

Automated experiment design for data-efficient verification of
parametric Markov decision processes
Citation for published version (APA):
Polgreen, E., Wijesuriya, V., Haesaert, S., & Abate, A. (2017). Automated experiment design for data-efficient
verification of parametric Markov decision processes. arXiv.org, e-Print Archive, Physics, (1707.01322v1), Article
1707.01322. http://arxiv.org/abs/1707.01322v1

Document status and date:
Published: 05/07/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

http://arxiv.org/abs/1707.01322v1
https://research.tue.nl/en/publications/ed9fbbba-0032-48a6-92cd-2afe23ad0df1

ar
X

iv
:1

70
7.

01
32

2v
1

 [
cs

.L
G

]
 5

 J
ul

 2
01

7

Automated Experiment Design

for Data-Efficient Verification

of Parametric Markov Decision Processes

E. Polgreen1, V.B. Wijesuriya1, S. Haesaert2, and A. Abate1

1 Department of Computer Science, University of Oxford
2 Department of Electrical Engineering, Eindhoven University of Technology

Abstract. We present a new method for statistical verification of quan-
titative properties over a partially unknown system with actions, utilising
a parameterised model (in this work, a parametric Markov decision pro-
cess) and data collected from experiments performed on the underlying
system. We obtain the confidence that the underlying system satisfies
a given property, and show that the method uses data efficiently and
thus is robust to the amount of data available. These characteristics are
achieved by firstly exploiting parameter synthesis to establish a feasible
set of parameters for which the underlying system will satisfy the prop-
erty; secondly, by actively synthesising experiments to increase amount of
information in the collected data that is relevant to the property; and fi-
nally propagating this information over the model parameters, obtaining
a confidence that reflects our belief whether or not the system parameters
lie in the feasible set, thereby solving the verification problem.

1 Introduction

Formal verification relies on full access to accurate models describing the be-
haviour of systems in order to guarantee their correctness. Such models are
often hard to obtain for systems encompassing partially understood behaviours
and uncertain events. For a partially unknown system, the unknown model char-
acteristics can be represented via non-determinism in the form of parameters.
The resulting parameterised model captures all available knowledge on the un-
derlying system of interest.

We target the verification of a fragment of Probabilistic Computation Tree
Logic (PCTL) on partially unknown systems with actions. We develop a new ap-
proach that incorporates the available information captured by a parameterised
model with the active collection of a limited amount of data from the underlying
system. The verification problem is tackled in three phases. In the first phase
we use the available parameterised model to synthesise the set of parameters for
which the property of interest is satisfied (called the feasible set).

In the second phase a series of experiments are designed and executed on the
system to update the knowledge available about the parameters of the param-
eterised model. More precisely, a procedure executes the designed experiments,

http://arxiv.org/abs/1707.01322v1

2 E. Polgreen et al.

obtains data from the system and, by means of Bayesian statistics, updates dis-
tributions over the likely parameter values of the parameterised model. This
updated knowledge is returned to the experiment design module, and the pro-
cess is repeated until a preset limit on the total amount of collectible data is
reached. The design of such experiments is important to attain a reasonable
level of confidence in the acceptance or rejection of a property with a limited
amount of data.

In the final phase, we combine the output from the parameter synthesis with
the updated distributions over the model parameters to quantify the confidence
that the system satisfies (or does not satisfy) the property.

This work extends the contributions in [19] by focussing on systems with ac-
tions: the presence of (action) non-determinism provides the potential for experi-
ment design, whereby we select actions to improve the accuracy of our confidence
value. More precisely we design experiments that maximise the usefulness of the
data collected. Intuitively, this means that we want to design experiments to pri-
oritise the collection of data that leads to proving or disproving the satisfaction
of the property. In this work, we present the complete approach, and evaluate
the contribution of our experiment design procedure . We argue that automated
experiment design allows us to draw sensible conclusions robustly with a limited
amount of data.

Structure of the paper. Section 2 provides the necessary background infor-
mation for the rest of paper to build upon. Section 3 presents an overview of
our algorithm. Subsequent sections detail the different phases of the algorithm:
in Section 4 we show how we collect data; Section 5 provides details on the con-
fidence computation; and the key contribution of this work is Section 6, which
outlines our experiment design approach.

1.1 Problem Statement

Consider a partially unknown system S, with external non-determinism in the
form of actions, and suppose we can gather a limited amount of sample tra-
jectories from this system. Assume the partial knowledge about the system is
encompassed within a parameterised model class describing the behaviour of S.
We investigate two sub-problems:

– Can we efficiently use this limited amount of data from a system S to quantify
a confidence that the system S verifies a given PCTL property?

– How should we design an experiment on the system such that the gathered
data allows us to verify the property with the greatest degree of accuracy?
Let the choice of actions of system S be something we can control during the
experiment, and let there only be a limited amount of available experiment
time; can we optimise the sequence of actions to increase the accuracy of the
confidence quantification?

Automated Experiment Design for Data-Efficient Verification of pMDPs 3

1.2 Related Work

We compare our work to two branches of research: Statistical Model Checking
(SMC) and research concerned with learning models from system data. We con-
trast our experiment design method with existing strategy synthesis techniques
for fully known Markov decision processes (MDPs).

We emphasise that we tackle a different problem than SMC: we target par-
tially unknown systems and gather data from the underlying system; SMC[16]
targets fully known models that are too big for conventional verification, and
generates large amounts of data from the models themselves. When applied
to model-free scenarios [23, 24], SMC generates this data from the underlying
system. By using partial model knowledge, we substantially reduce this data
requirement. In addition, SMC for systems with non-determinism [4, 12] consid-
ers only bounded-time properties, and depends on the ability to generate traces
from the model of length greater than the bound. By incorporating parameter
synthesis tools, we are able to consider unbounded-time properties and to draw
conclusions from much shorter traces.

