

Improving the efficiency of deep convolutional networks

Citation for published version (APA):
Peemen, M. C. J. (2017). Improving the efficiency of deep convolutional networks. [Phd Thesis 1 (Research
TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.

Document status and date:
Published: 12/10/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/0414ad0e-5c17-49c5-9001-5197c9b1e371

IMPROVING THE EFFICIENCY OF

DEEP CONVOLUTIONAL NETWORKS

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven, op gezag van de

rector magnificus prof.dr.ir. F.P.T Baaijens, voor een
commissie aangewezen door het College voor

Promoties, in het openbaar te verdedigen
op donderdag 12 oktober 2017 om 16:00 uur

door

Maurice Cornelis Johannes Peemen

geboren te Rijsbergen

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr.ir. A.B. Smolders

promotor: prof.dr. H. Corporaal

copromotor: dr.ir. B. Mesman

leden: dr. C.G.M. Snoek (University of Amsterdam)

 prof.dr. L. Benini (ETH Zürich)

 prof.dr.ir. P.H.N. de With

 prof.dr.ir C.H. van Berkel

adviseur: dr. O. Temam (Google Mountain View)

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in

overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

IMPROVING THE EFFICIENCY OF

DEEP CONVOLUTIONAL NETWORKS

Maurice Peemen

Doctorate committee:

prof.dr. H. Corporaal TU Eindhoven, promotor

dr.ir. B. Mesman TU Eindhoven, copromotor

prof.dr.ir. A.B. Smolders TU Eindhoven, chairman

dr. C.G.M. Snoek University of Amsterdam

prof.dr.ir. L. Benini ETH Zürich

dr. O. Temam Google Mountain View

prof.dr.ir C.H. van Berkel TU Eindhoven

prof.dr.ir. P.H.N. de With TU Eindhoven

This work was supported by the Ministry of Economic Affairs of the Netherlands
as part of the EVA project PID-07121.

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 375

© Maurice Peemen 2017. All rights are reserved. Reproduction in whole or in
part is prohibited without the written consent of the copyright owner.

Computer chip cover image is illustrative/courtesy of wall.alphacoders.com

Printed by Ipskamp printing – The Netherlands

A catalogue record is available from the Eindhoven University of Technology
Library. ISBN: 978-90-386-4361-8

 v

SUMMARY

IMPROVING THE EFFICIENCY OF
DEEP CONVOLUTIONAL NETWORKS

Throughout the past decade, Deep Learning and Convolutional Networks
(ConvNets) have dramatically improved the state-of-the-art in object detection,
speech recognition, and many other pattern recognition domains. These break-
throughs are achieved by stacking simple modules that for each network-level
transform the input into a more abstract representation (e.g. from pixels to
edges, to corners, and to faces). These modules are trained to amplify aspects
that are important for the classification, and suppress irrelevant variations.

The recent success of these deep learning models motivates researchers to
further improve their accuracy by increasing model size and depth. Conse-
quently the computational and data transfer workloads have grown tremen-
dously. For beating accuracy records using huge compute clusters this is not yet
a big issue; e.g. the introduction of GP-GPU computing improved the raw com-
pute power of these server systems tremendously. However, for consumer appli-
cations in the mobile or wearable domain these impressive ConvNets are not
used. Their execution requires far too much compute power and energy. For ex-
ample, running a relatively shallow ConvNet for Speed Sign detection on a pop-
ular embedded platform (containing an ARM Cortex-A9) results in a HD frame
rate of 0.43 fps; this is far below acceptable performance. The introduction of a
multi-core increases performance, however in the optimistic scenario of linear
scaling 47 cores are required to achieve 20 fps. The power consumption of this
ARM core is almost 1 Watt; for 20 fps this scales to 47 Watt, which would deplete
your battery in minutes, even worse are the thermal effects that are comparable
to those of a hot light bulb.

To address above issues, this thesis investigates methodologies that substan-
tially improve the energy-efficiency of deep convolutional networks. First a high-
level algorithm modification is proposed that significantly reduces the compu-
tational burden while maintaining the superior accuracy of the algorithm. This
technique combines the large workload of Convolutional and Subsample layers

vi ABSTRACT

into more efficient Feature Extraction layers. Real benchmarks show a 65-83%
computational reduction, without reducing accuracy.

Second, this thesis addresses the huge data transfer requirements by ad-
vanced code transformations. Inter-tile reuse optimization is proposed to reduce
external data movement up to 52% compared to the best case using traditional
tiling.

Third, to further improve the energy efficiency of the embedded compute
platform this thesis proposes the Neuro Vector Engine (NVE) template; a new
ultra-low power accelerator framework for ConvNets. Comparison of an NVE
instantiation versus an SIMD optimized ARM Cortex-A9 shows a performance
increase of 20 times, but more importantly is the energy reduction of 100 times.

Finally, this thesis addresses the programming efficiency of dedicated accel-
erators. We present CONVE an optimizing VLIW compiler that makes the NVE
the first ConvNet accelerator with full VLIW compiler support. In several cases
this compiler beats the manual expert programmer. The above contributions of
this thesis significantly improve the efficiency and programmability of deep Con-
volutional Networks; it thereby enables their applicability to the mobile and
wearable use cases.

 vii

CONTENTS

1. Introduction 1
1.1 Neural networks for classification .. 3

1.1.1 Modeling a neuron ... 3
1.1.2 Pattern classification ... 6
1.1.3 Multilayer perceptron’s ... 7
1.1.4 Generalization issues ... 9

1.2 Deep networks for computer vision .. 10
1.2.1 Building prior information in neural net architectures 11
1.2.2 Feature hierarchies ... 13

1.3 Trends in deep neural network development 14
1.3.1 Model capacity .. 15
1.3.2 Computational work ... 17
1.3.3 Memory transfers .. 21
1.3.4 Platform programmability .. 23

1.4 Problem statement ... 24
1.5 Contributions .. 25
1.6 Thesis outline.. 26

2. Deep Convolutional Networks 27
2.1 Introduction .. 27
2.2 Challenges of visual data processing .. 28
2.3 Parameter sharing .. 30

2.3.1 Convolution layers ... 32
2.3.2 Pooling layers ... 33
2.3.3 Neuron layers ... 34
2.3.4 Normalization layers ... 34

2.4 Constructing a convolutional network .. 35
2.4.1 Coding neuron layers ... 36

2.5 Deeper networks .. 37
2.6 Conclusions ... 38

3. Benchmark Applications 40
3.1 Introduction .. 40
3.2 Object detection with a convolutional net ... 41

viii CONTENTS

3.2.1 Patch classification .. 42
3.2.2 Frame based detection .. 43

3.3 Dataset construction .. 45
3.4 Training a convolutional net for machine vision 46

3.4.1 Preprocessing of training data .. 47
3.4.2 Training loop and recipe ... 47
3.4.3 Network design .. 48
3.4.4 Iterative bootstrapping .. 50

3.5 Throughput evaluation ... 51
3.6 Related work ... 53

3.6.1 Region based convolutional networks ... 53
3.6.2 Single shot detectors.. 54

3.7 Conclusions and discussion .. 55

4. Algorithmic Optimizations 57
4.1 Introduction .. 57
4.2 Feature extraction layers ... 58

4.2.1 Convolution layers ... 59
4.2.2 Pooling layers ... 59

4.3 Algorithm optimization ... 60
4.3.1 Merge convolution and pooling ... 60
4.3.2 Training with error back-propagation ... 62

4.4 Evaluate recognition performance ... 65
4.5 Experimental mapping .. 66
4.6 Related work ... 68
4.7 Conclusion .. 69

5. Inter-Tile Reuse Optimization 71
5.1 Introduction ... 71
5.2 Related work ... 74
5.3 Motivation: scheduling for data locality .. 75
5.4 Modelling the scheduling space ... 76

5.4.1 Modelling intra-tile reuse ... 77
5.4.2 Adding inter-tile reuse to the model ... 77

5.5 Scheduling space exploration ... 80
5.6 Implementation demonstrator ... 82
5.7 Evaluation methodology .. 84

5.7.1 Benchmark applications .. 84
5.7.2 Platform and tools ... 86

5.8 Experimental results .. 86
5.8.1 Data transfer volume for inter-tile schedules 86
5.8.2 Quality of results .. 88
5.8.3 Energy consumption ... 91

5.9 Conclusions ... 93

ix CONTENTS

6. NVE: a Flexible Accelerator 94
6.1 Introduction .. 94
6.2 Related work ... 96
6.3 Sources of inefficiency in general purpose CPUs 99
6.4 The Neuro Vector Engine (NVE) architecture 101

6.4.1 Vector data path .. 101
6.4.2 Memory system ... 103
6.4.3 Control and programming ... 105

6.5 Experimental evaluation ... 106
6.5.1 Benchmark setup .. 107
6.5.2 Accelerator characteristics ... 108
6.5.3 Comparison against other ASIC accelerators 111

6.6 NVE instantiation and customization .. 112
6.6.1 Limitations and future directions .. 115

6.7 Conclusions .. 116

7. Accelerator Code Generation 117
7.1 Introduction .. 117
7.2 Background and related work .. 119
7.3 ConvNets in a domain specific language ... 121
7.4 Automatic code generation flow .. 122

7.4.1 Task graph construction... 123
7.4.2 Instruction scheduling ... 125
7.4.3 Scratchpad memory allocation .. 129
7.4.4 Generalization towards VLIW architecture 130

7.5 Advanced code optimizations ... 131
7.5.1 Coefficient layout optimizations .. 131
7.5.2 Modulo scheduling .. 131
7.5.3 Feature map combining ... 132

7.6 Experimental evaluation ... 134
7.6.1 Experimental setup ... 134
7.6.2 Performance metrics ... 135
7.6.3 Performance analysis .. 135

7.7 Conclusions .. 137

8. Conclusions and Future Work 139
8.1 Conclusions .. 139
8.2 Future work ...141
Refereed papers covered in this thesis .. 156
Other (co-)authored papers ... 157

Acknowledgements 158

About the author 160

x CONTENTS

 1

1.

INTRODUCTION

Nowadays digital technology is interwoven into many aspects of our daily lives.
For example, think of the omnipresence of personal devices such as
smartphones, tablet computers, digital cameras, and televisions that guide our
decisions and instantly connect us to the internet. From another perspective es-
timate your daily usage of services such as e-mail, online encyclopedias, on-line
shopping, and digital music. More and more we are accessing services through
our smartphones; this is reflected by the number of mobile smartphone sub-
scriptions that globally grew by 18% in 2016 to reach 3.9 billion1. This trend will
extend from smartphone to smart devices, a class of wearable companion devices
that integrates digital services deeply into our daily life. Figure 1.1 depicts a few
examples devices such as, smartwatches, smart glasses [140], and in the extreme
a smart ring.

The new challenge is to make these so called “smart devices” really smart.
Checking e-mail or posting photos on social media are just the first features. The
real smart features use integrated sensors like cameras to identify objects in im-
ages. Or with a microphone instead of a camera that directly transcribes speech
into text. Such features are already successfully used in data-centers (providing
cloud services for Google and Facebook) to handle image search queries. Cur-
rently, these tasks are solved by Machine Learning techniques that extract and
recognize patterns from huge loads of raw data. Increasingly, these recognition
applications make use of a class of techniques called Deep Learning.

