2.50)

for some constant ci ∈ R>0. Moreover, in case w = 0 and thus if we aim to
find a Lyapunov function to guarantee UGAS (and sometimes even UGES), we
assume that the growth of ei is bounded according to

|gi(x, ei, 0)| 6 c−1
i (Hx,i(x, ēi) +Me,i|ei|) , (2.51)

where Hx,i : R
nx,i × R(nv−nv,i) → R>0, and, in case w 6= 0 and thus if we aim

to find a storage function to guarantee Lp-stability, we assume that

|gi(x, ei, w)| 6 c−1
i (Hi(x, ēi, w) +Me,i|ei|) , (2.52)

where Hi : R
nx ×R(nv−nv,i)×Rnw → R>0. In both casesMe,i > 0 is a constant.

Similar to Condition 2.2, we establish a scaled L2-gain from (W1,W2, . . . ,WN )
to (Hx,1, Hx,2, . . . , Hx,N ), by assuming the existence of a locally Lipschitz con-
tinuous function V : Rnx → R>0, which is radially unbounded, i.e., for all
x ∈ Rnx

αV (|x|) 6 V (x) 6 ᾱV (|x|) (2.53)

for some K∞-functions αV and ᾱV , and

〈∇V (x), f(x, e, 0)〉 6 −ρ(|x|)−
N∑

i=1

(
H2

x,i(x, ēi) + ̺i(vi)
)

+

N∑

i=1

(γ2i − ε)W 2
i (κi, ei) (2.54)

for almost all x ∈ Rnx and all e ∈ Rnv with ρ : R>0 → R>0 positive definite and
some semi-positive definite functions ̺i : R

nv,i → R>0 and where the constants
ε, γi satisfy 0 < ε < min{γ2i , 1}, where ε is typically taken small. A similar
condition can be obtained to construct a storage function V for Lp-stability,
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namely,

〈∇V (x), f(x, e, w)〉 6 −
N∑

i=1

(
H2

i (x, ēi, w) + ̺i(vi)
)

+

N∑

i=1

γ2iW
2
i (κi, ei) + µ (θp|w|p − |q(x,w)|p) , (2.55)

for almost all x ∈ Rnx , all e ∈ Rnv and all w ∈ Rnw .
Based on the above mentioned conditions, which correspond to the delay-

free case, see [120], the constants and functions satisfying Conditions 2.1-2.3,
which are imposed in case variable transmission delays are present, can now be
obtained.

Proposition 2.4. Consider system H. If Condition 2.4 and inequalities (2.49)-
(2.51), (2.53) and (2.54) hold (in case w = 0) or Condition 2.4 and inequalities
(2.49)-(2.50), (2.52), (2.53) and (2.55) hold (in case w 6= 0), then the functions
Ṽ and W̃i given by

W̃i(κi, 0, ei, si) = max {Wi(κi, ei),Wi(κi, ei + si)}

W̃i(κi, 1, ei, si) = max

{
λi
λW,i

Wi(κi, ei),Wi(κi, ei + si)

}

Ṽ (x) = V (x),

satisfy Condition 2.1 and Condition 2.2, and Condition 2.1 and Condition 2.3,
respectively, with β

W̃ ,i
(r) = β

W̃ ,i
r, β̄W̃ ,i(r) = β̄W̃ ,ir, βṼ

= αV , β̄Ṽ = ᾱV ,

σ0,i(r) = εr2, σ1,i(r) = ελ2W,i/λ
2
i r

2, ρ̃(r) = ρ(r), ˜̺i(vi) = ̺(vi), Hli,i(x, ēi) =
Hx,i(x, ēi), Hli,i(x, ēi, w) = Hi(x, ēi, w), µ̃ = µ, and

L0,i =
Me,i

αW,i

, L1,i =
Me,iλW,i

λiαW,i

(2.56)

γ0,i = γi, γ1,i =
γiλW,i

λi
, (2.57)

where β
W̃ ,i

and β̄W̃ ,i.

The proof is based on [120], and is omitted here for space reasons.
The following lemma can be used to implement (2.45) in practice, where the

mode li might not be available to the event generator, i.e., in case the delays
are unknown the update times (and thus the modes li) are also unknown.

Lemma 2.5. Consider system H and suppose there exists a function Wi that
satisfies Condition 2.4, (2.49) and (2.50), then

(1− ωi(τi))γ̄iW̃
2
i = (1 − ωi(τi))γ̄iW

2
i (2.58)

with W̃i as given in Proposition 2.4 and ωi as given in (2.46).
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Remark 2.7. Note that the conditions presented above put some restrictions
on the class of nonlinear systems that can be considered. Indeed, observe that
the inequalities (2.51) and (2.52) require that gi(x, ei, w) is linearly bounded
with respect to ei. In case the nonlinear terms in fi(x, ei, w) and gi(x, ei, w)
are linearly bounded with respect to all arguments (e.g., in case fi and gi are
globally Lipschitz maps), one can essentially apply the results for linear systems
presented in Section 2.5.3 mutatis mutandis. However, the presented framework
is not restricted to this class of linearly bounded systems as we demonstrate by
an example in Section 2.6.2.

2.5.3 The linear case

In this section, we will discuss how to systematically construct the functions and
constants satisfying the conditions presented in Section 2.5.2, when f(x, e, w) as
in (2.10) can be written as

ẋ = A11x+A12e+A13w (2.59)

with vi = Cix and where the performance output (2.20) is given by

z = Czx+Dzw. (2.60)

Based on (2.59), we find that the dynamics of the transmission errors ei, i ∈ N̄ ,
are given by

ėi = A21,ix+A22,ie+A23,iw, (2.61)

where A21,i = −CiA11, A22,i = −CiA12 and A23,i = −CiA13, i ∈ N̄ . By
employing the notation

A21 =






A21,1

...
A21,N




 , A22 =






A22,1

...
A22,N




 , A23 =






A23,1

...
A23,N




 ,

we can write the dynamics of the transmission errors compactly as

ė = A21x+A22e+A23w. (2.62)

For the sake of brevity, we will only consider the L2-gain analysis.
In order to construct the functions Ψi for each networkNi, i ∈ N̄ , that satisfy

(2.39) and (2.40), we first have to find the functions Wi and the constants ci, λi,
λW,i, αW,i and ᾱW,i such that Condition 2.4 and inequalities (2.49) and (2.50)
hold. For the SD protocol, we can takeWi,SD(κi, ei) = |ei|, αW,i,SD = ᾱW,i,SD =
1, ci,SD = 1 and λW,i,SD = 1 in (2.48)-(2.50). Furthermore, 0 < λi,SD < 1,
can be chosen arbitrarily. See [173] for more details on how to construct the
functions Wi and the constants ci, λi, λW,i, αW,i and ᾱW,i for other protocols
including the RR and TOD protocol.
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To construct a function V satisfying (2.55), we introduce Γ := diag(γ1Ine,1 ,
γ2Ine,2 , . . . , γNIne,N

), to obtain

N∑

i=1

γ2iW
2
i,SD(κi, ei) = e⊤Γ2e. (2.63)

In order to find the function Hi(x, ēi, w) (needed in (2.55)) and constant Me,i

satisfying (2.52), consider that (2.61) implies

|ėi| 6
∣
∣
∣A21,ix+ Ã22,ie+A23,iw

∣
∣
∣ +
∣
∣A22,iΓ̄ie

∣
∣ , (2.64)

where Ã22,i := A22,i(Inv
− Γ̄i). Note that the term Ã22,ie is independent of ei.

Based on (2.64), (2.52) can be satisfied by defining Me,i and Hi(x, ēi, w) as

Me,i := ci

√

λmax(Γ̄i
⊤
A⊤

22,iA22,iΓ̄i) (2.65)

Hi(x, ēi, w) := ci|A21,ix+ Ã22,ie+A23,iw|, (2.66)

where ci is a constant satisfying (2.50), as just specified for the SD protocol. By
introducing C̄ := diag

(
c1Ine,1 , c2Ine,2 , . . . , cNIne,N

)
, we obtain

N∑

i=1

H2
i (x,w) =

∣
∣
∣C̄
(

A21x+ Ã22e +A23w
)∣
∣
∣

2

. (2.67)

As already mentioned, the function ̺i in (2.55) is an arbitrary positive semi-
definite function. Hence, we can take ̺i in the quadratic form

̺i(vi) = v⊤i Qivi, (2.68)

where Qi is an arbitrary positive semi-definite matrix. Since vi = Cixi, we have
that

N∑

i=1

ρi(vi) = x⊤C⊤QCx, (2.69)

where C :=
[
C⊤

1 C⊤
2 · · · C⊤

N

]⊤
and Q := diag

(
Q1, Q2, . . . , QN

)
.

Now consider the quadratic candidate storage function V (x) = xTPx. By
using (2.60), (2.59), (2.63), (2.67), and (2.69), the inequality given in (2.55) can
be formulated in terms of the linear matrix inequality (LMI) given by





R11 R12 R13

⋆ R22 R23

⋆ ⋆ R33



 � 0, P = P⊤ � 0, (2.70)
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where

R11 := A⊤
11P + PA11 +A⊤

21C̄
2A21 + µC⊤

z Cz + C⊤QC,

R12 := PA12 +A⊤
21C̄

2Ã22,

R13 := PA13 +A⊤
21C̄

2A23 + µC⊤
z Dz,

R22 := −Γ2 + Ã⊤
22C̄

2Ã22,

R23 := Ã⊤
22C̄

2A23,

R33 := µDT
z Dz +A⊤

23C̄
2A23 − µθ2I.

From (2.28) and (2.57), we can conclude that smaller values of γi yield, in
general, larger minimum inter-event times. Hence, matrix P and constant µ
can be computed by minimizing a weighted sum

∑N
i=1 αiγ

2
i where αi ∈ R>0,

i ∈ N̄ subject to the LMI given in (2.70) for a fixed L2-gain θ. Note that
different combinations of (α1, α2, . . . , αN ) lead to different (γ1, γ2, . . . , γN ) and
thus different trade-offs in resource utilization among different networks.

Hence, following the above procedure with the LMI (2.70) satisfied, gives in
view of (2.45) and Lemma 2.5, that the hybrid system H has an L2-gain smaller
than or equal to θ, if the functions Ψi in the ETMs (2.6)-(2.7) are selected as

Ψi(oi) =

[
yi
ui

]⊤
Qi

[
yi
ui

]

− (1− ωi(τi))γ̄iW
2
i (2.71)

with ωi(τi) as in (2.46) and γ̄i as in (2.45).

2.6 Numerical example

In this section we illustrate the use of the above analysis in synthesizing the
ETMs in (2.6)-(2.7) for decentralized and output-based NCSs. First, a linear
example is presented, which reveals trade-offs between robustness (in terms of
MADs), performance (in terms of the L2-gain of the overall system) and network
utilization (in terms of MIETs and average inter-event times). Secondly, we con-
sider a nonlinear example. For both examples, we compare the dynamic event-
triggering condition (2.6) with the more commonly used static event-triggering
condition (2.47). Let us remark that for both the linear as the nonlinear ex-
ample, we consider decentralized output-based feedback subject to (variable)
transmission delays and disturbances. To the best of our knowledge, only the
ETC method proposed in this chapter is applicable to this situation. For this
reason, we do not compare the numerical result with other ETC methods repor-
ted in literature. Moreover, both examples employ the sampled-data protocol
for the local networks. For a numerical example considering the RR and TOD
protocol, see [71]. The simulation results are obtained using the Hybrid Systems
Simulation Toolbox [200] in Matlab/Simulink.
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2.6.1 Linear example

We study in the first example the problem of stabilizing two coupled cart-
pendulum systems Pi, i ∈ {1, 2}, with the pendula in their (unstable) upright
equilibria. Each subsystem consists of a moving support (cart) with mass Mi, a
rigid massless beam of length li, and a point mass mi attached to the end of the
beam, i ∈ {1, 2}. The end points of the pendula are coupled via a linear spring
of stiffness k. The system is actuated via input forces ui, i ∈ {1, 2}. Linearizing
the pendula around their unstable upright equilibria, we find, with parameter
values M1 = M2 = 25, m1 = m2 = 5, l1 = l2 = 2, k = 0.1 and gravitational
acceleration g = 10,

P i :

{

ẋp,i = Ap,i,ixp,i +Ap,i,j(i)xp,j(i) +Bp,iui + Ep,iw

yi = Cp,ixp,i,

for i ∈ {1, 2}, where j(1) = 2 and j(2) = 1 and where xp,i is the state of
subsystem Pi, i ∈ {1, 2}. The matrices Ap,i,j , Bp,i, Ep,i and Cp,i, for i, j ∈ {1, 2},
are then given by

Ap,1,1 = Ap,2,2 =







0 1 0 0
2.9058 0 −0.0054 0

0 0 0 1
−1.6633 0 0.0017 0







Ap,1,2 = Ap,2,1 =







0 0 0 0
0.0108 0 0.0054 0

0 0 0 0
−0.0033 0 −0.0017 0







Bp,1 = Bp,2 =
[
0 −0.0042 0 0.0167

]⊤

Ep,1 = Bp,1, Ep,2 =
[
0 0 0 0

]⊤

Cp,1 = Cp,2 =

[
1 0 0 0
0 0 1 0

]

.

Each subsystem has its own, observer-based controller Ci collocated with the
actuator (and thus ûi = ui, i ∈ {1, 2}), given by

Ci :
{

ẋc,i = (Ap,i,i +Bp,iKi)xc,i + Li(Cp,ixc,i − ŷi)

ui = Kixc,i,

where xc,i is the state of controller Ci (and an estimate of xp,i), and where Ki

and Li are such that the eigenvalues of AK,1 := Ap,1,1 + Bp,1K1 and AL,1 :=
Ap,1,1+L1Cp,1 are−1,−2,−3,−4, and the eigenvalues of AK,2 := Ap,2,2+Bp,2K2
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and AL,2 := Ap,2,2 + L2Cp,2 are −2,−3,−4,−5. Particularly,

K1 =
[
11321 7161.8 556.68 1190.4

]

L1 =

[
−5.998 −10.902 0.052 1.785
0.063 0.164 −4.002 −3.006

]⊤

K2 =
[
29071 18058 2833.3 3674.6

]

L2 =

[
−7.702 −16.687 0.703 4.112
0.721 2.529 −6.298 −9.038

]⊤
.

For each i ∈ {1, 2}, the output yi is transmitted over network Ni using the
sampled-data protocol (so hi = 0 for i = 1, 2), leading to the control setup
as shown in Figure 2.2. By defining xi := (xp,i, xc,i − xp,i), the closed loops

Fig. 2.2. Networked control setup of the two coupled cart-pendulum
systems.

dynamics of (x1, x2) can be described by (2.59), where

A11 =







AK,1 Bp,1K1 Ap,1,2 0
0 AL,1 −Ap,1,2 0

Ap,2,1 0 AK,2 Bp,2K2

−Ap,2,1 0 0 AL,2







and where

A12 = diag

([
0

−L1

]

,

[
0

−L2

])

,

A13 =
[
E⊤

p,1 −E⊤
p,1 E

⊤
p,2 −E⊤

p,2,
]⊤
,

and by defining ei := ŷi − yi, the closed loop dynamics of ei is given by (2.61)
with

C1 = −
[
Cp,1 0 0 0

]

C2 = −
[
0 0 Cp,2 0

]
.

The performance output is chosen as z = Czx, where x = (x1, x2) and Cz =
(0⊤

10, 1,0
⊤
5 ). By using the results in Section 2.5.3, we have that Wi = |ei|,
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ci = 1, 0 < λi < 1, λW,i = 1, αW,i = ᾱW,i = 1, Hi = |A21,ix + A23,iw|
and Me,i =

√

λmax(A⊤
22,iA22,i), i ∈ 1, 2. Furthermore, we choose ̺i according

to (2.68) with

Q1 = 0.5

[
100 0
0 1

]

, Q2 = 0.3

[
100 0
0 1

]

. (2.72)

Now, we can minimize γi, i = 1, 2, subject to (2.70) for various values of θ
and find τ imiet and τ imad trade-off curves by solving (2.29) and (2.30), respecti-
vely, for various λi, φ0,i(0) and φ1,i(0) that satisfy γ1,iφ1,i(0) > γ0,iφ0,i(0) >
λ2i γ1,iφ1,i(0) > 0 where γli,i, li ∈ {0, 1}, i ∈ {1, 2} follow from (2.57). The corre-
sponding dynamic event-triggering condition (2.6), (2.7) and the corresponding
static event-triggering condition (2.47) are constructed by taking Ψi as in (2.71).

In Figure 2.3, τ imiet versus τ
i
mad trade-off curves for both networks, correspon-

ding to the case where an L2-gain of θ = 0.01 is guaranteed, are shown. In this
figure, also the τ imati versus τ

i
mad trade-off curves are shown that can be obtained

in a similar matter, as explained in Remark 2.3. Observe that the MATI of the
time-triggered case is slightly larger than the MIET of the event-triggered setup.
The average inter-event times τ iavg , for i ∈ {1, 2}, are obtained by simulating the
system on the time interval [0, 40] for both the static and dynamic triggering
conditions with w(t) zero-mean Gaussian noise with variance 10 for the time-
intervals [0, 20) ∪ [30, 40), and w(t) = 0 for the time interval [20, 30) and initial
conditions x1(0) = x2(0) = (10−2, 0, 0, 0, 0, 0, 0, 0). The corresponding τ imad,
i ∈ {1, 2}, are chosen such that τ1mad = τ2mad. However, observe that in principle
τ imad can be chosen independently for each network Ni, for i ∈ {1, 2}. Based on
Figure 2.3, we can conclude that robust performance in terms of MADs comes
at the cost of more network utilization in terms of both minimum inter-event
times and average inter-event times being smaller. Furthermore, observe that
the dynamic triggering condition indeed yields larger inter-event times than the
static triggering condition as mentioned in Remark 2.5.

Figure 2.4 illustrates the trade-off between performance and network utiliza-
tion in terms of an L2-gain and MIETs, MATIs and average inter-event times,
respectively, for the case that τ1mad = τ2mad = 10−3. The average inter-event
times displayed in Figure 2.4 show that for this system, better performance (in
terms of a smaller L2-gain) comes at the cost of more network utilization. Fi-
gure 2.5 shows the inter-event times of the coupled cart-pendulum systems for
the case that τ1mad = τ2mad = 10−3 and a guaranteed L2-gain of θ = 0.01 with
corresponding τ1miet and τ2miet as indicated by the asterisk (∗) in Figure 2.3 for
both the static and the dynamic event generators. As can be seen in this figure,
the static event-triggering mechanism generates smaller inter-event times than
the dynamic event-triggering mechanism, even when no disturbances are present
(in this case on the time interval [20, 30)). Note that the static triggering re-
duces (when the system is close to the origin, e.g., in the time interval [20, 30))
to periodic triggering with the “sampling period” equal to the enforced lower
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(a) Network N1

(b) Network N2

Fig. 2.3. Tradeoff curves of τmiet versus τmad for the event-triggered
setup and τmati versus τmad for the time-based specifications as discussed
in 2.3. The black curves represent the average inter-event times τ iavg
obtained by means of simulations of the ETC system for various MADs,
where τ imad, i = 1, 2, are chosen such that τ1mad = τ2mad. The asterisk (∗)
in each plot corresponds to the τmiet / τmad combination that was used
to produce Figure 2.5.

bound τmiet on the MIET, while the dynamic ETC does not have this property
(see also Example 3 in [71]) as indicated by property (iii) mentioned in the in-
troduction. Even though for both networks the MIET is (slightly) smaller than
the MATI, the average inter-event times generated by the dynamic ETM is sig-
nificantly larger than the MATIs in contrast to the inter-event times generated
by the static ETM.
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(a) Network N1

(b) Network N2

Fig. 2.4. Tradeoff curves of MIET, MATI and average inter-event times
versus L2-gain for the case that τ1mad = τ2mad = 10−3.

2.6.2 Non-linear example

Consider again the control setup as shown in Figure 2.2, now with the plants
Pi, i{∈ 1, 2} given by

P1 : ẋ1 = x21 − x31 + x2 + u1 (2.73a)

P2 : ẋ2 = x22 − x32 + x1 + u2, (2.73b)

and with the controllers Ci : ui = −2ŷi for i ∈ {1, 2}, and where ŷi denotes
the most recently received measurement of the output yi = xi. The example
is inspired by [128], but differs in the way the subsystems are interconnected.
Observe that in open loop, i.e., ui = 0, the system has multiple equilibria and
that the origin is an unstable equilibrium point. The objective of the controller
is to stabilize the origin. By defining ei = x̂i − xi for i = 1, 2, we have that
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(a) Network N1

(b) Network N2

Fig. 2.5. Inter-event times for the static and dynamic event triggering
mechanisms.

ui = −2(xi + ei) and the closed-loop system can be described by

ẋi = x2i − x3i + xj(i) − 2(xi + ei) (2.74a)

ėi = −x2i + x3i − xj(i) + 2(xi + ei), (2.74b)

where i ∈ {1, 2} with j(1) = 2 and j(2) = 1, as before. By taking Wi(κi, ei) =
|ei|, and thus ci = 1, we find by means of (2.74b) that

|ėi| 6 |2xi − x2i + x3i − xj(i)|+ 2Wi(ei), (2.75)

and thereby (2.51) is satisfied with Me,i = 2 and Hx,i(x) = |2xi−x2i +x3i −xj(i)|
for i ∈ {1, 2}. Consider the candidate Lyapunov function

V (x) = σ2
2∑

i=1

[(

α
x2i
2

+ β
x4i
4

)]

, (2.76)



2.6 Numerical example 53

where α, β, σ ∈ R>0. By means of (2.74a) we find that

〈∇V (x), f(x, e)〉 = σ2

(
2∑

i=1

[

αx3i − αx4i − 2αx2i

− 2αxiei + βx5i − βx6i − 2βx4i − 2βx3i ei

]

+ 2αx1x2 + βx31x2 + βx1x
3
2

)

. (2.77)

Using Lemma 1 (with ε = 1) for the terms 2αxiei, 2βx
3
i ei and 2αx1x2 yields

〈∇V (x), f(x, e)〉 6 σ2

(
2∑

i=1

[

(α2 + β2)e2i + (−β + 1)x6i

+ βx5i + (−α− 2β)x4i + αx3i + (−α+ 1)x2i

]

+ βx31x2 + βx1x
3
2

)

(2.78)

To find α, β and σ such that (2.54) holds, we add and subtract εW 2
i (κi, ei),

H2
x,i(x), ̺(xi)i, i ∈ {1, 2} and ρ(|x|) with ̺(r) = qr2 for some constant q ∈ R>0

and with ρ(r) = εr2 for some constant ε ∈ R>0

〈∇V (x), f(x, e)〉 6
(

2∑

i=1

[

−(ε+ q)x2i − εe2i −H2
x,i(x)

+ σ2(α2 + β2 + σ−2ε)e2i

]

+ σ2p(x)

)

(2.79)

with

p(x) :=
2∑

i=1

[

x2i

(

−α+1+σ−2(10+ε+q)+(α−8σ−2)xi+(−α−2β+10σ−2)x2i

+ (β − 4σ−2)x3i + (−β + 1 + 2σ−2)x4i

)]

+ βx31x2 + βx1x
3
2, (2.80)

where we used that H2
x,i(x) 6 2

(
2xi − x2i + x3i

)2
+ 2x2j(i). Note that if α,

β, ε, σ and q are chosen such that p(x) 6 0 for all x ∈ R2, V satisfies

(2.54) with γ = σ
√

α2 + β2 + σ−2ε. We determined numerically [α, β, ε, σ, q]
as [3.01, 1.47, 0.01, 2.48, 0.5] to ensure that p(x) 6 0 for all x ∈ R2 which yields
γ = 8.305. By solving (2.29) and (2.30) with λi = 0.18, φ0,i(0) = λ−1 and
φ1,i(0) = 12.9, for i ∈ {1, 2}, and with L0,i, L1,i, γ0,i and γ1,i, i ∈ 1, 2 according
to Proposition 2.4, we obtain that τ imiet = 0.0995 and τ imad = 0.01, i = 1, 2.
Now if we choose Ψi, i ∈ 1, 2 according to (2.45), it follows from Theorem 2.2
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that the system is UGAS under both the static and the dynamic ETM descri-
bed by (2.6) and (2.47), respectively. By simulating the system 250 times on a
time interval [0, 5] with the initial conditions x1(0) and x2(0) chosen randomly
from the interval [−5, 5], we obtained that τ1avg,static = τ2avg,static = 0.101 and

τ1avg,dynamic = τ2avg,dynamic = 0.137. The minimum and average inter-event ti-
mes are the same for both networks as both systems are identical. Observe that
although no disturbances are present, the average inter-event time generated by
the static ETM is relatively close to the MIET in contrast to average inter-event
time generated by the dynamic ETM.

2.7 Conclusions

In this work, a novel dynamic ETC strategy for a class of nonlinear feedback
systems was proposed that can simultaneously guarantee a finite Lp-gain and a
strictly positive lower bound on the inter-event times (which guarantees Zeno-
freeness). In addition to these two important properties, the new ETC approach
has other favorable properties: The controllers and event generators can be synt-
hesized in an output-based and/or decentralized form with multiple asynchro-
nously operating networks, the design takes the specific medium access protocol
into account, and robustness to (variable) transmission delays is guaranteed by
design. When the states of the system are close to the origin, the triggering
does not reduce to periodic time-triggered control (with inter-event times equal
to the enforced lower bound of the MIET). Key to obtaining all these benefi-
cial properties is the unique combination of dynamic event-triggering conditions
and time regularization. The design of this class of dynamic event-triggered
controllers is systematic. Interestingly, the MIET and the MAD bounds of the
presented ETC strategy are close to or equal to the MATI and MAD bounds
derived for time-based specifications for stability and guaranteed Lp-gains of
NCSs, but the inter-event times significantly larger. Indeed, we presented two
numerical examples in which we showed that dynamic ETMs yield significantly
larger average inter-event times than time-based communication and ETC stra-
tegies with static event generators, even for the case when no disturbances are
present. Furthermore, we showed that the developed theory leads to trade-offs
curves between robustness (in terms of MADs), performance (in terms of an
Lp-gain of the overall system) and network utilization (in terms of MIETs and
average inter-event times).



Chapter 3

Riccati-Based Design of

Event-Triggered Controllers for

Linear Systems with Delays

Abstract – In event-triggered control (ETC) systems, the measured state or output of the
plant is sent to the controller at so-called event times. In many ETC systems these event times
are generated based on a static function of the current state or output measurement of the
system and its sampled-and-held version that is available to the controller. Hence, the event-
generator does not include any dynamics of its own. In contrast, dynamic event-generators
trigger events based on additional dynamic variables, whose dynamics depend on the state or
output of the system.

In this chapter we propose new static and dynamic continuous event-generators (which

require continuous measuring of the plant output) and periodic event-generators (which only

require periodic sampling of the plant output) for linear control systems with communication

delays. All event-generators we propose lead to closed-loop systems which are globally expo-

nentially stable with a guaranteed decay rate, L2-stable with a guaranteed L2-gain, and have

a guaranteed positive minimum inter-event time. By using new Riccati-based analysis tools

tailored to linear systems, the conservatism in our decay rate and L2-gain estimates is small.

The dynamic event-generators even further reduce this conservatism, and as a result typically

generate significantly fewer events than their static counterparts, while guaranteeing the same

control performance. The benefits of these new event-generators are demonstrated via two

numerical examples.

This chapter is based on [40] and has been published as a preliminary version in [39].
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3.1 Introduction

In most digital control systems, the measured output of the plant is periodically
transmitted to the controller, regardless of the state the system is in. This
possibly leads to a waste of (e.g., computation, communication, and energy)
resources, as many of the transmissions are actually not necessary to achieve the
desired performance guarantees. To mitigate this potential waste of valuable
resources, many event-triggered control (ETC) strategies have been proposed,
which generate the transmission times based on a triggering condition involving
the current state or output measurement of the plant and the most recently
transmitted measurement data, see, e.g., [52,54,117,163,224] and the references
therein. This brings a feedback mechanism into the sampling and communication
process, such that measurement data is only transmitted to the controller when
needed in order to guarantee the required stability and performance properties
of the system.

ETC strategies can be divided into static and dynamic strategies, or into
continuous and periodic strategies. In static ETC strategies, events are based
on a static function of the current state or output measurement and its sampled-
and-held version that is available to the controller (using, e.g., a zero-order-
hold, a first-order-hold, or even a model-based-hold function). In contrast, in
dynamic ETC strategies, events are based on an additional dynamic variable
with dynamics that depend on the state or output of the system. Continuous
event-triggered control (CETC) strategies require continuous measuring of the
plant output (which is sometimes difficult to implement on digital platforms),
while periodic event-triggered control (PETC) strategies only require periodic
sampling of the plant output.

Static CETC strategies have been proposed in [52,92,114,155,163,224,251].
However, the event-generators in these works that lead to asymptotic stability of
the CETC system can typically also lead to Zeno behavior (an infinite number
of events in finite time) in the presence (and sometimes even in the absence) of
disturbances [41, 78], and those that do not exhibit Zeno behavior only lead to
practical stability and not to asymptotic stability [41]. To prevent Zeno behavior,
static CETC strategies with waiting times (also called ‘time regularization’) have
been proposed in, e.g., [7, 44, 87, 117, 205, 225, 228].

Dynamic CETC strategies for nonlinear systems have been proposed in [72,
96,168,191]. In [191], a dynamic strategy is used to extend the inter-event times
compared to a time-triggered system, and in [72,96,168], dynamic strategies are
used to extend the inter-event times compared to static CETC systems. In these
works the guaranteed control performance and minimum inter-event time of the
proposed dynamic CETC system are identical to its static (or time-triggered)
counterpart, while it is demonstrated that the average number of events in the
dynamic CETC system is typically much smaller.

While the results above show that for CETC systems the inclusion of a
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dynamic variable in the event-generator can clearly lead to a significant further
reduction of the consumption of communication and energy resources, there are
currently no dynamic PETC strategies available in literature. Indeed, only static
PETC strategies have been proposed, see, e.g., [54,55,112,113,117,184,243,260]
for linear systems and [43, 188, 247] for nonlinear systems.

In this chapter, we provide new (static and dynamic) CETC and PETC stra-
tegies tailored to linear systems with (varying) communication delays. We are
able to guarantee a positive minimum inter-event time by design, and we pro-
vide tight estimates of the L2-gains and exponential decay rates of the resulting
closed-loop systems, by making use of analysis tools specific to the domain of li-
near systems. These analysis tools are based on Lyapunov/storage functions
exploiting matrix Riccati differential equations and computationally friendly
semi-definite programming, using ideas from [112]. In addition, we also pro-
vide even less conservative conditions for global exponential stability and L2-
stability based on piecewise quadratic Lyapunov functionals. Based on these
conditions, we are able to provide trade-offs of guaranteed control performance
versus minimum and average inter-event times. Interestingly, for identical con-
trol performance guarantees, the dynamic ETC strategies produce significantly
larger average inter-event times than their static counterparts, and hence require
much less communication. These results, based on exploiting the linearity of the
underlying plants and controllers, provide significantly better results than the
application of the results obtained for nonlinear systems [72]. In fact, to the
best of our knowledge, the proposed continuous event-generators are the least
conservative in literature, and we are the first to propose dynamic periodic event-
generators. Preliminary results have appeared in [44, 45], in which we did not
consider communication delays. Moreover, the conditions provided in [44, 45],
are significantly more conservative in guaranteeing global exponential stability
and L2-stability than the novel conditions provided here.

The chapter is organized as follows. In Section 3.2 we present the control
setup that we consider in this chapter, for which we present our new static and
dynamic CETC strategies in Section 3.3, and our new static and dynamic PETC
strategies in Section 3.4. In both sections we provide tight bounds on the L2-
gains and decay rates of the resulting closed-loop systems. In Section 3.5 we
provide even tighter bounds based on less conservative conditions using state-
space partitioning and piecewise quadratic Lyapunov/storage functionals. Fi-
nally, we demonstrate our results in Section 3.6 and provide concluding remarks
in Section 3.7. All proofs are given in Appendix B.

3.1.1 Notation

For a vector x ∈ Rnx , we denote by |x| :=
√
x⊤x its Euclidean norm. For a

symmetric matrix A ∈ Rn×n, we denote by λmax(A) and λmin(A) its maximum
and minimum eigenvalue, respectively. For a matrix P ∈ Rn×n, we write P ≻ 0
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(P � 0) if P is symmetric and positive (semi-)definite, and P ≺ 0 (P � 0) if P is
symmetric and negative (semi-)definite. By I and O we denote the identity and
zero matrix of appropriate dimensions, respectively. For a measurable signal w :

R>0 → Rnw , we write w ∈ L2 if ‖w‖L2 <∞, where ‖w‖L2 :=
(∫∞

0
|w(t)|2dt

)1/2

denotes its L2-norm, and we write w ∈ L∞ if ‖w‖L∞
< ∞, where ‖w‖L∞

:=
ess supt |w(t)| denotes its L∞-norm. By N we denote the set of natural numbers
including zero, i.e., N := {0, 1, 2, . . .}. A function γ : R>0 → R>0 is a K-
function if it is continuous, strictly increasing and γ(0) = 0, and a K∞-function
if it is a K-function and, in addition, γ(s) → ∞ as s → ∞. A function β :
R>0 × R>0 → R>0 is a KL-function if for each fixed t ∈ R>0 the function
β(·, t) is a K-function and for each fixed s ∈ R>0, β(s, t) is decreasing in t and
β(s, t) → 0 as t → ∞. For vectors xi ∈ Rni , i ∈ {1, 2, . . . , N}, we denote

by (x1, x2, · · · , xN ) the vector [x⊤1 x
⊤
2 · · ·x⊤N ]⊤ ∈ R

n with n =
∑N

i=1 ni. For a
vector y ∈ Rn we write y > 0 if yi > 0 for all i ∈ {1, 2, . . . , n}. For brevity, we
sometimes write symmetric matrices of the form

[
A B
B⊤ C

]
as [A B

⋆ C ] or
[

A ⋆
B⊤ C

]
.

For a left-continuous signal f : R>0 → Rn and t ∈ R>0, we use f(t+) to denote
the limit f(t+) = lims→t,s>t f(s).

3.2 Control setup

In this chapter, we consider the event-triggered control setup of Fig. 3.1, in which
the plant P is given by

P :







d
dtxp(t) = Apxp(t) +Bpu(t) +Bpww(t)

y(t) = Cyxp(t) +Dyu(t)

z(t) = Czxp(t) +Dzu(t) +Dzww(t)

(3.1)

and the controller C is given by

C :

{
d
dtxc(t) = Acxc(t) +Bcŷ(t)

u(t) = Cuxc(t) +Duŷ(t).
(3.2)

Here, xp(t) ∈ R
nxp denotes the state of the plant P , y(t) ∈ Rny its measured

P
z

Event-generator

C

ZOH

u
w

y

ŷ

Fig. 3.1. Event-triggered control setup considered in this chapter.

output, z(t) ∈ Rnz the performance output, and w(t) ∈ Rnw the disturbance at
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time t ∈ R>0. Furthermore, xc(t) ∈ Rnxc denotes the state of the controller C,
u(t) ∈ R

nu is the control input, ŷ(t) ∈ R
ny denotes the output that is available

at the controller, given by

ŷ(t) = y(tk), t ∈ (tk + τk, tk+1 + τk+1], (3.3)

where the sequence {tk}k∈N satisfying

t0 = 0, tk+1 − tk > h, (3.4)

denotes the event (or transmission) times with h ∈ R>0 the minimum inter-
event time, and where the sequence {τk}k∈N with τk ∈ D := {d1, d2, . . . , dnd

}
for all k ∈ N denotes the communication delays. The set D contains the nd ∈ N

possible delays, di ∈ R>0, and satisfies the following small-delay assumption.

Assumption 3.1. D := {d1, d2, . . . , dnd
} ⊂ [0, h].

By making use of Assumption 3.1, we ensure that each data packet has
arrived at its destination before a new transmission is triggered.

In Sections 3.3, 3.4, and 3.5 we will propose a number of methods to gene-
rate the transmission times (3.4), such that the closed-loop system is globally
exponentially stable with decay rate ρ and L2-stable with L2-gain θ.

3.3 Main results for the CETC case

In this section we will propose continuous event-generators, which require con-
tinuous measuring of the plant output y. First, in Section 3.3.1, we will propose
a static continuous event-generator, and in 3.3.2 we will propose a dynamic con-
tinuous event-generator, which generates the transmission times based on an
additional dynamic variable η ∈ R that is included in the event-generator.

To describe the closed-loop system, we first have to introduce a number of
variables, inspired by, e.g., the works [72,120]. We introduce the memory variable
s ∈ Rny , the timer τ ∈ R>0, the integer κ ∈ N, and the boolean l ∈ {0, 1}. The
role of these variables will be explained below. Finally, we define ζ := (y, s) ∈
R2ny and the state ξ := (xp, xc, ŷ, s) ∈ Rnξ with nξ = nxp

+ nxc
+ ny + ny.

The dynamic variable η ∈ R that will be included in the event-generator will
evolve according to

d
dtη(t) = Ψ(o(t)), t ∈ R>0 \ {tk}k∈N, (3.5a)

η(t+) = ηT (o(t)), t ∈ {tk}k∈N, (3.5b)

where the signal o : R>0 → R2ny × R>0 × N× {0, 1} × R given by

o(t) := (ζ(t), τ(t), κ(t), l(t), η(t)). (3.6)
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is the information that is available to the continuous event-generator, and where
the functions Ψ : R2ny ×R>0 ×N× {0, 1}×R → R and ηT : R2ny ×R>0 ×N×
{0, 1} × R → R are to be designed.

Now, we can write the closed-loop system as the impulsive system [106]

d
dt









ξ(t)
τ(t)
κ(t)
l(t)
η(t)









=









Aξ(t) +Bw(t)
1
0
0

Ψ(o(t))









,
t ∈ R>0

t /∈ {tk}k∈N

t /∈ {tk + τk}k∈N

(3.7a)









ξ(t+)
τ(t+)
κ(t+)
l(t+)
η(t+)









=









J0ξ(t)
0
κ(t)
1

ηT (o(t))









,
l = 0
t ∈ {tk}k∈N

(3.7b)









ξ(t+)
τ(t+)
κ(t+)
l(t+)
η(t+)









=









J1ξ(t)
τ(t)

κ(t) + 1
0
η(t)









,
l = 1
t ∈ {tk + τk}k∈N

(3.7c)

z(t) = Cξ(t) +Dw(t), (3.7d)

where

A =







Ap BpCu BpDu O
O Ac Bc O
O O O O
O O O O






, B =







Bpw

O
O
O






,

C =
[
Cz DzCu DzDu O

]
, D = Dzw,

J0 =







I O O O
O I O O
O O I O
Cy DyCu DyDu O






, and

J1 =







I O O O
O I O O
O O O I
O O O I






.

In this model, the memory variable s ∈ Rny stores the value of y(tk) that has
been transmitted to the controller (and which will arrive at the update time
tk + τk), the timer τ ∈ R>0 keeps track of the time that has elapsed since the
latest transmission, the integer κ ∈ N is used to count the number of (received)
transmissions, and the boolean l ∈ {0, 1} indicates whether the next jump is
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a transmission (when l = 0) or an update (when l = 1). Furthermore, (3.7b)
models the jumps at transmission times tk, k ∈ N, (3.7c) models the jumps at
update times tk+τk, k ∈ N (when the transmitted data arrives at the controller),
and (3.7a) models the flow in between transmissions and updates.

The sequence of transmission times {tk}k∈N will be generated by the dynamic
continuous event-generator

t0 = 0, tk+1 = inf{t > tk + h | η(t) 6 0 ∧ ζ⊤(t)Qζ(t) > 0}, (3.8)

where the timer threshold h ∈ R>0 and the matrix Q ∈ R
2ny×2ny are design

variables, in addition to the functions Ψ and ηT in (3.5). The time threshold h
acts as a waiting time or time regularization, and ensures that (3.4) holds.

With the model (3.5), (3.8) we can also capture static event-generators by
choosing η(0) = 0 and

Ψ(o) = 0 (3.9a)

ηT (o) = 0 (3.9b)

for all o ∈ R2ny × R>0 × N × {0, 1} × R, as then we have that η(t) = 0 for
all t ∈ R>0, and the dynamic event-generator (3.8) reduces to the static event-
generator

t0 = 0, tk+1 = inf{t > tk + h | ζ⊤(t)Qζ(t) > 0}, (3.10)

which only has h and Q as design parameters.
While tuning h is straightforward as it is a scalar, choosing a suitable Q is

more difficult. However, a possible design for Q can be derived from [224] and
is given by

Q =

[
(1− σ2)I −I

−I I

]

(3.11)

with σ ∈ (0, 1). With this choice of Q, (3.10) reduces to

t0 = 0, tk+1 = inf{t > tk + h | |s(t)− y(t)|2 > σ2|y(t)|2},

which can be seen as the event-generator proposed in [224] with waiting time h.
In case h = 0, the setup (3.7), (3.10) can exhibit Zeno behavior in the

presence of disturbances, as shown in [41]. Therefore, we often take h > 0,
which leads to static event-triggered controllers with time regularization, see,
e.g., [117,228]. Other control setups and other choices of Q are also possible, see
e.g., [112].

We will consider the following two notions of stability.

Definition 3.1. The CETC system (3.7)-(3.8) is said to be input-to-state ex-
ponentially stable (ISES), if there exist functions α ∈ K∞, β ∈ KL, and scalars
c > 0, γ > 0, and ρ > 0 such that for any initial condition ξ(0) = ξ0 ∈ Rnξ ,
τ(0) = 0, κ(0) = 0, l(0) = 0, η(0) = 0, and any sequence of delays {τk}k∈N with
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τk ∈ D for all k ∈ N, all corresponding solutions to (3.7)-(3.8) with w ∈ L∞
satisfy |ξ(t)| 6 ce−ρt|ξ0| + γ‖w‖L∞

and |η(t)| 6 β(|ξ0|, t) + α(‖w‖L∞
) for all

t ∈ R>0. In this case, we call ρ a (lower bound on the) decay rate.

Note that our definition of ISES is a variation of the one in [102], which uses
the ‘max’ formulation. Moreover, we only require exponential decay of the state
variable ξ, as we are mainly interested in the control performance regarding the
plant and controller states, which are captured in ξ. In addition, we require
that η stays bounded by a KL-function for practical implementability. We do
not put any constraint on the variables τ , κ, and l, as these are only used
for modelling purposes. In case ‖w‖L∞

= 0 we have |ξ(t)| 6 ce−ρt|ξ0| and
|η(t)| 6 β(|ξ0|, t), and thus ISES implies global exponential stability (GES) in
the absence of disturbances.

Definition 3.2. The CETC system (3.7)-(3.8) is said to have an L2-gain from
w to z smaller than or equal to θ, if there exists a function δ ∈ K∞ such that for
any initial condition ξ(0) = ξ0 ∈ R

nξ , τ(0) = 0, κ(0) = 0, l(0) = 0, η(0) = 0,
and any sequence of delays {τk}k∈N with τk ∈ D for all k ∈ N, all corresponding
solutions to (3.7)-(3.8) with w ∈ L2 satisfy ‖z‖L2 6 δ(|ξ0|) + θ‖w‖L2 .

Before proceeding, we introduce the matrix Y ∈ R2ny×nξ

Y :=

[
Cy DyCu DyDu O
O O O I

]

(3.12)

such that ζ = (y, s) = Y ξ, and the transformation matrix T ∈ R
nξ×(nxp+nxc+ny)

T :=







I O O
O I O
O O I
O O I






, (3.13)

such that

T





xp
xc
s



 =







xp
xc
s
s






. (3.14)

3.3.1 Static CETC

Before designing the dynamics of (3.5) and analyzing ISES and L2-stability of
the system (3.7) with the dynamic event-generator (3.8), we will first consider
static continuous event-generators with time regularization of the form (3.10).

To analyze ISES and L2-stability of the static CETC system (3.7) with (3.9)
and (3.10), we will use the Lyapunov/storage function U given by

U(ξ, τ, κ, l, η) = V (ξ, τ, κ, l) + η (3.15)
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with V given by

V (ξ, τ, κ, l) =







ξ⊤P τκ
1 (τ)ξ, τ ∈ [0, τκ] and l = 1,

ξ⊤P0(τ)ξ, τ ∈ [τκ, h] and l = 0,

ξ⊤P0(h)ξ, τ ∈ [h,∞) and l = 0.

(3.16)

Here, P0 : [0, h] → Rnξ×nξ is a continuously differentiable function with P0(τ) ≻
0 for τ ∈ [0, h], and for all d ∈ D, P d

1 : [0, d] → Rnξ×nξ is a continuously
differentiable function with P d

1 (τ) ≻ 0 for τ ∈ [0, d]. The functions P0, P
d
1 ,

d ∈ D, will be chosen such that (3.15) becomes a storage function [241, 254] for
the CETC system (3.7) with (3.9) and (3.10), with the supply rate θ−2z⊤z−w⊤w
and decay rate 2ρ. In particular, we will select the functions P0, P

d
1 , d ∈ D, to

satisfy the Riccati differential equation

d
dτ P0(τ) = R(P0(τ)) (3.17)

d
dτ P

d
1 (τ) = R(P d

1 (τ)), d ∈ D, (3.18)

where R denotes the Riccati operator

R(P ) = −A⊤P − PA− Y ⊤NFY − 2ρP − θ−2C⊤C

− (PB + θ−2C⊤D)M(B⊤P + θ−2D⊤C). (3.19)

Here, M := (I − θ−2D⊤D)−1 is assumed to exist and to be positive definite,
which corresponds to θ2 > λmax(D

⊤D), and NF ∈ R2ny×2ny , NF � 0, is an
arbitrary matrix, which we will use as a design parameter in Section 3.3.2.

Note that V given by (3.16) depends on the delay τκ of the current transmis-
sion, and thus the Lyapunov/storage function U is parametrized by the delay
sequence {τk}k∈N. However, as we will see below, based on this parametrized
function U we are able to guarantee ISES and L2-stability for any sequence of
delays {τk}k∈N with τk ∈ D and D satisfying Assumption 3.1. For ease of nota-
tion, we will not make this dependence on {τk}k∈N explicit in (3.15) and (3.16).

In order to find the explicit expressions for the functions P0, P
d
1 , d ∈ D, we

introduce the Hamiltonian matrix

H :=

[
A+ρI+θ−2BMD⊤C BMB⊤

−C⊤LC−Y ⊤NFY −
(
A+ρI+θ−2BMD⊤C

)⊤

]

in which L := (θ2I −DD⊤)−1, and we define the matrix exponential

F (τ) := e−Hτ =

[
F11(τ) F12(τ)
F21(τ) F22(τ)

]

. (3.20)

To guarantee that solutions to d
dτ P0(τ) = R(P0(τ)) are well defined on [0, h]

and that solutions to d
dτ P

d
1 (τ) = R(P d

1 (τ)) are well defined on [0, d], d ∈ D, we
will make use of the following assumption, see also [112].
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Assumption 3.2. F11(τ) is invertible for all τ ∈ [0, h].

Assumption 3.2 can always be satisfied by choosing h sufficiently small, as
F11(0) = I and F11 is a continuous function. Note that larger h can be allowed
by reducing ρ or increasing θ.

In the delay-free case with periodic sampling and ρ = 0, the L2-gain θ of
the system (3.7) can be determined exactly (so without conservatism) by using
a lifting-based approach as in, e.g., [24, 113]. These works also require that As-
sumption 3.2 (or an equivalent thereof) holds. Moreover, if an L2-gain θ cannot
be achieved with periodic sampling with sampling period h and without com-
munication delays, this will also not be possible with event-triggered sampling
with minimum inter-event time h. Hence, Assumption 3.2 is not restrictive in
that sense.

The function P0 : [0, h] → Rnξ×nξ is now explicitly defined for τ ∈ [0, h] by

P0(τ) = (F21(h− τ) + F22(h− τ)P0(h))

(F11(h− τ) + F12(h− τ)P0(h))
−1
, (3.21)

and the functions P d
1 : [0, d] → Rnξ×nξ , d ∈ D, are now explicitly defined for

τ ∈ [0, d] by

P d
1 (τ) =

(
F21(d− τ) + F22(d− τ)P d

1 (d)
)

(
F11(d− τ) + F12(d− τ)P d

1 (d)
)−1

, (3.22)

where P0(h), P
d
1 (d) ≻ 0, d ∈ D, are to be selected. See [22, 112] for further

details.
Before stating the next theorem, let us introduce the notation P00 = P0(0),

P0d = P0(d), P0h = P0(h), P
d
10 = P d

1 (0), P
d
1d = P d

1 (d), the functions

G0(τ) := F11(τ)
−⊤P0hF11(τ)

−1 + F21(τ)F11(τ)
−1 (3.23)

for τ ∈ [0, h],

Gd
1(τ) := F11(τ)

−⊤P d
1dF11(τ)

−1 + F21(τ)F11(τ)
−1 (3.24)

for τ ∈ [0, d], d ∈ D, and finally a matrix function S : [0, h] → Rnξ×nξ that
satisfies S(τ)S(τ)⊤ := −F11(τ)

−1F12(τ) for τ ∈ [0, h]. A matrix S(τ) exists
under Assumption 3.2, because this assumption will guarantee that the matrix
−F11(τ)

−1F12(τ) is positive semi-definite [112].

Theorem 3.1. If Assumption 3.1 holds, and there exist matrices NF , NT , NN ∈
R2ny×2ny with NF , NT , NN � 0, P0h, P

d
1d ∈ Rnξ×nξ with P0h, P

d
1d ≻ 0, and

scalars θ, ρ, β, µd ∈ R>0, d ∈ D, such that Assumption 3.2 holds and the matrix
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inequalities

[
T⊤(A⊤P0h + P0hA+ Y ⊤(NN − βQ)Y )T ⋆

B⊤P0hT O

]

�
[
T⊤(−2ρP0h − θ−2C⊤C)T −θ−2T⊤C⊤D

⋆ I − θ−2D⊤D

]

, (3.25)

[
J⊤
0 G

d
1(d)J0 J

⊤
0 F11(d)

−⊤P d
1dS(d)

⋆ S(d)⊤P d
1dS(d)

]

≺
[
P0h − Y ⊤(NT + µdQ)Y O

O I

]

, (3.26)

and
[
J⊤
1 G0(h− d)J1 J

⊤
1 F11(h− d)−⊤P0hS(h− d)

⋆ S(h− d)⊤P0hS(h− d)

]

≺
[
P d
1d O
O I

]

, (3.27)

hold for all d ∈ D, then the static CETC system (3.7) with (3.9) and (3.10) is
ISES with decay rate ρ, and has an L2-gain from w to z smaller than or equal
to θ.

Inequalities (3.25), (3.26), and (3.27) depend nonlinearly on the parameters
NF , ρ, and θ. However, once these parameters are fixed, also the matricesM , L,
Fij(τ), and S(τ) become fixed matrices. The matrices G0(τ) and G

d
1(τ), d ∈ D,

then only depend linearly on the matrices P0h and P d
10, d ∈ D. Hence, inequa-

lities (3.25), (3.26), and (3.27) then become linear matrix inequalities (LMIs),
and the parameters P0h, P

d
10, NN , NT , β, and µd, d ∈ D, can be synthesized

numerically via semi-definite programming (e.g., using Yalmip/SeDuMi [153] in
matlab).

The L2-gain estimate θ can be optimized via bisection when NF and ρ are
fixed. Although the optimization is non-convex and we should expect to find
local optima, good results can be found with proper initial estimates. The same
holds for the decay rate ρ when NF and θ are fixed.

As the term −Y ⊤NFY in (3.19) leads to an extra decrease −ζ⊤NF ζ in V
during flow (3.7a) with τ ∈ [0, h], an increase in NF will typically lead to an
increase in θ or a decrease in ρ. Hence, to analyse ISES and L2-stability of
the static CETC system (3.7) with (3.9) and (3.10), it is often best to choose
NF = O. However, for dynamic CETC it can sometimes be useful to choose
NF 6= O, as we will see in the next section.

3.3.2 Dynamic CETC

In this section we present our design for a dynamic continuous event-generator,
which follows from the analysis in Section 3.3.1. The idea is as follows. In
Section 3.3.1, the function V (and, hence, also the Lyapunov/storage function
U) has an ‘extra’ decrease −ζ⊤NF ζ during flow (3.7a) with τ ∈ [0, h], and
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an ‘extra’ decrease −ζ⊤(NN − βQ)ζ during flow (3.7a) with τ ∈ [h,∞) and
ζ⊤Qζ 6 0. Additionally, V is often strictly decreasing along jumps (3.7b),
while we only require that U is nonincreasing along jumps [98]. To get even less
conservative results, we can store this ‘unnecessary’ decrease of V in the dynamic
variable η (as much as possible), which acts as a buffer. When a transmission
is necessary according to the static event-generator (i.e., when τ ∈ [h,∞) and
ζ⊤Qζ > 0) the term −ζ⊤(NN − βQ)ζ can become positive, in which case the
function V will start to increase with the excess amount −ζ⊤(NN − βQ)ζ if
we do not transmit. However, as long as η > 0, we can compensate for this
excess increase in V by reducing η, and thus we can postpone the transmission
until the buffer η becomes empty (η = 0). As a result, the conservatism in
the stability analysis is reduced, and the same L2-gain and decay rate can be
guaranteed with typically less transmissions, as will also be demonstrated by
a numerical example in Section 3.6.1. In this way, our design will lead to a
dynamic CETC system with the same L2-gain θ and decay rate ρ as the static
CETC system (3.7) with (3.9) and (3.10), but with a significant reduction in the
number of transmissions.

We select the flow dynamics (3.5a) of η as

Ψ(o) =

{ −2ρη + ζ⊤NF ζ, τ ∈ [0, h) (3.28a)

−2ρη + ζ⊤(NN − βQ)ζ,τ ∈ [h,∞). (3.28b)

For the function ηT we provide the following two different designs.

1) State-based dynamic CETC:

ηT (o) = η +min
d∈D

ξ⊤
(
P0h − J⊤

0 P
d
10J0

)
ξ. (3.29)

2) Output-based dynamic CETC:

ηT (o) = η + ζ⊤NT ζ. (3.30)

Here, the scalars ρ and β, and the matrices NF , NT , NN , P0h, P
d
10 ∈ Rnξ×nξ , d ∈

D, follow from the stability analysis of the static CETC system in Theorem 3.1.
The first design requires that the full state ξ(tk) is known to the event-

generator at transmission time tk. This is the case when Assumption 3.1 holds
and y = (xp, xc) (e.g., when C is a static state-feedback controller in which case
y = xp and nxc

= 0), as then ŷ(tk) = s(tk), k ∈ N, and ξ(tk) = Tζ(tk). Note
that when the set of possible delays D contains only a single element, a copy
of the controller could be included in the event-generator in order to track the
controller state xc. In case D contains multiple elements, this is not possible, as
the exact input ŷ to the controller is then unknown.

The second design is more conservative, but can also be used in case the
event-generator does not have access to the full state ξ. Hence, this choice can
be used for output-based dynamic CETC.
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Theorem 3.2. If the conditions of Theorem 3.1 hold, then the dynamic CETC
system (3.7) with (3.8), (3.28), and ηT given by (3.29) or (3.30) is ISES with
decay rate ρ, and has an L2-gain from w to z smaller than or equal to θ.

While the static continuous event-generator only has design parameters h
and Q, the state-based dynamic event-generator has design parameters h, Q, ρ,
NF , NN , β, P0h, and P

d
10, d ∈ D, and the output-based dynamic event-generator

has design parameters h, Q, ρ, NF , NN , β, and NT .
However, these extra design parameters directly follow from the ISES and

L2-gain analysis of the static CETC system in Theorem 3.1. Hence, the design
of these extra parameters follows directly and naturally from the design and
stability analysis of the static event-generator. Of course, manual tuning of one
or more of these parameters is also possible, but can be difficult given the large
design space.

In contrast to the static CETC case, in the dynamic CETC case it can
make sense to choose NF 6= O, as η grows with (3.28a) during flow with τ ∈
[0, h], and thus the average inter-event times might become larger when NF is
increased. This indicates the presence of a trade-off between control performance
and resource utilization, as an increase in NF typically also leads to an increase
in θ or a decrease in ρ. On the other hand, as we can give hard guarantees on
the minimum inter-event time (given by h), but not on the average inter-event
time, it often makes more sense to choose NF = O and to make the trade-off
between control performance and resource utilization via the parameter h.

Remark 3.1. Even though we will often choose NF = O, the parameter NF can
be useful in some cases. For example, in our work [44], we chose NF 6= O in
order to model the dynamic continuous event-generator of [72] in our proposed
new framework.

Remark 3.2. In [72] we were able to guarantee GAS and Lp-stability for all
possible delays τk ∈ [0, τmad], where τmad ∈ R>0 is the maximum allowable
delay. In contrast, here we guarantee ISES and L2-stability for a finite set D
of possible delays. As an engineering solution, we can approach the situation
of [72] by including sufficiently many delays out of the set [0, τmad] in the set D
(gridding). Assuming that the ETC system has a small amount of robustness
against deviations of the delays from the set D, this could also lead to a stability
guarantee for all possible delays τk ∈ [0, τmad], k ∈ N, cf. [89], which uses
a similar approach for the stability analysis of networked control system with
varying transmission intervals.

3.4 Main results for the PETC case

Consider again the control setup of Fig. 3.1 with plant P given by (3.1) and con-
troller C given by (3.2). Instead of continuously monitoring the output y (which
is sometimes difficult to realize in digital implementations), we now periodically
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sample the output y at sample times {sn}n∈N given by sn = nh, where h ∈ R>0

is the sample period. At each sample time sn, n ∈ N, the event-generator decides
whether the sampled output should be transmitted to the controller or not.

In the PETC case, the dynamic variable η will evolve according to

d
dtη(t) = Ψ(ô(t)), t ∈ R>0 \ {sn}n∈N, (3.31a)

η(t+) = ηT (ô(t)), t ∈ {tk}k∈N, (3.31b)

η(t+) = ηN (ô(t)), t ∈ {sn}n∈N \ {tk}k∈N, (3.31c)

where the functions Ψ, ηT , and ηN are to be designed and where the signal
ô : R>0 → R2ny × [0, h]× N× {0, 1} × R given by

ô(t) := (ζ(sn), τ(t), κ(t), l(t), η(t)), t ∈ (sn, sn+1] (3.32)

is the information that is available to the periodic event-generator.
We can now describe the closed-loop system as

d
dt









ξ(t)
τ(t)
κ(t)
l(t)
η(t)









=









Aξ(t) +Bw(t)
1
0
0

Ψ(ô(t))









,
t ∈ R>0

t /∈ {sn}n∈N

t /∈ {tk + τk}k∈N

(3.33a)









ξ(t+)
τ(t+)
κ(t+)
l(t+)
η(t+)









=









J0ξ(t)
0
κ(t)
1

ηT (ô(t))









,
l = 0
t ∈ {tk}k∈N

(3.33b)









ξ(t+)
τ(t+)
κ(t+)
l(t+)
η(t+)









=









J1ξ(t)
τ(t)

κ(t) + 1
0
η(t)









,
l = 1
t ∈ {tk + τk}k∈N

(3.33c)









ξ(t+)
τ(t+)
κ(t+)
l(t+)
η(t+)









=









ξ(t)
0
κ(t)
l(t)

ηN (ô(t))









,
l = 0
t ∈ {sn}n∈N

t /∈ {tk}k∈N

(3.33d)

z(t) = Cξ(t) +Dw(t). (3.33e)

In this model, τ ∈ [0, h] tracks the time that has elapsed since the last sample
time, in contrast with the CETC case, in which τ tracked the time since the
last transmission. All other variables have the same interpretation as in the
CETC case. Furthermore, (3.33b) models the jumps at transmission times tk,
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k ∈ N, (3.33c) models the jumps at update times tk + τk, k ∈ N (when the
transmitted data arrives at the controller), (3.33d) models the jumps at sample
times sn 6= tk, n, k ∈ N, at which no transmission occurs, and (3.7a) models the
flow in between jumps.

In the PETC case, the sequence of transmission times {tk}k∈N will be gene-
rated by the dynamic periodic event-generator

t0 = 0, tk+1 = min{t > tk | ηN (ô(t)) 6 0 ∧ ζ⊤(t)Qζ(t) > 0, t ∈ {sn}n∈N}.
(3.34)

As in the CETC case, the model (3.31), (3.34) can also capture static periodic
event-generators by choosing η(0) = 0 and

Ψ(ô) = ηT (ô) = ηN (ô) = 0 (3.35)

for all ô ∈ R2ny × [0, h] × N × {0, 1} × R, as then we have that η(t) = 0 for all
t ∈ R>0, and the dynamic periodic event-generator (3.34) reduces to the static
periodic event-generator

t0 = 0, tk+1 = min{t > tk | ζ(t)⊤Qζ(t) > 0, t ∈ {sn}n∈N}. (3.36)

Definitions for ISES and L2-stability of the PETC system (3.33)-(3.34) can
be given mutatis mutandis, but are omitted for space reasons.

3.4.1 Static PETC

As in the CETC case, we will first consider static periodic event-generators of
the form (3.36).

