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Abstract

We study the channel capacity of q-ary fingerprinting in the limit of large attacker
coalitions. We extend known results by considering the Combined Digit Model,
an attacker model that captures signal processing attacks such as averaging and
noise addition. For q = 2 we give results for various attack parameter settings.

1 Introduction

Watermarking is a means of tracing the (re-)distribution of content. Before distribu-
tion, digital content is modified by applying an imperceptible watermark (WM). Once
an unauthorized copy of the content is found, the WM helps to trace those users who
participated in the creation of the copy. Reliable tracing requires resilience against at-
tacks that aim to remove the WM. Collusion attacks are a particular threat: multiple
users cooperate, and differences between their versions of the content tell them where
the WM is located. Coding theory has provided a number of collusion-resistant codes.
The resulting system has two layers: The coding layer determines which message to
embed, and protects against collusion attacks. The underlying watermarking layer
hides symbols of the code in segments of the content. Many codes have been proposed
in the literature. Most notable is the Tardos code [16], which achieves the asymptot-
ically optimal proportionality m ∝ c2, with m the code length and c the size of the
coalition. Tardos introduced a two-step stochastic procedure for generating codewords:
(i) For each segment a bias is randomly drawn. (ii) For each user independently, a 0
or 1 is drawn for each segment using the bias for that segment. This construction was
generalized to larger (q-ary) alphabets in [17].
The interface between the coding and WM layer is specified in terms of the Marking
Assumption (MA), which states that the colluders can attack only in those segments
where they received different WM symbols. These are called detectable positions.
There is a further classification of attacks according to the manipulations that can
be performed in the detectable positions. In the Restricted Digit Model (RDM), the
coalition is only allowed to pick one symbol that they received. In the Unreadable
Digit Model (UDM), they are further allowed to create an erasure. In the Arbitrary
Digit Model, they can pick any symbol, even one that they did not receive. The
General Digit Model allows any symbol or an erasure. For q = 2, all these MA attacks
are equivalent. For q > 2, the general feeling is that realistic attacks are somewhere
between the RDM and the UDM. To get an even more realistic attack model which
takes into account signal processing (e.g. averaging attacks and noise addition), one
has to depart from the MA. Such models were proposed in [20] and [18] for general q,
and for q = 2 in e.g. [8, 9].
In Tardos’ scheme [16] and later improvements (e.g. [19, 17, 3, 15, 14, 5, 18, 20, 11, 10,
12]), users are found to be innocent or guilty via an ‘accusation sum’, a sum of weighted
per-segment contributions, computed for each user separately. The analysis of achiev-
able performance was helped by an information-theoretic treatment of anti-collusion
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codes. Bias-based codes can be treated as a maximin game [2, 13, 7], independently
played for each segment, where the payoff function is the mutual information between
the symbols x1, . . . , xc handed to the colluders and the symbol y produced by them. In
each segment the colluders try to minimize the payoff function using an attack strategy
that depends on the received symbols x1, . . . , xc. The watermarker tries to maximize
the payoff by setting the bias distribution.
The rate of a fingerprinting code is defined as (logq n)/m, with n the number of users
and m the code length. The fingerprinting capacity is the maximum achievable rate.
For q = 2 it was conjectured [7] that the capacity is asymptotically 1/(c22 ln 2). The
conjecture was proved in [1, 6]. In [1] an accusation scheme was developed where
candidate coalitions get a score related to the mutual information between their symbols
and y. It achieves capacity but is computationally too expensive. Huang and Moulin [6]
proved for the large-c limit (for q = 2) that the interleaving attack and Tardos’s arcsine
distribution are optimal. It was shown in [4] that the asymptotic channel capacity for
q-ary alphabets in the RDM is (q − 1)/(2c2 ln q).
In this paper we study the asymptotic fingerprinting capacity in the Combined Digit
Model (CDM) [18]. We choose for the CDM because this model is defined for general
q and captures a range of non-MA attacks. We show that the asymptotic channel
capacity in the CDM can be found by solving the following problem: Find a mapping
γ from the hypersphere in q dimensions to the hypersphere in 2q dimensions, such
that γ minimizes the volume swept in the latter space; the boundary conditions on the
volume are fixed by the parameters in the CDM. For q ≥ 3 we have not solved the
minimization problem. For q = 2 we present numerical results. The numerics involve
computations of constrained geodesics, a difficult problem in general. The resulting
graphs show a nontrivial dependence of the capacity on the CDM attack parameters.