Research on learning models from system data is broad. [18, 22] use a Bayesian
approach to learn full Markov models of completely unknown systems. Our work
uses a similar Bayesian method but differs because we include information from
the partial model, which allows us to consider known relationships between pa-
rameters and thus reduce the amount of data needed for inference. [1, 3] use
active learning to discover full MDP models from data, prioritising actions by
variance minimisation or KL divergence. The inclusion of a partial model in our
method allows us to instead prioritise gathering data that contributes to the
acceptance or rejection of a given property over the system. Although [3] learns
the model with the goal of system verification, the authors provide no means of
quantifying a confidence that the system satisfies the property, as they do not
have a way to assess which transition probabilities have the greatest contribution
to the satisfaction of the property.

Considering different model classes, experiment design is also used in system
identification [7]. Recent studies [10, 11] have incorporated experiment design to
data-driven statistical verification over dynamical systems with partly unknown
dynamics, controllable inputs and noisy measurements. Similar to our approach,
they also compute a confidence estimate on the properties of interest by gathering
data through optimal experiment design.

Action selection for Markov decision processes, though in our context used
for experiment design, is a known problem that in general amounts to syn-
thesising strategies. [15] presents an overview for MDPs with static rewards,
and [8] provides solutions for MDPs with non-Markovian rewards. Closer to our
approach, [9] synthesises strategies for MDPs online, where an agent learns a
state cost only after selecting an action. [13] use inference-based techniques over
strategies to pick a strategy that maximises the expected reward for an MDP
with arbitrary rewards.

4 E. Polgreen et al.

2 Background

We model a fully known system as a Markov decision process [2].

Definition 1 A discrete-time Markov decision process (MDP) M is a tuple
(S,Act,T, ιinit,AP, L), where:

– S is a finite, non-empty set of states,

– Act is a set of actions,

– T : S × Act × S → [0, 1] is the transition probability function, such that
∀s ∈ S and ∀α ∈ Act,

∑

s′∈S T(s, α, s′) ∈ {0, 1},

– ιinit : S → [0, 1] denotes an initial probability distribution over the states S,
such that

∑

s∈S ιinit(s) = 1,

– The states in S are labelled with atomic propositions a ∈ AP via the labelling
function L : S → 2AP.

An action α ∈ Act is enabled in state s if and only if
∑

s′∈S T(s, α, s′) = 1.
Let Act(s) denote the set of enabled actions in s. For any state s ∈ S, it is
required that Act(s) 6= ∅. Each state s′ ∈ S for which T(s, α, s′) > 0 is called an
α-successor of s. Those states s satisfying the condition ιinit(s) > 0 are called
initial states.

We assume that the MDP is not known exactly, and instead belongs to the set
of MDPs represented by a parametric Markov decision process.

Definition 2 A discrete-time parametric Markov decision process (pMDP) is
a tuple MΘ = (S,Act,Tθ, ιinit,AP, L,Θ), where S, ιinit,Act,AP, L are as in
Definition 1. The entries in Tθ are specified in terms of parameters, collected in
a parameter vector θ ∈ Θ, where Θ is the set of all possible evaluations of θ.
Each evaluation gives rise to an induced Markov decision process M(θ).

∀s ∈ S, ∀α ∈ Act(s), ∀θ ∈ Θ :
∑

s′∈S Tθ(s, α, s
′) = 1, namely any θ ∈ Θ in-

duces an MDP M(θ) where the transition function Tθ can be represented by a
stochastic matrix. We also assume a prior distribution on the model parameters
(to be used in Bayesian inference). We assume all non-parameterised transition
probabilities are known exactly.

As in [19], we consider linearly parameterised MPDs, where unknown tran-
sition probabilities can be linearly related. More precisely, given Θ ⊆ [0, 1]n and
parameter vector θ = (θ1, . . . , θn) ∈ Θ with θi ∈ [0, 1], a pMDP is considered lin-
early parameterised if all outgoing transition probabilities of state-actions pairs
have probability gl(θ) or 1 − gl(θ), where gl(θ) = k0 + k1θ1 + ... + knθn with
ki ∈ [0, 1] and

∑

ki ≤ 1. This restriction is due to the transformations presented
in [19] necessary to perform Bayesian inference over the model parameters. As
before, ∀s ∈ S, ∀α ∈ Act(s), ∀θ ∈ Θ :

∑

s′∈S Tθ(s, α, s
′) = 1.

Automated Experiment Design for Data-Efficient Verification of pMDPs 5

2.1 Strategies

A strategy for an MDP resolves nondeterminism by choosing an action in each
state of the model. In our work experiment design amounts to synthesising a
strategy for an MDP, i.e., a sequence of actions, under which we generate data
from the system. We focus on deterministic memoryless strategies in this paper,
i.e., strategies that always pick the same action in any given state, independent
of the history of states already visited. Future work will extend to both memory-
dependent and randomised strategies.

Definition 3. A deterministic memoryless strategy for an MDP M is a function
π : S → Act s.t. π(s) ∈ Act(s) ∀s∈S.

2.2 Properties – Probabilistic Computational Tree Logic

We consider system specifications (aka properties) given in a fragment of Prob-
abilistic Computational Tree Logic (PCTL) [2]. Since we use PRISM [14] for
parameter synthesis, we consider non-nested, unbounded-time “until” properties
expressed in PCTL.