To analyze ISES and L2-stability of the static PETC system (3.33) with (3.35)
and (3.36), we will again use the Lyapunov/storage function U given by (3.15),
but now with V given by

V (ξ, τ, κ, l) =

{

ξ⊤P τκ
1 (τ)ξ, τ ∈ [0, τκ] and l = 1,

ξ⊤P0(τ)ξ, τ ∈ [0, h] and l = 0,
(3.37)

where again P0 : [0, h] → Rnξ×nξ is a continuously differentiable function sa-
tisfying (3.17) and for all d ∈ D, P d

1 : [0, d] → Rnξ×nξ is a continuously differen-
tiable function satisfying (3.18).

Theorem 3.3. If Assumption 3.1 holds, and there exist matrices NF , NT , NN ∈
R2ny×2ny with NF , NT , NN � 0, P0h, P

d
1d ∈ Rnξ×nξ with P0h, P

d
1d ≻ 0, and

scalars θ, ρ, β, µd ∈ R>0, d ∈ D, such that Assumption 3.2 holds and inequali-
ties (3.26), (3.27), and
[
T⊤G0(h)T T⊤F11(h)

−⊤P0hS(h)
⋆ S(h)⊤P0hS(h)

]

≺
[
T⊤ (P0h − Y ⊤(NN − βQ)Y

)
T O

⋆ I

]

, (3.38)
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hold for all d ∈ D, then the static PETC system (3.33) with (3.35) and (3.36) is
ISES with decay rate ρ, and has an L2-gain from w to z smaller than or equal
to θ.

Note that Theorem 3.3 extends [112, Theorem III.2] to the case with delays.
When particularized to the delay-free case, Theorem 3.3 becomes equivalent
to [112, Theorem III.2], see also [45].

3.4.2 Dynamic PETC

In this section we present our design for a dynamic periodic event-generator,
which follows from the analysis in Section 3.4.1. As in Section 3.3.2, the idea
is to store the ‘extra’ decrease of V in the dynamic variable η, which is then
used to reduce the number of transmissions while maintaining the same L2-gain
θ and decay rate ρ as the static PETC system.

We select the flow dynamics (3.31a) of η as

Ψ(ô) = −2ρη, for τ ∈ [0, h]. (3.39)

Remark 3.3. As η+ = η at update times tk+τk, k ∈ N, and Ψ is given by (3.39),
it follows that η(sn+1) = e−2ρhη(s+n ). Thus, since the event-generator only needs
to know the value of η at sample times sn, n ∈ N, the variable η does not need
to continuously evolve according to (3.31a) in the event-generator. Instead we
can use the discrete-time dynamics just described.

For the functions ηT and ηN we will provide the following two different de-
signs.

1) State-based dynamic PETC:

ηT (ô) = η +min
d∈D

ξ⊤
(
P0h − J⊤

0 P
d
10J0

)
ξ, (3.40a)

ηN (ô) = η + ξ⊤(P0h − P00)ξ. (3.40b)

2) Output-based dynamic PETC:

ηT (ô) = η + ζ⊤NT ζ, (3.41a)

ηN (ô) = η + ζ⊤ (NN − βQ) ζ. (3.41b)

Here, the scalars ρ and β, and the matrices NT , NN , P00, P0h, P
d
10 ∈ R

nξ×nξ , d ∈
D, follow from the stability analysis of the static PETC system in Theorem 3.3.

The first design requires that the full state ξ(sn) is known to the event-
generator at sample times sn, n ∈ N. The second design is more conservative,
but can also be used in case the event-generator does not have access to the full
state ξ. Hence, this choice can be used for output-based dynamic PETC.
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Theorem 3.4. If the conditions of Theorem 3.3 hold, then the dynamic PETC
system (3.33) with (3.34), (3.39), and ηT and ηN given by (3.40) or (3.41) is
ISES with decay rate ρ, and has an L2-gain from w to z smaller than or equal
to θ.

Remark 3.4. Note that in contrast to the CETC case, (3.39) does not include the
term ζ⊤NF ζ, as in the PETC case we do not continuously measure the output
y. Hence, our dynamic PETC designs do not involve the matrix NF , and we can
simply let NF = O in Theorems 3.3 and 3.4. The matrix NN appears linearly in
the LMI (3.38), and thus can be easily synthesized numerically via semi-definite
programming.

3.5 Reduced conservatism using state-space par-

titioning

The ISES and L2-gain analysis in Sections 3.3 and 3.4 are based on the ‘com-
mon’ (timer-dependent) quadratic Lyapunov function V , in the sense that the
same matrix functions P0 and P τκ

1 are used for all ξ ∈ Rnξ . In this section,
we present even less conservative conditions to analyze ISES and L2-stability
of the proposed CETC and PETC systems, using a piecewise quadratic Lyapu-
nov/storage functional technique as proposed in [243] for static PETC systems
without delays.

Define the regions

Xi := {ξ ∈ R
nξ | Xiξ > 0}, i ∈ {1, 2, . . . , N}, N ∈ N, (3.42)

where the matrices Xi ∈ Rnξ×nξ , i ∈ {1, 2, . . . , N}, are such that {X1,X2, . . . ,
XN} forms a partition of Rnξ , i.e., the sets Xi, i ∈ {1, 2, . . . , N}, have nonempty

interior,
⋃N

i=1 Xi = Rnξ , and Xi ∩ Xj is of zero measure for all i 6= j, i, j ∈
{1, 2, . . . , N}.

3.5.1 CETC

Consider the CETC system (3.7), (3.8), and define the functional

V (ξ, τ, κ, l, w, t) =







max
i∈{1,2,...,N}

s.t. ξ̄(tκ+τκ−t,ξ,wt)∈Xi

ξ⊤P τκ
i,1(τ)ξ, τ ∈ [0, τκ], l = 1

max
i∈{1,2,...,N}

s.t. ξ̄(tκ+1−t,ξ,wt)∈Xi

ξ⊤Pi,0(τ)ξ, τ ∈ [τκ, h], l = 0

max
i∈{1,2,...,N}

s.t. ξ̄(tκ+1−t,ξ,wt)∈Xi

ξ⊤Pi,0(h)ξ, τ ∈ [h,∞), l = 0,

(3.43)
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where wt : R>0 → Rnw denotes the time-shifted signal given by wt(s) = w(s+ t)
for s > 0, and ξ̄(t, ξ, w) denotes the solution to d

dt ξ̄ = Aξ̄ + Bw at time t with
initial condition ξ̄(0) = ξ and disturbance signal w : R>0 → Rnw . Furthermore,
Pi,0 : [0, h] → Rnξ×nξ , i ∈ {1, 2, . . . , N}, are continuously differentiable functi-
ons satisfying (3.17) and P d

i,1 : [0, d] → Rnξ×nξ , d ∈ D, i ∈ {1, 2, . . . , N}, are
continuously differentiable functions satisfying (3.18)

Note that V given by (3.43) depends on the value of ξ(tk+τk) for t ∈ [tk, tk+
τk] when l = 1 (as in this interval the index i depends on the value ξ(tk+τk)), and
depends on the value of ξ(tk+1) for t ∈ [tk, tk+1] when l = 0, (as in this interval
the index i depends on the value ξ(tk+1). Hence, V depends not only on the delay
sequence {τk}k∈N, but also on future values of the disturbance w. As such, we
have a trajectory/disturbance-dependent Lyapunov/storage functional, which
deviates from the common literature on GES and L2-gain analysis, as usually
the Lyapunov/storage function only depends on the current (and sometimes
past) values of the state, but typically not on future values. Even though the
interpretation of U = V + η as a genuine storage function is now less natural,
we will see below that we are still able to prove ISES and L2-stability for any
sequence of delays {τk}k∈N with τk ∈ D and D satisfying Assumption 3.1 and
any disturbance w : R>0 → Rnw with w ∈ L2.

Before defining the dynamics of η and stating our next theorem, let us intro-
duce the notation Pi,00 = Pi,0(0), Pi,0d = Pi,0(d), Pi,0h = Pi,0(h), P

d
i,10 = P d

i,1(0),

P d
i,1d = P d

i,1(d), and the functions

Gi,0(τ) := F11(τ)
−⊤Pi,0hF11(τ)

−1 + F21(τ)F11(τ)
−1 (3.44)

for τ ∈ [0, h], i ∈ {1, 2, . . . , N}, and

Gd
i,1(τ) := F11(τ)

−⊤P d
i,1dF11(τ)

−1 + F21(τ)F11(τ)
−1 (3.45)

for τ ∈ [0, d], i ∈ {1, 2, . . . , N}, d ∈ D.
For the dynamics of η, we again select Ψ as in (3.28). For the state-based

dynamic continuous event-generator, we now select ηT as

ηT (o) = η + max
i∈{1,2,...,N}
s.t. ξ∈Xi

min
d∈D

j∈{1,2,...,N}

ξ⊤
(
Pi,0h − J⊤

0 P
d
j,10J0

)
ξ, (3.46)

and for the output-based dynamic continuous event-generator, we again select
ηT as in (3.30).

To understand (3.46), some comments are in order. At the transmission
time tk, we know which matrix function Pi,0, i ∈ {1, 2, . . . , N} we should have
used in the interval t ∈ [tk−1 + τk−1, tk]. However, we do not know yet which
matrix function P d

j,1, j ∈ {1, 2, . . . , N}, d ∈ D, we should use in the interval t ∈
[tk, tk+τk]. Hence, to make sure that the Lyapunov/storage function U = V +η
does not increase along transmissions (3.7b), we therefore take the minimum
over all j ∈ {1, 2, . . . , N} and all d ∈ D in (3.46).
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Theorem 3.5. If Assumption 3.1 holds, and there exist matrices NF , NT , NN ∈
R

2ny×2ny with NF , NT , NN � 0, Pi,0h, P
d
i,1d ∈ R

nξ×nξ with Pi,0h, P
d
i,1d ≻ 0,

Ud
ij ,W

d
ij ∈ R

nξ×nξ

>0 with Ud
ij = Ud

ij
⊤

and W d
ij = W d

ij
⊤
, and scalars β > 0 and

µd
ij > 0, d ∈ D, i, j ∈ {1, 2, . . . , N}, such that Assumption 3.2 holds and the

matrix inequalities

[
T⊤(A⊤Pi,0h + Pi,0hA+ Y ⊤(NN − βQ)Y )T ⋆

B⊤Pi,0hT O

]

�
[
T⊤(−2ρPi,0h − θ−2C⊤C)T −θ−2T⊤C⊤D

⋆ I − θ−2D⊤D

]

, (3.47)

[
J⊤
0 G

d
i,1(d)J0 J

⊤
0 F11(d)

−⊤P d
i,1dS(d)

⋆ S(d)⊤P d
i,1dS(d)

]

≺
[
Pj,0h − Y ⊤(NT + µd

ijQ)Y −X⊤
j U

d
ijXj O

O I

]

, (3.48)

and

[
J⊤
1 Gi,0(h− d)J1 J

⊤
1 F11(h− d)−⊤Pi,0hS(h− d)

⋆ S(h− d)⊤Pi,0hS(h− d)

]

≺
[
P d
j,1d −X⊤

j W
d
ijXj O

O I

]

, (3.49)

hold for all d ∈ D and all i, j ∈ {1, 2, . . . , N}, then the dynamic CETC sy-
stem (3.7) with (3.8), (3.28), and (3.46) or (3.30) is ISES with decay rate ρ,
and has an L2-gain from w to z smaller than or equal to θ.

Corollary 3.6. If the conditions of Theorem 3.5 hold, then the static CETC
system (3.7) with (3.9) and (3.10) is ISES with decay rate ρ, and has an L2-gain
from w to z smaller than or equal to θ.

Remark 3.5. When increasing the number of regions N , the ISES and L2-gain
analysis becomes less conservative at the cost of higher computational com-
plexity. Moreover, the update (3.46) becomes more computationally intensive,
leading to more complex event-generators. On the other hand, (3.30) is inde-
pendent of N and thus do not lead to more complex event-generators when
increasing N .
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3.5.2 PETC

Consider the PETC system (3.33), (3.34), and define the functional

V (ξ, τ, κ, l, w, t) =







max
i∈{1,2,...,N}

s.t. ξ̄(τκ−τ,ξ,wt)∈Xi

ξ⊤P τκ
i,1 (τ)ξ, τ ∈ [0, τκ], l = 1

max
i∈{1,2,...,N}

s.t. ξ̄(h−τ,ξ,wt)∈Xi

ξ⊤Pi,0(τ)ξ, τ ∈ [0, h], l = 0,
(3.50)

where again Pi,0 : [0, h] → Rnξ×nξ , i ∈ {1, 2, . . . , N}, are continuously dif-
ferentiable functions satisfying (3.17), and P d

i,1 : [0, d] → Rnξ×nξ , d ∈ D,
i ∈ {1, 2, . . . , N}, are continuously differentiable functions satisfying (3.18).

For the dynamics of η, we again choose Ψ as in (3.39). For the state-based
dynamic periodic event-generator, we now select ηT and ηN as

ηT (ô) = η +

max
i∈{1,2,...,N}
s.t. ξ∈Xi

min
d∈D

j∈{1,2,...,N}

ξ⊤
(
Pi,0h − J⊤

0 P
d
j,10J0

)
ξ, (3.51a)

ηN (ô) = η +

max
i∈{1,2,...,N}
s.t. ξ∈Xi

min
j∈{1,2,...,N}

ξ⊤ (Pi,0h − Pj,00) ξ, (3.51b)

and for the output-based dynamic periodic event-generator, we again select ηT
and ηN as in (3.41).

Theorem 3.7. If Assumption 3.1 holds, and there exist matrices NF , NT , NN ∈
R2ny×2ny with NF , NT , NN � 0, Pi,0h, P

d
i,1d ∈ Rnξ×nξ with Pi,0h, P

d
i,1d ≻ 0,

Ud
ij ,W

d
ij , Vij ∈ R

nξ×nξ

>0 with Ud
ij = Ud

ij
⊤
, W d

ij = W d
ij
⊤
, and Vij = Vij

⊤, and

scalars β > 0 and µd
ij > 0, d ∈ D, i, j ∈ {1, 2, . . . , N}, such that Assumption 3.2

holds and the matrix inequalities (3.48), (3.49), and

[
T⊤ (Pj,0h − Y ⊤(NN − βQ)Y −X⊤

j VijXj

)
T O

⋆ I

]

≻
[
T⊤Gi,0(h)T T⊤F11(h)

−⊤Pi,0hS(h)
⋆ S(h)⊤Pi,0hS(h)

]

(3.52)

hold for all d ∈ D and all i, j ∈ {1, 2, . . . , N}, then the dynamic PETC sy-
stem (3.33) with (3.34), (3.39), and (3.51) or (3.41) is ISES with decay rate ρ,
and has an L2-gain from w to z smaller than or equal to θ.

Corollary 3.8. If the conditions of Theorem 3.7 hold, then the static PETC
system (3.33) with (3.35) and (3.36) is ISES with decay rate ρ, and has an
L2-gain from w to z smaller than or equal to θ.
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3.6 Numerical examples

In [45], we have already shown that in the delay-free case our new dynamic
PETC designs provide the same control performance guarantees with less com-
munication than the static PETC designs of [112, 113].

Here, we will demonstrate our static and dynamic CETC and PETC designs
for the case with delays via two numerical examples.

3.6.1 Unstable batch reactor

Consider the unstable batch reactor of [120, 173, 245], with nxp
= 4, nxc

= 2,
ny = nw = nu = nz = 2, and plant and controller dynamics given by (3.1)
and (3.2) with

Ap =







1.3800 −0.2077 6.7150 −5.6760
−0.5814 −4.2900 0.0000 0.6750
1.0670 4.2730 −6.6540 5.8930
0.0480 4.2730 1.3430 −2.1040






,

Bp =







0.0000 0.0000
5.6790 0.0000
1.1360 −3.1460
1.1360 0.0000






, Bpw =







10 0
0 5

10 0
0 5






,

Cy = Cz =

[
1 0 1 −1
0 1 0 0

]

, Cu =

[
−2 0
0 8

]

,

Dy = Dz = Dzw = Ac =

[
0 0
0 0

]

,

Bc =

[
0 1
1 0

]

, and Du =

[
0 −2
5 0

]

,

and D = {0.01, 0.0125, 0.0150, 0.0175, 0.02}. Note that for this system y 6=
(xp, xc), and thus we cannot use (3.29), (3.40), (3.46), or (3.51), but we have
to resort to (3.30) for the dynamic CETC case and to (3.41) for the dynamic
PETC case.

We choose h = 0.1, Q given by (3.11), NF = O, and ρ = 0.05. For each
choice of σ we minimize the L2-gain θ, using Theorem 3.1 for the CETC case
and Theorem 3.3 for the PETC case, from which also the matrices NT and NN

follow.

Fig. 3.2a shows the guaranteed L2-gain θ as a function of σ for both the
CETC and PETC approaches. Fig. 3.2b shows the average inter-event times
τavg = (total number of events)/(simulation time) for the static and (output-
based) dynamic event-generators, which have been obtained by simulating the
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(a)

(b)

0 0.1 0.2 0.3 0.4 0.5

2

2.2

2.4

2.6

σ

‖z
‖ L

2
/‖
w
‖ L

2

PETC: static, dynamic

CETC: static, dynamic

(c)

Fig. 3.2. Guaranteed L2-gain θ for varying σ (a), average inter-event
times τavg for disturbance w given by (3.53) and different event-generators
(b), and actual ratio ‖z‖L2/‖w‖L2 for disturbance w given by (3.53) (c).
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system 10 times for 40 time units with ξ(0) = 0 and disturbance w given by

w(t) = e−0.2t

[
5 sin(3.5t)
− cos(3t)

]

. (3.53)

Finally, Fig. 3.2c shows the actual ratio ‖z‖L2/‖w‖L2 for disturbance w given
by (3.53), which has been obtained from the same simulations.

In Fig. 3.2c we see that, while the control performance guarantees for the
dynamic CETC and PETC systems are identical to the performance guarantees
for their static counterparts, the dynamic event-generators exploit (part of) the
conservatism in the L2-gain analysis of Theorems 3.1 and 3.3 to postpone the
transmissions. This leads to higher ratios ‖z‖L2/‖w‖L2 (but still below the
guaranteed bounds in Fig. 3.2b), but also to consistently larger τavg, as can be
seen in Fig. 3.2b.

To compare these results with [72], note that for given ρ and θ the waiting
time h (or τMIET in the terminology of [72]) of the continuous event-generator
proposed in [72] cannot exceed the maximally allowable transmission interval
(MATI) of [120]. Moreover, for the same example in [120, Section IV] we can
calculate that when using the sampled-data protocol, no notion of stability can
be guaranteed for MATI larger than 0.063, even without delays. In contrast,
here we guarantee ISES and L2-stability for h = 0.1, in the presence of delays.
Hence, our new framework tailored to linear systems is clearly much less conser-
vative than our previous results for nonlinear systems in [72]. See also [44] for a
direct comparison between the static and dynamic continuous event-generators
in Section 3.3 and the event-generators proposed in [72], for the case without
delays.

3.6.2 Reduced conservatism using Section 3.5

In this example, we show how the conservatism of the ISES and L2-stability
analysis can be further reduced by partitioning the state-space as in Section 3.5.

Consider the example from [41, Section VI.B], with nxp
= 2, nxc

= 0, ny =
nw = nu = nz = 1, and matrices

Ap =

[
0 1
0 −3

]

, Bp = Bpw =

[
0
1

]

, Du =
[
−3
]
,

Cy = Cz =
[
1 0

]
, and Dy = Dz = Dzw =

[
0
]
.

We will control the system using a periodic event-generator, and choose h = 1,
D = {0, 0.1, 0.2}, Q as in (3.11), NF = O, and ρ = 0.05.

We partition the state-space as in (3.42), with N = 10 and matrices

Xi =







− sin(φi) cos(φi) 0 0
sin(φi+1) − cos(φi+1) 0 0

0 0 0 0
0 0 0 0






, (3.54)
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with

φi = (i− 1)
2π

N
, for i ∈ {1, 2, . . . , N + 1}. (3.55)

Fig. 3.3 shows the guaranteed L2-gain θ as a function of σ for the PETC
approach using Theorem 3.3, and using the less conservative conditions of The-
orem 3.7 with the state-space partition as defined above. The matrices NT

0 0.1 0.2 0.3 0.4 0.5

1

1.5

2

2.5

σ

L
2
-g
a
in

θ

PETC Theorem IV.1

PETC Theorem V.4

Fig. 3.3. Guaranteed L2-gain θ for varying σ.

and NN and the scalar β were found numerically based on Theorem 3.3. In
Theorem 3.7 we then used the same values for NN , NT , and β, such that the re-
sulting design for the output-based dynamic periodic event-generator is identical
for both theorems, and any difference in θ can be solely attributed to the partiti-
oning of the state-space and the use of piecewise quadratic Lyapunov functions.

Clearly, by using piecewise quadratic Lyapunov/storage functionals even tig-
hter guarantees on the L2-gain can be achieved. However, while the performance
guarantees become tighter when the number of regions N in the partition is in-
creased, also the computational complexity of the required calculations becomes
larger.

3.7 Conclusions

In this chapter, we proposed a new method for the design of static and dynamic
continuous event-generators (which require continuous measuring of the plant
output) and static and dynamic periodic event-generators (which only require
periodic sampling of the plant output) for linear control systems with communi-
cation delays. All proposed event-generators lead to global exponential stability
and L2-stability with guaranteed decay rates and L2-gains, and have a guaran-
teed positive minimum inter-event time.

Our designs exploit Riccati-based tools tailored to linear systems, leading
to a significant reduction in conservatism compared to existing results in the
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literature (which focus on more general nonlinear systems). In fact, we showed
via a numerical example that the conservatism in the guaranteed L2-gain (for
any of the proposed event-generators) is small.

Moreover, to the best of the authors’ knowledge, the proposed dynamic peri-
odic event-generators are the first in literature that can deal with communication
delays.





Chapter 4

Input-to-state Stabilizing

Event-triggered Control for

Linear Systems with Distributed

and Quantized Output

Measurements

Abstract – In this chapter, we study output-based stabilization of linear time-invariant (LTI)

systems affected by unknown external disturbances. The plant outputs are measured by a col-

lection of distributed sensors, which transmit their feedback information to the controller in an

asynchronous fashion over different communication channels. To save communication resour-

ces, the transmission instants of each sensor are determined by event-triggering mechanisms

that only depend on locally available information. Before being sent over the network, each

sensor measurement is subject to quantization, which is carried out by means of dynamic

quantizers. The proposed event-triggering and dynamic quantization mechanisms ensure an

input-to-state stability (ISS) property of a set around the origin with respect to the external

disturbances. Moreover, the proposed approach prevents the occurrence of Zeno behaviour on

the transmission instants and the quantization updates. An additional feature of the proposed

scheme is that transmission instants can only be generated when the sampling error becomes

larger than the quantizer error bound, which helps in avoiding redundant usage of the net-

work. The trade-off between transmissions and quantization is characterized in terms of design

parameters. The effectiveness of the approach is illustrated on a numerical example.
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4.1 Introduction

The increasing popularity of networked control systems (NCS) has motivated
an extensive research effort on this subject during the last few decades. In
NCS, the sensors, the controller, and the actuators communicate with each other
over a shared channel. This configuration offers several advantages compared
to dedicated point-to-point connections in terms of increased flexibility, lower
cost, and ease of maintenance. However, the communication resources of the
network are often limited, which induces new challenges on the analysis and the
design of control systems [23,120]. In this context, event-triggered control (ETC)
schemes have been proposed in the literature as an alternative to traditional
time-triggered platforms. The idea of ETC is to generate transmission events
based on locally available output measurements of the system instead of purely
on time as in most traditional digital control setups. In this way, unnecessary
access to the network can be prevented, leading to more efficient usage of the
communication resources, see, e.g., [115,191] and the references therein. One of
the main difficulties in the synthesis of event-triggering conditions is to guarantee
appropriate stability/performance properties while preventing the occurrence of
Zeno (an infinite number of transmissions in finite time); certainly when only
the plant output is available for feedback instead of the full state [78] and/or
when the control system is subject to exogenous inputs [41].

Besides reducing the amount of transmissions over the network, quantization
is another important and challenging aspect in NCS [116, 167, 175]. The use
of quantization is unavoidable due to the digital nature of the communication
channel and the fact that only a finite amount of data can be transmitted over the
network. Quantization requires a careful handling as well since the closed-loop
stability may no longer be guaranteed when state or output measurements are
quantized with insufficient number of quantization regions, see, e.g., [144] and
the references therein. Most existing techniques reported in the literature are
developed for static quantizers in which the quantizer range and the quantizer
error bound are fixed. Therefore, to guarantee that the feedback information
remains within range of the static quantizer, i.e., to make sure that the quantizer
does not saturate, it is often assumed in the analysis of static quantizers that
the quantizer range is infinite [242]. This requirement is impractical due to the
finite size of the transmitted data packages. To overcome this requirement, the
authors of [48] have proposed to dynamically adjust the quantizer range and the
quantizer error bound according to the available feedback information, which
leads to so-called dynamic quantizers. To that end, a zoom variable is used to
either increase the quantizer range to avoid saturation (referred to as the zoom-
out stage) or decrease the quantizer range to extract more precise information
(referred to as the zoom-in stage). As such, with dynamic quantizers, saturation
can be avoided while using only a small number of quantization regions (and thus
less number of bits need to be communicated). Hence, in the context of NCS,
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dynamic quantizers create a balance between the desired control performance
and utilization of the communication resources, which show their advantages
over static quantizers. However, the use of dynamic quantizers also introduces
new challenges in the stability analysis and practical implementation, which
need to be carefully handled. For instance, since the zoom actions are state-
dependent, the accumulation of zoom instants need to be avoided. Moreover,
chattering between the zoom-in and the zoom-out stages should be prevented,
and the zoom variable should remain bounded, see also, e.g., [145].

In this chapter, we consider the event-triggered stabilization of linear time-
invariant (LTI) systems. The plant may be affected by external disturbances and,
as in many applications, only the output of the plant can be measured and not
the full the state. These output measurements are assumed to be distributed, i.e.,
they are collected by multiple network nodes and asynchronously transmitted
over different channels. Each of these network nodes employs an event-triggering
condition, which only depends on locally available information, to decide when
to transmit measurement data. It is important to emphasize that when both
event-triggering and quantization are considered in NCS, the combined analysis
becomes more complicated since the design of the event-triggering mechanism
and the quantizer are directly coupled. For instance, the sampling-induced error
of the feedback information is in general not reset to zero at each transmission
instant due to the effect of quantization [116, 167, 175]. This issue may have
negative impact on the closed-loop stability and the handling of this behaviour
is far from trivial. Moreover, the combined event-triggering mechanism and
the dynamic quantizer for each node should be designed such that, at each
transmission instant, the transmitted information is more accurate with respect
to the current output measurement than the information already available at
the receiving node. Obviously, the latter is important to avoid redundant usage
of the network. In addition, since we consider the case of distributed output
measurements with asynchronous transmissions, more attention has to be paid
in the modeling and the analysis of the closed-loop system.

The event-triggering mechanism that we construct is inspired by [72, 96,
191] and ensures the existence of a strictly positive lower bound on the inter-
transmission times of each node. Before being sent to the controller, the sensor
measurement is quantized by means of a dynamic quantizer associated to its
node. To prevent the accumulation of zoom actions, the quantizer is only allo-
wed to update its range (and consequently its error bound) at the transmission
instants of the respective node. To be more specific, the required zoom vari-
able updates by the quantizer need to be performed before the data is being
sent over the network. The overall event-triggering and dynamic quantization
strategy achieves the following properties:

(i) an input-to-state stability property is guaranteed for a set around the origin
with respect to the external disturbances and Zeno behaviour is excluded;
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(ii) at each transmission event, the output measurement is within the quantizer
range;

(iii) the transmitted information is more accurate with respect to the current
output measurement than the information already available at the recei-
ving node;

(iv) the size of the data packages that are transmitted is bounded for each
distributed quantizer.

Sufficient design conditions of the event-triggering mechanism and the quantizer
are provided, under which the above properties are guaranteed. The required
conditions are formulated in terms of the feasibility of a linear matrix inequality
(LMI). Interestingly, the proposed design strategy reveals the intuitive trade-
off between the amount of transmissions and the number of quantization levels
(and thereby the size of each transmitted data package). The effectiveness of
the approach is illustrated on a numerical example.

Despite the practical importance of synthesizing both event-triggered control-
lers and dynamic quantizers for NCS, only few results in the literature have ad-
dressed this problem [141,150,221,229,231]. The techniques of [141,150,221,229]
are dedicated to the case of state feedback control and only the result of [231] is
developed for the case of output feedback control, to the best of our knowledge.
Moreover, the authors of [229] only focus on the zoom-in stage while the authors
of [150, 231] assume that the plant dynamics is not affected by external distur-
bances. Furthermore, the practical aspects that we consider in (i)-(iv) have not
been studied in the previously mentioned works. To the best of our knowledge,
this is the first work on the design of input-to-state stabilizing event-triggered
controllers with dynamic quantization of the output feedback information that
deals with all the previously mentioned issues in (i)-(iv). In addition, we handle
the implementation scenario where the plant outputs are distributed and trans-
mitted in an asynchronous fashion. A preliminary version of this work has been
reported in [3]. Compared to [3], the approach is adapted to a more general
scenario than the setup in [21], where the latter result is dedicated to the case
where the plant outputs are sent over a single node in a centralized fashion. Mo-
reover, in this chapter, we provide more insights on the problem and all proofs
are included.

The remainder of the chapter is organised as follows. Preliminaries are given
in Section 4.2. The problem is formulated in Section 4.3. The hybrid model
is given in Section 4.4. We present the main results in Section 4.5. Numerical
simulations are given in Section 4.6. Conclusions are provided in Section 4.7.
The proofs are given in the Appendix.
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4.2 Preliminaries

Let R := (−∞,∞), R>0 := [0,∞), N := {0, 1, 2, . . .}, N>0 := {1, 2, . . .} and
Z the set of integers. For a countable set S, card(S) denotes its cardinality.
A continuous function γ : R>0 → R>0 is of class K if it is zero at zero and
strictly increasing. It is of class K∞ if, in addition, γ(s) → ∞ as s → ∞. A
continuous function γ : R2

>0 → R>0 is of class KL if for each fixed t ∈ R>0,
γ(·, t) is of class K, and for each fixed s ∈ R>0, γ(s, .) is nonincreasing and
satisfies lim

t→∞
γ(s, t) = 0. A function V : X ⊂ R

n → R>0 is locally Lipschitz

continuous if for each x ∈ X , there exists a neighborhood Ux and a constant
M > 0 such that |V (y) − V (z)| 6 M |y − z| for all y, z ∈ Ux. A set-valued
mapping from a set X to a set Y , associates, with every point x ∈ X , a subset
of Y . The notation F : X ⇒ Y , indicates that F is a set-valued mapping from
X to Y with F (x) ⊂ Y for all x ∈ X . A set-valued mapping F : X ⇒ Y is
said to be outer semicontinuous at a point x ∈ X if for every sequence of points
xi convergent to x and any convergent sequence of points yi ∈ F (xi), one has
y ∈ F (x), where limi→∞ yi = y. The mapping F is outer semicontinuous if it is
outer semicontinuous at each point x ∈ X .

We denote the minimum and maximum eigenvalues of the real symmetric
matrix A as λmin(A) and λmax(A), respectively. We write AT to denote the
transpose of A, and In stands for the identity matrix of dimension n. The
symbol ⋆ stands for symmetric blocks. We denote by 0n and 1n the vectors in
Rn whose all elements are 0 or 1, respectively. We write (x, y) ∈ Rnx+ny to
represent the vector [xT , yT ]T for x ∈ Rnx and y ∈ Rny . For a vector x ∈ Rnx ,

we denote by |x| :=
√
xTx its Euclidean norm and, for a matrix A ∈ Rn×m,

|A| :=
√

λmax(ATA). Given a set A ⊂ Rn and a vector x ∈ Rn, the distance
of x to A is defined as |x|A := infy∈A |x − y|. We use the following regularized
ceiling function, for x ∈ R

⌈x⌉ :=
{

{min{k ∈ Z : k > x}}, x /∈ Z

{x, x+ 1}, x ∈ Z.
(4.1)

Note that this (set-valued) regularized ceiling function is outer semicontinuous
in the sense that for each x ∈ R, each sequence of points xi ∈ R that converge
to x, and each sequence of points yi ∈ R that converge to y, y ∈ ⌈x⌉.

We consider hybrid systems of the following form [49, 99]

ẋ ∈ F (x,w) x ∈ C, x+ ∈ G(x) x ∈ D, (4.2)

where x ∈ R
nx is the state, w ∈ R

nw is an exogenous input, C is the flow set, F
is the flow map, D is the jump set and G is the jump map. Solutions to system
(4.2) are defined on hybrid time domains. We call a subset E ⊂ R>0 × N a

compact hybrid time domain if E =
⋃J−1

j=0 ([tj , tj+1], j) for some finite sequence
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of times 0 = t0 6 t1 6 ... 6 tJ and it is a hybrid time domain if for all
(T, J) ∈ E,E ∩ ([0, T ] × {0, 1, ..., J}) is a compact hybrid time domain. A
hybrid signal is a function defined on a hybrid time domain. A hybrid signal
w : domw → Rnw is called a hybrid input if w(·, j) is measurable and locally
essentially bounded for each j. A hybrid signal x : domx → Rnx is called a
hybrid arc if x(·, j) is locally absolutely continuous for each j. A hybrid arc
x : domx → Rnx and a hybrid input w : domw → Rnw form a solution pair
(x,w) to system (4.2) if domw = domx, x(0, 0) ∈ C ∪ D, and:

(i) for all j ∈ N, and almost all t such that (t, j) ∈ domx, x(t, j) ∈ C and
ẋ(t, j) ∈ F (x(t, j), w(t, j));

(ii) for all (t, j) ∈ domx such that (t, j + 1) ∈ domx, x(t, j) ∈ D and x(t, j +
1) ∈ G(x(t, j)).

A solution pair (x,w) to system (4.2) is nontrivial if domx contains at least two
points, maximal if it cannot be extended, it is complete if its domain, domx, is
unbounded, it is Zeno if it is complete and supt domx <∞, where supt domx :=
sup{t ∈ R≥0 : ∃j ∈ N>0 such that (t, j) ∈ domx}, and it is t-complete if domx
is unbounded in the t-direction, i.e., supt domx = ∞.

We use the following definition of L∞-norm for hybrid signals [49, 176].

Definition 4.1. For a hybrid signal w, with domain domw ⊂ R>0 × N, and a
scalar T ∈ R>0, the T -truncated L∞-norm is given by

‖w[T ]‖∞ := sup
j∈N

{

ess sup
t∈R

>0
|(t,j)∈domw, t+j6T

|w(t, j)|
}

. (4.3)

The L∞-norm of w is given by

‖w‖∞ := lim
T→T∗

‖w[T ]‖∞, (4.4)

where T ∗ := sup{t + j : (t, j) ∈ domw}. Moreover, we say that w ∈ L∞
whenever the above limit exists and is finite. �

We adopt the following ISS notion for hybrid systems [49].

Definition 4.2. Consider the hybrid system (4.2), a set A ⊂ Rnx and a set
X0 ⊆ Rnx . The set A is input-to-state stable (ISS) w.r.t. w and initial state
set X0 if there exist β ∈ KL and ψ ∈ K such that, for each x(0, 0) ∈ X0 and
w ∈ L∞, each maximal solution pair (x,w) is t-complete1 and satisfies for all
(t, j) ∈ domx.

|x(t, j)|A 6max {β(|x(0, 0)|A, t+ j), ψ(||w||∞)} . (4.5)

�1In general, t-completeness is not required in the ISS property for hybrid systems as men-
tioned in [49, Remark 2.2]. However, in the context of NCSs, it is desired that all solutions
are t-complete and is therefore explicitly required in this definition.
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4.3 Problem formulation

Consider the continuous-time plant model

ẋp = Apxp +Bpu+ Epw

y = Cpxp,
(4.6)

where xp ∈ Rnp is the plant state, u ∈ Rnu is the control input, w ∈ Rnw is
unknown plant disturbance, and y ∈ Rny is the measured output. The distur-
bance w is assumed to be Lebesgue measurable and locally bounded. The plant
is stabilized by a dynamic controller of the form

ẋc = Acxc +Bcŷq

u = Ccxc +Dcŷq,
(4.7)

where xc ∈ Rnc is the controller state and ŷq ∈ Rny denotes the most recent
quantized output measurement available at the controller, see Figure 4.1. The
controller (4.7) is designed by an emulation approach in the sense that we assume
that the closed-loop system given by (4.6) and (4.7) is stable when the effects of
both the quantization and the network are absent, i.e., when ŷq = y.

4.3.1 Setup description

We consider the scenario where the controller is directly connected to the plant
while the output measurement y is transmitted to the controller over a digi-
tal channel. In particular, we assume that the plant output y is partitioned
into l components, i.e., y = (y1, y2, . . . , yl), which are measured by l distributed
sensors. The sensors communicate with the controller over l different communi-
cation channels at discrete time instants tik, k ∈ N, i ∈ {1, 2, . . . , l}. At any node
i ∈ {1, 2, . . . , l}, the measured output yi ∈ R

nyi is collected, quantized, encoded
and the resulting encrypted data is sent over the communication channel, see
Figure 4.1. This encryption is required to make sure that at each transmission,
only a limited number of bits is sent. Let ŷq = (ŷq,1, ŷq,2, . . . , ŷq,l), where ŷq,i,
i ∈ {1, 2, . . . , l}, denotes the most recent quantized value of yi available at the
controller. The value of ŷq,i is kept constant between two consecutive transmis-

sion instants of node i in a zero-order-hold (ZOH) fashion, i.e., ˙̂yq,i = 0. We
ignore communication and computation delays in this study, although it would
be possible to include them by using the techniques in, e.g., [72, 120].

4.3.2 Event-triggering mechanism

The sequence of transmission instants of each node i is generated by an indepen-
dent event-triggering condition in the sense that the event-triggering condition
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Plant

sensor 1 sensor 2 sensor l

encoder 1 encoder 2 encoder l

decoder 1 decoder 2 decoder l

ETM1 ETM2 ETM l

Controller

. . .

y1 y2 yl

ŷq,1 ŷq,2 ŷq,l
u

w

Fig. 4.1. NCS with distributed and quantized output measurements.

only depends on locally available information at node i. Each triggering mecha-
nism determines the next transmission instant tik, k ∈ N, i ∈ {1, 2, . . . , l} based
on the actual values of the output measurement yi of node i and the most re-
cent transmitted (quantized) value ŷq,i. The triggering mechanism at each node
i ∈ {1, 2, . . . , l}, is dynamic, in the sense of [72, 96, 191], and takes the following
form

tik+1 = inf{t > tik + Ti | ηi(t) = 0}, (4.8)

where ti0 = 0, Ti > 0, ηi ∈ R>0. The time constant Ti > 0, i ∈ {1, 2, . . . , l} is
a strictly positive lower bound on the inter-transmission times of the output yi
that we enforce to prevent the occurrence of Zeno with respect to transmission
events at node i. The variable ηi, i ∈ {1, 2, . . . , l}, is the solution to the dynamical
system

η̇i ∈ Ψi(oi) t ∈ (tik, t
i
k+1), ηi((tik)

+) = η0,i(oi), (4.9)

where oi ∈ Rnoi represents locally available information at the event-triggering
mechanism. The time constant Ti and the functions Ψi and η0,i are to be
designed and will be specified in Section 4.5.

4.3.3 Dynamic quantization

As mentioned before, at each transmission instant tik, k ∈ N, i ∈ {1, 2, . . . , l},
the value of yi is quantized before being sent over the network. A quantizer
is essentially a piecewise constant function qi : Rnyi → Qi ⊆ R

nyi with Qi a
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finite countable subset of Rnyi . As such, a quantizer induces a partition in R
nyi

consisting of card(Qi) quantization regions described by {z ∈ R
nyi : qi(z) = x},

x ∈ Qi. We assume that the function qi satisfies the following assumption as
proposed in [143], see also [116, 145, 175].

Assumption 4.1. [143] There exist constants Mi,∆i, i ∈ {1, 2, . . . , l}, such
that for all yi ∈ Rnyi , it holds that

|yi| 6Mi ⇒ |qi(yi)− yi| 6 ∆i. (4.10)

Moreover, there exists a constant δ > 0 such that for all z ∈ R
nyi with |z| 6 δ,

it holds that q(z) = 0. �

This assumption in essence states that the magnitude of the quantization error
|qi(yi) − yi| is upper bounded by ∆i, as long as the quantizer is not saturated,
i.e., the output measurement yi is within the range of its respective quantizer.
Moreover, it states that qi(z) = 0 for z in some neighborhood around the origin
(and implies 0 ∈ Qi). Let us remark that Assumption 4.1 allows the quantizer
regions to have arbitrary shapes. In the remainder of the chapter, we will refer
to Mi and ∆i as the initial quantizer range and initial error bound of node
i ∈ {1, 2, . . . , l}, respectively.

In this chapter, we consider dynamic quantizer functions qµi

i , i ∈ {1, 2, . . . , l},
which, as in [48, 143, 145], are defined as

qµi

i (yi) := µiqi

(
yi
µi

)

, (4.11)

where µi ∈ R>µ
i
, i ∈ {1, 2, . . . , l}, are dynamic variables referred to as the

zoom variables and where qi satisfies Assumption 4.1 for some Mi,∆i > 0 and
where µ

i
> 0 is a lower-bound on µi to be specified.. The zoom variables µi,

i ∈ {1, 2, . . . , l}, are used to adjust the quantizer range initially equal to Mi > 0
and the quantizer error bound initially equal to ∆i > 0 of node i based on
the magnitude of the output measurement yi. To be more specific, the range
and the error bound of the dynamic quantizer as in (4.10) are given by Miµi

and ∆iµi, respectively. As such, property (4.10) becomes |yi| 6 µiMi ⇒
|qµi

i (yi)− yi| 6 µi∆i. Note that the number of quantization regions of dynamic
quantizers remains constant all the time.

In the context of NCSs, it is of importance that at each transmission instant,
before data is actually transmitted, the dynamic quantizer is set such that pro-
perty (ii) and (iii) mentioned in Section 4.1 are satisfied. To achieve these two
properties, the zoom variable µi is adapted at transmission instants tik, k ∈ N,
i ∈ {1, 2, . . . , l}, according to

µ+
i ∈ Θi(yi, µi) := Ω

κin ,i(yi,µi)
in ,i Ω

κout ,i(yi,µi)
out ,i µi (4.12)
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where Ωin ,i ∈ (0, 1),Ωout ,i > 1, are the zoom-in and zoom-out factors, respecti-
vely, and where we omitted the time arguments for sake of compactness. The
functions κin ,i, κout ,i : Rnyi × R>0 ⇒ N determine the number of zoom-in or
zoom-out actions that need to be performed at each transmission2.

Let us elaborate on the dynamic adjustment strategy of µi, i ∈ {1, 2, . . . , l}.
At any transmission instant tik, k ∈ N, i ∈ {1, 2, . . . , l}, if the magnitude of |yi|
is close to the range of the quantizer, we increase the value of µi with the factor

σout ,i ∈ Ω
κout ,i(yi,µi)
out ,i with σout ,i > 1 in order to make sure that the transmitted

information is within range of the quantizer (which corresponds to property (ii)
stated in Section 4.1). We refer to this action as the zoom-out event. On the
other hand, if |yi| is small with respect to the current quantizer error bound, we

decrease µi by means of the zoom-in factor σin ,i ∈ Ω
κin ,i(yi,µi)
in ,i with σin ,i ∈ (0, 1)

such that more precise information is transmitted (which corresponds to property
(iii) stated in Section 4.1). We refer to this action as the zoom-in event. See,
e.g., [145] for more details on dynamic quantizers.

Let us emphasize that the zoom variable µi in (4.12) is only updated at
transmission instants tik, k ∈ N, i ∈ {1, 2, . . . , l} and held constant in bet-
ween transmissions, i.e., µ̇i = 0 for t ∈ (tik, t

i
k+1). Consequently, in each node

i ∈ {1, 2, . . . , l}, the time in between the zoom events is lower bounded by the
minimum inter-transmission time Ti ensured by the local triggering condition
(4.8).

To be able to successfully reconstruct the broadcast encoded information,
the zoom variable µi of both the encoder and the decoder at any channel should
be initialized at the same value, see Remark 1 in [116] for an in-depth discussion
on this point. Then, at each update instant tik, we only transmit the index of the
quantization region, the number of required zoom actions corresponding to the
transmission and a boolean (one bit) that indicates whether these zoom actions
are zoom-in or zoom-out events. By means of these three (two integers and one
boolean) quantities, the decoder on the other side of the network can reconstruct
µi and thereby the quantized output ŷq,i using (4.11), which then can be used
by the controller according to (4.7).

4.3.4 Problem statement

Our objective is to design both the event-triggering mechanism (4.8), (4.9) (i.e.,
to design the time-constant Ti and the functions Ψi and η0,i for i ∈ {1, 2, . . . , l})
and the dynamic quantization strategy (4.12) (i.e., to design the parameters
∆i,Mi,Ωin ,i,Ωout ,i and the functions κin ,i, κout ,i for i ∈ {1, 2, . . . , l}) such that
properties (i)-(iv) mentioned in Section 4.1 are achieved for the closed-loop sy-
stem.

2In (4.12), we use Ω
κin ,i(yi,µi)

in ,i
to denote the set {Ωκ

in ,i | κ ∈ κin ,i(yi, µi)} and

Ω
κout ,i(yi,µi)

out ,i to denote the set {Ωκ
out ,i | κ ∈ κout ,i(yi, µi)}.
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4.4 Hybrid model

In this section, we present a formal description of the closed-loop system using
the modelling framework for hybrid dynamical systems as advocated in [99]. We
define the network-induced error as es,i := ŷq,i − qµi

i (yi), which is reset to zero
at each transmission instant tik, k ∈ N. We also define the quantization error as
eq,i := qµi

i (yi)−yi. The total network-induced error at each node i ∈ {1, 2, . . . , l},
is given by

ei := es,i + eq,i = ŷq,i − yi. (4.13)

Since at each transmission instant tik, k ∈ N, i ∈ {1, 2, . . . , l}, the sampling error

of node i is set to zero, we have that ei(t
i
k
+
) = eq,i(t

i
k
+
). Observe that in

general ei is not reset to zero at each transmission instant due to the effect of
quantization. This issue induces nontrivial challenges to the design of event-
triggered control mechanisms, compared to the case where quantization is not
considered, and requires careful handling. In fact, this phenomenon may have
a negative impact on the closed-loop stability, as we will explain later. Let
x := (xp, xc) ∈ Rnx and e := (e1, e2, . . . , el) ∈ Rny . Then, in view of (4.6), (4.7),
(4.13), the flow dynamics of x is given by

ẋ =




Ap +BpDcCp BpCc

BcCp Ac



x+




BpDc

Bc



 e+




Ep

0



w

=: A1x+ B1e+ E1w.
(4.14)

Let the matrix Cp in (4.6) be partitioned as Cp =
[
CT

p,1 . . . C
T
p,l

]T
with Cp,i ∈

R
nyi × Rnp such that yi = Cp,ixp ∈ R

nyi for i ∈ {1, 2, . . . , l}. Then, because of
the ZOH implementation, the flow dynamics of ei is

ėi = −ẏi = −Cp,iẋp

=
[

−Cp,i(Ap +BpDcCp) −Cp,iBpCc

]

x− Cp,iBpDce

−Cp,iEpw

=:A2ix+ B2ie+ E2iw.

(4.15)

In view of (4.15), the flow dynamics of the overall e is

ė =








A21

...

A2l







x+








B21

...

B2l







e+








E21
...

E2l







w

=: A2x+ B2e + E2w.

(4.16)



92 Chapter 4. Event-triggered Control with Quantization

We introduce auxiliary variables τi ∈ R>0 and pi ∈ {0, 1} for i ∈ {1, 2, . . . , l}.
The variable τi represents the time elapsed since the last transmission instant of
node i. It has the dynamics

τ̇i = 1 t ∈ (tik, t
i
k+1), τi((t

i
k)

+) = 0 for k ∈ N. (4.17)

The variable pi is a boolean that keeps track of whether at the next event, the
zoom-variable is updated (pi = 0) or a transmission occurs (pi = 1) (recall that
at each transmission instant tik, the zoom variable µi is updated before yi is
transmitted). Let ξ := (x, e, µ, τ, η, p) ∈ X with X = Rnx ×Rny × (R>µ

1

× . . .×
R>µ

l

)× Rl
>0 × Rl

>0 × {0, 1}l be the concatenation of the state variables, where

µ := (µ1, . . . , µl) ∈ R>0 × . . .× R>0, τ := (τ1, . . . , τl) ∈ Rl
>0, η := (η1, . . . , ηl) ∈

Rl
>0, and p := (p1, . . . , pl) ∈ {0, 1}l. Then, in view of (4.8) and (4.9), the flow

set C and the jump set D are given by

C :=
{

ξ ∈ X : p = 0
}

D :=
⋃l

i=1 Di

(4.18)

with

Di :=
{

ξ ∈ X : (ηi = 0 and τi > Ti) or pi = 1
}

. (4.19)

Note that the triggering condition related to ηi(t) = 0, i ∈ {1, 2, . . . , l}, in (4.8)
is embedded in the flow set C via the definition of X (ξ ∈ X implies ηi > 0 for
each i ∈ {1, 2, . . . , l}). Given (4.18), we obtain the hybrid system3

ξ̇ ∈ F (ξ, w) :=














A1x+ B1e + E1w
A2x+ B2e + E2w

0l

1l

Ψ(o)

0l














ξ ∈ C

ξ+ ∈ G(ξ) ξ ∈ D,

(4.20)

3With no loss of generality, we assume that before the first hybrid time instant, i.e., (t, j) =
(0, 0), the system is properly initialized in the sense that at least one successful transmission
per node has occurred. The latter is important to make sure that both the sensors and the
controller have the same knowledge on ŷq at the initial time. This prevents the system to start
in and undesired equilibrium due to the mismatch between the controller and the sensor on
the last transmitted value ŷq, see also, e.g., [4, 74, 78].
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where Ψ(o) := (Ψ1(o1), . . . ,Ψl(ol)) with oi := (yi, ei, τi, ηi) ∈ R
noi . The jump

map is given by G(ξ) :=
⋃l

i=1Gi(ξ), where

Gi(ξ) :=







{

Gµ
i (ξ)

}

for ξ ∈ Di ∧ pi = 0
{

Gy
i (ξ)

}

for ξ ∈ Di ∧ pi = 1

∅ for ξ /∈ Di

(4.21)

with

Gµ
i (ξ) :=















x

e

Λ̄iΘi(yi, µi) + (Il − Λ̄i)µ

τ

η

Λ̄i1l + (Il − Λ̄i)p















Gy
i (ξ) :=















x

Λieq + (Iny
− Λi)e

µ

(Il − Λ̄i)τ

Λ̄iη0(e) + (Il − Λ̄i)η

(Il − Λ̄i)p















,

(4.22)

where Λi := diag{δ1iIny1 , . . . , δliInyl
}, i ∈ {1, 2, . . . , l}, Λ̄i := diag{δ1i, . . . , δli}

with δji the Kronecker delta, which takes the value δji = 1 when i = j and
δji = 0 when i 6= j, η0(e) := (η0,1(e1), . . . , η0,l(el)), eq := (eq,1, . . . , eq,l), the
function Θi : R

nyi × R>0 ⇒ R>0 as in (4.12) with the functions κin ,i, κout ,i :
Rnyi × R>0 ⇒ N to be specified.

System (4.20) flows on C as long as the triggering conditions are not satisfied
and p = 0. When ξ ∈ Di and pi = 0, ξ can jump according to ξ+ ∈ Gµ

i (ξ) corre-
sponding to an update of the quantizer settings. To be more specific, when the
state jumps according to ξ+ ∈ Gµ

i (ξ), the quantizer variable µi, i ∈ {1, 2, . . . , l},
is updated and pi is changed to 1. Consequently, ξ+ lies into the jump set
Di with pi = 1. Since the system is not allowed to flow when pi = 1 for
some i ∈ {1, 2, . . . , l}, since, in view of (4.18), ξ /∈ C when pi = 1 for some
i ∈ {1, 2, . . . , l}, a transmission is generated and pi is reset to 0, in view of the
jump map Gy

i (ξ). As such, the boolean variable pi ensures that at any transmis-
sion instant tik, the quantizer variable µi is updated before transmitting qµi

i (yi),
which is fundamental for realizing properties (ii) and (iii) as mentioned in the
introduction.
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Let us remark that the hybrid system in (4.20) satisfies the following condi-
tions

• C and D are closed sets

• F : X×Rnw ⇒ Y is outer semicontinuous and locally bounded, and F (ξ, w)
is non-empty and convex for all (ξ, w) ∈ C × Rnw .

• G : X ⇒ Y is outer semicontinuous and locally bounded, and G(ξ, w) is
non-empty for all (ξ, w) ∈ D,

where Y = Rnx × Rny × Rl × Rl
>0 × Rl × {0, 1}l. These conditions assure that

the hybrid system H described by (4.18) and (4.20), is well-posed, see also,
[99, Chapter 6].

Remark 4.1. We note that the update strategy of the zoom variable µi, i ∈
{1, 2, . . . , l}, in (4.12), (4.20) and (4.22) is essentially different from related
techniques in the context of quantized control systems (QCS) [145,207,232] from
two points of view. First, in the proposed scheme, the zoom actions are carried
out based on the past (true) values of yi and not based on the quantized feed-
back information qµi

i (yi) as in [145,207,232] for instance. To that end, we rely on
the assumption that the true values of yi can be accessed by the corresponding
encoder at node i. Indeed, this requirement is relevant if the communication
network is the reason of quantization, such as in e.g., [56,194,209,231] and as we
consider in this study, but not the sensor, see [207] for further discussion on this
point. Second, unlike [145,207], we do not reset the control input to zero during
a zoom-out event, which allows to avoid large overshoot during the zoom-out
event. �

4.5 Main result

4.5.1 Assumptions

We make the following assumption on system (4.20).

Assumption 4.2. Consider system (4.20). There exist a positive definite sym-
metric real matrix P , real numbers εx, εw > 0 and εyi

, γi > 0 for i ∈ {1, 2, . . . , l},
such that








Σ ⋆ ⋆

BT
1 P + BT

2 A2 −Γ2 + BT

2 B2 ⋆

ET
1 P + ET

2 A2 ET
2 B2 ET

2 E2 − εwInw








6 0, (4.23)
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where Σ := AT
1 P + PA1 + εxInx

+ AT
2 A2 + C

T

p ΥCp with Cp := [Cp 0] and

Υ := diag{εy1Iny1
, . . . , εyl

Inyl
}, Γ := diag{γ1Iny1

, . . . , γlInyl
}, and where B2 =

[

BT

21 . . . B
T

2l

]T

with B2i := B2i(Iny
− Λi). �

The LMI condition (4.23) in essence establishes an L2-gain stability property for
the system ẋ = A1x+B1e+E1w from (e, w) to (A2x+B2e+E2w, y). Indeed, if we
define V (x) := xTPx for all x ∈ Rnx , then in view of (4.20) and the definitions
of Υ,Γ,Λ, the feasibility of (4.23) implies for all (x, e, w) ∈ Rnx+ne+nw that

〈∇V (x),A1x+ B1e+ E1w〉 6 −εx|x|2 −
l∑

i=1

εyi
|yi|2

−
l∑

i=1

∣
∣A2ix+ B2ie+ E2iw

∣
∣
2
+

l∑

i=1

γ2i |ei|2 + εw|w|2.
(4.24)

This property is needed to design the enforced minimum time Ti, i ∈ {1, 2, . . . , l}
on the inter-transmission times of each node and to design the dynamics of
ηi, i ∈ {1, 2, . . . , l} in (4.18) such that closed-loop stability (in an appropriate
sense) is guaranteed.

4.5.2 Design conditions for the event-triggering mecha-

nism

The dynamics of the functions ηi, i ∈ {1, 2, . . . , l}, in (4.9) are defined by the
functions Ψi and η0,i, inspired by [72], where quantization was not considered,
and are given by4

Ψi(oi):=εyi
max

{
|yi|2,∆2

0,i

}
− (1− ωi(τi))γ̃i|ei|2 − ϑiηi,

η0,i(ei):=γi(λ̃i − λi)|ei|2,
(4.25)

where

ωi(τi) :=







{1}, for τi ∈ [0, Ti)

[0, 1], for τi = Ti

{0}, for τi > Ti,

(4.26)

and where oi = (yi, ei, τi, ηi), as before, ϑi > 0, ∆0,i > 0, λi ∈ (0, 1), λ̃i ∈
[λi, λ

−1
i ), γ̃i := γ2i + γ2i λ̃

2
i + 2γiλ̃iL̃i with L̃i := Li + νi for any νi > 0 and Li :=

|B2iΛi| = |b2i,i|, with b2i,i such that B2i =
[
b2i,1 . . . b2i,l

]
, and the constants εyi

,

4In (4.25), we use εyi max
{

|yi|2,∆2
0,i

}

− (1 − ωi(τi))γ̃i|ei|2 − ϑiηi to denote the set

{εyi max
{

|yi|2,∆2
0,i

}

− (1 − ω)γ̃i|ei|2 − ϑiηi | ω ∈ ωi(τi)}.
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γi as in Assumption 4.2. The time constant Ti of any node i ∈ {1, 2, . . . , l}, is
taken such that Ti = Ti(λi, λ̃i, γi, L̃i), where

Ti(λi, λ̃i, γi, L̃i) :=







1
L̃iri

arctan

(

ri(1−λiλ̃i)
γi

L̃i
(λi+λ̃i)+1+λiλ̃i

)

, γi > L̃i

1
L̃i

1−λiλ̃i

λiλ̃i+λi+λ̃i+1
, γi = L̃i

1
L̃iri

arctanh

(

ri(1−λiλ̃i)
γi

L̃i
(λi+λ̃i)+1+λiλ̃i

)

, γi < L̃i

(4.27)

with ri :=

√∣
∣
∣( γi

L̃i
)2 − 1

∣
∣
∣. When λ̃i = λi, the time Ti(λi, λ̃i, γi, L̃i) corresponds

to the maximally allowable transmission interval (MATI) of time-triggered con-
trollers [51] for NCSs without quantization. Let us remark that λi also has an
important role in the design of the quantizer as we will discuss in later in Section
4.5.5. The time-constant Ti as given in (4.27) is derived as the time it takes for
the function φi : R>0 → R>0 to decrease from φi(0) = λ−1

i to φi(Ti) = λ̃i, where
φi satisfies, see also [51, 72],

dφi
dτi

= −2L̃iφi(τi)− γi(φ
2
i (τi) + 1). (4.28)

Remark 4.2. We observe that, in view of (4.27) and its interpretation in terms
of (4.28), when λ̃i ∈ [λi, λ

−1
i ) is increased, the guaranteed minimum time Ti

between two transmission instants of node i will be reduced. However, by in-
creasing λ̃i, the value of η0,i in (4.25) will increase. Consequently, this may
lead to increase the time it takes for ηi to decrease to 0, i.e., it may enlarge
the inter-transmission times. Hence, the tuning of λ̃i may generate a trade-off
between the guaranteed minimum inter-transmission time Ti and the average
inter-transmission times. �

4.5.3 Design conditions for the dynamic quantizer

In this subsection, we specify how to design the parameters ∆i,Mi,Ωin ,i,Ωout ,i

and the functions κin ,i, κout ,i for i ∈ {1, 2, . . . , l}, see (4.12). For each node i ∈
{1, 2, . . . , l}, we design the initial quantizer rangeMi, the initial error bound ∆i,
the zoom-in parameters Ωin ,i ∈ (0, 1), and the zoom-out parameters Ωout ,i > 1
such that

Mi

∆i
>

(

κi +
2
√
γ̃i√

εyi
Ωin ,iλi

)

(4.29)

κi > max

{

1,
(Ωin ,iΩout ,i − 1)Mi +∆i

Ωin ,iΩout ,i∆i

}

. (4.30)
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Moreover, the functions κin ,i and κout ,i for i ∈ {1, 2, . . . , l}, are, for yi ∈ R
nyi

and µi ∈ R>0, given by

κin ,i(yi, µi) :=

⌈

max

{

−ς, log
(
max{|yi|,∆0,i}/(ℓin ,iµi)

)

log Ωin ,i

}⌉

κout ,i(yi, µi) :=

⌈

max

{

−ς, log
(
|yi|/(ℓout ,iµi)

)

log Ωout ,i

}⌉

,

(4.31)

where

ℓin ,i := Ωin ,i(Mi − κi∆i), ℓout ,i :=Mi −∆i (4.32)

with κi as in (4.30), ∆0,i as in (4.25) and where the constant ς ∈ (0, 1) can be
chosen arbitrarily.

