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ABSTRACT
Due to the increase in the oil prices and the depletion of the oil

reserves, Fischer-Tropsch processes for the production of synthetic

fuels, methanol synthesis and other gas-to-liquid processes are

rapidly gaining interest. These reactions are commonly performed

in slurry bubble columns, i.e. three-phase gas-liquid-solid reac-

tors. Although slurry bubble columns are already widely used,

challenging scale-up and operational issues are encountered when

these reactors are used for the Fisher-Tropsch process. To improve

the fundamental understanding of these complex reactors, this work

focuses on the effective drag acting on particles and bubbles in

dense flows, using Direct Numerical Simulations. We combined

the Front Tracking method of Roghair et al. (2013b) and the

second order implicit Immersed Boundary method of Deen et al.
(2012), resulting in a resulting hybrid Front Tracking Immersed

Boundary method that is able to simulate dense three phase flows

and quantify the effects. For a system consisting of 2 mm bubbles

and 1 mm particles, effective drag closures are developed for both

the bubbles and the particles at several phase volume fractions. In

future research, the developed methodology will be applied to study

the effect of the bubble and particle size and their ratio as well as

heat and mass transfer.

Keywords: Multiphase flow, Slurry bubble column, multiscale

modeling, gas-liquid-solid flows, fluid structure interaction, Front

Tracking, Immersed Boundary method .

NOMENCLATURE

Greek Symbols
α Void fraction.
μ Viscosity, [Pa ·s].
ρ Density, [kg/m3].
σ Surface tension coefficient, [N/m].
τττ Stress tensor, [Pa].
φ Solid volume fraction.
ψ Velocity component, [m/s].
ω Rotational velocity, [1/s].

Latin Symbols
a,b,C Coefficient.
d Diameter, [m].
DNS Direct Numerical Simulation.
Eo Eötvös number, gzd2bΔρ/σ.
F Force density or Force, [N/m3] or [N].

FT Front Tracking.
g Gravity acceleration, [m/s2].
IB Immersed Boundary.
I Moment of inertia , [kg ·m2].
MCFD Multiphase Computational Fluid Dynamics.
Mo Morton number, gzμ4l Δρ/

(
ρ2
l σ3

)
.

n Normal.
p Pressure, [Pa].
t Time, [s].
r Distance, [m].
Re Reynolds number, ρ|v|db/μl .
u Liquid, fluid velocity , [m/s].
v Bubble velocity, [m/s].
V Volume, [m3].
w Particle velocity, [m/s].

Sub/superscripts
b Bubble.
B Buoyancy.
c Central.
col Due to particle-particle collisions.
D Drag.
g Gas phase.
l Liquid phase.
nb Neighboring.
P Pressure.
rel Relative.
s Solid phase.
z Direction of the gravitation.
σ Surface tension.
∞ Single bubble or particle infinite liquid.

INTRODUCTION

The interest in Fischer-Tropsch processes for the production
of synthetic fuels, methanol synthesis and other prominent
gas-to-liquid processes has rapidly expanded in recent years,
due to depletion of oil reserves and increasing oil prices.
In these gas-to-liquid processes, a reactant gas is converted
into liquid products over a solid catalyst. These type of
three-phase gas-liquid-solid processes are often performed
in slurry bubble columns. To accurately scale-up and design
these columns, the fundamental understanding of the com-
plex three phase interactions needs to be improved (Kantarci
et al., 2005; Wang et al., 2007; Yang et al., 2007; Pan et al.,
2016).



M. W. Baltussen, J. A.M. Kuipers, N. G. Deen

The introduction of particles in a bubble column causes a
decrease in the bubble size and and increase in the void
fraction. Besides, the bubble rise velocity decreases with in-
creasing solids volume fraction even when neutrally buoyant
particles are used (Kantarci et al., 2005; Wang et al., 2007;
Hooshyar et al., 2013; Baltussen et al., 2013; Pan et al.,
2016). By using neutrally buoyant particles, Hooshyar et al.
(2013) reported that the interaction mechanism depends on
the Stokes relaxation time of the particles. When the Stokes
relaxation time is relatively small, the bubble rise velocity is
only affected via an increase in the apparent viscosity. For
larger particles, which also have a larger Stokes relaxation
time, the bubble rise velocity is only slightly influenced by
the change in the apparent viscosity, while the main effect
is caused by the encounters between the particles and the
bubbles.