Definition 4 Let a discrete-time MDP be given. Let φ be a formula interpreted
over states s ∈ S, and ϕ be a formula interpreted on paths of the MDP. Also, let
⊲⊳∈ {<, ≤, ≥, >}, n ∈ N, p ∈ [0, 1], c ∈ AP . The Syntax of the PCTL fragment
we consider is given by:

φ := true | c | φ ∧ φ | ¬φ | P⊲⊳p(ϕ), ϕ := ©φ | φ U φ.

Definition 5 Consider a PCTL formula φ := P⊲⊳p(φ1 U φ2). Let P
π
M
(s, ϕ) de-

note the probability associated to the paths of an MDP M starting from s ∈ S
satisfying the path formula ϕ under the strategy π. Let A(M) denote all deter-
ministic memoryless strategies for M. The satisfaction of the formula φ by M
is given by:

M |= P⊲⊳p(φ1 U φ2) ⇐⇒ ∀s ∈ S, ιinit(s) > 0 : min
π∈A(M)

P
π
M
(s, φ1 U φ2) ⊲⊳ p.

We introduce the feasible set of parameters, denoted Θφ, which is the set of
parameter evaluations for which the property is satisfied.

Definition 6 Let M(θ) be an induced MDP of the pMDP MΘ, indexed by pa-
rameter vector θ ∈ Θ. Let φ be a formula in PCTL. The feasible set Θφ is defined
as: θ ∈ Θφ ⇐⇒ M(θ) |= φ.

We use P(A) to denote the probability of an event A, p(·) to represent probability
density functions and P⊲⊳p(·) for the probabilistic operator in PCTL.

6 E. Polgreen et al.

3 Overview of the Method

Our method is made up of three distinct phases, as shown in Fig. 1.

1. We use a parameter synthesis tool to determine a set of feasible parame-
ters for which the property is satisfied by the system, based on the given
parametric Markov decision process, see Section 3.1.

2. (a) We synthesise a strategy for collecting data, based on the feasible set
and the prior distribution over the parameters, see Section 6.

(b) We collect data from the underlying system using the synthesised strat-
egy, see Section 4.

(c) We use Bayesian inference to infer a distribution over the likely values of
the parameters, based on the collected data, and update the respective
prior distributions with the new information, see Section 4. If we can
sequentially collect more data, loop back to step 2 (a).

3. We compute the confidence that the system satisfies the property, based on
the data collected, see Section 5.

Updating the posterior distributions for parametric Markov decision processes
with linear relationships between the parameters requires special treatment, as
detailed in Section 4.

1: Parameter
synthesis

Property φ Model pMDP

2a: Strategy
synthesis

2b: Generate
data from system

2c: Bayesian infer-
ence over parameters

3: Confidence
computationC = P(S |= φ)

Θφ

π D

p(θ|D)

p(θ|D)

Fig. 1: Overview of the verification procedure.

3.1 Parameter Synthesis

The first phase of the method uses parameter synthesis to find the feasible set
of parameters, namely parameter evaluations corresponding to models of the
considered pMDP that satisfy the given PCTL property. This step leads to the
set of parameters Θφ = {θ ∈ Θ : M(θ) |= φ}.

The output of the parameter synthesis procedure is a mapping from hyper-
rectangles (which are subsets of parameter evaluations) to truth values, namely
“true” if the property is satisfied in the hyper-rectangle and “false” otherwise.

Automated Experiment Design for Data-Efficient Verification of pMDPs 7

Implementation: We use PRISM [14] for parameter synthesis: the tool computes
a rational function of the parameters, which expresses the result obtained from
model checking the PCTL property on the parameterised model. Our approach
can also make use of Storm [21], which shows potential to be scalable to much
larger systems. Storm lifts a parametric Markov decision process to a parameter-
free Stochastic Game (SG) between two players, and solves the resulting SG via
standard value iteration.

4 Bayesian Inference in Parametric Markov Decision

Processes

In this work, we collect data from the underlying system and use Bayesian learn-
ing to infer a probability distribution over parameters of the pMDP model based
on the collected data. Bayesian inference maintains a probability distribution
over these parameters and updates the distribution by employing Bayes’ rule as
more observations are gathered [22]. An initial prior distribution p(θ) is assumed.

Data. We collect finite traces from the underlying system, in the form of a
sequence of visited states and actions. We use D to denote a set of finite traces.
We split the data into transition counts: Dsk,α1,sl denotes the number of times
the transition from sk to sl under action α1 appears within the data set D.
Each transition count is the outcome of an independent trial in a multinomial
distribution3 with event probabilities given by the transition probabilities.

Assume for now that the transitions are parameterised either with constants
or with single parameters of the form θi or 1−θi. We can group transition counts
for identically parameterised transitions. We shall denote by Dθj the transition
counts for all transitions with probability given by θj .

We wish to obtain posterior distributions for each parameter viamarginal dis-
tributions (which, in this case, are binomial distributions), by applying parameter-
tying [20] techniques. We thus obtain a number of transition counts for 1− θj as
the sum of all transitions not parameterised with θj , under an action that has
a transition parameterised with θj , and denote it by D¬θj . Hence Dθj and D¬θj

are calculated as:

Dθj =
∑

si∈S,sl∈S,αk∈Act

Dsi,αk,sl forT(si, αk, sl) = θj , and

D¬θj =
∑

si∈S,sl∈S,αk∈Act

Dsi,αk,sl for T(si, αk, sl) 6= θj ∧ ∃sm ∈ S : T(si, αk, sm) = θj .