The functions κin ,i and κout ,i and the constants ℓin ,i and ℓout,i are specified
such that the following properties are satisfied. For all yi ∈ Rnyi and µi ∈ R>0,
i ∈ {1, 2, . . . , l}, we have that

(a) κin ,i(yi, µi), κout ,i(yi, µi) ⊂ N

(b) κin ,i(yi, µi) 6= {0} ⇒ |yi| < ℓout ,iµi. Moreover, κout ,i(yi, µi) = {0}

(c) κout ,i(yi, µi) 6= {0} ⇒ ℓin ,iµi < max{|yi|,∆0,i}. Moreover, κin ,i(yi, µi) =
{0}.

Moreover, for each µ+
i ∈ Ω

κin ,i(yi,µi)
in ,i µi with yi ∈ Rnyi and µi ∈ R>0, it holds

that

(d)
Ωin ,i

ℓin ,i
max{|yi|,∆0,i} 6 µ+

i 6
max{|yi|,∆0,i}

ℓin ,i
,

and, for each µ+
i ∈ Ω

κout ,i(yi,µi)
out ,i µi with yi ∈ R

nyi and µi ∈ R>0, it holds that

(e) |yi|
ℓout ,i

6 µ+
i 6

Ωout ,i

ℓout ,i
|yi|.

Property (a) follows from the fact that ⌈−ς⌉ = {0} for any ς ∈ (0, 1). Properties
(b) and (c) are due to the fact that according to (4.32) and (4.30), 0 < ℓin ,i <
ℓout ,i < Mi. At last, properties (d) and (e) follow directly from the definitions
of κin ,i(yi, µi) and κout ,i(yi, µi), respectively. Let us remark that property (c)
implies that κin ,i(yi, µi) = 0 when ℓin ,iµi < ∆0,i. As we will show, this property
is important to ensure that the values of κin ,i(yi, µi) and κout ,i(yi, µi) remain
finite at all time, especially when yi crosses zero at any transmission instant
tik. Similar conditions have been used in [143, 145, 232]. Moreover, observe that
properties (b) and (c) imply that when the quantizer is updated, either a zoom-in
or zoom-out event occurs or neither of them.



98 Chapter 4. Event-triggered Control with Quantization

4.5.4 Stability result

We obtain the following result.

Theorem 4.1. Consider system (4.20) with the flow and the jump sets as in
(4.18) with Ψi, η0,i specified in (4.25) and Ti defined in (4.27). Suppose that
Assumptions 4.1, 4.2 are satisfied and that the dynamic quantizer is designed as
in (4.29)-(4.30). Let X0 := {ξ ∈ X : ηi > 0, pi = 0}. Then

(i) the set A := {ξ ∈ X : R(ξ) 6 c} is input-to-state stable w.r.t. w, where
where

R(ξ) := xTPx+

l∑

i=1

(

γiφ̃i(τi)|ei|2 + ηi

)

, (4.33)

φ̃i(τi) :=

{

φi(τ) when τ 6 Ti

φi(Ti) when τ > Ti,
(4.34)

and c :=

l∑

i=1

εyi∆
2
0,i

ǫmin{εx/λmax(P ), 2min
i

νi,min
i

ϑi} with P, γi, εx, εyi
as in Assumption

4.2, ∆0,i as in (4.12) and where ǫ ∈ (0, 1) can be chosen arbitrarily.

Moreover, for each maximal solution pair (ξ, w) with ξ(0, 0) ∈ X0 and w ∈ L∞,
it holds that, when pi(t, j) = 1,

(ii) |yi(t, j)| 6Miµi(t, j);

(iii) |es,i(t, j)| > |eq,i(t, j)|;

(iv) κin ,i(yi(t, j), µi(t, j)) ⊆ {0, 1, . . . , κ∗in ,i} and κout ,i(yi(t, j), µi(t, j)) ⊆ {0, 1,
. . . , κ∗out ,i}, where

κ∗in ,i := max

(⌈
log (∆0,i/(ℓin ,iµ̄i))

logΩin ,i

⌉)

, (4.35)

κ∗out ,i := max











log
(

ȳi/(ℓout ,iµi
)
)

logΩout ,i









 (4.36)

with

µ̄i := max{Ωκ∗

out ,i

out ,i

ȳi
ℓout ,i

, µi(0, 0)}, (4.37)

µ
i
:=

Ωin ,i∆0,i

ℓin ,i
, (4.38)
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and

ȳi :=

√

λmax(C⊤
p,iCp,i)

λmin(P )

(
√

R(ξ(0, 0)) +

√
εw
ρ
‖w‖∞

)

. (4.39)

�

Observe that properties (i)-(iv) above correspond to properties (i)-(iv) introdu-
ced in Section 4.1, respectively. Let us first remark that the guaranteed ISS
property implies that, in the absence of disturbances, the state trajectory con-

verges to a neighbourhood of the origin whose size depends on
l∑

i=1

∆0,i. This

is due to the fact that µi does not eventually go to zero since no zooming-in
occurs when µi <

∆0,i

ℓin ,i
according to (4.12) in combination with (4.31), which is

also the case in, e.g., [143, 145]. Property (ii) implies that at each transmission
event, the output measurement yi is within the range of the associated quanti-
zer. As a consequence, the quantization error is always smaller than or equal to
the quantization error bound at each transmission event. Property (iii) implies
that at each transmission event, i.e., when ξ ∈ Di and pi = 1, i ∈ {1, 2, . . . , l},
the magnitude of sampling-induced error is larger than the error due to quan-
tization which implies that the transmitted information is more accurate than
the information already available at the corresponding receiving node. As such,
property (iii) helps in avoiding redundant usage of the network. Finally, pro-
perty (iv) shows that at transmissions, the elements of the sets κin ,i(yi, µi) and
κout ,i(yi, µi), i ∈ {1, 2, . . . , l}, are bounded by κ∗in ,i and κ

∗
out ,i, respectively. The

latter property is important to make sure that the amount of data sent over the
network per transmission is bounded. Let us remark that the quantities µ̄i and
ȳi, i ∈ {1, 2, . . . , l}, represent upper-bounds on ‖µi‖∞ and ‖yi‖∞, respectively.

Let us highlight that the maximum number of bits that is required to capture
the encoded quantized output measurement of the i-th node in a single data
package is given by

Nbits,i = min

(⌈
log(card(Qi) + max{κ∗in ,i, κ

∗
out ,i}+ 1)

log 2

⌉)

, (4.40)

for i ∈ {1, 2, . . . , l}, where card(Qi) is equal to the number of quantization
regions as before. As such, the requirements for the communication channel in
terms of bits per data package, can be determined a priori.

4.5.5 Design procedure of the ETM and quantizer

In this subsection, we discuss the design of the ETM and the quantizer. Note
that, in view of (4.27), (4.29), that the design parameters γ̃i, εyi

, λi, λ̃i i ∈
{1, 2, . . . , l}, create a strong coupling between the design of the event-triggering
mechanism and the design of the dynamic quantizer.
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The first step of the design procedure is to find suitable γi, i ∈ {1, 2, . . . , l},
by minimizing the weighted sum

∑l
i=1 πiγi subject to (4.23) with πi ∈ (0, 1),

i ∈ {1, 2, . . . , l}, such that
∑l

i=1 πi = 1. The selection of πi allows to balance
the communication resource utilization among the different nodes. The parame-
ters Ωin ,i and Ωout ,i, i ∈ {1, 2, . . . , l}, allow to balance the required number of
quantization regions that is needed to satisfy (4.30) and the maximum number
of zoom-in and zoom-out events per transmission as given in (4.35) and (4.36),
respectively. The next step is to select κi as small as possible to minimize the
lower-bound on Mi/∆i as given in (4.30). The latter is desired as Mi/∆i ty-
pically reflects the number of quantization regions. After Ωin ,i, Ωout ,i and κi,
i ∈ {1, 2, . . . , l}, are obtained, we take Mi,∆i such that (4.30) holds. Finally,
the tuning of λi can be used to obtain an intuitive trade-off between the num-
ber of transmissions and the amount of data that needs to be transmitted per
transmission. When λi is reduced, the value of Ti in (4.27) will increase and,
depending on the choice of λ̃i, the value of γ̃ will decrease, which may result
in a reduction in the amount of transmissions. However, by reducing λi, the
right-hand side of (4.29) will also increase. Hence, the value of Mi

∆i
needs to be

increased which typically implies that more quantization regions are required,
in order to ensure that (4.29) holds. We will illustrate this also with an example
in the next section.

4.6 Illustrative example

We consider the following LTI plant model

ẋp =

[

0 1

−2 −1

]

xp +

[

0

−1

]

u+

[

0

1

]

w

y =

[

1 0

1 1

]

xp.

(4.41)

The plant is controlled by the dynamic controller

ẋc =

[

0 −2

0 −3

]

xc +

[

0 0

1 0

]

ŷq

u =
[

−1 −2
]

xc.

(4.42)

We assume that the two outputs of the plant are transmitted asynchronously and
independently over two different networks. By solving the LMI (4.23), we obtain
εy1 = 2.1780, εy2 = 1.0049, L1 = L2 = 0, γ1 = 9.4274, γ2 = 6.1258. We take

λ1 = λ2 = 0.5, λ̃1 = 0.6, λ̃2 = 0.5, ν1 = ν2 = 0.01 and we compute the values of
T1, T2 by using (4.27), which yields T1 = 0.0601 and T2 = 0.1049. Furthermore,
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we obtain γ̃1 = 120.9841 and γ̃2 = 51.1083. Finally, we set ϑ1 = ϑ2 = 0.01 and,
hence, all the required parameters for the event-triggering functions in (4.25) are
defined. Next, we set the range of the quantizers to be M1 = 150,M2 = 100 and
we take ∆1 = ∆2 = 1.5, ∆01 = ∆02 = 1 × 10−6, Ωin ,1 = Ωin ,2 = 0.5,Ωout ,1 =
Ωout ,2 = 2 and κ1 = κ2 = 10, which verify conditions (4.29), (4.30) and lead to
ℓin ,1 = 67.5, ℓin ,2 = 42.5, ℓout ,1 = 148.5 and ℓout ,2 = 98.5. We run simulations
for 50 seconds with the initial conditions x(0, 0) = (40,−50, 30,−20), e(0, 0) =
(0, 0), η(0, 0) = (0, 0), φ(0, 0) = (λ−1

1 , λ−1
2 ), µ(0, 0) = (1, 1) and with the external

disturbance w satisfying w(t, j) = 2 sin(2πt) for all (t, j) ∈ domw with t ∈ [0, 10],
w(t, j) = 0 for all (t, j) ∈ domw with t ∈ (10, 30] and w(t, j) = 0.2 for all
(t, j) ∈ domw with t ∈ (30, 50]. The observed minimum and average inter-
transmission times, respectively denoted by τmin and τavg , are summarized in
Table 4.1. We note that τmin,1 > T1 while τmin,2 ≈ T2, which supports the

Ti τmin,i τavg ,i

y1 0.0601 0.0644 0.2173
y2 0.1049 0.1051 0.2563

Table 4.1. Minimum and average inter-transmission times.

observation of Remark 4.2 on the choice of λ̃i since λ̃1 > λ1 and λ̃2 = λ2. The
state trajectories of the plant and the dynamic controller are shown in Figure
4.2, where we note that the state converges to a small neighborhood of the origin
as expected. The output trajectories y1, y2 are shown in Figure 4.3 and Figure
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Fig. 4.2. State trajectory for the plant and the controller.

4.4, where we note that the trajectories y1, y2 exhibit oscillations, which makes it
necessary to incorporate the zoom-out event to avoid the quantizers saturation.
The zoom-in/zoom-out events by the respective dynamic quantizers are shown
in Figure 4.5 and Figure 4.6 during the first 3 seconds. We note that at any
transmission instant tik, k ∈ N, only a zoom-in event or a zoom-out event occurs
but not both of them due to the design conditions in Section 4.5.3 that imply
properties (b) and (c) below (4.38).
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Fig. 4.3. Plant output y1.

Time[s]
0 5 10 15 20 25 30 35 40 45 50

M
ag

ni
tu

de

-30

-20

-10

0

10

20

30

-0,05

0

0,05

Fig. 4.4. Plant output y2.
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Fig. 4.5. Zoom actions for y1 for the first 3 seconds.

Figure 4.7 and Figure 4.8 present the generated transmission instants and
the zoom instants during the first 3 seconds for nodes 1 and 2, respectively. We
observe that the zoom actions are only executed at transmission instants as des-
cribed in Section 4.3.3 and that at some transmission instants, no zoom action
occurs. The latter is the case when none of the zoom conditions is met at those
instants. The trade-off between transmissions and number of quantization re-
gions is illustrated in Figure 4.9 and 4.10 for node 1 and 2, respectively. These
figures are generated by varying λi in (4.27), (4.29) from 0.01 to 0.99 and by
taking λ̃i = λi. Observe that larger values of Mi

∆i
, i ∈ {1, 2} which for this case

implies more quantization regions, lead to larger values of the guaranteed mini-
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Fig. 4.6. Zoom actions for y2 for the first 3 seconds.
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Fig. 4.7. Transmission/zoom instants for y1 for the first 3 seconds.
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Fig. 4.8. Transmission/zoom instants for y2 for the first 3 seconds.

mum time Ti between two consecutive transmissions/zooms at the corresponding
node and vice versa, as discussed in Section 4.5.5.

4.7 Conclusions

In this chapter, we addressed the problem of input-to-state stabilization of linear
systems over digital communication networks. We considered three important
features of the communication network. First of all, our problem involved quan-
tization of the measured variables. In networked control systems, quantization
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Fig. 4.9. Tradeoff curves between number of quantization regions and
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Fig. 4.10. Tradeoff curves between number of quantization regions and
transmissions for y2.

mechanisms are inevitable as the packets to be transmitted have a finite size in
terms of bits. Secondly, we employed a resource-aware control paradigm (in par-
ticular, event-triggered control) to utilize the bandwidth-limited communication
channels only when needed. Thirdly, we studied the scenario where multiple sen-
sor nodes transmit their information asynchronously. We provided a complete
design solution for this setup for a linear plant in the presence of disturbances and
only based on output measurements, which is known to be a difficult problem.
Our main design framework solves the co-design problem of synthesizing both
the dynamic quantizers and the event-triggering mechanisms that are provided
for each individual sensor node. Interestingly, the intuitive trade-off between
the number of quantization levels (and thus the size of the information/data
packet that has to be transmitted) and the number of transmissions naturally
appears in our main theoretical results and the design methods. In fact, the
design of quantizers and event generators is directly coupled and reflecting this
essential trade-off. The proposed event-triggering mechanism enforces the exis-
tence of a strictly positive lower bound on the inter-transmission times of each
channel, which prevents the occurrence of Zeno behavior. Moreover, the dyna-
mic quantization strategy prevents the accumulation of zoom actions since the
zoom actions only take place at transmission instants. The zoom parameter of
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the dynamic quantizer is shown to be always bounded. The chattering between
the zoom-in stage and the zoom-out stage is avoided and the redundant access
of the network is prevented.

The framework laid down in this chapter can be extended in different di-
rections, such as the inclusion of delays based on the work in [120], combined
with co-design of the controllers [8]. Also, it might be the case in some practical
scenarios that the event-triggering mechanism only has access to the quantized
output measurement but not the current (true) value of the plant output as we
have considered in this study. This would call for a new analysis correspon-
ding to the case where in Figure 4.1 the sensor and the encoder are reversed in
the control loop. Also the extension of the approach to nonlinear systems is a
challenging and a relevant problem for the future.





Chapter 5

Event-triggered Control Systems

under Packet Losses

Abstract – Networked control systems (NCSs) offer many benefits in terms of increased

flexibility and maintainability but might also suffer from inevitable imperfections such as

packet dropouts and limited communications resources. In this chapter, (static and dynamic)

event-triggered control (ETC) strategies are proposed that aim at reducing the utilization of

communication resources while guaranteeing desired stability and performance criteria and a

strictly positive lower bound on the inter-event times despite the presence of packet losses. For

the packet losses, we consider both configurations with an acknowledgment scheme (as, e.g.,

in the transmission control protocol (TCP)) and without an acknowledgment scheme (as, e.g.,

in the user datagram protocol (UDP)). The proposed design methodology will be illustrated

by means of a numerical example which reveals trade-offs between the maximum allowable

number of successive packet dropouts, (minimum and average) inter-event times and Lp-gains

of the closed-loop NCS.

5.1 Introduction

Networked control systems (NCSs) differ from traditional control setups as they
rely on shared communication media instead of dedicated point-to-point con-
nections to transmit the sensor and actuation data. This offers many benefits
as NCSs are typically easier to install and maintain. Moreover, in case the com-
munication is wireless, the physical limitations of wired links are not present.
Nonetheless, before all the benefits of NCSs can be fully exploited, many issues
regarding the inherent imperfections of (packet-based) networked communica-

This chapter is based on [73, 74].
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tion, such as, limited communication resources and packet dropouts, need to be
resolved.

To deal with the fact that, in the context of NCSs, communication resources
are often limited and possibly shared with other users, new control strategies
need to be developed that do not only guarantee desired stability and closed-loop
performance properties but also aim to reduce the utilization of the communi-
cation channel. In addition, these control strategies should also guarantee the
desired closed-loop behavior in case packet dropouts are present. Traditional
(digital) control setups, in which data packages are typically sent in a time-
triggered fashion according to a fixed sampling rate often lead to inefficient use
of communication resources as the scheduling of transmission instants is purely
based on time and not on the actual status of the plant. Hence, it seems more
natural to use resource-aware control methodologies that determine the trans-
mission instants on the basis of state or output information to allow a better ba-
lance between communication efficiency and control performance. Examples of
resource-aware control methods include event-triggered control and self-triggered
control, see [114] for a recent overview.

In event-triggered control (ETC) strategies, transmission times are determi-
ned by means of a triggering rule that depends on, e.g., state or output mea-
surements of the system. This enables ETC strategies to reduce the number of
transmissions while maintaining desired stability and performance criteria. Alt-
hough many ETC strategies were proposed before, the majority of them do not
consider the occurrence of packet losses despite the facts that these packet losses
are often present in practical NCSs and that they deteriorate the performance
and might even lead to instability of the closed-loop system. Obviously, due to
the latter, the performance and stability results of existing ETC strategies in
which the occurrence of packet losses are not taken into account are not valid
in the presence of packet losses. In addition, in the context of ETC systems,
the presence of packet losses might annul the existence of a positive minimum
inter-event time (MIET). The latter property is essential for enabling practical
implementation of the ETC strategy. Because of the above mentioned reasons,
it is of interest to study ETC strategies that do take into account the presence
of packet losses. Examples of such ETC strategies include [37, 156, 164, 165] in
which stochastic optimal control approaches are used to minimize a cost function
consisting of a quadratic control cost and a communication cost. A key assump-
tion there is that acknowledgment signals are available, e.g. as in transmission
control protocols (TCP), such that it is known whether a transmitted package
has been received or not. In [103,104,138,259], a different approach is presented
which combines time-triggered and event-triggered solutions in the sense that
in case a packet loss is detected, the ETC scheme is interrupted and transmis-
sions are scheduled according to time-based specifications until the controller
successfully receives the plant measurements. Clearly, this approach requires
an acknowledgment scheme as well. In [251] it was shown that the design of
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a triggering rule of the form as in [224] can be adapted such that a maximum
allowable number of successive packet drops (MANSD) can be tolerated. This
setup does not require any acknowledgment scheme and is thereby compatible
with, e.g., the user datagram protocol (UDP). However, as shown in [41], this
approach does not guarantee a strictly positive lower bound on the inter-event
times in case disturbances are present. In [184] a periodic event-triggered control
(PETC) scheme is considered in the sense that the triggering condition is only
evaluated at equidistant instances in time. As such, a lower-bound on the inter-
event times is enforced despite the presence of disturbances. In a similar spirit
as in [251], it was shown that the design of such a PETC rule can be adapted to
tolerate a MANSD without the need for an acknowledgment scheme.

A significant drawback of the aforementioned approaches is that they rely on
the availability of full state information which may not be the case in practice.
Since, especially in the presence of disturbances, it is far from trivial to modify
existing state-based ETC schemes to output-based ETC schemes as shown in
[7,41,78], it is of interest to study output-based ETC schemes subject to packet
losses. To the best of our knowledge, the output-based case in the context
of packet dropouts has not been addressed in literature so far. Therefore, we
propose a new design framework for output-based event-triggering strategies for
NCSs that are subject to packet losses and disturbances. Motivated by UDP
and TCP protocols, we consider both the case with acknowledgments and the
case without acknowledgments. Interestingly, the design framework proposed in
this chapter can lead to both dynamic event-triggering mechanisms (ETMs), see
also [71, 72, 96, 191], and the more commonly studied static ETMs.

The remainder of this chapter is organized as follows. First, we present
the necessary preliminaries and notational conventions in Section 5.2, followed
by the introduction of the event-triggered NCS setup considered in this chap-
ter and the problem statement in Section 5.3. In Section 5.4, we describe the
event-triggered NCS by means of the hybrid modeling framework as presen-
ted in [98] leading to a more mathematically rigorous problem formulation. In
Section 5.5 and Section 5.6 we present design conditions for the proposed static
and dynamic event-triggering strategies for the case with and without ackno-
wledgments, respectively. Finally, we demonstrate how the presented theory
leads to trade-offs between the maximum allowable number of successive packet
dropouts (MANSD), (minimum and average) inter-event times and Lp-gains by
means of a numerical example in Section 5.7. We provide concluding remarks in
Section 5.8.

5.2 Definitions and preliminaries

N denotes the set of all non-negative integers, N>0 the set of positive integers,
R the field of real numbers and R>0 the set of all non-negative reals. For N
vectors xi ∈ Rni , i ∈ N̄ , we denote the vector obtained by stacking all vectors
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in one (column) vector x̄ ∈ Rn with n =
∑N

i=1 ni by (x1, x2, . . . , xN ), i.e.,

(x1, x2, . . . , xN ) =
[
x⊤1 x⊤2 · · · x⊤N

]⊤
. By | · | and 〈·, ·〉 we denote the Euclidean

norm and the usual inner product of real vectors, respectively. I denotes the
identity matrix of appropriate dimensions. A function α : R>0 → R>0 is said
to be of class K if it is continuous, strictly increasing and α(0) = 0. It is
said to be of class K∞ if it is of class K, and in addition, it is unbounded. A
function β : R>0 × R>0 → R>0 is said to be a KL function if it is continuous,
β(·, t) is of class K for each t > 0 and β(s, ·) is nonincreasing and satisfies
limt→∞ β(s, t) = 0. A function f : Rn → Rn is said to be locally Lipschitz
continuous if for each x0 ∈ Rn there exist constants δ > 0 and L > 0 such
that |x − x0| 6 δ ⇒ |f(x) − f(x0)| 6 L|x − x0|. A set-valued mapping from
a set X to a set Y , associates, with every point x ∈ X , a subset of Y . The
notation F : X ⇒ Y , indicates that F is a set-valued mapping from X to Y
with F (x) ⊂ Y for all x ∈ X .

In this chapter, we model NCSs as hybrid systems H of the form

ξ̇ = F (ξ, w), when ξ ∈ C, (5.1a)

ξ+ ∈ G(ξ), when ξ ∈ D. (5.1b)

where F describes the flow dynamics, G the jump dynamics, C the flow set and
D the jump set. We denote the hybrid system as in (5.1) with H = (C,D, F,G)
or by H in short. We now recall some definitions given in [98] on the solutions
of such hybrid system.

A compact hybrid time domain is a set D =
⋃J−1

j=0 [tj , tj+1]× {j} ⊂ R>0 ×N

with J ∈ N>0 and 0 = t0 ≤ t1 . . . ≤ tJ . A hybrid time domain is a set D ⊂
R>0×N such that D∩ ([0, T ]× {0, . . . , J}) is a compact hybrid time domain for
each (T, J) ∈ D. A hybrid signal is a function defined on a hybrid time domain.
In this chapter, the hybrid signal w : dom w → Rn

w is referred to as a hybrid
input. A hybrid signal ξ : dom ξ → Rn is called a hybrid arc if ξ(·, j) is locally
absolutely continuous for each j.

For the hybrid system H given by the state space Rn, the input space Rnw

and the data (F,G,C,D), where flow map F : Rn × Rnw → Rn is continuous,
the jump map G : Rn ⇒ Rn is a set-valued map, and the flow set C and jump
set D are subsets of Rn, a hybric arc ξ : dom ξ → Rn and a hybrid input
w : dom w → R

nw is a solution pair (ξ, w) to H if
1) dom ξ = dom w,
2) For all j ∈ N and for almost all t such that (t, j) ∈ dom ξ, we have

ξ(t, j) ∈ C and ξ̇(t, j) = F (ξ(t, j), w(t, j)).
3) For all (t, j) ∈ dom ξ such that (t, j +1) ∈ dom ξ, we have ξ(t, j) ∈ D and

ξ(t, j + 1) ∈ G(ξ(t, j)).
Let us remark that the hybrid systems considered in this chapter have time

regularization (or dwell time) and external inputs only appearing in the flow
map. The latter allow us to employ the following signal norm definitions inspired
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by [21]. For p ∈ [1,∞), we introduce the Lp-norm of a function ξ defined on

a hybrid time domain dom ξ =
⋃J−1

j=0 [tj, tj+1] × {j} with J possibly ∞ and/or
tJ = ∞ by

‖ξ‖p =
( J−1∑

j=0

∫ tj+1

tj

|ξ(t, j)|pdt
)1/p

(5.2)

provided the right-hand side is well-defined and finite. In case ‖ξ‖p is finite, we
say that ξ ∈ Lp.

5.3 NCS model and problem statement

In this section, we present the event-triggered NCS setup considered in this
chapter and discuss how this NCS is affected by packet losses. Based on these
descriptions, we provide an initial problem formulation, which will be formalized
later in Section 5.4.

5.3.1 Networked control configuration

In this chapter, we consider the output-based feedback control configuration as
illustrated in Fig. 5.1. The dynamics of plant P is given by

P :

{

ẋp = fp(xp, u, w)

y = gp(xp),
(5.3)

where xp ∈ R
nxp represents the state vector of the plant, w ∈ Rnw is a distur-

bance input, u ∈ R
nu is the control input, and y ∈ R

ny the measurable output.
The function fp : Rnxp × Rnu × Rnw → R

nxp is assumed to be locally Lipschitz
continuous and the function gp : Rnxp → Rny is assumed to be continuously
differentiable. The controller C is given by

C :

{

ẋc = fc(xc, ŷ)

u = gc(xc, ŷ),
(5.4)

where xc ∈ Rnxc denotes the state of the controller and where ŷ ∈ Rny represents
the most recently received output measurement by the controller C. The function
fc : Rnxc × Rny → Rnxc is assumed to be locally Lipschitz continuous and the
function gc : Rnxc × Rny → Rnu is assumed to be continuously differentiable.
Notice that we ignore the effect of discretization and quantization due to the
implementation on a digital platform. The performance output is given by

z = q(x), (5.5)

where z ∈ Rnz , x = (xp, xc) ∈ Rnx with nx := nxp
+ nxc

and where q : Rnx →
Rnz a continuous function.
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Fig. 5.1. Schematic representation of the event-triggered control confi-
guration of an NCS discussed in this chapter.

In general, the communication in NCSs is packet-based in the sense that
only discrete packages containing finite amounts of data can be sent across the
network at countable instants in time. In particular, transmissions are attempted
at times tl, l ∈ N, that satisfy 0 6 t0 < t1 < t2 < . . .. Since packet losses
might occur, the most recent sensor measurement information ŷ available at the
controller is only updated according to ŷ+ = y, in terms of the framework of
[98], if the transmission has been received successfully at time tl. Otherwise, the
packet is considered to be lost with the consequence that the sensor information
available at the controller cannot be updated, and we will have ŷ+ = ŷ.

To be able to guarantee the desired behaviour of the closed-loop system in
presence of these packet losses, we adopt the following assumption, which has
been used in several works before, see, e.g., [103, 104, 120, 138, 184, 251].

Assumption 5.1. The number of successive packet dropouts δ ∈ N that might
occur since the last successful transmission is upper bounded by δmax, where
δmax ∈ N represents the maximum allowable number of successive dropouts
(MANSD).

In between updates, ŷ evolves according to

˙̂y = f̂(ŷ), (5.6)

where f̂ is a locally Lipschitz function. Notice that a zero-order hold device
(ZOH), in which ŷ is kept constant between transmissions, can simply be mo-

deled by taking f̂ = 0 in (5.6). Furthermore, the framework presented in this
chapter also allows extensions in the direction of, e.g., model-based holding de-
vices that, for the output-based case, require additional dynamics, see [93, 259]
for more details. For ease of exposition, we do not consider these type of holding
devices in the remainder of this chapter.

Remark 5.1. For the sake of simplicity, we assume that the controller is con-
nected to actuators of the plant via a dedicated point-to-point link, i.e., the
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control signal u is continuously available at plant P and only the output y is
transmitted over a network in a packet-base manner. However, in a similar
fashion as in [6, 72], the framework presented in this chapter allows for extensi-
ons towards other control configurations as well such as configurations in which
(parts of) the output y and/or the control input u are asynchronously transmit-
ted over a network. Moreover, for brevity of exposition, we do not consider the
presence of transmission delays. Although, in case a ZOH device is employed,
we foresee that, by building upon the work in [72, 110, 120], the current work
can mutatis mutandis be extended to ETM design for NCSs in which variable
communication delays are present.

5.3.2 Event-based communication

As mentioned in the introduction, in time-triggered NCSs, the scheduling of
transmission instants is purely based on time. As a consequence, desired stability
and performance criteria of these time-triggered schemes can only be guaranteed
if all transmission intervals satisfy ǫ 6 tl+1 − tl 6 τmati, l ∈ N, independent of
the status of the system. Here ǫ ∈ (0, τmati] is an arbitrarily small positive
constant to guarantee Zeno-freeness and where τmati represents the so-called
maximum allowable transmission interval (MATI) as used in [51, 120, 173, 245].
Hence, this time-based specification is typically chosen on the basis of the worst-
case situation of the system. Since in the context of NCSs, the communication
resources are often scarce, we consider event-triggered control (ETC) schemes
in this chapter in which transmission instants are determined on the basis of
state or output measurements. In this way, the transmission intervals are no
longer restricted to the worst-case value, which may result in significantly larger
average inter-event times while (the same) stability and performance properties
can be guaranteed.

The fact that in ETC schemes, transmission instant are determined on the ba-
sis of output measurements instead of time as in time-triggered control schemes
also lead to new challenges. To be more specific, one of the main difficulties for
constructing an event-triggering mechanism (ETM), for the output-case and in
presence of disturbances in particular, is to exclude Zeno-behavior, i.e., to avoid
an infinite number of transmissions in finite time and still provide stability and
performance guarantees. As such, it is important to guarantee the existence
of a strictly positive lower bound on the inter-event times, often referred to
as the minimal inter-event time (MIET), despite the presence of disturbances.
This MIET is crucial in order to implement the ETC scheme in practice. The
event-triggering conditions determining the transmission attempts as considered
in this chapter (for the case with acknowledgments) have the form

tl+1 := inf {t > tl + τmiet | Ψ(o(t), 0) < 0} , (5.7)
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and
tl+1 := inf {t > tl + τmiet | η(t) < 0} , (5.8)

for l ∈ N>δmax+1 where η ∈ R>0 is the triggering variable which evolves accor-
ding to







η̇(t) = Ψ(o(t), η(t)), when η(t) > 0,
η(t+) = η0(o(t)), when η(t) = 0 and transmission successful,
η(t+) = η(t), when η(t) = 0 and transmission failed,

(5.9)

where o ∈ O denotes all the information which is locally available at the ETM
such as the sensor measurements y ∈ Rny . The first δmax + 1 transmission
instants are given by

tl+1 := tl + τmiet, (5.10)

for l ∈ 1, 2, . . . , δmax, where t0 = 0. These (time-triggered) transmission instants
are used to make sure that at least one sensor measurement has successfully been
received at the controller side before the ETMs are active (independent whether
an acknowledgments scheme is present or not). Observe that when employing
ETC, also for the case in which there are no packet losses, i.e., when δmax = 0,
it is in general required to have at least one transmission instant before the ETM
is active to make sure that the transmission error e := y− ŷ, which is often used
by the ETM, is available at the sensor side. See also [4,78] in which this issue is
also discussed for ETC systems without packet losses. Let us remark that also
for the case without acknowledgments, in which the transmission error e is not
known at the sensor side, it is also required that the first δmax transmission are
scheduled in a time-triggered fashion as we will discuss later in more detail.

In (5.7) and (5.9), the functions Ψ : O×R>0 → R and η0 : O → R are to be
designed to guarantee proper behavior of the closed-loop system. Observe that
the ETMs given in (5.7) and (5.8) use time-regularization in the sense that the
next transmission instant always occurs after at least τmiet time units, despite
the presence of disturbances. Hence, a robust positive MIET exists by design in
case τmiet > 0. To the best our knowledge, only periodic event-triggered control
schemes,e.g., see [112], or event-triggered control schemes equipped with this
time-regularization are able to both guarantee Zeno-freeness and finite Lp-gains
for output-based systems subject to disturbances. See also [41,71,72] for a more
detailed discussion on adopting time-regularization. Be aware that the variable
τmiet in the ETMs described by (5.7) and (5.8) can not be chosen arbitrarily but
must be designed such that the closed-loop system yields the desired stability
and performance properties.

Observe that in contrast to the ETM in (5.7), the triggering mechanism
presented in (5.8) employs the triggering variable η, which is a dynamic variable
evolving according to the dynamical system given in (5.9). For this reason, the
ETM in (5.7) is referred to as a static ETM and the in ETM in (5.8) as a dynamic
ETM. The main motivation for using dynamic ETMs is that, in contrast to the
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commonly studied static ETMs, the generated inter-event times do not converge
to the enforced lower bound in presence of disturbances when the output is close
to zero, as observed in [41, 71], and typically lead to larger inter-event times.
See also [71,72,96,191] for more details on dynamic ETMs. On the other hand,
from a practical point of view, static ETMs might be easier to implement.

5.3.3 Problem formulation

Time-triggered control schemes can relatively easy deal with packet losses in the
sense that packet losses can simply be regarded as prolongation of the trans-
mission interval. To be more concrete, the desired stability and performance
guarantees can be guaranteed by taking the MATI as

τ ′mati :=
τmati

δmax + 1
, (5.11)

where τmati corresponds to the MATI bound derived for the case in which packet
losses do not occur. This bound can be computed using tools as in, e.g., [51].

For ETC schemes, it is not possible to subdivide the transmission intervals
in case of packet losses (as in (5.11) for time-triggered control) since the next
transmission instant depends on the (future) evolution of the system, which is
in general not exactly known. Given this technical difficulty and the fact that
packet losses do typically occur, considering ETC schemes that are robust with
respect to packet losses is an important problem to be tackled. For this reason,
the problem consider in this chapter is formulated as follows.

Problem 5.1. Propose design conditions for τmiet,Ψ and η0 such that the ETMs
given by (5.7), (5.8) and (5.9) result in closed-loop stability and finite Lp-gain
(p ∈ [1,∞)) guarantees for the plant/controller combination given by (5.3) and
(5.4) despite the occurrence of packet losses.

The problem is formulated more formally in the next section. In the remain-
der of the chapter, we discuss two scenarios. First, we discuss the situation in
which the communication protocol employs an acknowledgment scheme as in
the transmission control protocol (TCP), in the sense that the transmitting de-
vice “knows” whether a transmission instant was successful or not. After that,
we consider the case in which the communication protocol does not employ an
acknowledgment scheme as in the user datagram protocol (UDP) which forms
an additional challange. In this case, the transmitting device can not distinguish
between a successful and a failed transmission. In the remainder of this chapter,
we refer to these two scenarios in short as the case with acknowledgments and
the case without acknowledgments, respectively.
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5.4 Hybrid model of the ETC scheme with

acknowledgements

To facilitate the (Lp−)stability analysis, we cast the event-triggered NCS setup
subject to packet losses discussed in the previous section in the hybrid system
framework as developed in [98] inspired by [51,71,120,173,191]. For the moment,
we only consider the case with acknowledgments.

To capture packet dropouts, we introduce the auxiliary variables δ ∈ ∆,
where ∆ := {0, 1, . . . , δmax}. The integer variable δ ∈ N is used to keep track of
the number of successive packet losses since the most recent successful transmis-
sion attempt. Moreover, we introduce an internal clock variable τ ∈ R, which
captures the time elapsed since the most recent transmission attempt and the
integer variable κ ∈ N, which represents the total number of transmission at-
tempts. Let e ∈ Rny denote the network-induced error e := ŷ− y. By using this
variable and the auxiliary variables τ , κ and δ, we can now write the closed-loop
system described by (5.3)-(5.9) in terms of flow and jump equations as in (5.1)
resulting in the hybrid system H in which the flow map is given by

F (ξ, w) =
(
f(x, e, w), g(x, e, w), 0, 1, 0,Ψ(o, η)

)
, (5.12)

where ξ := (x, e, δ, τ, κ, η) ∈ X := Rnx × Rny ×∆ × R>0 × N × R>0 and where
o = (y, e, τ, δ) ∈ O := Rny ×Rny ×R>0 ×∆. By combining e = ŷ− y with (5.3),
(5.4) and (5.6), we find that for x ∈ Rnx , e ∈ Rny and w ∈ Rnw

f(x, e, w) =

[
fp(xp, gc(xc, gp(xp) + e), w)

fc(xc, gp(xp) + e)

]

, (5.13)

g(x, e, w) = f̂(gp(xp) + e)− ∂gp
∂xp

(xp)fp(xp, gc(xc, gp(xp) + e), w). (5.14)

The functions Ψ and η0 are part of the ETM design and will be specified in
Section 5.5.

The jump map G is given by

G(ξ, w) :=

{

{G0(ξ, w), G1(ξ, w)}when δ < δmax

{G0(ξ, w)} when δ > δmax

(5.15)

for ξ ∈ X and w ∈ Rnw with

G0(ξ, w) :=
(
x, 0, 0, 0, κ+ 1, η0(o)

)
, (5.16a)

G1(ξ, w) :=
(
x, e, δ + 1, 0, κ+ 1, η

)
. (5.16b)

Note that the function G0 describes the jump of ξ when a successful transmission
attempt occurs and that G1 describes the jump of ξ when a transmission attempt
fails due to a packet loss. Furthermore, observe that the definition of jump map
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G is in correspondence with Standing Assumption 5.1 in the sense that after
δmax successive packet-losses have occurred (when δ = δmax), it is enforced that
a successful transmission occurs, i.e., that the system jumps according to G0.

On the basis of (5.7) and (5.10), we find that the flow set Cs and the jump
set Ds corresponding to the static event-triggering condition are given by

Cs :=
{

ξ ∈ X | τ 6 τmiet or (Ψ(o, 0) > 0 and κ > δmax)
}

(5.17a)

Ds :=
{

ξ ∈ X | τ > τmiet and (Ψ(o, 0) 6 0 or κ 6 δmax)
}

. (5.17b)

Observe that for the case of a static triggering condition, the variable η is redun-
dant. The flow set Cd and jump set Dd corresponding to the dynamic triggering
condition as given in (5.8) and (5.10), are given by

Cd :=
{

ξ ∈ X | τ 6 τmiet or κ > δmax

}

(5.18a)

Dd :=
{

ξ ∈ X | τ > τmiet and (η = 0 or κ 6 δmax)
}

. (5.18b)

Note that the triggering condition related to η < 0 in (5.8) is embedded via the
definition of X (ξ ∈ X implies η > 0). The resulting hybrid systems correspon-
ding to the static triggering condition and the dynamic triggering condition can
now be defined as

Hs := (Cs, Ds, F,G) (5.19)

Hd := (Cd, Dd, F,G), (5.20)

respectively, with F , G, Cs, Ds, Cd and Dd as in (5.12)-(5.18). Observe that
the choices for Cs, Ds, Cd and Dd lead to more solutions than induced by the
triggering conditions given by (5.7), (5.8) and (5.9), respectively, due to the non-
strictness of the inequalities in (5.17) and (5.18). Moreover, it is important to
note that for the hybrid models described above, o in (5.7) and (5.9) is given
by o = (y, e, τ, δ) and that indeed this information is available at the ETM
in case an acknowledgment scheme is employed. However, for the case without
acknowledgments e and δ are not known, providing even more challenging design
issues.

To establish definitions for stability and performance properties, we first
introduce the following definition [98].

Definition 5.1. A hybrid system H is said to be persistently flowing with respect
to initial state set X0 if all maximal solution pairs1 (ξ, w) with ξ(0, 0) ∈ X0 and
w ∈ Lp have unbounded domains in the t-direction, i.e., sup{t ∈ R>0 : ∃j ∈
N such that (t, j) ∈ dom ξ} = ∞.

1A solution pair (ξ, w) is said to be maximal if there does not exist another solution pair
(ξ′, w′) such that (ξ, w) is a truncation of (ξ′, w′) to some proper subset of dom ξ′. See, e.g.,
[199] for more details.
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To formalize the problem informally stated in the previous section (Problem
1), consider the following definitions.

Definition 5.2. A hybrid system H with initial state set X0 is said to be uni-
formly globally asymptotically stable (UGAS) if the system is persistently flo-
wing for w = 0 with respect to initial state set X0 and if there exists a function
β ∈ KL such that for any initial condition ξ(0, 0) ∈ X0 all corresponding soluti-
ons ξ of H with w = 0 satisfy

| (x(t, j), e(t, j), η(t, j)) | 6 β (| (x(0, 0), e(0, 0), η(0, 0)) |, t) , (5.21)

for all (t, j) ∈ dom ξ.

In case disturbances are present, i.e., w 6= 0, we consider the performance
output z = q(x) as in (5.5).

Definition 5.3. A hybrid system H with initial state set X0 is said to be Lp-
stable with an Lp-gain less than or equal to θ from input w to output z, if the
system is persistently flowing for w 6= 0 and there exists a K∞-function β such
that for any exogenous input w ∈ Lp, and any initial condition ξ(0, 0) ∈ X0,
each corresponding solution to H satisfies

‖z‖p ≤ β(|(x(0, 0), e(0, 0)|) + θ‖w‖p. (5.22)

The problem statement corresponding to the TCP case can now be formula-
ted as follows.

Problem 5.2. Given the event-triggered NCSs described by hybrid systems Hs

and Hd, a desired Lp-gain θ ∈ R>0 and a maximum number of successive packet
dropouts δmax, determine conditions for the positive scalar τmiet and for the
functions Ψ and η0 as in (5.9), such that the systems Hs and Hd are UGAS in
case w = 0 and, in the presence of disturbances, Lp-stable with an Lp-gain less
than or equal to θ.

5.5 ETM design with acknowledgments of pac-

ket losses

In the first part of this section, we present well-known conditions as used in
[51, 120, 173] for the Lp-stability analysis of NCSs. To be more concrete, these
conditions are used to construct a positive semi-definite storage function S, for
a hybrid system H that satisfies, loosely speaking, Ṡ ≤ θp|w|p − |z|p during
flow and S+ 6 S during jumps, where p ∈ [1,∞) and where w and z represent
the external disturbance and performance output, respectively. The existence of
such a storage function is a sufficient condition for system H to be Lp-stable with
Lp-gain less than or equal to θ (provided that the solutions are well-defined).



5.5 ETM design with acknowledgments of packet losses 119

In the second part of this section, we exploit these conditions to construct
ETMs as given in (5.8) and (5.9) that lead to Lp-stability of system Hs and Hd

(and thus including packet drops).

5.5.1 Preliminaries

Consider the following condition inspired by the work in [51, 120, 173, 174].

Condition 5.1. There exist a locally Lipschitz function W : Rny → R>0, a
continuous function H : Rnx × Rnw → R>0 and constants αW , ᾱW ∈ R>0 and
L ∈ R>0, such that

• for all e ∈ Rny , W (e) satisfies

αW |e| 6W (e) 6 ᾱW |e|, (5.23)

• for all x ∈ Rnx , w ∈ Rnw and almost all e ∈ Rny it holds that

〈
∂W (e)

∂e
, g(x, e, w)

〉

6 LW (e) +H(x,w). (5.24)

In addition, there exist a locally Lipschitz function V : R
nx → R>0, K∞-

functions αV and ᾱV , positive definite continuous functions ρ, σ : R → R>0

and ̺ : Rnx → R>0, and a constant γ > 0, such that

• for all x ∈ Rnx

αV (|x|) 6 V (x) 6 ᾱV (|x|). (5.25)

• for almost all x ∈ Rnx , w ∈ Rnw and all e ∈ Rny

〈∇V (x), f(x, e, w)〉 6 −ρ(|x|)− ̺(y)−H2(x,w)

− σ(W (e)) + γ2W 2(e) + µ(θp|w|p − |q(x,w)|p) (5.26)

for some µ > 0 and θ > 0.

For linear systems, it is possible to construct functions V and W that satisfy
Condition 5.1 via a linear matrix inequality (LMI) optimization problem, see
[71, 120] for more details. The conditions presented above also apply to several
classes of nonlinear systems as also illustrated by a nonlinear example in Section
5.7.

Besides the conditions above, we adopt the following condition for τmiet.

Condition 5.2. The time-constant τmiet ∈ R>0 satisfies

(δmax + 1)τmiet < T (γ, L) (5.27)
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where T : R>0 × R>0 → R>0 is given by

T (γ, L) :=







1
Lrarctan (r) , γ > L
1
L , γ = L
1
Lrarctanh (r) , γ < L

(5.28)

with r =
√

|(γ/L)2 − 1|.
Let us remark that T (γ, L) is related to the maximum allowable transmis-

sion interval (MATI) for time-based control schemes as presented in [51, 174].
Moreover, consider the function φ : R>0 → R that satisfies

φ̇ = −2Lφ− γ(φ2 + 1), (5.29)

where φ(0) = λ−1 with λ ∈ (0, 1) such that φ(s) ∈ [λ−1, λ] and φ̇(s) < 0 for all
s ∈ [0, τmiet(δmax + 1)]. As can be shown based on [51, 174], under Condition
5.2, the latter properties always hold if λ ∈ (0, 1) is taken sufficiently small.

5.5.2 Main result

In this section, we present the definitions of the functions Ψ and η0 such that
the ETM as given in (5.8) leads to the desired stability and performance criteria
for the case with acknowledgments.

Theorem 5.1. Consider the systems Hs and Hd, as in (5.19) and (5.20), re-
spectively, with initial state set X0 := {ξ ∈ X | κ = 0} that satisfy Condition 5.1,
a desired Lp-gain θ ∈ R>0 and a MANSD δmax ∈ N. Suppose that the function
Ψ : O× R>0 → R is given by

Ψ(o, η) :=

{

̺(y)− χ(η), for τ 6 τmiet,

̺(y)− γ̄(δ)W 2(e)− χ(η), for τ > τmiet,
(5.30)

where γ̄(δ) := γ(2φ((δ+1)τmiet)L+ γ(1+φ2((δ+1)τmiet)) with τmiet satisfying
Condition 5.2 and the function φ as in (5.29) and where χ is a locally Lipschitz
K∞-function. Moreover, suppose that the function η0 : O → R>0 is given by

η0(o) := γφ((δ + 1)τmiet)W
2(e). (5.31)

Then, Hs and Hd with initial state set X0 are UGAS and, in presence of distur-
bances, Lp-stable with an Lp-gain less than or equal to θ and with a lower-bound
on the MIET equal to τmiet.

Let us remark that the dynamics of the variable η given by (5.8), (5.9),
(5.30) and (5.31) is chosen such that if Condition 5.1 holds, U(ξ) = V (x) +
γφ̃(δ, τ)W 2(e) + η with φ̃(δ, τ) := φ(δτmiet + min(τ, τmiet)), constitutes a valid
Lyapunov/storage function establishing the desired stability and performance
properties. The complete proof is provided in the appendix.
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Remark 5.2. The static and dynamic ETMs given by (5.7), (5.8) and (5.9)
are related to the static and dynamic ETMs presented in [72], in which the
presence of packet dropouts is not considered. However, observe that due to
this presence of packet losses, besides having a different τmiet, it is required
that the ETMs given by (5.7), (5.8) and (5.9) explicitly depend on the number
of successive packet dropouts, which was not the case in [72] and require new
technical derivations as shown in the proof of Theorem 1.

Remark 5.3. Observe that the ETMs as given by (5.7), (5.8), (5.9), (5.30) and
(5.31) require that transmitted acknowledgments are being received instanta-
neously. However, let us remark that these ETMs can easily be adjusted such
that this requirement can be relaxed. For example, by letting the ETMs keep
track of the evolution of η for both the case that the most recent transmission
has been successful or denied. In this case, the acknowledgment is allowed to
be delayed with at most τmiet time units since it is known that within this time
frame, no other transmission is scheduled. For brevity of exposition, this feature
has, however, not been included formally.

Remark 5.4. The choice of the positive semi-definite continuous function ̺ :
Rny → R>0 in (5.26) and the time-constant τmiet ∈ (0, T (γ, L)) with T in (5.28)
is part of the ETM design. This choice typically relies on a trade-off between
the minimum inter-event time τmiet and the expected average inter-event time
due to the following facts. Observe from (5.30) that ̺ affects the size of Ψ and
thus the inter-event times. In addition, we can see from (5.26) that ̺ also affects
γ and thus T (γ, L) which restricts the choice for τmiet. Furthermore, for the
dynamic ETM, we can see from (5.31) that τmiet determines the size of η0 (and
thus of η) at jump times.

5.6 ETM design conditions without acknowledg-

ments of packet losses

If the communication protocol does not employ an acknowledgment scheme, the
ETM has no knowledge about whether a transmission attempt was successful or
not. As a consequence, the number of successive packet losses δ and therefore also
the transmission error e, which depends on the most recent sensor measurement
information ŷ available at the controller, are not available at the ETM in case
acknowledgments are absent. It is obvious that the ETMs presented in the pre-
vious section are not suitable for the case without acknowledgments since these
ETM, among others, rely on the availability of the transmission error e. However,
given that the number of successive packet losses is upper-bounded by δmax, it is
known that the most recent successful transmission instant has occurred at most
δmax transmission attempts ago. To be more concrete, for all t ∈ (tl, tl+1), l ∈ N,
the time instant at which the most recent successful transmission occurred is



122 Chapter 5. Event-triggered Control Systems under Packet Losses

contained in the set {tmax{0,l−δmax}, tmax{0,l−δmax+1} . . . , tl} ⊂ R>0. In the re-
mainder of this section, we exploit this fact to modify the ETM design for the
case with acknowledgments presented above, to obtain an ETM suitable for the
case without acknowledgments.

5.6.1 A modified ETM setup

To construct an ETM suitable for the case without acknowledgments, i.e, an
ETM that does not rely on availability of the number of successive packet losses
δ or the transmission error e, we proposed to track of all possible values that
the variable ŷ can possibly attain. For this reason, we augment the state ξ ∈ X

with the variables

¯̂y = (ŷ1, ŷ2, . . . , ŷδmax+1) ∈ R
(δmax+1)ny , (5.32)

where the i-th element of this sequence corresponds to the hypothesis that
i − 1 successive dropouts have occurred since the most recent successful trans-
mission attempt. To comply with the latter, the dynamics of the variables
ŷi, i ∈ ∆̃ := {1, 2, . . . , δmax + 1} need to be defined and initialized such that
when δ ∈ ∆ successive packet losses have occurred since the most recent success-
ful transmission attempt, it holds that ŷδ = ŷ. Observe from (5.6) and (5.12)
that the flow dynamics of ŷ does not explicitly depend on δ. As such, the flow
dynamics of ŷi for all i ∈ ∆̃ is similar to the flow dynamics of ŷ and given by

˙̂yi = f̂(ŷi). (5.33)

As mentioned before, when a transmission instant is successful, ŷ is updated
according to ŷ+ = y. Hence, the jump equation of the variable ŷ1, that corre-
sponds to the hypothesis that the most recent transmission attempt has been
successful, is given by

ŷ+1 = y (5.34)

Moreover, the jump map in (5.15) shows that when a transmission instant is
unsuccessful, the state variables e and y (and thus ŷ) do not jump. From this fact,
we can deduce that the jump equations for the variables ŷi, i ∈ {2, 3, . . . , δmax+
1} are given by

ŷ+i = ŷi−1, (5.35)

for all i ∈ {2, 3, . . . , δmax + 1}.
As already mentioned, the state variables δ and e are unknown as no acknow-

ledgment scheme is employed. For this reason, we propose to use a more robust
triggering condition than the ETM given in (5.7) and (5.8) in the sense that it
triggers on the basis of the worst-case situation. As such, we propose to use the
definitions (where in line with (5.7) and (5.8), we use t instead of the hybrid
time (t, j))

tl+1 := inf
{

t > tl + τmiet | min
k∈∆̃

Ψ(ok(t), 0) < 0
}

, (5.36)
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and

tl+1 := inf {t > tl + τmiet | Φη(η̄(t)) < 0} , (5.37)

for l ∈ N>δmax+1, where ok := (y, ŷk−y, τ, k−1), k ∈ ∆̃, η̄ = (η1, η2, . . . , ηδmax+1)
∈ R

δmax+1
>0 and where the function Φη : Rδmax+1

>0 → R>0 is given by

Φη(η̄) := min
k∈∆̃

ηk. (5.38)

As before in the case with acknowledgments, the first δmax + 1 transmission
instants are generated in a time-based fashion according to (5.10). The triggering
variables (η1, η2, . . . , ηδmax+1) behave as follows. During flows, the variable ηi
evolves according to

η̇i = Ψ(oi, ηi), (5.39)

for all i ∈ ∆̃, and, at jumps, according to

η+i = ηi−1 (5.40a)

η+1 = min
k∈∆̃

γφ(kτmiet)W
2(ŷk − y). (5.40b)

for all i ∈ {2, 3, . . . , δmax + 1}. The resulting augmented state is now given by
ξ̃ := (x, e, δ, τ, κ, η, ¯̂y, η̄) ∈ X̃ := X× R(δmax+1)ny × R

δmax+1
>0 .

It is important to note that the ETMs given by (5.36) and (5.37) do not
require the availability of η, δ or e at the sensor side. Instead, they need to keep
track of 2δmax +2 auxiliary variables whose updates only depend on the locally
available output measurement y and the most recently transmitted value of y,
regardlessly whether the corresponding transmission attempt was successful or
not. Hence, the ETMs given in (5.36) and (5.37) are indeed suitable for the case
without acknowledgments.

By means of (5.32)-(5.40), we can now specify the augmented systems H̃s

and H̃d corresponding to NCSs with a static and dynamic ETM, respectively,
as

H̃s := (C̃s, D̃s, F̃ , G̃) (5.41)

H̃d := (C̃d, D̃d, F̃ , G̃) (5.42)

where

C̃s :=

{

ξ̃ ∈ X̃ | τ 6 τmiet or

(

min
k∈∆̃

Ψ(ok, 0) > 0 and κ > δmax

)}

(5.43a)

D̃s :=

{

ξ̃ ∈ X̃ | τ > τmiet and

(

min
k∈∆̃

Ψ(ok, 0) 6 0 or κ 6 δmax

)}

, (5.43b)
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and where

C̃d :=
{

ξ̃ ∈ X̃ | τ 6 τmiet or κ > δmax

}

(5.44a)

D̃d :=
{

ξ̃ ∈ X̃ | τ > τmiet and (Φη(η̄) = 0 or κ 6 δmax)
}

. (5.44b)

Note that the triggering condition related to Φη(η̄) < 0 in (5.37) is embedded via

the definition of X̃ (ξ̃ ∈ X̃ implies ηi > 0 for all i ∈ ∆̃). The flow map F̃ and the
jump map G̃ can be obtained straightforwardly from (5.12), (5.15), (5.33)-(5.34)
and (5.39)-(5.40). Observe from (5.43) and (5.44) that, similar as for the ETMs
presented in (5.7) and (5.8), we consider that the first δmax + 1 transmission
instants are generated in a time-triggered fashion according to (5.10) which
makes sure that at least one transmission has been successful before the ETM is
active. This is needed for establishing the aforementioned desired relationships
between ¯̂y (which is only available at the sensor side) and the actual values of ŷ
(gp(xp) + e) (which is only available at the controller side), namely,

ŷ(t, j) = ŷδ(t,j)+1(t, j), (5.45)

for all (t, j) ∈ dom ξ̃ for which j > δmax + 1.

5.6.2 Main result

Theorem 5.2. Consider the systems H̃s and H̃d with initial state set X̃0 := {ξ ∈
X̃ | κ = 0} as given in (5.41) and (5.41), respectively, that satisfy Condition 5.1,
a desired Lp-gain θ ∈ R>0 and a MANSD δmax ∈ N. Suppose that the function
Ψ : O×R>0 → R is given by (5.30) with τmiet satisfying Condition 5.2, then the

ETM given by (5.37) guarantees that the systems H̃s and H̃d with initial state
set X̃0 are UGAS and, in presence of disturbances, Lp-stable with an Lp-gain
less than or equal to θ and with a lower-bound on the MIET equal to τmiet.

The proof is provided in the appendix.

Remark 5.5. Observe that, under the same circumstances, the inter-event times
generated by the ETM given in (5.8) (corresponding to the case with acknow-
ledgments) are larger than or equal to the inter-event times generated by the
ETM given in (5.37) (corresponding to the case without acknowledgments) due
to the fact that Φη(η̄(t, j)) 6 η(t, j) for all (t, j) ∈ dom ξ̃ (see the proof of The-
orem 2 in the Appendix). This is natural given that much more information is
available in the case with acknowledgments when compared to the case without
acknowledgments.

5.7 Numerical example

In this section, we present a numerical example that illustrates how to apply the
developed framework to systematically design an ETM for a nonlinear system
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both for the case with and without acknowledgments. Furthermore, we show that
this procedure leads to trade-offs between performance (in terms of an induced
L2-gain), robustness (in terms of MANSD) and the utilization of communication
resources (in terms of the MIET and average inter-event times).

5.7.1 Model description

Consider the nonlinear system

P :







ẋ1 = −2x1 + x2 + x21 − x31
ẋ2 = x1 + x22 − x32 + u+ w

y = z = x2,

(5.46)

where x1, x2 ∈ R, u ∈ R. The example is inspired by the numerical example
considered in [72]. We consider the control law u = −2ŷ and suppose it is
implemented in a ZOH fashion, i.e., ˙̂y = 0. Recalling that ŷ = e+ x2, we obtain
that f and g as in (5.12) are given by

f(x, e, w) =

[
−2x1 + x2 + x21 − x31

x1 − 2x2 + x22 − x32 − 2e+ w

]

, (5.47a)

g(x, e, w) = −x1 + 2x2 − x22 + x32 + 2e− w. (5.47b)

5.7.2 Storage function analysis and ETM design

To construct the ETMs given by (5.8) and (5.37) for the case with and without
acknowledgments, respectively, we first need to find functions H and W and
constants L, γ, k, and θ that satisfy Condition 5.1 for the system described in
(5.47). Consider the function W (e) = |e|. Then the inequality given by (5.24)
is satisfied with L = 2 and H(x1, x2, w) = | − x1 + 2x2 − x22 + x32 − w|.

To find γ and θ, consider the candidate storage function

V (x) = ς2
2∑

i=1

[(

α
x2i
2

+ β
x4i
4

)]

, (5.48)

where α, β, ς ∈ R>0. Recalling (5.47a), we have that

〈∇V (x), f(x, e, w)〉 6 ς2
(

2αx1x2 + βx31x2 + βx32x1

+

2∑

i=1

[
−2αx2i + αx3i − (α+ 2β)x4i + βx5i − βx6i

]

− 2αx2e − 2βx32e+ αx2w + βx32w
)

. (5.49)
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By using the facts that for all x2, e, w ∈ R, −2αx2e 6 x22 + α2e2, αx2w 6
1
2x

2
2 +

1
2α

2w2 and −2βx32e 6 x62 + β2e2, we obtain

〈∇V (x), f(x, e, w)〉 6 ς2
(

2αx1x2 + βx31x2 + βx32x1

+

2∑

i=1

[
−2αx2i + αx3i − (α+ 2β)x4i + βx5i − βx6i

]

+
3

2
x22 +

3

2
x62 + (α2 + β2)e2 +

1

2
(α2 + β2)w2

)

. (5.50)

To find the values of γ and θ for which the dissipation inequality given in (5.26)
holds, we take the functions ̺, σ and ρ as given in Condition 5.1 as ̺(y) :=
q1y

2 + q2y
4 + q3y

6, σ(W (e)) := ς2εW (e) and ρ(|x|) := ς2ε|x| with ε ∈ R>0, and
we add H2(x,w), ̺(y), −γ2W 2(e), σ(W (e)) and ρ(|x|) to both sides of (5.50).
This leads to

〈∇V (x), f(x, e, w)〉 +H2(x,w) + ̺(y)− γ2W 2(e)

+ σ(W (e)) + ρ(x) 6 (α2 + β2 + ε− ς−2γ2)e2

+ ς2
(

p(x) − ν

(

2α− ε− 3

2
− (8 + q1)ς

−2

)

x22

+
1

2
(α2 + β2 + 5ς−2)w2

)

, (5.51)

where

p(x) = (2α− 4ς−2)x1x2 + (ε− 2α+ ς−2)x21 + βx31x2

+ βx32x1 + (1 − ν)(ε+
3

2
− 2α+ (8 + q1)ς

−2)x22

+

2∑

i=1

[
αx3i − (α+ 2β)x4i + βx5i − βx6i

]
− 4ς−2x32

+ (4 + q2)ς
−2x42 − 2ς−2x52 +

(
3

2
+ (2 + q3)ς

−2

)

x62

)

. (5.52)

Let us remark that we used the fact that H2(x,w) 6 −4x1x2+x
2
1+8x22− 4x32+

4x42 − 2x52 + 2x62 + 5w2 to obtain the inequalities above.

