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Abstract—In this paper we present a graph-based re-
source allocation scheme for sidelink broadcast vehicle-
to-vehicle (V2V) communications. Harnessing available
information on the geographical position of vehicles and
spectrum resources utilization, eNodeBs are capable of
allotting the same set of sidelink resources to several dif-
ferent vehicles in order for them to broadcast their signals.
Hence, vehicles sharing the same resources would ideally
be in different communications clusters for the interference
level—generated due to resource repurposing—to be main-
tained under control. Within a communications cluster, it is
crucial that vehicles transmit in orthogonal time resources
to prevent conflicts as vehicles—with half-duplex radio
interfaces—cannot transmit and receive simultaneously. In
this research, we have envisaged a solution based on a
bipartite graph, where vehicles and spectrum resources are
represented by vertices whereas the edges represent the
achievable rate in each resource based on the signal–to–
interference–plus–noise ratio (SINR) that vehicles perceive.
The aforementioned constraint on time orthogonality of
allocated resources can be approached by aggregating
conflicting vertices into macro-vertices which, in addition,
narrows the search space yielding a solution with compu-
tational complexity equivalent to the conventional graph
matching problem. We show mathematically and through
simulations that the proposed approach yields an optimal
solution. In addition, we provide simulations showing that
the proposed method outperforms other competing ap-
proaches, specially in scenarios with high vehicular density.

I. INTRODUCTION

Vehicle–to–vehicle (V2V) communications is one of
the novel use cases under the umbrella of the next
generation of wireless systems 5G. How can V2V
communications—in its many facets—be leveraged to
comply with the very stringent latency and reliability re-
quirements that this type of scenario poses, has attracted
much interest. In standardization groups, for instance,
support of time-critical communications in safety-related
applications has drawn superlative attention due to the
immediate implications. In this context, several studies
have led to the conclusion that connectivity-enabled
vehicles have the potential to prevent accidents [1].

In V2V Mode 3, vehicles are assigned sidelink
resources—by an eNodeB—to periodically broadcast

their signals, namely cooperative awareness messages
(CAMs) [2]. CAM messages contain important informa-
tion about the vehicle, e.g., velocity, direction, position,
which can be availed by other vehicles (or drivers) for
better decision-making. An important aspect in the re-
source allocation process is to guarantee that vehicles—
within the same communications cluster—will broadcast
their signals in orthogonal time resources. This is due to
the fact that their half-duplex interface does not allow
simultaneous transmission and reception. As a result, ve-
hicles in the same cluster must be allocated resources in
different subframes to prevent conflicts [7]. Nevertheless,
a resource serving a vehicle in certain communications
cluster can be repurposed by another provided that the
latter vehicle is exclusively associated to a different
cluster. Thus, eNodeBs will play an important role in (i)
effectively allocating resources to vehicles in coverage
and (ii) inferring knowledge about the association of
vehicles to in-coverage clusters. It is worth clarifying that
although resource allocation is managed by eNodeBs, the
fact that vehicles can communicate directly without data
having to traverse eNodeBs is beneficial due to proximity
gain [4], lower latency and resource reuse gain.

On the other hand, matching is a fundamental problem
in combinatorial optimization and has found applications
in a plethora of areas. Several matching problems can be
represented by graphs, which may exhibit a wide variety
of morphologies and different degrees of connectedness.
A very specific type of matching problems can be mod-
eled as weighted bipartite graphs, where the objective is
to find a vertex–to–vertex matching—between elements
of two disjoint sets of vertices—that attains a maximum
sum of edge weights. This classical problem is called
herein unconstrained weighted graph matching [9] [10].
As already mentioned, resource allocation for V2V com-
munications has a primary time orthogonality require-
ment to prevent conflicts. A solution based on a bipartite
graph would provide sound framework for approaching
a problem of this kind. However, due to additional
conflict constraints, the unconstrained weighted graph
matching approach cannot be applied straightforwardly
to our problem. We have envisaged a solution where the978-1-5386-3531-5/17/$31.00 2017 European Union
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Fig. 1: Vehicular broadcast communications scenario in mode-3 via sidelink

graph with additional conflict constraints—called herein
constrained weighted graph matching—is transformed
into a simpler problem that can fundamentally be ap-
proached as an unconstrained graph.