Let Dθj,¬θj denote the pair (Dθj , D¬θj). For parameterisations where the tran-
sition probabilities are expressed as linear functions of parameters, we obtain

3 A multinomial distribution is defined by its density function f(· | p,N) ∝
∏k

i=1
p
ni
i ,

for ni ∈ {0, 1, ..., N} and such that
∑k

i=1
ni = N , where N ∈ N is a parameter and

p is a discrete distribution over k outcomes.

8 E. Polgreen et al.

Dθj,¬θj by the same procedure that [19] uses, in which transition probabilities
expressed as multinomial distributions. Further details can be found in Section 4.

Bayesian Inference with Data. Consider a parametric Markov decision pro-
cess MΘ = (S, Act, Tθ, ιinit, AP, L, Θ) with Θ ⊆ [0, 1]n. Suppose that we
have obtained Dθj and D¬θj for all θj ∈ θ, and that we have assumed non-
informative, uniform prior distributions for all parameters θj ∈ θ, denoted by
p(θj). The posterior density p(θj | D) is given by Bayes’ rule:

p(θj | D) =
P(D | θj)p(θj)

P(D)
=

p(θj)θ
Dθj

j (1− θj)
D¬θj

P(Dθj ,¬θj)
.

A standard approach [5, 17, 22] is to consider the prior to be a Dirichlet
distribution. The posterior distribution is then updated by adding the event
counts to the hyperparameters of the prior. The Dirichlet prior distribution for
the pair (θj , 1 − θj) is denoted as Dir(θj | µθj) with hyperparameters µθj =

(µ
θj
1 , µ

θj
2). Thus, the updated posterior distribution for the parameter θj is given

as: θj ∼ p(θj | D) = Dir(θj | Dθj ,¬θj + µθj).
The posterior distribution for the entire parameter vector θ, given by p(θ | D)

is equal to the product of the posterior distributions for all θi ∈ θ. This holds
due to the independence of each θi over independent state-action pairs in the
pMDP. Note that, if we have a linearly parameterised MDP, we obtain some of
the transition counts in the form of multinomial distributions. We hence obtain
realisations of the posterior by a sampling procedure from [19] as explained in
Section 4.

Extension: obtaining Dθj,¬θj
for Linear Parameterisations. Linearly pa-

rameterised MDPs, as stated in Definition 2, have transition probabilities ex-
pressed using affine functions of the form gl(θ) = k0 + k1θ1 + . . . + knθn. We
apply two transformations, as introduced in [19], to the pMDPs. The transfor-
mations result in an expanded model that contains only transition probabilities
expressed as constants, or in the form of θj or 1− θj , for any parameter θj ∈ θ.
The expanded model allows us to derive distributions for Dθj,¬θj for all compo-
nent parameters θj ∈ θ, which we denote by D∗

θj,¬θj
. We extend this notation

and D∗
sk,α1,sl

denotes the probability distribution of the transitions from sk to
sl under action α1 in the expanded model, and D∗

θ,¬θj
denotes the distribution

of Dθj,¬θj in the expanded model. We then present a procedure for performing
Bayesian inference over these distributions. The two transformations are:

– Transition splitting, which expands a transition with probabilities expressed
as k0 + k1θ1 + . . . + knθn into n transitions with probabilities expressed as
k0, k1θ1,..., knθn, respectively. This is illustrated in Fig. 2.

– State splitting, which expands a transition with probabilities expressed as
kiθi, into transitions with constant probabilities ki and 1−ki, and transitions
with single parameter probabilities θi and 1−θi. This is illustrated in Fig. 3.

Automated Experiment Design for Data-Efficient Verification of pMDPs 9

The expansions stated above are shown to be transitive and generally applicable
to any linearly parameterised Markov decision process. The new model, how-
ever, has transitions that did not feature in the original model, and hence we
are unaware of the corresponding exact transition counts. Therefore, we han-
dle these new transition counts as multinomial distributions over the transition
probabilities.

As an example of transition splitting, consider Fig. 2 again. The expansion of
the MDP introduces 4 new states, n0, n1, n2, n3. The transition counts D∗

s0,α1,n0

and D∗
s0,α1,n1

are unknown, but we know the total must be equal to Ds0,α1,s3 .
Hence, they follow the binomial distribution,

P (D∗
s0,α1,n0

= N) =

(

Ds0,α1,s3

N

)

(
k3θ3

k3θ3 + k4θ4
)N (

k4θ4
k3θ3 + k4θ4

)Ds0,α1,s3−N .

The procedure for state splitting is similar; consider Fig. 3. The expansion of
the MDP introduces 2 new states. The transition counts D∗

s0,α2,n1
, D∗

s0,α2,s2
and

D∗
n1,s2

are amongst the unknown transition counts. However, we know the counts
for D∗

s0,α2,s2
+D∗

n1,s2
is equal to Ds0,α2,s2 because the total counts into state s2

must remain equal. Hence we can specify the binomial distribution:

P (D∗
s0,α2,s2

= N) =

(

Ds0,α2,s2

N

)

(
1− k2

1− k2 + 1− θ2
)N (

1− θ2
1− k2 + 1− θ2

)Ds0,α2,s2−N .