Observe from (5.51) that if p(x) 6 0, (5.26) holds for γ = ς
√

α2 + β2 + ǫ,

µ = ς2ν(2α− ε− 3/2− (8+ q1)ς−2) and θ =
√

α2+β2+10ς−2

2ν(2α−ε−3/2−(8+q1)ς−2) . As such,

the parameters α, β, ς , q1, q2, q3 and ε need to be chosen such that p(x) 6 0. We
numerically determined that [α, β, ς, q1, q2, q3, ε] = [10.20, 3.29, 1.69, 2, 2, 2, 10−4]
constitutes a valid choice, which results in θ = 3.58, µ = 13.20 and γ = 18.12.
Moreover, by means of (5.2) we obtain that τmiet should satisfy (δmax+1)τmiet <
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0.0811. In this example, we take τmiet = 0.0691 such that the conditions under
(5.29) are satisfied with λ = 0.1.

Based on the analysis above, we can now construct the ETMs according to
(5.7), (5.8), (5.36) and (5.37), with the function Ψ as in (5.30), where we choose
χ(η) = ε|η| for all η ∈ R>0.

5.7.3 Simulation results

Fig. 5.2. Evolution of x(t, j) (corresponding to the case with acknow-
ledgments with a dynamic ETM) with δmax = 2.

Given the system and ETMs as described above, we present next the simu-
lation results for both the case with and without acknowledgments. To eva-
luate the system in terms of utilization of communication resources, we con-
sider average inter-event times τavg based on the average over 100 simulati-
ons of the system on the time interval [0, 10], with the external disturbance
w being w(t, j) = 2 sin(5πt) for all (t, j) ∈ dom w for which t ∈ [0, 4], and
w(t, j) = 0 for all (t, j) ∈ dom w for which t ∈ (4, 10] and with initial condition
x1(0, 0) = x2(0, 0) = 0. Furthermore, in case the MANSD has not been excee-
ded, i.e., in case δ < δmax, the probability that the next transmission attempt
results in a packet dropout set for simulation purposes to p = 0.5.

In Figure 5.2, the evolution of x is shown for the case with acknowledgments
and with the dynamic ETM as given in (5.8) for the case that δmax = 2. Observe
that the oscillations in the first four seconds is due to the disturbances acting
on the system. The evolution of x for the case without acknowledgments and/or
with a static ETM looks similar and is therefore omitted. The inter-event times
tj+1 − tj resulting from the static ETM given in (5.7) and the dynamic ETM
given in (5.8) corresponding to the case with acknowledgments and from the
static ETM given in (5.36) and the dynamic ETM given in (5.37) corresponding
to the case without acknowledgments, are shown in Figure 5.3. Observe that for
this example, both dynamic ETMs as given in (5.8) and (5.37) corresponding to
the case with and without acknowledgments, respectively, lead to a significant
reduction of communication in comparison with time-triggered control schemes
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Fig. 5.3. The top plots show the inter-event times tj+1 − tj that result
from the static ETM (left) given in (5.7) and the dynamic ETM (right)
given in (5.8) for the case with acknowledgments. The bottom plots show
the inter-event times tj+1− tj that result from the static ETM (left) given
in (5.36) and the dynamic ETM (right) given in (5.37) for the case without
acknowledgments. In all four plots, the MANSD is equal to δmax = 2

in which the inter-event times would be upper bounded by T (γ, L)/(δmax+1) =
0.027. Furthermore, as discussed in Remark 5.5, it clearly shows that the ETC
scheme corresponding to the case with acknowledgments yields average larger
inter-event times (indicated with a solid line) than the ETC schemes in which
acknowledgments are absent.

Figure 5.4 illustrates the influence of the MANSD δmax on the average inter-
event times τavg relative to the minimal inter-event time τmiet for all four ETMs
given in (5.7), (5.8), (5.36) and (5.37).

5.8 Conclusions

In this chapter, we proposed a systematic design procedure for static and dyna-
mic event-triggered control (ETC) schemes such that in absence of disturbances,
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Fig. 5.4. Tradeoff between the maximum allowable number of successive
packet losses and the relative average inter-event time τavg/τmiet for the
static ETM given in (5.7) and the dynamic ETM given in (5.8) correspon-
ding to the case with acknowledgments and for the static ETM given in
(5.36) and the dynamic ETM given in (5.37) corresponding to the case
without acknowledgments.

the resulting closed-system is UGAS, and in the presence of disturbances, the
resulting closed-loop system has a guaranteed Lp-gain with respect to its perfor-
mance output and external disturbances. Moreover, by design, a robust positive
MIET can be guaranteed, even for the case where disturbances and packet dro-
pouts are present. In fact, the ETMs proposed in this chapter can admit a
maximum allowable number of successive packet dropouts (MANSD) while still
maintaining the desired stability and performance properties. Two different
ETC schemes were proposed depending on the situation if an acknowledgment
scheme is employed (as, e.g., in TCP) or not (as, e.g., in UDP).

The presented theory was illustrated by means of a nonlinear numerical exam-
ple, which showed that the dynamic ETC schemes can be systematically designed
and yield significantly larger inter-event times than time-triggered or static ETC
strategies. Moreover, the numerical example validated that ETC schemes relying
on acknowledgments yield larger inter-event times than the ETC schemes for the
case without acknowledgments for the same performance guarantees.





Chapter 6

Event-triggered Control Systems

under Denial-of-Service Attacks

Abstract – In this chapter, we propose a systematic design framework for output-based dyn-

amic event-triggered control (ETC) systems under Denial-of-Service (DoS) attacks. These ma-

licious DoS attacks are intended to interfere with the communication channel causing periods

in time at which transmission of measurement data is impossible. We show that the proposed

ETC scheme, if well designed, can tolerate a class of DoS signals characterized by frequency

and duration properties without jeopardizing the stability, performance and Zeno-freeness of

the ETC system. In fact, the design procedure of the ETC condition allows trade-offs between

performance, robustness to DoS attacks and utilization of communication resources. The main

results will be illustrated by means of a numerical example.

6.1 Introduction

The field of cyber-physical systems (CPS) and, in particular, networked control
systems (NCSs) is rapidly emerging due to a wide range of potential applicati-
ons. However, there is a strong need for novel analysis and synthesis tools in
control theory to guarantee safe and secure operation despite the presence of
possible malicious attacks [198]. Especially for safety-critical applications such
as intelligent transport systems and power grids, this is of high importance and
requires the integration of cyber-security and control strategies.

One of the main concerns in NCSs with respect to security are deception
attacks and denial-of-service (DoS) attacks. Deception attacks are intended to
tamper transmitted data packages causing false feedback information, see for
more details, e.g., [183] and the reference therein, whereas DoS attacks, induced

This chapter is based on [76, 77].
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by radio interference signals (also referred to as jamming signals), typically cause
periods in time at which communication is not possible, see, for instance, [253].
In the present chapter, we focus on the latter type of attack. To be more concrete,
we are interested in creating control strategies that render the overall closed-loop
system resilient to DoS attacks which occur according to some unknown strategy
with the aim to impede the communication of sensor measurements.

In addition to this resilience requirement described above, the control stra-
tegy needs to deal with the inherent imperfections of networked communication.
Communication in NCSs is in general packet-based and thus measurement data
can only be transmitted at discrete time instants. Moreover, especially since
a communication network is often shared with multiple devices, the communi-
cation resources are restricted. Hence, a resource-aware and resilient control
approach, which aims to only schedule the transmission of data when needed
to maintain the desired stability and performance criteria, is a requisite. In a
nutshell, the control problem addressed in this chapter is to design a control law
that limits the transmission of sensor data while realizing desired closed-loop
stability and performance criteria despite the presence of DoS attacks.

The proposed solution to this challenging design problem is to adopt an event-
triggered control (ETC) strategy, in which transmission times are determined
online by means of well-design triggering rules which rely on, e.g., sensor measu-
rements of the system. The introduction of this feedback in the sampling process
enables ETC schemes to reduce the utilization of communication resources wit-
hout jeopardizing control performance. In contrast to periodic time-triggered
control schemes, ETC schemes aim to only transmit data when needed to main-
tain desired closed-loop properties. However, the majority of the literature on
ETC strategies do not consider cyber-security issues like DoS attacks. Notable
exceptions are [63, 64, 88]. In [88], a method was proposed to identify features
of DoS attacks in order to improve the scheduling of transmissions in the sense
that the DoS periods are being avoided. However, this approach turns out to
be effective only when the DoS attacks are “well-structured” over time, e.g., in
case of a periodic jamming signal. In [63, 64], a more general and more realistic
DoS attack model is used based on the frequency and duration of the attacker’s
actions. These constraints are quite natural, as in reality, also the jammers re-
sources are not infinite and several provisions can be taken to mitigate these
DoS attacks. Additionally, no assumptions regarding the underlying jamming
strategy of the attacker are made. Moreover, in contrast to stochastic packet
dropout models, this characterization allows to capture a wide class of DoS at-
tacks including trivial, periodic, random and protocol-aware jamming attacks
[65, 253].

A drawback of the approaches in [63, 64, 88] is that these approaches are
restricted to the case of static state feedback which requires the availability of
full state information. Clearly, in practice, this is a strong assumption as only
in very rare cases the full state variable is available for feedback. For this rea-
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son, it is of interest to study event-triggered NCSs subject to DoS attacks that
rely on output measurements only. To the best of our knowledge, the output
feedback case in the context of DoS attacks has never been addressed in lite-
rature. This is not surprising as, especially in the presence of disturbances,
extending existing ETC schemes that rely on state-feedback to the output-based
ETC schemes (even without DoS attacks) is far from trivial as shown in [41,78].
Therefore, we propose in this chapter a novel systematic design methodology for
output-based resilient and resource-aware dynamic ETC strategies for a class
of nonlinear systems subject to disturbances. We prove that under the propo-
sed design conditions, the resulting closed-loop system is input-to-output stable
with finite induced L∞-gains (peak-to-peak gains). Interestingly, this result is
of independent interest in the context of switched systems under average-dwell
time conditions, see also [124].

To enable practical implementation of the ETC scheme, it is important to
guarantee that the time between consecutive transmission attempts is strictly
positive and preferably lower bounded by a positive constant. By exploiting the
Zeno-freeness property of the ETC scheme presented in [71, 72], we show that
for the proposed ETC scheme, such a positive minimal-inter event time (MIET)
exists by design despite the presence of disturbances and/or DoS attacks. By
employing the DoS characterization as presented in [63,64], the obtained results
hold for wide classes of relevant DoS attacks. As a matter of fact, as already
mentioned, no assumptions regarding the underlying strategy of the attacker
are needed, which makes the proposed scheme applicable in many contexts.
The design procedure is demonstrated on a case study of cooperative adaptive
cruise control. The numerical example reveals that illustrates a trade-off between
robustness with respect to DoS attacks, network utilization and performance
guarantees.

The remainder of this chapter is organized as follows. After presenting the
necessary preliminaries and notational conventions in Section 6.2, we introduce
the event-triggered networked control setup subject to DoS attacks in Section 6.3
leading to the problem statement. This event-triggered NCS setup is formalized
in Section 6.4 by means of hybrid models resulting in a mathematically rigorous
problem formulation. In Section 6.5, we characterize DoS attacks in terms of
frequency and duration and, based on this characterization, we provide design
conditions for the proposed dynamic event-triggered strategy such that stability
and performance properties are satisfied. The obtained design framework is
illustrated by means of a numerical example in Section 6.6. Finally, we provide
the concluding remarks in Section 6.7.

6.2 Definitions and preliminaries

The following notational conventions will be used in this chapter. N denotes
the set of all non-negative integers, N>0 the set of all positive integers, R the
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field of all real numbers and R>0 the set of all non-negative reals. For N ∈ N,
we write the set {1, 2, . . . , N} as N̄ . For N vectors xi ∈ R

ni , i ∈ N̄ , we denote
the vector obtained by stacking all vectors in one (column) vector x ∈ Rn with

n =
∑N

i=1 ni by (x1, x2, . . . , xN ) , i.e., (x1, x2, . . . , xN ) =
[
x⊤1 x⊤2 · · · x⊤N

]⊤
.

The vectors in RN consisting of all ones and zeros are denoted by 1N and 0N ,
respectively. By | · | and 〈·, ·〉 we denote the Euclidean norm and the usual
inner product of real vectors, respectively. For a real symmetric matrix A,
λmax(A) denotes the largest eigenvalue of A. IN denotes the identity matrix
of dimension N × N and if N is clear for the context, we write I. A function
α : R>0 → R>0 is said to be of class K if it is continuous, strictly increasing and
α(0) = 0. It is said to be of class K∞ if it is of class K and it is unbounded.
A continuous function β : R>0 × R>0 → R>0 is said to be of class KL if, for
each fixed s, the mapping r 7→ β(r, s) belongs to class K, and for each fixed r,
the mapping β(r, s) is decreasing with respect to s and β(r, s) → 0 as s → ∞.
A continuous function γ : R>0 × R>0 × R>0 → R>0 is said to be of class KLL
if, for each r > 0, both γ(·, ·, r) and γ(·, r, ·) belong to class KL. A function
f : Rn → Rn is said to be locally Lipschitz continuous if for each x0 ∈ Rn

there exist constants δ > 0 and L > 0 such that for all x ∈ Rn we have that
|x− x0| 6 δ ⇒ |f(x)− f(x0)| 6 L|x− x0|.

6.3 NCS model and problem statement

In this section, we present the networked control setup and the dynamic event-
triggering mechanism employed by this NCS. Moreover, we describe how this
NCS is affected by denial-of-service (DoS) attacks. Based on these descriptions,
we formulate the problem statement.

6.3.1 Networked control configuration

Consider the feedback control configuration depicted in Figure 6.1. In this con-
figuration, the sensor measurements of a plant P are being transmitted to a
(dynamic) output-based controller C over a network N . The continuous-time
plant P is given by

P :

{

ẋp = fp(xp, u, w)

y = gp(xp),
(6.1)

where w ∈ Rnw is a disturbance input, xp ∈ Rnp the state vector, u ∈ Rnu is
the control input, y ∈ Rny is the measured output of plant P . The (dynamic)
output-based controller C is given by

C :

{

ẋc = fc(xc, ŷ)

u = gc(xc, ŷ),
(6.2)
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Fig. 6.1. Schematic representation of the event-triggered NCS considered
in this chapter which consists of the interconnection of P , C and N and
where the transmission instants are determined by an event-triggering
mechanism (ETM). Moreover, we assume an acknowledgement scheme
is available meaning that the ETM has knowledge about reception of
packages at the controller side.

where xc ∈ Rnc denotes the controller state, ŷ ∈ Rny represents the most recently
received output measurement of the plant at the controller C and u ∈ R

nu is the
controller output. The performance output is given by z = q(x), where z ∈ Rnz

and x = (xp, xc).
Typically, the communication over the network N is packet-based, which

implies that the output measurements y can only be transmitted at discrete
instants in time, i.e., at times tj , j ∈ N, satisfying 0 6 t0 < t1 < t2 < . . ..
Hence, at each transmission instant tj , j ∈ N, the value of ŷ is updated/jumps
according to ŷ(t+j ) = y(tj), for all j ∈ N (assuming for the moment that no DoS
attacks are present). Here we consider ŷ as a left-continuous signal in the sense
that ŷ(t) = lims→t ŷ(s). Furthermore, we assume that the value of ŷ evolves
in a zero-order-hold (ZOH) fashion in the sense that in between updates, the
variable ŷ is held constant, i.e., ˙̂y(t) = 0 for all t ∈ (tj , tj+1) with j ∈ N. The
functions fp and fc are assumed to be continuous and the functions gp and gc
are assumed to be continuously differentiable.

Remark 6.1. For the sake of brevity, we consider the control configuration pre-
sented in Figure 6.1 in which we consider dynamic controllers as in (6.2) and
only sensor measurements are transmitted over the network. However, the fra-
mework presented in this chapter also applies to other configurations such as
decentralized control setups as described in [42, 72].

6.3.2 DoS attacks

A denial-of-service (DoS) attack is defined as a period in time at which the
communication is blocked by a malicious attacker. Hence, when a transmission
of y(tj) is attempted at transmission time tj and a DoS attack is active, the
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attempt will fail and thus the value of ŷ can not be updated to y(tj). Obviously,
this can have detrimental effects on the stability and performance of the closed-
loop system.

In general, DoS attacks lead to a sequence of time intervals {Hn}n∈N
, where

the n-th time interval Hn, given by Hn := {hn} ∪ [hn, hn + τn), represents the
n-th DoS attack (period). Hence, hn ∈ R>0 denotes the time instant at which
the n-th DoS interval commences and τn ∈ R>0 denotes the length of the n-th
DoS interval. The collection of all sequences {Hn}n∈N

of DoS attacks without
overlap, i.e., satisfy 0 6 h0 6 h0 + τ0 < h1 6 h1 + τ1 < h2 < . . ., is denoted by
IDoS .

Moreover, for a given {Hn}n∈N
∈ IDoS , we define the collection of times at

which a DoS attack is active by

T :=
⋃

n∈N

Hn, (6.3)

where we do not explicitly write the dependency of T on {Hn}n∈N
∈ IDoS

assuming it is clear from the context. By means of this definition, we can now
describe the jump/update of ŷ as in (6.2) for each transmission attempt at time
tj ∈ R>0, j ∈ N as

ŷ(t+j ) =

{

y(tj), when tj /∈ T
ŷ(tj), when tj ∈ T ,

and, accordingly, the update of the transmission error e := ŷ − y as

e(t+j ) =

{

0, when tj /∈ T
e(tj), when tj ∈ T , (6.4)

for each j ∈ N.

6.3.3 Event-based communication

As already mentioned in the introduction, in comparison with time-triggered
control, event-triggered control (ETC) is much more suitable for balancing net-
work utilization and control performance. See also [18,20,54,224] for some early
approaches of ETC and see [114] for a recent overview.

In this chapter, we we follow a design philosophy based on a dynamic event-
triggered control scheme [71, 72, 96, 189, 190, 248], which has several advantages
over their static counterparts, see [71, 73, 96, 189, 248] for more details on these
advantages. A dynamic triggering condition in the context of this chapter will
take the form

t0 = 0, tj+1 := inf
{

t > tj + τ
m(t)
miet | η(t) < 0

}

, (6.5)
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for all j ∈ N, η(0) = 0, where m(t) ∈ {0, 1} is an auxiliary variable used to keep
track of whether the most recent transmission attempt at time t ∈ R>0 was
successful (m(t) = 0) or not (m(t) = 1) (due to DoS attacks), τ0miet, τ

1
miet ∈ R>0

are (enforced) lower bounds on the minimum inter-event times (MIETs) for
the cases that m(t) = 0 and m(t) = 1, respectively, and η ∈ R is an auxiliary
variable. Let us remark that in general, if possible, it is helpful to schedule trans-
mission attempts more often when a DoS attack is active in order to determine
earlier when the DoS attack is over. For this reason, we consider two different
waiting times τ0miet, τ

1
miet and we choose τ1miet 6 τ0miet. The variable η evolves

according to

η̇(t) = Ψ̃(m(t), o(t), η(t)), when t ∈ (tj , tj+1] (6.6)

η(t+j ) =

{

η0(e(tj)), when tj /∈ T
η(tj), when tj ∈ T , (6.7)

where o = (y, e, τ, φ) ∈ O := Rny ×Rny ×R>0×
[
λ, λ−1

]
with λ ∈ (0, 1) represen-

ting the information locally available at the event-triggering mechanism (ETM)
(see Figure 6.1) including the output measurements y ∈ Rny , the transmission
error e := ŷ − y and the auxiliary variables τ ∈ R>0 and φ ∈

[
λ, λ−1

]
. The

variables τ and φ are discussed in more detail in Section 6.4. Observe that by
taking τ0miet, τ

1
miet ∈ R>0 Zeno-behavior is excluded from the ETC system since

the next event can only occur after at least τ1miet time units have elapsed, i.e.,
tj+1 − tj > τ1miet, for each j ∈ N. In Section 6.5.2 and Section 6.5.3, we specify

how to select τ0miet, τ
1
miet, Ψ̃ and η0 such that desirable closed-loop stability and

performance requirements are met.

6.3.4 Problem formulation

Given the descriptions above, the problem considered in this work can now
roughly be stated as follows: Propose a systematic design procedure for Ψ̃, η0,
τ0miet and τ

1
miet such that the interconnection (P , C,N ) with P and C as in (6.1)

and (6.2), respectively, and the transmission attempts being generated by (6.5)-
(6.7), satisfies desired asymptotic stability criteria and performance criteria, in
terms of the so-called peak-to-peak gain despite the presence of the DoS attacks
{Hn}n∈N

∈ IDoS that satisfy constraints in terms of frequency and duration.

In the next section, we introduce a complete mathematical (hybrid) model
for the event-triggered closed-loop NCS setup, definitions of DoS frequency and
duration, and relevant stability and performance notions, leading to a more
formal problem formulation.
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6.4 Mathematical formulation of the

ETC setup

In this section, we reformulate the dynamics of the event-triggered NCS subject
to DoS attacks in the form of the hybrid model HT given by,

ξ̇ = F (ξ, w), when ξ ∈ C, (6.8a)

ξ+ = GT (ξ), when ξ ∈ D, (6.8b)

see [98] for details on this hybrid modelling framework.
Let us remark that the hybrid systems considered in this chapter have time

regularization (or dwell time) and external inputs only appearing in the flow
map. The latter allow us to employ the following signal norm definitions in-
spired by [21]. For any hybrid signal ζ(·, ·) defined on dom ζ ⊂ R>0 × N we

define the L∞-norm of ζ as ‖ζ‖∞ := supj∈N

(

ess sup{t∈R|(t,j)∈dom ζ} |ζ(t, j)|
)

.

Observe that this signal norm definition is similar to the corresponding classi-
cal continuous-time norm. In this chapter, we employ the same notation for
the L∞-norm of hybrid time signals and conventional continuous-time signals.
Moreover, due to the aforementioned properties and notational convenience, we
consider the disturbance input w : R>0 → Rnw to be a time signal instead of a
hybrid signal and use the usual definition for L∞-norm.

6.4.1 Hybrid model

To describe the NCS setup as discussed before in terms of flow equations (6.8a)
and jump equations (6.8b), we first need to introduce a few auxiliary variables,
namely, the timer variables s, τ ∈ R>0 representing the overall time and the time
elapsed since the most recent transmission attempt, respectively. Moreover, we
we also introduce an additional auxiliary variable φ ∈

[
λ, λ−1

]
, where λ ∈ (0, 1)

is a tuning parameter to be specified, used in the triggering condition and part of
o as already mentioned in Section 6.3.3. By combining these auxiliary variables
with (6.1), (6.2) and (6.7), the flow map of the interconnection (P , C,N ) can be
defined as

F (ξ, w) :=
(

f(x, e, w), g(x, e, w), 1, 1, 0, Ψ̃(m, o, η), fφ(τ,m, φ)
)

, (6.9)

where ξ = (x, e, τ, s,m, η, φ) ∈ X := Rnx × Rny × R>0 × R>0 × {0, 1} × R>0 ×[
λ, λ−1

]
with nx = np + nc and λ ∈ (0, 1). Moreover, the functions f and g

follow from (6.1) and (6.2) and are given by

f(x, e, w) =

[
fp(xp, gc(xc, gp(xp) + e), w)

fc(xc, gp(xp) + e)

]

, (6.10)

g(x, e, w) = − ∂gp
∂xp

(xp)fp(xp, gc(xc, gp(xp) + e), w), (6.11)
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and fφ will be specified later. In accordance with (6.5), we define the flow set as

C := {ξ ∈ X | τ 6 τmmiet ∨ η > 0} . (6.12)

Based on (6.7) and (6.4), we specify the jump map as

GT (ξ) :=

{

G0(ξ), when ξ ∈ D ∧ s /∈ T
G1(ξ), when ξ ∈ D ∧ s ∈ T , (6.13)

where

G0(ξ) = (x, 0, 0, s, 0, η0(e), λ) (6.14)

G1(ξ) = (x, e, 0, s, 1, η, φ) , (6.15)

such that ξ+ = G0(ξ) corresponds to a successful transmission attempt and
ξ+ = G1(ξ) to a failed transmission attempt.

Finally, the jump set is given by

D := {ξ ∈ X | τ > τmmiet ∧ η 6 0} . (6.16)

The time-constants τ0miet and τ
1
miet and the functions Ψ̃, η0 and fφ are specified

in Section 6.5. Observe that the hybrid system description presented above leads
to more solutions than induced by the triggering condition given by (6.5) and
(6.7).1

Moreover, observe that the hybrid system HT as described by (6.8)-(6.16) is
parameterized by the collection of time-intervals at which DoS attacks are active
as defined in (6.3). Therefore, we write explicitly the dependence of HT on T .

6.4.2 Constraints on DoS sequence

Since it is reasonable to assume that the attacker’s resources are not infinite and
measures can be taken to mitigate malicious DoS attacks, a natural characteri-
zation of DoS attacks can be given in terms of both the DoS frequency and the
DoS duration as in [63], see also Remark 6.2 below. Therefore, we define the
collection of times within the interval [T1, T2], with T2 > T1 > 0, at which DoS
attacks are active as

Ξ(T1, T2) := [T1, T2] ∩ T (6.17)

1We foresee that the results in [98, Chapter 6, Chapter 7] on well-posed hybrid systems
can relatively easily be used to obtain robustness properties with respect to arbitrarily small
vanishing perturbations on the flow map jump map and all states. Note, however, that the
focus of this chapter is to obtain robustness result with respect to DoS attacks, which require
different and new techniques. To not complicate the exposition of the novel techniques by
introducing more technicalities needed to address also the robustness properties studied in [98],
we describe only the new results, although they can be combined with the existing robustness
results of [98].
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with T as in (6.3) and the collection of time instants within the interval [T1, T2]
at which communication is possible as

Θ(T1, T2) := [T1, T2]\Ξ(T1, T2).

Consider a collection {Ii}, i ∈ N̄ of N intervals that do not overlap, i.e., Ii∩Ij =
∅ for all i, j ∈ N̄ , i 6= j, and let I =

⋃

i∈N̄ Ii. We denote with |I| the sum of
the lengths of all intervals Ii, i ∈ N̄ . Consequently, |Ξ(T1, T2)| denotes the total
length of the DoS attacks within the interval [T1, T2]. Consider the following
definitions.

Definition 6.1. [64] (DoS frequency). Let {Hn}n∈N
∈ IDoS and let n(T1, T2)

denote the number of DoS off/on transitions occurring in the interval [T1, T2),
i.e., n(T1, T2) = card{n ∈ N | hn ∈ [T1, T2)}, where card denotes the number
of elements in the set. We say that a given sequence of DoS attacks {Hn}n∈N

satisfies the DoS frequency constraint for a given τD ∈ R>0, and a given ν ∈
R>0, if for all T1, T2 ∈ R>0 with T2 > T1

n(T1, T2) 6 ν +
T2 − T1
τD

. (6.18)

We denote the class of sequences of DoS intervals that satisfy this DoS frequency
constraint by IDoS,freq(ν, τD).

Definition 6.2. [64] (DoS duration). We say that a sequence of DoS attacks
specified by {Hn}n∈N

∈ IDoS satisfies the DoS duration constraint for a given
T ∈ R>1 and a given ς ∈ R>0, if for all T1, T2 ∈ R>0 with T2 > T1

|Ξ(T1, T2)| < ς +
T2 − T1
T

. (6.19)

We denote the class of all sequences of DoS intervals that satisfy this DoS du-
ration constraint by IDoS,dur(ς, T ).

We will also use the notation IDoS(ν, τD, ς, T ) for ν, ς ∈ R>0, τD ∈ R>0

and T ∈ R>1 to denote the intersection IDoS,freq(ν, τD) ∩ IDoS,dur(ς, T ). We
call a sequence of DoS attacks that satisfies {Hn}n∈N

∈ IDoS(ν, τD, ς, T ), a
(ν, τD, ς, T )-DoS sequence for short. Moreover, we also define the class of hybrid
systems, which are generated by (ν, τD, ς, T )-DoS sequences as H(ν, τD, ς, T ) :=
{HT | T as in (6.3) with {Hn}n∈N ∈ IDoS(ν, τD, ς, T )}.
Remark 6.2. Observe that Definition 6.1 and Definition 6.2 make no assumptions
regarding the attacker’s underlying strategy as they only indicate limitations in
terms of the frequency and duration of DoS attacks. From a practical point of
view, Definition 6.1 and Definition 6.2 are natural as well since there exist several
techniques to mitigate jamming attacks, for example, spreading techniques and
high-pass filtering. As a consequence, the frequency and duration of DoS attacks
can indeed be restrained by exploiting such techniques, see, e.g., [65, 253].
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Of course, desired control objectives can in general not be achieved in case
the DoS frequency and/or DoS duration can be arbitrarily large, i.e., in case
τD → 0 or T = 1, respectively, as in that case every communication attempt
can be blocked by the attacker with the consequence that the system is in open
loop all the time. Fortunately, as already mentioned in Remark 6.2, several
provisions can be taken in order to mitigate DoS attacks with the aim to limit
the frequency and duration of the time intervals over which communication is
effectively denied.

6.4.3 Mathematical problem formulation

To specify desirable stability and performance properties, we introduce the follo-
wing definitions that use the concepts of hybrid time domains and corresponding
solutions [98]. In this chapter, we assume that all hybrid trajectories start in
the set

X0 := {ξ ∈ X | τ > τ0miet, s = 0, η = 0, φ = φmiet}, (6.20)

where φmiet will be specified in Section 6.5.2. Observe that this assumption
only reflects the initialization of the ETM variables, which can be freely chosen,
while we do not put any (initial) constraints on the plant and the controller
states x = (xp, xc) and the initial knowledge of ŷ at the controller side.

Definition 6.3. A hybrid system HT is said to be persistently flowing with
respect to initial state set X0 if all maximal solutions2 ξ with ξ(0, 0) ∈ X0 have
unbounded domains in the t-direction, i.e., supt dom ξ = ∞.

Definition 6.4. Let ν, ς ∈ R>0, τD ∈ R>0 and T ∈ R>1 be given. A closed
set A ⊂ X is said to be uniformly globally asymptotically stable (UGAS) for
the class of hybrid systems H(ν, τD, ς, T ) with respect to initial state set X0 if all
systems HT ∈ H(ν, τD, ς, T ) are persistently flowing with respect to initial state
set X0 and there exists a function β ∈ KLL such that for any HT ∈ H(ν, τD, ς, T )
and for any initial condition ξ(0, 0) ∈ X0, all corresponding solutions ξ of HT
with w = 0 satisfy

|ξ(t, j)|A 6 β (|ξ(0, 0)|A, t, j) (6.21)

for all (t, j) ∈ dom ξ. The closed set A is said to be uniformly globally exponen-
tially stable (UGES) for the class of hybrid systems H(ν, τD, ς, T ), if the above
holds with β(r, t, j) =Mr exp(−̺(t+ j)) for some M > 0 and ̺ > 0.

Definition 6.5. Let ϑ, ν, ς ∈ R>0, τD ∈ R>0 and T ∈ R>1 be given. A closed
set A ⊂ X is said to be L∞-stable with an induced L∞-gain less than or equal to
ϑ for the class of hybrid systems H(ν, τD, ς, T ), if all systems HT ∈ H(ν, τD, ς, T )

2[98, Chapter 2] A solution ξ to HT is maximal if there does not exist another solution ξ̄
to HT such that dom ξ is a proper subset of dom ξ̄ and ξ(t, j) = ξ̄(t, j) for all (t, j) ∈ dom ξ.
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are persistently flowing with respect to initial state set X0 and there exists a K∞-
function β such that for any HT ∈ H(ν, τD, ς, T ), exogenous input w ∈ L∞, and
any initial condition ξ(0, 0) ∈ X0, each corresponding solution to HT satisfies

‖z‖L∞
6 β(|ξ(0, 0)|A) + ϑ‖w‖L∞

. (6.22)

We can now formalize the problem, which was loosely stated at the end of
Section 6.3.

Problem 6.1. Given ν ∈ R>0, τD ∈ R>0, ς ∈ R>0 and T ∈ R>1, provide design

conditions for the values of τ0miet, τ
1
miet ∈ R>0 and the functions Ψ̃, η0 as in the

event generator given by (6.5) and (6.7) and fφ as in (6.9), such that the closed
set A := {ξ ∈ X | x = 0, e = 0} is UGES and/or, in the presence of disturbances,
has a finite induced L∞-gain for the class of hybrid systems H(ν, τD, ς, T ) .

6.5 Design conditions and stability guarantees

In Section 6.5.2 and Section 6.5.3, the time-constants τ0miet and τ1miet, and the
function fφ are specified and design conditions for the functions Ψ̃ and η0 are
presented leading to a solution for Problem 6.1. In order to specify the design
conditions, we first start with the required preliminaries consisting of stabi-
lity and performance conditions for time-triggered NCSs taken from [51,120] in
Section 6.5.1.

6.5.1 Preliminaries

Consider the following condition.

Condition 6.1. ([51,120]) There exist a locally Lipschitz function W : Rny →
R>0, a continuous function H : Rnx ×Rnw → R, and constants L > 0, cW , and
c̄W , such that

• for all e ∈ Rne it holds that

cW |e| 6W (e) 6 c̄W |e|, (6.23)

• for all x ∈ Rnx , and almost all e ∈ Rny it holds that

〈
∂W (e)

∂e
, g(x, e, w)

〉

6 LW (e) +H(x,w). (6.24)

In addition, there exist a locally Lipschitz function V : Rnx → R>0, and a posi-
tive semi-definite function ̺ : Rny → R>0 and constants ρV , ρW , γ, cV , c̄V , cz >
0, such that
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• for all x ∈ Rnx

cV |x|2 6 V (x) 6 c̄V |x|2, cz|q(x)|2 6 V (x), (6.25)

• for all e ∈ R
ny , w ∈ R

nwand almost all x ∈ R
nx

〈∇V (x), f(x, e, w)〉 6 −ρV V (x)− ̺(|y|)−H2(x,w)

+ (γ2 − ρW )W 2(e) + θ2|w|2, (6.26)

• the constants ρW and γ satisfy ρW 6 γ2.

Let us remark that for linear systems the conditions above can be obtained
systematically by solving a multi-objective linear matrix inequality (LMI) pro-
blem, see [71,72,120] for more details. Also several classes of nonlinear systems
satisfy these conditions, see [72].

6.5.2 Minimal inter-event time

As already mentioned, τ0miet and τ
1
miet (and φmiet, Ψ̃, fφ and η0) should be chosen

appropriately in the sense that desirable closed-loop stability and performance
requirements can be achieved. To do so, we specify the function3 fφ : R>0×N×
R>0 → R, as

fφ(τ,m, φ):=

{

(m− 1)
(
2Lφ+ γ(φ2 + 1)

)
, for τ 6 τ0miet,

0, for τ > τ0miet,
(6.27)

with L and γ as given in Condition 6.1. The time-constants τ0miet and τ
1
miet can

be chosen less than or equal to the maximally allowable transmission interval
bound (in this work referred to as τ̄miet) given in [51] as

τ̄miet :=







1
Lrarctan

(

r(1−λ)

2 λ
1+λ (

γ
L
−1)+1+λ

)

, γ > L

1
L

1−λ
1+λ , γ = L

1
Lrarctanh

(

r(1−λ)

2 λ
λ+1 (

γ
L
−1)+1+λ

)

, γ < L,

(6.28)

where r =
√

|(γ/L)2 − 1|. Note that by selecting τ0miet and τ1miet equal to the
right-hand side of (6.28) indeed longer (average) transmission intervals are rea-
lized compared to time-based (worst-case) specifications as discussed in Section
6.3.3.

3Observe that the flow map F as given in (6.9) is discontinuous in τ due to (6.27). However,
due to the facts that τ̇ = 1 and the right hand-side of (6.27) is Lipschitz continuous, we find
by means of the Carathéodory’s existence theorem that this does not cause any problems in
the uniqueness and existence of solutions.
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Lemma 6.1. [51] Let τ̄miet be given by (6.28), then the solution to

˙̃
φ = −2Lφ̃− γ

(

φ̃2 + 1
)

(6.29)

with φ̃(0) = λ−1 satisfies φ̃(t) ∈ [λ, λ−1] for all t ∈ [0, τ̄miet], and φ̃(τ̄miet) = λ.

Finally, we define
φmiet := φ̃(τ0miet), (6.30)

where φ̃ is the solution to (6.29) with φ̃(0) = λ−1 and note again that τ1miet 6

τ0miet 6 τ̄miet.

6.5.3 Stability and performance guarantees

Theorem 6.2. Consider the class of hybrid systems H(ν, τD, ς, T ) with ν, ς ∈
R>0, τD ∈ R>0, T ∈ R>1 and let Condition 6.1 be satisfied with τ1miet 6 τ0miet 6

τ̄miet with τ̄miet as in (6.28) and with fφ and φmiet as in (6.27) and (6.30),
respectively. Moreover, suppose that the following three conditions hold:

i) The DoS frequency parameter τD and the DoS duration parameter T satisfy

τ1miet

τD
+

1

T
<

ω1

ω1 + ω2
, (6.31)

where

ω1 = min

(

ρV ,
λρW
γ

)

, ω2 =
(γ̄ − ρW )

γφmiet
(6.32)

and
γ̄ := γ

(
2φmietL+ γ(1 + φ2miet)

)
. (6.33)

ii) The function Ψ̃ is given by

Ψ̃(m, o, η) =

{

Ψ(o)− σ(η), when m = 0,

−(1− ω(τ,m)), when m = 1,
(6.34)

where σ is a K∞-function that satisfies σ(s) > ω1s for all s ∈ R>0, the function
Ψ : O → R is given by

Ψ(o) = ̺(|y|) + γ̄ω(τ,m)W 2(e) (6.35)

with

ω(τ,m) :=

{

1, for 0 6 τ 6 τmmiet

0, for τ > τmmiet,
(6.36)

for τ ∈ R>0 and with γ̄ as given in (6.33).
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iii) The function η0 is given by η0(e) = γφmietW
2(e).

Then the closed set A = {ξ ∈ X | x = 0, e = 0} is UGES and is L∞-

stable with a finite induced L∞-gain less than or equal to θ
√

κ
czβ∗ with cz as in

(6.25) and where κ := eς∗(ω1+ω2), ς∗ := ς + ντ1miet, β∗ = ω1 − (ω1 + ω2)/T∗ and
T∗ := τDT/(τD + τ1mietT ), for the class of hybrid systems H(ν, τD, ς, T ).

The proof is provided in the Appendix. Observe that the condition given in
item i) imposes restrictions on the DoS parameters τD and T in terms of other
system parameters. As such, the frequency and duration of the allowable DoS
attacks are limited. Moreover, observe that the DoS parameters ν, τD, ς and
T affect the guaranteed L∞-gain of the system which illustrates the trade-off
between robustness with respect to DoS attacks and performance in the sense
that in general, robustness comes at cost of performance.

Observe that in case communication is allowed, the transmissions are schedu-
led in an event-based fashion (to save valuable communication resources) whe-
reas in case the communication is denied, the next transmission is scheduled
again after τ1miet time units (to determine when the DoS attack is over) since
when m = 1, which implies that η = 0 at the previous transmission attempt,
Ψ̃(m, o, η) = 0 for 0 6 τ 6 τ1miet and Ψ̃(m, o, η) = −1 for τ > τ1miet. Hence,
when m = 1 and τ > τ1miet a next jump occurs as flow condition η > 0 will be
violated.

Remark 6.3. Note that this implementation requires the knowledge about when
DoS attacks are blocking transmissions, which could be realized by means of
acknowledgements as illustrated in Figure 6.1. Let us remark that the ETM
can easily be adjusted such that it is not required that acknowledgements are
being received instantaneously. For example, the acknowledgement is allowed to
be delayed with at most τ1miet time units if after each transmission instant, the
ETM keeps track of the evolution of η for both the cases that the transmission
has been successful or denied. For the brevity of exposition, this feature has,
however, been omitted.

The presented framework does not require an acknowledgement scheme when
purely periodic sampling with inter-sampling time τ1miet is employed. The same
design conditions lead to the same guarantees in this case.

Remark 6.4. The proposed framework can also be used for the design of a static
triggering mechanism, namely

tj+1 := inf
{

t > tj + τ
m(t)
miet | Ψ(o) 6 0

}

, (6.37)

with t0 = 0 and with Ψ as in (6.35).
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6.6 Case study on cooperative adaptive cruise

control

In this section, we illustrate the main result by means of a case study on coope-
rative adaptive cruise control (CACC). As shown in [187], in the context of
vehicle platooning, wireless communication between vehicles can have a signifi-
cant contribution to improving traffic throughput and safety. For a platoon of
two identical vehicles equipped with CACC, the functions f and g as in (6.9) are
given by f(x, e, w) = A11x+A12e+A13w and g(x, e, w) = A21x+A22e+A23w,
where

A11 =











− 1
τc

1
τc

0 0 0 0

0 − 1
h 0 0 0 0

0 0 0 1 −h 0
1 0 0 0 −1 0
0 0 0 0 − 1

τc
1
τc

0 1
h

kp

h
kd

h −kd − 1
h











A12 =
[
0 0 0 0 0 1

h

]⊤
,

A13 =
[
0 1

h 0 0 0 0
]⊤
,

A21 =
[
0 1

h 0 0 0 0
]
, A22 = 0, A23 = − 1

h

with τc ∈ R>0 a time-constant corresponding to the driveline dynamics, h ∈ R>0

the time headway (desired time between the two vehicles) and kp, kd ∈ R>0 the
controller gains. Moreover, the input w represents the control input of the
leading vehicle. See, e.g., [187] for more details. For this example, we use the
following parameter values τc = 0.15, h = 0.6, kp = 0.2, kd = 0.7. To comply
with safety, one of the control objectives is to keep the error with respect to the
vehicle desired distance small and therefore we define the performance output
as z = Czx, where

Cz =
[
0 0 1 0 0 0

]
,

which corresponds to the spacing error between the two vehicles. The measured
output y as in (6.1) is the desired acceleration of the leading vehicle and is given
by y = Cyx, where

Cy =
[
0 1 0 0 0 0

]
,

and is available at the ETM to determine the transmission instants.
Before the ETM design and the stability and performance analysis, we first

have to guarantee that Condition 6.1 is met. For the vehicle platoon system
described above, we can take W (e) = |e|. Observe that with this choice, (6.23)
and (6.24) are met with cW = c̄W = 1, L = 0 and H(x,w) = |A21x + A21w|.
To comply with (6.25) and (6.26), we take ̺(r) = qr2 and V (x) = x⊤Px,
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(a) The achievable robustness in terms
of ω1

ω1+ω2
for various values of ρV and

ρW . The dashed line represents the

points for which ω1 = ρV = λρW
γ

.

(b) The minimal inter-event time for
various values of ρV and ρW . The das-
hed line represents the points for which

ω1 = ρV = λρW
γ

.

Fig. 6.2. Achievable robustness and minimal inter-event times for various
values of ρV and ρW .

cV = λmin(P ) and c̄V = λmax(P ) where P can be obtained by minimizing γ + θ
subject to the LMI given by





R11 R12 R13

⋆ R22 R23

⋆ ⋆ R33



 � 0, P � 0, C⊤
y Cy � P, (6.38)

where

R11 := A⊤
11P + PA11 + ρV P +A⊤

21A21 + C⊤QC, R12 :=PA12,

R13 := PA13 +A⊤
21A23, R22 := (ρW − γ2)I, R23 :=0,

R33 := A⊤
23A23 − θ2I.

To illustrate the design procedure, we take λ = 0.7 and compute τ̄miet (as in
(6.28)) for various ρV and ρW . By taking λ = 0.7, cz = 1 and τ0miet = τ1miet =
1
2 τ̄miet, we obtain Figure 6.2a and Figure 6.2b, which illustrate robustness in
terms of ω1

ω1+ω2
which corresponds to the right-hand side of (6.31) and network

utilization in terms of τ1miet, respectively.
Let us now study the influence of four DoS attacks of length zero on the

performance of the system described above. For this reason, we take ν = 4, ς = 0
and we take β∗ = 3

4ω1 which implies that τD and T should satisfy τmiet

τD
+ 1

T 6
1
4

ω1

ω1+ω2
. The L∞-gains for this case for various ρV and ρW are shown in Figure
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Fig. 6.3. The L∞-gain for various values of ρV and ρW . The dashed line
represents the points for which ω1 = ρV = λρW

γ .

6.3. Let us remark that other choices for ς and ν such as, e.g., ς = τmiet and
ν = 2τmiet lead to identical results in terms of the L∞-gain but allow for different
classes of DoS Attacks. The dashed-line In Figure 6.2a, Figure 6.3 and Figure
6.2b represents the points at which ω1 = ρV = λρW

γ . Observe that below this
line, the trade-off between robustness, network utilization and performance is
unfavorable for ρV >

λρW

γ , since for this case, a smaller ρW leads to a relatively
steep decline in both robustness and performance in contrast to the minimal
inter-event time τ1miet that barely changes.

In Figure 6.4, the distance error/performance output z and the inter-event
times tj+1 − tj are displayed for the case that ρV = 0.5, ρW = 5 and w as
illustrated the figure resulting in an L∞-gain less than or equal to 5.35, ω1

ω1+ω2
=

0.0454 and τ0miet = τ1miet = 0.0307. Although in general, it is difficult to obtain
the worst-case DoS attack and disturbance, the simulation results show that for
this particular system, the derived L∞-bound is a somewhat conservative. In
fact, more consecutive transmission failures can be tolerated as shown in Figure
6.4. To obtain better performance in terms of lower L∞-bounds, λ and/or cz
could be chosen larger and τ0miet and τ1miet could be chosen smaller. However,
this comes at cost of increased network utilization and/or reduced robustness
with respect to DoS attacks.

6.7 Conclusions

In this work, we addressed the design of resource-aware and resilient control
strategies for networked control systems (NCS) subject to malicious Denial-of-
service (DoS) attacks. In particular, the control and communication strategy
was based on an output-based event-triggered control scheme applicable to a
class of nonlinear feedback systems that are subject to exogenous disturbances.
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Fig. 6.4. In the top plot, the trajectory of the distance error z of the
vehicle platoon for DoS-attacks of various sizes and the input w are given.
In the bottom plot, the inter-event times of the dynamic event triggering
mechanism described by (6.5) and (6.7) are given. Both plots were gene-
rated by taking ρV = 0.5 and ρW = 5 resulting in L∞-gain less than or
equal to 5.35, ω1

ω1+ω2
= 0.0454 and τmiet = 0.0307. The dark and light

gray boxes show where the DoS attacks take place that block 4 and 20
consecutive transmissions, respectively.

The proposed framework led to guarantees regarding the existence of a robust
strictly positive lower bound on the inter-event times despite the presence of
disturbances and DoS attacks. Additionally, based on the natural assumption
that DoS attacks are restricted in terms of frequency and duration, we showed
that desired stability and performance criteria in terms of induced L∞-gains can
be guaranteed.





Chapter 7

Event-triggered Control of

Nonlinear Multi-agent systems

subject to Non-uniform

Time-Varying Delays

Abstract – In this chapter, we consider a class of nonlinear multi-agent systems (MAS)

subject to disturbances and the inevitable imperfections induced by packet-based networked

communication. These imperfections include non-uniform time-varying transmission delays

and intervals, limited communication resources and communication constraints. To reduce

the utilization of the (scarce) communication resources, we propose a design procedure for

distributed event-triggered control schemes that result in aperiodic transmission of information.

Under suitable conditions, the designed event-triggered controllers lead to a MAS that is

dissipative with respect to a desired supply rate (and thus can be used to study, e.g., Lp-

gains, input-to-state stability (ISS) and passivity properties), strictly positive lower bounds on

the inter-event times and robustness to non-uniform time-varying delays in terms of maximum

allowable delays. Moreover, the framework allows for the consideration of destination protocols

which determine, at each transmission instant, to which (groups of) agent(s) a local output

measurement is being transmitted. In addition, the proposed event-triggered control schemes

also apply in the context of packet losses and denial-of-service attacks thereby showing the

generality of the new design framework.

7.1 Introduction

Recently, the interest in multi-agent systems (MAS) has grown significantly
due to the wide-range of applications. Examples include the distributed con-
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trol of a platoon or a formation of vehicles [67, 83] and distributed state es-
timation in large-scale processes such as power grids and building automation
[66, 161, 162, 235, 236], see also [179, 196] and the reference therein for overviews
of some early approaches in consensus seeking MAS. In many of these appli-
cations, the sensor and the actuator data are sent over shared (packet-based)
communication networks which, in contrast to dedicated point-to-point links,
offer many benefits in terms of flexibility, maintenance and ease of installation.
In fact, in some applications, such as in vehicle platooning, the use of (wireless)
communication networks is unavoidable. However, these shared communica-
tion networks also come with inevitable imperfections including time-varying
transmission delays, asynchronous transmission instants, limited communica-
tion resources and communication constraints requiring scheduling protocols.
Moreover, in the context of MAS, broadcast data is typically not received and
processed simultaneously by each connected agent. Due to the latter fact, the
transmission delays in MAS are time-varying and often non-uniform in the sense
that the time between the transmission and receipt of a data package might
vary per connected agent. As a consequence, the information available at each
agent is not consistent. Given the above mentioned network-induced artifacts
inherent to networked control systems (NCSs) (and MAS in particular), there is
a need for novel analysis tools and control algorithms for MAS that take these
imperfections into account.

Despite this need, the majority of the available literature on MAS only
consider a subset of the aforementioned network-induced imperfections. For
instance, the approaches presented in [67, 146, 222, 230], which consider non-
uniform time-varying delays, hold under the assumption that communication is
continuous instead of packet-based and thereby they do not take into account
the sampled-data and digital nature of the communication links. At the op-
posite side, [69, 93, 94, 104, 105, 133, 140, 148, 160, 185, 206, 251, 262] proposed to
use event-triggered control (ETC) strategies for MAS to cope with these limited
communication resources. These ETC strategies aim to reduce the utilization of
communication resources by letting the transmission instants depend on state
measurements of the system. If well-designed, these schemes can still guaran-
tee desired closed-loop behavior in terms of stability and performance, see, e.g.,
[15, 41, 72, 78, 165, 191, 224, 236] for more details on ETC. However, the ETC
approaches presented in [69,93,105,133,140,148,160,185] do not consider delays
and the approaches in [206, 262] assume that the delays are uniform and con-
stant. Notable exceptions that study event-triggered MAS under non-uniform
time-varying delays include [94, 104, 251]. In [94], a periodic ETC approach is
presented that can deal with non-uniform delays. However, it is assumed that
the sizes of the delays are known. Hence, this approach requires that the internal
clocks of all agents are perfectly synchronized. In [104, 251], it was proposed to
use transmission protocols that rely on acknowledgment and permission signals
in order to make sure that the information available at each individual agent
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is updated simultaneously. However, the latter approach might put a burden
on the communication channel due to the presence of additional acknowledg-
ment and permission signals. In addition, it might not be practically feasible
to realize acknowledgment and permission signals that can be sent and received
instantaneously. For this reason, [104] also proposed an ETC scheme that does
not require permission signals. However, this approach does not consider the
presence of disturbances.

In the current work, we present a systematic and general design framework
for families of event-triggered controllers for classes of nonlinear MAS subject
to disturbances, network-induced imperfections such as unknown non-uniform
time-varying transmission delays, asynchronous transmission instants, limited
communication resources and communication constraints. The proposed frame-
work leads to MASs that are dissipative with respect to a desired supply rate
(and thus can be used to guarantee, e.g., Lp-gains, input-to-state stability (ISS)
and passivity properties) and strictly positive lower bounds on the inter-event
times. Let us emphasize that the proposed scheme does not require clock syn-
chronization, acknowledgment signals that need to be transmitted and received
instantaneously, or any knowledge about the sizes of the transmission delays.
In addition, we show that the concept of network scheduling protocols, which
are typically used in the context of NCSs (see, e.g., [173, 245]), can be used for
the design of so-called destination protocols. These destination protocols deter-
mine, at each transmission instant, to which (groups of) agent(s) a local output
measurement is being transmitted. The latter feature is useful, for example, in
the context of intelligent transportation systems that rely on the GeoNetwor-
king protocol [81]. This protocol uses geographical addressing to establish ad
hoc communication networks and allows for both unicast (transmission of data
directed to a single agent) and broadcast (transmission of data directed to mul-
tiple agents) as communication types, see [81] for more details. As shown in
[134], the performance of the communication network is significantly better un-
der unicast communication types compared to broadcast communication types.
Hence, the use of destination protocols can be beneficial for relevant applications
thereby making the possibility of analysis, as done in this paper, important. In-
terestingly, the proposed concept of destination protocols also allows to capture
packet-losses, see, e.g., [74, 103, 104, 138], and even (malicious) denial-of-service
attacks, which are intended to interfere with the communication channel, see,
e.g., [64, 77]. The latter result is of independent interest.

The proposed ETC design framework is general in the sense that it can not
only deal with malicious attacks, packet losses, (destination) protocols, time-
varying non-uniform delays, varying transmission intervals but also supports
the use of model-based holding devices. As shown in, e.g., [92,93,111,138,258],
the use of model-based holding devices generally allow the system to be in open-
loop for a longer period in time thereby saving valuable communication resour-
ces. As such, model-based ETC schemes typically outperform conventional ETC
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schemes equipped with zero-order hold devices in terms of (average) inter-event
times. One of the main challenges in the design of a model-based ETC scheme,
however, is to incorporate the presence of communication delays. In [92], solu-
tions to this challenge are proposed for two particular cases. In the first case,
the delays are assumed to be constant and known. In the second case, it is
assumed that the clock of the sending and receiving node are synchronized and
time-stamping is used to compensate for the effect of the delays. In the current
chapter, as mentioned before, we consider unknown delays and the proposed
ETC scheme does not required clock synchronization. To the best of our know-
ledge, the latter situation has not been studied in literature before, not even for
centralized control schemes.

The remainder of this chapter is organized as follows. After presenting the
necessary preliminaries and notational conventions in Section 7.2, we introduce
the multi-agent control setup and the problem statement in Section 7.3, which
are formalized in Section 7.4 by a hybrid model representing the entire closed-
loop system. The design conditions of the proposed event-triggered mechanism
and the main result is presented in Section 7.5. In Section 7.6, we discuss the
applicability of the proposed framework in the presence of packet losses and
denial-of-service attacks. The proofs of all technical results can be found in the
appendix.

7.2 Definitions and preliminaries

7.2.1 Definitions

The following notational conventions will be used in this chapter. The set N

denotes the set of non-negative integers, N>0 the set of all positive integers, R
the field of all real numbers and R>0 the set of all non-negative reals. For N
vectors xi ∈ R

ni , i ∈ {1, 2, . . . , N}, we denote the vector obtained by stacking

all vectors in one (column) vector x ∈ Rn with n =
∑N

i=1 ni by (x1, x2, . . . , xN ) ,

i.e., (x1, x2, . . . , xN ) =
[
x⊤1 x⊤2 · · · x⊤N

]⊤
. The vectors in RN whose elements

are all ones or all zeros are denoted by 1N and 0N , respectively. By | · | and
〈·, ·〉 we denote the Euclidean norm and the usual inner product of real vectors,
respectively. Moreover, for x ∈ Rn and a given closed non-empty set A ⊂ Rn,
|x|A = infy∈A |x − y|. For a real symmetric matrix A, λmax(A) denotes the
largest eigenvalue of A. For a matrix M of dimensions N × N , Mi,· denotes
the i-th row of matrix M . IN denotes the identity matrix of dimension N ×N
and if N is clear for the context, we write I. For two matrices A ∈ Rm×n and
B ∈ Rp×q, the Kronecker product A⊗B ∈ Rmp×nq is given by

A⊗B =






a1,1B · · · a1,nB
...

. . .
...

an,1B · · · an,n




 , (7.1)
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where ai,j denotes the element in row i and column j of matrix A. A function
α : R>0 → R>0 is said to be of class K if it is continuous, strictly increasing and
α(0) = 0. It is said to be of class K∞ if it is of class K and it is unbounded. A
continuous function β : R>0 × R>0 → R>0 is said to be of class KL if, for each
fixed s, the mapping r 7→ β(r, s) belongs to class K, and for each fixed r > 0, the
mapping β(r, s) is decreasing with respect to s and s 7→ β(r, s) → 0 as s → ∞.
A function f : Rn → Rn is said to be locally Lipschitz continuous if for each
x0 ∈ Rn there exist constants δ > 0 and L > 0 such that for all x ∈ Rn we have
that |x − x0| 6 δ ⇒ |f(x) − f(x0)| 6 L|x − x0|. A function V : Rn → R>0 is
called proper with respect to a set A if V (x) → ∞ whenever |x|A → ∞. A set-
valued mapping from a set X to a set Y , associates, with every point x ∈ X , a
subset of Y . The notation F : X ⇒ Y , indicates that F is a set-valued mapping
from X to Y with F (x) ⊂ Y for all x ∈ X .

7.2.2 Graph theory notions

Here we recall some basic definitions and properties from graph theory as adop-
ted in [36,68]. A graph is a pair G = (V , E) composed of a vertex set V and a set
of edges E ⊂ V × V . The cardinality of V , denoted by N ∈ N>0, is the number
of vertices in V . An ordered pair (i, j) ∈ E with i, j ∈ V is said to be an edge
directed from i to j. A graph is called undirected if it holds that (i, j) ∈ E if and
only if (j, i) ∈ E . Otherwise, the graph is a directed graph, also referred to as a
digraph. A vertex j is said to be a neighbor of i if (j, i) ∈ E . The set of neighbors
of a vertex i is denoted by V in

i and defined as V in
i := {j ∈ V | (j, i) ∈ E} and the

set of vertices for which vertex i is a neighbor is denoted by Vout
i and defined

as Vout
i := {j ∈ V | (i, j) ∈ E}. Clearly, for undirected graphs, it holds that

V in
i = Vout

i for all i ∈ V . The cardinality of V in
i is denoted by Ni. An edge

(i, i) ∈ E is called a self-loop. A directed path from i to j is a (finite) sequence
of edges starting in i and ending at j. A digraph G is connected if there exists
a path, regardless of its direction, between all vertices i, j ∈ V .

7.3 Multi-agent control setup and problem sta-

tement

7.3.1 Distributed control configuration

In this chapter, we consider a collection of agents A1,A2, . . . ,AN that are inter-
connected according to a connected and time-invariant directed graph G(V , E).
The dynamics of the i-th agent Ai for i ∈ V are given by

Ai :

{

ẋp,i = fp,i(xp, ui, w)

yi = gp,i(xp,i),
(7.2)
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where xp,i ∈ R
nxp,i represents the local state vector, ui ∈ R

nui the local control
input, w ∈ R

nw the disturbance or external input, yi ∈ R
ny the local (mea-

surable) output and xp = (xp,1, xp,2, . . . , xp,N ) ∈ R
nxp with nxp

=
∑

i∈V nxp,i
.

Observe that dimensions of the local state state vectors of the agents are not
necessarily equal. The dimensions of the local outputs, however, are the same
for each agent. Moreover, we consider control laws of the form

{

ẋc,i = fc,i(xc,i, yi, ŷ
i)

ui = gc,i(xc,i, yi, ŷ
i),

(7.3)

where ŷi =
(
ŷi1, ŷ

i
2, . . . , ŷ

i
N

)
∈ RNny . We use ŷij with i ∈ Vout

j and j ∈ V , to
denote the local estimate of the output yj of agent Aj , yj , available at agent
Ai. Let us remark that the variable ŷij , i ∈ Vout

j and j ∈ V , corresponds to the

edge (j, i) ∈ E of graph G. Observe that the variables ŷij for which i /∈ Vout
j

with j ∈ V , i.e., (j, i) /∈ E , are non existent in practice and thus in principle
redundant due to the communication topology. However, for ease of notation,
we still use these variables and assume that ŷij(t) = 0 for all i /∈ Vout

j with j ∈ V
and all t ∈ R>0.

Due to the presence of network-induced imperfections such as time-varying
transmission delays, packet-based communication, time-varying transmission in-
tervals and scheduling protocols, we typically have that ŷij 6= yj, for all i ∈ Vout

j

and j ∈ V . In this chapter, we consider the case that each agent Ai, i ∈ Vout
j and

j ∈ V , employs the same holding device to obtain the estimate ŷij . Nonetheless,

we employ the notation ŷij since, in general, estimates of yi differ per agent,

i.e., ŷij 6= ŷlj , for j ∈ V and i, l ∈ Vout
j with i 6= l. This inconsistency is, for

example, caused by the fact that a broadcast output measurement is not neces-
sarily received at the same time by each connected agent due to the presence of
non-uniform delays, which we will discuss in more detail in Section 7.3.2.