The objective of this paper is two-fold: (i) prove
that an optimal solution for the constrained weighted
graph matching problem exists by means of two differ-
ent approaches and (ii) discuss the suitability of such
an approach for avoiding resource allocation conflicts
in broadcast vehicular communications. Our paper is
organized in the following manner. In section II we
explain the motivation for our work and synthesize our
contributions. In Section III, we briefly revisit the uncon-
strained weighted graph matching problem. In Section
IV, our proposed approach is described in detail. Section
V is devoted for discussing simulation results. Finally,
in Section VI, we summarize our conclusions.

II. MOTIVATION AND CONTRIBUTIONS

In our system model, we consider that sidelink spec-
trum resources for V2V communications are decoupled
from uplink/downlink bands. Thus, the scenario herein
is different from the underlay configuration [5] where
idle uplink resources are opportunistically utilized for
sidelink vehicular communications. The reason is that for
safety-related applications, it will be necessary to count
with a frequency band that is always accessible and does
not depend on the availability of shared resources.

As we already mentioned, the allocated resources must
be orthogonal in time domain, otherwise conflicts will
arise. Our motivation is to develop an approach capable
of dealing with such type of constraints in order to
provide dependable communications. For instance, in
Fig. 1. we observe two clusters, each consisting of
6 vehicles. In one of the clusters, we can observe a

resource conflict where vehicles v2 and v5 have been
allotted resources in the same time subframe. Our goal is
to harness the information harvested by vehicles—such
as channel conditions— for the eNodeB to perform an
efficient and effective resource allocation task.

The contributions of our work are summarized:
• Kuhn-Munkres [6] is a computationally efficient

method that can be used for solving resource al-
location problems formulated as bipartite graphs.
However, due to additional time orthogonality con-
straints, the resultant problem is not directly ap-
proachable by the aforementioned method. In our
solution, vertices conflicting among each other have
been aggregated into macro-vertices yielding a re-
sultant graph which is solvable by Kuhn-Munkres.

• Vertex aggregation virtually cuts down the number
of effective vertices and therefore narrows the num-
ber of potential solutions without affecting optimal-
ity. The envisaged approach can attain an optimal
solution at the same computational expense as the
unconstrained weighted graph matching problem.

• We show through simulations that our approach is
capable of providing fairness among all vehicles,
especially in scenarios with high vehicle density.

III. UNCONSTRAINED WEIGHTED GRAPH
MATCHING

A weighted complete bipartite graph G = (V,R, E)
consists of two disjoint sets of vertices V , R and a set
E = V × R of edges, as depicted in Fig. 2. An edge
xij connects a vertex vi ∈ V with a vertex rj ∈ R
and has an associated weight cij . The objective is to
find a matching M ⊆ E that associates every vertex in
V with a vertex in R—in a one–to–one manner—and
attaining maximum sum of weights. In a bipartite graph,



when the cardinality of the vertex sets are equal, i.e.,
|R| = |V| = N , a perfect matching can be attained.

In Fig. 2, the vertices vi represent the vehicles that
belong to the same communications cluster V whereas
the vertices rj represent the allotable resources, which
are denoted by R. In this paper, we consider that the
edge weights cij represent the achievable rate on each
resource based on the SINR that vehicles perceive, i.e.,
cij = B log2(1+SINRij), where B is the bandwidth of a
sidelink resource. The goal is to assign each vehicle vi—
in the several communications clusters that may exist—a
resource rj for it to broadcast its signal with the aim of
maximizing the sum-rate capacity of the system.

A. Summation Representation

The bipartite graph matching problem is expressed by

max

N∑
i=1

N∑
j=1

cijxij (1a)

subject to
N∑
i=1

xij = 1, j = 1, 2, . . . , N (1b)

N∑
j=1

xij = 1, i = 1, 2, . . . , N (1c)

xij = {0, 1}, i, j = 1, 2, . . . , N (1d)

where constraint (1b) guarantees that each vertex vi ∈ V
will be matched to one vertex rj ∈ R only. The
constraint (1c) ensures that each vertex rj ∈ R will
be associated with a single vertex vi ∈ V . Thus,
both constraints enforce a one–to–one matching. The
constraint (1c) ensures that xij is either 1—if vertex
vi ∈ V is matched to vertex rj ∈ R—or 0 if they
are unmatched. An optimal solution can be effectively
found by means of Kuhn-Munkres algorithm [6] with
O(max(|V|, |R|)3) = O(N3) complexity.
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Fig. 2: Unconstrained Weighted Bipartite Graph

B. Matrix Representation

An alternative representation of (1) is given by (2)

max cTx c ∈ RM ,x ∈ BM , (2a)

subject to Ax = 1 A ∈ B2N×M (2b)

where M = N2, R denotes the real numbers and B
represents the {0, 1} realm. The totally unimodular ma-
trix A encapsulates 2N constraints—N constraints due
to vertices in V and N additional constraints that arise
due to vertices in R. Finally, x = [x1,1, . . . , xN,N ]T ,
c = [c1,1, . . . , cN,N ]T are the solution vector and weight
vector, respectively.