We also know that the total counts into s1 remain equal after the expansion
and therefore D∗

n1,s1
= Ds0,α2,s1 . Using this method, we can find distributions

that represent all unknown transition counts. Note that these distributions de-
pend on several θi ∈ θ: we explain how we perform Bayesian inference over these
distributions in the following section.

s0

s1

s2s3

1 − k3θ3

−k4θ4

k1θ1

+k2θ2

k3θ3 + k4θ4 1 − k1θ1 − k2θ2α1
α2

s0 s2
n0

n1s3

n2 n3s1

k3θ3

k4θ4

1

1

1 − k3θ3

−k4θ4
k1θ1

k2θ2

1

1

1 − k1θ1 − k2θ2

α1 α2

Fig. 2: Transformation of a linearly-parameterised MDP: transition splitting.

Bayesian Inference with Distributions over Transition Counts. We use
D∗

θj ,¬θj
to denote the set of all possible completions of D∗

θj ,¬θj
. We can apply

Bayes’ rule over the distributions over the transition counts as:

p
(

θj |Dθj ,¬θj

)

=
∑

D∗

θj ,¬θj
∈D∗

p
(

θj |D
∗
θj ,¬θj

)

P(D∗
θj ,¬θj

|D).

10 E. Polgreen et al.

s0 s1

s2

s3

1 − k1θ1

k2θ2

k1θ1

1 − k2θ2

α1

α2

s0 s1

s2

n0

s3

n1

k1

θ1
1 − θ1

1 − k1

k2 θ2

1 − θ2

1 − k2

α1

α2

Fig. 3: Transformation of a linearly-parameterised MDP: state splitting.

As mentioned before, completed data sets have a multinomial distribution de-
pendent on the parameterisation, hence the distribution of D∗

θj ,¬θj
is given by

P(D∗
θj,¬θj

) =
∫

Θ
P(D∗

θj ,¬θj
|θj)p (θj) dθj . For a given Dθj ,¬θj , the conditional dis-

tribution P(D∗
θj,¬θj

|Dθj,¬θj) is P(D
∗
θj,¬θj

)/P(Dθj,¬θj) with D∗
θj ,¬θj

∈ D∗
θj ,¬θj

and

P(D) =
∑

D∗

∫

Θ
P(D∗

θj ,¬θj
|θj)p (θj) dθj .

Realisations of the posterior p
(

θj |D
∗
θj ,¬θj

)

can be obtained by sampling

without computing the entire integral. We generate a set of N samples of D∗
θj ,¬θj

by sampling from the distribution P(D∗
θj,¬θj

| D) and then generate a sample

of θj from the distribution P(θj | D∗
θj,¬θj

) for each sample of D∗
θj,¬θj

. These
samples are then used directly to compute the confidence.

5 Computation of Confidence

We determine a confidence, C, for the satisfaction of a PCTL formula φ by a
system S of interest. We first presented this procedure in previous work [19], and
we need no extension to this due to the external nondeterminism being factored
out in the Bayesian inference calculation given in the previous section.

Definition 7. Given a PCTL formula φ that has a binary satisfaction function,
i.e., the property is either satisfied or not, and posterior distributions p(θi | D)
for all θi ∈ θ, as obtained in the previous section, the confidence in S |= φ can
be quantified by Bayesian inference as

C = P(S |= φ | D) =
∫

Θφ

∏

θi∈θ p(θi | Dθi,¬θi)dθ, (1)

The operation shown in Eq. (1) is equivalent to computing the confidence that
each parameter is within its feasible set, and then taking the product of all
the parameter confidence values. The integral of a Dirichlet distribution is hard
to compute using analytical methods, and so we use Monte Carlo integration.
This also allows integration with the calculation of the posterior distribution
for pMDPs with linear parameterisations, where we have obtained the posterior
distribution by means of sampling, as described in Section 4.

Automated Experiment Design for Data-Efficient Verification of pMDPs 11

6 Online Experiment Design

The key contribution in this paper is the design of experiments to generate max-
imally useful data. We describe in the preceding sections how we use a limited
amount of data efficiently to obtain a confidence that the system satisfies the
property. In this section, we propose a method for selecting the deterministic
memoryless strategy that provides the most useful data to input into our con-
fidence computation in Section 5. This allows us to compute the most accurate
confidence value for the finite data set of limited size, i.e., the confidence should
be high if the underlying system satisfies the property, and low if the underlying
system does not satisfy the property.

6.1 Predicted Confidence

We predict the confidence after taking a transition from state s under action α.
We define the predicted confidence, Cpred

s,α , to be the confidence computed using
the expected parameter counts, after taking a single transition from s under action
α: these are denoted by Es,α (Dθi,¬θi) for all θi ∈ θ. Formally,

Cpred
s,α =

∫

Θφ

∏

θi∈θ

p(θi | Es,α (Dθi,¬θi))dθ,

where p(θi | Es,α (Dθi,¬θi)) is the predicted posterior distribution obtained by
updating the prior, Dir(θi | µθi), with the expected parameter counts, i.e.,
Dir(θi | µ

θi + Es,α (Dθi,¬θi)).
We first compute the expected transition counts for the state-action pair,

Es,α (Ds,α), from which we extract the expected parameter counts using the
method in Section 4. Consider a state s with an action α, and two transitions with
probabilities Tθ(s, α, s

′) = gl(θ) = k0+k1θ1+...+knθn, and Tθ(s, α, s) = 1−gl(θ).
The expected transition counts are given by a multinomial distribution over the
outgoing transitions under that action, with event probabilities equal to the ex-
pected transition probabilities. Note that prior distribution for any parameter
θi ∈ θ is Dir(θi | µθi). To compute the expected transition probabilities, we

require the expected values of the parameters, given by E (θi) =
µ
θi
1

µ
θi
1 +µ

θi
2

for

all θi ∈ θ. The expected value of the transition probabilities are then given
by evaluating gl(E (θ)) and 1 − gl(E (θ)). Hence the expected transition counts
Es,α (Ds,α,s′) and Es,α (Ds,α,s), are equal to the expected transition probabilities
for Tθ(s, α, s

′) and Tθ(s, α, s). Consider only the transition parameterised with
Tθ(s, α, s

′) = gl(θ):

Es,α (Ds,α,s′) = E (T(s, α, s′)) = gl(E (θ))

= k0 + k1E (θ1) + ...+ knE (θn) = k0 +
∑

i=1:n

ki
µθi
1

µθi
1 + µθi

2

.