Probably you have heard or read about deep learning; it is a lot in the news
since big companies like Google, Facebook, and Microsoft are acquiring start-
ups with expertise in this field. In the last few years, deep learning made major
advances e.g., it has beaten many records in image recognition [79,30,49], and
speech recognition [66,127]. Most striking is the fact that in some cases these
techniques achieved superhuman (better than human) accuracy in solving diffi-
cult pattern recognition problems [30,25]. A well know example is the deep

1 Source: Ericsson Mobility Report Nov 2016.

CHAPTER

2 CHAPTER 1. INTRODUCTION

learning based program named AlphaGo that has recently beaten the best hu-
man players at the board game Go [136]. These breakthroughs are achieved by
improvements in the learning algorithms that enabled researchers to increase
classification model size (more parameters). Consequently they successfully ex-
ploit the availability of more example training data, which improves the accuracy
and robustness. This search for models that improve upon the state-of-the-art
has increased model complexity tremendously.

For deep learning the classification models are often based upon Artificial
Neural Networks (ANNs). These networks contain simple decision nodes, so
called neurons that are organized in layers [61]. The early ANNs till the 1980s
had very shallow architectures, one or two layers of neurons [123,130]. However,
todays competition winning deep learners have 20 to 152 layers of neurons
[142,62]. To push the accuracy further researchers even use ensembles of models,
each specialized at an aspect of the classification problem [138]. Combined these
ensembles can boost the final accuracy at the cost of an increased model com-
plexity.

A negative side effect of the large model complexity is a huge amount of com-
putational work required to perform a recognition task. This workload involves
many computational operations like multiplications and additions to compute
the classification result. In addition, a huge amount of data movement is re-
quired to feed the inputs of these computational operations e.g. the parameters
or coefficients of the model, the input images and many intermediate represen-
tations. The commonality between computations and data movement is that
both operations consume energy. Applications that require a lot of those opera-
tions in a short period of time, e.g. to classify object in a real-time video stream,
are power hungry. This is one of the key reasons that deep learning solutions run
often as a cloud service in the data-centers, where massive compute performance
is available.

Mobile devices like our tablets, smartphones, and “always on” wearable com-
panions are designed to be energy-efficient. We expect a battery lifetime that
spans one or even several days. To achieve such battery lifetimes the available
resources of the embedded compute platform are heavily constrained. Develop-
ing applications that use the new possibilities of deep learning on your mobile
device is not straightforward. However, the rich collection of integrated sensors

Figure 1.1: Examples of wearable companion devices: (left) “I’m Watch” the smartwatch
that displays email and SMS services of Android devices. (center) “Google Glass” an opti-
cal head-mounted display that is worn as a pair of eyeglasses. (right) “MOTA” smartRing
links up to your smartphone and notifies you of incoming texts, emails and social alerts.

1.1. NEURAL NETWORKS FOR CLASSIFICATION 3

in mobile and wearable devices make them the best target for state-of-the-art
classifier applications. To bridge the compute energy gap between deep learning
algorithm requirements and the capabilities of modern embedded platforms the
energy efficiency must be improved. The goal of this thesis is therefore to sub-
stantially improve the efficiency of deep convolutional networks. These convolu-
tional nets are specialized in visual data processing and recently very popular in
machine learning. This chapter will introduce Neural networks (Section 1.1), and
explain their evolution into Deep Convolutional Networks (Section 1.2). Next,
the trends in Deep Learning research are outlined (Section 1.3), and the problem
statement is discussed in detail (Section 1.4). Finally, the main contributions and
chapter outline are presented in Section 1.5 and Section 1.6 respectively.

1.1 Neural networks for classification

Most work on artificial neural networks has been motivated by the observation
that the human brain computes in an entirely different way than digital comput-
ers do. Instead of performing complex tasks sequentially, the brain solves com-
plex problems in a distributed and highly parallel approach with simple
unreliable operations performed by units known as neurons. Although its pro-
cessing is very different the brain is very successful, and reliable in processing
complex tasks. Consider for example vision, the brain can process the visual in-
formation of the environment around us in a split second. It extracts the context
of a scene, warns you for threatening situations, and directly remembers the
faces of the people involved. This task requires distinguishing foreground from
background, recognizing objects presented in a wide range of orientations, and
accurately interpreting spatial cues. The human brain performs such tasks with
great ease and compared to modern compute platforms it requires a very modest
power budget.

This section will introduce the basic processing elements of neural networks,
their interconnections, and their ability to classify patterns. These aspects are
addressed without focusing on their capability to learn by adapting their param-
eters. Training is one of the key features of neural nets, which will be further
discussed in Chapter 3 and 4.

1.1.1 Modeling a neuron

The fundamental processing elements in neural networks are their neurons. The
block diagram in Figure 1.2 illustrates the model of a neuron. It forms the basic
element for a large family of neural networks that is studied in the further chap-
ters of this thesis. A simple form of this model is already developed in 1943 by
the pioneering work of McCulloch and Pitts [94]. There are basically three ele-
ments in this neuron model:

4 CHAPTER 1. INTRODUCTION

1. A set of connecting input links xj or synapses, each characterized by a
weight or strength wj. The weights model the synaptic efficiency of bio-
logical connections, unlike the synapses in the human brain the weights
of an artificial neuron cover a range that includes negative as well as
positive values.

2. A summing junction or adder for summing the input signals, weighted
by the respective synaptic strengths.

3. An activation function for limiting the range of the output signal to some
finite value. In addition, this function can add non-linear behavior to
neural networks.

The artificial neuron of Figure 1.2 also includes a bias value, denoted by b.
Depending on whether the bias is positive or negative it can increase or lower
the net input of the activation function. The neuron model can be mathemati-
cally described by using a simple pair of equations:

𝑝𝑖 = 𝑏𝑖 +∑𝑤𝑖𝑗 𝑥𝑗

𝐾−1

𝑗=0

 (1.1)

𝑦𝑖 = φ(𝑝𝑖) (1.2)

The neuron potential pi is computed by the weighted sum of the inputs xj; wi0,
wi1, …, wiK-1, are the respective synaptic weights of neuron i. The activation po-
tential has an external offset bias bi. Note that the bias also could be encoded as
one of the weights, e.g. wi0 = bi, and x0 = 1. The activation function φ() transforms
the neuron potential into an output value. Different activation functions are dis-
cussed below.

Assume that the artificial neuron model is used as digit detector e.g., for the
number one as displayed on the left side of Figure 1.2. In this scenario the poten-
tial should be high if the number one is applied, for all other patterns it should
be low. This is achieved when inputs connected to black pixels have positive
weights (excitatory inputs) and other positions negative weights (inhibitory in-
puts). This ensures that for digits with a significant amount of overlap, e.g. the

Figure 1.2: A basic nonlinear model of a neuron with an example input pattern.

∑=p

w0

w1

w2

x0

x1

x2

xK-1

Bias

b

Synaptic
weigths

Summing
junction

φ(p)

Output

y
0-1

0 0

0 0

0 1

0 0

0 0

0 0

1 0

1 0

1 0

1 0

0

0

0

0

0

0 1

0 0

1 1

0 0

0

0

Activation
function

Example input
vector

wK-1

Perceptron

1.1. NEURAL NETWORKS FOR CLASSIFICATION 5

number two, the inhibitory inputs mitigate the overlapping positions resulting
in a reduced potential.

Types of activation functions

The activation function φ(p) defines the output of a neuron in function of the
neuron potential p. At least three different types of activation functions can be
defined:

1. Threshold. This function results in the value 1 if the neuron potential is
non-negative, and 0 otherwise. Figure 1.3(a) displays the all or nothing behavior
of the threshold function. It is the activation function of the McCulloch-Pitts
model [94]. Mathematically defined as:

φ(𝑝) = {
0, 𝑝 < 0
1, 𝑝 ≥ 0

 (1.3)

2. Sigmoid. This function is defined as a strictly increasing function that
combines linear and non-linear saturating behavior. A very popular sigmoid is
the logistic function illustrated in Figure 1.3(a). It represents the activation rate
of a neuron which assumes a continuous value between 0 and 1. Mathematically
the logistic function is defined as:

φ(𝑝) =
1

1 + exp(−𝑝)
 (1.4)

Sometimes it is desirable to extend the range of the activation function from -1
to +1. In this case the hyperbolic tangent function is often used, as depicted in
Figure 1.3(b) and defined by:

φ(𝑝) = tanh(𝑝) =
2

1 + exp(−𝑝)
− 1

(1.5)

Apart from vertical scaling and offset, these functions are exactly the same. Note
that sigmoid functions are differentiable, which is important for training.

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

y

p

Threshold
Sigmoid

φ(p)

(a)

-1

0

1

2

3

-3 -2 -1 0 1 2 3

y

p

Hyperbolic tangent

Rectified Linear Unit

φ(p)

(b)

Figure 1.3: Different neuron activation functions φ(p): (a) Threshold or Heaviside func-
tion as used in the McCulloch-Pitts model; Sigmoid or Logistic function as used in the
Perceptron model; (b) Hyperbolic tangent function, which belongs to the family of Sig-
moid functions although it spans from -1 to 1; Rectified Linear Unit (ReLU) or ramp func-
tion that recently gained a lot of interest in the field of deep learning.

6 CHAPTER 1. INTRODUCTION

3. Rectifier. A neuron model that employs a rectifier function is also called
a Rectified Linear Unit (ReLU). This function is, as of 2015 the most popular acti-
vation function for deep neural networks, it performs very well for deeper net-
works [79]. Figure 1.3(b) shows the ReLU activation function that is defined as:

φ(𝑝) = max (0, 𝑝) (1.6)

A ReLUs is not fully differentiable, p below and on 0 have slope 0, above gives 1.

1.1.2 Pattern classification

Often a neural network is used to classify patterns. More specifically a single
neuron classifies the set of stimuli x0, x1, …, xK-1, into one of two classes. To de-
velop some insight into the behavior of a pattern classifier let us reduce the input
dimensionality is reduced to x0 and x1, as illustrated in Figure 1.4. A simple clas-
sifier such as the Perceptron model introduced by Rosenblatt in 1958 [123] could
solve these problems. A perceptron is basically a neuron based on the McCul-
loch-Pitts [94] model, but with a learning algorithm. The perceptron has two
decision regions separated by a hyperplane, which is defined by:

𝑏 +∑𝑤𝑗 𝑥𝑗

𝐾−1

𝑗=0

= 0 (1.7)

The decision boundary is illustrated in Figure 1.4 as a straight line. Each point (x0,
x1) lying above the decision line is assigned to Class0, and each point below the
boundary is assigned to Class1. The coefficients of a perceptron can be updated
according to an error-correction rule. Updates are repetitively performed in so
called training iterations to find a good intersection, i.e. the squares are sepa-
rated from the triangles.