7.3.2 Networked communication

As already mentioned, (packet-based) networked communication induces inhe-
rent imperfections such as the fact that data can only be transmitted at discrete
instants in time (sampled-data communication) and the presence of unknown
non-uniform time-varying delays. To be more concrete, the output yi, i ∈ V ,
is only sampled and transmitted over the network at discrete time instants tik,
k ∈ N, that satisfy 0 = ti0 < ti1 < . . ., for all i ∈ V . After the k-th transmission
is sent by agent Ai, i ∈ V , the data is received by the agent(s) Aj , j ∈ Vout

i ,

after a communication delay of ∆ij
k > 0 time units, k ∈ N. In other words, at

time tik +∆ij
k , i, j ∈ V , k ∈ N, the estimate ŷji is updated according to

ŷji ((t
i
k + ∆ij

k )
+) = zi(k, ēi(t

i
k), j)yi(t

i
k) + (1 − zi(k, ēi(t

i
k), j))ŷ

j
i (t

i
k + ∆ij

k ),
(7.4)
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for all i ∈ V and j ∈ Vout
i , where ēi := (δi(1)e

1
i , δi(2)e

2
i , . . . , δi(N)eNi ) ∈ Ēi ⊆

R
Nny , where Ēi := Ei(1)× Ei(2)× . . .× Ei(N) with

Ei(j) :=

{

{0}, when j /∈ Vout
i

Rny , otherwise,

δi(j) :=

{

0, when j /∈ Vout
i

1, otherwise,
(7.5)

and where eji ∈ Rny , i, j ∈ V represents the estimation error given by

eji := ŷji − yi, (7.6)

for i ∈ V and j ∈ Vout
i . Hence, eji denotes the error present in the information

ŷji available at agent Aj regarding the output yi of agent Ai, also referred to as
the transmission error. Note that ēi does not depend on the redundant variables
eji ∈ Rny for which i ∈ V and j /∈ Vout

i due to the presence of δ(i)j .
The function zi : N × Ēi × V → {0, 1}, i ∈ V , which we will refer to as the

destination protocol, is related to the transmission decision of agent Ai. To be
more specific, at each transmission time tik, i ∈ V , k ∈ N, the function zi specifies
on the basis of k and ēi(t

i
k), to which of the connected agents Aj , j ∈ Vout

i , the
most recent local output measurement of agent Ai, i.e., yi(t

i
k), is transmitted.

In case the output measurement yi should be transmitted to agent Aj , j ∈ Vout
i ,

at transmission time tik, i ∈ V , k ∈ N, then zi(k, ēi(t
i
k), j) = 1. If it should not

be transmitted to agent Aj , j ∈ Vout
i , then zi(k, ēi(t

i
k), j) = 0.

Interestingly, as we will show in Section 7.6, the function zi also allows to cap-
ture packet losses and denial-of-service attacks, which are results of independent
interest.

In this chapter, we focus on small-delay scenarios meaning that an agent is
only allowed to transmit after the previous broadcast information of that agent
has been received by all targeted agents. In addition, we assume that the delays
are bounded from above by a time-constant called the maximum allowable delay
(MAD). To be more precise, we adopt the following assumption.

Assumption 7.1. For each i ∈ V, there is a time-constant τ imad such that the

transmission delays are bounded according to 0 6 ∆ij
k 6 τ imad 6 tik+1 − tik, j ∈

Vout

i for all k ∈ N, where τ imad denotes the maximum allowable delay.

The values of the delay ∆ij
k , i, j ∈ V , k ∈ N, for which j /∈ {p ∈ Vout

i |
zi(k, ēi(t

i
k), p) = 1} have no physical meaning since for these cases, agent Ai

does not transmit any information to agent Aj at transmission time tik due to
the communication topology specified by the communication graph G and/or the
destination protocol given by zi. Therefore, we simply take ∆ij

k = 0 for i, j ∈ V
for which j /∈ {p ∈ Vout

i | zi(k, ēi(tik), p) = 1}.
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Remark 7.1. Destination protocols are modeled in a similar fashion as network
scheduling protocols as described in [173, 245]. As such, we can be inspired by
the framework presented in [173,245] for the design of destination protocols. For
example, the destination protocols could be based on well-known network sche-
duling protocols such as the Sample-Data (SD), the Round-Robin (RR) and the
Try-Once-Discard (TOD) protocol. The framework presented also allows to ge-
nerate new classes of protocols that are meaningful in the context of multi-agent
systems such as destination protocols that capture switching communication
topologies.

In time periods in which agent Aj does not receive new information of agent

Ai, the estimate ŷji evolves according to

˙̂yji (t) = f̂i(ŷ
j
i (t)), (7.7)

for all t ∈ (tik +∆ij
k , t

i
k+1+∆ij

k+1), with i ∈ V , j ∈ Vout
i , k ∈ N, where f̂i : R

ny →
Rny describes the holding device. Let us highlight that the setup described above
allows for model-based networked control schemes in which, in between update
events, the control input is computed by means of a model of the system, see,
e.g, also [111,166,259]. As shown in [148,149], model-based control schemes also
facilitate in consensus/synchronization problems.

Remark 7.2. Observe from (7.4) that since the sizes of the transmission delays are
in general unknown, the estimate ŷji , i ∈ V , j ∈ Vout

i , is typically not available
at agent Ai. As such, in practice, it is in general not possible to implement
a destination protocol that depends on ēi such as the TOD protocol. Let us
remark, however, that in case zero-order hold (ZOH) devices are employed, i.e.,

when f̂i(ŷ
j
i ) = 0 for all ŷji ∈ Rny , it is possible to practically implement protocols

that depend on ēi as we will discuss later on.

7.3.3 Dynamic event-triggered communication

Conventional (digital) control schemes often employ a time-triggered execution
of control tasks meaning that sampling instants of measurements are purely
based on time, often according to a fixed sampling rate. Typically, this fixed
sampling rate is determined a priori and therefore needs to be selected such
that even for the worst-case situation, the system satisfies the desired closed-
loop stability and performance criteria, see, e.g., [51, 120, 173]. Hence, in these
time-triggered control schemes transmission are generated irregardless the state
system and therefore often lead to redundant utilization of communication re-
sources. The latter is not desirable, in particular, when the communication
resources are scarce such as, for instance, in networked control systems (NCSs).

In this work, we consider event-triggered control (ETC) schemes in which the
transmission instants are determined based on state- or output measurements,
see, e.g., [15, 18, 20, 41, 72, 78, 165, 191, 224, 236] and the references therein. By
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introducing this mechanism, the communication resources are only used when
necessary to maintain desired closed-loop behaviour, which reduces the utiliza-
tion of communication resources (and corresponding energy resources). In this
chapter, we consider dynamic event-generators of the form as proposed in [72]
that schedule transmission instants according to

ti0 = 0, tik+1 := inf
{
t > tik + τ imiet | ηi(t) 6 0

}
, (7.8)

for i ∈ V and k ∈ N and where ηi ∈ R is the triggering variable of agent Ai that
evolves according to

η̇i(t) = Ψi(oi(t))− σi(ηi), when ηi(t) > 0 (7.9a)

ηi(t
+) = η0i (oi(t)), when ηi(t) = 0, (7.9b)

where the functions Ψi : Oi → R, σi : R>0 → R>0 and η0i : Oi → R>0 and
the time constant τ imiet are to be properly designed as we discuss in Section 7.5.
The variable oi represents information locally available at agent Ai, such as the
output yi, the local estimates ŷij , j ∈ V in

i , and the most recently transmitted

output measurement. Note that the time constant τ imiet is an enforced lower
bound on the inter-transmission times for agent Ai referred to as the minimum
inter-event time (MIET). Clearly, we have that tik+1 − tij > τ imiet and thus that
Zeno-behaviour is excluded from the event-triggering mechanism (ETM). The
latter property is obviously important to enable implementation of the ETC
scheme in practice. In accordance with Assumption 7.1, we select τ imiet > τ imad.

The ETM described by (7.8) and (7.9) is referred to as a dynamic ETM
because the transmission instants are determined based on dynamic variables
such as ηi in contrast to the commonly adopted static ETMs which rely on
a static expression dependent on the locally available information oi, see also
[72, 96, 191]. Employing dynamic ETMs instead of static versions has several
advantages including significant larger average inter-event times in many cases,
see [72, 96] for more details.

As mentioned before, typically, the sizes of the transmission delays are time-
varying and unknown. As a consequence, the estimate ŷmi , i ∈ V , m ∈ Vout

i ,
as in (7.4) and (7.7), is not available at agent Ai. To deal with the latter fact,
each agent Ai, i ∈ V , keeps track of a local estimate of the information available
at agent Am, m ∈ Vout

i , regarding the local output yi. We denote this local
estimate with ỹmi . To be more specific, for all tik, k ∈ N, i ∈ V , ỹmi , m ∈ Vout

i , is
updated according to

ỹmi (tik
+
) = zi(k, ēi(t

i
k), j)yi(t

i
k) + (1− zi(k, ēi(t

i
k), j))ỹ

m
i (tik), (7.10)

and in between transmission instants, ỹmi evolves according to

˙̃ymi (t) = f̂i(ỹ
m
i (t)), (7.11)
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for t ∈ (tik, t
i
k+1). It is important to note that the dynamics of ỹmi , i ∈ V ,

m ∈ Vout
i , are identical to the dynamics of ŷmi as described in (7.4) except from

the fact that ỹmi is immediately updated at a transmission instant. For this
reason, we typically have that ỹmi 6= ŷmi . Observe that in case communication

delays are absent, i.e., ∆ij
k = 0 for all i ∈ V , j ∈ Vout

i and k ∈ N, we have that
ỹmi = ŷmi .

Let us emphasize that the ETM of agent Ai described by (7.8) and (7.9) will
not rely on the continuous availability of output measurements of other agents,
i.e., yj , j ∈ V in

i , and will not require clock synchronization, acknowledgment
signals that need to be transmitted and received instantaneously or knowledge
about the sizes of the transmission delays.

7.3.4 Problem formulation

Given the descriptions above, the problem considered in this chapter can now
be stated informally as follows.

Problem 7.1. Consider a collection of agents A1,A2, . . . ,AN described by (7.2)
and a collection of maximum allowable delays τ imad, i ∈ V. Propose design
conditions for the time constants τ imiet(> τ imad) and the functions zi, Ψi and
η0i , i ∈ V, such that the control laws given by (7.3) and the ETM given by (7.8)
and (7.9) result in a multi-agent system with the desired (and to be specified)
closed-loop stability and robustness properties.

As we will discuss in the next section, we will consider general dissipativity
properties that can reflect a broad range of control objectives.

7.4 Mathematical formulation of the event-

triggered multi-agent system

In this section, we formulate the event-triggered multi-agent system in terms of
a hybrid model to facilitate the stability analysis in Section 7.5 and we formalize
the problem stated at the end of Section 7.3.

7.4.1 Hybrid model

A hybrid model H(C, F,D, G) with state ξ ∈ X and disturbance w ∈ Rnw des-
cribes the system in terms of flow and jump equations and takes the form

ξ̇ = F (ξ, w), when ξ ∈ C, (7.12a)

ξ+ ∈ G(ξ), when ξ ∈ D, (7.12b)

where F and G denote the flow and the jump map, respectively, C and D the
flow and the jump set, respectively, and where ξ+ denotes the updated value of
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ξ right after a jump, see [50, 98] for profound definitions regarding this hybrid
modeling framework.

To model the updates (in terms of (7.12b)) of eji at update times tik +∆ij
k ,

we first obtain from (7.4) and (7.6), that for all i, j ∈ V and k ∈ N for which
zi(k, ēi(t

i
k)), j) = 1,

eji ((t
i
k +∆ij

k )
+) = ŷji ((t

i
k +∆ij

k )
+)− yi((t

i
k +∆ij

k )
+)

= yi(t
i
k)− yi(t

i
k +∆ij

k ). (7.13)

As in [72, 120], to capture the updates of eji in terms of jump equations, we
need to distinguish two types of jumps, namely, jumps corresponding to time
instants at which an agent Ai, i ∈ V , transmits a new measurement to the
agent(s) Aj , j ∈ Vout

i (referred to as transmission events/jumps), and jumps
corresponding to time instants at which an agent Aj , j ∈ Vout

i , receives a new
measurement from agent Ai, i ∈ V in

j (referred to as update events/jumps). To

keep track of these two jump types, we introduce auxiliary variables lji ∈ {0, 1},
that indicate whether the next jump corresponds to the transmission of an output
measurement by agent Ai, i ∈ V (lji = 0 for all j ∈ V), or to the reception of

an output measurement by agent Aj from agent Ai (lji = 1). Moreover, we
introduce memory variable ri ∈ Rny , i ∈ V , to store the value of yi at times tik,
k ∈ N, i.e., at each transmission instant tik, we have that

ri(t
i
k

+
) = yi(t

i
k). (7.14)

In between transmissions, the variable ri is held constant, i.e.,

ṙi = 0 (7.15)

for all t ∈ (tik, t
i
k+1), i ∈ V and k ∈ N. Given the description above, the update

of eji , i ∈ V , j ∈ Vout
i , as described in (7.13) can be rewritten as

eji ((t
i
k +∆ij

k )
+) = ri(tk +∆ij

k )− yi(tk +∆ij
k ). (7.16)

To secure that Assumption 7.1 holds and to keep track of the time elapsed
since the most recent transmission, we adopt the timer variable τi ∈ R>0, i ∈ V .
To be more concrete, τi, i ∈ V , represents the time elapsed since the most recent
transmission instant of agent Ai, i.e., τi = inf{k∈N|ti

k
<t}(t − tik). Moreover, we

let κi ∈ N denote the transmission counter of agent Ai. Observe that the state
variables eji and lji , i ∈ V , j /∈ Vout

i , are in principle redundant due to the
communication topology. However, for notational consistency and simplicity,
we keep these variables in the hybrid model presented next.

To write the entire multi-agent system in the form as given in (7.12), consider

the state vector ξ := (x, e, τ, κ, r, ỹ, l, η) ∈ X with X :=
{

(x, e, τ, κ, r, ỹ, l, η) ∈
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Rnx ×RN2ny ×RN
>0×NN ×RNny ×RN2ny ×{0, 1}N2×RN

>0 | ∀i, j ∈ V , ((lji = 0)∨
(lji = 1∧τi ∈ [0, τ imad]))

}

, where τ = (τ1, τ2, . . . , τN ) ∈ RN
>0, κ = (κ1, κ2, . . . , κN)

∈ NN , r = (r1, r2, . . . , rN ) ∈ RNny , ỹ = (ỹ11 , ỹ
1
2 , . . . , ỹ

1
N , ỹ

2
1 , ỹ

2
2 , . . . , ỹ

N
N ) ∈ RN2ny ,

l = (l11, l
1
2, . . . , l

1
N , l

2
1, l

2
2, . . . , l

N
N ) ∈ {0, 1}N2

and η = (η1, η2, . . . , ηN ) ∈ RN
>0. The

flow map F : X × Rnw → Y with Y := Rnx × RN2ny × RN
>0 × NN × RNny ×

RN2ny × {0, 1}N2 × RN
>0, is given by

F (ξ, w) :=
(
f(x, e, w), g(x, e, w),1N ,0N ,

0N2ny
, f̂(ỹ),0N2 ,Ψ(y, ŷ, ỹ, e, τ)− σ(η)

)
, (7.17)

where f̂(ỹ) = (f̂1(ỹ
1
1), f̂2(ỹ

1
2), . . . , f̂N(ỹ1N ), f̂1(ỹ

2
1), f̂2(ỹ

2
2), . . . , f̂N(ỹNN )). Based on

(7.2) and (7.3), we define f(x, e, w) := (f1(x, e
1, w), f2(x, e

2, w), . . . , fN (x, eN , w))
with x = (xp,1, xc,1, xp,2, xc,2, . . . , xp,N , xc,N ) and

fi(x, e
i, w) :=

[
fp,i(xp, gc,i(xc,i, gp,i(xp,i), gp(xp) + ei), w)
fc,i(xc,i, gp,i(xp,i), gp(xp) + ei) + ei)

]

. (7.18)

According to (7.6), we have that ėji = ˙̂yji − ẏi. By combining the latter with
(7.2), (7.3) and (7.7), we obtain that g(x, e, w) := (g11(x, e, w)), g

1
2(x, e, w)), . . . ,

g1N(x, e, w), g21(x, e, w), g
2
2(x, e, w), . . . , , g

N
N (x, e, w)) where

gji (x, e, w) := f̂i(gp,i(xp,i) + eji ) + f j
y,i(x, e

i, w) (7.19)

with

f j
y,i(x, e

i, w) := − ∂gp,i
∂xp,i

fp,i(xp, gc,i(xc,i, gp,i(xp,i), gp(xp) + ei), w). (7.20)

Observe that f j
y,i is such that f j

y,i(x, e
i, w) = −ẏi. The functions Ψ(y, ŷ, ỹ, e, τ) =

(Ψ1(o1),Ψ2(o2), . . . ,ΨN (oN )) with Ψi, i ∈ V , as in (7.9) and oi = (yi, ŷ
i, ¯̃yi, ēi, τi),

where ¯̃yi := (δi(1)ỹ
1
i , δi(2)ỹ

2
i , . . . , δi(N)ỹNi ) ∈ Ēi ⊆ RNny with δi(j), j ∈ V as in

7.5, and σ(η) = (σ1(η1), σ2(η2), . . . , σN (ηN )) with σi ∈ K∞, are to be designed.
The flow set C ⊆ X can be derived from (7.9) and Assumption 7.1, and is

given by C :=
⋂

i,j∈V Ci,j with

Ci,j :=
{

ξ ∈ X |
(

lji = 0
)

∨
(

0 6 τi 6 τ imad ∧ lji = 1
)}

. (7.21)

Let us emphasize that the triggering condition in (7.8) is embedded via the
definition of X (note that ξ ∈ X implies ηi > 0 for all i ∈ V).

To describe the jump map G : X ⇒ Y, we define Γi as a N × N matrix of
which the ii-th (diagonal) entry is equal to one and all other entries are zero,
Γ̃i(κi, ēi) := (Zi(κi, ēi)⊗ Γi) with Zi(κi, ēi) := diag(zi(κi, ēi, 1), zi(κi, ēi, 2), . . . ,
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zi(κi, ēi, N)) and Γi,j := Γj ⊗ Γi. Given these definitions, we obtain the jump
map G(ξ) =

⋃

i∈V
⋃

j∈V Gi,j(ξ), where

Gi,j(ξ) :=







{G0
i (ξ)}, when ξ ∈ Di,j ∧ lji = 0

{G1
i,j(ξ)}, when ξ ∈ Di,j ∧ lji = 1

∅, when ξ /∈ Di,j

(7.22)

with

G0
i (ξ) :=

(
x, e, (IN − Γi)τ, κ+ Γi1N , (Γi ⊗ Iny

)y + (INny
− Γi ⊗ Iny

)r,

(Γ̃i(κi, ēi)⊗ Iny
)(1N ⊗ y) + (IN2ny

− Γ̃i(κi, ēi)) ⊗ Iny
)ỹ,

l + Γ̃i(κi, ēi)1N2 ,Γiη
0
i (oi) + (I − Γi)η

)
(7.23)

and

G1
i,j(ξ) :=

(
x, (Γi,j ⊗ Iny

)(1N ⊗ r − e− 1N ⊗ y) + e,

τ, κ, r, ỹ, l− Γi,j1N2 , η
)
. (7.24)

The function G0
i , i ∈ V describes the jump of the state ξ at transmission events

of agent Ai. Observe that for this case, ỹji and ri are set to yi for all i ∈ V
and all j ∈ V for which zi(κi, ēi, j) = 1, as described in (7.10) and (7.14),

respectively. Moreover, observe that lji
+

= 1, for all i ∈ V , and j ∈ Vout
i for

which zi(κi, ēi, j) = 1. The latter ensures that first update events occur, i.e.
that the broadcast information of agent Ai, i ∈ V , is received by all targeted
agents, before the next transmission is scheduled.

The function G1
i,j , i ∈ V , j ∈ Vout

i , describes the jump of the state ξ at update
events at agent Aj due to a transmission/broadcast of agent Ai. Observe that

indeed, eji is set to ri − yi as described in (7.16). Moreover, observe that lji is
set back to 0.

The jump set D ⊆ X is given by D :=
⋃

i∈V
⋃

j∈Vout
i

Di,j , where

Di,j :=
{

ξ ∈ X |
(

τi > τ imiet ∧ ηi = 0 ∧ lji = 0
)

∨
(

lji = 1
)}

. (7.25)

By means of (7.17)-(7.25), we define the hybrid model H(C, F,D, G) of the form
(7.12).

7.4.2 Mathematical problem formulation

To specify the various desired stability and performance properties in a general
sense, we introduce the following definitions that use the concepts of hybrid time
domains, hybrid inputs, corresponding solution pairs and maximal solutions, see
[50, 98] for more details.
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Definition 7.1. Given any hybrid input w : dom w → Rnw . Define ‖w‖∞ :=

supj∈N

(

ess sup{t∈R|(t,j)∈dom w} |w(t, j)|
)

. A hybrid input is said to be of class

Lnw∞ if w(t, j) ∈ Rnw for all (t, j) ∈ dom w and ‖w‖∞ <∞.

Definition 7.2. The hybrid system H is said to be persistently flowing if all
maximal solution pairs (ξ, w) with ξ(0, 0) ∈ C ∪D and w ∈ Lnw∞ have unbounded
domains in the t-direction, i.e., supt dom ξ = ∞.

Definition 7.3. The system H is said to be flow-dissipative with respect to the
supply rate s̃X × R

nw → R if there exists a locally Lipschitz function U : X →
R>0, referred to as the storage function, such that

1. for almost all ξ ∈ C
〈∇U, F (ξ, w)〉 6 s̃(ξ, w) (7.26a)

2. for all ξ ∈ D
U(G(ξ))− U(ξ) 6 0. (7.26b)

Problem 1 can now be formalized as follows.

Problem 7.2. Given the event-triggered MAS represented by H(C, F,D, G) with
data F , G, C and D as described in (7.17)-(7.25), the functions zi, i ∈ V, as
in (7.4) and maximum allowable delays τ imad, i ∈ V. Provide design conditions
for the time-constants τ imiet ∈ R>0 with τ imiet > τ imad and the functions Ψi

and η0i as in (7.8) and (7.9), for i ∈ V, such that, under Assumption 1, the
system H is persistently flowing and flow-dissipative with respect to the supply
rate s̃ : X× Rnw → R given for ξ ∈ X and w ∈ Rnw by

s̃(x, e, w, η) := s(x, e, w) − ση. (7.27)

As shown in, for example, [80, 170, 241, 254], the dissipation inequalities in
(7.26) allow to consider various system properties such as asymptotic stabi-
lity, input-to-state stability, Lp-stability with p ∈ [1,∞) and passivity, from a
common point of view. Hence, Problem 7.2 captures a wide range of relevant
multi-agent/distributed control problems addressed in the literature including
output-regulation problems (of which the consensus-seeking problem is a particu-
lar case) and vehicle-platooning problems (in which Lp-contractivity, p ∈ [1,∞),
is of interest).

To illustrate the latter, we discuss the case of input-to-state stability. Con-
sider the following definitions.

Definition 7.4. A nonempty closed set A ⊂ X is input-to-state stable (ISS)
for the hybrid system H from input w to state ξ, if it is persistently flowing
and there exist functions β ∈ KL and γ ∈ K such that for any initial condition
ξ(0, 0) ∈ C ∪ D, every solution pair (ξ, w) to H with w ∈ Lnw∞ satisfies

|ξ(t, j)|A 6 max {β(|ξ(0, 0)|A, t), γ(‖w‖∞)} (7.28)

for all (t, j) ∈ dom ξ.
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As shown in [50], the existence of an ISS Lyapunov function, as defined below,
implies ISS of system. Inspired by [50], we consider the following definition.

Definition 7.5. Let U∗ : X → R>0 be a locally Lipschitz function. Consider
system (7.12). Under the assumption that (7.12) is persistently flowing, we call
a function U∗ an ISS Lyapunov function for the system (7.12) with respect to
the nonempty closed set A ⊂ X and input w if the function is proper with respect
to A and if there exist α, α, ᾱ ∈ K∞ and γ ∈ K such that

1. for almost all ξ ∈ C,

〈∇U∗, F (ξ, w)〉 6 −α(|ξ|A) + γ(|w|) (7.29a)

2. for all ξ ∈ D,
U∗(G(ξ)) − U∗(ξ) 6 0. (7.29b)

Observe that the condition in (7.29) is equivalent to (7.26) for U proper and
s̃(ξ, w) = −α(|ξ|A) + γ(|w|). Let us remark that in case no disturbances are
present, i.e., when w(t, j) = 0 for all (t, j) ∈ dom ξ and that A = {ξ ∈ X | e =
0, η = 0, xi = xj for all i, j ∈ V}, we obtain conditions for asymptotic consensus,
see also [179, 196].

Remark 7.3. Since we are interested in persistently flowing systems as these are
often relevant from a physical point of view, we weakened the ISS conditions
provided in [50], see also [192] and [98, Proposition 3.27].

7.5 Design conditions and main result

In this section, we present design conditions for the destination protocol zi, the
time constants τ imiet, τ

i
mad and the functions Ψi and η0i , i ∈ V . At the end of

the section, we present the main result of the chapter.

7.5.1 Design of the destination protocols

As already mentioned in Remark 7.1, the destination protocols considered in
this chapter can be modeled in a similar fashion as the network scheduling
protocols as described in [51, 173]. As such, we can exploit the conditions on
network protocols as introduced in [51, 173] for the design of suitable destina-

tion protocols. Thereto, let hi(k, ēi) :=
(

(1 − zi(k, ēi, 1))e
1
i , (1 − zi(k, ēi, 2))e

2
i ,

. . . , (1 − zi(k, ēi, N))eNi

)

for all a ∈ Rny and k ∈ N. Consider the following

condition.

Condition 7.1. [51, 173] A destination protocol zi : N × RNny × V → {0, 1},
i ∈ V, is said to be uniformly globally exponentially stable (UGES) if there
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exists a Lyapunov function Wi : N×RNny → R>0 that is locally Lipschitz in its
second argument such that for all k ∈ N and all ēi ∈ Ei it holds that

αW,i|ēi| 6Wi(k, ēi) 6 ᾱW,i|ēi| (7.30a)

Wi(k + 1, hi(k, ēi)) 6 λiWi(k, ēi) (7.30b)

for constants 0 < αW,i 6 ᾱW,i and any 0 < λi < 1.

As shown in [173], the condition above is equivalent to the UGES property
of the following discrete-time system

q(k + 1) = hi(k, q), k ∈ N, (7.31)

where q ∈ RNny . Hence, Condition 7.1 is only related to the destination protocol
and not to the other dynamics of the system. In fact, in case the system described
by (7.31) is UGES for a given protocol zi, the corresponding Lyapunov function
Wi satisfying (7.30a) and (7.30b) can be specified as

Wi(k, ēi) =

√
√
√
√

∞∑

m=k

|ψ(m, k, ēi)|2, (7.32)

where ψ(m, k, ēi) denotes the solution of (7.31) at discrete time instant m with
initial condition ēi and initial time k, see also [173, Proposition 3].

The well-known Round-Robin (RR) protocol and Try-Once-Discard (TOD)
protocol but also many other protocols are known to be UGES protocols as well,
see also [120,173]. For a TOD protocol, we can take the functionWi,TOD(κi, ei) =
|ei|, for which (7.30a) holds with αW,i,TOD = ᾱW,i,TOD = 1 and (7.30b) with

λi,TOD =
√

(Ni − 1)/Ni. For the RR protocol, there exists a function Wi,RR

that satisfies (7.30a) with αW,i,RR = 1 and ᾱW,i,RR =
√
Ni, and (7.30b) with

λi,RR =
√

(Ni − 1)/Ni, see [173] for more details. For the sampled-data (SD)
protocol, corresponding to the case that at each transmission instant an agentAi,
i ∈ V broadcasts its output measurement to all connected agents Aj , j ∈ Vout

i ,
we can take Wi(k, ēi) = |ēi|, αW,i = ᾱW,i = 1 and λi > 0.

Next to Condition 7.1, we also consider the following condition.

Condition 7.2. ([72,120]) For each i ∈ V and for all k ∈ N, ēi ∈ Ei

Wi(k + 1, ēi) 6 λW,iWi(k, ēi) (7.33)

for some constant λW,i > 1, and that for almost all eji ∈ R
ny and all i ∈ V,

j ∈ Vout

i and k ∈ N
∣
∣
∣
∣

∂Wi(k, ēi)

∂ēi

∣
∣
∣
∣
6 ci (7.34)
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for some constant ci ∈ R>0. Moreover, for each i ∈ V, there exist functions
He,i : Rnx × R

Nny × R
nw → R>0 and Hy,i : Rnx × R

Nny × R
nw → R>0 and

constants L1,i, L2,i > 0 such that for all j ∈ Vout

i , x ∈ R
nx , e ∈ R

N2ny and
w ∈ Rnw , it holds that

ci|gji (x, e, w)| 6 He,i(x, e
i, w) + L1,i|eji |+ L2,i|eii|, (7.35)

and

ci|f j
y,i(x, e

i, w)| 6 Hy,i(x, e
i, w) + L2,i|eii| (7.36)

with the functions gji and f j
y,i as in (7.19) and (7.20), respectively.

Observe that (7.33) and (7.34) are only related to the destination protocol
zi. For the TOD, RR and SD protocol, we can take λW,i,TOD = 1, ci,TOD = 1,
ci,RR =

√
Ni, λW,i,RR =

√
Ni and ci,SD = 1, λW,i,SD = 1, respectively.

7.5.2 Lower-bounds on the minimum inter-event times and

maximum allowable delays

To obtain the lower-bounds on the minimum inter-event time and the maxi-
mum allowable delay for each agent Ai, i ∈ V , we first characterize the influence
of the transmission errors eji , j ∈ Vout

i , on the state x and the desired stabi-
lity/performance property by means of the following condition.

Condition 7.3. There exist a proper locally Lipschitz function V : Rnx → R>0,
functions ̺i : R

ny × RNny → R>0, constants γℓ,i > 0, ℓ ∈ {0, 1}, such that for

all e ∈ RN2ny , w ∈ Rnw , κ ∈ NN , l ∈ {0, 1}N2

, and almost all x ∈ Rnx

〈∇V (x), f(x, e, w)〉 6 s(x, e, w)+
∑

i∈V

(

− ̺i(gy,i(x), gy(x) + ei)−NiH
2
i (x, e

i, w, li) + γ2
l̃i(li),i

W 2
i (κi, ēi)

)

(7.37)

with li := (l1i , l
2
i , . . . l

N
i ) and s(x, e, w) as in (7.27), where the function Hi :

Rnx × RNny × Rnw × {0, 1}N → R>0 is given by

Hi(x, e
i, w, li) := max{He,i(x, e

i, w), l̃i(li)Hy,i(x, e
i, w)}, (7.38)

with the functions He,i and Hy,i as in (7.35) and (7.36), respectively, and where

the function l̃i : {0, 1}N → {0, 1} is given by

l̃i(li) :=

{

0, when
∑

j∈Vout

i
lji = 0

1, when
∑

j∈Vout

i
lji > 0.

(7.39)
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In essence, (7.37) constitutes a dissipation inequality for the system ẋ =
f(x, e, w) and, in particular, an L2-gain condition from (W1,W2, . . . ,WN ) to
(H1, H2, . . . , HN ). The constants γℓ,i, ℓ ∈ {0, 1}, resulting from this inequality

indicate the influence of the transmission errors eji , j ∈ Vout
i , on the state x and

the desired stability/performance property. The constants γℓ,i, ℓ ∈ {0, 1} are
used to determine τ imiet and τ

i
mad, i ∈ V , via the following condition.

Condition 7.4. There exist positive real constants τ imiet and τ imad, i ∈ V, with
τ imiet > τ imad satisfying

γ̃i(0)φ0,i(τ
i
miet) > λ2i γ̃i(1)φ1,i(0), (7.40)

γ̃i(1)φ1,i(τi) > γ̃i(0)φ0,i(τi), for all τi ∈ [0, τ imad], (7.41)

where φℓ,i, ℓ ∈ {0, 1}, evolve according to

d

dτi
φℓ,i = −

(

2L̃i(ℓ)φℓ,i + γ̃i(ℓ)(φ
2
ℓ,i + 1)

)

, (7.42)

for some fixed initial conditions φℓ,i(0), ℓ ∈ {0, 1}, that satisfy γi(1)φ1,i(0) >

γi(0)φ0,i(0) > λ2i γi(1)φ1,i(0) > 0, where the function L̃ and the constants γ0,i
and γ1,i are given by

L̃i(ℓ) := α−1
W,iζ

−ℓ
i max

{

L1,i,
√

NiL2,i

}

, (7.43)

γ̃i(ℓ) := ζ−ℓ
i γℓ,i (7.44)

with ζi :=
λi

λW,i

αW,i

ᾱW,i
and where γℓ,i satisfies Condition 3 and with λi as in (7.30b).

Condition 7.3 and Condition 7.4 might seem difficult to satisfy at first sight.
However, the conditions above can be obtained systematically for, e.g., systems
with linear plant and controller dynamics. In fact, we will show that, in a similar
fashion as in [120], the result above leads to intuitive trade-off curves between
τ imad and τ imiet, which can be used to find appropriate values for λi, φ0,i(0) and
φ1,i(0), i ∈ V .
Remark 7.4. Observe from (7.42) that d

dτi
φℓ,i(τi) < 0, ℓ ∈ {0, 1} for τi ∈

[0, τ imiet], (since φℓ,i(τi) > 0 for τi ∈ [0, τ imiet]), and that a larger γi leads to
faster decay of φℓ,i. By combining (7.40) and (7.41) with the latter fact, we can
see that larger γi leads to less favorable (τ imad, τ

i
miet)-combinations.

7.5.3 Event-triggering mechanism design

The dynamics of the triggering variables ηi, i ∈ V , which, according to (7.8),
are used to determine the transmission instants, are defined by the functions Ψi
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and η0i . For all (t, j) ∈ dom ξ, the functions Ψi : O → R and η0i : O → R>0,
i ∈ V , as in (7.9), are given by

Ψi(oi(t, j)) := ̺i(yi(t, j), ŷ
i(t, j))

− (1 − ωi(τi(t, j)))γ̄i
∑

j∈Vout
i

max
τ∈[0,τ i

mad
]
|ỹji (t− τ, j)− yi(t, j)|2 (7.45)

and
η0i (oi(t, j)) := εη

∑

j∈Vout
i

min
τ∈[0,τ i

mad
]
|ỹji (t− τ, j)− yi(t, j)|2 (7.46)

with εη := αW,i

(
γ̃i(0)φ0,i(τ

i
miet)− γ̃i(1)φ1,i(0)λ

2
i

)
, respectively, where

ωi(τi) :=

{

1, for τi ∈ [0, τ imiet]

0, for τi > τ imiet,
(7.47)

and where

γ̄i := αW,iγ̃i(0)
(

2L̃i(0)φ0,i(τmiet) + γ̃i(0)(1 + φ20,i(τmiet))
)

. (7.48)

Observe that the constant λi and the function ̺i, i ∈ V , are part of the ETM
described by (7.8), (7.9), (7.45) and (7.46). Hence, the design of λi and ̺i have
a significant influence on the average inter-event times generated by this ETM.

Remark 7.5. In case ZOH devices are employed, i.e., in case ˙̂yji (t, j) = 0, when

ξ ∈ C for all i ∈ V , j ∈ Vout
i , it holds that ŷji (t, j) = ỹji (t, j) for all (t, j) ∈ dom ξ

for which τi(t, j) > τ imiet due to Assumption 7.1. As such, for this case, we can
choose the functions Ψi and η

0
i as

Ψi(oi(t, j)) := ̺i(yi(t, j), ŷi(t, j))

− (1− ωi(τi(t, j)))γ̄i
∑

j∈Vout
i

|ỹji (t, j)− yi(t, j)|2, (7.49)

and
η0i (oi(t, j)) := εη

∑

j∈Vout
i

|ỹji (t, j)− yi(t, j)|2. (7.50)

In addition, as already mentioned in Remark 7.2, note that for the ZOH case, it
is indeed possible to practically implement destination protocols that explicitly
depend on ēi since ŷji (t, j) is known for all (t, j) ∈ dom ξ for which τi(t, j) >

τ imiet.

Remark 7.6. The event-triggering condition presented in (7.8) can be modified
to a static event-triggered condition by taking

ti0 = 0, tik+1 := inf
{
t > tik + τ imiet | Ψi(oi) 6 0

}
. (7.51)

This modification does not affect the stability and/or performance guarantees.
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7.5.4 Main result

Given the conditions and the ETM design presented above, we can now state
the following result.

Theorem 7.1. Consider the system H(C, F,D, G) with data C, F , D and G as
described in (7.17)-(7.25) that satisfies Condition 7.1-7.4. Moreover, suppose
that Ψi and η0i are given by (7.45) and (7.46), respectively. Then the MAS
described by H is flow-dissipative with respect to the supply rate s̃ : X×Rnw → R

as given in (7.27). In addition, if there exist constants cV , cW ∈ R>0 and a
function σw ∈ K∞ such that s̃(ξ, w) 6 cV V (x) + cW

∑

i∈V |ēi|2 + σw(|w|), then
the system H is persistently flowing.

The proof is provided in the appendix.

7.6 Packet losses and Denial-of-Service attacks

As mentioned before, the function zi can also capture packet losses and denial-of-
service attacks. In this section, we show that under reasonable assumptions, the
resulting protocols are still UGES in the sense of Condition 7.1 and consequently
the claims of Theorem 7.1 still hold.

7.6.1 Packet losses

To model the presence of packet losses, we take the function zi as follows, for all
i ∈ V , j ∈ Vout

i , k ∈ N,

zi(k, ēi(t
i
k), j) =

{

0, when packet loss at time tik,

1, when no packet loss at time tik.
(7.52)

Observe from (7.4) that with this protocol function, the estimate ŷji , i ∈ V ,
j ∈ Vout

i , is only updated if the transmission attempt of agent Ai at time tik,
k ∈ N, has been successful. In this chapter, we adopt the following assumption
regarding the presence of packet losses.

Assumption 7.2. The number of successive packet dropouts of transmissions
from agent Ai, i ∈ V, to agent Aj, j ∈ Vout

i , that might occur since the last
successful transmission is upper bounded by δimax, where δimax ∈ N represents
the maximum allowable number of successive dropouts (MANSD).

Let us remark that the assumption above has been used in several works
before, see, e.g., [74, 103, 104, 120, 138, 184, 251].

Remark 7.7. Observe from (7.52) that we do not consider the combination of
destination protocols and the presence packet losses although we envision this
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is possible. However, in this case, the destination protocol design should take
the dropout model into account such that resulting protocol function zi is still
UGES.

Given (7.52) and Assumption 7.2, consider the following proposition

Proposition 7.2. Suppose Assumption 7.2 holds, then the protocol function zi
given by (7.52) is UGES with the Lyapunov function Wi as in (7.32). Moreover,

we can take αW,i = 1, ᾱW,i =
√

δimax + 1 and λi =
√

δimax

δimax+1

Proof of Proposition 7.2: Consider the discrete-time system as given in (7.31)
with function zi as (7.52). The solution ψ satisfies ψ(k, k, ēi) = |ēi| 6 Wi(k, ēi)
with Wi as in (7.32), and thus that αW,i = 1. Moreover, observe that for all

k ∈ N and all m > δimax + 1, we have that ψ(m + k, k, ēi) = 0. By combining
the latter fact with (7.32), we obtain that W (k, ēi) 6

√

δimax + 1|ēi|, and thus

that ᾱW,i =
√

δimax + 1. From (7.31), (7.32) and by recalling the facts that
ψ(k, k, ēi) = |ēi|, we obtain that

Wi(k + 1, hi(ēi)) =

√
√
√
√

∞∑

m=k

|ψ(m, k, ēi)|2 − |ēi|2 6

√

δimax

δimax + 1
Wi(k, ēi),

for all ēi ∈ RNny , i ∈ V , j ∈ Vout
i and all k ∈ N. Hence, (7.30b) holds for

λi =
√

δimax

δimax+1 , which completes the proof.

It is important to note that under packet losses, the ETM described by (7.8),
(7.9), (7.45) and (7.46), requires an acknowledgments in order to obtain ỹji , i ∈ V ,
j ∈ Vout

i . Observe, however, that this acknowledgment is allowed to be delayed
with τ imiet time units. See [74] for ETC approaches with packet losses without
acknowledgments schemes.

7.6.2 Denial-of-Service attacks

A denial-of-service (DoS) attack is defined as a period in time at which the
communication is blocked by a malicious attacker. Hence, in case an agent Ai,
i ∈ V , attempts to transmit a new measurement to agent Aj , j ∈ Vout

i , at
transmission time tj and a DoS attack is active, the attempt will fail and agent

i can not update ŷji . Obviously, the latter might endanger the stability and
performance of the closed-loop system.

In general, DoS attacks can be described by a sequence of time intervals
{Hn}n∈N

, where the n-th time interval Hn, given by Hn := {hn}∪ [hn, hn+dn),
represents the n-th DoS attack (period). Hence, hn ∈ R>0 denotes the time
instant at which the n-th DoS interval commences and dn ∈ R>0 denotes the
length of the n-th DoS interval. The intervals in {Hn}n∈N

do not overlap, i.e.,
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Fig. 7.1. Schematic representation of a sequence of DoS attacks. The
solid arrows indicate successful transmissions and the dashed arrows trans-
missions that are blocked by the attacker. The gray areas indicate the
presence of a DoS attack.

0 6 h0 6 h0 + d0 < h1 6 h1 + d1 < h2 < . . .. For a given sequence {Hn}n∈N
,

the set of time instants at which a DoS attack is active is defined as

T :=
⋃

n∈N

Hn. (7.53)

To capture the presence of these DoS attacks, we consider the following protocol
function, for all i ∈ V , j ∈ Vout

i , k ∈ N, T ⊆ R>0 and all tik ∈ R>0

z̃i(k, ēi(t
i
k), j, T , tik) =

{

1, when tik /∈ T
0, when tik ∈ T . (7.54)

Observe from (7.4) that indeed, ŷji , i ∈ V , j ∈ Vout
i , is not updated in case a

DoS attack is active at time instant tik, k ∈ N. The latter is also illustrated in
Figure 7.1.

Moreover, observe that in contrast to the destination protocols as discussed
in Section 7.5.1, the protocol presented in (7.54) explicitly depends on T and the
sequence of transmission instants {tik}k∈N, i ∈ V . Hence, to analyze the UGES
property for the protocol in (7.54), we need to study the UGES property of the
following discrete-time system

q(k + 1) = h̃i(k, q, T , tik), k ∈ N, (7.55)

where h̃i(k, q, T , tik) :=
(

(1− z̃i(k, q, 1, T , tik))q1, (1−zi(k, q, 2, T , tik))q2, . . . , (1−
zi(k, q,N, T , tik))qN

)

for all q ∈ R
Nny , i ∈ V , j ∈ Vout

i , k ∈ N, T ⊆ R>0 and all

tik ∈ R>0.

In the context of DoS attacks, it is reasonable to assume that the attacker’s
resources are not infinite, see also [63,64,77]. Therefore, we characterize the DoS
attacks in terms of the DoS frequency and the DoS duration. To do so, let us
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define the collection of times within the interval [T1, T2], with T2 > T1 > 0, at
which DoS attacks are active as

Ξ(T1, T2) := [T1, T2] ∩ T (7.56)

with T as in (7.53) and the number of DoS off/on transitions occurring in the
interval [T1, T2] as

n(T1, T2) := |{n ∈ N | hn ∈ [T1, T2]}|. (7.57)

Moreover, we use |Ξ(T1, T2)| to denote the total length of the DoS attacks within
the interval [T1, T2]. Now, consider the following definitions.

Definition 7.6. [64, 124] (DoS frequency). A given sequence of DoS attacks
{Hn}n∈N

is said to satisfy the DoS frequency constraint for a given τD ∈ R>0,
and a given ν ∈ R>0, if for all T1, T2 ∈ R>0 with T2 > T1

n(T1, T2) 6 ν +
T2 − T1
τD

. (7.58)

Definition 7.7. [64] (DoS duration). A given sequence of DoS attacks {Hn}n∈N

is said to satisfy the DoS duration constraint for a given T ∈ R>1 and a given
ς ∈ R>0, if for all T1, T2 ∈ R>0 with T2 > T1

|Ξ(T1, T2)| 6 ς +
T2 − T1
T

. (7.59)

Let us highlight that no assumptions regarding the underlying strategy of
the attacker are made in Definition 7.6 and Definition 7.7.

To deal with the presence of denial-of-service attacks, we modify the ETM
described by (7.8) to the following

tik+1 :=

{

inf
{
t > tik + τ imiet | ηi(t) 6 0

}
, when tik /∈ T

tik + τ imiet, when tik ∈ T (7.60)

with ti0 = 0. Observe that in case no DoS attack is present at a transmission
instant, i.e., when tik /∈ T , the next transmission instant is determined in an
event-based fashion, similar as in (7.8). However, in case a DoS attack is present,
i.e., when tik ∈ T , which, for example, can be detected by using communication
with acknowledgments, the next-time instant is scheduled after τ imiet, i ∈ V ,
time units. The latter is necessary to probe when the network is available again.
In that sense, dealing with packet losses as described in Section 7.6 is different
from dealing with DoS attacks.
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Proposition 7.3. The protocol z̃i given by (7.54) is UGES under the DoS fre-
quency and duration constraints with the Lyapunov function Wi as in (7.32).

Moreover, we can take αW,i = 1, ᾱW,i =
√

χi + 1 and λi =
√

χi

χi+1 , where

χi :=

⌈(
ς + ντ imiet

τ imiet

)(

1− 1

T
− τ imiet

τd

)−1

+ 1

⌉

. (7.61)

Proof of Proposition 7.3: To prove Proposition 7.3, we show that χi is equal
to the maximum amount of consecutive transmission attempts that are bloc-
ked by the DoS attack. As shown in [84], the maximum time in between two
successful transmissions is given by

dmax :=
(
ς + ντ imiet

)
(

1− 1

T
− τ imiet

τd

)−1

+ τ imiet (7.62)

Given that the minimum time between two consecutive transmission is equal to
τ imiet, we indeed obtain that χi is equal to the maximum amount of consecutive
transmission attempts that are blocked by the DoS attack. The proof can now
be completed by using the same arguments as in the proof of Proposition 7.2.

7.7 Conclusions

In this work, we presented a systematic design methodology for event-triggered
control strategies for a class of nonlinear multi-agent systems (MAS) subject
to disturbances resulting in strictly positive lower bounds on the inter-event
times. The proposed framework leads to MASs that are dissipative with respect
to a desired supply rate which can capture many relevant control problems.
Furthermore, robustness to non-uniform and time-varying delays is guaranteed
by design. In addition to event-triggering mechanisms, we introduced so-called
destination protocols that at each transmission instant, locally determine to
which agents local output measurements are transmitted. Moreover, we showed
that this concept can also be exploited in the context of packet losses and denial-
of-service attacks, thereby laying down a general framework for ETC design for
MASs with many different features.



Chapter 8

Event-triggered Control for

String-Stable Vehicle Platooning

Abstract – Cooperative Adaptive Cruise Control (CACC) is a promising technology that

is proven to enable the formation of vehicle platoons with small inter-vehicle distances while

avoiding amplifications of disturbances along the vehicle string. As such, CACC systems can

potentially improve road safety, traffic throughput and fuel consumption due to the reduction

in aerodynamic drag. Dedicated Short Range Communication (DSRC) is a key ingredient in

CACC systems to overcome the limitations of onboard sensors. However, wireless communica-

tion also involves inevitable network-induced imperfections, such as a limited communication

bandwidth and time-varying transmission delays. Moreover, excessive utilization of communi-

cation resources jeopardizes the reliability of the DSRC channel. The latter might restrict the

minimum time gap that can be realized safely. As a consequence, to harvest all the benefits

of CACC, it is important to limit the communication to only the information that is actually

required to establish a (string-)stable platoon over the wireless network and to avoid unne-

cessary transmissions. For this reason, an event-triggered control scheme and communication

strategy is developed that takes into account the aforementioned network-induced imperfecti-

ons and that aims to reduce the utilization of communication resources while maintaining the

desired closed-loop performance properties. The resulting L2 string-stable control strategy is

experimentally validated by means of a platoon of three passenger vehicles.

This chapter is based on [75].
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8.1 Introduction

8.1.1 Cooperative adaptive cruise control

The main objective of Cooperative Adaptive Cruise Control (CACC) systems is
to maintain a desired, not necessarily constant, (small) distance between vehi-
cles, while ensuring that disturbances are attenuated throughout the string of
vehicles. The latter property is also referred to as string stability, see, e.g.,
[31,187,223], and in essence constitutes an Lp-stability property (for p ∈ [1,∞))
[241]. Vehicle platoons that are string unstable lead to so-called phantom traffic
jams due to excessive braking. Hence, string stability forms an important pro-
perty in enhancing traffic flow. Besides this string stability property, it is desired
to realize a small inter-vehicle distance as it increases the road capacity and re-
duces fuel consumption. Well-known Adaptive Cruise Control (ACC) systems
allow vehicles to maintain a desired distance or time gap, based on measure-
ments of the distance and distance rate that are obtained via onboard sensors
such as a radar and/or camera. Cooperative Adaptive Cruise Control systems
(CACC) offer to enhance the behavior of traffic flow in terms of string stability
while realizing small inter-vehicle distances commonly expressed in terms of the
time gap, being the distance between a leader and a follower vehicle, divided
by the follower vehicle speed (typically less than 1 second). A key ingredient
to achieve these two (somehow conflicting) goals simultaneously, is the wireless
vehicle-to-vehicle (V2V) communication via Dedicated Short Range Communi-
cation (DSRC) channel. It is shown in, e.g., [171,187], that CACC significantly
improves the attenuation of disturbances along the vehicle string with small time
gaps compared to conventional ACC systems.

8.1.2 Wireless communication

The use of wireless communication also has drawbacks as it comes with inevi-
table network-induced imperfections caused by the digital nature of the com-
munication network. To be more concrete, the communication is packet-based,
where the rate at which these data-packages can be transmitted is limited and
the communication channel is subject to communication delays. As shown in
[67,85,90,130,151,180,181,187,203], these communication imperfections can have
a significant influence on the performance of CACC systems in the sense that if
the communication delays are too large and/or the rate at which transmissions
occur is too small, string stability and other performance properties for a given
time gap might no longer be guaranteed. Hence, the number of transmissions
in time should be sufficiently large and communication delays sufficiently small
in order to obtain the desired platooning behavior. The latter is not trivial to
realize as high communication rates degrade the reliability of the DSRC channel
and increase the transmission delays as reported in [28, 134, 152]. This, in turn,
might put restrictions on the minimum time gap that can be achieved safely
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Fig. 8.1. Paradigm shift in digital control from time-triggered control
(TTC) systems to event-triggered control (ETC) systems.

in dense traffic and might as a consequence impede the benefits of CACC with
respect to traffic throughput and fuel consumption, see also [187]. Hence, in
order to secure the reliability and the quality of the network (in terms of com-
munication delays), it is of importance that only the information that is actually
required to establish a string-stable platoon is being transmitted and that the
transmission of unnecessary information is avoided. Despite the growing interest
in vehicle platooning, only a few works available in the literature address this
important topic, including [130, 147, 180, 181,203].

8.1.3 Time-triggered versus event-triggered communica-

tion

In CACC systems, the desired acceleration is transmitted over the DSRC chan-
nel. Due to the packet-based nature of DSRC, these transmissions only occur
at discrete instants in time, which we denote by tk, k ∈ N, satisfying 0 = t0 <
t1 < t2 < . . .. In traditional (digital) control setups, these transmission instants
are scheduled in a time-triggered fashion, typically according to a fixed sampling
rate as illustrated in Figure 8.1. Since the scheduling of transmission instants is
purely based on time and not on the actual status of the plant, time-triggered
communication often leads to inefficient use of communication resources which,
in the context of CACC, is not desirable as discussed before. Hence, it seems
more natural to use resource-aware control methods that determine the trans-
mission instants on the basis of output measurements to allow a better balance
between communication efficiency and control performance. Such a resource-
aware control method is offered by event-triggered control (ETC).

In ETC schemes, the transmission instants are determined on-line by means
of a “smart” triggering condition that depends on, e.g., output measurements of
the system such that, as illustrated in Figure 8.1, transmission are only scheduled
when needed in order to guarantee stability, safety and performance properties.
As a consequence, event-triggered control has the potential to offer a better
balance between the utilization of communication resources and the control per-
formance than time-triggered control. An event-triggering mechanism (ETM)
takes, for instance, the form

t0 = 0, tk+1 := inf {t > tk | |ŷ(t)− y(t)| > σ|y(t)|} , (8.1)
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where y denotes the output measurement (e.g., the desired acceleration of the
vehicle equipped with this ETM) and ŷ the most recently transmitted value of y,
and where σ ∈ (0, 1). Observe that if the most recent transmitted value of y, ŷ, is
relatively close to the actual value of y, no transmission takes place. On the other
hand, if the difference between ŷ and y, also referred to as the network-induced
error, is relatively large, a new transmission instant is generated. As such,
transmissions only take place when there is a significant change in the value of y
with respect to the most recently transmitted value. See also [18,20,54,117,224]
for some early approaches and [115] for a recent overview on event-triggered
control systems.

One of the main challenges in the design of such an event-triggering mecha-
nism (ETM) is to guarantee the desired control performance, e.g., in terms of
L2-stability, together with a positive minimum inter-event time (MIET) despite
the presence of disturbances [41, 72]. Obviously, the latter two properties are
essential in the context of event-triggered vehicle platooning. The control per-
formance guarantee is needed to establish a string-stable platoon and a posi-
tive MIET is required to avoid Zeno-behavior (an infinite number of events in
finite time) and to enable practical implementation of the ETC system. In
addition, the resulting ETC systems should be robust to time-varying commu-
nication delays induced by the DSRC channel. Although many ETC methods
are available in the literature, in [41] it is shown that many of the proposed
ETMs, including the ETM described by (8.1), do not have a positive MIET
that is robust with respect to the presence of external disturbances. To deal
with the aforementioned issue, recent works on ETC either use time regulariza-
tion [7, 87, 112, 117, 225, 227, 228], in the sense that the next event transmission
can only occur after a specific “waiting time” δ since the last transmission has
elapsed, or periodic event-triggered control (PETC) [54, 112, 117, 126, 164, 184],
in the sense that the triggering condition is checked at fixed periodic sampling
time instants with sampling period h, such that the MIET is larger than or equal
to δ or h, respectively. However, none of these works provides an output-based
event-triggered control method that leads to the combination of L2-stability and
robustness guarantees with respect to time-varying delays, which is required in
the context of CACC.

8.1.4 Event-triggered cooperative adaptive cruise control

In this chapter, the recently developed framework presented in [72] is used to
construct an event-triggered control strategy that does comply with the afore-
mentioned criteria. To be more specific, the proposed ETC framework offers an
ETC strategy for a class of nonlinear feedback systems and results in

• a finite L2-gain,

• a strictly positive lower bound on the inter-event times (which guarantees
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Zeno-freeness),

• robustness guarantees with respect to (time-varying) transmission delays.

Key to obtaining all these beneficial properties is the unique combination of
dynamic event-triggering conditions and time regularization. As shown in the
present chapter, the design of this class of dynamic event-triggered controllers is
systematic. The proposed control methodology is experimentally validated by
means of a platoon of three passenger vehicles.

8.1.5 Organization of the chapter

The remainder of this chapter is organized as follows. After presenting some pre-
liminaries and notational conventions in Section 8.2, we introduce the platoon
model and the control objectives in Section 8.3 leading to the problem state-
ment. In Section 8.4, we shortly discuss the tuning of a CACC system for the
network-free situation. In Section 8.5, we discuss the imperfections induced by
the wireless communication network and we provide a brief introduction on (dy-
namic) event-triggered control. Moreover, we adapt aforementioned the platoon
model to include these network-induced errors. In Section 8.6 this model is used
to obtain design conditions for the proposed dynamic event-triggered strategy
such that string stability is guaranteed under event-triggered communication.

Finally, we provide the concluding remarks in Section 8.8.

8.2 Definitions and preliminaries

The following notational conventions will be used in this chapter. N denotes the
set of all non-negative integers, N>0 the set of all positive integers, R the field of
all real numbers and R>0 the set of all non-negative reals. For N ∈ N, we write
the set {1, 2, . . . , N} as N̄ . By | · | and 〈·, ·〉 we denote the Euclidean norm and
the usual inner product of real vectors, respectively. For a matrix P ∈ R

n×n,
we write P ≻ 0 (P � 0) if P is symmetric and positive (semi-)definite, i.e.,
x⊤Px > 0 (x⊤Px ≥ 0) for all x 6= 0. Likewise, we write P ≺ 0 (P � 0) if P
is symmetric and negative (semi-)definite, i.e. x⊤Px < 0 (x⊤Px ≤ 0) for all
x 6= 0. A function α : R>0 → R>0 is said to be of class K if it is continuous,
strictly increasing and α(0) = 0. It is said to be of class K∞ if it is of class K
and it is unbounded. For a signal f : R>0 → Rn, n ∈ N>0 and t ∈ R>0, f(t

+)
denotes the limit f(t+) = lims→t,s>t f(s), provided it exists.

In this chapter, we will use hybrid systems H of the form

ξ̇ = F (ξ, w), when ξ ∈ C, (8.2a)

ξ+ = G(ξ), when ξ ∈ D, (8.2b)
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where F : Rn ×Rnw → Rn describes the flow dynamics, G : Rn → Rn the jump
dynamics, C ⊂ R

n the flow set and D ⊂ R
n the jump set. A hybrid system with

the data C, F , D and G as above is denoted by H = (C, F,D, G) or, in short,
H. We now recall some definitions given in [98] regarding the solutions of such
hybrid systems.

A compact hybrid time domain is a set E =
⋃J−1

j=0 [tj , tj+1]× {j} ⊂ R>0 × N

with J ∈ N>0 and 0 = t0 ≤ t1 . . . ≤ tJ . A hybrid time domain is a set D ⊂
R>0 × N such that E ∩ ([0, T ]× {0, . . . , J}) is a compact hybrid time domain
for each (T, J) ∈ D. A hybrid signal is a function defined on a hybrid time
domain. A hybrid signal ξ : dom ξ → Rn is called a hybrid arc if ξ(·, j) is locally
absolutely continuous for each j.

For the hybrid system H given by the state space R
n, the input space R

nw

and the data (C, F,D, G), a hybric arc ξ : dom ξ → Rn and a hybrid input signal
w : dom w → Rnw is called a solution pair (ξ, w) to H if

1) dom ξ = dom w,

2) For all j ∈ N and for almost all t such that (t, j) ∈ dom ξ, we have
ξ(t, j) ∈ C and ξ̇(t, j) = F (ξ(t, j), w(t, j)).

3) For all (t, j) ∈ dom ξ such that (t, j + 1) ∈ dom ξ, we have ξ(t, j) ∈ D and
ξ(t, j + 1) = G(ξ(t, j)).

For the motivation and more details on these definitions, the interested re-
ader is referred to [98]. We will often not mention dom ξ explicitly, and under-
stand that with each hybrid solution pair (ξ, w) comes a hybrid time domain
dom ξ = domw. A solution pair (ξ, w) to system (8.2) is nontrivial if dom ξ
contains at least two points, maximal if there does not exist another solution
ξ′ to H such that dom ξ is a proper subset of dom ξ′ and ξ(t, j) = ξ′(t, j) for
all (t, j) ∈ dom ξ, it is complete if its domain, dom ξ, is unbounded, it is Zeno
if it is complete and supt dom ξ < ∞, where supt dom ξ := sup{t ∈ R≥0 : ∃j ∈
N such that (t, j) ∈ dom ξ}, and it is t-complete if dom ξ is unbounded in the
t-direction, i.e., supt dom ξ = ∞.

In addition, we introduce the L2-norm of a function ξ defined on a hybrid
time domain dom ξ =

⋃J−1
j=0 [tj , tj+1] × {j} with J possibly ∞ and/or tJ = ∞

by

‖ξ‖L2 =

√
√
√
√

J−1∑

j=0

∫ tj+1

tj

|ξ(t, j)|2dt (8.3)

provided the right-hand side is well-defined and finite. In case ‖ξ‖L2 is finite,
we say that ξ ∈ L2. Note that this definition is essentially identical to the usual
L2-norm in case a function is defined on a subset of R>0.
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Fig. 8.2. Homogeneous vehicle platoon consisting of N vehicles equipped
with radar and DSRC communication. The variable di, i ∈ N̄ represents
the distance between vehicle i and its predecessor (vehicle i − 1), vi the
velocity of vehicle i and ûi denotes the most recently transmitted measu-
rement of the desired acceleration of vehicle i.

8.3 Model description, control objectives and pro-

blem formulation

In this section, we introduce a generic model of a homogeneous platoon consisting
of N vehicles. Moreover, we provide formal definitions of individual vehicle
stability and string stability, which are used to formalize the problem statement
considered in this chapter.

