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Abstract—The paper describes a 3D semi-analytical harmonic
modeling technique, which is capable to model eddy current
distributions in conducting structures and the associated fields.
The induced current density and magnetic fields in the spectral
domain are described, where a spatially varying conductivity of
a conducting region is incorporated in the solutions of magnetic-
field quantities. An experimental setup is used to measure the
field distribution above differently shaped conducting plates,
placed on top of a coil, in which eddy currents are induced. The
measurement results are compared to simulation results and the
perturbations are analyzed.

Index Terms—Analytical Modeling, Eddy current, Fourier
analysis, Permanent Magnet Machines, Experimental Validation.

I. INTRODUCTION

In synchronous permanent magnet devices, eddy currents

are induced in conducting parts, such as magnets and cooling

plates, due to movement and ac magnetic fields. In nano-meter

accurate positioning devices, used in e.g. the semi-conductor

manufacturing industry, such as planar motors [1], [2] and

core-less linear motors [3], the parasitic force due to the

eddy currents can reduce the performance [4], [5]. Analysis

of the transient eddy current distribution can give important

information on the spatial and time dependent harmonic con-

tent, which can be used to increase the performance of the

machines.

To calculate these eddy currents and parasitics created by

them, the finite element method (FEM) is an often used

method. To accurately model eddy current effects for motors

such as the linear and planar motor mentioned before, the

geometrical shape of the conducting material has to be taken

into account in all three dimensions. However, the large open

boundary structures of these type of motors makes the 3D

FEM have a relatively high computational load. For this

reason, a semi-analytical harmonic (Fourier solutions based)

method has been researched as an alternative for the FE

method. The developed harmonic model is capable, in contrast

to classical harmonic models, of calculating eddy currents

in complex segmented conducting structures. The method is

an extension of a 2D model described in [6], taking also

segmentation in the third dimension into account. The model

has shown good agreement with FEM.

In this paper, a semi-analytical method to model eddy

currents in slitted conducting plates is presented. This method

(a) (b)

Fig. 1. The used measurement setup. a) Source coil (race-track shaped) with
above it a very small pick-up coil, wound around a red non-magnetic core.
b) A copper plate is placed on top of the coil and the pick-up coil is located
above.

can be used to analyze eddy currents in the cooling system of

a moving-magnet planar motor. As this paper focuses on the

validation of the semi-analytical method using measurements,

a electromagnetic configuration is used that only consists of

a single coil and a copper plate. By using a copper plate, the

eddy current density will be high, allowing good visualization

of the eddy currents effect using measurements. In a normal

cooling system, materials with a lower conductivity would be

used to minimize the eddy current effect. However, in nano-

meter accurate positioning systems, the parasitic effects due to

eddy currents impair the performance. The used experimental

set-up will be described first. Then the (Fourier based) model

formulation will be discussed for conducting regions. To verify

the developed model it will be compared to measurements and

the results will be analyzed.

II. EXPERIMENTAL SETUP

The experimental setup used for validation of the semi-

analytical model is shown in Fig. 1. A race-track shaped coil

made of fine rectangular copper wire is placed in air. Above

the coil a copper plate is placed. A 50 μm thick airgap is

present between the coils and the plate. The time varying

current in the coils will produce an ac magnetic field and

this will induce (eddy) currents in the copper plate. Several

plates will be placed above the coil, a solid plate and two



Fig. 2. The three copper plates that were used for the measurement. The
bottom side of the plates is covered with polyimide film for isolation purposes.

plates with a certain slit pattern, where the slits will change

the spatial distribution of the magnetic field. These kind of slits

are often used in cooling systems, to reduce the eddy currents.

The three plates are shown in Fig. 2, where they are numbered

for the remainder of the paper. The copper plates are placed

directly on top of the coil, therefore, the bottom side of the

plates is covered with a polyimide film for isolation.

As a harmonic (Fourier based) modeling technique is uti-

lized to calculate the magnetic fields, the geometric model of

the electromagnetic configuration of Fig. 1 is assumed to be

periodical in both the x- and y-directions. However, as the

measurement set-up will on consist of a single ’period’, and

is not repeating in the x- or y-direction, air is added on both

sides of the periodical section. The periodic width in both

directions is almost double of the coil width in that direction.