A perceptron can find a good intersection of the two classes when these are
linearly separable. This means that pattern groups to be classified are sufficiently
separated such that a linear line can decide correctly. However, if pattern groups
move close to each other the problem becomes non-linearly separable, as de-
picted in Figure 1.5. Classification problems that are not linearly separable are

Figure 1.4: Illustration of a two-class, two-dimensional pattern-classification problem. In
this example a pair of linearly separable patterns (a straight line can decide).

x0

x1
Class0

Class1

Decision boundary
w0 x0 + w1 x1 + b = 0

1.1. NEURAL NETWORKS FOR CLASSIFICATION 7

beyond the capability of a single neuron or perceptron. This is a severe limitation
of the perceptron model that prevents it from making more complex classifica-
tions; e.g., it cannot even solve a binary parity problem like a simple XOR func-
tion. This made that artificial neurons fell in despair from the 1960s till the mid-
1980s.

In finalizing the introduction of artificial neurons or the perceptron we con-
clude that the model is an elegant approach to classify linearly separable pat-
terns. However for more complicated patterns like non-linearly separable ones
this model is too restricted. Although these limitations perceptron’s have proven
to be very useful for the development of machine learning. In fact they are now-
adays still used as internal building block for the successful deep learning tech-
niques. The next section will show how to extend the learning and classification
capabilities of perceptron’s.

1.1.3 Multilayer perceptron’s

To be able to classify more difficult not linearly separable problems a two-step
approach is required. Firstly, the input signals should be transformed into a new
representation into so called features. This new representation should separate
the classes further apart from each other, which makes it easier to separate the
classes. Secondly, a new classifier should use the new representation as input to
solve the classification problem. An analogy of this two-step approach is to com-
pare it to how you read a sentence. You do not care about each individual char-
acter. Firstly, these characters are classified into words. Secondly, you parse the
words into a sentence with his own meaning. If you would lose the ability to
recognize words, it would become much more difficult to understand the con-
tent of a sentence.

Learning representations is exactly what a multilayer perceptron performs. As
depicted in Figure 1.6, the multilayer network has a hidden layer (neuron h0, h1,
h2) between input and output. The hidden neurons act as feature detectors; they
perform a non-linear transformation on the inputs. During the learning process
these hidden neurons discover the features that characterize the training data.
The formation of this extra feature space distinguishes the multilayer perceptron
from a single perceptron. The illustrated multilayer perceptron in Figure 1.6 re-
veals that the network is a directed graph, where each layer is fully connected to

Figure 1.5: Illustration of a two-dimensional pair of non-linearly separable patterns.
x0

x1
Class0

Class1

Non-linear
decision boundary

8 CHAPTER 1. INTRODUCTION

the next layer. We can generalize the network description beyond two layers
towards any network depth. Therefore the equations in Figure 1.6 change into

the more general equation (1.8). The neurons in layer 𝑦𝑖
(𝑙)

 have a weight matrix

𝑤𝑖𝑗
(𝑙)

 that fully connects them to all neurons (or inputs) of a preceding layer

𝑦𝑗
(𝑙−1)

. This is mathematically described as:

𝑦𝑖
(𝑙)
= φ(𝑏𝑖

𝑙 +∑𝑤𝑖𝑗
(𝑙)
𝑦𝑗
(𝑙−1)

𝑗

) (1.8)

If a neuron is in the first hidden layer (i.e., 𝑦𝑖
(1)

) the inputs are 𝑦𝑗
(0)
= 𝑥𝑗 . Note

that the operations between layers can be written as matrix vector multiplica-
tions, followed by a non-linearity. Without non-linearity we keep only the re-
maining weighted sum operation, which is linear. Due to the associative
property the layers can be collapsed into a single layer. With simple linear alge-
bra any number of layers can be reduced to a single perceptron layer. It is the
non-linear activation function that prevents this merge and opens the extra fea-
ture space.

The multilayer approach usually substantially increase the number of model
parameters. Each layer has a weight matrix that fully connects input and output,
which is much larger compared to the perceptron model. For example, percep-
tron models have around 10 to 400 free parameters. However, the famous
NETtalk multilayer perceptron (1987) for English speech to phonemes transla-
tion had 18,629 model parameters [130]. NETtalk has 203 inputs, 80 hidden neu-
rons and 23 output neurons. The number of neurons is not that large, but full-
connectivity between layers makes that there are many model parameters. We
can conclude that the introduction of multi-layer perceptron’s increased the
number of free model parameters substantially. As a result, the learning and
classification capabilities are improved considerably.

Figure 1.6: Architectural graph of a multilayer perceptron with one hidden layer.

h0

h1

h2

x0

x1

Hidden
layer

Output
y0n0

Output
layer

hi = φ(bi+∑wij xj)

nk = φ(ak+∑vkl hl) = yk

Input
layer wij

vkl

1.1. NEURAL NETWORKS FOR CLASSIFICATION 9

1.1.4 Generalization issues

One of the key properties of (multilayer) perceptron’s is the ability to train them
with a labelled dataset. This is called Supervised Learning or learning with a
teacher. It requires a set of input examples with corresponding output labels.
The learning algorithm iterates over these samples and corrects the errors on the
outputs by adjusting the weights in the network. An efficient algorithm for train-
ing is error-backpropagation. It adjusts the weights by using the gradient infor-
mation of errors. Computing the error gradients is done efficiently by
propagating back the errors through the networks. Chapter 2 presents more de-
tails regarding this learning process.

Since the mid-1980s the back-propagation algorithm caused revived interest
into artificial neural networks [125]. Many researchers where using neural net-
works for pattern classification problems; non-linearly separable problems
seemed no problem for multilayer perceptron’s. They used many training exam-
ples and hoped that the designed neural net would generalize well. A network
generalizes well if the input-output mapping is correct or nearly correct for test
data that is not used for training the network. Generalization represents how the
network would perform in a real-world environment where it is continually ex-
posed to new data.

A neural network that is designed to generalize well will produce a correct
input-output mapping even when input samples are slightly different from the
ones used for training. Generalization is mainly influenced by three factors:

1. The size of the training set and how representative it is for the problem.
2. The architecture of the neural network, or training method (regulariza-

tion methods can reduce overfitting).
3. The complexity of the problem at hand.

Figure 1.7: Examples of classifier decision spaces and generalization: (a) Under fitting, a
linear classifier cannot distinguish the two classes correctly, it has not enough parame-
ters; (b) A small multilayer perceptron. Not all training samples are classified correctly.
However, it shows good generalization, most new samples are expected to be classified
correctly; (c) Over fitting, classifier is too complex. It fits “noise” in the training data. All
training samples are classified correctly, but new samples will probably introduce errors.

x0

x1

Class0

Class1

x0

x1

Class0

Class1

x0

Class0

Class1x1

Under fitting Good generalization Over fitting

(a) (b) (c)

10 CHAPTER 1. INTRODUCTION

Figure 1.7 illustrates how these three aspects influence generalization. Under fit-
ting is depicted in Figure 1.7(a), the classifier is too simplistic (too rigid), it can-
not capture salient patterns in the data. Although it makes errors on the training
data, for the common case it will not perform much worse on new test data. The
distribution of triangles suggest that new triangles probably will appear in the
top right (yellow) part of the decision space. Although the model suffers from
under fitting, we conclude that it generalizes reasonably. Figure 1.7(b) illustrates
a classifier that has a good fit on the data. Not all samples in the training set are
classified correctly, but it is likely that the two errors are outliers that will not
appear again. Over fitting is demonstrated in Figure 1.7(c), the classifier is too
complex (too flexible). It clearly fits on the “noise” in the training data. All train-
ing patterns are classified correctly, but this includes patterns that will not re-
appear. If this complex classifier is used in a real-world environment with new
samples it will probably make many errors.

Especially for shallow networks with many parameters, it is difficult obtain a
good generalization. So called shallow networks have one or few, but large hid-
den layers. To find single transformations of the inputs into classifications by
using many parameters is difficult. With less parameters the network is forced
to make abstractions of the problem, which often helps generalization. The gen-
eralization issues show that more difficult problems are not automatically solved
by increasing the number of neurons in the hidden layer. Simply increasing the
number of neurons (adding model complexity) is not directly the solution to
solve more difficult problems.

1.2 Deep networks for computer vision

One of the more complex pattern classification problems is visual object recog-
nition. Tasks that humans solve relatively simply can be very challenging for al-
gorithms. Think of detecting a familiar face, reading road signs, or interpretation
of hand written characters. Figure 1.8, illustrates that such images are con-
structed by pixels with a corresponding intensity value. In a digital system these

86 90 79 83 77 68

85 222

58 88

232 240 199 92

63 57 240 79

68 71 63 211 74 85

91 87

195 46

197 65 58 46

64 55 35 38

Figure 1.8: Examples of visual object recognition tasks: Detecting a familiar face; reading
a speed sign; Interpret hand written characters. Easy tasks for humans, however for a
computer it is an array of pixel values. It results in a high-dimensional input vector.
Would you recognize the number 7 in the example matrix on the right hand side?

1.2. DEEP NETWORKS FOR COMPUTER VISION 11

images are arrays of pixel intensity values. It is quite hard for us humans to ex-
tract the number 7 from the array by only looking at the numeric values in the
array. Especially if you take into account that all pixel values will change when
external light conditions alter. This subsection briefly discuss the techniques
used to improve neural net architectures to perform well on visual data. Enforc-
ing architecture constraints as shown in Section 1.2.1 is a successful technique to
improve generalization for image recognition tasks. These architectural con-
straints resulted in networks that stack feature hierarchies, see 1.2.2. It is the ba-
sis of the successful Convolutional Networks (ConvNets). More information on
this topic will be given in Chapter 2.

1.2.1 Building prior information in neural net architectures

When a neural network is used as face detector it should learn to separate a face
from background. E.g., an input patch of 20x20 pixels can be used as input (input
retina), which should be classified as face or background. The high dimension-
ality of the input vector (400 input values) makes it very challenging to train a
multilayer perceptron correctly with a good generalization. A very successful ap-
proach to cope with the difficulties of high dimensional input data is: Incorpo-
rate prior knowledge about the problem into the model parameters. This reduces
the flexibility of the classifier (prevent over fitting). In addition, it forces the re-
maining parameters to learn only useful correlations in the training data.

20 by 20
pixels

Input
vector

Receptive
fields

Hidden
layer

Output
layer

Figure 1.9: Example of Rowely’s constrained multilayer perceptron. Prior knowledge is
embedded in the network e.g., receptive fields specialized at detecting eyes, or mouth
shapes. Weight freedom is limited to enforce important features and prevent overfitting.

12 CHAPTER 1. INTRODUCTION

Receptive fields

Figure 1.9 depicts a good example of a network architecture that reduces con-
nectivity and incorporates prior knowledge for face detection [124]. Instead of
fully connecting the high dimensional input to all neurons in the hidden layer;
the hidden layer has three types of specialized receptive fields. Receptive fields
are input regions that are connected to a neuron, e.g. the red 10x10 input boxes
in Figure 1.9 show a limitation on the connected inputs. Each of these types is
chosen to enforce hidden neurons to detect local features that are important for
face detection. In particular, square shaped receptive fields might detect features
such as individual eyes, the nose, or corners of the mouth. Stripe shaped recep-
tive fields can detect mouths or a pair of eyes. The constrained network archi-
tecture reduces the number of free model parameters to 1,453 compared to 10,427
for a fully connected hidden layer. At the time of introduction (1998) this con-
strained network architecture significantly improved upon the state-of-the-art
for face detection.