8.3.1 Platooning dynamics

In this chapter, we consider a vehicle platoon consisting of N identical vehicles
as illustrated in Figure 8.2. The main objective of each vehicle i, i ∈ N̄ , in
the platoon is to maintain a desired distance dr,i with respect to its predecessor
(defined as vehicle i−1). In this chapter, we consider a constant time gap policy
in which the desired distance at time t ∈ R>0 is given by

dr,i(t) = ri + hvi(t), (8.4)

where vi(t) denotes the velocity of vehicle i at time t, ri the standstill distance
and where h ∈ R>0 represents the desired constant time gap.

Let di(t) represent the actual distance between vehicle i and its preceding
vehicle at time t ∈ R>0, then we define the spacing error ei(t), i ∈ N̄\{1}, at
time t ∈ R>0 as

ei(t) := di(t)− dr,i(t)

= (qi−1(t)− qi(t)− Li)− (ri + hvi(t)) , (8.5)

where qi(t) denotes the (curvilinear) position of vehicle i at time t, L the length
of the vehicle i, r the standstill distance and h the time gap as before. Since we
consider a homogeneous vehicle platoon, h does not depend on the index i. The
first vehicle in the platoon (corresponding to i = 1) follows a virtual reference
vehicle (corresponding to index i = 0). As such, we defined e1 as the spacing
error between the first vehicle and its virtual predecessor.
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The dynamics of the virtual reference vehicle are given by

V0 :

{

v̇0(t) = a0(t)

ȧ0(t) = − 1
τd
a0(t) +

1
τd
u0(t),

(8.6)

where u0(t) is the exogenous input of the vehicle platoon at time t. The plant
dynamics of the i-th vehicle Vi, i ∈ N̄ , are given by

ėi(t) = vi−1(t)− vi(t)− hai(t) (8.7a)

Vi :

{

v̇i(t) = ai(t)

ȧi(t) = − 1
τd
ai(t) +

1
τd
ui(t)

(8.7b)

u̇i(t) = − 1

h
ui(t) +

1

h
χi(t) (8.7c)

where vi(t) denotes the velocity at time t, ai(t) the acceleration at time t, ui(t)
the desired acceleration at time t, χi(t) the control input at time t and τd ∈ R>0

the characteristic time constant of the vehicle drive-line of vehicle i. Note that
(8.7a) is in correspondence with (8.5). Moreover, observe from (8.7b) that the
vehicles are assumed to be acceleration-controlled since the dynamic behavior
of the acceleration ai(t), i ∈ N̄ , is described by a first-order model. The latter
can be realized by means of feedback linearization as described in [97, 208]. At
last, observe from (8.7c) that the signal χi(t) is filtered by a first order low-
pass filter before it is fed into the vehicle drive line. This low-pass filter is
used as a pre-compensator for the time-gap policy as in [187]. The latter is
illustrated in Figure 8.3, where H represents the spacing policy filter which is
given by H(s) = hs+ 1. Let us remark that this filter is such that the variable
ei(t) in Figure 8.3 corresponds to the spacing error ei(t), i ∈ N̄ , as defined in
(8.5). The transfer function H−1 represents the inverse of the spacing policy
filter which corresponds to (8.7c). Observe that the control configuration is such
that the asymptotic stability properties of the control-loop of vehicle i do not
depend on h due to the cancellation of the poles and zeros of H−1 and H in the
dynamics of the closed-loop system. This is desirable as it enables the driver
to set different time-gaps h without jeopardizing the individual vehicle stability
which we formally define below in Section 8.3.2.

Typically, a CACC scheme consists of a feedback controller Ci, i ∈ N̄ , that
depends on the spacing error and a feedforward component being the direct
feedthrough of the predecessor’s desired acceleration ui−1(t) as illustrated in
Figure 8.2. The feedback controller often relies on measurements of a forward-
looking radar whereas the feedforward component is obtained via dedicated short
range communication (DSRC). In this chapter, we consider a control law of the
form

χi(t) = kpei(t) + kdėi(t)
︸ ︷︷ ︸

Ci

+ ûi−1(t)
︸ ︷︷ ︸

feedforward

, i ∈ N̄ , (8.8)
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Fig. 8.3. Schematic representation of the proposed event-triggered
CACC setup.

where kp and kd are controller gains to be specified. Observe from (8.5) and
(8.8) that a one-vehicle look-ahead control strategy is considered in the sense that
the control law of vehicle i only depends on local information and information
of its predecessor, vehicle i − 1. The first two terms of (8.8) form the feedback
controller Ci and ûi−1(t) the feedforward of the predecessors desired acceleration
ui−1(t) that is sent over the DSRC channel as illustrated in Figure 8.3. We
employ the notation ûi−1(t) to denote the most recently received information
regarding ui−1(t) by vehicle i at time t. Due to the packet based-nature of the
communication channel and the presence of communication delays, we typically
have that ûi−1(t) 6= ui−1(t) for t ∈ R>0. Note that in case these communication
delays are absent and the communication network is infinitely fast, it would
hold that ûi−1(t) = ui−1(t) for all t ∈ R>0. Observe from Figure 8.3 that, as
discussed in the introduction, the time instants at which ui will be transmitted
over the network are determined by means of an event-triggering mechanism
(ETM).

Remark 8.1. Besides the aforementioned time gap policy, also other spacing
policies are reported in the literature such as a constant (velocity independent)
spacing policy (h = 0). However, as shown in [171], in one vehicle look-ahead
platoons, i.e., platoons in which the vehicles can only obtain information of their
predecessors, string stability properties can only be achieved when the spacing
policy is velocity dependent. For this reason, we only focus on the constant time
gap policy in this chapter.

Remark 8.2. To streamline the exposition of the chapter, we only consider a
platoon of N vehicles whose dynamics are given by (8.6), (8.7), i ∈ N̄ , and
(8.8). However, as shown in [72], the event-triggered control framework and
design methodology used in this chapter can be used for a broad class of systems
and thus can be applied to a much larger class of vehicle platoons that employ
a one-vehicle look-ahead control strategy with possibly other vehicle, spacing
policy and controller dynamics.
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8.3.2 Problem formulation

A well-designed CACC has to comply with two objectives: The first objective
is vehicle following, i.e., regulating the spacing errors as given in (8.5) towards
zero while realizing a small time-gap h (typically less than 1 second). This pro-
perty is also referred to as individual vehicle stability. The second objective is
to attenuate disturbances/shock waves along the vehicle platoons. The latter
property is also referred to as string stability which, as mentioned in the intro-
duction, forms an important property to enhance traffic flows and avoid so-called
phantom traffic jams. To be more concrete, the platoon system consisting of N
vehicles whose dynamics are given by (8.7), i ∈ N̄ , (8.6) and (8.8), should satisfy
the following two control objectives.

(i) Individually vehicle stability: For each vehicle i, it should hold that if
vi−1(t) = c with c some constant velocity, and ûi−1(t) = 0 for all t ∈
R>0, then all corresponding solutions to (8.7), i ∈ N̄ , and (8.6) with the
corresponding controller as in (8.8), satisfy

lim
t→∞

ei(t) = 0. (8.9)

(ii) String stability: For any exogenous input u0 ∈ L2 and any x(0) ∈ R(4N+3)

with x⊤ =
[
x⊤0 x⊤1 . . . x⊤N

]⊤
the lumped state vector, it should hold that

for all i ∈ N̄ , there exists a K∞-function βi : R>0 → R>0 such that the
corresponding solution to (8.7), i ∈ N̄ , and (8.6) with the corresponding
controller as in (8.8), satisfies

‖χi‖L2 6 ‖u0‖L2 + βi(‖x(0)‖). (8.10)

Let us remark that the string stability objective is closely related to the
notion of L2-stability, see, e.g., [131]. In particular, if the system given by (8.7),
i ∈ N̄ , (8.6) and (8.8) is string-stable, then the system is L2-stable with respect
to exogenous input u0 ∈ L2 and every output χi ∈ L2, i ∈ N̄ , with an L2-gain
less than or equal to one. Moreover, let us remark that the notion of string
stability as presented above is similar to the weak string stability as presented
in [181].

As already mentioned, Cooperative Adaptive Cruise Control (CACC) is a
promising technology that is proven to be an effective method to achieve both
individual vehicle stability and string stability while realizing small time-gaps.
The wireless communication via DSRC forms an important ingredient to these
conflicting goals. The use of wireless communication, however, also has dra-
wbacks due to inevitable network-induced imperfections that result from the
digital (packet-based) nature of the communication network. These imperfecti-
ons include the presence of (time-varying) delays and a limited communication
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bandwidth. As already mentioned in the introduction, the aforementioned ar-
tifacts potentially degrade the performance of CACC systems in the sense that
if the communication delays are too large and/or the time in between two con-
secutive transmission is too large, string stability for a given time-gap might no
longer be guaranteed, see also [90, 130, 151, 180, 181, 203]. A second issue that
arises when using wireless communication is that excessive use of the communi-
cation resources might lead to degradation of the reliability of the DSRC channel
in terms of packet losses and transmission delays as reported in [28]. As such,
it is important that unnecessary communication is avoided. Only relevant infor-
mation should be transmitted over the DSRC channels. Given these facts and
the objectives above, we can formulate the problem considered in this chapter
as follows.

Problem 8.1. Consider a homogeneous platoon consisting of N vehicles and
whose dynamics are given by (8.6), (8.7), i ∈ N̄ , and (8.8). Propose a resource-
aware (event-triggered) CACC system with guaranteed individual vehicle stability
and string stability in the presence of time-varying communication delays (given
upper bounds on the maximal delay values) and that significantly reduces the
number of unnecessary transmissions compared to control methods that employ
fixed transmission rates.

To address the problem stated above, we will adopt an emulation approach
meaning that we first design the CACC system as in (8.8) such that the desi-
red stability criteria are satisfied when the network-induced imperfections are
ignored, i.e., when ûi−1(t) = ui−1(t), i ∈ N̄ , for all t ∈ R>0. Secondly, we
provide the design of the ETM. This triggering mechanism determines at which
time instants a vehicle transmits a data package, containing its desired accelera-
tion, to its successor. If the ETM is well-designed, the desired properties of the
network-free system can still be preserved despite the presence of (event-based)
packet-based communication and time-varying communication delays as we will
show. In short, the proposed design procedure of a resource-aware controller
consists of two steps: (i) the design of the CACC system for the network-free
situation and (ii) the design of the ETM. One of the main advantages of this
approach is that any control design method for continuous linear time-invariant
systems can be used for the design of the CACC system in step (i), although
here we focus on the setup as in (8.8). We will discuss the tuning of this control
law in the next section.

8.4 Tuning of the network-free CACC system

The controller gains kp and kd as in (8.8) need to be tuned such that in absence
of network-induced imperfections, i.e., when ûi−1(t) = ui−1(t) for all t > 0, each
vehicle in the platoon is individually stable and that the platoon system itself is
string-stable. As shown in [187], individual vehicle stability and string stability
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for the system given by (8.6), (8.7), i ∈ N̄ , and (8.8) are obtained for any
h, kd, kp > 0 for which kd − kpτd > 0 with τd as in (8.7), i ∈ N̄ . It is important
to notice that, in contrast to the string stability property, the individual vehicle
stability is not affected by the network-induced imperfections and thus also not
by the design of the ETMs.

In the remainder of the chapter, we describe the effect of network-induced
imperfections on the platoon dynamics given by (8.6), (8.7), i ∈ N̄ , and (8.8).
Moreover, we will propose a triggering rule that aims to only communicate when
necessary to achieve string stability.

8.5 Wireless and event-triggered communication

As mentioned before, typically we have that ûi−1(t) 6= ui−1(t), t ∈ R>0, due to
the presence of network-induced imperfections. In this section, we describe the
effect of the network-induced imperfections more thoroughly by reformulating
the platoon model given by (8.6), (8.7), i ∈ N̄ , and (8.8) in terms of network-
induced errors defined by

eui−1(t) := ûi−1(t)− ui−1(t), i ∈ N̄ . (8.11)

To do so, we first discuss the evolution of ûi over time.

8.5.1 Wireless communication

To model the packet-based communication and the presence of delays, note that
at each transmission instant ti−1

k , k ∈ N, a new measurement of ui−1 is collected
and transmitted to vehicle i. After a communication delay of ∆i−1

k , i ∈ N̄>0,
k ∈ N, time units, the value of ûi−1 is updated according to

ûi−1((t
i−1
k +∆i−1

k )+) = ui−1(t
i−1
k ). (8.12)

In between two update events, the value of ûi, i ∈ N̄ , is kept constant in a
zero-order hold fashion (ZOH). As such, we adopt the following assumption.

Assumption 8.1. For all t ∈ (ti−1
k +∆i−1

k , ti−1
k+1 +∆i−1

k+1), with i ∈ N̄ \ {1} and
k ∈ N, it holds that

˙̂ui−1(t) = 0. (8.13)

As in [72, 120], we can distinguish two types of events, namely, events that
correspond to time instants at which a vehicle i−1, transmits a new measurement
to its successor (referred to as transmission events), and events corresponding to
time instants at which vehicle i receives a new measurement from its predecessor
(referred to as update events).

In this chapter, it is assumed that the communication delays ∆i−1
k , i ∈

N̄ \ {1}, k ∈ N, are bounded from above by a (known) time-constant called the
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maximum allowable delay (MAD). In addition, we assume that before a vehicle
transmits new information, the most recently transmitted information of that
vehicle has been received by its succeeding vehicle. To be more specific, we adopt
the following assumption.

Assumption 8.2. The transmission delays are bounded according to 0 6 ∆i−1
k 6

τmad 6 ti−1
k+1 − ti−1

k for all i ∈ N̄ \ {1} and k ∈ N, where τmad denotes the maxi-
mum allowable delay of transmissions sent by a vehicle in the platoon.

Observe that τmad does not depend on index i as we consider a homogeneous
vehicle string. Let us remark that Assumption 8.2 is indeed reasonable to make
as in case of DSRC communication, the inter-transmission times are typically
larger than the delays as shown in [152].

8.5.2 Event-based communication

In this chapter, we consider event-triggered control (ETC) schemes that deter-
mine the transmission instants by means of a triggering condition that depends
on locally available output measurements, see, e.g., [15,41,71,72,78,165,191,224,
236] and the references therein for more details on ETC. In this way, the commu-
nication resources are only used when necessary to maintain desired closed-loop
behavior and the utilization of communication resources is reduced.

In particular, we consider dynamic event-generators for vehicle i ∈ N̄ of the
form as proposed in [72] that schedule transmission instants according to

ti0 = 0, tik+1 := inf
{
t > tik + τmiet | ηi(t) < 0

}
, (8.14)

for k ∈ N and where ηi(t) is the triggering variable at time t that evolves accor-
ding to

η̇i(t) = Ψi(χi(t), ui(t), eui
(t), τi(t)), (8.15)

for all t ∈ R>0, and where the function Ψi : R×R×R×R>0 → R and the time-
constant τmiet ∈ R>0, are to be properly designed as we will discuss in the next
section. Observe that the time-constant τmiet ∈ R>0 enforces a strictly positive
lower-bound on the minimum inter-event time (MIET), i.e., the minimum time
in between two consecutive transmissions. This strictly positive lower-bound is
important to enable implementation of the ETC scheme in practice. Moreover,
observe that Assumption 8.2 is satisfied when τmiet > τmad, where τmad typically
follows from the timing specifications of the DSRC channel.

Given the control law in (8.8) with kd, kp > 0 and kd − kpτd > 0 (which
leads to individual vehicle stability as discussed before) and the ETM described
by (8.14) and (8.15), the remaining part of Problem 8.1 can be reformulated
as follows: provide design conditions for the time-constant τmiet ∈ R>τmad

and
the function Ψi such that the system described by (8.6)-(8.8), and (8.11)-(8.15),
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i ∈ N̄ , is string-stable despite the presence of time-varying delays (that are up-
per bounded by a given τmad) and such that the (average) time in between two
consecutive transmission instants, also referred to as the inter-event times, is
significantly larger than for time-triggered control schemes with a fixed trans-
mission rate.

8.5.3 State space formulation of platoon model

Since we are interested in string stability, it is of interest to evaluate the input-
output behavior in terms of L2-gains with respect to χi−1 (as input) and χi

(as output). As already illustrated in Figure 8.3 and as we will show later,
this input-output behavior is not affected by other vehicles in the platoon. To
describe this input-output behavior, let us define

x̃i :=
[
vi−1 ai−1 ui−1 ei vi ai ui

]⊤
, (8.16)

for i ∈ N̄\{1}. Then the platoon dynamics in between the update events, as
given in (8.6)-(8.8), can be formulated in terms of the following state-space model

˙̃xi(t) = Ax̃i(t) +Bχi−1(t) + Eûi−1(t), (8.17)

for t ∈ R>0 \ {ti−1
k +∆i−1

k+1}k∈N, i ∈ N̄\{1}, and k ∈ N, where

A =













0 1 0 0 0 0 0
0 − 1

τd
1
τd

0 0 0 0

0 0 − 1
h 0 0 0 0

1 0 0 0 −1 −h 0
0 0 0 0 1 0 0
0 0 0 0 0 − 1

τd
1
τd

kd

h 0 0
kp

h −kd

h −kd − 1
h













(8.18)

B =
[
0 0 1

h 0 0 0 0
]⊤

(8.19)

E =
[
0 0 0 0 0 0 1

h

]⊤
, (8.20)

and where ûi−1 evolves according to (8.12) and (8.13).
The input-output relation of u0 and χ1 does not involve network-induced im-

perfections since the first vehicle follows a virtual reference vehicle, i.e., û0(t) =

u0(t) for all t ∈ R>0. Let us define x̃1 :=
[
v0 a0 e1 v1 a1 u1

]⊤
, then the input-

output relation of u0 and χ1 can be described by the following state space model

˙̃x1(t) = A0x̃1(t) +B0u0(t), (8.21a)

χ1(t) = C0x̃1(t) +D0u0(t), (8.21b)
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for all t ∈ R>0, where

A0 =











0 1 0 0 0 0
0 − 1

τd
0 0 0 0

1 0 0 −1 −h 0
0 0 0 0 1 0
0 0 0 0 − 1

τd
1
τd

kd

h 0
kp

h −kd

h −kd − 1
h











, B0 =











0
1
τd
0
0
0
1
h











C0 =
[
kd 0 kp −kd −kdh 0

]
, D0 = 1. (8.22)

Let us remark that for all h, τd, kp, kd ∈ R>0, a minimal realization of (A0, B0, C0,
D0) is given by χ1(t) = u0(t), t ∈ R>0. In other words, for the zero initial

condition, i.e., when x̃1(0) =
[
0 0 0 0 0 0

]⊤
, the solution to (8.21) satisfies

χ1(t) = u0(t), t ∈ R>0. Given the latter, we find that (8.10) holds for i = 1
and kd, kp > 0 with kd − kpτd > 0 (which leads to individual vehicle stability as
discussed in Section 8.4).

In essence, the dynamical system corresponding to the lumped state vector

x̃ =
[
x̃⊤1 x̃⊤2 . . . x̃⊤N

]⊤
that can be obtained by means of (8.17)-(8.22), i ∈ N̄ ,

constitutes an overlapping decomposition of the entire platoon model given by
(8.6), (8.7), i ∈ N̄ , and (8.8), see also [214]. The main advantages of having this
decomposition is that we now only have to evaluate the input-output properties
of these (overlapping) subsystems. In fact, by recalling that (8.10) holds for
i = 1, we only need to evaluate the L2-gains of (8.17) with respect to χi−1 (as
input) and χi (as output) for i ∈ N̄ \ {1}. Since we consider a homogeneous
platoon, we only have to examine the L2-gain of a single subsystem. This leads
to conditions that are computationally more tractable since the state-dimension
of x̃i, i ∈ N̄ , is in general much smaller than the state-dimension of x. More
importantly, if these conditions are satisfied, the string stability property as
given in (8.10) holds for any arbitrary platoon lengthN . Let us remark, however,
that it is not trivial to extend this result to platoons with other communication
topologies such as a two-vehicle look-ahead communication topology as described
in, e.g., [186].

8.5.4 Hybrid system formulation of platoon model

To facilitate the L2-gains with respect to χi−1 (as input) and χi (as output),
we reformulate the model given in (8.17) using the hybrid system formulation
as presented in (8.2), see also [98]. Moreover, we express the model in terms of
the network-induced errors eui−1 , i ∈ N̄ \ {1}, as given in (8.11), which was also
employed in [51, 72, 73, 120, 173, 191].

Before we reformulated the platoon model in terms of a hybrid system, we
first discuss the dynamics of eui−1 , i ∈ N̄\{1}, as in (8.11) at update events.
By recalling that at update events, ûi−1 is updated according to (8.12), we find



190 Chapter 8. Event-triggered Control for String-Stable Vehicle Platooning

that the dynamics of eui−1 , i ∈ N̄ \ {1}, at update events are given by

eui−1((t
i−1
k +∆i−1

k )+) = ûi−1((t
i−1
k +∆i−1

k )+)− ui−1(t
i−1
k +∆i−1

k )

= ui−1(t
i−1
k )− ûi−1(t

i−1
k +∆i−1

k ) + ûi−1(t
i−1
k +∆i−1

k )− ui−1(t
i−1
k +∆i−1

k )

(8.13)
= ui−1(t

i−1
k )− ûi−1(t

i−1
k )

︸ ︷︷ ︸

−eui−1
(ti−1

k
)

+ ûi−1(t
i−1
k +∆i−1

k )− ui−1(t
i−1
k +∆i−1

k )
︸ ︷︷ ︸

eui−1
(ti−1

k
+∆i−1

k
)

= −eui−1(t
i−1
k ) + eui−1(t

i−1
k +∆i−1

k ). (8.23)

Let us highlight that for the third equality, we used Assumption 8.1.

To formulate the platoon dynamics in terms of jump and flow equations as
in (8.2), we introduce the auxiliary variables τi ∈ R>0, li ∈ {0, 1}, si ∈ R,
i ∈ N̄ . The variable τi constitutes a local timer that keeps track on the time
elapsed since the most recent transmission of vehicle i. The variable li indicates
whether the next event at vehicle i is a transmission (li = 0) or an update event
(li = 1). The variable si is used as a memory variable to store the value of −eui

at transmission instants tik, i ∈ N̄ , k ∈ N. Consider the state vector

ξi = (x̃i, eui−1 , τi−1, li−1, si−1, ηi−1) ∈ Xi, i ∈ N̄ \ {1} (8.24)

with Xi := R
7 × R× R>0 × {0, 1} × R×R>0. Based on (8.14) and Assumption

8.2, we find that the flow and jump sets are given by

Ci := {ξi ∈ Xi | li−1 = 0 ∨ (0 6 τi−1 6 τmad ∧ li−1 = 1)}, (8.25)

and

Di := {ξi ∈ Xi | (ηi−1 = 0 ∧ τi−1 > τmiet) ∨ li−1 = 1}, (8.26)

respectively. Observe that indeed, the system jumps in case the triggering condi-
tion given in (8.14) is violated. The flow dynamics are given by ξ̇i = Fi(ξi, χi−1)
with the flow map Fi : X× R → X defined as

Fi(ξi, χi−1) :=
(

f(x̃i, eui−1 , χi−1), g(x̃i, χi−1), 1, 0, 0,

Ψi−1(χi−1, ui−1, eui−1 , τi−1)). (8.27)

By substituting (8.11) in (8.17), we obtain that f(x̃i, eui−1 , χi−1) is given by

f(x̃i, eui−1 , χi−1) := A11x̃i +A12eui−1 +A13χi−1, (8.28)

where

A11 = A+ EC, A12 = E, A13 = B, (8.29)
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and where C :=
[
0 0 1 0 0 0 0

]
, such that ui−1 = Cx̃i. The expression for

g(x̃i, χi−1) can be obtained from the fact that ėui−1 = −u̇i−1 when ξi ∈ Ci,
i ∈ N̄ \ {1}, due to Assumption 8.1. As such, g(x̃i, χi−1) is given by

g(x̃i, χi−1) :=
1

h
Cx̃i −

1

h
χi−1. (8.30)

The jump dynamics are given by ξ+i = Gi(ξi) with the jump map Gi : X → X

defined as

Gi(ξi) := (x̃i, eui−1+li−1si−1, li−1τi−1,−(1−li−1)eui−1 , 1−li−1, ηi−1). (8.31)

Observe that, when li = 0, the variable li jumps to the value 1, and, when li = 1,
li jumps to the value 0. The latter ensures that the a transmission event can
only be followed by an update event and vice versa. Hence, the flow and jump
sets and maps comply with Assumption 8.2. Moreover, observe that the timer
τi is set to zero at transmission event (when li = 0).

Observe that the jump map in (8.31) is defined such that si−1, i ∈ N̄ \ {1},
is assigned the value of −eui−1 at a transmission event (when li = 0). Given
the latter and the fact that ṡi−1 = 0 for ξi ∈ Ci, we can see that the jump
dynamics of eui−1 defined by (8.31) are in correspondence with (8.23). Note
that the variable si−1 is set to zero at update events (when li = 1).

The input-output relation of χi−1 and χi subject to network-induced errors
is now described by the hybrid system Hi = (Ci, Fi,Di, Gi), i ∈ N̄ \ {1} with Ci,
Fi, Di and Gi as in (8.25), (8.27), (8.26) and (8.31), respectively, and where the
output χi, i ∈ N̄\{1}, as in (8.8) is given by

χi = Cz x̃i +Dzeui−1 , (8.32)

where
Cz =

[
kd 0 1 kp −kd −kdh 0

]
, Dz = 1. (8.33)

It is important to notice that this relation indeed only depends on (part of) the
states of vehicle i− 1 and the states of vehicle i and that it does not depend on
states of other vehicles in the platoon.

Consider the following definition.

Definition 8.1. The hybrid system Hi, i ∈ N̄ \{1}, is said to be L2-stable from
input χi−1 to output χi with an L2-gain less than or equal to θ, if there exists
a K∞-function β such that for any exogenous input χi−1 ∈ L2, and any initial
condition ξi(0, 0) ∈ X0,i with X0,i = {ξi ∈ X | li−1 = 0}, each corresponding
maximal solution to Hi is t-complete and satisfies

‖χi‖L2 6 β(|
(
x̃i(0, 0), eui−1(0, 0), si−1(0, 0), ηi−1(0, 0)

)
|)+θ‖χi−1‖L2 . (8.34)

Consider the following problem.
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A⊤
11P + PA11 + µC⊤

z Cz + (̺+ 1
h2 )C

⊤C PA12 + µC⊤
z Dz PA13 + 1

h2 C
⊤

A⊤
12P + µD⊤

z Cz µDT
z Dz − γ2 0

A⊤
13P + 1

h2 C 0 1
h2 − (1 + ǫ)µ



 � 0, P � 0.

(8.35)

Problem 8.2. Determine the time constants τmiet, τmad ∈ R>0 with τmad 6

τmiet, the function Ψi−1, i ∈ N̄ \ {1} (as in the event generator given by (8.14)
and (8.15)), such that each system Hi = (Ci, Fi,Di, Gi), i ∈ N̄ \ {1} with Ci, Fi,
Di and Gi as in (8.25), (8.27), (8.26) and (8.31), respectively, is L2-stable from
input χi−1 to output χi with an L2-gain less than or equal to one, with a strictly
positive τmiet to assure Zeno-freeness and with large (average) inter-event times
ti−1
j+1 − ti−1

j , j ∈ N.

By recalling that the individual vehicle stability is not affected by the ETM
design and the fact that (8.10) holds for i = 1, we can conclude that solving
Problem 8.2 is sufficient for solving the problem loosely stated at the end of
Section 8.3.2. In the next subsection, we present the design procedure for the
time constants τmad and τmiet and the function Ψi−1, i ∈ N̄ \ {1}, such that the
criteria mentioned in Problem 8.2 are satisfied.

8.6 ETM Design with string stability guarantees

In the first part of this section, we specify the conditions for the design of τmad,
τmiet and Ψi as in (8.15) based on the result in [71, 72] and for obtaining string
stability guarantees. Based on these conditions, we provide a systematic design
procedure in the second part of this section, resulting in intuitive trade-off curves
between robustness in terms of τmad and utilization of communication resources
in terms of τmiet.

8.6.1 Stability analysis

Consider the following condition regarding the flow-dynamics of x̃i, i ∈ N̄ \ {1},
as given in (8.27).

Condition 8.1. There exist constants γ, ǫ, ̺ ∈ R>0 and µ ∈ R>0 such that
(8.35) holds with A11, A12 and A13 as in (8.29)

Let us remark that Condition 1 in essence constitutes an L2-gain condition on
the linear system given in (8.17), where

√
1 + ǫ is an L2-gain upper bound with

respect to χi−1 and χi and γ an L2-gain upper bound related to the influence
of the transmission error eui−1 on the state x̃i.

In addition, we consider the following condition regarding the time-constants
τmad and τmiet.
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Condition 8.2. There exists a pair of time-constants (τmad, τmiet) such that

γ1φ1(τ) > γ0φ0(τ), for all τ ∈ [0, τmad], (8.36a)

γ0φ0(τmiet) > λ2γ1φ1(0) (8.36b)

with τmiet > τmad, λ ∈ (0, 1) and the constants γ0 and γ1 given by

γ0 := γ, γ1 :=
γ

λ
, (8.37)

and where φl : R>0 → R, l ∈ {0, 1}, satisfies

d

dτ
φl = −γl(φ2l + 1) (8.38)

with φl(0) > 0.

At last, we consider that the function Ψi−1 : R×R×R → R, i ∈ N̄ \ {1}, is
of the form

Ψi−1(χi−1, ui−1, eui−1 , τi−1) = ̺u2i−1

+ ω(τi−1)

(
1− ε

h2
(χi−1 − ui−1)

2 − γ̄e2ui−1

)

, (8.39)

where

ω(τi−1) :=

{

0, for τi−1 6 τmiet

1, for τi−1 > τmiet

(8.40)

with

γ̄ = γ2
(

1 +
1

ε
φ20(τmiet)

)

, (8.41)

and where ε ∈ (0, 1) and ̺ ∈ R>0 are tuning parameters.
Observe from (8.39) that Ψi−1(χi−1, ui−1, eui−1 , τi−1) > 0, i ∈ N̄ \ {1}, for

τi−1 6 τmiet. As such, the triggering variable ηi as in (8.15) does not decrease
when τi−1 6 τmiet. Moreover, observe from (8.39) that Ψi−1(χi−1, ui−1, eui−1 ,
τi−1) 6 0, i ∈ N̄ \ {1} (and thus that the triggering variable ηi−1 is decreasing)
when the transmission error eui−1 is relatively large with respect to u2i−1 +
1−ε
h2 (χi−1 − ui−1)

2. Given the latter, we can conclude from (8.14) that a new
transmission is scheduled if the transmission error eui−1 is relatively large over
time. Hence, in essence, this mechanism is similar to the ETM presented in
the introduction, given by (8.1). The difference, however, is that for the ETM
given by (8.14), (8.15) and (8.39), a robust positive MIET exists by design.
Moreover, the ETM given by (8.14), (8.15) and (8.39) is a dynamic ETM as it
employs the dynamic variable ηi to determine the transmission instants. The
main motivation for using dynamic ETMs is that, in contrast to the commonly
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studied static ETMs (such as the ETM in (8.1)), the generated inter-event times
do not converge to the enforced lower bound in presence of disturbances when
the output is close to zero, as observed in [41, 71], and typically lead to larger
inter-event times.

By means of the Condition 1, Condition 2 and the definition of Ψi−1, i ∈
N̄ \ {1}, we can now establish the following result.

Theorem 8.1. Consider the system Hi = (Ci, Fi,Di, Gi), i ∈ N̄ \ {1}, with
Ci, Fi, Di and Gi as in (8.25), (8.27), (8.26) and (8.31), respectively, and with
Ψi−1 given by (8.39) and suppose that Condition 1 with ǫ = 0 and Condition
2 hold. Then the system Hi is L2-stable from input χi−1 to output χi with an
L2-gain less than or equal to one and thus the platoon system given by (8.7),
i ∈ N̄ , (8.6) and (8.8) is string stable.

The proof is provided in Appendix G.

It is important to notice that Condition 1 and Condition 2 do not depend on
index i due to the homogeneous nature of the vehicle string.

8.6.2 ETM design

The first step of the design procedure is to compute the constants γ, µ and the
matrix P . The constants γ, µ and the matrix P can be obtained via a Linear
Matrix Inequality (LMI) optimization problem in which γ is minimized subject
to the LMI given in (8.35) where the constant ̺ is a tuning parameter and ǫ is
typically selected small. This LMI optimization problem can, for example, be
solved using MATLAB with the YALMIP interface [153] and the SeDuMi solver
[220]. Let us remark that if the system described by (8.6)-(8.8) is string-stable
in the absence of network-induced imperfections, i.e., when ûi−1(t) = ui(t) for
all t ∈ R>0, the LMI in (8.35) is always feasible for sufficiently large γ and
sufficiently small ̺.

As mentioned before, the constant γ is related the influence of the trans-
mission error eui−1 on the state x̃i. To be more specific, when γ is large, then
the influence of transmission error eui−1 on the state x̃i is also large and more
transmissions might be needed in order to realize desirable closed-loop results.

The second step in the design procedure is to determine the (τmad, τmiet)-
trade-off curves. To do so, we solve (8.38) for φ0(0) =

1
λ and φ1(0) ∈

(
φ0γ0

γ1
, φ0γ0

γ1λ2

]

with λ ∈ (0, 1). The corresponding (τmad, τmiet)-combinations can be obtained
by computing intersection of the functions γ0φ0 and γ1φ1 (which corresponds to
τmad) and the intersection of γ0φ0 and λ2γ1φ1(0) (which correspond to τmiet),
see also [120].

The latter procedure is also illustrated in Figure 8.4 in which (8.38) was
solved for γ = 8.442, λ = 0.305, φ0(0) = 3.279 and φ1(0) = 8.557. As shown in
Figure 8.4, this results in (τmad, τmiet) = (0.026, 0.072).
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Fig. 8.4. Evolution of γlφl(τ), l ∈ {0, 1}, with φl the solutions of (8.38)
for γ = 8.442, λ = 0.305, φ0(0) = 3.279 and φ1(0) = 8.557. The circle
represents the point at which γ0φ0(τ) = γ1φ1(τ), which corresponds to
τmad = 0.026 and the rectangle represents the point at which γ0φ0(τ) =
λ2γ1φ1(0), which corresponds to τmiet = 0.072.

Fig. 8.5. (τmad, τmiet)-trade-off curves corresponding to the platoon
system described by (8.7), i ∈ N̄ , (8.6) and (8.8) with τd = 0.1, kp = 0.2,
kd = 0.7, h ∈ {0.4, 0.6, 0.8, 1.0}, ̺ = 0.04 and ǫ = 0.01.

By repeating the procedure described above for various values of λ, and
φ1(0), other (τmad, τmiet)-combinations can be obtained which are then used
to establish the (τmad, τmiet)-trade-off curve. This trade-off curve provides an
intuitive way to find appropriate values λ, φ0(0) and thus φ0(τmiet) which are
part of the ETM given by (8.14), (8.15) and (8.39). As such, although the
design procedure might seem difficult to carry out at first sight, the required
conditions can be verified in a systematic manner and the procedure results in
intuitive trade-off curves. In Figure 8.5, the (τmad, τmiet)-trade-off curves are
shown for the platoon system described by (8.7), i ∈ N̄ , (8.6) and (8.8) with
τd = 0.1, kp = 0.2, kd = 0.7, h ∈ {0.4, 0.6, 0.8, 1.0}, ̺ = 0.04 and ǫ = 0.01.
The (τmad, τmiet)-combinations that are confined by the trade-off curves and the
horizontal axis lead to a string-stable platoon.

As mentioned before, if the system is string-stable when network-induced
errors are absent, i.e., when ûi−1(t) = ui−1(t) for all t ∈ R>0, one can always
find a matrix P and constants γ, ǫ and ̺ that satisfy (8.35). Consequently,
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after the constants γ, ǫ and ̺ are obtained, one can always find (possibly small)
time-constants τmiet and τmad such that string stability is preserved.

Remark 8.3. The LMI condition as given in (8.35) yields an L2-gain upper
bound with respect to χi−1 and χi of

√
1 + ǫ. Hence, strictly speaking (and

as indicated in Theorem 1), the vehicle platoon described by (8.6) and (8.7)
is only guaranteed to be string-stable if ǫ = 0. Let us remark, however, that
the L2-gain is also lower-bounded by 1 due to the individual vehicle stability
objective. As such, the LMI optimization problem stated in (8.35) is hard to
solve from a numerical point of view. For this reason, we typically take ǫ small
(ǫ ∼ 10−2) but strictly positive to make the LMI computationally tractable. Let
us remark that ǫ is typically chosen such that its size is small with respect to
the uncertainties introduced by the inevitable noise on radar and accelerometer
measurements.

Remark 8.4. The variable ̺ constitutes a tuning parameter of the ETC system.
To be more specific, from (8.39) we can see that the variable ̺ is part of the
ETM given in (8.14) and (8.15), and therefore can have a significant influence on
the average inter-event times generated by this ETM. Let us remark, however,
that a bit of performance is sacrifice by choosing ̺ positive in the sense that it
affects ǫ.

Remark 8.5. Important to notice is that the triggering condition given by (8.14),
(8.15) and (8.39) indeed only depends on locally available information since the
variables χi−1, ui−1, ûi−1 and τi−1, are available at vehicle i− 1.

8.7 Experimental validation

To validate the proposed resource-aware control design and to demonstrate its
technical feasibility, the event-triggered CACC strategy has been implemented
on a platoon of three (almost) identical passenger vehicles. The Toyota Prius
III Executive is selected as benchmark vehicle and is equipped with long-range
radar, GPS and a communication module that uses the IEEE 802.11p-based
ETSI ITS G5 standard for DSRC, see also Figure 8.6. Let us remark that the
same test-bed was used in [187]. A schematic overview of the vehicle architecture
is provided in Figure 8.7. Observe that the vehicle gateway provides access to the
CAN-bus of the vehicle that is connected to the vehicle’s actuators and sensors,
which among others consists of the hybrid drive line, the accelerometer, the
long-range radar measurements and the wheel speed encoders. Besides CAN-
bus access, the vehicle gateway includes the low-level acceleration controller
as discussed below (8.7) and safety-functionalities including a mechanism that
allows the driver to overrule the system at any time.

The control design strategy is implemented on a real-time target, which pro-
vides reference commands to the vehicle gateway. Moreover, the real-time target,
which runs MATLAB Simulink Real-Time applications at 100 Hz, is connected
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Fig. 8.6. Benchmark platoon consisting of three passenger cars equipped
with long-range radar and DSRC.

Fig. 8.7. Schematic overview of the vehicle architecture.

to the ITS G5 communication module and an HMI display that informs the
driver about the target tracking functionalities, for example, it shows whether
or not a wireless connection with the preceding vehicle is established.

The characteristic time constant of the drive line is τd = 0.1. As experi-
mentally verified in [187], the first-order model used to described the drive line
which, neglecting the actuation delay, adequately described the longitudinal dy-
namics. To include the actuation delay of 0.2 seconds in the model, we use a

12th-order Padé approximation to obtain a model including actuation delays
that is used for the ETM design. For the experiments, we choose the controller
gains as in (8.8) as kp = 0.2 and kd = 0.7, the desired following distance as in
(8.4) with r = 2.5 meters and h = 0.6 seconds and the ETM parameters as in
(8.39) and (35) as ̺ = 0.04, ε = 0.5 and ǫ = 0.01, which yield (τmad, τmiet)-
trade-off curves as depicted in Figure 8.5. Based on these trade-off curves, we
choose (τmad, τmiet) = (0.026, 0.072), which corresponds to γ = 8.442, λ = 0.305,
φ0(0) = 3.279 and φ1(0) = 8.557 and coincides with the situation illustrated in
Figure 8.4.

To enable the implementation of the ETM as described by (8.14), (8.15) and
(8.39) on a digital real-time platform, we use exact discretization in order to
obtain a triggering condition that is only verified as discrete-time instants. Let
us remark that in this discrete implementation a triggering event is scheduled
before it actually violates (8.14) in order to compensate for the sampling effect
of the real-time target. Moreover, as the signal-to-noise ratio is large when ui
is close to zero, it is desirable to avoid transmissions due to this measurement
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Fig. 8.8. Inter-event times generated by the ETM as given in (8.14),
(8.15) and (8.39) resulting from the experiments (indicated in red) and
from simulation (indicated in blue). The horizontal lines represent the
minimum inter-event times τmiet and the fixed transmission period Ts =
0.04 seconds as used in the benchmark TTC scheme.

noise when ui is close to zero. As such, we employ, next to the ETM as given
in (8.14) and (8.15), a constant threshold in the sense that no transmissions are
being issued when |ui| 6 0.05.

To evaluate the proposed ETC method in terms of performance (in this
case the spacing error) and utilization of communication resources (in this case
the inter-event times), the experimental results are compared with the results
obtained using a time-triggered control (TTC) scheme, in which the transmission
instants are determined according to fixed transmission rate of 1/Ts = 25 Hz, as
benchmark. The experimental results are shown in Figure 8.8 and Figure 8.9.
To be more specific, in Figure 8.8, the inter-event times generated by the first
and second car of the platoon are shown. Moreover, to indicate the predictability
of the proposed ETC scheme, also the simulation results are included. Observe
from Figure 8.8 and Figure 8.9 that the inter-event times generated by the ETM
are only small in case there is a significant change in the desired acceleration
and otherwise, significantly larger than the enforced lower-bound τmiet or the
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Fig. 8.9. Time response of the platoon of 3 passenger vehicles. In the top
plot, the velocity vi(t), i ∈ {1, 2, 3}, at time t, of each vehicle is displayed.
The bottom plot shows the desired acceleration χi(t), i ∈ {1, 2, 3} at time
t, for all three vehicles.

communication period Ts of the TTC scheme (showing that “communication is
only used when really needed”). In fact, the average inter-event times generated
by the ETM in vehicle 1 and in vehicle 2, are τ1avg = 0.24 and τ2avg = 0.16,
respectively, which is clearly larger than τmiet and Ts.

In Figure 8.9 the time-response of the velocity and desired acceleration for
both the proposed ETC and the benchmark TTC strategy and all three vehicles
are plotted. Observe that the responses corresponding to the ETC scheme look
similar to the responses corresponding to the TTC scheme despite the signifi-
cant reduction in communication achieved by the ETC scheme. The maximum
absolute value of the spacing error (as defined in (8.5)) is approximately 0.8 m
for both the TTC and the ETC implementation showing that the performance
of the ETC implementation is similar to the performance of the TTC scheme.
Summarizing, the experimental results illustrate the potential benefits of event-
triggered communication for CACC systems, namely, having significantly larger
inter-event times while realizing similar control performance in comparison with
conventional time-triggered control methods.
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8.8 Conclusions

Dedicated Short Range Communication (DSRC) is a key ingredient in Coope-
rative Adaptive Cruise Control (CACC) systems to overcome the physical limi-
tations of onboard sensors and enables to form string-stable platoons with small
inter-vehicle distances. However, excessive utilization of communication resour-
ces can have a negative impact on the reliability of the DSRC channel and the
size of the transmission delays. For this reason, a resource-aware CACC control
strategy was proposed in this chapter, which aims to reduce the utilization of
communication resources in comparison with conventional time-triggered cont-
rol method while preserving the individual vehicle stability and string-stability
guarantees. In addition, robustness with respect to time-varying delays and the
presence of a strictly positive lower-bound on the minimum inter-event times
(to avoid Zeno-behavior) is guaranteed by design. The proposed resource-aware
control method relies on a recently developed ETC strategy that exploits the
unique combination of dynamic event-triggered control and time-regularization
(“waiting times”). Moreover, a systematic design procedure for this ETC stra-
tegy was provided that results in intuitive trade-off curves between robustness
in terms of the maximum allowable delay (MAD) and utilization of communi-
cation resources in terms of the minimum inter-event time (MIET). The pro-
posed resource-aware CACC strategy was experimentally validated by means
of a platoon of three passenger vehicles employing a time-gap of only h = 0.6
seconds. The experimental results clearly demonstrated the potential benefits
of event-triggered control, namely, having significantly larger inter-event times
while realizing string stability and similar control performance in comparison
with conventional time-triggered control methods. This result might be one of
the important steps in order to realise the implementation of CACC on a large
scale without introducing congestion of V2V communication network and/or the
need to increase the time-gaps in the platoon.



Chapter 9

Conclusions, Recommendations

and Final Thoughts

9.1 Concluding remarks

The field of networked control systems (NCSs) offers many novel promising ap-
plications with enormous societal impacts. However, control systems operating
over possibly shared and wireless communication channels also introduce many
new challenges due to the inherent network-induced imperfections of NCSs and
their vulnerabilities with respect to malicious attacks. In general, these artifacts
degrade the performance of the closed-loop system and might even lead to in-
stability. As such, it is, on the one hand, important to take them into account
in the control design. On the other hand, the control architecture itself might
also affect the quality of the communication channel. For example, excessive use
of communication resources typically leads to larger transmission delays and/or
more packet losses. Hence, in NCSs, there is a strong interaction between the
design of the control architecture and the design of the ICT infrastructure, and
as a result, it is not optimal to consider them separately. For this reason, there
is a strong need for integrated design approaches.

In this thesis, we addressed the design of resource-aware and resilient control
schemes for safety-critical NCSs and thereby provided an important step towards
a more integrated systems design. In fact, we considered event-triggered control
(ETC) systems that aim to minimize the utilization of communication resources
while guaranteeing desired stability and/or performance properties by introdu-
cing feedback in the sampling and communication processes. The feedback in
sampling and communication is introduced by an event-generator, also referred
to as the event-triggering mechanism (ETM), which determines the sampling
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instants on the basis of current (and possibly previous) output measurements
and other available information.

The contributions of this thesis can be summarized as follows:

(i) The development of novel design frameworks for ETC algorithms for output-
based feedback systems that aim to reduce the utilization of communica-
tion resources and take into account the inevitable network-induced im-
perfections (Chapter 2-5).

(ii) The development of resilient ETC algorithms for output-based feedback
systems that, in addition to the resource-aware requirement, realize desi-
red closed-loop behavior despite the presence of malicious denial-of-service
attacks (Chapter 6).

(iii) The development of ETC algorithms for multi-agent systems (Chapter 7).

(iv) Experimental validation of the proposed resource-aware control strategy
on a relevant safety-critical system (Chapter 8).

Each of these contribution are discussed in more detail below.

9.1.1 Design frameworks for ETC algorithms

One of the main difficulties in the design of ETC schemes is to design the ETM
such that a strictly positiveminimum-inter event time (MIET) is obtained, while
guaranteeing important stability and performance properties despite the pre-
sence of network-induced imperfections and disturbances. The latter property is
particularly difficult to realize for systems that rely on output-based feedback. In
Chapter 2, a novel ETC strategy for a class of nonlinear output-based feedback
systems was presented. The proposed framework results in closed-loop systems
with guaranteed finite Lp-gains and strictly positive lower bounds on the inter-
event times. Moreover, the controllers and event generators can be synthesized in
an output-based and/or decentralized form with multiple asynchronously opera-
ting networks, the design takes the specific medium access protocol into account,
and robustness to (variable) transmission delays (in terms of the maximum al-
lowable delays (MADs)) is guaranteed by design. In addition, it was shown that
for linear systems, the provided design conditions can be verified systematically
based on Linear Matrix Inequalities (LMIs). Key to obtaining all these benefi-
cial properties is the unique combination of dynamic event-triggering conditions
and time regularization. Interestingly, the MIET and the MAD bounds of the
presented ETC strategy are close to or equal to the maximal allowable transmis-
sion interval (MATI) and MAD bounds derived for time-based specifications for
stability and guaranteed Lp-gains of NCSs, but the (average) inter-event times
significantly larger.
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One of the strengths of the dynamic ETC approach presented in Chapter 2
is that it is a general framework encompassing many nonlinear systems while
still guaranteeing the important properties mentioned above. However, it is of
interest to examine if less conservative design techniques can be obtained when a
particular class of systems is considered, for example, linear systems. In Chapter
3, we presented novel ETC schemes that exploit Riccati-based tools tailored to
linear systems. This Riccati-based approach leads to a further improvement
of ETC schemes compared to the results presented in Chapter 2 in the sense
that a larger MIET can be obtained under the same L2-gain guarantees. In
addition, Chapter 3 also considered (dynamic) periodic ETC schemes, which
only require access to output measurements at discrete instants in time. The
benefit of periodic ETC strategies is that they are more easy to implement in
practice as it is not needed to continuously measure and monitor the outputs
of the plant, but only at specific sampling times. Many of the ETC schemes
of Chapter 2 will eventually be implemented on digital platforms and thereby
take the form of PETC systems. Therefore, it is important to have analysis
and design tools for these controllers. All the event-generators that have been
proposed in Chapter 3, have a strictly positive MIET, can be synthesized in an
output-based form and are robust to (variable) transmission delays by design.

In Chapter 4, we built upon the resource-aware control paradigm introduced
in Chapter 2 and considered the quantization of the output measurements. In
NCSs, quantization mechanisms are inevitable due to the fact that the band-
width of the communication channel is limited, which imposes restrictions on the
size of the transmitted packets (in terms of bits). For this reason, a design fra-
mework was presented in Chapter 4 for synthesizing the dynamic quantizers and
the event-triggering mechanisms for each individual sensor node, simultaneously.
Interestingly, the intuitive trade-off between the size of the data packet that has
to be transmitted and the number of transmissions naturally appears in the main
theoretical results and the design methods. In fact, the design of quantizers and
event generators is directly coupled and reflects this essential trade-off. Similar
as in Chapter 2, (dynamic) ETMs with time regularization were used in order
to enforce the existence of a strictly positive MIET. Moreover, the proposed
dynamic quantization strategy prevents the accumulation of zoom actions since
the zoom actions only take place at transmission instants. The number of bits
that need to be sent over the network per transmission instant is finite and can
be determined a priori.

In NCSs, the presence of packet losses is often unavoidable. In Chapter 5,
a systematic design procedure was proposed for static and dynamic ETC sche-
mes under packet losses. The resulting closed-loop system was shown to be
UGAS in absence of disturbances, and Lp-stable with respect to its performance
output and external disturbances in the presence of disturbances. Moreover, it
was shown that a robust positive MIET is guaranteed by design, even for the
case where disturbances and packet dropouts are present. In fact, the ETMs
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proposed in this chapter can admit a maximum allowable number of successive
packet dropouts (MANSD) while still maintaining the desired stability and per-
formance properties. Two different ETC configurations were proposed, namely,
a configuration that is equipped with an acknowledgment scheme (as, e.g., in
TCP) and a configuration which is not (as, e.g., in UDP). By means of a nu-
merical example, it was shown that, under the same performance guarantees,
ETC schemes relying on acknowledgments yield larger inter-event times than
the ETC schemes without acknowledgments schemes.

9.1.2 Resilient ETC algorithms

Cyber-security forms a crucial aspect in the design of NCSs. Chapter 6 addres-
sed the design of ETC algorithms for NCSs that, next to the resource-aware
requirement, are resilient to malicious Denial-of-service (DoS) attacks. In parti-
cular, the control and communication strategy was inspired by the ETC scheme
proposed in Chapter 2 and thereby applicable to a class of nonlinear output-
based feedback systems which have not been covered by existing results in the
literature. The proposed framework led to guarantees regarding stability and
performance in terms of L∞ gains and guarantees regarding the existence of a
robust strictly positive lower bound on the inter-event times despite the pre-
sence of disturbances and DoS attacks. These guarantees could be given under
the assumption that the DoS attacks are restricted in terms of frequency and
duration. The latter assumption is reasonable in many practical scenarios due
to several provisions that can be taken to mitigate DoS attacks.

9.1.3 ETC algorithms for multi-agent systems

Chapter 7 discussed a systematic design methodology for ETC strategies for a
class of nonlinear multi-agents systems (MAS) subject to disturbances resulting
in strictly positive MIETs. The proposed framework can capture many relevant
control problems as it leads to MASs that are dissipative with respect to a desired
supply rate and supports the use of model-based holding devices. As particu-
lar cases, it captures consensus seeking, output-regulation and leader following
problems. Furthermore, robustness to non-uniform and time-varying delays is
guaranteed by design. In addition to ETMs, so-called destination protocols were
introduced. These protocols locally determine to which of the connected agents,
local output measurements are transmitted at each transmission instant. In-
terestingly, this concept can also be exploited in the context of packet losses
and denial-of-service attacks. In short, Chapter 7 provided a general framework
that covers many relevant control problems for event-triggered MASs subject to
network-induced imperfections and malicious DoS attacks.



9.2 Recommendations 205

9.1.4 Experimental validation

As mentioned before, ETC systems offer significant reductions in the utiliza-
tion of communication resources while guaranteeing desired control performance,
which are crucial in many practical applications. A particular application for
which this concept is useful, is Cooperative Adaptive Cruise Control (CACC).
CACC systems exploit Dedicated Short Range Communication (DSRC) to ena-
ble the formation of string-stable platoons with small inter-vehicle distances.
However, it is shown that excessive utilization of communication resources can
have a negative impact on the reliability and the quality of the DSRC channel
and thereby the functionality of CACC systems. For this reason, ETC is an
important enabling technology for harvesting all the potential benefits of CACC
systems and realizing the introduction of CACC systems on a large scale wit-
hout introducing congestion of V2V communication network. In Chapter 8, the
proposed ETC method in Chapter 2 was experimentally validated by means of a
platoon of three passenger vehicles equipped with CACC employing a time-gap
of only 0.6 seconds. The experimental results showed that in comparison with
conventional time-triggered solutions, the proposed resource-aware CACC stra-
tegy indeed leads to significant reductions in the utilization of communication
resources while preserving the individual vehicle stability and string-stability
guarantees. This provides a proof-of-concept of the main results in this thesis.

9.2 Recommendations

As mentioned in the introduction, the field of cyber-physical systems (CPSs)
and NCSs in particular, is relatively young and there are still many interesting
challenges to be solved. On the basis of the results presented in this dissertation,
several directions were identified.

Improved design procedures for ETC systems: The ETC designs met-
hods presented in this dissertation rely on an emulation-based approach in which
the controller and the ETM are designed separately. To be more specific, in
this approach, first the feedback law is designed such that the closed-loop sy-
stem attains the desired stability and/or performance properties in absence of
network-induced imperfections. Subsequently, the ETM is designed such that
these desired properties are preserved. Although this separation in the design
procedure allows to exploit well-known methods for the design of feedback laws,
it might lead to a tedious iteration process before the satisfactory results are
obtained. This problem can be tackled by considering two research directions.
The first direction is to study and characterize the influences of the ETM on the
system before the loop is closed which facilitates in developing more intuitive
and effective design procedures. For example, the lifting-based techniques pre-
sented in [113] allow to characterize linear plants with a class of ETMs in terms
of a piecewise linear discrete-time system. Using this perspective, discrete-time
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control design can be exploited to design a feedback law that takes into account
the presence of an ETM. The second direction is the development of synthesis
methods in which the feedback law and the ETM are synthesized simultaneously.
In [8,233], based on the scheme presented in Chapter 2, such a co-design method
is proposed by using congruence transformation techniques for the linear matrix
inequalities (LMIs). However, this approach requires additional LMI constraints
which, in particular for controllers with feed-through term, might lead to con-
servative and even infeasible synthesis formulations. As a consequence, how to
effectively design an ETC system can still be considered as an important open
problem.

Riccati-based ETC design for decentralized control configurations:
The numerical examples in Chapter 3 demonstrated that by exploiting Riccati-
based tools for linear systems, significantly better performance bounds can be
obtained for ETC systems in comparison with the more general approach pre-
sented in Chapter 2. However, the approach presented in Chapter 2 on the other
hand, captures a larger class of control setups such as decentralized control con-
figurations. As shown in [112], the Riccatti-based approach could be extended to
decentralized control configurations. However, the approach presented in [112]
requires the internal clocks of all sensor and actuator nodes to be synchroni-
zed. The latter requirement might be impractical. For this reason, it is of
interest to develop novel decentralized ETC methods that do not require clock-
synchronization but are still able to exploit the benefits of the Riccati-based
approach.

Analyzing flexible large-scale systems: One of the main motivations for
using (wireless) NCSs is that NCSs offer flexibility in the sense that it relatively
easy to expand and reconfigure a networked systems. However, the majority of
the literature of NCSs including the approaches presented in the current dis-
sertation consider fixed network configurations and systems with fixed state di-
mensions. As a consequence, the control design procedure has to be repeated for
every configuration that the system can attain. For this reason, it is of interest
to study NCSs in which components can be added, removed or reconfigured wit-
hout the need to reconsider the (local) control architectures. These systems are
also referred to as open systems. In Chapter 8, it is shown that unidirectional
vehicle strings are flexible in the sense that vehicles can join or leave the platoon
without consequences for the overall string stability property of the platoon.
However, it is still an open question if it is possible to have this property for
other communication topologies such as a bidirectional topology or a two-vehicle
lookahead topology. In the context of cyber-security, it might also be useful to
examine the flexibility of the NCS. Indeed, by being able to break links and
establish new links during operation, the resilience of an NCS can be improved
as it allows the system to actively respond to malicious attacks by disconnecting
certain compromised parts of the NCS and thereby to reduce the vulnerability
of the system. In [46], it is shown that by using small-gain arguments, it is
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possible to assess the input-to-state stability of the overall NCS based on local
conditions that only involve local dynamics. However, the resulting time-based
specifications are in general conservative. A step in reducing this conservatism
could be to examine the techniques used for spatially (invariant) systems, see,
e.g., [59, 122, 123], and overlapping-decompositions, see, e.g., [214].

Resource-aware distributed model-predictive control: Model pre-
dictive control (MPC) is a control strategy, which can effectively deal with con-
straints and which has widely been applied in process industry over the last few
decades, see, e.g., [33, 91]. The current trend in process industry is to move
from centralized control systems that rely on dedicated wired connections to
distributed control systems that rely on wireless networked communication and
battery-powered sensors, see, e.g., [255]. As such, there is a strong need for dis-
tributed resource-awareMPCmethods. Despite this need, works in the literature
that address this topic are rare. For these reasons, the topic of resource-aware
distributed MPC design methods forms an interesting and important direction
for future research. A first step could be to build upon [217] in which sequential
MPC configurations are considered. Similar as in distributed MPC schemes, the
approach in [217] relies on local prediction models that do no capture the dyn-
amics of the entire system. It is shown that if the MPC laws are well-designed,
it is possible to bound the uncertainty induced by the local prediction models.
Consequently, by means of robust MPC methods, desired closed-loop behavior
could still be guaranteed. The same principle might be applicable to distributed
configurations with additional uncertainties induced by the networked commu-
nication.

Resource-aware multi-agent systems with cloud-based communi-
cation: In the multi-agent setting considered in Chapter 7, it is assumed that
agents can directly exchange information via a possibly shared communication
channel. In some applications, for example in swarms of autonomous underwa-
ter vehicles, communication is only possible via a common cloud repository that
stores the output information of all agents. An agent can only access this infor-
mation and update its own output information that is available in the cloud after
a connection with the cloud has been established. Typically, agents can only con-
nect to the cloud at discrete instants in time, often in an asynchronous fashion,
and they are unable to detect when other agents are connected to the cloud. As
such, there is no direct information exchange among agents. The latter has a
significant impact on the time between the moment at which an output measu-
rement is being collected and updated in the cloud and the moment at which it
is received and processed by other agents. As such, cloud-based communication
for MASs requires different resource-aware communication strategies than MASs
that rely on a shared communication channels that enable direct exchange of in-
formation. Early approaches that tackle this problem include [10, 11, 47, 178].
However, these approaches do not consider the presence of disturbances, which,
as advocated in this dissertation, is not trivial to account for. Hence, it would
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be interesting to examine whether the ETC framework presented in Chapter 7
can be generalized to resource-aware MASs with cloud-based communication.

9.3 Final thoughts

The developments in information and communication technology (ICT) over the
last few decades have enabled many novel interesting control applications that
will have a major impact on our future. For this reason, the field of cyber-
physical systems, and, in particular, NCSs have become prominent within the
control community. Although many significant advances are made in funda-
mental system theory related NCSs as well as in experimental exploration and
validation, there are still many interesting open challenges of which a selection
has been discussed above. Given the potential benefits and impacts of NCSs, it is
of importance to encourage the industry to shift from separate design approaches
for the control architecture and the ICT infrastructure to integrated design ap-
proaches, from centralized control solutions to distributed control solutions and
from conventional time-triggered digital control paradigms to resource-aware and
resilient control paradigms. These shifts can be accelerated by focusing on the
development of accessible and intuitive tools for the analysis and design of re-
liable NCSs and providing proof-of-concepts. The present thesis contributed to
these important research areas. Moreover, it was shown that relevant results on
safety-critical cyber-physical systems that rely on resource-aware and resilient
control strategies do not only exist in theory but actually work in practice as
well.



Appendix A

Proofs of Chapter 2

Proof of Lemma 2.5: According to (2.46) we have that 1 − ωi(τi) = 0 for 0 6

τi 6 τ imiet. Hence, (1− ωi(τi))γ̄W̃
2
i = (1−ωi(τi))γ̄W

2
i = 0 when 0 6 τi 6 τ imiet.