We can extract the parameter counts as described in Section 4, to obtain Es,α (Dθi,¬θi).

12 E. Polgreen et al.

6.2 Optimisation of Predicted Confidence Gain

The underlying system either satisfies or does not satisfy the given property, so
we wish to minimise the difference between our confidence value and the closest
among 0 or 1, or to maximise the difference between a confidence of 0.5 and our
confidence, i.e., the maximum absolute value of 0.5−C. We can therefore define
a predicted confidence gain for a state-action pair (s, α), denoted by Gs,α, as the
maximisation of this difference, i.e., the biggest step towards either 0 or 1.

Gs,α = |0.5− Cpred
s,α | − |0.5− C|

For a finite trace of length N , we can calculate the optimal predicted confidence
gain for state s and discrete time step t, denoted by xt

s, as

xt
s =

{

maxα∈Act(s)(Gs,α +
∑

(T(s, α, s′). xt+1
s′)) if 0 < t < N

0 if t ≥ N.

It is important to note that the confidence gain is not a static quantity, because
Gs,α depends on the distribution over the relevant component parameters of θ
at time t.

6.3 Optimal Confidence Gain: Experiment Design via Strategy

Synthesis

Due to memory dependency of the confidence gain, computing an optimal strat-
egy is intractable, and cannot be solved via conventional dynamic programming
methods [8]. However, we put forward a few alternatives.

Explicitly evaluated memoryless strategies. The conventional way of solving a
MDP with non-Markovian rewards is to translate the model into an equivalent
MDP with Markovian rewards, whose states result from augmenting those of
the original model with extra information capturing enough history to make the
reward Markovian. This is in general computationally expensive [8]. Given that
we will be performing strategy synthesis repeatedly in our method (i.e., once
each time a new batch of data is sequentially gathered), we compromise and use
a straightforward selection method to find the best memoryless strategy. This
reduces the number of possible strategies and allows us to consider each possible
strategy individually. We simplify the calculations in Section 6.1 to compute the
expected transition counts for a full trace of length N , and then compute the
predicted confidence gain for the entire memoryless strategy. This method works
well for small trace lengths, however computing the expected transition counts
for a full trace of length N amounts to performing a matrix multiplication N
times, so this can be time consuming for large N .

Alternative off-line method. An alternative approach would be to disregard the
memory dependency of the confidence gain. This corresponds to an off-line ap-
proach: we compute a strategy on the model frozen at the time we start gener-
ating traces, assuming that the prior distributions remains unchanged over the

Automated Experiment Design for Data-Efficient Verification of pMDPs 13

trace horizon N . We assign confidence gains to state-action pairs and treat them
as static rewards. This allows us to use classical dynamic programming to find
the best memoryless strategy, which would require introducing a discount factor
on the rewards, to avoid infinite returns inside strongly-connected components.
This method may be faster for long trace lengths than explicitly evaluating pos-
sible strategies, as done previously; however, the selected strategy may not be
the best memoryless strategy when the trace lengths are large, and specifically
when the prior distributions, which are assumed to remain unchanged, actually
change significantly over time as the trace length is being reached.

Comparison. Consider the small pMDP shown in Fig. 4, parameterised with
θ = (θ1, θ2), and the property P≤0.5(true U s1). Both parameters have the same
prior distributions and both contribute equally to the feasible set. Intuitively,
choosing action α2 or α3 is better than choosing action α1, because any trace
starting with α1 only contains one parameterised transition. However, it is also
intuitive that choosing α2 is better than α3 because any trace starting with α3

only gives us information about θ1, whereas traces with α2 give us information
about both parameters.

The dynamic programming approach will pick nondeterministically between
action α3 and α2 for the first trace, because the reward assigned to (s0, α3) is
the same as the reward assigned to (s0, α2) as the initial priors and the feasible
sets are the same. The priors will not be updated until after the full trace is
collected. Our strategy synthesis approach calculates the expected updates for
these priors, and will thus be able to detect a better strategy, which selects action
α2.

s0

s1

s2

s3

s4 s5

s6

θ1 + θ2

1

1

1 − θ1 − θ2 α3 1

α 2
1

θ1

1 − θ1

θ1

θ1

1 − θ1

θ2

1 − θ1

1 − θ2

α1

Fig. 4: Example pMDP where offline strategy synthesis may not be optimal

In our experimental evaluation, we use the explicitly evaluated memoryless
strategy. Henceforth, the explicitly evaluated memoryless strategy will be re-
ferred to as the synthesised strategy.

7 Results

We experimentally evaluate the research questions posed in the problem state-
ment: question 1 – given a limited amount of data, can we use it efficiently to

14 E. Polgreen et al.

quantify a confidence that our system satisfies a given property? question 2 – can
we design experiments that increase the accuracy of this confidence?

Experimental Set-up. Our approach is implemented in C++. We use PRISM
[14] for parameter synthesis, and GSL-2.3 [6] for random number generation.