IV. PROPOSED CONSTRAINED WEIGHTED GRAPH
MATCHING SOLUTION

Let G = (V,R, E) be a bipartite graph such that
the cardinality of the sets V and R are related by
|R| = K|V| = KN , as depicted in Fig. 3. In this
scheme, the KN vertices in R are grouped into N
disjoint groups {Rα}Nα=1 called macro-vertices, such
that R = ∪Nα=1Rα, Rα ∩ Rα′ = ∅, ∀α 6= α′. Each
macro-vertex Rα is an aggregation of K vertices, i.e.,
|Rα| = K. The target is to find a vertex–to–vertex
matching with maximum sum of weights such that no
two vertices in V are matched to any two vertices that
belong to the same macro-vertex Rα. This condition
must be satisfied as it portrays the time orthogonality
requirement that prevents allocation conflicts. Notice that
this type of constraints for conflict avoidance cannot be
inherently managed by the approach described in Section
III. Thus, this motivated us for developing an approach
capable of handling such constraints. We will show via
two different approaches in Section IV.A and Section
IV.B, that the optimal solution is tantamount to finding
the maximum vertex–to–macro-vertex matching.

The problem with additional macro-vertex constraints
is formulated in (3)

max

N∑
i=1

KN∑
j=1

cijxij (3a)

subject to
KN∑
j=1

xij = 1, i = 1, 2, . . . , N (3b)

N∑
i=1

∑
j∈Rα

xij = 1, α = 1, 2, . . . , N (3c)

xij = {0, 1}, i, j = 1, 2, . . . , N (3d)

where the constraint (3b) enforces every vertex vi ∈ V
to be matched to a single vertex rj ∈ R. The constraint
(3c) stipulates that in any macro-vertex Rα, only one of
its constituting vertices rj ∈ Rα can be matched to a
single vertex vi ∈ V .
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In Fig. 3, K represents the number of resources per
subframe, each with duration 1 ms [3]. Thus, a macro-
vertex Rα represents the aggregation of all the resources
in subframe α. N denotes the number of available
subframes in which the resource allocation task can be
accomplished. For example, in Fig. 1, the number of
resources per subframe is K = 7 whereas the amount of
subframes is N = 6, which yields a total of 42 resources.
Since we consider that the system does not operate at
overload, the number of subframes in the system should
be at least equal to the cardinality of the maximum-
cardinality cluster. Otherwise, there will exist vehicles
that will not be served. When the number of vehicles in a
cluster is smaller than the number of subframes, dummy
vehicles can be added such that |R| = K|V| = KN .

A. Solution Derivation using Summation Representation

We will show that the matching problem with macro-
vertex constraints can be recast as an unconstrained
graph with smaller cardinality and thus can be solved
at the same computational complexity expense as the
unconstrained weighted graph matching problem.

We observe that for any two edges xij and xik that
share the same vertex vi, the following holds true:
xijxik = 0, if j 6= k and rj , rk ∈ Rα,∀α.
The validity of this expression can be readily veri-
fied because every vertex vi ∈ V can be matched
to one vertex rj ∈ R only. Thus, harnessing the
previous relation, the following expression also holds
true:

∑
j∈Rα

∑
k∈Rα
j 6=k

xijxik = 0 for any vi ∈ V ,

rj , rk ∈ Rα,∀α. Furthermore, a generalized result
is given by

∑N
i=1

∑N
α=1

∑
j∈Rα

∑
k∈Rα
j 6=k

cijxijxik =

0. Notice that adding cij to the zero-product
xijxik does not affect the result. On the other

hand, the cost function in (3a) can be expressed
as
∑N
i=1

∑KN
j=1 cijxij =

∑N
i=1

∑N
α=1

∑
j∈Rα cijxij .