In this way, the influence of the magnetic fields of adjacent

periods is minimized. In the z-direction, the model is divided

into regions. The source coil is located in Region 2, where

Region 1, 3 and 5 are regions containing only air. The (Fourier

based) formulation of the magnetic fields in these regions, are

described in [7]. In the conducting region (Region 4), where

the copper plate is located, the conductivity will vary as a

function of position, hence outside the plate and inside the

slits (where air is present) the conductivity is zero.

III. HARMONIC MODEL FORMULATION IN CONDUCTING

REGIONS

The magnetic field solutions are based on the quasi-static

Maxwell’s equations. This means the displacement current,
∂ �D
∂t , is neglected. The time derivative is denoted by jω.

Maxwell’s equations are then given by

∇× �E = −jω �B, (1)

∇× �H = �J, (2)

∇ · �B = 0, (3)

∇ · �J = 0 (no free charge), (4)

where �E is the electric field intensity, �B the magnetic flux

density, �H the magnetic field strength, �J is current density

and ρ is the electric charge density. The relation between the

magnetic flux density and the magnetic field strength is given

by the constitutive relation

�B = μ0μr
�H, (5)

where μ0 is the permeability of vacuum and μr is the relative

permeability, which is equal to 1 throughout the model. The

eddy current density �Jeddy is obtained from the electric field

�Jeddy = σ(x, y) �E. (6)

After substitution of (5) and (6) into (1) and (2), equations (1)

and (2) are written separately for each Cartesian component

of �E and �H . The expressions for the z-components are

substituted in the remaining equations, resulting in

∂zEx = jωμ0Hy − ∂x
(
σ(x, y)−1 (∂xHy − ∂yHx)

)
, (7)

∂zEy = −jωμ0Hx − ∂y
(
σ(x, y)−1 (∂xHy − ∂yHx)

)
, (8)

∂zHx = −σ(x, y)Ey + (jωμ0)
−1∂x ((∂xEy − ∂yEx)) , (9)

∂zHy = σ(x, y)Ex + (jωμ0)
−1∂y ((∂xEy − ∂yEx)) .

(10)

To find a solution to these four equations, the method of

separation of variables is applied. As mentioned before, a

harmonic basis for the solution in the x- and y-directions is

chosen. This means that every quantity, that is a function of

x and y, is written as a double truncated Fourier series

f(x, y) =

M/2∑
m=−M/2

N/2∑
n=−N/2

fn,m ej(kx,nx+ky,my), (11)

where the spatial frequencies kx,n and ky,m, are given by

kx,n =
nπ

τx
, (12)

ky,m =
mπ

τy
, (13)

where τx is half of the periodic width in the x-direction

and τy is half of the periodic width in the y-direction. To

model the electromagnetic configuration used for verification

(Fig. 1), τx and τy are set to 80 mm and 50 mm respectively.

The coefficients of the double Fourier sum per harmonic pair

n,m are collected in a column vector denoted by f . The

Fourier series is truncated for implementation purposes and

the number of harmonics used in the x- and y-direction is

equal to N + 1 and M + 1 respectively.

To obtain the solution in the z-direction, (7)-(10) are written

in two matrix equations in the spectral domain,

∂

∂z

[
ex
ey

]
= F

[
hx

hy

]
, (14)

∂

∂z

[
hx

hy

]
= G

[
ex
ey

]
, (15)



Fig. 3. Fourier representation of the conductivity in the conducting region,
for N=120 and M=42.

where,

F =

[ −KxPPP−1Ky jωμ0I+KxPPP−1Kx

−jωμ0I−KyPPP−1Ky KyPPP−1Kx

]
,

(16)

and

G =

[
(jωμ0)

−1KxKy −PPP − (jωμ0)
−1Kx

2

PPP + (jωμ0)
−1Ky

2 −(jωμ0)
−1KyKx

]
, (17)

and ex, ey, hx and hy are the vectors containing the Fourier

coefficients of Ex, Ey , Hx and Hy respectively and I is

the identity matrix. The matrices Kx and Ky represent the

derivatives to x and y respectively and contain the spatial

frequencies kx,n and ky,m on the diagonal respectively. The

matrix PPP contains the information of the spatial dependency

of the conductivity. The position dependent conductivity, that

was introduced in (6), is described by a double Fourier series

and its coefficients are arranged in the block-Toeplitz matrix

PPP . By this arrangement, multiplication of a vector with the

block-Toeplitz matrix, results in a 2D convolution of the

coefficients and thus a multiplication of the series in the

spatial domain. The incorporation of the spatially dependent

conductivity causes thereby a coupling of the harmonics. The

Fourier representation of the conductivity in the conducting

region, when plate 2 is present (Fig. 2) is shown in Fig. 3.