To answer question 2, we evaluate our synthesised strategy approach against
two alternatives. The first comparison is against a memoryless strategy, ran-
domly selected from the set of all possible memoryless strategies. We term the
resultant strategy as random static strategy. The second comparison strategy
randomly selects actions at each state as data is collected, and therefore we
term it as no strategy. All three approaches use the same Bayesian inference
framework over parameter counts.

We present the analysis of our approach on the simple pMDP model in Fig. 5
and with the PCTL property P≥0.5(true U complete). We also run our approach
on models up to 1000 states, but find the scalability depends on the number of
actions in the model. We assign non-informative priors to the parameters. Note
that in our model, θ2 does not contribute to the satisfaction of the property,
and having validated that this does not affect the confidence results, we set θ2
equal to θ1. We simulate a range of underlying systems, corresponding to models
M(θ) with different values for θ, which allows us to assess the accuracy of our
confidence values against a ground truth, Gtrue. For a simulated system modelled
by M(θ), this is given by:

Gtrue =

{

0 if θ1 /∈ [0.369, 0.75],
1 if θ1 ∈ [0.369, 0.75].

(2)

S0

S2

{complete}

S3

S4

S1

2

5 (1− θ1 −
1

4
)

1

4

θ1

113

5

1

1

10

θ2

(1− θ2 −
1

10
)

1

1

1

Fig. 5: A simple pMDP for the experimental evaluation.

We collect data from the simulated system in the form of a history of state-
action pairs visited. We compute the mean squared error (MSE) between the
ground truth from Eq. (2) and the confidence estimate, formally,
MSE = 1

n

∑n
i=1(Gtrue − Gi)

2, where n is the number of trials and Gi is the
output confidence estimate for the i-th run.

Automated Experiment Design for Data-Efficient Verification of pMDPs 15

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

System Parameter

M
ea
n
S
q
u
a
re
d
E
rr
o
r

Synthesised Strategy
Random Static Strategy
No Strategy

(a) All strategies (t10,l02)

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

System Parameter

M
ea
n
S
q
u
a
re
d
E
rr
o
r

Synthesised Strategy
Random Static Strategy
No Strategy

(b) All strategies (t10,l10)

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

System Parameter

M
ea
n
S
q
u
a
re
d
E
rr
o
r

02 Traces of Length 20
04 Traces of Length 10
05 Traces of Length 08
08 Traces of Length 05
10 Traces of Length 02
10 Traces of Length 10
100 Traces of Length 10

(c) Synthesised strategy

Fig. 6: Errors produced by the confidence computation for the three strategies considered. Plots
(a) and (b) show the MSE for each type of strategy and for 10 traces of different trace lengths
over different simulated systems. Plot (c) presents the MSE for the synthesised strategy over
different simulated systems and combinations of number of traces with varying trace lengths.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Traces

C
o
n
fi
d
en

ce

(a) Synthesised strategy (t20,l10)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Traces

C
o
n
fi
d
en

ce

(b) Random static strategy (t20,l10)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Traces
C
o
n
fi
d
en

ce
(c) No strategy (t20,l10)

Fig. 7: Convergence of confidence outcomes to the ground truth over a simulated underlying
system with both parameters (θ1, θ2) set to be equal to 0.7.

Observations and Discussion. The MSE in the confidence from all three
strategies, over a range of underlying systems and varying quantities of data
(i.e., for different numbers and lengths of traces), are shown in Fig. 6. The
convergence of the confidence outcome is shown in Fig. 7, with box plots showing
the interquartile range (IQR), omitting any outliers, and whiskers extending to
the most extreme data points not considered to be outliers.

Accuracy of confidence results. The confidence for all approaches is low around
the lower boundary of Θφ, and the MSE is high, shown in Fig. 6. This is consis-
tent with the goal of the confidence calculation, where one would need to know
the exact value of the system parameter θ if its value is near this edge, to be
able to decide whether it falls in Θφ or not, and hence the calculation has a high
sensitivity around this boundary This sensitivity increases as the amount of data
increases, as seen by comparing the MSE for θ1 = 0.4 in Fig. 6a, where the trace
length is 2, with Fig. 6b when the trace length has increased up to 10. To ex-
plore why this is the case, consider that to compute the confidence we integrate
the posterior distribution over the feasible set Θφ = [0.369, 0.75]. The posterior
distribution for θi = 0.369 should have a peak centred at 0.369 and half of the
probability mass falling in the feasible set, leading to C = 0.5. The height and
width of the posterior distribution are determined by the amount and spread of
data available and for a tall and thin distribution (encompassing a large amount

16 E. Polgreen et al.

of data), a small change in the position of the peak can move a large percentage
of mass of the distribution in or out of the feasible set. This is prominent in
Fig. 6b since our approach synthesises a strategy that would yield the highest
information gain, i.e., the most useful data. However, as we move away from the
edge, increased data effectively places probability mass away from the uncertain
regions, thus reducing both variance and MSE. Neither of the other two alter-
natives has the ability to collect as much useful data and therefore variance is
high even at the far ends of the parameter spectrum. The ability of our method
to collect more useful data is also illustrated in the convergence graphs shown
in Fig. 7, where synthesis approach converges to the ground truth quicker than
both comparison strategies.

We conclude that our strategy synthesis does improve the accuracy of the
confidence calculation, unless the parameter value falls close to the boundary of
Θφ, and that away from this boundary the confidence converges to the ground
truth and we are able to verify the property over S based on the data collected.