Because slurry bubble columns are often several meters in
diameter and tens of meters in height, it is not possible to
resolve all the details of the bubble-particle interactions for a
full slurry bubble column. Therefore, a multiscale modeling
approach is used to simulate industrial size columns. In
this approach, coarse grained models, which do not capture
the the particle/bubble scale transport phenomena (like the
Euler-Lagrange or Euler-Euler models), need closures for
the bubble-bubble, bubble-particle and particle-particle in-
teractions. This effective drag acting on the particles and the
bubbles in dense can will be determined using smaller scale
models, like the novel hybrid Direct Numerical Simulation
(DNS) approach in this work (van Sint Annaland et al., 2003;
Deen et al., 2004; Yang et al., 2007; Raessi et al., 2010;
Roghair et al., 2011; Baltussen et al., 2013; Pan et al., 2016).
Several hybrid three-phase DNS methods have already been
developed. Li et al. (2001) combined a Euler-Lagrange
model for the particles with a DNS method for the bubbles.
Although the particles are in reality much smaller than the
bubbles, the method still requires closures for the solid-
liquid interactions. Ge and Fan (2006), Jain et al. (2012)
and Baltussen et al. (2016) combined a front capturing
technique (Level-Set, Volume of Fluid and Volume of Fluid
methods, respectively) for the gas-liquid interfaces with an
Immersed Boundary (IB) method, to enforce the no-slip
boundary condition at the surface of rigid immersed bodies.
The disadvantage of these front capturing methods is the
numerical coalescence which occurs when bubbles are close
to each other. To overcome the numerical coalescence, Deen
et al. (2009) and Baltussen et al. (2013) combined the Front
Tracking (FT) method with a IB method. In FT, the bubbles
are tracked directly using a triangular mesh. However, the
separate mesh for each of the bubbles, the used FT currently
prevents all coalescence between bubbles.

In this work, the swarm effects on the apparent drag of the
bubbles and the particles is studied, requiring a constant
bubble size during the simulation to facilitate the ease of
interpretation. Therefore, we combined the FT method of
Roghair et al. (2013a) with the second order implicit IB
method of Deen et al. (2012). This specific IB method is
chosen, because the method does not require a calibration of
the effective particle size.

This paper starts with a short discussion of the applied nu-
merical method and a short overview of the chosen numerical
parameters. Subsequently, the effect of the void fraction and
the solids volume fraction on the effective drag of the bubbles
and the particles is discussed.

NUMERICAL METHOD

Our novel hybrid three phase DNS method is a combination
of the FT method of Roghair et al. (2013a) and the second
order IB method of Deen et al. (2012). Here, we present
only a brief discussion of both methods, particularly focusing
on the combination of both methods and the modification
required to enable the calculation of three-phase systems.
The hybrid FT-IB model solves the continuity equation,
equation 1, and the Navier-Stokes equations, equation 2,
assuming incompressible flow:

∇ ·u = 0 (1)

ρ
∂u
∂t

=−∇p−ρ∇ · (uu)−∇ ·τττ+ρg+Fσ (2)

Because the velocity field is continuous across the gas-
liquid interface, the Navier-Stokes equations can be solved
using an one-field approximation. The surface tension at the
gas-liquid interface is taken into account by an extra force
density, Fσ, which is introduced near the interface. This force
is directly calculated from the triangular mesh by summing
the tensile forces exerted by the three neighboring markers,
triangular element, on a reference marker and subsequent
force mapping to the Eulerian grid using mass-weighing
(Dijkhuizen et al., 2010b; Roghair, 2012). To alleviate the
parasitic currents that arise due to the mismatch between the
discretisation of the surface tension and the pressure field, the
surface tension calculations is augmented with the so-called
"pressure-jump correction" (Renardy and Renardy, 2002;
Francois et al., 2006; Dijkhuizen et al., 2010b). The local
density and viscosity are obtained by normal and harmonic
averaging, respectively.
The no-slip boundary condition at the particle surface is
taken into account implicitly. At the level of the discretised
Navier-Stokes equations, each velocity component at a cer-
tain node in the fluid, ψc, can be described as a function of
the velocity components of the neighboring nodes, ψnb, with
equation 3.