Moreover, since xij = {0, 1} ∀i, j, the cost
function can be further simplified employing the
quadratic terms as

∑N
i=1

∑N
α=1

∑
j∈Rα cijxij =∑N

i=1

∑N
α=1

∑
j∈Rα cijx

2
ij . In addition, notice that con-

straint (3a) can be equivalently expressed as
∑KN
j=1 xij =∑N

α=1

∑
j∈Rα xij = 1. Thus, collecting the previous

outcomes, the problem in (3) can be recast as (4)

max

N∑
i=1

N∑
α=1

∑
j∈Rα

cijx
2
ij +

N∑
i=1

N∑
α=1

∑
j∈Rα

∑
k∈Rα
j 6=k

cijxijxik

(4a)
subject to
N∑
α=1

∑
j∈Rα

xij = 1, i = 1, 2, . . . , N (4b)

N∑
i=1

∑
j∈Rα

xij = 1, α = 1, 2, . . . , N (4c)

xij = {0, 1}, i, j = 1, 2, . . . , N (4d)

It was feasible to augment the cost function by adding
zero-valued terms since the solution optimality would
not be affected. Thus, the new cost function is

N∑
i=1

N∑
α=1

∑
j∈Rα

cijx
2
ij +

N∑
i=1

N∑
α=1

∑
j∈Rα

∑
k∈Rα
j 6=k

cijxijxik

=

N∑
i=1

N∑
α=1

( ∑
j∈Rα

cijxij

)
︸ ︷︷ ︸

diα

( ∑
k∈Rα

xik

)
︸ ︷︷ ︸

yiα

(5)

Employing the definition of yiα, the constraint (4b)
can be expressed as

∑N
α=1

∑
j∈Rα xij =

∑N
α=1 yiα = 1

whereas the constraint (4c) is reduced to∑N
i=1

∑
j∈Rα xij =

∑N
i=1 yiα = 1.

Finally, stemming from the fact that yiα is the outcome
of a sum on binary variables xij , it yields that yiα is also
binary. Upon collecting the previous results, the original
problem in (3) can be expressed as (6)

max

N∑
i=1

N∑
α=1

diαyiα (6a)

subject to
N∑
i=1

yiα = 1, α = 1, 2, . . . , N (6b)

N∑
α=1

yiα = 1, i = 1, 2, . . . , N (6c)

yiα = {0, 1}, i, α = 1, 2, . . . , N (6d)

Note that (6) makes evident that a matching will be
between vertices vi ∈ V and macro-vertices Rα, which
is equivalent to solving the unconstrained matching prob-
lem in (1). However, diα =

∑
j∈Rα cijxij are unknown



as they depend on xij . ITo remove the dependency of
diα on xij , and be able to solve (6), in the following we
explain our reasoning. We will show that we can obtain
a solution yiα for (6) without first solving for xij .

Analysis:

If there exists an optimal solution {x?ij}
i=N,j=N
i=1,j=1 to

(3), then the following holds true
• There must also exist a solution {y?iα}

i=N,α=N
i=1,α=1 that

satisfies (??) optimally. This is because, xij can be
linearly mapped to yiα =

∑
j∈Rα xij .

• Thus, given an optimal solution {y?iα}
i=N,α=N
i=1,α=1 ,

for some vertex vi′ and macro-vertex Rα′ , the
following is provable.

1) If some y?i′α′ = 0, this implies that the edge y?i′α′

is unmatched with vertex vi′ ∈ V with macro-
vertex Rα′ . This is equivalent to asserting that
vertex vi′ ∈ V is not matched to any of the
vertices rj ∈ Rα′ .

2) If some y?i′α′ = 1, there must exist an edge
xi′j′ = 1 that matches vertex vi′ ∈ V with vertex
rj′ ∈ Rα′ . As a consequence, such said edge
must be optimal, i.e., x?i′j′ = xi′j′ = 1, because
y?i′α′ = x?i′j′ +

∑
j∈Rα′
j 6=j′

x?i′j = 1.

• If some x?i′j′ = 1, then its associated weight ci′j′
is also involved in the optimal solution. In other
words, di′α′ = ci′j′x

?
i′j′ +

∑
j∈Rα′
j 6=j′

ci′jx
?
i′j = ci′j′ .

To wit, di′α′ will be either ci′j′ ,∃rj′ ∈ Rα′ when
x?i′j′ = 1 or 0 when x?i′j′ = 0. However, note that if
a maximum matching exists, it will then be attained
regardless of the other values cij as long as every
ci′j′ ≥ cij ,∀i 6= i′, j 6= j′. Thus, without loss of
optimality, di′α′ = max{ci′j |j ∈ Rα′}.