Furthermore, given the fact that τ imad 6 τ imiet due to Standing Assumption 2.1,
then for τi > τmiet, the next event in network Ni is a transmission event, i.e.,
li = 0. Since, si = 0 for li = 0 when τi > τ imiet according to (2.10) and (2.15), we
can see that W̃i = max

{
Wi(κi, ei),Wi(κi, ei + si)

}
= Wi for τi > τ imiet, which

completes the proof.
Proof of Theorem 2.2: Consider the candidate Lyapunov function

U(ξ) = Ṽ (x) +

N∑

i=1

(

γli,iφli,i(τi)W̃
2
i (κi, li, ei, si) + ηi

)

. (A.1)

By means of the Comparison Lemma (see, e.g., [131, p. 102-103]), we can con-
clude from (2.7) and (2.32) that ηi(t, j) > 0 when 0 6 τi 6 τ imiet. Given
this fact, observe that the triggering mechanism given by (2.6) and (2.7) en-
sures that ηi(t, j) > 0 for all t ∈ R>0

1. Combining this with the fact that
φli,i(τi) > 0 for all τi ∈ R>0 and for all i ∈ N̄ , and the radial unboundedness

of functions Ṽ and W̃i, for all i ∈ N̄ , due to Condition 2.2 and Condition 2.1,
respectively, we can conclude that U is radially unbounded in the sense that
there exist K∞-functions β

U
and β̄U such that

β
U
(|ξ̂|) 6 U(ξ) 6 β̄U (|ξ̂|),

for all ξ ∈ X where ξ̂ =
(
x, e, s, η

)
∈ Rnx×Rnv×Rnv×R>0. Hence, U constitutes

a suitable candidate Lyapunov function.

1Note that this also implies that when ξ ∈ Di ∧ li = 0, the jump η+i = ηi is equivalent to

η+i = 0.
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Let ξ be a solution to H defined on the hybrid time domain dom ξ =
⋃J−1

j=0 [tj , tj+1]× {j} with J possibly ∞ and tJ = ∞ for initial condition ξ(0, 0)
and input w ∈ Lp. The function U given by (A.1) constitutes a valid Lyapunov
function for hybrid system H if we can show that

〈∇U(ξ), F (ξ)〉 6 −ρ̃(|x|) − δη(η)− σl(W̃ ), when ξ ∈ C,

U(ξ+)− U(ξ) 6 0, when ξ ∈ D,

for some positive definite functions ρ̃, δη and σl [98]. Note that non-strictness
in the second (jump) condition is sufficient since all solutions are defined for all
t ∈ R>0. We can see from (2.15) and (2.28) that at transmission events, i.e., if
ξ ∈ Di∧ li = 0, for some i ∈ N̄ (and thus τi > τ imiet), we have that for all (κi, ei)

U(ξ+)− U(ξ) = −γ0,iφ0,i(τ imiet)W̃
2
i (κi, 0, ei, si)

+ γ1,iφ1,i(0)W̃
2
i (κi + 1, 1, ei, hi(κi, ei)− ei).

The conditions given in (2.22) and (2.29) ensure that

U(ξ+)− U(ξ) 6− γ0,iφ0,i(τ
i
miet)W̃

2
i (κi, 0, ei, si)

+ γ1,iφ1,i(0)λ
2
i W̃

2
i (κi, 0, ei, si),

6 0, (A.2)

when ξ ∈ Di ∧ li = 0 for some i ∈ N̄ . At update events, i.e., if ξ ∈ Di ∧ li = 1
for some i ∈ N̄ , we have that due to (2.15)

U(ξ+)− U(ξ) = −γ1,iφ1,i(τi)W̃ 2
i (κi, 1, ei, si)

+ γ0,iφ0,i(τi)W̃
2
i (κi, 0, si + ei, 0). (A.3)

By using the condition given by (2.23), we obtain that

U(ξ+)− U(ξ) 6 −γ1,iφ1,i(τi)W̃ 2(κi, 1, ei, si)

+ γ0,iφ0,i(τi)W̃
2
i (κi, 1, ei, si). (A.4)

Now given the fact that, according to (2.19), ξ ∈ Di ∧ li = 1 implies τi 6 τ imad,
the condition given in (2.30) ensures that when ξ ∈ Di ∧ li = 1 for some i ∈ N̄ ,

U(ξ+)− U(ξ) 6 0.

With some abuse of notation, we consider the quantity 〈∇U(ξ), F (ξ)〉 with F (ξ)
given by (2.10), even though W̃ is not differentiable with respect to κ and l.
Since κ̇ = 0 and l̇ = 0 in between jumps, this does not cause any problems. We
also omit the argument of Hli,i. From (2.25), (2.26) and (2.28), we can derive
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that for all τ ∈ RN
>0, all κ ∈ N

N , all l ∈ {0, 1}N and almost all (x, e) ∈ Rnx×Rnv

〈∇U(ξ), F (ξ)〉 6
N∑

i=1

[

− ˜̺i(vi)−H2
li,i + γ2li,iW̃

2
i

+2γli,iφli,iW̃i

(

Lli,iW̃i +Hli,i

)

− σli,i(W̃i) + Ψi

−ωi(τi)γli,iW̃
2
i

(
2Lli,iφli,i + γli,i

(
φ2li,i + 1

))
]

− ρ̃(|x|)

=

N∑

i=1

[

−Mi(ξ)− σli,i(W̃i) + Ψi

]

− ρ̃(|x|), (A.5)

with ωi(τi) as in (2.46), and where Mi, i ∈ N̄ , is given by (2.33). Since Ψi is
upper bounded byMi(ξ)−δηi

(ηi) according to (2.31), we obtain from (A.5) that

〈∇U(ξ), F (ξ)〉 6 −ρ̃(|x|) −
N∑

i=1

(

δηi
(ηi) + σli,i(W̃i)

)

, (A.6)

which completes the proof using standard Lyapunov arguments, see, e.g., [98,
131].

Proof of Theorem 2.3: Following the same steps as in the proof of Theorem
2.2, we can conclude that U(ξ) is positive definite. Furthermore, we obtain that
at jumps

U(ξ(tj+1, j + 1)) 6 U(ξ(tj+1, j)) (A.7)

and during flows

〈∇U(ξ), F (ξ, w)〉 6 µ(θp|w|p − |q(x,w)|p). (A.8)

As shown in [120], (A.7) and (A.8) imply that system H is Lp-stable with an
Lp-gain less than or equal to θ which completes the proof.
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Proofs of Chapter 3

Proof of Theorem 3.1: The proof is based on the storage function U given
by (3.15) with V as defined in (3.16), P0 satisfying (3.17), and P d

1 , d ∈ D,
satisfying (3.18). However, we only need to consider the function V , as it holds
that η(t) = 0 for all t ∈ R>0 (cf. (3.9)) and thus in this case U = V .

The proof consists of showing that V is a proper storage function and satisfies
for all ξ ∈ Rnξ , τ ∈ R>0, κ ∈ N, and all l ∈ {0, 1},

c1|ξ|2 6 V (ξ, τ, κ, l) 6 c2|ξ|2 (B.1)

with c2 > c1 > 0, has a supply rate θ−2z⊤z − w⊤w [241, 254] and decay rate 2ρ
during flow (3.7a), and is nonincreasing along jumps (3.7b) and (3.7c).

The first property follows from Assumption 3.2, as this assumption guaran-
tees that P0(τ) ≻ 0 for all τ ∈ [0, h] and P d

1 (τ) ≻ 0 for all τ ∈ [0, d], d ∈ D,
see [22, 112]. Hence, (B.1) holds with

c1 = min






min

τ∈[0,h]
λmin(P0(τ)), min

d∈D
τ∈[0,d]

λmin

(
P d
1 (τ)

)






(B.2a)

c2 = max






max
τ∈[0,h]

λmax(P0(τ)), max
d∈D

τ∈[0,d]

λmax

(
P d
1 (τ)

)






, (B.2b)

where c2 > c1 > 0.

For brevity, we will use the notation V (t) = V (ξ(t), τ(t), κ(t), l(t)) in the
remainder of the proof.

Following the derivations in the proof of [112, Theorem III.2] it can be shown
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that (3.17), (3.18), and (3.19) imply that

d
dtV (t) 6 −2ρV (t)− θ−2z(t)⊤z(t)

+ w(t)⊤w(t) − ζ(t)⊤NF ζ(t) (B.3)

during flow (3.7a) with (τ ∈ [0, τκ] and l = 1) or (τ ∈ [0, h] and l = 0). Addi-
tionally, during flow (3.7a) with τ ∈ [h,∞), l = 0, and ζ⊤Qζ 6 0, it holds that
ŷ = s, which implies that







xp(t)
xc(t)
ŷ(t)
s(t)






= T





xp(t)
xc(t)
s(t)



 when t ∈ (tk + h, tk+1],

and thus it follows from (3.25) that

d
dtV (t) 6 −2ρV (t)− θ−2z(t)⊤z(t)

+ w(t)⊤w(t) − ζ(t)⊤(NN − βQ)ζ(t). (B.4)

Equations (B.3) and (B.4) together withNF , NN � 0, β > 0, and ζ(t)⊤Qζ(t) 6 0
for t ∈ [tk + h, tk+1] show that

d
dtV (t) 6 −2ρV (t)− θ−2z(t)⊤z(t) + w(t)⊤w(t) (B.5)

holds during flow (3.7a), proving the second property.
Finally, we show that V does not increase along jumps. In [112], it is shown

that (3.21) evaluated at τ = d, d ∈ D, leads to

P0d = G0(h− d) + F11(h− d)−⊤(P0h

S(h− d)
(
I − S(h− d)⊤P0hS(h− d)

)−1
S(h− d)⊤

P0h

)
F11(h− d)−1, (B.6)

and for d ∈ D, (3.22) evaluated at τ = 0, leads to

P d
10 = Gd

1(d) + F11(d)
−⊤(P d

1dS(d)
(
I − S(d)⊤P d

1dS(d)
)−1

S(d)⊤P d
1d

)
F11(d)

−1. (B.7)

Here, the existence of
(
I − S(h− d)⊤P0hS(h− d)

)−1
and

(
I − S(d)⊤P d

1dS(d)
)−1

is guaranteed by Assumption 3.2 and P0h, P
d
1d ≻ 0, d ∈ D, cf. [112]. By applying

a Schur complement it follows from (3.26), NT � 0, and µd > 0 for all d ∈ D
that along transmissions (3.7b) (when τ ∈ [h,∞), l = 0, and ζ⊤Qζ > 0) we have

V (t+) = ξ(t)⊤J⊤
0 P

τκ(t)

10 J0ξ(t)
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6 ξ(t)⊤P0hξ(t)− ζ(t)⊤(NT + µτκ(t)Q)ζ(t) (B.8a)

6 ξ(t)⊤P0hξ(t) = V (t), (B.8b)

and it follows from (3.27) that along updates (3.7c) (when τ = τκ and l = 1) we
have

V (t+) = ξ(t)⊤J⊤
1 P0τκ(t)

J1ξ(t) 6 ξ(t)⊤P
τκ(t)

1τκ(t)
ξ(t) = V (t). (B.9)

Combining (B.1), (B.5), (B.8b), and (B.9) establishes the upper bound θ on
the L2-gain of the ETC system (3.7), (3.10) [112].

Furthermore, it follows that

V (t) 6 e−2ρtV (0) +

∫ t

0

e−2ρ(t−s)‖w‖2L∞
ds

6 e−2ρtV (0) +
1

2ρ
(1− e−2ρt)‖w‖2L∞

6 e−2ρtV (0) +
1

2ρ
‖w‖2L∞

and thus
|ξ(t)| 6 ce−ρt|ξ(0)|+ (2ρc1)

−1/2‖w‖L∞
(B.10)

with c =
√

c1/c2, which proves that the system is ISES with decay rate ρ.
Proof of Theorem 3.2: Consider again the Lyapunov/storage function U

given by (3.15) with V as defined in (3.16).
First, we show that U is a proper storage function, by showing that η(t) > 0

for all t ∈ R>0, and that U satisfies for all ξ ∈ Rnξ , τ ∈ R>0, κ ∈ N, l ∈ {0, 1},
and all η > 0,

c1|ξ|2 + |η| 6 U(ξ, τ, κ, l, η) 6 c2|ξ|2 + |η|, (B.11)

where c1 and c2 are given by (B.2). As η(0) = 0, it follows from (3.28a), NF � 0,
and the comparison lemma [131, Lemma 3.4] that η(t) > 0 for all t ∈ [0, h).
Next, η flows according to (3.28b) on [h, t1), i.e., as long as η > 0 or ζ⊤Qζ 6 0
(see (3.8)). However, note that η can only become negative when η = 0 and
ζ⊤Qζ > 0 (see (3.28b) as NN � 0), in which case a transmission (3.7b) would be
triggered. Hence, η(t1) = 0. The relation ηT (o(t1)) > 0 then follows from (B.8b)
when ηT is given by (3.29), or from NT � 0 when ηT is given by (3.30). Hence,
in both cases it holds that η(t+1 ) > 0. It now follows by induction that η(t) > 0
for all t ∈ R>0. Property (B.11) then follows by combining (B.1) and (3.15).

It remains to show that U has a supply rate θ−2z⊤z − w⊤w and decay
rate 2ρ during flow (3.7a), and is nonincreasing along jumps (3.7b) and (3.7c).
For brevity, we will use the notation U(t) = U(ξ(t), τ(t), κ(t), l(t), η(t)) and
V (t) = V (ξ(t), τ(t), κ(t), l(t)) in the remainder of the proof.

From (3.19) and (3.28a) it follows (using (B.3)) that

d
dtU(t) 6 −2ρV (t)− 2ρη(t)− θ−2z(t)⊤z(t) + w(t)⊤w(t)



216 Appendix B. Proofs of Chapter 3

= −2ρU(t)− θ−2z(t)⊤z(t) + w(t)⊤w(t) (B.12)

holds during flow (3.7a) with τ ∈ [0, h], and from (3.19) and (3.28b) it follows
(using (B.4)) that (B.12) holds during flow (3.7a) with τ ∈ [h,∞).

Finally, we show that

U(t+) 6 U(t), (B.13)

holds along jumps. When using (3.29), we find along transmissions (3.7b) that
(cf. (B.8))

U(t+) = ξ(t)⊤J⊤
0 P

τκ(t)

10 J0ξ(t)

+ η(t) + min
d∈D

ξ(t)⊤
(
P0h − J⊤

0 P
d
10J0

)
ξ(t)

6 ξ(t)⊤P0hξ(t) + η(t) = U(t).

Alternatively, when using (3.30), we find (using (B.8a) and µτκ(t)ζ(t)⊤Qζ(t) > 0)
along transmissions (3.7b) that

U(t+) = ξ(t)⊤J⊤
0 P

τκ(t)

10 J0ξ(t) + η(t) + ζ(t)⊤NT ζ(t)

6 ξ(t)⊤P0hξ(t) + η(t) = U(t).

Along updates (3.7c), (B.13) follows from (B.9) (which follows from (3.27)) and
η(t+) = η(t).

Equations (B.11), (B.12), and (B.13) together prove that the system has an
L2-gain from w to z smaller than or equal to θ [241,254]. Furthermore, it follows
that

U(t) = V (t) + |η(t)|

6 e−2ρtV (0) + e−2ρt|η(0)|+
∫ t

0

e−2ρ(t−s)‖w‖2L∞
ds

6 e−2ρtV (0) + e−2ρt|η(0)|+ 1

2ρ
‖w‖2L∞

and, since η(0) = 0, it follows that

|ξ(t)| 6 ce−ρt|ξ(0)|+ (2ρc1)
−1/2‖w‖L∞

, and (B.14)

|η(t)| 6 c2e
−2ρt|ξ(0)|2 + (2ρ)−1‖w‖2L∞

(B.15)

with c =
√

c1/c2, which proves that the system is ISES with decay rate ρ.
Proof of Theorem 3.3: Consider the Lyapunov function U given by (3.15),

with V given by (3.37). As in the proof of Theorem 3.1, we only need to consider
the function V , as it holds that η(t) = 0 for all t ∈ R>0 and thus in this case
U = V .



217

In the proof of Theorem 3.1 it is shown that (B.1) holds with c1 and c2
given by (B.2), that (B.5) holds during flow (3.33a), that (B.8b) holds along
transmissions (3.33b), and that (B.9) holds along updates (3.33c),

It remains to show that V is decreasing along non-transmission jumps (3.33d).
From (B.6) it follows that (3.21) evaluated at τ = 0, leads to

P00 = G0(h) + F11(h)
−⊤(P0hS(h)
(
I − S(h)⊤P0hS(h)

)−1
S(h)⊤P0h

)
F11(h)

−1. (B.16)

By applying a Schur complement it follows from (3.38) and ŷ(t+) = ŷ(t) =
s(t) = s(t+) that along jumps (3.33d) (when τ = h and ζ⊤Qζ 6 0) we have

V (t+) = ξ(t)⊤P00ξ(t)

6 ξ(t)⊤P0hξ(t) − ζ(t)⊤(NN − βQ)ζ(t) (B.17a)

6 ξ(t)⊤P0hξ(t) = V (t), (B.17b)

as NN � 0.
Similar arguments as in the proof of Theorem 3.1 lead to ISES with decay

rate ρ and L2-stability with L2-gain θ.
Proof of Theorem 3.4: Consider again the Lyapunov function U given by (3.15),

with V given by (3.37).
First, we show that U is a proper storage function, by showing that η(t) > 0

for all t ∈ R>0, and that U satisfies (B.11) for all ξ ∈ Rnξ , τ ∈ [0, h], κ ∈ N,
l ∈ {0, 1}, and all η > 0. As η(0) = 0, it follows from (3.39) that η(t) > 0 for
all t ∈ [0, h], and hence, that η(s1) > 0. Next, given event-generator (3.34), a
transmission (3.33b) occurs in case ζ(s1)

⊤Qζ(s1) > 0 and ηN (ô(s1)) 6 0. In
this case, ηT (ô(s1)) > 0 follows from (B.8b) when ηT is given by (3.40a), or
from NT � 0 when ηT is given by (3.41a). Otherwise, if ζ(s1)

⊤Qζ(s1) < 0 or
ηN (ô(s1)) > 0, no transmission occurs, and the state jumps according to (3.33d).
Observe however that when ζ(s1)

⊤Qζ(s1) < 0 it holds that ηN (ô(s1)) > 0, which
follows from (B.17b) when ηN is given by (3.40b), or from NN � 0 and β > 0
when ηN is given by (3.41b). Hence, in all cases it holds that η(s+1 ) > 0. It now
follows by induction that η(t) > 0 for all t ∈ R>0. Property (B.11) then follows
by combining (B.1) and (3.15), where c1 and c2 are given by (B.2).

From (3.19) and (3.39), it follows that (B.12) holds during flow (3.33a), and
thus that U has a supply rate θ−2z⊤z − w⊤w and decay rate 2ρ during flow.

It remains to show that (B.13) holds along jumps. For transmissions (3.33b)
and updates (3.33c), this has already been shown in the proof of Theorem 3.2,
as the functions (3.40a) and (3.29), and (3.41a) and (3.30) are identical. Along
jumps (3.33d), we find when using (3.40b) that

U(t+) = ξ(t)⊤P00ξ(t) + η(t) + ξ(t)⊤ (P0h − P00) ξ(t)

= ξ(t)⊤P0hξ(t) + η(t) = U(t).
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Alternatively, when using (3.41b), we find using (B.17a) (which also holds along
jumps (3.33d) when τ = h and ζ⊤Qζ > 0) that

U(t+) = ξ(t)⊤P00ξ(t) + η(t) + ζ(t)⊤(NN − βQ)ζ(t)

6 ξ(t)⊤P0hξ(t) + η(t) = U(t).

This completes the proof.
Proof of Theorem 3.5: The proof directly follows from the proof of Theo-

rem 3.2 by using V as defined in (3.43) and noting that for all d ∈ D and all
i ∈ {1, 2, . . . , N} it holds that X⊤

j U
d
ijXj > 0 and X⊤

j W
d
ijXj > 0 when ξ ∈ Xj ,

j ∈ {1, 2, . . . , N}.
Proof of Theorem 3.7: The proof directly follows from the proof of Theo-

rem 3.4 by using V as defined in (3.50) and noting that for all d ∈ D and all
i ∈ {1, 2, . . . , N} it holds that X⊤

j U
d
ijXj > 0, X⊤

j W
d
ijXj > 0, and X⊤

j VijXj > 0
when ξ ∈ Xj , j ∈ {1, 2, . . . , N}.



Appendix C

Proofs of Chapter 4

Proof of Theorem 4.1.

Before we provide the proof for ISS for the set A, we first consider statement
(ii) and (iii), which form important ingredients for the stability analysis of system
H described by (4.18) and (4.20). In the proof, we often omit the time arguments
of the solution ξ of hybrid system H and we do not mention dom ξ explicitly.

Proof of statement (ii)

By recalling that X0 := {ξ ∈ X : ηi > 0, pi = 0}, we can see from (4.21)
that pi(t, j) = 1 is only possible if the system has jumped according to the
jump map Gµ

i (ξ). To be more concrete, we can conclude from (4.21) that for
all (t, j) ∈ dom ξ for which pi(t, j) = 1, there exists an n ∈ N such that ξ(t, j −
n) ∈ Gµ

i (Di) and that ξ(t, j̄) ∈ ⋃k∈{1,2,...,l}\{i} ({G
µ
k (Di)} ∪ {Gy

k(Di)}) for all

j̄ ∈ {j − n + 1, . . . , j}. Since µi is only affected by the jump map Gµ
i (Di)

(corresponding to a zoom-update event at node i), we only need to show that
|yi(t, j)| 6 Miµi(t, j) for all ξ(t, j) ∈ Gµ

i (Di) with (t, j) ∈ dom ξ. To do so, we
consider the cases that a zoom-in event occurs, a zoom-out event occurs and
that none of the zoom conditions are violated.

In case of a zoom-in event, i.e., when ξ ∈ Di, and the system jumps according

to ξ ∈ Gµ
i (ξ) with µ

+
i ∈ Ω

κin ,i(yi,µi)
in ,i µi and y

+
i = yi, we have that

ℓout ,iµ
+
i

(4.31)

> Ωin ,i
ℓout ,i
ℓin ,i

max{|yi|,∆0,i}
(4.32)

>
Mi −∆i

Mi − κi∆i
|yi|. (C.1)

Since according to (4.30), κi > 1, we obtain that ℓout ,iµ
+
i

(C.1)

> |yi| and thus
Miµ

+
i > |y+i |.
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In case of a zoom-out event, i.e., when ξ(t, j) ∈ Di and the system jumps

according to ξ+ ∈ Gµ
i (ξ) with µ

+
i ∈ Ω

κout ,i(yi,µi)
out ,i µi and y

+
i = yi, it immediately

follows from (4.31) that ℓout ,iµ
+
i > |y+i | and thus Miµ

+
i > |y+i | as ℓout ,i =

Mi −∆i 6Mi.
In case none of the zoom-conditions are violated, i.e., when ξ ∈ Di and the

system jumps according to ξ+ ∈ Gµ
i (ξ) with µ

+
i = µi and y

+
i = yi we have that

κout ,i(yi, µi) = 0 which, per definition of κout ,i, implies that |yi| 6 ℓout ,iµi and
thus Miµ

+
i > |y+i |. Hence, statement (ii) in Theorem 4.1 holds.

Proof of statement (iii)

Consider the following claim.

Claim C.1. Let the hypotheses of Theorem 1 hold. Consider a solution pair
(ξ, w) to (4.20) with ξ(0, 0) ∈ X0 with X0 as defined in Theorem 4.1. Then, it
holds for all (t, j) ∈ dom ξ with ξ(t, j) ∈ Di that

γ̃i|ei(t, j)|2 > εyi
max{|y2i (t, j)|,∆2

0,i}, i ∈ {1, 2, . . . , l}

. �

Proof of Claim C.1.

To prove this claim, we use the following lemma.

Lemma C.1. Consider f : R≥0 → R that is continuously differentiable at an
open interval containing (T1, T2] with f(t) > 0 t ∈ (T1, T2] for T2 > T1 > 0 and
f(T2) = 0, then ḟ(T2) 6 0. �

Moreover, let us define Ēi := {(t, j) ∈ dom ξ : ξ(t, j) ∈ C ∩ Di} for all i ∈
{1, 2, . . . , l}. Observe from (4.25) that Ψi(oi(t, j)) > 0 for all (t, j) ∈ dom ξ for
which ηi(t, j) = 0 and 0 6 τi(t, j) < Ti. By means of the latter, and by recalling
(4.9) and the fact that, per definition of X0, ηi(0, 0) > 0 for all i ∈ {1, 2, . . . , l},
we obtain that ηi(t, j) > 0 for all (t, j) ∈ dom ξ for which τi(t, j) = Ti. Since
ηi(t, j) = 0 and τi(t, j) > Ti when ξ(t, j) ∈ Di, we can consequently conclude that
for each (t, j) ∈ Ēi, there exists a t′ < t such that (t′, j) ∈ C with τi(t

′, j) > Ti.
By using the latter, the fact that, for all (t, j) ∈ dom ξ, ηi(t, j) > 0, per definition
of X and Lemma C.1, we obtain that for all (t, j) ∈ Ēi, η̇(t, j) 6 0. Observe
from (4.25) that η̇i(t, j) > εyi

max
{
|yi(t, j)|2,∆2

0,i

}
− γ̃i|ei(t, j)|2 − ϑiηi(t, j) for

all (t, j) ∈ dom ξ. Hence, we have that for all i ∈ {1, 2, . . . , l}, and all (t, j) ∈ Ēi,
γ̃i|ei(t, j)|2 > εyi

max{|y2i (t, j)|,∆2
0,i}.

To complete the proof, we need to show that the property γ̃i|ei(t, j)|2 >

εyi
max{|y2i (t, j)|,∆2

0,i} also holds for all (t, j) ∈ dom ξ for which ξ(t, j) ∈ Di \C.
Observe that ξ(t, j) ∈ Di \ C implies that pi(t, j) = 1 for all (t, j) ∈ dom ξ.
As mentioned before, pi(t, j) = 1 implies that there exists an n ∈ N such that
ξ(t, j − n) = Gµ

i (Di) and that ξ(t, j̄) ∈ ⋃k∈{1,2,...,l}\{i} ({G
µ
k(Di)} ∪ {Gy

k(Di)})
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for all j̄ ∈ {j − n + 1, . . . , j}. Since yi and ei are not affected after the jumps
maps Gµ

i (ξ) or G
y
k(ξ), i ∈ {1, 2, . . . , l}, k ∈ {1, 2, . . . , l} \ {i} are applied, Claim

C.1 follows.

Claim C.2. Let the hypotheses of Theorem 1 hold. Consider a solution pair
(ξ, w) to (4.20) with ξ(0, 0) ∈ X0 with X0 as defined in Theorem 4.1. Then, it
holds for all (t, j) ∈ dom ξ with pi(t, j) = 1 that

ℓin ,iµi(t, j) 6 max{|yi(t, j)|,∆0,i}

. �

Proof of Claim C.2 following similar arguments as in the proof of statement
(ii), we only need to show that ℓin ,iµi 6 max{|yi|,∆0,i} for all ξ ∈ Gµ

i (Di). To
do so, we consider three cases, namely, the cases that a zoom-in event occurs,
that a zoom-out occurs and that none of the zoom conditions are violated.

In case of a zoom-in event, i.e., when ξ ∈ Di and the system jumps according

to ξ+ ∈ Gµ
i (ξ) with µ+

i ∈ Ω
κin ,i(yi,µi)
in ,i µi and y+i = yi, we can immediately

conclude from (4.31) that ℓin ,iµ
+
i 6 max{|y+i |,∆0,i}

In case of a zoom-out event, i.e., when ξ ∈ Di and the system jumps according

to ξ+ ∈ Gµ
i (ξ) with µ

+
i ∈ Ω

κout ,i(yi,µi)
out ,i µi and y

+
i = yi, we obtain that

ℓin ,iµ
+
i

(4.31)

6 Ωout ,i
ℓin ,i

ℓout ,i
|yi|

(4.32)
= Ωout ,iΩin ,i

Mi − κi∆i

Mi −∆i
|yi|

(4.30)

6 max{|y+i |,∆0,i}. (C.2)

Let us remark that for the last inequality, we used the fact that the bound on
κi given in (4.30) is such that Ωout ,iΩin ,i

Mi−κi∆i

Mi−∆i
< 1.

Finally, we consider the case that no zoom condition is violated, i.e., when
ξ ∈ Di and the system jumps according to ξ+ ∈ Gµ

i (ξ) with µ
+
i = µi and y

+
i = yi.

In this case κin ,i(yi, µi) = κout ,i(yi, µi) = {0}, and thus it holds trivially that
ℓin ,iµ

+
i 6 max{|y+i |,∆0,i}, which completes the proof of Claim C.2.

To complete the proof of statement (iii), we proceed with observing that in

view of (4.29), Mi − κi∆i >
2
√
γ̃i√

εyiΩin ,iλi
∆i. Hence, in view of the definition of

ℓin ,i in (4.32), we have

2∆i

√
γ̃i

λi
√
εyi

6 Ωin ,i(Mi − κi∆i) = ℓin ,i. (C.3)

Hence, 2∆i

λi
6

√
εyi ℓin ,i√

γ̃i
. By multiplying both sides by µi(t, j) we have that, for all

ξ(t, j) ∈ D for which pi(t, j) = 1 with (t, j) ∈ dom ξ, 2∆iµi(t,j)
λi

6
√
εyi ℓin ,iµi(t,j)√

γ̃i
,

which leads to

2∆iµi(t, j)

λi

Claim C.2
6

√
εyi

max{|yi(t, j)|,∆0,i√
γ̃i

,
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Claim C.1
6 |ei(t, j)|

(4.13)

6 |es,i(t, j)|+ |eq,i(t, j)| (C.4)

By means of statement (ii) of Theorem 4.1 and (4.10), we obtain that |eq,i(t, j)| 6
∆iµi(t, j) for all ξ(t, j) ∈ D for which pi(t, j) = 1 with (t, j) ∈ dom ξ. Combining
the latter fact with (C.4) yields

|es,i(t, j)| >
2− λi
λi

∆iµi(t, j), (C.5)

for all ξ(t, j) ∈ D for which pi(t, j) = 1 with (t, j) ∈ dom ξ. Since λi ∈ (0, 1), it
holds that, for all ξ(t, j) ∈ Di ∧ pi(t, j) = 1, |es,i(t, j)| > ∆iµi(t, j) > |eq,i(t, j)|.
Thus, statement (iii) of Theorem 4.1 is proven.

Proof of ISS property of the set A
To prove the ISS property of the set A, we show that there exists an ISS

Lyapunov function U for the hybrid system H described by (4.18) and (4.20).
To be more specific, we aim to find a locally Lipschitz non-negative function
U that satisfies the following properties. For some functions α1, α2 ∈ K∞ such
that for all χ ∈ C ∪ D ∪G(D), it holds that

α1(|χ|A) 6 U(χ) 6 α2(|χ|A) (C.6)

Moreover, for each solution pair (ξ, w) with ξ(0, 0) ∈ X0 and w ∈ L∞, there
exist some functions ρ̃ ∈ K∞ and σ ∈ K, such that for all (t, j) ∈ dom ξ, it holds
that when ξ(t, j) ∈ D,

U(G(ξ(t, j))) − U(ξ(t, j)) 6 0, (C.7)

and for almost all (t, j) ∈ dom ξ, when ξ(t, j) ∈ C, it holds that

〈∇Uξ(t, j), F (ξ(t, j), w(t, j))〉 6 −ρ̃(U(ξ(t, j))) + σ(|w(t, j)|). (C.8)

Observe that the ISS conditions above are closely related to the ISS conditi-
ons presented in [121, Definition 3.2]. Note that the ISS condition in (C.6)-(C.8)
are relaxed compared to [121]. This is possible as we will have that the all
maximal solutions of H described by (4.18) and (4.20) are t-complete, see also
Proposition 3.27 in [99], Lemma III.3 in [78], [193].

Consider the function

U(ξ) := max{0, R(ξ)− c} (C.9)

with the function R as in Theorem 4.1. Observe that U(ξ) = 0 for ξ ∈ A.
Moreover, note that, in view of (4.28) and (4.34), φ̃i(τi(t, j)) > 0 for all (t, j) ∈
dom ξ and i ∈ {1, 2, . . . , l}. Hence, since ηi(t, j) > 0 for all (t, j) ∈ dom ξ in view
of the definition of X, we deduce that the function U satisfies the inequality in
(C.6) and thereby constitutes an appropriate candidate ISS Lyapunov function.
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Lemma C.2. For all ξ ∈ C \ A, it holds that

ǫ
(

εx|x|2 +
l∑

i=1

2νiγiφ̃i(τi)|ei|2 +
l∑

i=1

ϑiηi
)

>
l∑

i=1

εyi
∆2

0,i. (C.10)

Proof of Lemma C.2. In view of the definition of A, it holds for all ξ ∈ C \A
that R(ξ) > c with c as defined in Theorem 4.1, i.e.,

x⊤Px+
l∑

i=1

(

γiφ̃i(τi)|ei|2 + ηi

)

>

l∑

i=1

εyi∆
2
0,i

ǫmin{εx/λmax(P ), 2min
i

νi,min
i

ϑi} .
(C.11)

Hence, we deduce from (C.11) for all ξ ∈ C \ A that

ǫmin{εx/λmax(P ), 2min
i
νi, min

i
ϑi}×

(

λmax(P )|x|2 +
l∑

i=1

(

γiφ̃i(τi)|ei|2 + ηi

))

>
l∑

i=1

εyi
∆2

0,i.
(C.12)

Consequently, by using the fact that for r ∈ N, mini∈{1,2,...,r} αi

(
∑r

j=1 βj

)

6
∑r

j=1 αjβj for all αj , βj ∈ R>0, we can conclude that (C.10) indeed it holds for
all ξ ∈ C \ A.

Dynamics of U at jumps

In view of the jump map in (4.21), we distinguish two type of jumps.

• When ξ ∈ Di with pi = 0, i ∈ {1, 2, . . . , l}, and the system jumps according
to ξ+ = Gµ

i (ξ). This case corresponds to an update of the quantizer at
node i. Since τi, ei and ηi are not affected by the jump map Gµ

i , we obtain

R(G(ξ))− R(ξ) = γiφ̃i(τ
+
i )|e+i |2 + η+i − γiφ̃i(τi)|ei|2 − ηi

(4.21)
= 0.

(C.13)

• When ξ ∈ Di with pi = 1, i ∈ {1, 2, . . . , l}, and the system jumps according
to ξ+ = Gy

i (ξ). This case corresponds to a new transmission generated at

some node i. In view of (4.20), (4.21) and by using the fact that φ̃(τ+i ) =
φ(τ+i ) = λ−1

i , we have that

R(G(ξ))−R(ξ) = γiφ̃i(τ
+
i )|e+i |2 + η+i − γiφ̃i(τi)|ei|2 − ηi

(4.21)
=γiλ

−1
i |eq,i|2 + η0,i(ei)− γiφ̃i(τi)|ei|2

(4.10)

6γiλ
−1
i ∆2

iµ
2
i + η0,i(ei)− γiφ̃i(τi)|ei|2

(C.4)

6 γiλ
−1
i λ2i |ei|2 + η0,i(ei)− γiφ̃i(τi)|ei|2

(4.25)
=γiλi|ei|2 + γi(λ̃i − λi)|ei|2 − γiφ̃i(τi)|ei|2

(4.28)

6γiλi|ei|2 + γi(λ̃i − λi)|ei|2 − γiλ̃i|ei|2 6 0.

(C.14)
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As a result, in view of (C.13) and (C.14), we have that when ξ ∈ D, R(G(ξ)) 6
R(ξ). In the view of the definition of A, we also have that G(ξ) ∈ A when ξ ∈ A.
Given the latter facts, we can conclude that (C.7) holds for all (t, j) ∈ dom ξ.

Dynamics of U during flows

Recall that F (ξ, w) = (A1x + B1e + E1w,A2x + B2e + E2w,0l,1l,Ψ(o),0l).
Consequently, in view of (4.20), (4.24), (4.28), we obtain for ξ ∈ C (recall that
L̃i = Li + νi, i ∈ {1, 2, . . . , l})

〈∇R,F (ξ, w)〉 = 〈∇V (x),A1x+ B1e+ E1w〉

+
l∑

i=1

2γiφ̃i(τi)|ei|
〈

∂
∂ei

|ei|,A2ix+ B2ie+ E2iw
〉

+
l∑

i=1

γi
˙̃φi(τi)|ei|2 +

l∑

i=1

η̇i

6 −εx|x|2 −
l∑

i=1

|A2ix+ B2ie+ E2iw|2 −
l∑

i=1

εyi
|yi|2 +

l∑

i=1

γ2i |ei|2 + εw|w|2

+
l∑

i=1

2Liγiφ̃i(τi)|ei|2 +
l∑

i=1

2γiφ̃i(τi)|ei||A2ix+ B2ie+ E2iw|

−
l∑

i=1

ω̃i(τi)
(

2L̃iγiφ̃i(τi) + γ2i (φ̃
2
i (τi) + 1)

)

|ei|2 +
l∑

i=1

Ψ̃i(yi, ei, τi, ηi)

for some ω̃i(τi) ∈ ωi(τi) and Ψ̃i(yi, ei, τi, ηi) ∈ Ψi(yi, ei, τi, ηi).

By using the fact that 2γiφ̃i(τi)|ei||A2ix + B2ie + E2iw| 6 γ2i φ̃
2
i (τi)|ei|2 +

|A2ix+B2ie+E2iw|2 and since, in view of (4.25), Ψi(yi, ei, τi, ηi) ∈ εyi
max

{
|yi|2,∆2

0,i

}
−

(1− ωi(τi))γ̃i|ei|2 − ϑiηi, we have that for all ξ ∈ C

〈∇R,F (ξ, w)〉 6 −εx|x|2 −
l∑

i=1

εyi
|yi|2 + εw|w|2

+
l∑

i=1

(

2Liγiφ̃i(τi) + γ2i (φ̃
2
i (τi) + 1)

)

|ei|2

−
l∑

i=1

ω̃i(τi)
(

2L̃iγiφ̃i(τi) + γ2i (φ̃
2
i (τi) + 1)

)

|ei|2

+
l∑

i=1

εyi
max

{
|yi|2,∆2

0,i

}
− (1− ω̃i(τi))γ̃i|ei|2 − ϑiηi

for some ω̃i(τi) ∈ ωi(τi).

By recalling that γ̃i = γ2i + γ2i λ̃i
2
+ 2γiλ̃i

2
L̃i, L̃i = Li + νi and φ̃i(τi) =

φi(Ti) = λ̃i for τi > Ti according to (4.28) and using the fact that
max

{
|yi|2,∆2

0,i

}
− |yi|2 6 ∆2

0,i, we obtain that

〈∇R,F (ξ, w)〉 6 −εx|x|2 +
l∑

i=1

εyi
∆2

0,i + εw|w|2 −
l∑

i=1

2νiγiφ̃i(τi)|ei|2 −
l∑

i=1

ϑiηi.

(C.15)
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Now by means of Lemma C.2, we obtain that for ǫ ∈ (0, 1) and for all
(t, j) ∈ dom ξ for which ξ(t, j) ∈ C \ A, it holds that

〈∇R,F (ξ, w)〉 6 −(1− ǫ)εx|x|2 + εw|w|2 − (1− ǫ)
l∑

i=1

2νiγiφ̃i(τi)|ei|2

−(1− ǫ)
l∑

i=1

ϑiηi.

(C.16)

By recalling the fact that U(ξ) = 0 when ξ ∈ A, we can conclude that for all
(t, j) ∈ dom ξ for which ξ(t, j) ∈ C

〈∇U(ξ, F (ξ, w))〉 6 −ρU(ξ) + εw|w|2, (C.17)

where ρ := (1− ǫ)min{ εx
λmax(P ) , 2min

i
νi, min

i
ϑi} and thus that (C.8) holds.

t-completeness of maximal solutions

We investigate t-completeness of maximal solutions. To do so, we verify the
conditions provided in [99, Proposition 6.10]. First of all, observe that G(D) ⊂
C ∪ D since for all ξ ∈ G(D), it holds that τ+i > 0, η+i > 0, µ+

i >
Ωin ,i

ℓin ,i
∆0,i and

p+i ∈ {0, 1} due to (4.20), (4.25) and property (d) below (4.38). Next, we show
that for any ϕ ∈ C\D there exists a neighborhood S of ξ such that, it holds for
every ϕ ∈ S ∩ C that F (ϕ,w) ∩ TC(ϕ) 6= ∅, where TC(ϕ) is the tangent cone1 to
C at ϕ. Observe that for each ξ ∈ C (recall that ξ = (x, e, µ, τ, η, p)), TC(ξ) =
Rnx×Rny×(TR

>µ
1

(µ1)× . . .×TR
>µ

l

(µl))×(TR
>0
(τ1)×. . .×TR

>0
(τl))× (TR

>0
(η1)×

. . .×TR
>0
(ηl)) × {0}l. Observe also from (4.18) that C/D =

⋂l
i=1{ξ ∈ X : pi =

0 and (τi < Ti or ηi > 0)}. Given the facts that, for all i ∈ {1, 2, . . . , l}, τ̇i = 1
and µ̇i = 0 due to (4.21) and that η̇i > 0 when τi < Ti and ηi = 0 due to (4.9)
and (4.25), it indeed follows that for any ξ ∈ C\D there exists a neighborhood
S of ξ such that, it holds for every ϕ ∈ S ∩ C that F (ϕ,w) ∩ TC(ϕ) 6= ∅. To
conclude the proof for t-completeness, finite escape times should be excluded
which is the case due to (C.8). Hence, indeed all maximal solutions (4.20),
(4.21) with ξ(0, 0) ∈ X0 and w ∈ L∞ are t-complete.

Proof of statement (iv)

To obtain the upper-bound for κout ,i(yi, µi), we first derive an upper-bound
for yi. From (C.17), we obtain that

U(ξ(t, j)) 6 e−ρtU(ξ(0, 0)) + εw

∫ t

0

e−ρ(t−s)|w(s)|2ds. (C.18)

By combining the latter with the fact that U(ξ(t, j)) > x⊤(t, j)Px(t, j) − c >
λmin(P )

λmax(C⊤

p,iCp,i)y(t,j)
− c, we can conclude that ‖yi‖∞ 6 ȳi with ȳi as in (4.39).

1The tangent cone to a set S ⊂ Rn at a point x ∈ Rn, denoted TS(x), is the set of all
vectors ω ∈ Rn for which there exist xi ∈ S, τi > 0 with xi → x, τ → 0 as i → ∞ such that
ω = limi→∞(xi − x)/τi (see Definition 5.12 in [99]).
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Consequently, in view of (4.31) and the fact µi(t, j) > µ
i
for all (t, j) ∈ dom ξ,

we can conclude that the elements of κout ,i(yi, µi) are upper bounded by κ∗out ,i
as in (4.36).

To obtain the upper-bound for κin ,i(yi, µi), we first derive an upper-bound
for µi. By recalling the fact that µi, i ∈ {1, 2, . . . , l}, is only increased when
|yi| > ℓout ,iµi (see also property (b) below (4.38), we obtain that ‖µi‖∞ 6 µ̄i

with µ̄i as in (4.37). Given the latter, we can obtain from (4.31) that the elements
of κin ,i(yi, µi) are upper bounded by κ∗in ,i as in (4.35).

All the statements of Theorem 4.1 are now proved. �



Appendix D

Proofs of Chapter 5

Proof of Theorem 5.1 To streamline the proof of Theorem 5.1, we first consider
only the closed-loop system Hd. After that, we show that also the closed-loop
system Hs has the same stability and performance guarantees as Hd. Let us
define Rd (X0) as the set of all reachable states for hybrid system Hd with
initial condition ξ(0, 0) ∈ X0 and any input w ∈ Lp, i.e., Rd (X0) = {ξ̄ ∈ X |
there exists a solution pair (ξ, w) of Hd with ξ(0, 0) ∈ X0, w ∈ Lp such that for
some (t, j) ∈ dom ξ, ξ̄ = ξ(t, j)}.

Lemma D.1. For all χ ∈ Rd (X0), there exists a positive constant c such that
φ(δτmiet +min(τ, τmiet)) 6 λ, where λ > 0.

Before we discuss the proof of Lemma D.1, let us first remark that in the
remainder of the proof, we often omit the time arguments of the solution pair
(ξ, w) of a hybrid system Hd and we do not mention dom ξ = dom w explicitly
for shortness.

Proof of Lemma D.1: Observe that since δ ∈ ∆ and τ̇ = 1 for all (t, j) ∈
dom ξ, we have that 0 6 δτmiet +min(τ, τmiet) 6 τmiet(δmax + 1). By recalling
the facts that when (δmax+1)τmiet < T (γ, L) and the constant λ is chosen suffi-
ciently small (as indicated after Condition 5.2), φ(s) ∈ [λ, λ−1] and φ̇(s) < 0 for
all s ∈ [0, τmiet(δmax + 1)], the statement follows immediately, which completes
the proof.

Consider the function

U(ξ) = V (x) + γφ̃(δ, τ)W 2(e) + η, (D.1)

where φ̃(δ, τ) := φ(δτmiet + min(τ, τmiet)). Using Lemma D.1 with the facts
that the functions V and W are positive definite and radially unbounded due
to Condition 5.1 and that η > 0 per definition of X, we can conclude that U is
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a positive definite and radially unbounded function with respect to (x, e, η) in

the sense that there exist K∞-functions β
U
and β̄U such that β

U
(|ξ̂|) 6 U(ξ) 6

β̄U (|ξ̂|), for all ξ ∈ X where ξ̂ =
(
x, e, η

)
∈ Rnx×Rny×R>0. Hence, U constitutes

a suitable candidate storage/Lyapunov function for our purpose.
Consider the storage function U given by (D.1). We can see from (5.1) that at

a packet loss (i.e., if ξ ∈ Dd and jumps according to (5.16b)), U(ξ+)−U(ξ) = 0,
since x+ = x, e+ = e, η+ = η and φ̃(δ+, τ+) = φ̃(δ, τ). The latter follows
the fact that δ+τmiet + min(τ+, τmiet) = (δ + 1)τmiet = δτmiet + min(τ, τmiet),
where in the last equality we used that τ > τmiet when ξ ∈ Dd (and thus
τmiet = min(τ, τmiet)). When a transmission is successful (i.e., if ξ ∈ Dd and
jumps according to (5.16a)), we have, due to (5.31) and the fact that η = 0 when
ξ ∈ Dd, that

U(ξ+)− U(ξ) = η0(o) − γφ̃(δ, τ)W 2(e). (D.2)

By recalling that τmiet = min(τ, τmiet) when ξ ∈ Dd, we obtain that φ((δ +
1)τmiet) = φ̃(δ, τ) and thus U(ξ+) − U(ξ) = 0 for all ξ ∈ Dd. With some
abuse of notation, we consider the quantity 〈∇U(ξ), F (ξ, w)〉 with F (ξ, w) as
in (5.12) even though U is not differentiable with respect to δ and κ. Instead,
the elements of ∇U(ξ) corresponding to partial derivative with respect to δ and
κ can be considered as zero. This is justified since the components in F (ξ, w)
corresponding to δ and κ are zero. From the imposed conditions (5.24) and
(5.26), we can derive that when τ ∈ [0, τmiet] and almost all (x, e)

〈∇U(ξ), F (ξ, w)〉 6 −ρ(|x|)− ̺(y)−H2(x,w)

− σ(W (e)) + γ2W 2(e) + µ(θp|w|p − |q(x,w)|p)
+ 2γφ̃(δ, τ)W (e) (LW (e) +H(x,w))

− γW 2(e)
(

2Lφ̃(δ, τ) + γ
(

φ̃2(δ, τ) + 1
))

+Ψ(o, η)

= −M1(o, w) − ρ(|x|)− σ(W (e)) + Ψ(o, η) + µ(θp|w|p − |q(x,w)|p), (D.3)

where M1(o, w) := ̺(y) +
(
H(x,w) − γφ̃(δ, τ)W (e)

)2
. Observe that Ψ(o, η) 6

M1(o, w) − χ(η). Hence, we obtain from (D.3) that in case w = 0,

〈∇U(ξ), F (ξ, 0)〉 6 −ρ(|x|)− σ(W (e)) − χ(η), (D.4)

and, in case disturbances are present, that

〈∇U(ξ), F (ξ, w)〉 6 µ(θp|w|p − |q(x,w)|p). (D.5)

When τ > τmiet,
˙̃
φ = 0 since φ̃(δ, τ) = φ((δ + 1)τmiet) for τ > τmiet and δ̇ = 0.

Hence, for almost all ξ ∈ Cd for which τ > τmiet, we obtain
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〈∇U(ξ), F (ξ, w)〉 6 −ρ(|x|)− ̺(y)−H2(x,w)

− σ(W (e)) + γ2W 2(e) + µ(θp|w|p − |q(x,w)|p)
+ 2γφ̃(δ, τ)W (e) [LW (e) +H(x,w)] + Ψ(o)

= −M2(o, w) − ρ(|x|) − σ(W (e)) + Ψ(o) + µ(θp|w|p − |z(x,w)|p), (D.6)

where

M2(o, w) := ̺(y)+H2(x,w)− 2γφ̃(δ, τ)W (e)H(x,w)−
(
γ2+2γφ̃(δ, τ)L

)
W 2(e).

By using the fact that 2γφ̃(δ, τ)W (e)H(x,w) 6 H2(x,w) + φ̃2(δ, τ)γ2W 2(e), we
obtain that Ψ(o, η) 6 M2(o, w) − χ(η) when τ > τmiet. Given the latter, we
can see from (D.6) that the inequalities (D.4) and (D.5) are also satisfied when
τ > τmiet. Hence, for each maximal solution pair (ξ, w) of the system Hd with
ξ(0, 0) ∈ X0, it holds that during flows, i.e., when ξ(t, j) ∈ Cd, (t, j) ∈ dom ξ the
storage function U satisfies (D.4) and (D.5) for the cases that w = 0 and w 6= 0,
respectively. Furthermore, at jumps, i.e., when ξ(t, j) ∈ Dd, (t, j) ∈ dom ξ, U
satisfies (D.2). As shown in [60, 120], this implies that system Hd is UGAS for
the case w = 0 (see also [98, Proposition 3.27]) and, in presence of disturbances,
Lp-stable with an Lp-gain less than or equal to θ provided we can show that Hd

is persistently flowing.

To show that the system Hd is indeed persistently flowing, we verify the
conditions provided in [98, Proposition 6.10]. First, observe that G(Dd) ⊂ Cd

since according to (5.15) and (5.31), at each jump we have that τ+ = 0 and
ξ+ ∈ X. The latter follows from the facts that δ is being reset to zero after at
most δmax jumps, i.e., δ+ ∈ ∆, and that η0(o) > 0 for all o ∈ O due to Lemma
D.1 since γ > 0 and W 2(e) > 0 for all e ∈ Rny , which implies η+ > 0 (for both
the cases that the system jumps according toG0 andG1 as in (5.16a) and (5.16b),
respectively). Secondly, we need to show that for each point p ∈ Cd\Dd there
exists a neighborhood U of p such that for all q ∈ U∩Cd, F (q, w) ∈ TCd

(q) where
TCd

(q) denotes the tangent cone to the set Cd at point p.1 Based on (5.18), we
obtain that for the system Hd, Cd\Dd = {ξ ∈ X | τ < τmiet or (η > 0 and κ >
δmax)}. The tangent cone TCd

(q) for each q ∈ Cd, is given for the relevant cases
below:

(i) For q ∈ {ξ ∈ X |
(
(0 < τ < τmiet) or (τ > τmiet and κ > δmax)

)
and η >

0}, TCd
(q) = Rnx × Rny × {0} × R× {0} × R.

(ii) For q ∈ {ξ ∈ X | τ = 0 and η > 0}, TCd
(q) = Rnx × Rny × {0} × R>0 ×

{0} × R.

1[98, Definition 5.12] The tangent cone to a set S ⊂ Rn at a point x ∈ Rn, denoted by
TS(x), is the set of all vectors q ∈ Rn for which there exist sequences {xi}i∈N and {τi}i∈N

with xi ∈ S, τi > 0 and with xi → x, τi ↓ 0 (i → ∞), and q = limi→∞
xi−x

τi
.
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(iii) For q ∈ {ξ ∈ X |
(
(0 < τ < τmiet) or (τ > τmiet and κ > δmax)

)

and η =

0}, TCd
(q) = Rnx × Rny × {0} × R× {0} × R>0.

(iv) For q ∈ {ξ ∈ X | τ = 0 and η = 0}, TCd
(q) = Rnx × Rny × {0} × R>0 ×

{0} × R>0.

Observe from (5.12) that τ̇ = 1, δ̇ = 0 and κ̇ = 0 for all q ∈ Cd. Based on
the latter facts it follows trivially that F (q, w) ∈ TCd

(q) for q ∈ Cd\Dd with
η > 0 (corresponding to item (i) and (ii) above). Moreover, for each q ∈ Cd\Dd

with η = 0 (corresponding to item (iii) and (iv)), it holds that 0 6 τ < τmiet.
Observe from (5.9) and (5.30) that for the latter situation it holds that η̇ > 0
since Ψ(o, 0) > 0 when 0 6 τ < τmiet due to the fact that ̺ is a positive definite
continuous function (as indicated in Condition 5.1). As such, F (q, w) ∈ TCd

(q)
also holds for q ∈ Cd\Dd with η = 0, which leads to the conclusion that for each
point p ∈ Cd\Dd, there exists a neighborhood U of p such that for all q ∈ U∩Cd,
F (q, w) ∈ TCd

(q). The latter implies that there exists a non-trivial solution pair
(ξ, w) toHd with ξ(0, 0) ∈ X0 meaning that dom ξ consists of at least two points,
see also [98, Proposition 6.10]. In addition, due the time regularization employed
in the jump set (5.18b) and the absence of finite-escape times due to the bounds
generated by the Lyapunov/storage function, we can conclude that the system
Hd is indeed persistently flowing, which completes the proof.

To prove the stability and performance results for system Hs (which employs
the static triggering condition given by (5.7)), let us first recall that Hs and Hd

have the same flow and jump dynamics. As a consequence, we can use the same
candidate storage/Lyapunov function and follow the same arguments as used in
the proof of the stability and performance results for system Hd. To be more
specific, for each maximal solution pair (ξ, w) of the systemHs with ξ(0, 0) ∈ X0,
the storage/Lyapunov function as given in (D.1) satisfies (D.4) and (D.5) for the
cases that w = 0 and w 6= 0, respectively, during flows, i.e., when ξ(t, j) ∈ Cs,
(t, j) ∈ dom ξ and satisfies U(ξ+)− U(ξ) = 0 at jumps, i.e., when ξ(t, j) ∈ Ds,
(t, j) ∈ dom ξ. Observe, however, to obtain the desired UGAS and Lp-stability
properties, we still need to show that Hs is persistently flowing as Cs 6= Cd and
Ds 6= Dd.

Based on (5.17), we obtain that for the system Hs, Cs\Ds = {ξ ∈ X | τ <
τmiet or (Ψ(o, 0) > 0 and κ > δmax)}. By recalling Cd\Dd and the description of
TCd

(q) as in items (i)-(iv) above, we can obtain that the tangent cone TCs
(q) =

TCd
(q) for each q ∈ Cs\Ds. Let us recall that due to (5.12), τ̇ = 1, δ̇ = 0

and κ̇ = 0 for all q ∈ Cs. Moreover, we have that for all q ∈ Cs\Ds for which
0 6 τ < τmiet, η̇ > 0 since Ψ(o, 0) > 0 when 0 6 τ < τmiet. Observe from
(5.17b) that for each q ∈ Cs\Ds for which τ > τmiet, κ > δmax and η = 0,
η̇ > 0 since then Ψ(o, 0) > 0. Hence, we can conclude that for each point
p ∈ Cs\Ds, there exists a neighborhood U of p such that for all q ∈ U ∩ Cs,
F (q, w) ∈ TCs

(q). As mentioned before, this implies that there exists a non-
trivial solution pair (ξ, w) toHs with ξ(0, 0) ∈ X0 meaning that dom ξ consists of
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at least two points. Moreover, due the time regularization employed in the jump
set (5.17b) and the absence of finite-escape times due to the bounds generated
by the Lyapunov/storage function, we can conclude the system Hs is indeed
persistently flowing, which completes the proof. Hence, indeed the closed-loop
system Hs has the same UGAS and Lp-gain properties as the closed-loop system
Hd, which completes the proof.

Proof of Theorem 5.2: Similar as in Theorem 5.1, we first only consider the
closed-loop system H̃d. After that, we show that also the closed-loop system
H̃s has the same stability and performance guarantees as H̃d. By following the
same arguments as in the proof of Theorem 5.1, we can conclude that Ũ(ξ̃) =
V (x) + γφ̃(δ, τ)W 2(e) + η constitutes a suitable candidate storage function for
the system H̃d given by (5.44) in the sense that the function Ũ is positive definite
and radially unbounded with respect to (x, e, η) in the sense that there exist K∞-

functions β
Ũ

and β̄Ũ such that β
Ũ
(|ξ̂|) 6 Ũ(ξ̃) 6 β̄Ũ (|ξ̂|), for all ξ̃ ∈ X̃ where

ξ̂ =
(
x, e, η

)
∈ Rnx ×Rny ×R>0. Moreover, we can obtain that for each maximal

solution pair (ξ̃, w) of the system H̃d with ξ̃(0, 0) ∈ X̃0, Ũ(ξ̃+) − Ũ(ξ̃) = 0 at

jumps and that in case w = 0,
〈

∇Ũ(ξ̃), F (ξ̃, w)
〉

6 −ρ(|x|)−σ(W (e))−χ(η) and,
in case disturbances are present, that

〈

∇Ũ(ξ̃), F (ξ̃, w)
〉

6 µ(θp|w|p−|q(x,w)|p)
at flows since the dynamics of x, e and η has not been changed with respect to
system Hd. However, as the triggering condition has been changed to (5.37), we
again have to show that H̃d is persistently flowing with respect to initial state
set X̃0.

First of all, observe that G̃(D̃d) ⊂ C̃d since ξ̃+ ∈ X̃ (as shown in the
proof of Theorem 5.1), η+i ∈ R>0, i ∈ ∆̃ due to (5.40) and the fact that

γφ(kτmiet)W
2(ŷk − y) > 0 for all k ∈ ∆̃.

Now, let R̃d(X̃0) denote the set of all the reachable states of hybrid system
H̃d with initial condition ξ̃(0, 0) ∈ X̃0 and some input w ∈ Lp and consider the
following lemma.

Lemma D.2. For all χ̃ ∈ R̃d

(

X̃0

)

for which τ > τmiet and η = 0 and κ > δmax,

it holds that Φη(η̄) = 0.

Proof of Lemma D.2: Consider the following hypothesis. Suppose (ξ̃, w)

is a maximal solution pair of the system H̃d with ˜ξ(0, 0) ∈ X̃0, then for each
j ∈ {κ̄, . . . , J} with J = supj dom ξ̃, it holds that η(t, j) > ηδ(t,j)+1(t, j)

for all t ∈ [tj , tj+1], where κ̄ := inf{j | δ(t, j) = 0, (t, j) ∈ dom ξ̃} such
that κ̄ 6 δmax due to Assumption 5.1.To prove the aforementioned hypothe-
sis, we use an induction argument. First, we show that the hypothesis holds
for j = κ̄. We have that η(tκ̄, κ̄) > ηδ(tκ̄,κ̄)+1(tκ̄, κ̄) since δ(tκ̄, κ̄) = 0 and

η1(tκ̄, κ̄)
(5.40b)
= mink∈∆̃ γφ(kτmiet)W

2(ŷk(tκ̄, κ̄) − y(tκ̄, κ̄))
(5.45)

6 γφ(δ(tκ̄, κ̄) +

1)τmietW
2(e)

(5.15),(5.31)

6 η(tκ̄, κ̄). Observe that η̇δ(t,j)+1 = Ψ(y, ŷδ(t,j)+1 − y, τ,
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ηδ(t,j)+1, δ(t, j)+1) = Ψ(y, e, τ, ηδ(t,j)+1, δ(t, j)+1) for all (t, j) ∈ [tκ̄, tκ̄+1]×{κ̄}
since e(t, j) = ŷδ(t,j)+1(t, j) − y(t, j) for all (t, j) ∈ dom ξ due to (5.45). Recal-
ling the facts that η̇ = Ψ(y, e, τ, η, δ) and that the function Ψ(·, ·, ·, η, ·) is locally
Lipschitz in η ∈ R>0, we can now obtain by means the Comparison Lemma (see,
e.g., [131, p. 102-103]) that η(t, j) > ηδ(t,j)+1(t, j) for all (t, j) ∈ [tκ̄, tκ̄+1]×{κ̄}.
Hence, the hypothesis holds for j = κ̄. Now suppose that the hypothesis is true
for some j > κ̄, then we know that η(tj+1, j) > ηδ(tj+1,j)+1(tj+1, j). In case the
transmission at time tj+1 is successful (if (5.16a) holds), we have that η(tj+1, j+

1) = γφW 2(e(tj+1, j + 1)) and ηδ(tj+1,j+1)+1(tj+1, j + 1) = η1(tj+1, j + 1)
(5.40b)
=

mini γφiW
2(ŷi(tj+1, j + 1) − y(tj+1, j + 1)). Since γφW 2(e(tj+1, j + 1))

(5.45)

>

mini γφiW
2(ŷi(tj+1, j + 1)− y(tj+1, j + 1)), we obtain that if the transmission

attempt is successful, η(tj+1, j + 1) > ηδ(tj+1,j+1)+1(tj+1, j + 1) holds. In case
of a packet loss (if (5.16b) holds), we have that η(tj+1, j + 1) = η(tj+1, j) and

ηδ(tj+1,j+1)+1(tj+1, j + 1) = ηδ(tj+1,j)+2(tj+1, j + 1)
(5.40a)
= ηδ(tj+1,j)+1(tj+1, j).