acψc+∑
nb
anbψnb = bc (3)

where the coefficients anb indicate the coupling of the veloc-
ity at node c with the velocities of the neighboring nodes,
nb.
Using a second order (1D) polynomial fit, each neighboring
fluid node inside a particle can be eliminated from equation
3. Together with the local velocity field and the velocity
at the particle surface, the coefficients of the two velocity
nodes involved in the polynomial fit are adjusted. A similar
function is obtained for fluid nodes that are in close proximity
of two particles, when there is only 1 grid point in between
the particles, by using the velocity of the central node and
the velocity of both particles. Because both equations are
singular when the particle surface is close to the central cell,
a linear fit is used when the distance between the surface and
the central point is less than 10−4 times the grid size.
The velocity field given by equation 2 is obtained on a
staggered grid using a projection-correction method. In
the projection step, all terms in this equation are treated
explicitly except for the diffusion term, which is treated
semi-implicitly. The implicit part of the diffusion term is
chosen such that it only depends on the velocity component
that is solved for, whereas the remaining (small) terms are
treated explicitly. The diffusion terms are discretised using
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a second order central difference scheme, while a second
order flux-delimited Barton scheme is used for the convective
terms. The projected velocity field is corrected to satisfy
the continuity equation (equation 1). The equations in both
the projection step and the correction step are solved using a
OpenMP parallelised block ICCG matrix solver.

Particles

When the velocity field is calculated, the positions of the
particles, m, are updated by solving the Newtonian equations
of motion:

Vmρm
dwm

dt
= mg+

∮
Γm

−(τττ ·n)dS+
∫∫∫

Ωm

−∇pdV +Fd,col

(4)

Im
dωωωm

dt
=

∮
Γm

(ri, j,k− rm)×−(τττ ·n)dS (5)

where the moment of inertia is given by:

Im =
1

10
Vmρmd2m (6)

In the three-phase system, the transpose part of the Stokes
stress tensor in equation 4 and 5 should be included, because
the viscosity is not constant. Both the pressure gradient and
the velocity gradients, which are needed in the stress tensor,
can be obtained directly from the second order fit, which was
used to apply the no-slip boundary condition.
In the continuous limit, the calculation of the pressure force
can be performed with either a surface integral or a volume
integral using Gauss’s theorem. Although the pressure inside
the particle is unknown, the volume integral of the pressure
gradient over the total particles will effectively result in a
calculation depending on the pressures outside the particle
due to the employed discretisation. When the calculation via
the surface integral and the volume integral are compared
with the results of Zick and Homsy (1982), the calculation
of the force via the surface integral is not able to accurately
capture the drag of a particle in a dense array. Therefore, the
drag force will be calculated via the volume integral in this
paper.
The interactions between the particles are included using a
hard sphere model (Hoomans et al., 1996). Therefore the
drag force as discussed before does not include the collisions
with other particles. However, the collisions with the bubbles
are not separately treated and therefore their effects will be
lumped in the drag force.

Bubbles

Following the update of the particle positions and veloci-
ties, the position of the bubbles is updated. Every marker
point at the surface is displaced separately with the local
velocity, which is interpolated from the Eulerian grid using
cubic spline interpolation, by fourth order Runga-Kutta time
stepping. Because each marker point is advected separately,
the bubbles will change both its position and its shape.
Nevertheless, this also changes the distance between the
marker points leading to a decreased surface mesh quality.
To restore the mesh quality, the surface is remeshed, using
four elementary operations: edge splitting, edge collapsing,
edge swapping and smoothing (Roghair, 2012).
Due to the separate advection of the marker points and the
remeshing, small volume changes in the bubble volume arise,
which accumulate over the total simulation time. To locally
restore the volume losses during the remeshing a smoothing

Table 1: Simulation settings for the base case of the slurry bubble
swarms.