2 Preliminaries

2.1 Fingerprinting with per-segment symbol biases

We use capital letters for random variables, and lowercase letters for their realizations.
Vectors are in boldface and the components of a vector ~x are written as xi. Vectors
are interpreted as being column vectors. The expectation over X is denoted as EX .
The mutual information between X and Y is denoted by I(X;Y ), and the mutual
information conditioned on a third variable Z by I(X;Y |Z). The base-q logarithm is
written as logq. The standard Euclidean norm of a vector ~x is denoted by ‖~x‖.
Tardos [16] introduced the first fingerprinting scheme that achieves optimality in the
sense of having the asymptotic behavior m ∝ c2. He introduced a two-step stochastic
procedure for generating the codeword matrix X. Here we show the generalization to
non-binary alphabets [17]. A Tardos code of length m for a number of users n over the
alphabet Q of size q is an n×m matrix of symbols from Q. The codeword for user i is

the i’th row in X. An auxiliary bias vector ~P (j) ∈ [0, 1]q with
∑

α P
(j)
α = 1 is generated

independently for each column j, from a distribution F which is considered known to

the attackers. Each entry Xij is generated independently: Prob [Xij = α] = p
(j)
α .

2.2 The Combined Digit Model

Let the random variable Σ
(j)
α ∈ {0, 1, . . . , c} denote the number of colluders who receive

the symbol α in segment j. It holds that
∑

α σ
(j)
α = c for all j. From now on we will

drop the segment index j, since all segments are independent. In the Restricted Digit
Model the colluders produce a symbol Y ∈ Q that they have seen at least once. In
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Figure 1: Overview of the Combined Digit Model.

the Combined Digit Model as introduced by [18] we also allow the attackers to output
a mixture of symbols. Let Ω(Σ) , {α ∈ Q | Σα ≥ 1} be the set of symbols that the
pirates have seen in a certain column. Then the output of the pirates is a non-empty
set Ψ ⊆ Ω(Σ). On the watermarking level this represents a content-averaging attack
where all symbols in Ψ are used. It is sufficient to consider a probabilistic per-segment
(column) attack which does not distinguish between the different colluders. Such an

attack then only depends on ~Σ, and the strategy can be completely described by a set
of probabilities θψ|~σ ∈ [0, 1], which are defined as θψ|~σ , Prob[Ψ = ψ | ~Σ = ~σ].
The CDM also introduces a stochastic detection process. Let |Ψ| be the cardinality
of the output set Ψ. Then each symbol in Ψ is detected with probability t|Ψ|. Each
symbol not in Ψ is detected with error probability r. The set W ⊆ Q indicates which
symbols are detected. Note that Ψ is forced to be non-empty, but W = ∅ can occur.
The numbers ti are decreasing since mixing more symbols makes it more difficult to
detect the individual symbols. The overall probability of detecting a set w, given ψ, is

Mw|ψ = t
|w∩ψ|
|ψ|

(
1− t|ψ|

)|ψ\w|
r|w\ψ| (1− r)q−|w∪ψ| . (1)

These probabilities form a 2q × (2q − 1) matrix M . In this way we can define

τw|~σ , Prob
[
W = w | ~Σ = ~σ

]
=
∑
ψ

Mw|ψθψ|~σ = (Mθ)w|~σ . (2)

2.3 Collusion channel and fingerprinting capacity

Similarly to the RDM [4] the attack can be interpreted as a noisy channel with input ~Σ
and output W . A capacity for this channel can then be defined, which gives an upper
bound on the achievable code rate of a reliable fingerprinting scheme. The first step of
the code generation, drawing the biases ~p, is not considered to be a part of the channel.
The fingerprinting capacity CCDM

q for a coalition of size c and alphabet size q in the
CDM is equal to the optimal value of the following two-player game:

CCDM
q = max

F
min
~θ

1

c
I(W ; ~Σ | ~P ) = max

F
min
~θ

1

c

∫
F (~p)I(W ; ~Σ | ~P = ~p)dq~p. (3)