Weight sharing

A second additional measure that is used to build prior information into neural
networks is weight-sharing. Weight sharing constrains the parameter freedom
by enforcing the same weights for multiple neurons. This is better demonstrated
by the partially connected network depicted in Figure 1.10. The top four inputs
belong to the receptive field of hidden neuron 1, and so on for the other hidden
neurons in the network. To satisfy the weight-sharing constraint, the same set
of synaptic weights is used for each neuron in the hidden layer of the network.
The potential of neuron i is mathematically expressed as:

𝑝𝑖 = 𝑏 +∑𝑥𝑖+𝑘𝑤𝑘

𝐾−1

𝑘=0

 (1.9)

The weights wk are used on shifted input positions similar to a convolutional
sum. Compared to receptive fields, weight sharing reduces the number of free

x1

x2

x3

x4

x5

x6

x7

y1

y2

Hidden layer
Output layer

Input layer

Figure 1.10: Illustration of weight sharing combined with receptive fields. All four hidden
neurons share the same set of weights for their four synaptic inputs.

1.2. DEEP NETWORKS FOR COMPUTER VISION 13

parameters even further. The hidden layer is forced to learn only the most im-
portant local features. An additional side effect of sharing with a convolutional
sum is translation/position invariance. The concept of weight sharing with re-
ceptive fields can be easily extended to 2d input images. Especially for vision
tasks position invariance of features can be important. Think of edge detection
algorithms, it does not matter where the edges occur to classify them as edges.
Local position invariant features like edges are important clues for the classifi-
cation of an object. In ConvNets a combination of both reducing connectiv-
ity/receptive fields and weight sharing is used. Chapter 2 will elaborate more on
this topic and give a detailed motivation why local features are important for
vision tasks.

1.2.2 Feature hierarchies

One of the problems with two layer perceptron networks is that the hidden neu-
rons interact with each other globally. For complicated problems this interaction
makes it difficult to improve the classifier for certain input patterns without
worsening it for others. With multiple hidden layers, the process of learning the
best features becomes more manageable. Classical model based image recogni-
tion pipelines apply the same partition of classification into several stacked
steps. These models separate a recognition task into feature extraction and clas-
sification, as illustrated by Figure 1.11.

1. Feature extraction can involve multiple successive steps such as pre-pro-
cessing and extraction of features. This step makes it easier to classify the data,
and increases the likelihood of correct classification by removal of irrelevant var-
iations. For example, illumination normalization, and translating to edges or
gradients which are not much affected by the illumination. Examples of ad-
vanced model based feature extractors are: SIFT [91]; SURF [4]; and HOG [38].

2. Classification is performed on the feature vector that is carefully de-
signed to reduce the amount of data, and amplify only important aspects of the
recognition task. The classification task can be performed by a simple classifier
model, e.g., a Perceptron, k-Nearest Neighbour (k-NN), or a Support Vector Ma-
chine (SVM).

The very successful idea of solving classification problems in a hierarchical
approach is also applied to neural networks. These can also exploit the property
that many signals in nature are composed of hierarchies, in which higher-level
features are obtained by composing lower-level ones. In images, local combina-
tions of edges form motifs that are arranged into parts, and parts form objects.

Invariant feature
extractor

Classification
model

Input pattern
X

Feature
vector

Y

Outputs

Figure 1.11: Block diagram of a classical two step object recognition system.

14 CHAPTER 1. INTRODUCTION

In speech and text similar hierarchies can be observed: from sounds to phones,
phonemes, syllables, words and sentences. These hierarchal part-whole relation-
ships apply to almost every object recognition task.

Section 1.2.1 shows how prior information is embedded into a network archi-
tecture. By stacking layers crafted to detect features from the corresponding hi-
erarchical level, one obtains a classifier that is much easier to train, and has
greatly improved generalization properties. Each hidden layer can perform a
non-linear transformation of the previous layer, so a deep network (multiple hid-
den layers) can compute more complex features of the input. In the case of vision
tasks deeper networks learn part-whole decompositions as described above. For
instance, the first layer groups pixels together to detect edges. A second layer
might group together the edges to detect longer contours. Even deeper layers
can group together these contours and detect parts of objects. Learning such
deep feature hierarchies by training many stacked layers is what the term Deep
Learning refers to.

1.3 Trends in deep neural network development

The depth increase of classifiers by stacking many layers is a key differentiator
from the earlier shallow models. It resulted in remarkable improvements in clas-
sifier accuracy. For example, new deep networks are breaking records in image
recognition [79,30,49], and speech recognition [66,127]. In addition, they are
very successful in other domains e.g. drug discovery, as demonstrated by the
winning entry in the Kaggle2 competition to predict useful drug candidates for
pharma company Merck [93]. Nowadays on many tasks deep networks achieve
near-human accuracy levels e.g., Face detection [143]. In extreme cases these
deep nets deliver superhuman accuracy, as demonstrated by [25,63].

The recently introduced machine learning models that challenge human ac-
curacy levels have a long history. From the simple models of the 1940s they
evolved into the powerful classifiers of today. This evolution is not only reflected
by their accuracy scores or the difficulty of the problems they solve. The detec-
tion scores are a result of many model parameters and huge amounts of training
data used to tune these parameters. This section takes a closer look at the his-
torical trends in deep neural network development. Throughout this section, a
set of 30 popular neural network publications is used as historical data3, each
representative for the state-of-the-art at their year of publication.

2 The Merck Molecular Activity Challenge on www.kaggle.com
3 Neural network articles used for trend analysis: [13,24-31,51,59,63,64,74,77-82,88,111,112,114,115,121,

122,127,128,132] [88,114,121,77,78,13,115,79,80,51] [127,112,81,63,64,111,26,27,28,29] [24,30,82,74,25,31,122,132,128,59]

http://www.kaggle.com/

1.3. TRENDS IN DEEP NEURAL NETWORK DEVELOPMENT 15

1.3.1 Model capacity

In Figure 1.12, the model size of classifier networks published during the last 70
years is illustrated. Model size is given as the number of trainable model param-
eters, i.e. the number of weights. In addition, the computational workload de-
fined as the number of Multiply Accumulate operations required for a single
classification is plotted. This data shows an important observation:

Both model size and computational workload have grown immensely over
time, especially since 2008 there was an acceleration of the already impressive
growth rate. The model growth is reflected by an increasing complexity of the
classification tasks solved by neural networks. The old perceptron’s of the 1950s
learned linearly separable patterns like simple lines and planes [123]. However
competition winners of today’s ImageNet summarize the content of a million
images, they recognize 1000 different classes of complex objects such as ham-
mers, or bikes, ants, etcetera [126]. The huge complexity of these tasks is repre-
sented by the data set size, which has grown tremendously. To absorb this
enormous amount of training data the number of model parameters in neural
networks exploded. The dotted exponential trend lines in Figure 1.12 reveal the
immense growth of model parameters and computational work. Let’s have a
closer look at the breakthroughs that enabled the exponential growth rate in
model capacity.

The first single layer networks of the 1940s to 1950s had up to 400 model
parameters. During the 1980s the error back-propagation algorithm helped to

Figure 1.12: Historical data on 30 neural networks3 showing the explosive scaling for the
number of model parameters, and involved computational workload. Multiply Accumu-
late (Macc) are the used measure for computational workload.

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11

1940 1950 1960 1970 1980 1990 2000 2010 2020

Year of introduction

Model parameters

Compute Workload [Macc]

Expon. (Model parameters)

Expon. (Compute Workload [Macc])

16 CHAPTER 1. INTRODUCTION

train larger multi-layer networks like NETtalk with 18.000 parameters [130].
Around 2000 techniques as receptive fields and weight sharing evaluated into
the Convolutional Networks of Yann LeCun [84]. The Convolutional nets pushed
the number of model parameters over 90.000 while maintaining excellent gen-
eralization [85]. In addition, Convolutional Nets increased the depth of classifier
models from two layer models to 4-7 layers. Figure 1.13, illustrates the network
depth increase caused by the introduction of Convolutional Networks. From
2006 onwards weight regularization techniques enabled regular non weight
sharing networks to scale in depth to 4-7 layers [67,68]. These nets, so called
Deep Belief Networks (DBN), increased the model size to almost 4 million pa-
rameters.

Around 2008 the availability Graphics Processing Units (GPUs) for general
purpose computing improved the computational abilities of machine learning
scientists. The use of GPUs resulted in huge networks; e.g., DBNs with 100 mil-
lion parameters are successfully trained [118]. In addition to GPUs, the introduc-
tion of huge data sets in 2012 like the 1 million images of the ImageNet
competition in 2012 [126] pushed the state-of-the-art Convolutional Networks to
60 million parameters divided over 11 layers [79]. This 60 million parameter net-
work named “AlexNet” won the competition by a large margin over other ap-
proaches. Due to the success of AlexNet many research groups now contribute
to the development of large classifier models. Nowadays the largest Convolu-
tional Nets such as VGG have 280 million parameters [138]. In the extreme, huge
DBNs with 11 billion parameters are trained by GPU clusters [32]. These examples

Figure 1.13: Depth increase of neural networks over the last 70 years on a linear scale.
Note that recently introduced residual networks have a depth of 152 layers [58] and be-
yond.

0

5

10

15

20

25

30

1940 1950 1960 1970 1980 1990 2000 2010 2020

N
et

w
o

rk
 d

ep
th

 N
 la

ye
rs

Year of introduction

Network Layers

1.3. TRENDS IN DEEP NEURAL NETWORK DEVELOPMENT 17

demonstrate the tremendous growth in classifier model size over time, and it is
not expected that this growth will stop any soon.

1.3.2 Computational work

The computational requirements of deep neural nets have grown even faster
than the number of model parameters. This claim is supported by the exponen-
tial trend lines in Figure 1.12. For the early neural networks computational work-
load scaled with the number of trainable model parameters. For example, each
layer of neurons was fully connected, it required as many multiply accumulate
operations as the number of weights in the network. However, the introduction
of weight sharing since 1990 made that weights are reused for multiple compute
operations. As a result, the number of compute operations grew even faster than
the number of model parameters.

The role of computing platforms

To train increasingly larger nets with the impressive pace as presented in Figure
1.12 the machine learning community is driven by huge developments in compu-
ting platforms. Very important are the developments that enabled transistor
scaling; e.g. Moore’s Law [96] is a fundamental driver of computing over the past
40 years. In more detail, chip manufacturing facilities have been able to develop
every 18 months new technology generations that double the number of transis-
tors on a single chip. However, more transistors does not give any benefits by
itself. It is the computer architecture industry that utilizes these transistors in
new microprocessor designs. Computer architecture (in particular the ISA, In-
struction Set Architecture of a processor) provides the abstractions that make
these transistors accessible to compilers, programming languages, application
developers, and machine learners.