Property Value Unit

Void fraction, α 0.30
Solid volume fraction, φ 0.05
Computational grid 171

Grid size 1.0 ·10−4 m

Time step 1.0 ·10−5 s

Bubble diameter 2.0 ·10−3 m

Particle diameter 1.0 ·10−3 m

Liquid density 1.0 ·103 kg/m3

Liquid viscosity 1.0 ·10−3 Pas

Gas density 100.0 kg/m3

Gas viscosity 1.8 ·10−5 Pas

Solids density 2.0 ·103 kg/m3

Surface tension 0.073 N/m
Normal restitution coefficient 1.00
Tangential restitution coefficient 1.00
Friction coefficient coefficient 0.00
− log(Mo) 10.6
Eo 0.48

procedure described by Kuprat et al. (2001) is implemented.
Moreover, the volume changes due to the separate advection
of each marker are compensated by distributing the lost
volume over all the interface cells. This procedure might
cause unphysical overlap with other bubbles and particles.
Marker points that are close to another bubble or particle,
within the maximal edge length of a marker, are therefore
excluded from this operation.

Simulation set-up

The simulations are started with a random initial configu-
ration of bubbles and particles, generated using a Monte-
Carlo method. In this method, the dispersed elements
(bubbles/particles) are first placed in a lattice structure in the
domain. Subsequently, each element is displaced slightly
200 times. The procedure is repeated until no overlap
between the elements is found.

In the simulations, periodic boundaries are used to mimic an
infinite bubble/particle swarm. To ensure that the finite box
size does not influence the results, a minimum number of
bubbles and particles is required. Roghair et al. (2011) and
Bunner and Tryggvason (2002) established that the minimum
number of bubbles needed is 12. By changing the number
of particles for simulations with the settings of table 1,
there is no effect when the number of particles exceeds 40.
Therefore, the minimum number of bubbles and particles
used in the simulations is conservatively set to respectively
16 and 60.

Besides the number of bubbles and particles, the resolution
of both the particles and the bubbles should be sufficient to
obtain grid independent results. Dijkhuizen et al. (2010a)
showed that at least 20 grid cells across a bubble diameter
are needed in the used FT method. Furthermore, simulations
using again the settings of table 1 with a different resolution
for the particles showed negligible effect of the grid resolu-
tion. Therefore, the number of grid cells inside a particle and
a bubble diameter is set to 10 and 20, respectively.

To study the effect of the void fraction and the solids vol-
ume fraction, 27 different simulations have been performed,
which are grouped in four different cases listed in table 2. All
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Table 2: Gas fraction, solids volume fraction and averaging time
for the four different cases studied to determine the effect
of solids volume fraction and the void fraction. All cases
have the same settings as listed in table 1, except for the
parameters listed here.

Case α φ tavg
1 0.20 0.02...0.14 0.8
2 0.40 0.02...0.14 0.25...0.8
3 0.15...0.45 0.05 0.55...0.8
4 0.15...0.45 0.10 0.8

simulations are initiated with a time step of 1.0 ·10−5 s and
continued for 1 s. To remove any start-up effects, the first
0.2 s is discarded from the analysis, which was sufficient to
yield the time-averaged slip velocity within 2% from the final
results for two phase flows (Roghair et al., 2011).

RESULTS

First, the effect of the particles on the bubble drag force is
quantified by varying the solids volume fraction and the void
fraction. The drag coefficient of the bubbles is determined
using a macroscopic force balance for the bubbles similar to
the work of Roghair et al. (2011). At a pseudo steady state,
the time-averaged drag will exactly balance the gravitational
force and the hydrostatic pressure force in the flow direction.