It crucial that sufficient harmonics are used to describe the

conductivity distribution. If too few harmonics are used, the

conductivity in the slits will not be equal to zero, which results

in a less accurate result of the field computation. Especially

for very thin slits, this means the number of harmonics that

has to be used is relatively high.

Substituting (14) into (15) it is obtained that

∂2

∂z2

[
hx

hy

]
= GF

[
hx

hy

]
. (18)

An eigenvalue decomposition is performed on the result of the

matrix multiplication GF, to propagation information for the

region with varying conductivity[
Qx

Qy

]
Λ2

[
Qx

Qy

]−1

= GF, (19)

where Λ is a diagonal matrix containing the vector λ with

propagation constants on the diagonal and Qx and Qy are

matrices containing the eigenvectors belonging to each eigen-

value. Because in (18) a double derivative to z is performed,

the matrix Λ is squared in (19). Using the obtained propaga-

tion information, the z-dependent solution can be constructed.

The solution consists, as is standard in the Fourier based model

for a Cartesian coordinate system, of an upward traveling

and downward traveling wave. The Fourier coefficients of the

magnetic field strength components hx, hy and hz are then

equal to

hx =Qx

(
E+(λ, z) c+ −E−(λ, z) c−

)
, (20)

hy =Qy

(
E+(λ, z) c+ −E−(λ, z) c−

)
, (21)

hz =− j (KxQx +KyQy)Λ
−1(

E+(λ, z) c+ +E−(λ, z) c−
)
.

(22)

The vectors c+ and c− contain unknowns per harmonic

pair, which will be determined later. The coefficients of the

magnetic flux density components can be obtained by using

(5). The solution for the induced current density components,

jindx , jindy and jindz are determined using (1) and (6)

jindx = Qy Λ
(
E+(λ, z) c+ +E−(λ, z) c−

)− jKyhz,

(23)

jindy = −Qx Λ
(
E+(λ, z) c+ +E−(λ, z) c−

)
+ jKxhz,

(24)

jindz = jKyhx − jKxhy. (25)

The expressions for the magnetic field components in the

non-conducting regions (Regions 1, 2, 3 and 5) are described

in [7]. In Region 2, where the coil is present, a Fourier

description of the current density distribution of the coil is

needed as a source term. Instead of describing the geometry

of the coil (and hence the current density distribution), the

field of the coil, without any conducting plate on top, is

measured. From this measurement, a backward transformation

is performed to obtain the source terms of Region 2. In

this way, coil imperfections are already incorporated in the

source terms which excludes this as a source of error between

measurement and simulation. To obtain the unknowns of each

region, boundary conditions are applied between the regions

as also explained in [7]. This will form a system of linear

equations which can be solved to determine all unknowns.

IV. EXPERIMENTAL VERIFICATION

The properties of the coil producing the field, shown in

Fig. 1 are given in Table I. The current through the source coil

has a rms value of 3.2 A and the frequency is equal to 2 kHz.

The pick-up coil, which is measuring the field, is attached

to an H-bridge to accurately place it above the source coil.

It has been made sure that the H-bridge does not influence



(a) (b) (c)

Fig. 4. Simulated current density in the conducting region (Region 4). The red square indicates the position of the plate. a) Plate 1. b) Plate 2. c) Plate 3.