Computer architecture harvested the exponentially increasing number of
transistors to deliver an almost similar rate of performance improvement for mi-
croprocessors. The huge performance increase helped machine learners to build
and train large neural networks. Nevertheless there are fundamental challenges
associated with the development of new process technologies and integrating an
exponential increasing number of transistors on a chip. One of the main chal-
lenges when doubling the number of transistors is powering them without melt-
ing the chip. During the last 15 years power consumption has become a huge
problem in the field of computer architecture.

To quantify the power problem and look into possible directions for the com-
ing decade we analyzed recent trends for desktop grade microprocessors. In this
study data from 218 Intel and AMD processors is used by combining data from
Intel’s ARK database [72], which is extended with information from Wikipedia
[149,148]. In addition, the relative computational throughput is added, which is
measured by the PassMark processor benchmark software [139].

18 CHAPTER 1. INTRODUCTION

Challenges in transistor scaling

To illustrate the current technology scaling trends our data is presented in Fig-
ure 1.14. It shows five properties of the evaluated processors in our database: 1)
number of transistors, 2) nominal clock frequency, 3) relative computational
throughput, 4) maximal power dissipation or thermal design power (TDP), and
5) the number of cores. From Figure 1.14 we clearly observe that the number of
transistors on a chip is still exponentially increasing, while the chip power re-
mained almost constant. It is remarkable that we can drive chips with exponen-
tially more transistors using the same amount of power.

Over successive technology nodes the power dissipation per transistor de-
creases by the same rate as their area shrinks. Therefore, a new technology can
double the number of transistors without increasing the power consumption of
the chip. This effect is known as Dennard scaling [42] and can be explained by
the dynamic power dissipation relation that transistors follow:

𝑃dyn = 𝛼 𝐶eff 𝑓clk 𝑉
2 (1.10)

Here 𝛼 is the activity (switching factor, between 0 and 1), 𝑓clk the frequency at
which the transistor operates, and 𝑉 is the supply voltage of the transistor. The
circuit has an effective capacitance of 𝐶eff. Due to scaling the capacitance 𝐶eff
and the transistor operating voltage 𝑉 are reduced with a factor 𝑆 (e.g. from
130 nm to 90 nm the scale factor is 1.4). Given equation (1.10) scaling reduces the
power dissipation per transistor by 𝑆3. However, a new technology node has a
factor 𝑆2 higher transistors density (𝑆 in both dimensions), and by increasing

Figure 1.14: Historical data on Intel and AMD microprocessors showing the scaling of a
chip’s transistors, clock frequency, compute performance, power dissipation, and core
count. Performance is measured by the PassMark processor benchmark software [129].

1

100

10000

1000000

2000 2002 2004 2006 2008 2010 2012 2014 2016

Year of introduction

Transistors (x1000) Frequency (MHz) Performance TDP (W) Cores

1.3. TRENDS IN DEEP NEURAL NETWORK DEVELOPMENT 19

𝑓clk.by a factor 𝑆 the chip power remains constant. Note that the potential per-
formance of the new technology went up by a factor 𝑆3 (faster and more transi-
tors).

The bad news is that since 2005, at the 90 nm node, the rate of supply voltage
scaling dramatically slowed down due to limits in threshold voltage scaling. As
a result Dennard scaling stopped from that point onwards [42]. The number of
transistors on a chip continued to grow with the historical rate, while the power
per transistor is not decreasing at the same rate. This quickly results in power
dissipation issues, especially since 100 Watt per chip/die is about the limit if no
excessive cooling is applied. For embedded devices these limits are even lower
e.g., 10 Watt for Tablets, 1 Watt for Smartphones, and 0.1 Watt for wearables.

Computer architecture challenges

The first step to prevent excessive power consumption is to stop increasing the
clock frequency 𝑓clk. Figure 1.14 shows that since 2005 clock frequency stopped
increasing and it leveled around 3.5 GHz. To maintain improvements in compu-
tational throughput and utilize the extra transistors of new technology nodes
multicore architectures are introduced. Instead of more complex and faster sin-
gle-cores, multiple simpler and lower frequency cores are integrated on a die. By
exploiting parallelism in the applications multicore processors try to overcome
the trends in transistor level scaling [134].

If we study equation (1.10) more closely we observe a factor 𝑆2 power increase
because Dennard scaling stopped. Not increasing the clock frequency reduces
this problem to a factor 𝑆 power increase. This reveals another challenge for the
near future; it might not be possible to turn on and utilize all the transistors that
scaling provides due to power limitations. In addition, it is often very difficult to
exploit enough application parallelism to utilize all cores in a multicore archi-
tecture. This second utilization problem automatically reduces the number of
transistors that are turned on. Both problems make that in current technology
nodes a growing portion of transistors is underutilized. A popular term for these
chip portions that are underutilized is ‘dark silicon’.

The implications of this growing portion of dark silicon pose great challenges
for computer architecture. As a result it will become more difficult to increase
computational performance over time. A recent exhaustive and comprehensive
quantitative study by Esmaeilzadeh et al. [48] estimated the impact of dark sili-
con on the performance of processors. Under optimistic assumptions they pre-
dict that performance will increase by 7.9x over a period of ten years, resulting
in a 23-fold gap w.r.t. the historic doubled performance per generation. If their
predictions are correct the microprocessor performance increase per generation
will dramatically slow down. As a result, this process will slow down develop-
ments in the application domains that benefit from the historic performance in-
crease. Among these applications the huge and deep neural networks will face
this problem. However, the work of Esmaeilzadeh et al. is a prediction, with our
new dataset we can quantify the accuracy of their prediction.

20 CHAPTER 1. INTRODUCTION

The dark silicon performance prediction of Esmaeilzadeh et al. [48] covers 10
years from the 45nm node in 2008 to the 8nm node in 2018. Our dataset spans
the 180nm node in 2000 till the 14nm node in 2016. Therefore, the gap between
historic performance doubling for every node and the real world implications of
power constraints must be visible in our data. To visualize this trend the Pass-
Mark performance of processors is summarized per technology node. Figure 1.15
presents these statistics as a minimum, maximum, and mean performance ver-
sus ideal performance scaling of the mean (doubling every generation). Tech-
nology generations up to 32 nm in 2010 where able to achieve the target of
doubling performance per generation. The relative performance difference with
the mean is plotted as a factor above the ideal scaling bar. However, since the
32 nm node in 2010 new generations where unable to keep up with the ideal tar-
get. As of today, the difference is already 2.3 x. Note that this is a substantial gap;
it is more than the performance doubling of one technology generation. Still it
is not as dramatic as Esmailzadeh et al. predicted. For instance in the unlikely
scenario that there will be no performance increase for the coming two technol-
ogy nodes the gap would be 9.1 x, which is less than the predicted 23-fold gap.

Although the performance gap is not as large as Esmailzadeh et al. predicted
also we conclude that there is a large compute performance problem that most
likely will not be solved by technology scaling. Studying literature and analysis
of our recent data reveals that this compute performance problem is real and
non-negligible. The causes of this problem seems to be chip power, and core
underutilization due to limited application parallelism. Since deep neural net-
works contain massive amounts of parallelism the key challenge is power. Espe-
cially, since the class of always on embedded devices is very interesting.
Currently deep neural nets run mostly on lab PCs equipped with power hungry

Figure 1.15: PassMark performance of processors summarized per technology node ver-
sus ideal scaling or performance doubling per technology node.

1.0x

1.1x

0.8x

0.9x

0.9x

1.0x

1.6x

2.3x

100

1000

10000

100000

180 nm 130 nm 90 nm 65 nm 45 nm 32 nm 22 nm 14 nm

P
er

fo
rm

an
ce

 P
as

sM
ar

k
Sc

o
re

Technology node

Minimum Maximum Mean Ideal Scaling

1.3. TRENDS IN DEEP NEURAL NETWORK DEVELOPMENT 21

GPUs. When the target platform changes from these 100 Watt desktop proces-
sors to 0.1 Watt always on embedded devices it is evident that power dissipation
and compute performance is the key challenge.

1.3.3 Memory transfers

In the previous section we analyzed computational workload. We looked into
the computations requirements for large scale deep neural nets, and studied
trends in compute platforms and transistor scaling that for a long time provided
an exceptional performance increases. In this section we address a more specific
part that is involved in the computational work, namely memory transfers.

In the computer architecture community it is well-known that memory
bandwidth is a bottleneck that often limits application performance. Over time
communication throughput of dynamic memory technology (DRAM) does not
improve with the same rate as microprocessor performance [151,10]. Figure 1.16
illustrates that this trend is also visible in our microprocessor dataset. The rela-
tive PassMark performance score contains an offset such that it starts at the
bandwidth level of the first Pentium 4 processors. This illustration clearly shows
the difference in the two exponential trend lines. In addition to the memory bot-
tleneck the datasets for applications continues to grow. This same trend is ob-
served for deep neural network applications (see Section 1.3.1). For example, an
image stream of images must be processed and therefore the huge set of model
parameters must be transferred into the microprocessor. Without enough com-
munication bandwidth this processing becomes memory bandwidth limited.

The positive part of this story is that most applications contain data-reuse,
i.e. the same data element is often used for multiple compute operations. This
motivates specialized memory hierarchies that exploit locality, e.g. small fast
caches on-die that utilize reuse, and large high-density off-chip DRAM to hold

Figure 1.16: Historical data on Intel and AMD processors showing the peak DRAM band-
width versus microprocessor performance scaling.

1

10

100

1000

2000 2002 2004 2006 2008 2010 2012 2014 2016

Year of introduction

peak memory bandwidth (GB/s)
performance
Expon. (peak memory bandwidth (GB/s))
Expon. (performance)

22 CHAPTER 1. INTRODUCTION

the huge datasets of modern applications. Given an application with enough
data reuse these sophisticated memory hierarchies can reduce off-chip commu-
nication substantially.

Energy of data movement

In addition to the memory bandwidth problems there is another communication
bottleneck that limits performance. Again this bottleneck is power related, in-
deed data movement consumes a lot of power. Especially since transistors scaled
down and improved their energy efficiency. However, on-chip wires, off-chip
transceiver pins, and off-chip memory interface lanes do not scale well. As a re-
sult the energy cost of moving data within a chip and over a network can easily
dominate the cost of computation, and therefore limit the gains from shrinking
transistors.

Nowadays, loading data into a small local SRAM cache is several times more
expensive compared to performing an arithmetic operation. Moving data 10 mil-
limeters across a chip is an order of magnitude more expensive w.r.t. the arith-
metic operation. Finally, moving data to off-chip RAM is almost three orders of
magnitude more expensive than computing the value. Table 1.1 outlines the
quantitative energy costs for different kind of data movements. The numbers
depend on technology parameters, such as technology node, operating voltage
and frequency, etc., but the general trend will be the same:

• Communication is very expensive.

• Computation is much cheaper than memory access.

• Memory access cost depend on the capacity (register file vs DRAM).

• Due to technology scaling the relative cost difference of computation
versus data movement will further increase.

Table 1.1: Energy cost of different operations on 32-bit values in a 45 nm technology. Note
that communication is significantly more expensive than computation, and its cost in-
creases proportional with the distance [116].