< FD >=< FG >+< FP >

=Vbρgg−∇pVb
1

2
ρlv2rel,bCD

πd2b
4

=

(
1−α−φ

ρl −ρs

ρl −ρg

)
(ρl −ρg)gzVb (7)

The relative drag coefficient can be obtained by normalizing
the drag coefficient of equation 7 with the drag coefficient of
a single bubble rising in an infinite pool of liquid obtained
by Tomiyama (1998). This definition results in a direct
correspondence between the relative drag coefficient and the
terminal rise velocity of a single bubble with the same size
and the average velocity of the bubbles in the simulation.
Because the addition of particles and the other bubbles
results in a difference in hydrostatic pressure in comparison
with a single rising bubble, the bubble rise velocity has to
be corrected with the void fraction and the solids volume
fraction, equation 8. It should be noted that this equation
reduces to the form of Roghair et al. (2011) in the absence of
particles or when the particles are neutrally buoyant.

CD,rel =
CD

CD,∞

(
1−α−φ ρl−ρs

ρl−ρg

) =
< vb,∞ >2

(< vb >−< u >)2

(8)

Figure 1 shows the relative drag coefficients resulting from
the three-phase simulations including the standard devia-
tions. For case 2, two different simulations with a solids vol-
ume fraction of 8% but different initial positions are shown.
The figure shows that the relative drag coefficients differ only
12%, which is within the large and overlapping standard
deviation. In addition, the standard deviations obtained in
this work are larger than those obtained for gas-liquid bubble
swarms, which is probably due to the interactions with the
(heavier) particles.

According to figure 1, the drag coefficient of the bubbles
increases with increasing void fraction and solids volume
fraction. The increase of the relative drag force with
increasing void fraction was also determined in two-phase
flows (Roghair et al., 2011; Martínez-Mercado et al., 2007).
However, the effects in the three-phase flow are larger due to
the addition of particles, which is in good agreement with the
experimentally observed decrease in the bubble rise velocity
upon the introduction of particles (Kantarci et al., 2005;
Wang et al., 2007; Hooshyar et al., 2013; Pan et al., 2016).
The data of figure 1 was used to derive a correlation for
the relative bubble drag coefficient. With respect to the
form of the correlation, we constrained the form such that
the correlation will lead to the correlation of Roghair et al.
(2011) in the limit that there are no particles (φ = 0) and that
the drag coefficient of a single bubble (α = 0) is higher in a
liquid containing particles. This resulted in the fit in equation
9.

CD,rel = 1+
18

Eo
α+1.8 ·105α5φ1.1+2.7 ·103φ2 (9)

In addition to the close match of the symbols and the lines
in figure 1, the parity plot of figure 2 shows that most of the
results are within 10% of the fit. On average, the differences
between the correlation and the simulation results amounts
7.6%, which is less than the spread in results obtained by
using different initial conditions. The maximum difference,
which is obtained for low solids volume fractions and low
void fractions, is 20%.
Secondly the effect of the bubbles on the drag coefficient
of the particles can be determined in a similar manner as
the drag coefficient of the bubbles. In the case of the
particles, the drag coefficient is now normalized with the
drag coefficient of a single particle in an infinite fluid, given
by Schiller and Nauman (Clift et al., 1978):

CD,∞,p =
4dp(ρl −ρp)gz

3ρlw2
z

=
24

Rep

(
1+0.15Re0.687p

)
(10)

The resulting relative drag coefficient is given by:

CD,rel,p =
CD

CD,∞,p

(
1−φ−α ρg−ρl

ρs−ρl

) =
< w∞ >2

(< wp >−< u >)2

(11)
Figure 3 clearly shows that the drag force on the particles
occasionally changes direction. In these circumstances, a
bubble and particle will mutually rise, because the combina-
tion of one bubble and one particle is buoyant with respect
to the liquid. The large standard deviations indicate that
particles have two different modes: almost free movement
and movement that is obstructed by bubbles. Because par-
ticles appear to alternate between these modes, the standard
deviations are much larger than the averaged drag coefficient.
The calculation of the drag coefficient will be improved when
the drag coefficient is calculated for each of these two modes
separately. However, this is beyond the scope of this work.
In addition, the simulations of case 2 with a solids fraction of
8% only show a difference of 8% for the drag coefficient of
the particles.
The obtained drag coefficients are also fitted to quantify the
effect of the void fraction and the solids volume fraction on
the drag coefficient. The correlation should meet two criteria:
the relative drag coefficient of the particles should be equal to
1 when the solids volume fraction and the void fraction are
zero. Secondly, it is expected that the drag coefficient of a
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Figure 1: Effect of the solids volume fraction, figure a, and the effect of the void fraction, figure b, on the normalized drag coefficient of the
bubbles. The drag is normalized using equation 8. The lines in the figures represent the fit of equation 9. The bars indicate the
standard deviation.
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Figure 2: Parity plot containing the relative drag coefficient of the
particles obtained from the simulations and the correla-
tion given by equation 9. The dashed lines indicate an
error of 10%.