�
We have shown that it is possible to remove the

dependency of dij on xij and thus (6) can be solved
as an unconstrained weighted graph matching problem.

B. Solution Derivation using Matrix Representation

In this section, we develop a generalized framework
by which it is possible to show that (2) is a particular
case of the vertex aggregation case, i.e., the uncon-
strained weighted graph matching problem when K = 1.
Thus, the problem is formulated as

max cTx (7a)

subject to

[
IN×N ⊗ 11×N
11×N ⊗ IN×N

]
⊗ 11×K x = 1 (7b)

where ⊗ represents the tensor product operator, c ∈
RM ,x ∈ BM with M = KN2.

Because the solution x exists on the binary realm,
the cost function (7a) can be equivalently expressed as
cTx = xT diag(c)x without affecting optimality. On
the other hand, in a similar manner as we proceeded

in (4) adding zero-valued terms, we employ an equiva-
lent representation to accomplish the same result. Thus,
the sum of weighted pair-wise products cijxijxik with
rj , rk ∈ Rα, can be expressed as xT

(
IM×M⊗ [1K×K−

IK×K ]
)
diag(c)x = 0. Now, we are able to augment the

cost function in (7a) and recast it as follows

cTx

= xT diag(c)x

= xT diag(c)x+ xT (IM×M ⊗ [1− I]K×K) diag(c)x

= xT (IM×M ⊗ IK×K + IM×M ⊗ [1− I]K×K)diag(c)x

= xT (IM×M ⊗ 1K×K)diag(c)x
(8)

Property 1 (Product of two tensor products)
Let X ∈ Rm×n, Y ∈ Rr×s, W ∈ Rn×p, and
Z ∈ Rs×t, then

XY ⊗WZ = (X⊗W)(Y ⊗ Z) ∈ Rmr×pt

Employing Property 1, (8) can be further simplified.
Thus, the resultant cost function is shown in (9)

xT (IM×M ⊗ 1K×K)diag(c)x

= xT (IM×MIM×M ⊗ 1K×111×K)diag(c)x

= xT (IM×M ⊗ 1K×1)︸ ︷︷ ︸
yT

(IM×M ⊗ 11×K)diag(c)x︸ ︷︷ ︸
d

(9)
From (9), we obtain that d = (IM×M ⊗

11×K)diag(c)x and y = (IM×M ⊗ 11×K)x. Hence,
we find that x = (IM×M ⊗ 11×K)†y.

Property 2 (Pseudo-inverse of a tensor product)
Let X ∈ Rm×n and Y ∈ Rr×s, then

(X⊗Y)† = X† ⊗Y† ∈ Rns×mr

Employing Property 2, we obtain that x = I†M×M ⊗
1†1×K y. In the following, we use the previous relation
in order to simplify the constraint (7b),([

IN×N ⊗ 11×N
11×N ⊗ IN×N

]
⊗ 11×K

)(
IM×M ⊗ 1†1×K

)
y = 1

=

([
IN×N ⊗ 11×N
11×N ⊗ IN×N

]
IM×M

)
⊗
(
11×K1†1×K

)
︸ ︷︷ ︸

1

y = 1

=

[
IN×N ⊗ 11×N
11×N ⊗ IN×N

]
y = 1

(10)

IM×M ⊗ 11×K

IM×M ⊗ 11×K×diag(·)

x

c

y

d

Fig. 4: Transformation Process
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Fig. 5: One-shot simulation for different approaches

Thus, the problem in (7) can be recast as (11)

max dTy

subject to

[
IN×N ⊗ 11×N
11×N ⊗ IN×N

]
︸ ︷︷ ︸

A

y = 1. (11)

Since y is obtained from the product of binary vari-
ables xij and a totally unimodular matrix (IM×M ⊗
11×K), then y ∈ BM . We can notice that (11) is identical
to (2) but in terms of different variables. Fig.4 shows the
transformation process from (7) to (11). Nevertheless, we
can notice that d depends on x which is not desirable.
In order to eliminate this dependency, we state without
a proof—due to space limitations—that

d = lim
β→∞

1

β

◦
log
{
(IM×M ⊗ 11×K)e◦βc

}
(12)

where
◦
log{·} and e◦{·} are the element-wise natural

logarithm and Hadamard exponential [8], respectively.