Operation Energy Relative cost

Alu op 1.0 pJ-4.0 pJ 1 x

Register file read 1.0 pJ 1 x

Read from SRAM 5 pJ 5 x

L1 Cache 32kB 20 pJ 20 x

Move 10 mm across chip 26 pJ-44 pJ 25 x

Send off-chip 200 pJ-800 pJ 200 x

Send to DRAM 200 pJ-800 pJ 200 x

Send over LTE 50 μJ-600 μJ 50,000,000 x

1.3. TRENDS IN DEEP NEURAL NETWORK DEVELOPMENT 23

1.3.4 Platform programmability

In the previous sections we studied the trends in transistor scaling and discussed
the growing problem of data movement. Both trends show that future platforms
are very much power limited, and it seems that faster systems are only possible
if their energy efficiency can be improved. This also holds for the ultra-low power
scenario where energy efficiency is key.

It is well know that these sources of inefficiency are often caused by the flex-
ibility of general-purpose processors. Hameed et al. [58] demonstrate that a ded-
icated accelerator can be 500 times more energy-efficient than a general purpose
multiprocessor. The main differences are in the customized local memory data
structures and the programming model. Both significantly reduce the applica-
tion flexibility, and they improve energy efficiency. This extreme example of en-
ergy-efficiency improvement motivates a shift to more heterogeneous compute
platforms. In the domain of Smartphones we clearly see this trend, e.g. platforms
like Samsung’s Exynos filled multiple dedicated accelerator cores (see Figure
1.17) are no exception. This results in heterogeneous systems with large cores to
provide compute power when necessary, and small efficient cores for normal
mode.

Although specialized cores can improve energy-efficiency they pose a major
challenge for programmers. Currently, there are already significant programma-
bility issues with normal multicore processors and GPUs. On a set of throughput
computing benchmarks it is shown that natively written C/C++ code that is par-
allelism unaware is on average 24x (up to 53x) slower than the best-optimized
code on a recent 6-core Intel Core i7 [129]. Note that this is for a general purpose
processor that is designed to be flexible. In a heterogeneous context this slow-
down is much bigger. Getting the best multicore performance requires the use
of concepts such as parallel threads and vector instructions. In addition, making

Figure 1.17: Die photo of Samsung’s Exynos Octa SoC. It contains a big and a small ARM
quad core CPU, a GPU, and multiple accelerators for video, audio, and image processing.

24 CHAPTER 1. INTRODUCTION

effective use of the memory hierarchy requires is very challenging code transfor-
mations.

Due to the dark silicon energy problems future heterogeneous platforms will
have multiple cores and accelerators, each with their ISA (Instruction Set Archi-
tecture, x86 or ARM), different type of parallelism (threads, vectors), a shared or
their own memory space, a custom memory hierarchy. This will result in an even
more challenging programming environment where much more programming
effort will be required to optimize applications. We conclude that the increased
complexity of heterogeneous platforms in the near future will increase the per-
formance gap between native and optimized code.

1.4 Problem statement

In the previous sections the trends in deep neural network development were
discussed. It seems that the size (in number of model parameters) is key for their
recent success in many application domains. Continuing the existing exponen-
tial trend of larger and deeper networks will likely result in even more advanced
applications, and record breaking accuracy on complicated classification prob-
lems. Pushing the deep neural network processing forward is one interesting di-
rection. However, the usage of existing and future deep learning technologies in
our daily life could be a game changer. It would give our personal companion
devices the intelligence to help us with many complicated decisions.

The problematic part that prevents us from running deep neural nets on the
class of embedded or always on portable devices is their huge computational
workload. The embedded platforms of today simply do not have the processing
capabilities to run such applications in real-time. For example, running a rela-
tively shallow ConvNet for Speed Sign detection on a popular embedded plat-
form (containing an ARM cortex-A9) results in a frame rate of 0.43 fps, which is
far below acceptable. After studying the trends in microprocessor development
we can conclude that it is not likely that the large performance gap will be closed
any soon by new and more powerful embedded platforms.

As of today almost all compute platforms are power constrained, from the
large super computers to the wearable system domain. The computational
trends that are outlined in the previous section reveal that there are multiple
problems that will slow down progress in compute performance for the coming
years. Important issues are:

• The failure of Dennard scaling since 2005, disabled a large part of the en-
ergy-efficiency advantage of new and smaller transistor technology gener-
ations [42];

• The memory bottleneck and the increasing portion of energy that’s con-
sumed by data movement in current compute platforms;

• The huge programmability issues that become even worse since computer
architects try to cope with the energy problem by moving towards more
specialized heterogeneous architectures.

1.5. CONTRIBUTIONS 25

For the application domain of deep neural networks the current compute prob-
lems can stop or at least slow down further embedded use of deep learning. Even
more problematic is the fact that these compute problems reduce the applica-
bility of this state-of-the-art technology. To make that step from benchmarks
towards real products and life changing solutions substantial improvements are
required.

The goal of this thesis is to substantially improve the efficiency of deep con-
volutional networks. This improvement should enable the final technological
step that moves the applicability of deep convolutional networks from offline
only (cloud based) scenarios to the real-time portable and even wearable use-
cases.

Efficiency is defined by three quantitative properties:
1. The number of compute operations that are required (Compute);
2. The number of necessary external memory transfers (Data Movement);
3. The amount of utilization that a normal programmer achieves when

mapping different network workloads (Flexibility).
In the end all three efficiency properties influence the energy-efficiency.

1.5 Contributions

This thesis focusses on addressing the efficiency problems when running Deep
Neural Network applications. In this work the problems are addressed on mul-
tiple fronts that span opportunities on the algorithmic side all the way down to
the platform side. Our efforts to improve efficiency are published in
[103,108,104,102,109,107]. Although the main focus is on Deep Convolutional Net-
works it is important to realize that many of the contributions are applicable to
other applications, in particular the image processing and vision aplications. The
main contributions of this these can be summarized as:

1. An algorithmic modification to the feature extraction layers of Convo-
lutional Networks. The modification merges the convolution and sub-
sampling layers of these networks [103]. This layer merging reduces the
computational and data transfer workloads of Convolutional Networks.

2. A new method for data locality optimization named inter-tile reuse op-
timization [104]. This method is developed to exploit the knowledge that
for many accelerators workloads with a static schedule the future data
content is known. This is directly applicable to Convolutional networks
and increases the amount of utilized data reuse by a significant amount
upon the state-of-the-art.

3. The Neuro Vector Engine (NVE) a flexible and programmable accelera-
tor architecture for Convolutional Networks [109]. This is an ultra-low
power accelerator that is designed for flexibility such that many differ-
ent Convolutional Network workloads run close to full utilization.

4. An optimizing compiler framework for the NVE accelerator template.
From abstract and simple network specification the compiler generates

26 CHAPTER 1. INTRODUCTION

close to optimal code (fully utilizing the NVE data path). Important to
note is that the NVE is the first Deep Learning accelerator with an opti-
mizing VLIW compiler [107]. This directly increases the applicability
and ease of use in future SoC’s.

This work shows that optimizations in multiple domains can drastically im-
prove the energy-efficiency of deep convolutional networks. This is demon-
strated by using the first two contributions for mapping on the NVE design.
Combined the presented contributions address the challenges posed in our
problem statement. As a result these contributions enables future mobile and
wearable platforms to run Convolutional Network applications.

1.6 Thesis outline

After this motivational introduction chapter this thesis will continue with ex-
plaining background of deep convolutional networks in Chapter 2. This chapter
provides the necessary background information to understand the later contri-
butions.

In Chapter 3 our two baseline applications are defined. These are two differ-
ent convolutional networks that will be used throughout the thesis: 1) Speed Sign
Detection and Classification [105]; 2) A face detection network based upon [53].
Both applications are trained and their conversion to a video processing appli-
cation is discussed. For both applications we will give the naïve C based mapping
results.

Our main contributions are presented in the Chapters 4 to 7. In Chapter 4 we
start with the merging of feature extraction layers [103]. We show theoretical
gains of this optimization and we evaluate and verify these gains with a CPU and
a GPU mapping. Chapter 5 describes our inter-tile reuse optimization method-
ology [104]. We evaluate the effectiveness of inter-tile reuse optimization on var-
ious accelerator workloads, to show the broad applicability of our technique.
Our evaluation metrics are external memory transvers, FPGA resource costs and
FPGA execution time, all based upon accelerator architecture templates that can
be used with high-level synthesis tools [108]. Chapter 6 introduces the template
for the Neuro Vector Engine (NVE) [109]. Our optimizing VLIW compiler [107]
is presented and evaluated in Chapter 7.

Finally, in Chapter 8 we conclude the thesis and summarize possible direc-
tions for future work. This thesis does not contain a separate related work chap-
ter. The relevant related work is discussed per chapter.

 27

2.

DEEP CONVOLUTIONAL NETWORKS

During the last decade Deep Convolutional Networks (ConvNets) have rig-
orously changed the domains of computer vision and pattern recognition.
Many of these results are achieved because these nets are able to combine
domain knowledge of the problem and machine learning from huge
amounts of data. In this background chapter the different concepts and
their motivations for the structure of ConvNets are discussed. This shows
the differences and similarities with classical neural networks. ConvNets
benefit from simple operators that are applied many times on input to build
feature hierarchies. Different layer types such as convolution or pooling
layers are discussed with their motivations. By stacking these layer module
deep classification machines are constructed that can give impressive clas-
sification result.

2.1 Introduction

As illustrated in the previous chapter, neural networks where used successfully
for simple pattern recognition problems. Later, researchers realized that these
algorithms and networks where too simplistic to solve more complicated and
real-world pattern recognition problems. Section 1.1 concludes with the general-
ization issues of so called ‘shallow’ neural network models. Adding more free
parameters to a two layers neural network does not solve this issue, but it makes
the generalization problem even worse.

In Section 1.2 we briefly touched the topic of deep networks that stack many
layers to improve the classification accuracy and prevent overfitting. We have
shown that it is not only the depth of these nets but especially the structural
constraints that make that these deeper nets are so successful. Building prior
information in neural networks is key to achieve a good generalization. Tech-
niques such as receptive fields and weight sharing are the basis for modern deep

CHAPTER

28 CHAPTER 2. CONVOLUTIONAL NETWORKS

Convolutional Networks (ConvNets). It enabled the construction of complicated
feature extraction hierarchies that gave a tremendous boost to machine vision.

This background chapter should give the reader a clear understanding of the
structure in ConvNets. Outlining how neural networks evolved into these deep
classification machines? That information is required to understand the later
optimization Chapters 4, 5, 6, and 7. In these later chapters we propose methods
to reduce the increasing network complexity. This to ensure that these powerful
classifier models can be implemented on resources constrained mobile devices.
Which should give intelligent features to or next generation of companion de-
vices. The task of training deep convolutional networks is covered in Chapter 3,
where we develop our benchmark applications. The details of gradient propaga-
tion for learning is covered in more detail in Chapter 4, where this matter is
needed to evaluate our layer merging operations.

In this chapter an introduction into visual data processing is given in Section
2.2. In Section 2.3 we cover the motivations that resulted into convolution oper-
ations to process visual data. From the need for parameter reduction by convo-
lutions we go over the different types of layers in a ConvNet. The methods to
construct powerful classifiers out of the different layer modules are discussed in
Section 2.4. In Section 2.5, recent advances are discussed that enabled the use of
even deeper networks resulting in a depth of 152 layers. Section 2.6 end this chap-
ter with a summary and conclusions from this ConvNet background chapter.