single particle in a bubble swarm or in a particle swarm have
a relatively higher drag than a single particle in an infinite
liquid. The obtained fit is shown in equation 12.

CD,rel,p = 1+10α2.5+200φ2+1.41 ·107φ4.5α5 (12)

In addition to a proper capture of the trends in the drag coef-
ficient, the parity plot in figure 4 shows an average absolute
difference between the simulation and the correlation results
of only 7.1% with a maximum of 22.5%.

The increase of the drag coefficients of both the bubbles and
the particles can partly be explained by the micro structuring
of the bubbles. The bubbles cluster in a dynamic system
of horizontal layers, as shown in figure 5. The horizontal
clustering was already observed by Roghair et al. (2013b)
for bubble swarms and by Baltussen et al. (2013) for slurries,
and is probably caused by the lack of large scale circulations.
The clustering of the particles prevails due to hindrance
by the bubbles. The particles partly cluster on top of the
bubbles, effectively hindering the rise of the bubbles, which
decreases the particle velocity or even reverses its direction.
The particles will eventually roll down the side of the bubble,
due to a combination of buoyancy forces and surface tension.

CONCLUSION

In this paper, a combined FT second order implicit IB method
was used to simulate dense bubble/particle swarms. By using
this method, the effect of the void fraction and the solids
volume fraction on the drag coefficient of 1 mm particles and
2 mm bubbles was determined. For both the particles and
bubbles, a combined effect of the void fraction and the solids
volume fraction was found on the drag coefficient. Using
the simulation results, drag correlations for both the bubbles
and the particles were developed, which provides an accurate
description for 15%≤ α ≤ 50% and 2%≤ φ ≤ 14%.

Because of the limited range in physical properties, particle
and bubble diameter used in this paper, the applicability of
the obtained correlations is limited to the range of conditions
investigated. To obtain a broader applicability, the simulation
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Figure 3: Effect of the solids volume fraction (a), and the effect of the void fraction (b) on the normalized drag coefficient of the particles.
The drag is normalized using equation 11. The lines in the figures represent the fit of equation 12. The bars indicate the standard
deviation.
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Figure 4: Parity plot containing the relative drag coefficient of the
particles obtained from the simulations and the correla-
tion given by equation 12. The dashed lines indicate an
error of 10%.

range should be extended. Preliminary results to assess the
effect of the bubble diameter show similar trends in void
fraction and solids volume fraction. An increasing bubble
diameter will lead to a decrease in the drag coefficient for
both the bubbles and the particles. It is expected that the size
of the particles will influence the drag coefficient. However,
because the increase of inertia of the particles might lead to
larger deformation and even to break-up of the bubbles, it is
hard to predict the effect of the particle size on the drag of
both particles and bubbles.

Simulating particles with a high inertia in combination with
bubbles with a relatively low surface tension is still difficult
for the FT-IB model. In such cases, particles can fall
through bubbles, leading to the formation of a doughnut
shaped bubble or even the break-up of the bubble. To
enable capturing these events, a break-up model needs to be
included in the method. Another option is to combine the
currently used FT model with the Volume of Fluid model,
which prevents unphysical merging of the bubbles while
break-up is incorporated in the model (Torres and Brackbill,
2000; Walker et al., 2013). Another option is to implement
FT without connectivity, like the Local Front Reconstruction
Method (Shin and Juric, 2002).