Hence, at a transmission attempt at time tj+1, we have that η(tj+1, j + 1) >

ηδ(tj+1,j+1)+1(tj+1, j + 1) holds. By using the same arguments based on the
Comparison Lemma used for the case j = 0, we find that η(t, j) > ηδ(t,j)+1(t, j)
for (t, j) ∈ [tj+1, tj+2] × {j + 1} and thus the hypothesis holds for j + 1. Ob-
serve however that induction argument is not complete yet as the total num-
ber of jumps in dom ξ̃ might be finite, i.e., J < ∞. As such, to complete
the proof by induction, we need to show that η(t, j) > ηδ(t,j)+1(t, j) for all
(t, j) ∈ [tJ , T ]× {J} with T > tj finite or T = ∞. Note however, that we can
use the same arguments as before to verify the previous statement, namely, by

using the fact that γφW 2(e(tJ , J))
(5.45)

> mini∈∆̃ γφiW
2(ŷi(tJ , J) − y(tJ , J)) to

show that η(tJ , J) > ηδ(tJ ,J)+1(tJ , J), and by using the Comparison Lemma to
show that η(t, j) > ηδ(t,j)+1(t, j) for all (t, j) ∈ [tJ , T ] × {J}. Hence, for each

j ∈ {κ̄, . . . , J} with J = supj dom ξ̃, it indeed holds that η(t, j) > ηδ(t,j)+1(t, j)
for all t ∈ [tj , tj+1]. Using the fact that Φη(η̄(t, j)) 6 ηδ(t,j)+1(t, j) due to (5.38),

we can now conclude that Φη(η̄(t, j)) 6 η(t, j) for all (t, j) ∈ dom ξ̃. The previ-

ous inequality implies that for all χ̃ ∈ R̃d(X̃0) for which τ > τmiet and η = 0, it
holds that Φη(η̄(t, j)) = 0, which completes the proof.

Let us define D̃∗
d :=

{

ξ̃ ∈ X̃ | τ > τmiet and
(
Φη(η̄) = 0 or η = 0 or κ 6

δmax

)}

. Observe that D̃∗
d\D̃d =

{

ξ̃ ∈ X̃ | τ > τmiet and Φη(η̄) > 0 and η =

0 and κ > δmax

}

. From Lemma D.2, it follows that (D̃∗
d\D̃d) ∩ R̃d(X̃0) = ∅.

As such, the hybrid system H̃∗
d := (C̃d, D̃

∗
d, F̃ , G̃) is equivalent to the system

H̃d for initial state set X̃0 in the sense that each solution pair (ξ̃∗, w∗) of H̃∗
d

with ξ̃∗(0, 0) ∈ X̃0 and w∗ ∈ Lp, is equal to the solution pair (ξ̃, w) of H̃d with

ξ̃(0, 0) = ξ̃∗(0, 0) and w(t, j) = w∗(t, j) for all (t, j) ∈ dom w and vice versa. The
latter fact implies that H̃d is persistently flowing with respect to initial state set
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X̃0 if and only if H̃∗
d is persistently flowing with respect to initial state set X̃0.

Let us recall that G̃(D̃d) ⊂ C̃d and observe that, due to the bounds generated
by the Lyapunov/storage function as mentioned before, finite-escape times are
absent for all solution pairs (ξ̃, w) of H̃d with ξ̃(0, 0) = ξ̃∗(0, 0) and w ∈ Lp. By
combining the previous facts, we obtain (in the spirit of [98, Proposition 6.10])
that H̃d is persistently flowing with respect to initial state set X̃0, if and only if
for each point p̃ ∈ C̃d\D̃∗

d, there exists a neighborhood U of p̃ such that for all

q̃ ∈ U ∩ C̃d, F̃ (q̃, w) ∈ TC̃d
(q̃)

By recalling the descriptions of D̃∗
d and Cd\Dd, and by means of (5.44a),

we obtain that C̃d\D̃∗
d = (Cd\Dd)× R(δmax+1)ny × R

δmax+1
>0 . Moreover, observe

from (5.18a) and (5.44a) that C̃d = Cd × R(δmax+1)ny × R
δmax+1
>0 . By means of

the latter, we find that TC̃d
(q̃) = TCd

(q)×R(δmax+1)ny × TR>0
(η1)× TR>0

(η2)×
. . .× TR>0

(ηδmax+1) for all q̃ ∈ C̃d, where

TR>0
(r) =

{

R>0, when r = 0

R, when r > 0,
(D.7)

for all r ∈ R>0. In the proof of Theorem 5.1, we already showed that for
each point p ∈ Cd\Dd there exists a neighborhood U of p such that for all
q ∈ U ∩ Cd, F (q, w) ∈ TCd

(q). As such, we only need to show that for each
p̃ ∈ C̃d\D̃d, η̇i ∈ TR>0

(ηi), i ∈ ∆̃. Observe from (D.7) that the latter holds

trivially for ηi > 0. For p̃ ∈ C̃d\D̃d with ηi = 0, we have that τ 6 τmiet and,
according to (5.30), that Ψ(oi, 0) > 0 and thus η̇i > 0. Hence, it indeed holds
that η̇i ∈ TR>0

(ηi), i ∈ ∆̃ for all p̃ ∈ C̃d\D̃d. As such, we can conclude that H̃d

is indeed UGAS for the case w = 0 and, in presence of disturbances, Lp-stable
with an Lp-gain less than or equal to θ.

The fact that H̃s (which employs the static triggering condition given by
(5.36)) is UGAS for the case w = 0 and, in presence of disturbances, is Lp-stable
follows from similar arguments as used at the end of the proof of Theorem 5.1.
This completes the proof.





Appendix E

Proofs of Chapter 6

Proof of Theorem 6.2: The main idea behind the proof is to regard the closed-
loop system HT as a system switching between a stable hybrid model (when
effectively no DoS attack is active) and an unstable mode (when effectively a
DoS attack is active). Inspired by the concept of average dwell-time [124], we
can then exploit the duration and frequency constraints of the DoS attacks to
conclude UGES (or L∞-stability a finite induced L∞-gain) of the set A for the
class of hybrid systemsH(ν, τD, ς, T ). For clarity of exposition, the proof consists
of four steps. In the proof, we often omit the time arguments of the solution ξ
of a hybrid system HT and we do not mention dom ξ explicitly.

Step I. Lyapunov/storage function analysis. Let R (X0) denote all the rea-
chable states of a hybrid system HT ∈ H(ν, τD, ς, T ) for ξ(0, 0) ∈ X0, see also
[98, Chapter 6].

Lemma E.1. For any χ ∈ R (X0) it holds that

• {m = 1 ∨ τ > τ0miet} ⇔ φ = φmiet

• λ−1 > φ > φmiet

• η > 0

Moreover, for all χ ∈ R(X0)\D there exists an ε > 0 and an absolutely conti-
nuous function z : [0, ε] → Rn such that z(0) = χ, ż(t) = F (z(t)) for almost all
t ∈ [0, ε] and z(t) ∈ C for all t ∈ (0, ε].

The proof is omitted for the sake of brevity. Consider the candidate Lyapu-
nov/storage function,

U(ξ) = V (x) + γφW 2(e) + η. (E.1)
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Given the second and third item of Lemma E.1 and the fact that according to
Condition 6.1, V and W satisfy (6.25) and (6.23), respectively, and γ > 0, we
find that there exists a positive constant cU ∈ R>0 such that

cU |ξ|2A 6 U(ξ), (E.2)

for all ξ ∈ R (X0) where A = {ξ ∈ X | x = 0, e = 0}. Hence, U constitutes a
suitable candidate Lyapunov/storage function for the cases w = 0 and w 6= 0,
respectively.

To study the stability and the performance, we will discuss how the function
U evolves over time by considering both jumps (when ξ ∈ D), and flows (when
ξ ∈ C).

Jumps: We can see from (6.14) and (6.27) that at transmission events when
communication is possible, i.e., if ξ ∈ R (X0) and ξ ∈ D and s /∈ T (and thus
η = 0), we have that U(ξ+) − U(ξ) = −γφW 2(e) + η0(e). By recalling that
η0 = γφmietW

2(e), the first item of Lemma E.1 and by using the fact that
τ > τ0miet when ξ ∈ D, we have that

U(ξ+)− U(ξ) = 0, (E.3)

when ξ ∈ R (X0) ∩ D and s /∈ T (and thus τ > τ0miet). At transmission times
during a DoS attack, i.e., when ξ ∈ D, and s ∈ T , (E.3) holds as well since
e+ = e, φ+ = φ, η+ = η = 0 and x+ = x.

Flows: For the bounds on U during flow we consider two cases depending
on whether the most recent transmission attempt was successful (m = 0) or not
(m = 1).

Case I (m = 0): From (6.24), (6.26) and (6.27), we can derive that for almost
all ξ ∈ R (X0) with m = 0 and for w ∈ R

nw ,

〈∇U(ξ), F (ξ, w)〉 6 −̺(|y|)−H2(x,w) + γ2W 2(e)

+2γφW (e) (LW (e) +H(x,w)) − ω(τ, 0)γW 2(e)
(
2Lφ+ γ

(
φ2 + 1

))

−ρWW 2(e)− ρV V (x) + Ψ̃(m, o, η) + θ2|w|2

6 −ρV V (x) − ρWW 2(e)−M(ξ, w) + Ψ̃(m, o, η) + θ2|w|2, (E.4)

with ω(τ,m) as in (6.36) and where M given by

M(ξ, w) =

{

M1(ξ, w), for 0 6 τ 6 τ0miet,

M2(ξ, w), for τ > τ0miet,
(E.5)

where for all ξ ∈ X and w ∈ Rnw

M1(ξ, w) : = ̺(|y|) + (H(x,w)− γφW (e))
2
, (E.6)

M2(ξ, w) : = ̺(|y|) +H2(x,w) − 2γφW (e)H(x,w) −
(
γ2 + 2γφL

)
W 2(e).

(E.7)
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By using the fact that 2γφW (e)H(x,w) 6 γ2φ2W 2(e) +H2(x,w), we can con-
clude from (6.35) and (E.5) that Ψ(o) 6 M(ξ, w) for all o ∈ O. Using the
latter fact, we obtain from (6.34) and (E.4) that for m = 0, 〈∇U(ξ), F (ξ, w)〉 6
−ρV V (x) − ρWW 2(e) − ω1η + θ2|w|2. By using Lemma E.1 and the fact that
V (x) 6 cV̄ |x|2 due to (6.25), we can conclude that for almost all ξ ∈ R (X0)
with m = 0 and for w ∈ Rnw , we have that

〈∇U(ξ), F (ξ, w)〉 6 −ω1U(ξ) + θ2|w|2, (E.8)

with ω1 as in (6.32).
Case II (m = 1): Observe that for m = 1, we have that φ̇ = 0 and η̇ = 0

due to (6.7), (6.27) and (6.34), respectively. Hence, it holds that for almost all
ξ ∈ R (X0) with m = 1 and for all w ∈ Rnw

〈∇U(ξ), F (ξ, w)〉 6 −̺(|y|)−H2(x,w) + γ2W 2(e)

+2γφW (e) (LW (e) +H(x,w)) − ρWW (e)− ρV V (x) + θ2|w|2.

Using the fact that 2γφW (e)H(x,w) 6 γ2φ2W 2(e)+H2(x,w), and Lemma E.1
we obtain that 〈∇U(ξ), F (ξ, w)〉 6 (γ̄ − ρW )W 2(e) + θ2|w|2 with γ̄ as in (6.33).
Hence, it holds that for almost all ξ ∈ R (X0) with m = 1 and all w ∈ Rnw

〈∇U(ξ), F (ξ, w)〉 6 ω2U(ξ) + θ2|w|2 (E.9)

with ω2 as in (6.32). In fact, observe that since ω2 > due to Condition 6.1, (E.9)
also holds when m = 0.

Observe that a system HT ∈ H(ν, τD, ς, T ) does not exhibit Zeno-behaviour
due to a strictly positive MIET. Moreover, observe that finite escape-times are
excluded from the system due to the bounds on the states x and e as in (E.2),
(E.3), (E.8), (E.9) and the fact that the trajectories of the state variables τ , s,
m, η, and φ do not exhibit finite escape-times. Given the aforementioned facts
and the last property mentioned in Lemma E.1, we can conclude that a system
HT ∈ H(ν, τD, ς, T ) with ξ(0, 0) ∈ X0 is indeed persistently flowing with respect
to initial state set X0.

Step II. Characterization of stable and unstable modes. In the previous step,
we have shown how the Lyapunov/storage function behaves for both the cases
where m = 0 and m = 1, see (E.8) (m = 0) and (E.9) (m = 1). To use average
dwell-time arguments, it is needed to determine the collection of time instants
at which either m = 0 or m = 1. Unfortunately, this can not directly be related
to T , since the value of ŷ is typically not updated immediately after a DoS
interval has ended due to τ1miet being a lower bound on the inter-event times
tj+1 − tj , j ∈ N, for which transmission time tj corresponds to an unsuccessful
transmission attempt. For this reason, we will consider the “effective” DoS
attacks, decompose the time axis accordingly and relate these “effective” DoS
attacks to T via the collection of DoS intervals as given in (6.17). To do so, we
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first define for a given maximal solution ξ, the collection of time instants in the
interval [T1, T2], with T2 > T1, at which the most recent transmission attempt
was successful and at which no DoS attack is active as

Θ̄ξ(T1, T2) :=
{
t̄ ∈ (T1, T2) |

t̄ /∈ T and ∀j ∈ N, (t̄, j) ∈ dom ξ ⇒ m(t̄, j) = 0
}
. (E.10)

The system HT is said to be in the stable mode (satisfying (E.8)) at a time
instant t if t ∈ Θ̄ξ(0,∞). In addition, we define the collection of “effective” DoS
attacks in the interval [T1, T2], with T2 > T1 as

Ξξ(T1, T2) := [T1, T2]/Θ̄ξ(T1, T2). (E.11)

Likewise, the system is said to be in the unstable mode (satisfying (E.9)) at a
time instant t if t ∈ Ξξ(0,∞). Since for T1, T2 ∈ R>0 with T2 > T1, Θ̄ξ(T1, T2)∪
Ξξ(T1, T2) = [T1, T2], we can write Θ̄ξ(T1, T2) and Ξξ(T1, T2) as follows

Ξξ(T1, T2) :=
⋃

k∈N

Zk ∩ [T1, T2], (E.12)

and
Θ̄ξ(T1, T2) :=

⋃

k∈N

Wk−1 ∩ [T1, T2], (E.13)

where for k ∈ N

Zk :=

{

[ζk, ζk + vk) when vk > 0,

{ζk} when vk = 0,

Wk :=

{

[ζk + vk, ζk+1) when vk > 0,

(ζk, ζk+1) when vk = 0,

where vk denotes the time elapsed between ζk and the next successful trans-
mission attempt, and where ζ0 := h0 where W−1 = [0, ζ0) when h0 > 0 and
W−1 = ∅ when h0 = 0. The collection of effective DoS attacks can be related to
the original collection of DoS intervals as given in (6.17) as

|Ξξ(T1, T2)| 6 |Ξ(T1, T2)|+ (1 + n(T1, T2))τ
1
miet, (E.14)

for all T1, T2 ∈ R>0 with T2 > T1, where n(T1, T2) denotes the number of DoS
attacks in the interval [T1, T2). Indeed, due to the finite sampling rate, the
effective DoS interval H̄n is extended with maximally τ1miet time units compared
to Hn, n ∈ N. Since this extension might also occur at the beginning of an
interval [T1, T2), the collection of effective DoS attacks over the interval [T1, T2)
is at most prolonged with (1+n(T1, T2))τ

1
miet time units. Observe that the latter

is not the case if T1 ∈
[(⋃

k∈N
Wk−1

)
∪ {0}

]
∩ [0, t], i.e.,

|Ξξ(T1, T2)| 6 |Ξ(T1, T2)|+ n(T1, T2)τ
1
miet, (E.15)
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for all T1 ∈
[(⋃

k∈N
Wk−1

)
∪ {0}

]
∩ [0, t] and all T2 ∈ R>T1 . By means of

Definition 6.1 and Definition 6.2 for the specific values of τD and T , we find that
according to (E.15)

|Ξξ(T1, T2)| 6 ς∗ +
T2 − T1
T∗

, (E.16)

where ς∗ := ς+ντ1miet and T∗ := τDT/(τD+τ1mietT ) for all T1 ∈
[ (⋃

k∈N
Wk−1

)
∪

{0}
]

∩ [0, t] and all T2 ∈ R>T1 .

In summary, in this second step of the proof, we defined effective DoS sequen-
ces, which led to the intervals Zk and Wk, k ∈ N, representing the stable and
(possibly) unstable mode of the system, respectively. Furthermore, we showed
how this effective DoS is related to the original DoS sequence. This relation will
be important in the stability and performance analysis.

Step III. Time-trajectory bounds on Lyapunov/storage function. As already
mentioned, the collection of time instants at which either m = 0 or m = 1 can
not directly be related to T . However, we can deduce the following implications
regarding a trajectory ξ with ξ(0, 0) ∈ X0 and the stable and unstable mode
descriptions

(t, j) ∈(Wk × N) ∩ dom ξ ⇒ m(t, j) = 0,

(t, j) ∈(Zk × N) ∩ dom ξ ⇒ (m(t, j) = 0 or m(t, j) = 1).

Based on these implications, (E.3), (E.8) and (E.9), we have that for all (t, j) ∈
(Wk × N) ∩ dom ξ, k ∈ N ∪ {−1}

U(ξ(t, j)) 6 e−ω1(t−ζk−vk)U(ξ(ζk+vk, j))+θ
2

t∫

(ζk+vk)

e−ω1(t−s)|w(s)|2ds (E.17)

and for all (t, j) ∈ (Zk × N) ∩ dom ξ, k ∈ N

U(ξ(t, j)) 6 eω2(t−ζm)U(ξ(ζk, j)) + θ2
t∫

ζk

eω2(t−s)|w(s)|2ds. (E.18)

In essence, the right-hand sides of (E.17) and (E.18) reflect bounds on the Lya-
punov/storage function U over (hybrid) time for the stable and unstable modes,
respectively. In order to asses the performance of a system HT ∈ H(ν, τD, ς, T ),
we require an upper-bound that holds for all (t, j) ∈ dom ξ. For this reason,
consider the following statement.

Lemma E.2. For all (t, j) ∈ dom ξ, it holds that

U(ξ(t, j)) 6 Υ(0, t)U(ξ(0, 0)) + θ2
∫ t

0

Υ(s, t)|w(s)|2ds (E.19)
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with Υ(s, t) := e−ω1|Θ̄ξ(s,t)|eω2|Ξξ(s,t)|.

Proof of Lemma E.2: We will prove Lemma E.2 by induction. First, we
need to prove that (E.19) holds for all (t, j) ∈ [0, ζ0) × N ∩ dom ξ. To do so,
observe that for all (t, j) ∈ W−1 × N ∩ dom ξ it holds that |Θ̄ξ(0, t)| = t and
|Ξξ(0, t)| = 0. By substituting the latter in (E.19), we can conclude that for all
(t, j) ∈ W−1 × N ∩ dom ξ, the inequality given in (E.19) coincides with (E.17).
As such, (E.19) holds for all (t, j) ∈ W−1 × N ∩ dom ξ and thus for all (t, j) ∈
[0, ζ0)×N∩ dom ξ. Now assume (E.19) holds for all (t, j) ∈ [0, ζp)×N∩ dom ξ,
where p ∈ N. By means of this hypothesis and the inequality in (E.18), we find
that for all (t, j) ∈ (Zp × N) ∩ dom ξ,

U(ξ(t, j)) 6 eω2(t−ζp)Υ(0, ζp)U(ξ(0, 0))

+ θ2eω2(t−ζp)

∫ ζp

0

Υ(s, ζp)|w(s)|2ds+ θ2
t∫

ζp

eω2(t−s)|w(s)|2ds. (E.20)

Since for all t ∈ Zp and all s ∈ [0, t], |Θ̄ξ(s, ζp)| = |Θ̄ξ(s, t)| and t − ζp +
|Ξξ(s, ζp)| = |Ξξ(s, t)|, we have that eω2(t−ζp)Υ(s, ζp) = Υ(s, t) for all t ∈ Zp

and all s ∈ [0, t]. Substitution of the latter in (E.20) yields that for all (t, j) ∈
(Zp × N) ∩ dom ξ,

U(ξ(t, j)) 6 Υ(0, t)U(ξ(0, 0)) + θ2
∫ ζp

0

Υ(s, t)|w(s)|2ds

+ θ2
t∫

ζp

eω2(t−s)|w(s)|2ds. (E.21)

Note that for all t ∈ Zp and s ∈ [ζp, t], t− s = |Ξξ(s, t)| and in accordance with
(E.13), |Θ̄ξ(s, t)| = 0 and thus eω2(t−s) = Υ(s, t) for all t ∈ Zp and s ∈ [ζp, t].
By combining the latter with (E.21), we can see that (E.19) holds for all (t, j) ∈
([0, ζp + vp)× N) ∩ dom ξ, p ∈ N.

Now we consider the interval Wp. Using (E.17), we have that for all (t, j) ∈
(Wp × N) ∩ dom ξ,

U(ξ(t, j)) 6 e−ω1(t−ζp−vp)Υ(0, ζp + vp)U(ξ(0, 0))

+ θ2e−ω1(t−ζp−vp)

∫ ζp+vp

0

Υ(s, ζp+ vp)|w(s)|2ds+ θ2
t∫

ζp+vp

e−ω1(t−s)|w(s)|2ds.

(E.22)
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Since t− ζp − vp + |Θ̄ξ(s, ζp + vp)| = |Θ̄ξ(s, t)| and |Ξξ(s, ζp + vp)| = |Ξξ(s, t)| for
all t ∈Wp and all s ∈ [0, t], we obtain

e−ω1(t−ζp)Υ(s, ζp) = Υ(s, t) (E.23)

for all t ∈ Wp and all s ∈ [0, t]. Substitution of (E.23) in (E.22) yields that for
all (t, j) ∈ (Wp × N) ∩ dom ξ,

U(ξ(t, j)) 6 Υ(0, t)U(ξ(0, 0)) + θp
∫ ζp

0

Υ(s, t)|w(s)|2ds

+ θp
t∫

ζp

e−ω1(t−s)|w(s)|2ds. (E.24)

Combining (E.23) with the fact that for all t ∈ Wp and s ∈ [ζp + vp, t], t −
s = |Θ̄ξ(s, t)| and in accordance with (E.12), |Ξξ(s, t)| = 0, we can see that
e−ω1(t−s) = Υ(s, t) for all t ∈ Wp and s ∈ [ζp + vp, t]. By means of the latter,
we can conclude that (E.19) coincides with (E.24) and thus (E.19) holds for all
(t, j) ∈ ([0, ζp+1)× N) ∩ dom ξ, which concludes the proof of Lemma E.2.

Step IV. Stability and performance analysis. In the last step of the proof,
we show that under (ν, τD, ς, T )-DoS sequences with τD and T satisfying (6.31),
the system HT is UGES, and has a finite induced L∞-gain. By means of (E.16)
and the fact that |Θ̄ξ(T1, T2)| = T2 − T1 − |Ξξ(T1, T2)|, we obtain that

Υ(T1, T2) 6 κe−β∗(T2−T1), (E.25)

for all T2 ∈ R>0 and all T1 ∈
[(⋃

k∈N
Wk−1

)
∪ {0}

]
∩[0, T2], where κ := eς∗(ω1+ω2)

and where β∗ := ω1 − (ω1 + ω2)/T∗. Important to note is that condition (6.31)
assures that β∗ > 0.

The inequality given in (E.25) does not only hold for T1 ∈
[(⋃

k∈N
Wk−1

)
∪ {0}

]
∩

[0, T2]. In fact, the inequality holds for all T1, T2 ∈ R>0 with T1 6 T2 due to the
following. Let 0 6 T1 6 T2 be arbitrary and consider

T ∗
1 = sup

{

T̃ 6 T1 | T̃ ∈
(
⋃

k∈N

Wk

)

∪ {0}
}

.

Since |Θ(T ∗
1 , T1)| = 0, we can write Υ(T ∗

1 , T2) = Υ(T1, T2)e
ω2(T1−T∗

1 ) for all
T1, T2 ∈ R>0 with T1 6 T2. Hence, we have that Υ(T1, T2) 6 Υ(T ∗

1 , T2). Due

to (E.25) and the facts that β∗ > 0 and T ∗
1 ∈

[(⋃

k∈N
Wk

)
∪ {0}

]
∩ [0, T2], we

have that Υ(T ∗
1 , T2) 6 κe−β∗(T2−T∗

1 ) 6 κe−β∗(T2−T1). for all T1, T2 ∈ R>0 with
T1 6 T2. Hence, (E.25) holds for all T1, T2 ∈ R>0 with T1 6 T2.

1) Stability analysis for the case w = 0. By combining (E.25) and (E.19) for
the case w = 0, we find that for all (t, j) ∈ dom ξ

U(ξ(t, j)) 6 κe−β∗tU(ξ(0, 0)).
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Using (6.23), (6.25), (E.2) and the fact that η(0, 0) = 0, we obtain

|ξ(t, j)|A 6

√

κmax (c̄V , c̃W )

cU
e−(β∗/2)t|ξ(0, 0)|A,

where c̃W := γφmietc̄
2
W . Given the fact that due to (6.31) β∗ > 0, we can

conclude that HT is UGES under (ν, τD, ς, T )-DoS sequences.
2) Performance analysis for the case w 6= 0 in terms of induced L∞-gain.

Substitution of (E.25) in (E.19) yields

U(ξ(t, j)) 6κU(ξ(0, 0)) + κθ2
∫ t

0

e−β∗(t−s)ds‖w‖2L∞
.

The facts that U(ξ(t, j)) > V (x(t, j)) > cz|z(t, j)|2 and U(ξ(0, 0)) 6
max (c̄V , c̃W ) |ξ(0, 0)|2A, we now obtain that for all (t, j) ∈ dom ξ

‖z‖L∞
6

√
κ

cz
max (c̄V , c̃W )|ξ(0, 0)|A + θ

√
κ

czβ∗ ‖w‖L∞
.

Hence, (6.22) is satisfied with β(r) =
√

κ
cz

max (c̄V , c̃W )r and ϑ = θ
√

κ
czβ∗ for

p = ∞ which completes the proof.



Appendix F

Proofs of Chapter 7

Proof of Theorem 1 To verify the passivity properties of the MAS with respect
to the supply rate s̃(ξ, w), we aim to construct a storage function that satisfies
(7.26).

For clarity of exposition, the construction of the storage function is composed
of five steps. At first, we present a candidate storage function. In the second,
third and fourth step, we study the individual terms of this candidate storage
function. At last, we show that the overall candidate storage function indeed
satisfies (7.26).

Step I. Candidate storage function. Consider the candidate storage function

U(ξ) = V (x) +
∑

i∈V
ηi +

∑

i∈V
γ̃i(l̃i(li))φ̃l̃i(li),i(τi)W̃

2
i (κi, li, yi, ēi, ri) (F.1)

with li := (l1i , l
2
i , . . . l

N
i ) and the function l̃i : {0, 1}N → {0, 1} as in (7.39), and

where the function V : Rnx → R>0 satisfies (7.37), the function φ̃ℓ,i : R>0 →
R>0, ℓ ∈ {0, 1}, is given by

φ̃ℓ,i(τi) :=

{

φℓ,i(τ) when τi 6 τ imiet

φℓ,i(τ
i
miet) when τi > τ imiet

(F.2)

with the function φℓ,i as in (7.42), and the function W̃i : N× {0, 1}N × RNny ×
RNny × Rny → R>0 is given by

W̃i (κi, li, yi, ēi, ri) := max

{

Wi (κi, ēi + s̄i(li, yi, ēi, ri)) ,



244 Appendix F. Proofs of Chapter 7

ζi max
S⊂Si(li)

{

Wi

(

κi, ēi +
∑

l∈S
Yls̄i(li, yi, ēi, ri)

)}}

, (F.3)

where Yl := (Γl ⊗ Iny
), Si(li) := {j ∈ Vout

i | lji = 1}, which is the set of agents
that are about to receive a transmitted measurement by agent Ai, ζi is as below
(7.44), and where

s̄i(li, yi, ēi, ri) =
∑

l∈Si(li)

Yl(−1N ⊗ yi − ēi + 1N ⊗ ri) (F.4)

with the variables γ̃ℓ,i ∈ R>0, ℓ ∈ {0, 1}, as in (7.44).
Before analyzing the jump and the flow behavior of U , we first present several

properties of W̃i.

Step II. Properties of W̃i. Consider the following lemma.

Lemma F.1. Consider the function W̃i as in (F.3) with Wi satisfying Condition
7.1 and 7.2. For each i ∈ V, j ∈ Vout

i and for all κi ∈ N, ēi ∈ RNny , ri ∈ Rny

and 0 < λi < 1, the function W̃i satisfies

W̃i(κi, li − Γj1N , yi, ēi + Yj s̄i(li, yi, ēi, ri), ri) 6 W̃i(κi, li, yi, ēi, ri), (F.5)

W̃i(κi + 1, Zi(κi, ēi)1N , yi, ēi, κi, ēi, yi) 6 λiW̃i(κi,0N , yi, ēi, ri), (F.6)

W̃i(κi,0N , yi, ēi + Yj s̄i(Γj1N , yi, ēi, ri), ri) 6 W̃i(κi,Γj1N , yi, ēi, ri), (F.7)

where Yj := (Γj ⊗ Iny
) and Ȳj := (INny

− Γj ⊗ Iny
).

Proof of Lemma F.1: Observe that (F.5) with W̃ as in (F.3), is equivalent
to

max

{

Wi(κi, ēi + Yj s̄i(li, yi, ēi, ri) + s̄i(li − Γj1N , yi, ēi, ri)),

ζi

[

max
S⊂Si(li−Γj1N )

{

Wi

(

κi, ēi + Yj s̄i(li, yi, ēi, ri)

+
∑

l∈S
Yls̄i(li − Γj1N , yi, ēi + Yj(s̄i(li, yi, ēi, ri)), ri)

)}]
}

6 max
{
Wi(κi, ēi + s̄i(li, yi, ēi, ri)),

ζi max
S⊂Si(li)

{Wi(κi, ēi +
∑

l∈S
Yls̄i(li, yi, ēi, ri))}

}
(F.8)

for each i ∈ V , j ∈ Vout
i . By means of (F.4), we find that

Wi(κi, ēi + Yj s̄i(li, yi, ēi, ri) + s̄i(li − Γj1N , yi, ēi, ri))
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=Wi(κi, ēi + s̄i(li, yi, ēi, ri)) (F.9)

Moreover, given the fact that YlYj = 0 for l 6= j, we have that

max
S⊂Si(li−Γj1N )

{

Wi

(

κi, ēi + Yj s̄i(li, yi, ēi, ri)

+
∑

l∈S
Yls̄i(li − Γj1N , yi, ēi + Yj s̄i(li, yi, ēi, ri), ri)

)}

= max
S⊂Si(li−Γj1N )

{

Wi

(

κi, ēi +
∑

l∈S∪{j}
Yls̄i(li, yi, ēi, ri)

)}

6 max
S⊂Si(li)

{

Wi

(

κi, ēi +
∑

l∈S
Yls̄i(li, yi, ēi, ri)

)}

(F.10)

By combining (F.8) with (F.9) and (F.10), we can conclude that (F.5) indeed
holds.

The condition given in (F.6) is equivalent to

max

{

Wi

(

κi + 1, ēi + s̄i(Zi(κi, ēi)1N , yi, ēi, yi)
)

,

ζi max
S⊂Si(Zi(κi,ēi)1N )

{

Wi(κi + 1, ēi +
∑

l∈S
Yls̄i(Zi(κi, ēi)1N , yi, ēi, yi)

)}
}

6 λi max{Wi(κi, ēi)} (F.11)

for each i ∈ V . By using the fact that, according to (F.4),

s̄i(Zi(κi, ēi)1N , yi, ēi, yi) = −Zi(κi, ēi)ēi,

we find that (F.11) is equivalent to

max

{

Wi

(

κi + 1, hi(κi, ēi)
)

, ζi max
S⊂Si(Zi(κi,ēi)1N )

{

Wi(κi + 1, ēi −
∑

l∈S
Ylēi

}
}

6 λiWi(κi, ēi). (F.12)

By combining the fact that

ζi max
S⊂Si(Zi(κi,ēi)1N )

{

Wi(κi + 1, ēi −
∑

l∈S
Ylēi

)}

(7.30a),(7.33)

6
λi
αW,i

max
S⊂Si(Zi(κi,ēi)1N )

|ēi −
∑

l∈S
Ylēi| 6 λiWi(κi, ēi) (F.13)
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with (7.30b), we can conclude that (F.12) holds and therefore also (F.6).
The inequality given in (F.7) is equivalent to

Wi(κi, ēi + Yj s̄i(Γj1N , yi, ēi, ri)) 6 max

{

Wi (κi, yi, ēi + s̄i(Γj1N , yi, ēi, ri)) ,

ζi max
S⊂Si(Γj1N )

{

Wi

(

κi, ēi +
∑

l∈S
Yls̄i(li, yi, ēi, ri)

)}}

(F.14)

for each j ∈ Vout
i and each i ∈ V . Observe from (F.4) that Yj s̄i(Γj1N , yi, ēi, ri) =

s̄i(Γj1N , yi, ēi, ri). Hence, we can see from (F.14) that (F.7) indeed holds, which
completes the proof of Lemma F.1.

Consider the following lemma.

Lemma F.2. Consider the function W̃i as in (F.3) with Wi satisfying Condition
7.1 and 7.2 and the function Hi as in (7.38). Then for all κi ∈ N, li ∈ {0, 1}N ,
ri ∈ Rny , x ∈ Rnx , ei ∈ RNny , w ∈ Rnw and almost all ēi ∈ RNny , it holds that

〈

∂W̃i (κi, li, yi, ēi, ri)

∂(ēi, yi)
, (ḡi(x, e, w), f̄y,i(x, e

i, w))

〉

6
√

NiHi(x, e
i, w, li) + L̃i(l̃i(li))W̃i (κi, li, yi, ēi, ri) , (F.15)

where ḡi(x, e, w) := (δi(1)g
1
i (x, e, w), δi(2)g

2
i (x, e, w), . . . , δi(N)gNi (x, e, w)) and

where f̄y,i(x, e, w) := (δi(1)f
1
y,i(x, e

i, w), δi(2)f
2
y,i(x, e

i, w), . . . , δi(N)fN
y,i(x, e

i, w))

with δi(j), g
j
i (x, e, w) and f j

i (x, e
i, w), i ∈ V, j ∈ Vout

i as in (7.5), (7.19) and
(7.20), respectively.

Proof of Lemma F.2: To prove Lemma F.2, we need to consider two cases
that are based on (F.15).

Case 1: W̃i (κi, li, yi, ēi, ri) = Wi (κi, ēi + s̄i(li, yi, ēi, ri)). For this case, we
have that

〈

∂W̃i (κi, li, yi, ēi, ri)

∂(ēi, yi)
,
(
ḡi, f̄y,i)

)

〉

=

〈
∂Wi (κi, ēi + s̄i(li, yi, ēi, ri))

∂(ēi, yi)
,
(
ḡi, f̄y,i

)
〉

(7.34)−(7.36)

6

√

(Ni − |Si(li)|)c2i ḡ2i (x, e, w) + |Si(li)|c2i f̄2
y,i(x, e

i, w)

(7.35),(7.36)

6
√

Ni max{He,i(x, e
i, w), l̃i(li)Hy,i(x, e

i, w)}+max{L1,i,
√

NiL2,i}|ēi|
(7.38),(7.44)

6
√

NiHi(x, e
i, w, li) + L̃i(l̃i(li))Wi(κi, ēi)
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(F.3)

6
√

NiHi(x, e
i, w, li) + L̃i(l̃i(li))W̃i (κi, li, yi, ēi, ri) . (F.16)

Case 2: W̃i (κi, li, yi, ēi, ri) = ζimaxS⊂Si(li)

{
Wi

(
κi, ēi +

∑

l∈S Yls̄i(li, yi, ēi, ri)
)}

(and thus l̃i(li) = 1). For this case, we have that

〈

∂W̃i (κi, li, yi, ēi, ri)

∂(ēi, yi)
,
(
ḡi, f̄y,i)

)

〉

= ζi

〈

∂Wi

(
κi, ēi +

∑

l∈S∗ Yls̄i(li, yi, ēi, ri)
)

∂(ēi, yi)
,
(
ḡi, f̄y,i

)

〉

(7.34)

6 ζi

√

(Ni − |S∗|)c2i ḡ2i (x, e, w) + |S∗|c2i f̄2
y,i(x, e

i, w)

(7.35),(7.36)

6 ζi
√

Nimax{He,i(x, e
i, w), Hy,i(x, e

i, w)}+ ζi max{L1,i,
√

NiL2,i}|ēi|
(7.38),(7.44)

6
√

NiHi(x, e
i, w, li) + L̃i(1)Wi(κi, ēi)

(F.3)

6
√

NiHi(x, e
i, w, li) + L̃i(1)W̃i (κi, li, yi, ēi, ri) , (F.17)

where

S∗ := arg max
S⊂Si(li)

{

Wi

(

κi, ēi +
∑

l∈S
Yls̄i(li, yi, ēi, ri)

)}

. (F.18)

Based on (F.16) and (F.17), we can conclude that (F.15) is true, which
completes the proof of Lemma F.2.

Step III. Properties of V . Consider the following lemma.

Lemma F.3. Consider the system H(C, F,D, G) with data C, F , D and G as
described in (7.17)-(7.25), the function V satisfying (7.37) and the function Hi

as in (7.38). Then for all e ∈ RN2ny , r ∈ RNny , w ∈ Rnw , κ ∈ NN , l ∈ {0, 1}N2

and all x ∈ Rnx , it holds that

〈∇V (x), f(x, e, w)〉 6 −s(x, e, w) +
N∑

i=1

(

− ̺i(yi, ŷ
i)

−NiH
2
i (x, e

i, w, li) + γ̃2i (l̃i(li)W̃i (κi, li, yi, ēi, ri)
)

. (F.19)

Proof of Lemma F.3: To prove Lemma F.3, we need to show that

γ̃2i (l̃i(li))W̃
2
i (κi, li, yi, ēi, ri) > γ2

l̃i(li),i
W 2(κi, ēi).

Recalling (7.44), we obtain for l̃i(li) = 0 (and thus li = 0N ) that
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γ̃2i (0)W̃
2
i (κi,0N , yi, ēi, ri) = γ0,iW̃

2
i (κi,0N , yi, ēi, ri)

(F.3)

> γ2
l̃i(li),i

W 2(κi, ēi)

(F.20)

and for l̃i(li) = 1, li ∈ {0, 1}N that

γ̃2i (1)W̃
2
i (κi, li, yi, ēi, ri) = γ21,iζ

−2
i W̃ 2

i (κi, li, yi, ēi, ri)
(F.3)

> γ2
l̃i(li),i

W 2(κi, ēi)

(F.21)

for all ēi ∈ RNny, ri ∈ Rny and all κi ∈ N.

Step IV. Properties of η
As described in (7.9), the dynamics of η are governed by the functions Ψi

and η0i which are given in (7.45) and (7.46), respectively. These functions are
specified such that the following lemma holds.

Lemma F.4. For all y, ŷi, ¯̃yi ∈ RNny , e ∈ RN2ny , κi ∈ N, li ∈ {0, 1}, x ∈ Rnx

and all τi ∈ R>0, i ∈ V, it holds that

Ψi(yi, ŷ
i, ¯̃yi, ēi, τi, ηi) 6 ̺i(yi, ŷ

i)

− (1− ωi(τi))γl̃i(li),iW̃
2
i (κi, li, yi, ēi, ri)

(

2L̃i(l̃i(li))φ̃l̃i,i(τi)

+ (γl̃i(li),i(φ̃
2
l̃i(li),i

(τi) + 1))
)

. (F.22)

Moreover, for all y, ŷi, ¯̃yi ∈ RNny , e ∈ RN2ny , κi ∈ N, x ∈ Rnx and τi > τ imiet,
i ∈ V, it holds that

η0i (yi, ŷ
i, ¯̃yi, ēi, τi, ηi) 6 γ0,iφ̃0,i(τi)W̃

2
i (κi,0N , yi, ēi, ri)

− γ̃i(1)φ̃1,i(0)W̃
2
i (κi + 1, Zi(κi, ēi)1N , yi, ēi, gy,i(x)). (F.23)

Proof of Lemma F.4: By combining the fact that maxτ∈[0,τ i
mad

] |ỹji (t− τ, j)−

yi(t, j)|2 > |ēi|2
(7.30a),(F.3)

> α−1
W,iW̃

2
i (κi, li, yi, ēi, ri) with (7.45), we obtain that

Ψi(yi, ŷ
i, ēi, τi, ηi) 6 ̺i(yi, ŷ

i)− (1− ωi(τi))α
−1
W,iγ̄iW̃

2
i (κi, li, yi, ēi, ri). (F.24)

Due to Assumption 7.1, we have that li = 0N when τi > τ imiet. By combining
that latter fact with (7.47), (7.48) and (F.2), we obtain that for all τi ∈ R>0

(1− ωi(τi))γ̄ = (1 − ωi(τi))αW,iγ̃i(l̃i(li))
(

2L̃i(l̃i(li))φ̃l̃i(li),i(τi)+

γ̃i(l̃i(li))(1 + φ̃2
l̃i(li),i

(τi))
)

. (F.25)
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Consequently, (F.22) follows from (F.24) and (F.25). By combining the fact that

minτ∈[0,τ i
mad

] |ỹji (t − τ, j) − yi(t, j)|2 6 |ēi|2
(7.30a),(F.3)

6 α−1W̃ 2
i (κi,0N , yi, ēi, ri)

with (7.46) and (F.2), we obtain that

η0i (oi) 6

(

γ̃i(0)φ̃0,i(τ
i
miet)− γ̃i(1)φ̃1,i(0)λ

2
i

)

W̃ 2
i (κi,0N , yi, ēi, ri). (F.26)

By means of (F.6), we can conclude that (F.23) indeed holds, which completes
the proof of Lemma F.4.

Step V. Validate conditions storage function
In this step, we verify that the function U as given in (F.1) is indeed a valid

storage function for the supply rate s(x, e, w) as described in Definition 7.3.
Flow Dynamics of U(ξ): By combining (7.9), (7.42), Lemma F.2 and Lemma

F.3, we obtain that for almost all (ξ, w) ∈ X× Rnw

〈∇U(ξ), F (ξ, w)〉 6 s(x, e, w) +

N∑

i=1

[

− ̺i −NiH
2
i + γ2

l̃i(li),i
W̃ 2

i

+ 2
√

Niγl̃i(li),iφ̃l̃i(li),iW̃i(Hi + L̃i(l̃i(li))W̃i)

− ω(τi)γl̃i(li),iW̃
2
i

(

2L̃i(l̃i(li))φ̃l̃i,i + (γl̃i(li),iφ̃
2
l̃i(li),i

+ 1)
)

+Ψi − σi(ηi)
]

,

(F.27)

where we omitted the arguments of W̃i(κi, li, yi, ēi, ri), ̺i(yi, ŷ
i), Ψ(oi) with oi =

(yi, ŷ
i, ¯̃yi, ēi, τi, ηi). By using the fact that 2γl̃i,iφ̃l̃i,iW̃iHi 6 γ2

l̃i,i
φ̃2
l̃i,i
W̃ 2

i + H2
i

and by substituting (7.45), we obtain

〈∇U(ξ), F (ξ, w)〉 6 s̃(ξ, w). (F.28)

Hence, U satisfies (7.26a).
Jump Dynamics of U(ξ): For the jump dynamics, we need to consider the

following three cases.

• Case 1: ξ ∈ Di,j ∧
∑

j∈Vout
i

lji = 0 for some i ∈ V and j ∈ Vout
i

U(ξ+)− U(ξ) = γ̃i(1)φ̃1,i(0)W̃
2
i (κi + 1, Zi(κi, ēi)1N , yi, ēi, yi)

− γ0,iφ̃0,i(τi)W̃
2
i (κi,0N , yi, ēi, ri) + η0i (oi). (F.29)

By combining (7.40), (7.46) and (F.5), we obtain that U(ξ+) − U(ξ) 6 0
for all ξ ∈ ⋃j∈V Di,j with

∑

j∈Vout
i

lji = 0, for some i ∈ V .

• Case 2: ξ ∈ Di,j ∧
∑

j∈Vout
i

lji > 1 for some i ∈ V and j ∈ Vout
i



250 Appendix F. Proofs of Chapter 7

U(ξ+)−U(ξ) = γ1,iφ̃1,i(τi)W̃
2
i (κi, li−Γj1N , yi, ēi+Yj s̄i(li, yi, ēi, ri), ri)

− γ1,iφ̃1,i(τi)W̃
2
i (κi,0N , yi, ēi, ri). (F.30)

Based on (F.5), we can conclude that U(ξ+) − U(ξ) 6 0 for all ξ ∈
⋃

j∈V Di,j with
∑

j∈Vout
i

lji > 1, for some i ∈ V .

• Case 3: ξ ∈ Di,j and
∑

j∈Vout
i

lji = 1 for some i ∈ V and j ∈ Vout
i

U(ξ+)− U(ξ) = γ0,iφ̃0,i(0)W̃
2
i (κi,0N , yi, ēi + Yj s̄i(Γj1N , yi, ēi, ri), ri)

− γ1,iφ̃1,i(τi)W̃
2
i (κi,Γj1N , yi, ēi, ri). (F.31)

Observe that according to (7.22), when ξ ∈ Di,j and
∑

j∈Vout
i

lji = 1, lji = 1,

li = Γj1N . Recalling (7.41) and (F.7), we obtain that U(ξ+) − U(ξ) 6 0

for all ξ ∈ ⋃j∈V Di,j with
∑

j∈Vout
i

lji = 1, i ∈ V .

Based on these three cases, we can conclude that U satisfies (7.26b).
Persistently flowing property:
To verify the persistently flowing property, we first follow similar conditions

as provided in [98, Proposition 6.10] to show that each maximal solution is
complete. First of all, observe from (7.22) that G(D) ⊂ C ∪ D since for all
ξ ∈ G(D), it holds that τ+i > 0, η+i > 0 since η0i (oi) > 0 for all oi ∈ Oi. Next,
we show that for any ϕ ∈ C\D there exists a neighborhood S of ξ such that, it
holds for every ϕ ∈ S ∩ C that F (ϕ,w) ∩ TC(ϕ) 6= ∅, where TC(ϕ) is the tangent
cone1 to C at ϕ. Observe that for each ξ ∈ C for which lji = 0 for all i, j ∈ V (recall

that ξ = (x, e, τ, κ, r, ỹ, l, η)), TC(ξ) = Rnx×RN2ny×(TR
>0
(τ1)× . . .×TR

>0
(τN ))×

{0}N×{0}N×RN2ny ×{0}N2×(TR
>0
(η1)× . . .×TR

>0
(ηN )). Observe also from

(7.21) and (7.25) that C/D =
⋂

i,j∈V{ξ ∈ X : lji = 0 and (τi < τ imiet or ηi > 0)}.
Given the facts that, according to (7.12a) and (7.17), for all i ∈ V , τ̇i = 1 and
that η̇i > 0 when τi < τ imiet and ηi = 0 due to (7.45), it indeed follows that for
any ξ ∈ C\D there exists a neighborhood S of ξ such that, it holds for every
ϕ ∈ S ∩ C that F (ϕ,w) ∩ TC(ϕ) 6= ∅.

Secondly, we show that the system H does not exhibit finite-escape times
when s̃(ξ, w) 6 cV V (x) + cW

∑

i∈V |ēi|2 + σw(|w|). Observe from (7.26a) and
(7.26b) that in this case, we have that

1. for almost all ξ ∈ C,

〈∇U, F (ξ, w)〉 6 cV V (x) + cW
∑

i∈V
|ēi|2 + σw(|w|) (F.32)

1The tangent cone to a set S ⊂ Rn at a point x ∈ Rn, denoted TS(x), is the set of all
vectors ω ∈ Rn for which there exist xi ∈ S, τi > 0 with xi → x, τ → 0 as i → ∞ such that
ω = limi→∞(xi − x)/τi (see Definition 5.12 in [99]).
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2. for all ξ ∈ D,
U(G(ξ)) − U(ξ) 6 0. (F.33)

Based on (7.30a), (F.1) and (F.32), we can conclude that the storage storage
function grows at most exponentially when w(t, j) = 0 for all (t, j) ∈ dom ξ.
Given the fact that the function V as in Condition 7.3 and the function W as in
Condition 7.1 and Condition 7.2 are proper, we can conclude from F.1 that the
system H does not exhibit finite-escape times. Due to the latter fact, the fact
that each maximal solution of H is complete and due to the time-regularization,
the system H(C, F,D, G) with data F , G, C and D as described in (7.17)-(7.25),
is indeed persistently flowing when s̃(ξ, w) 6 cV V (x)+ cW

∑

i∈V |ēi|2 + σw(|w|),
which completes the proof of Theorem 7.1.





Appendix G

Proofs of Chapter 8

Proof of Theorem 8.1: To analyze the L2-gain property of the hybrid system
Hi, i ∈ N̄ \ {1}, we aim to find a positive semidefinite storage function Si that
satisfies

Ṡi 6 (1 + ǫ)|χi−1|2 − |χi|2, (G.1)

when ξi ∈ Ci and
Si(ξ

+
i )− Si(ξi) 6 0, (G.2)

when ξi ∈ Di, i ∈ N̄ \ {1}. We consider the following candidate storage function
for the hybrid system Hi

Ui(ξi) = Vi(x̃i) + ηi−1 + γli−1 φ̃li−1 (τi−1)W
2
i (eui−1 , si−1, li−1), (G.3)

where
Vi(x̃i) = x̃⊤i P x̃i (G.4)

with P as in (8.35) and where φ̃li−1 is given by

φ̃li−1(τ) :=

{

φli−1(τ) when τ 6 τmiet

φ0(τmiet) when τ > τmiet

(G.5)

for li−1 ∈ {0, 1} and τ ∈ R>0 with φli−1 satisfying (8.38). The function Wi is
defined as

Wi(eui−1 , si−1, li−1) :=max{λli−1 |eui−1 |, |eui−1+si−1|}, (G.6)

Observe that the functions Vi, Wi are semi-positive definite. Moreover, observe
that φ̃li−1(τ) > 0, li−1 ∈ {0, 1}, for all τ ∈ R>0 due to (8.36)-(8.38). Since,
per definition of Xi, ηi(t, j) > 0 for all (t, j) ∈ dom ξi, the candidate storage
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function Ui is positive semidefinite. Hence, indeed, the function Ui constitutes
a valid candidate storage function.

Before we evaluate the behavior of Ui, we first consider the flow dynamics of
the functions φ̃li−1 , li−1 ∈ {0, 1}, Wi, Vi and ηi.

Consider the following lemma.

Lemma G.1. For each solution ξi to Hi, i ∈ N̄ \ {1}, with ξi(0, 0) ∈ X0,i and
χi−1 ∈ L2, τi−1(t, j) > τmiet, for some (t, j) ∈ dom ξi implies that li−1(t, j) = 0.

Proof of Lemma G.1: Per definition of X0,i, i ∈ N̄ \ {1}, we have that
li−1(0, 0) = 0. Hence, τi−1(0, 0) = τmiet implies that li−1(0, 0) = 0. Observe
from (8.25) that when li−1(t, j) = 1, for some (t, j) ∈ dom ξi, the system is
only allowed to flow if τi−1(t, j) 6 τmad. Given the latter and the fact that
τmad 6 τmiet, due to Assumption 8.2, it follows from (8.27) and (8.31) that
li−1(t, j) = 0, i ∈ N̄ \ {1}, (t, j) ∈ dom ξi, when τi−1(t, j) = τmiet.

Given Lemma G.1, we have that φ̃li−1(τmiet) = φ0(τmiet). By combining the
latter fact with (8.38) and (G.5), we obtain that

˙̃
φli−1 = −(1− ω(τi−1))γli−1(φ̃li−1 (τi−1)

2 + 1). (G.7)

By recalling (8.30), we obtain from (G.6) that for ξi ∈ Ci

Ẇi 6 |ėui−1 | 6
1

h
|χi−1 − ui−1|. (G.8)

From (8.27), we obtain that for ξi ∈ Ci

V̇i = x̃⊤i
(
A⊤

11P + PA11

)
x̃i + 2e⊤ui−1

A12x̃i + 2χ⊤
i−1A13x̃i

(8.35)

6 −̺u2i−1 −
1

h2
(χi−1 − ui−1)

2 + µ((1 + ǫ)|χi−1|2 − |χi|2) + γ2|eui−1 |2

(G.6)

6 −̺u2i−1 −
1

h2
(χi−1 − ui−1)

2 + µ((1 + ǫ)|χi−1|2 − |χi|2) + γ2li−1
W 2

i , (G.9)

where, for the sake of compactness, we omitted the arguments ofWi. By recalling
Assumption 8.2 and using the fact that τmad 6 τmiet, we can deduce from (G.6)
that

ω(τi−1)γ
2
li−1

(

1 +
1

ε
φ̃2li−1

(τi−1)

)

W 2
i = ω(τi−1)γ̄

2|eui−1 |2. (G.10)

By means of the latter, we can deduce from (8.15) and (8.39) that for ξi ∈ Ci

η̇i−1 = ̺u2i−1+ω(τi−1)
(1− ε

h2
(χi−1−ui−1)

2−γ2li−1

(

1 +
1

ε
φ̃2li−1

(τi−1)

)

W 2
i

)

.

(G.11)
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By means of (G.7)-(G.11), we can now obtain that

U̇i 6 V̇i + 2γli−1 φ̃li−1WiẆi − (1− ω(τi−1))γli−1

˙̃φli−1W
2
i + η̇i−1

6 −̺u2i−1 −
1

h2
(χi−1 − ui−1)

2 + µ((1 + ǫ)|χi−1|2 − |χi|2) + γ2li−1
W 2

i

+ 2γli−1 φ̃li−1Wi
1

h
|χi−1 − ui−1| − (1− ω(τi−1))γ

2
li−1

(φ̃2li−1
+ 1)W 2

i

+ ̺u2i−1 + ω(τi−1)
(1− ε

h2
(χi−1 − ui−1)

2 − γ2li−1

(

1 +
1

ε
φ̃2li−1

)

W 2
i

)

6 − 1

h2
(χi−1 − ui−1)

2 + 2γli−1 φ̃li−1Wi
1

h
|χi−1 − ui−1|

− γ2li−1
φ̃2li−1

W 2
i + µ((1 + ǫ)|χi−1|2 − |χi|2)

+ ω(τi−1)

(
1− ε

h2
(χi−1 − ui−1)

2 + γ2li−1
(1− 1

ε
)φ̃2li−1

W 2
i

)

(G.12)

for ξi ∈ Ci. Now by using completion of the squares and the fact that for some
constants a, b ∈ R and ε > 0, it holds that 2ab 6 (1/ε)a2 + εb2, we obtain that

U̇i 6 (ω(τi−1)− 1)(|χi−1 − ui−1| − γli−1 φ̃li−1Wi)
2 + µ((1 + ǫ)|χi−1|2 − |χi|2)

6 µ((1 + ǫ)|χi−1|2 − |χi|2). (G.13)

At transmissions events, i.e., when ξi ∈ Di with li−1 = 0, τi−1 > τmiet and the
system jumps according to ξ+i = G(ξi), we have that

Ui(ξ
+
i )− Ui(ξi) = γ1φ̃1(0)W

2
i (eui−1 ,−eui−1 , 1)− γ0φ̃0(τi−1)W

2
i (eui−1 , si−1, 0)

(8.38)

6 (γ1φ1(0)λ
2 − γ0φ0(τmiet))|eui−1 |2. (G.14)

At update events, i.e., when ξi ∈ Di with li−1 = 1 (and thus 0 6 τi−1 6 τmad)
and the system jumps according to ξ+i = G(ξi), we have that

Ui(ξ
+
i )− Ui(ξi) = γ0φ̃0(τi−1)W

2
i (si−1 + eui−1 , 0, 0)

− γ1φ̃1(τi−1)W
2
i (eui−1 , si−1, 1)

(8.38)

6 (γ0φ0(τi−1)− γ1φ1(τi−1))|eui−1 + si−1|2.
(G.15)

By recalling (8.36) and (G.5), we obtain that

Ui(ξ
+
i )− Ui(ξi) 6 0, (G.16)

for all ξi ∈ Di. From (G.13)-(G.16), we can conclude that the storage function
Si = Ui/µ satisfies (G.1) and (G.2).
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At last, we need to show that all maximal solutions of the hybrid system
Hi, i ∈ N̄ \ {1}, are t-complete. To do so, we verify the conditions provided in
[98, Proposition 6.10]. First of all, observe from (8.31) that Gi(Di) ⊂ Ci ∪ Di,
i ∈ N̄ \ {1}, since for all ξi ∈ Gi(Di), it holds that τ+i−1 > 0, η+i−1 > 0. Next,
we show that for any point p ∈ Ci \Di, i ∈ N̄ \ {1}, there exists a neighborhood
U of p such that, it holds for every q ∈ U ∩ Ci and every w ∈ R that Fi(q, w) ∈
TCi

(q), where TCi
(q) denotes the tangent cone1 to Ci at q. Observe that for

each point p ∈ Ci (recall that p = (x̃i, eui−1 , τi−1, li−1, si−1, ηi−1)), TCi
(p) =

R7×R×TR
>0
(τi−1)×{0}×{0}×TR

>0
(ηi−1). From (8.25) and (8.31), we obtain

that Ci/Di = {ξi ∈ Xi : (li−1 = 0 ∧ τi−1 < τmiet) ∨ ηi−1 > 0)}. Given the facts
that according to (8.27) and (8.39), τ̇i−1 = 1 and that η̇i−1 > 0 when τi−1 < τmiet

and ηi−1 = 0, for all i ∈ N̄ \ {1}, it indeed follows that for any p ∈ Ci\Di there
exists a neighborhood S of ξ such that, it holds for every q ∈ S ∩ Ci and every
w ∈ R that Fi(q, w) ∈ TCi

(q). Since finite escape times are excluded due to
(G.13), we can conclude that all maximal solutions of the hybrid system Hi,
i ∈ N̄ \ {1}, with ξi(0, 0) ∈ X0,i and χi−1 ∈ L2, are t-complete, which completes
the proof.

1The tangent cone to a set S ⊂ Rn at a point x ∈ Rn, denoted TS(x), is the set of all
vectors ω ∈ Rn for which there exist xi ∈ S, yi > 0 with xi → x, y → 0 as i → ∞ such that
ω = limi→∞(xi − x)/yi (see Definition 5.12 in [98]).
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[80] C. Ebenbauer, T. Raff, and F. Allgöwer, “Dissipation inequalities in sys-
tems theory: An introduction and recent results,” in Proceedings of the 6th
International Congress on Industrial and Applied Mathematics, Jul 2007.



264 Bibliography

[81] “Intelligent transport systems (its); vehicular communications; geonet-
working,” European Telecommunications Standards Institute, Tech. Rep.,
2014.

[82] “Intelligent transport systems (its); decentralized congestion control me-
chanisms for intelligent transport systems operating in the 5 ghz range;
access layer part,” European Telecommunications Standards Institute,
Tech. Rep., 2011.

[83] J. A. Fax and R. M. Murray, “Information flow and cooperative control
of vehicle formations,” IEEE Transactions on Automatic Control, vol. 49,
no. 9, pp. 1465–1476, Sept 2004.

[84] S. Feng and P. Tesi, “Resilient control under denial-of-service: Robust
design,” Automatica, vol. 79, pp. 42 – 51, 2017.

[85] P. Fernandes and U. Nunes, “Platooning with ivc-enabled autonomous
vehicles: Strategies to mitigate communication delays, improve safety and
traffic flow,” IEEE Transactions on Intelligent Transportation Systems,
vol. 13, no. 1, pp. 91–106, March 2012.

[86] A. Festag, “Cooperative intelligent transport systems standards in eu-
rope,” IEEE Communications Magazine, vol. 52, no. 12, pp. 166–172,
December 2014.
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[180] S. Öncü, J. Ploeg, N. van de Wouw, and H. Nijmeijer, “Cooperative adap-
tive cruise control: Network-aware analysis of string stability,” IEEE Tran-
sactions on Intelligent Transportation Systems, vol. 15, no. 4, pp. 1527–
1537, Aug 2014.
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