V. SIMULATIONS

We consider a 10 MHz channel for conformity with
ETSI ITS channelization [2]. The channel is divided
into several resource chunks, each with an extent of 1
ms in time and 1.26 MHz in frequency. To wit, 1.26
MHz corresponds to 7 resource blocks (RBs), where
one RB consists of 12 subcarriers spaced by 15 kHz
[3]. The structure of each resource chunk is shown in
Table I. Thus, in each subframe, there is a total of 7
resource chunks spanning 49 RBs. To the best of our
understanding, a resource chunk with such proportions
is sufficient to convey data (5RBs) and control informa-
tion (2RBs). With appropriate modulation and coding
schemes, CAM messages with a payload of 200 data
bytes can be adequately supported in a resource chunk.
The control information is necessary for compatibility
with other vehicles that may be out of coverage (Mode
4). Thus, these vehicles can be aware of the resources
in use and self-allocate to themselves an idle resource.

In our model, we consider that clusters are totally
independent from each other. This means that a subset of
resources used in a certain cluster can be repurposed by
vehicles in other clusters. The system parameters that

TABLE I: Sidelink Resource Structure

Description Value

Number of RBs 7
Number of subcarriers per RB 12
Number of data subcarriers 60
Number of control subcarriers 24

we have employed in our simulations are detailed in
Table II. Since we consider a message rate of 10 Hz and
N = 100 vehicles, the resource allocation task is carried
out every 0.1 s. Signaling between vehicles and eNode
via uplink/downlink resources should also be transmitted
at least every 0.1 s.

TABLE II: System Parameters

Description Value

Number of vehicles per cluster 10 - 100
Number of clusters 1 - 7
Message rate (Hz) 10
Number of allottable subframes 100
Number of resources per subframe 3, 7

In Fig. 5 we show a one-shot simulation of the
achievable rates comparing 4 different algorithms. For
this particular simulation, we considered that the number
of vehicles is N = 10 and the number of resources
per subframe is K = 3. In the proposed graph-based
algorithm we have not enforced any mechanism to
incentivize fairness. However, as can be observed, the
approach can provide a fair resource assignment to all
the vehicles. Furthermore, it attains the same results
as exhaustive search, which verifies its optimality. The
greedy algorithm can provide with good channel quality
to some vehicles only but there are inevitably others with
low quality conditions.

For the results in Fig. 6, we considered 4 communica-
tions clusters with N = 100 vehicles in each and K = 7.
The results have been obtained in base of the average
over 1000 simulations. We proved mathematically in
Section IV that the proposed approach is optimal. Now,
through simulations, we also show that our scheme can
attain optimality as it achieves the same performance
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as exhaustive search as can be observed in Fig. 6.
Notice that greedy algorithm performs as equally good
as the proposed approach if we examine the highest-
rate vehicle only. This is logical as the premise of the
greedy algorithm is assigning the best resources on first-
come first-served basis. Considering the system average
rate, our proposed approach has a small advantage.
However, when considering the worst-rate vehicle, our
proposal excels as it is capable of providing a higher
level of fairness. In all cases, the random algorithm is
outperformed by the other approaches.

Fig. 7 shows the achievable rate for the worst-rate
vehicle. The proposed graph-based algorithm attains the
same performance as exhaustive search. We observe that
when the vehicle density per cluster is low, the greedy
algorithm attains near optimal solutions as there are
far more resources than vehicles to serve. However, as
the density increases, especially near the overload state,
its performance drops. The random algorithm performs
worse than the other approaches.

Fig. 8 shows the cumulative distribution function
(CDF) of the achievable rates. We observe that the pro-
posed approach outperforms the other two approaches.
For the sake of comparison, we have included the results
of the unconstrained system, which does not takes into
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account conflict avoidance constraints. This is of course
not desirable but it serves as a comparison bound.

The complexity of exhaustive search is
O(|R|!/(|R| − |V|)!) whereas the complexity of
graph-based algorithm is O(max{|V|, |R|/K}3).
The complexity of the greedy algorithm and random
algorithm are O(|V||R|) and O(|V|), respectively.

VI. CONCLUSION

We have presented a novel resource allocation algo-
rithm for V2V communications considering conflict con-
straints. We were able to transform the original problem
into a simplified form by means of two approaches. In
our future work, we will consider (i) power control and
(ii) the assumption that a subset of vehicles may belong
to more than one cluster simultaneously.
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