2.2 Challenges of visual data processing

In Chapter 1.2 we briefly discussed the intriguing challenges of visual object
recognition. Humans solve it without much effort, but for computer algorithms
it is a very challenging task. In this section we discuss the properties of visual
data and analyze how visual data is different from feature vectors. With feature
vectors we refer to a set of features like the ones used to classify a person’s health,
e.g., “age”, “nationality”, “weight”, “length”, “blood pressure”, “respiratory rate”,
“heart rate”, “oxygen saturation”, and “gender”.

One of the first observations that sets visual data apart from feature vectors
is the huge dimensionality. As illustrated by Figure 2.1, a road scene image for
speed sign recognition easily contains 2.76 Million input variables. This involves
three channels RGB of a 72op HD video frame. If this problem is reduced to sin-
gle sign detection the frame size could be reduced to a 32 x 32 pixel grayscale
patch; see Figure 2.2. Still the patch contains 1,024 input variables. A simple two-
layer neural network with 1,024 hidden neurons and one output neuron has 1
Million parameters. This is a huge number of network parameters, especially
compared with networks that classify on feature vectors. For example the health
classification network has an input vector of 9 values. With 9 hidden neurons
and one output neuron the network has 100 parameters. This is a difference of
four orders of magnitude compared with a simple speed sign detector. It clearly
illustrates the huge dimensionality challenges involved in visual images.

2.2. CHALLENGES OF VISUAL DATA PROCESSING 29

On the other hand visual data mainly contains inputs that are locally corre-
lated. If we shift an image by a few pixels the image contents is still very similar.
However, the input vector changed a lot. This effect is demonstrated in Figure
2.2 where changes like shift, scaling, or rotation do not change the local correla-
tion between variables. In all cases a speed sign has large regions of white pixels.
This is very different for feature based vector representations. Table 2.1 demon-
strates that an element shift in the health classification vector would result in a
vector that does not make any sense, i.e. there is no local correlation between
elements.

Age
Nation-

ality
Weight Length

Blood
pressure

Resp.
rate

Heart
rate

Gender

33 Dutch 80 1.88 120 13 60 Male
Male 33 Dutch 80 1.88 120 13 60

Table 2.1: A small shift in the feature vector of the health classification problem would
result in a very strange input vector. However, for images a one element offset is very
common.

We conclude that image data is very high dimensional, which poses chal-
lenges such as overfitting on the data. Furthermore, we conclude that the indi-
vidual elements of image data can be very different after a subtle change in the
image. For example a shift or illumination change will often modify all individual
elements. Therefore image data requires a different approach. It requires a focus
on the local correlations. Absolute pixel values alone do not describe the infor-
mation in an image, it are the local patterns that best describe the image content.

Input dimensionality: 720 x 1,280 x 3 = 2,764,800

Figure 2.1: A720 x 1,280 RGB road scene image for speed sign recognition has a huge input
dimensionality of 2.76 Million input variables.

shift x, y scale rotate

local
correlation
of variables

gray 32x32
= 1,024 val.

Figure 2.2: Visual data has a huge dimensionality even a grayscale 32x32 pixel speed sign
image consists of 1,024 variables. Small visual changes like a shift, scale, or rotate have a
big impact on all variables. However, there is local structure between variables that re-
mains similar after a visual change. For example the regions of neighbouring white pixels
do exist in all versions of the speed sign images.

30 CHAPTER 2. CONVOLUTIONAL NETWORKS

2.3 Parameter sharing

In the previous section we observed that image data differs from standard fea-
ture vectors. Most information in images is encoded in local correlations instead
of absolute values. For example the well-known “Sobel” filter operator can be
used to detect local edge gradient features. As illustrated in Figure 2.3, such fil-
ters can highlight the local correlations of edge patterns. There are many more
local filter operations with different orientations that are often used as prepro-
cessing steps in classical model based image classification.

In Chapter 1.2.2 we discussed the basic concepts of two step classification
models for image data. Figure 1.11 illustrates a feature extraction step followed by
a classifier. In a naïve classifier model feature extraction could be performed by
the Sobel operator followed by thresholding to recognize edge features. The edge
features are used by a classification model to recognize speed signs. Although
this could work with a good classifier we do not know if edge features are optimal
for this task. Much better would be an approach that learns the filter coefficients
from the classification data. In this trainable scenario the filter operation is op-
timized for the task at hand.

Figure 2.1 reveals that the visual input could be even 3D instead of only 2D.
The RGB 3D color channel inputs have their own local correlation. For some
applications this extra dimension is very important, therefor the filter parame-
ters should be 3D as well. This could even be extended to 𝑘 dimension; e.g. think
of hyperspectral data [23]. On the other hand, more than one filter operation
could be required. For instance the Sobel kernel in Figure 2.3 does not highlight
horizontal gradients, e.g. the pole holding the speed sign is not well extracted.
Performing a second filter operation with a transposed Sobel kernel would ex-
tract the pole. The number of different kernel operations define a new dimen-
sion in the number of output maps. Figure 2.4 depicts the multi filter scenario
where different filter operations are used to extract local correlations in the im-
ages, i.e. features.

1 2 1
0 0 0
-1 -2 -1

Figure 2.3: Classical Sobel filter operation on a road scene for local gradient or edge de-
tection. Observe the strong and distinctive gradients in the region of the speed sign.

2.3. PARAMETER SHARING 31

Detecting local correlations can be parameter efficient. For example, the 6
extraction filters in Figure 2.4 require only 450 parameters. If we apply this op-
eration on 3 color channels of 32 x 32 pixel speed signs it would result in 6 output
maps of 28 x 28 values. The reduced number of output resolution is caused since
the filter is applied only to the valid part of the image.

A fully connected neural network with the same number of outputs would
require a massive amount of parameters. In this case 28 x 28 x 6 hidden neurons,
each having 32 x 32 x 3 inputs (fully connected), resulting into 14.5 million pa-
rameters. In chapter 1.2.1 the concept of receptive fields for neurons was ex-
plained. Using a 5 x 5 x 3 receptive fields for each hidden layer neuron the
parameter set is reduced to 353 thousand parameters. Both neural net imple-
mentations use way too many parameters for the speed sign classification prob-
lem. It would give two major problems:

1. The model would suffer from overfitting on the problem. Using many
training examples and regularization techniques [69] could help reduc-
ing the overfitting.

2. The computational workload involved when evaluating such a model is
huge.

For image data it seems that weight sharing by using convolutions is much more
efficient compared to fully connected layers; even receptive fields use too many
parameters to be efficient.

5

5

3

RGB 3
Channels

Convolution

1 result
channel
per filter

6 output
channels

=

Figure 2.4: Multiple filter operations applied to an RGB input patch. Filter operations are
performed by convolution with a set of filter coefficients. These coefficients are tuned to
extract the important local correlations in the image data, e.g. gradient detection for dif-
ferent orientations.

32 CHAPTER 2. CONVOLUTIONAL NETWORKS

2.3.1 Convolution layers

The previous section demonstrated that convolution operations are very power-
ful operators to detect local correlations in images. Convolutions can be mod-
eled as neurons that exploit weight sharing, in essence convolution and weight
sharing result in the same operation. Equation (2.1) gives the expression to com-
pute fully connected neurons on a 2D image grid. Here 𝑀 and 𝑁 give the input
image dimensions. The parameter sharing into convolution operations is given
in Equation (2.2).

𝑝𝑚,𝑛 = 𝑏𝑚,𝑛 + ∑ ∑𝑥𝑘,𝑙𝑤𝑚,𝑛,𝑘,𝑙

𝑁−1

𝑙=0

𝑀−1

𝑘=0

 (2.1)

𝑝𝑚,𝑛 = 𝑏 +∑∑𝑥𝑚+𝑘,𝑛+𝑙𝑤𝑘,𝑙

𝐾−1

𝑙=0

𝐾−1

𝑘=0

 (2.2)

In Equation (2.2) we observe that the full image dot product (summing over
all elements in 𝑀 and 𝑁) is reduced to a local patch (summing in two dimensions
with a small size 𝐾). Furthermore, coefficient parameters, such as bias 𝑏, and
weight kernel 𝑤𝑘,𝑙 are shared for every output neuron 𝑝𝑚,𝑛. The input image (𝑥)

of a convolution layer has two dimensions. However, often multiple input im-
ages, color channels, or feature maps can be used as input. In this scenario equa-
tion (2.2) is used. Each neuron matrix 𝑝𝑚,𝑛 corresponds to one output channel

as shown in Figure 2.4.

𝑝𝑚,𝑛 = 𝑏 +∑ ∑ 𝑥𝑞,𝑚+𝑘,𝑛+𝑙𝑤𝑞,𝑘,𝑙

𝐾−1

𝑘,𝑙=0𝑞∈𝑄

 (2.3)

One could use multiple output channels where each channel specializes at
extracting a different feature. Think of two orientations of the Sobel filter that
specialize at gradients in x or y direction. Figure 2.5 depicts the coefficients of
the first layer of trained Convolutional Network. Also here we observe that the
coefficients specializes at local correlations such as gradient patterns with an
orientation. The result of applying the convolution kernels to a speed sign patch

Figure 2.5: Weight visualizations of the first layer containing 6 filters in a trained Con-
volutional Network for speed sign recognition. See Chapter 3 for more details on the full
network that is used as a speed sign recognition application.

2.3. PARAMETER SHARING 33

is given in Figure 2.6b. The descriptive local gradients are highlighted in the 6
feature maps.

2.3.2 Pooling layers

Convolution layers often use multiple kernels to extract different features. The
example illustrated by Figure 2.4 generates 6 feature maps of 28x28 neurons re-
sulting in 4704 values. The three channel 32x32 pixel input consisted of 3072
values, so the convolution layer significantly increased the amount of data. For
efficient classification only descriptive features are required, so probably not all
features are required.

Pooling layers are used to aggregate multiple feature values into a single
value, see Figure 2.6a. This reduces the resolution in feature maps, but it should
preserve important features. Figure 2.6b illustrates the data reduction achieved
by a pooling layer. Another desirable effect of feature pooling is invariance to
small transformations. A feature grid that shifts a position will still propagate
into the pooling result.

In general there are two popular pooling strategies:
1) Average pooling is very similar to the operation in a convolution layer. The
main difference is that a single weight is used instead of a kernel. Furthermore,
a stride is used to achieve the data reduction. Equation (2.4) gives the operation
for average pooling. A scale coefficient 𝑤 and a bias 𝑏 are the trainable values in
this layer.

input

convolution
layer pooling

layer

a00 a01

a10 a11

c20 c21

c30 c31

d22 d23

d32 d33

b02 b03

b12 b13

a b

c d

pooling
reduction

a) b)

Figure 2.6: a) Pooling operation aggregates multiple values into a single value. b) First
layers of the speed sign recognition net illustrating data reduction and feature selection
by pooling.