Here the information is measured in q-ary symbols. Our aim is to compute the finger-
printing capacity CCDM

q in the limit (n→∞, c→∞). The payoff function I(W ; ~Σ | ~P )

is linear in F and convex in ~τ . Because ~τ = M~θ is linear in ~θ the game is also convex

in ~θ and we can apply Sion’s Theorem:

max
F

min
~θ
I(W ; ~Σ | ~P ) = min

~θ
max
F

I(W ; ~Σ | ~P ) = min
~θ

max
p

I(W ; ~Σ | ~P = ~p), (4)

where we did the maximization over F by choosing the optimum F ∗(~p) = δ(~p− ~pmax)

at the location ~p = ~pmax of the maximum of I(W ; ~Σ | ~P = ~p).
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3 Asymptotic analysis for general alphabet size

We are interested in how the payoff function I(W ; Σ | ~P = ~p) of the alternative game (4)
behaves as c goes to infinity. Following the same approach as in [4] our starting point

is the observation that the random variable ~Σ/c tends to a continuum in [0, 1]q with
mean ~p. We introduce the following notation:

hψ(~σ/c) c→∞
= θψ|~σ. (5)

gw(~σ/c) c→∞
= τw|~σ =

∑
ψMw|ψhψ(~σ/c), (6)

which can be written as ~g = M~h. Next we do a 2nd order Taylor expansion of gw
(
~σ
c

)
around the point ~σ

c
= ~p. This allows us to expand I in powers of 1/c, giving (see [4])

I(W ; Σ | ~P = ~p) =
T (~p)

2c ln q
+O(c−3/2) (7)

T (~p) ,
∑

w
1

gw(~p)

∑
αβKαβ

∂gw(~p)
∂pα

∂gw(~p)
∂pβ

, (8)

where Kαβ = δαβpα − pαpβ is the scaled covariance matrix of Σ. The capacity CCDM
q,∞

in the limit of c→∞ is then the solution of the continuous version of the game (4):

CCDM
q,∞ ,

1

2c2 ln q
min
~h

max
~p
T (~p). (9)

We introduce variables uα ,
√
p
α
, γw ,

√
gw and the 2q × q Jacobian matrix Jwα(~u) ,

∂γw(~u)
∂uα

. We switch to hyperspheres (‖~u‖ = 1, ‖γ‖ = 1) instead of the hyperplanes

(
∑

α pα = 1,
∑

w gw = 1). The function ~γ(~u) was originally defined only on ‖~u‖ = 1,
but the Taylor-expansion forces us to define it on a larger domain, i.e. slightly away
from ‖~u‖ = 1. There are many consistent ways to do this. We define ~γ independent of
the radial coordinate ‖~u‖. This yields J~u = 0, which allows us to simplify T (~u) to

T (~u) =
∑

w,α(∂γw/∂uα)2 = Tr(JTJ) =
∑q−1

i=1λi(~u), (10)

where λi(~u) are the eigenvalues of JTJ . Because of J~u = 0 we know that one of
the eigenvalues is 0 with eigenvector ~u. Hence i ∈ {1, . . . , q − 1}. We wish to find

minγ maxu T (u) under the constraint γw =
√
gw =

√
(Mh)w, with M known and

hψ ≥ 0 ∀ψ,
∑

ψhψ = 1. (11)

The constraint g = Mh makes the min-max game more difficult. It is not possible to
use the same machinery as for the RDM. For q = 2 we are however able to compute
the asymptotic capacity.

4 Fingerprinting capacity in the CDM for q = 2

4.1 Solving the max-min game

For q = 2 the expression (10) simplifies to T (~u) = Tr(JTJ) = λ(~u) since there is
only one nonzero eigenvalue. Furthermore we have the relation d~γ = Jd~u and ‖d~γ‖ =
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m1 m2

m3

g

Figure 2: The vector ~g is not allowed to lie outside the triangle.

√
λ‖d~u‖. We proceed by rewriting

max
~u

T (~u) = max
~u

λ(~u) =
(

max
~u

√
λ(~u)

)2

≥

(∫ √
λ(~u)‖d~u‖∫
‖d~u‖

)2

=

(∫
‖d~γ‖∫
‖d~u‖

)2

≡
(
L~γ
L~u

)2

. (12)

The inequality results from replacing the maximum by a spatial average. The inte-
gration path is the quarter-circle u2

1 + u2
2 = 1 from ~u = (1, 0) to ~u = (0, 1) and hence

L~u = π
2
. For any curve γ(~u) we have the freedom to re-parameterize such that λ(~u) is

constant over the curve. The above inequality can then be changed into an equality,

min~γ max~u T (~u) = (4/π2)(min~γ L~γ)
2. (13)