Although the second order IB method is tested thoroughly,
the rotation of freely moving particles at high Reynolds num-
bers is not accurately calculated. However, the disturbance
of the bubbles and the frequent collisions with both particles
and bubbles are expected to diminish any effect of unphysical
rotation. To prevent any unphysical rotation of the particles,
the calculation of the rotational velocity should be improved.

Finally, the currently used size ratio between the bubbles and
the particles (db/dp = 2) is much larger than the ratio which
is common in slurry bubble columns (db/dp ≈ 10− 100).
To obtain a realistic effect of the particles on the drag of
the bubbles and vice versa, this diameter ratio should be
decreased drastically. Clearly this will put challenges on the
allowable number of grid cells, which can probably only be
solved by applying adaptive grid refinement.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Two snapshots of a simulation with a void fraction of 25% and a solids volume fraction of 5%. Figure (a) and (d) show both the
particles and the bubbles, while the middle and the right figures only show the bubble configuration and the particle configuration.
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solid flow in fluidized bed reactors - a review”. Powder
Technology, 299, 235–258.
RAESSI, M., MOSTAGHIMI, J. and BUSSMANN, M.

(2010). “A Volume-of-Fluid interfacial flow solver with
advected normals”. Computers & Fluids, 39(8), 1401–1410.
RENARDY, Y. and RENARDY, M. (2002). “PROST: A

parabolic reconstruction of surface tension for the Volume-
of-Fluid method”. Journal of Computational Physics,
183(2), 400–421.
ROGHAIR, I. (2012). Direct Numerical Simulations of

Hydrodynamics and Mass Transfer in Dense Bubbly Flows.
Ph.D. thesis, Eindhoven, University of Technology.
ROGHAIR, I., LAU, Y.M., DEEN, N.G., SLAGTER,

H.M., BALTUSSEN, M.W., van Sint Annaland, M. and
KUIPERS, J.A.M. (2011). “On the drag force of bubbles in
bubble swarms at intermediate and high reynolds numbers”.
Chemical Engineering Science, 66, 3204–3211.
ROGHAIR, I., BALTUSSEN, M.W., van Sint Annaland,

M. and KUIPERS, J.A.M. (2013a). “Direct Numerical
Simulations of the drag force of bi-disperse bubble swarms”.
Chemical Engineering Science, 95, 48–53.
ROGHAIR, I., VAN SINT ANNALAND, M. and

KUIPERS, J.A.M. (2013b). “Drag force and clustering in
bubble swarms”. AIChE Journal, 59(5), 1791–1800.
SHIN, S. and JURIC, D. (2002). “Modeling three-

dimensional multiphase flow using a level contour recon-
struction method for Front Tracking without connectivity”.
Journal of Computational Physics, 180, 427–470.
TOMIYAMA, A. (1998). “Struggle with computational

bubble dynamics”. Third International Conference on Mul-
tiphase Flow, 369–405.
TORRES, D.J. and BRACKBILL, J.U. (2000). “The

Point-Set method: Front-Tracking without connectivity”.
Journal of Computational Physics, 165(2), 620–644.
van Sint Annaland, M., DEEN, N.G. and KUIPERS,

J.A.M. (2003). Multi-level modeling of dispersed gas-liquid
two-phase flows. Heat and mass transfer. Springer, Berlin
(edited by M. Sommerfeld and D. Mewes).
WALKER, E., NIKITOPOULOS, D. and TROMEUR-

DERVOUT, D. (2013). “Parallel solution methods for
poisson-like equations in two-phase flows”. Computers &
Fluid, 80, 152–157.
WANG, T., WANG, J. and JIN, Y. (2007). “Slurry reactors

for gas-to-liquid processes: A review”. Industrial and

Engineering Chemistry Research, 46(18), 5824–5847.
YANG, G.Q., DU, B. and FAN, L.S. (2007). “Bubble

formation and dynamics in gas-liquid-solid fluidization. a
review”. Chemical Engineering Science, 62(1-2), 2–27.
ZICK, A.A. and HOMSY, G.M. (1982). “Stokes flow

through periodic arrays of spheres.” Journal of Fluid Me-
chanics, 115, 13–26.