Robustness. We run our implementation with varying lengths of traces, where
the total number of transitions in the data remains the same, and the results
summarised in Fig. 6c show that our approach, on this case study, is relatively
insensitive to this variation (compare Fig. 6a with Fig. 6b). Our method depends
on the number of parameterised transitions we visit and so depends on the trace
length being long enough to visit some parameterised transitions. This is in
contrast to Statistical Model Checking techniques, where the accuracy of the
approach depends on the trace length being great enough to satisfy the property,
e.g., to reach some desired state. In both cases this will vary depending on the
structure of the model.

8 Conclusions

In this paper, we have presented an approach for statistical verification of a
fragment of unbounded-time PCTL properties on partially unknown systems,
by automating the design of smart experiments that maximise the amount of
useful data collected from the underlying system. We validate that our approach
increases the accuracy of the confidence that the system satisfies the property,
compared to selecting data randomly. We are able to achieve meaningful confi-
dence outcomes with comparably limited amounts of available data.

We are pursuing extensions of this framework for much wider class of prob-
abilistic models, in particular continuous time models, with a broad range of
applications.

References

1. Araya-López, M., Buffet, O., Thomas, V., Charpillet, F.: Active learning of MDP
models. In: EWRL. Lecture Notes in Computer Science, vol. 7188, pp. 42–53.
Springer (2011)

2. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)

Automated Experiment Design for Data-Efficient Verification of pMDPs 17

3. Chen, Y., Nielsen, T.D.: Active learning of Markov decision processes for system
verification. In: ICMLA (2). pp. 289–294. IEEE (2012)

4. D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.: Smart sampling for
lightweight verification of Markov decision processes. STTT 17(4), 469–484 (2015)

5. Friedman, N., Singer, Y.: Efficient Bayesian parameter estimation in large discrete
domains. In: NIPS. pp. 417–423. The MIT Press (1998)

6. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G.: GNU Scientific Li-
brary - Reference Manual, Third Edition, for GSL Version 1.12 (3. ed.). Network
Theory Ltd (2009)

7. Gevers, M., Bombois, X., Hildebrand, R., Solari, G.: Optimal experiment design
for open and closed-loop system identification. Comm. Inform. Syst. 11(3), 197–224
(2011)

8. Gretton, C., Price, D., Thiébaux, S.: Implementation and comparison of solution
methods for decision processes with non-Markovian rewards. In: UAI. pp. 289–296.
Morgan Kaufmann (2003)

9. Guan, P., Raginsky, M., Willett, R.M.: Online Markov decision processes with
Kullback–Leibler control cost. IEEE Transactions on Automatic Control 59(6),
1423–1438 (2014)

10. Haesaert, S., Van den Hof, P.M.J., Abate, A.: Data-driven property verification
of grey-box systems by Bayesian experiment design. In: 2015 American Control
Conference (ACC). pp. 1800–1805 (July 2015)

11. Haesaert, S., Van den Hof, P.M.J., Abate, A.: Experiment design for formal veri-
fication via stochastic optimal control. In: ECC. pp. 427–432. IEEE (2016)

12. Henriques, D., Martins, J., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical model
checking for Markov decision processes. In: QEST. pp. 84–93. IEEE Computer
Society (2012)

13. Hoffman, M.D., de Freitas, N., Doucet, A., Peters, J.: An expectation maximiza-
tion algorithm for continuous Markov decision processes with arbitrary reward. In:
AISTATS. JMLR Proceedings, vol. 5, pp. 232–239. JMLR.org (2009)

14. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: CAV. Lecture Notes in Computer Science, vol. 6806,
pp. 585–591. Springer (2011)

15. Kwiatkowska, M.Z., Parker, D.: Automated verification and strategy synthesis for
probabilistic systems. In: ATVA. Lecture Notes in Computer Science, vol. 8172,
pp. 5–22. Springer (2013)

16. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
RV. Lecture Notes in Computer Science, vol. 6418, pp. 122–135. Springer (2010)

17. Pasanisi, A., Fu, S., Bousquet, N.: Estimating discrete Markov models from various
incomplete data schemes. Computational Statistics & Data Analysis 56(9), 2609–
2625 (2012)

18. Peter Eichelsbacher, A.G.: Bayesian inference for Markov chains. Journal of Ap-
plied Probability 39(1), 91–99 (2002)

19. Polgreen, E., Wijesuriya, V.B., Haesaert, S., Abate, A.: Data-efficient Bayesian
verification of parametric Markov chains. In: QEST. Lecture Notes in Computer
Science, vol. 9826, pp. 35–51. Springer (2016)

20. Poupart, P., Vlassis, N.A., Hoey, J., Regan, K.: An analytic solution to discrete
Bayesian reinforcement learning. In: ICML. ACM International Conference Pro-
ceeding Series, vol. 148, pp. 697–704. ACM (2006)

21. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.: Parameter synthesis
for Markov models: Faster than ever. In: Automated Technology for Verification

18 E. Polgreen et al.

and Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan, October
17-20, 2016, Proceedings. pp. 50–67 (2016)

22. Ross, S., Pineau, J., Chaib-draa, B., Kreitmann, P.: A Bayesian approach for learn-
ing and planning in partially observable Markov decision processes. Journal of
Machine Learning Research 12, 1729–1770 (2011)

23. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: CAV. LNCS, vol. 3114, pp. 202–215. Springer (2004)

24. Younes, H.L.S.: Probabilistic verification for black-box systems. In: CAV. Lecture
Notes in Computer Science, vol. 3576, pp. 253–265. Springer (2005)