The problem is reduced to finding a curve ~γ(~u) of minimal length with the constraint

γw(~u) =

√
(M~h)w(~u) where M(t1, t2, r) is

M =

w\ψ {0} {1} {0,1}

∅ (1− t1)(1− r) (1− t1)(1− r) (1− t2)2

{0} t1(1− r) (1− t1)r t2(1− t2)
{1} (1− t1)r t1(1− r) t2(1− t2)
{0,1} t1r t1r t22

. (14)

4.2 Geodesics

Length-minimizing curves are obtained by solving the geodesic equations for the appro-

priate metric. In our case the constraint γw(~u) =

√
(M~h)w(~u) causes complications.

If we write M = [m1,m2,m3] then ~g = M~h is a convex combination of the column
vectors m1,m2,m3. The allowed space of ~g is anywhere inside the triangle shown in
Fig. 2. We switch from variables (u1, u2) to s1, s2 with 0 ≤ s1 ≤ 1, 0 ≤ s2 ≤ 1− s1.

~g(s1, s2) , m1 + s1(m2 −m1) + s2(m3 −m1). (15)

The marking assumption yields ~u = (1, 0) ⇒ ~h = (1, 0, 0) and ~u = (0, 1) ⇒ ~h =
(0, 1, 0). In terms of ~g(s1, s2) this means ~g(1, 0) = m1 and ~g(0, 1) = m2. We are
looking for the shortest path from the lower left corner (m1) of the triangle to the
lower right corner (m2). An infinitesimal change in dγw is given by

dγw =
dgw

2
√
gw

=
(m2,w −m1,w)ds1 + (m3,w −m1,w)ds2

2
√
gw

. (16)
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Case A:

m1 m2

m3
Case B:

m1 m2

m3

P

Case C:

m1 m2

m3

Figure 3: The three cases we encounter for the way the geodesics intersect.

Case B:

m1 m2

m3

P
Q

Case C:

m1 m2

m3

P
Q

Figure 4: The optimal path in both cases is m1−P−m2 over the dashed lines (geodesics).
In case C the geodesic from m2 is tangent to the left side of the triangle.

This allows us to define the appropriate metric G(s1, s2),

‖d~γ‖2 = G11(ds1)2 +G22(ds2)2 + 2G12ds1ds2. (17)

See the full paper for details on the geodesic computations. We want to find the
shortest path between m1 and m2 that is fully inside the triangle. There are three
cases. In case A we are done since the direct geodesic is the shortest path. For B and
C the optimal paths are shown in Fig. 4. Any geodesic starting from m2 with a smaller
initial slope has to cross the maximum-slope geodesic from m1 in a point Q. From Q
the optimal path to m1 is to follow the geodesic; but at P you could have done better
by going directly from m2 to P on the geodesic. We use the length of the optimal path
to compute the capacity,

CCDM
2,∞ =

1

2c2 ln 2

4

π2
L2

opt. (18)

4.3 Results

Fig. 5 shows the ratio C = CCDM
2,∞ /CRDM

2,∞ between the asymptotic capacities for the
CDM and the RDM as a function of t1, t2, r. It turns out that the asymptotic capacity
depends on the three attack parameters in a nontrivial way. Obviously, the capacity is
an increasing function of t1 and t2, and a decreasing function of r. For r close to zero
and t1 close to 1, the capacity has very weak dependence on t2. This can be understood
from the fact that we are close to the Marking Assumption: when the MA holds, all
the attack models for q = 2 are equivalent. In Fig. 5a we see a transition from linear
behavior as a function of r (with almost total insensitivity to t2) to nonlinear behavior
(with dependence on t2). The transition point depends on t2.
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Figure 5: The ratio C = CCDM
2,∞ /CRDM

2,∞ for q = 2.

5 Discussion

We have investigated the asymptotic channel capacity in the CDM. For general alpha-
bet size q it turns out to be very difficult to compute this quantity. We have shown
how the previously obtained capacity for the RDM [4] follows as a limiting case of
the CDM. For the binary alphabet we have shown how the problem of computing the
channel capacity reduces to finding a constrained geodesic between two points. We
have presented numerical solutions to this problem. The asymptotic capacity depends
on the three attack parameters t1, t2, r in a nontrivial way. The graphs show a regime
close to the Marking Assumption, in which the CCDM

2,∞ is practically independent of t2.
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