TABLE I
PROPERTIES OF THE SOURCE COIL

Description Value Unit

Coil length (in x direction) 107.8 mm
Coil width (in y direction) 37.0 mm
Coil height 1.7 mm
Bundle width 14.3 mm
Number of turns 59.5 -

TABLE II
PROPERTIES OF THE CONDUCTING PLATES

Description Value Unit

Plate length (in x direction) 120.0 mm
Plate width (in y direction) 50.0 mm
Plate thickness 1 mm
Slit width 4 mm
Conductivity (copper @ 30◦ C) 5.73e7 S/m

the measurement, and no additional conducting materials are

present near the setup. The properties of the conducting plates,

that are placed on top of the source coil, are given in Table II.

The pick-up coil is made of 30 μm thin copper wire, wound

around a non-magnetic core with a diameter of 1.7 mm. The

field is measured at 1 mm above the plates on a grid of 120

mm x 64 mm with a resolution of 1 mm. The z-component

of the magnetic flux density is calculated from the measured

voltage, Vmeas, using

Bz,meas =
Vmeas

Tmc Amc ω
, (26)

where Amc is the surface of the measurement coil (2.3 mm2)

and Tmc the number of turns of the measurement coil, which

is equal to 103 and ω the radial frequency of the induced

voltage.

All simulation results are calculated for N = 120 and

M = 42. It has been verified that the conductivity description

reaches zero inside the slits, with this number of harmonics.

However, more harmonics can, because of computational

memory, not be used. The simulated induced current densities

in the several plates is depicted in Fig. 4. It can be seen that

the conductivity is correctly incorporated and that no current

is flowing on the locations of the slits. Furthermore it is clear

that the slits reduce the overall current density, however, the

peak current is increased.

The measured magnetic flux densities with the different

plates placed on top of the coil are shown in Fig. 5. The

magnetic flux densities obtained with the developed modeling

technique are depicted in Fig. 6. The absolute difference

between the model and the measurement is shown in Fig. 7.

A relative error is calculated through

rms(Bz,meas −Bz,sim)

max (Bz,meas)
. (27)

It can be seen in Fig. 7a, that for plate 1 the model and

measurement are in good agreement. The relative error is

equal to 3 %. For plate 2 and 3 the error is larger, 11 %

and 12 % respectively. As there are no slit patterns in plate

1, the used number of harmonics is relatively high. The error

is therefore expected to originate from perturbations between

measurement setup and model. Hence, the conductivity varies

with temperature, and all measured quantities, such as the

distance between the measurement coil and the plate, have

tolerances. Furthermore, 2D finite element simulations of a

rectangular wire coil with 10 turns, show a distribution of the

current density with 10 % difference between the minimum

and maximum value inside the coil, when a plate is positioned

above. As the source terms of the Fourier model assume an

uniformly distributed current density throughout the coil, a

mismatch is caused. For plate 2, the error is highest at the

location of the slits. As the absolute difference is larger on

the right side of the plate than on the left side, the plate could

have been of center during the measurement, which causes a

discrepancy between the modeled and measured result. The

relative error of plate 2 and plate 3 are furthermore due to the

truncation of the harmonics in both directions. Increasing the



(a) (b) (c)

Fig. 5. Measured magnetic flux density in the z-direction with the experimental setup. a) Plate 1. b) Plate 2. c) Plate 3.

(a) (b) (c)

Fig. 6. Simulated magnetic flux density in the z-direction with the developed model. a) Plate 1. b) Plate 2. c) Plate 3.

(a) (b) (c)

Fig. 7. Absolute difference between the measured and simulated magnetic flux density in the z-direction with the experimental setup. a) Plate 1. b) Plate 2.
c) Plate 3.



number of harmonics would enhance the simulated magnetic

flux density if a stable and smooth solution can be obtained.

V. CONCLUSION

The paper describes a semi-analytical modeling method, to

model eddy currents in slitted conducting plates. The Fourier

based solutions include a spatially varying conductivity in the

solutions of the magnetic field and induced current density

components. The model is compared to measurements on

an electromagnetic configuration. The field distribution, due

to three different copper plates, of which two contained a

slit pattern, placed on a source coil has been analyzed. The

modeled magnetic flux density due to the plate without any

slits shows a discrepancy of 3 % with the measurement. For

the two plates containing slits, the error is around 12 %. This

error is caused by measurement uncertainties, such as the exact

conductivity value, and by the limitation of the number of

harmonics, which needs to be relatively high when the slits

have a small width.
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