34 CHAPTER 2. CONVOLUTIONAL NETWORKS

𝑝𝑚,𝑛 = 𝑏 + 𝑤 ∑ 𝑥𝑚𝑆+𝑘,𝑛𝑆+𝑙

𝑆−1

𝑘,𝑙=0

 (2.4)

2) Max pooling selects the local maximum from a window by using the max ()
operator as given in equation (2.5). Max pooling does not involve any trainable
parameter. It differs from average pooling that has a weight and bias.

𝑝𝑚,𝑛 = max
0≤𝑘<𝑆,0≤𝑙<𝑆

(𝑥𝑚𝑆+𝑘,𝑛𝑆+𝑙) (2.5)

Both pooling functions use a scale factor 𝑆 as a reduction parameter. This
parameter defines the distance between neighboring windows. In the presented
examples the pooling windows do not overlap, but pooling with overlap is also a
valid option.

2.3.3 Neuron layers

For completeness we give the definition of classical neuron layers. There is no
parameter sharing in neuron layers, every neuron has his own set of weights. The
neuron layer operation on an image was given in Equation (2.1). Similar as for
convolution layers the neuron layer operation can be extended to multiple input
feature maps. Note that not all neuron layers are fully connected to all input
feature maps. To keep all notations the same one could define a neuron layer
with convolution operations. These convolutions have only a single output point
so it is not a shifting window over the image, but a single position. In case the
input of a neuron layer is a neuron layer we could use a 1x1 kernel for convolu-
tion. Further details regarding neuron layers is given in chapter 1.

2.3.4 Normalization layers

Some networks use fixed normalization structures in a few layers. These normal-
izations enforce group behavior like sparsity or they normalize the mean and
variance in a feature map. Local response normalization is one of these normali-
zation structures. It implements competition between neurons at the same lo-
cation, but in different feature maps. Popular competition winning networks like
the ImageNet winner from 2012 use local response normalization to improve the
generalization [79]. Local response normalization is performed by the operation
in equation (2.6). The input activities 𝑥𝑞,𝑚𝑛 for neighboring feature map posi-

tions 𝑞 are used to normalize each neuron output 𝑝𝑟,𝑚,𝑛. The constants 𝑘, 𝑛, 𝛼,

and 𝛽 are hyper-parameters that must be tuned carefully.

𝑝𝑟,𝑚,𝑛 = 𝑥𝑟,𝑚,𝑛 (𝑘 + 𝛼 ∑ (𝑥𝑞,𝑚,𝑛)
2

min(𝑁−1,𝑟+𝑛/2)

𝑞=max(0,𝑟−𝑛 2⁄)

)

𝛽

⁄ (2.6)

2.4. CONSTRUCTING A CONVOLUTIONAL NETWORK 35

Recently, Batch Normalization [73] is introduced which replaced local response
normalization. Batch normalization improves the training process of a network
by adding normalization layers that normalize small sets of training examples
(mini-batches).

We mention these two normalization layer types for completeness. Although
some of our proposed optimization methods are applicable to both techniques
we do not further evaluate them in this thesis.

2.4 Constructing a convolutional network

In the previous section we demonstrated that local correlations in image data
can be extracted by convolution layers. In addition to feature extraction a pool-
ing operation can be used to select only important features. However, these two
operations alone do not make a classifier. For this we should stack layer opera-
tions together and compute towards a classification label. Each of the presented
layer types can be used as compute modules that perform a transformation on
the intermediate data.

For instance, classification of a grayscale speed sign patch could use multiple
convolutional layers. Each convolutional layer can use a non-linear activation
function. In chapter 1 we discussed several activation functions. After each acti-
vation function a pooling step with or without another activation can be used to
reduce the data. After a few cascades of this convolution, activation, and pooling
structure the image is converted into a feature vector. Depending on the size of
the input patch and the different kernel parameters this can be few cascades or
many, like 5 or even more. Figure 2.7 depicts a ConvNet that reduces the 32x32
grayscale patch to a 16x5x5 value feature vector. In this case a relatively small
patch is converted. When the classified objects are larger often much deeper
networks are used. For example, the VGG [138] ImageNet 2014 submission uses
16 convolution and 5 pooling layers to convert 224x224 patches into a feature
vector of 512x7x7. The convolution layers use small 3x3 kernels that can still de-
scribe left/right, up/down, or center gradients. The inputs of convolution layers

input
convolution

layer 1
activation
function 1

pooling
layer 1

convolution
layer 2

activation
function 2

pooling
layer 2

neuron
layer 5

neuron
layer 6

Feature Extraction Classification

1 map 32x32 6 maps 28x28 6 maps 28x28
6 maps 14x14 16 maps 10x10 16 maps 10x10 16 maps 5x5

80 neurons
1x1

8 neurons
1x1

Figure 2.7: Convolutional network architecture for speed sign recognition. Stacking sev-
eral convolution, activation, and pooling combinations to obtain a feature vector. Con-
tinue processing with a few neuron layers to converge to a classification label.

36 CHAPTER 2. CONVOLUTIONAL NETWORKS

are padded such that the output/input size is similar. Only max pooling layers
reduce the input/output size by a factor 2.

The cascade of convolution and pooling layers results in a descriptive feature
vector that will be used for classification. It contains all important input infor-
mation summarized in a concise format. To classify this feature vector into a
classification label score one or a few neuron layers can be used. For example,
the speed sign network in Figure 2.7 uses two neuron layers. The first one is a
fully connected layer to encode the feature vector into 80 neurons. The second
neuron layers transforms the 80 neurons into 8 class labels with a certain prob-
ability. Example classes are Background, 30 km/h, 50 km/h, 60 km/h, etc.

2.4.1 Coding neuron layers

The feed forward layer operations in a ConvNet can be implemented as series of
deeply nested loops. The loops perform convolution operations between weight
kernels and input feature maps as shown in code Listing 2.1. The loop nest for
other layer functions, such as pooling (Listing 2.2) or classification (Listing 2.3),
are very similar to the convolution implementation. These layer implementa-
tions show that many data elements are repetitively used to compute network
outputs; as a result excessive amounts of data movement is required.

for(o=0; o<No; o++){ //output feature map
 for(m=0; m<Nm; m++){ //row in feature map
 for(n=0; n<Nn; n++){ //column in feature map
 acc=Bias[o];
 for(i=0; i<Ni; i++) //input feature map
 for(k=0; k<Nk; k++) //row in convolution kernel
 for(l=0; l<Nl; l++)//column in convolution kernel
 acc += In[i][m+k][n+l] * Weight[o][i][k][l];
 Out[o][m][n]=activationf(acc);
 }}}

Listing 2.1: Loop-nest representing a convolution layer

for(o=0; o<No; o++){ //output feature map
 for(m=0; m<Nm; m++){ //row in feature map
 for(n=0; n<Nn; n++){ //column in feature map
 acc=Bias[o];
 for(k=0; k<Nk; k++) //row in pooling kernel
 for(l=0; l<Nl; l++) //column in pooling kernel
 //subsampling version
 acc+=In[o][Sm*m+k][Sn*n+l]*Weight[o];
 //max pooling version
 acc=max(acc, In[o][Sm*m+k][Sn*n+l]);
 Out[o][m][n]=sigmoid(acc);
 }}}

Listing 2.2: Loop-nest representing two different types of pooling layers. Average pooling
or subsampling, and max pooling. Note that the loop nest should contain only one of
them at the same time.

2.5. DEEPER NETWORKS 37

for(o=0; o<No; o++){ //output feature map
 for(m=0; m<Nm; m++){ //row in feature map
 for(n=0; n<Nn; n++){ //column in feature map
 acc=Bias[o];
 for(i=0; i<Ni; i++) //input feature map
 acc+=in[i][m][n]*weight[o][i];
 out[o][m][n]=sigmoid(acc);
 }}}

Listing 2.3: Loop-nest representing a neuron based classification layer.

2.5 Deeper networks

The early multilayer perceptron’s often used two layers, one hidden layer and
one output layer. These ‘shallow’ classifiers did not generalize well when trained
on raw pixel values. Often these classifiers required good feature extractors that
reduce the high dimensional pixel space into feature representations. The intro-
duction of Convolutional Networks [84] provided a framework where feature
extraction could be combined with classification in a single end-to-end trainable
model. By enforcing structural constraints into the first layers of a network these
ConvNets where able to use 5 to 8 layers of non-linear transformations effi-
ciently. Each layer extracts a set of features starting with simple gradients to-
wards more complicated shapes that are built on top of preceding layer features.
Due to a larger number of layers these nets can implement complicated func-
tions of its inputs.

Training a network with a depth beyond 8 layers is rather challenging. This
is mainly caused by the gradient based training algorithms. Error gradients are
used to update coefficients to a new state that performs better on the cost func-
tion. In chapter 3 we provide more information on error gradient based optimi-

zation procedures. For now error gradients are defined as
𝜕𝐸

𝜕𝑊
, where 𝐸 is a loss

function on the produced labels by the network in function of 𝑊 holding the
network weights. The gradients are efficiently computed by the chain rule that
requires propagation from network output back to the inputs. Propagating the
error gradients from the output cost function back towards the input layers is
the difficult part. Sigmoid or hyperbolic tangent activation functions have the
problem that they decrease error gradients. The introduction of Rectified Linear
Units (ReLUs) improved the training of deep networks a lot [56]. Examples are
the networks from 2012 to 2014 that won the ImageNet competition [79,138].
These nets benefit from efficient gradient propagation. The ReLU activation is
described by max(0, 𝑥), where 𝑥 is the input signal. Since ReLUs do not decrease
gradients it enables training of much deeper networks. In addition, the ReLU
activation gives sparsity to the neuron feature encodings in the network due to
the zero part. For example, VGG [138] uses ReLU activations and demonstrates
up to 21 layers with a total of 280 Million parameters. Such very deep nets stack
many feature representations resulting in very advanced classifiers.

38 CHAPTER 2. CONVOLUTIONAL NETWORKS

Recently, researchers successfully trained substantially deeper networks. To
propagate the subtle details of a classification problem through more than 20
layers a different approach was required. Instead of learning transformations
from 𝑥 to 𝑓(𝑥) they learn only the deltas on 𝑥 and reuse the original 𝑥 to perform
the transformation. This is achieved by using Residual blocks that learn the func-
tion ℎ(𝑥) = 𝑓(𝑥) + 𝑥. Figure 2.8 shows the structure of residual blocks. Learning
only the differences from the input signals of layers enables a huge network
depth of 152 layers [63].

This extreme depth has further improved the network complexity. Maybe not
directly in the number of free parameters. Some of the deeper nets have fewer
trainable parameters. However data movement and data dependencies between
results make the computational requirements more challenging. In addition, the
parallelism in these deeper networks has become more complicated. Data de-
pendencies over layers make that it is more difficult to exploit all parallelism.

2.6 Conclusions

This chapter has discussed the current developments in the field of deep learn-
ing that resulted in more powerful networks. By understanding the structure in
your data it became possible to embed this knowledge into the classifier archi-
tecture. This resulted into parameter sharing by means of convolution layers. Or
in the extreme case learning only the deltas upon the input format to increase
network depth. All these techniques enabled the use of larger networks, larger
in number of free parameters, and deeper in number of layers. As a result the
computational challenges when implementing such a network have become
much more difficult.

In Chapter 1 we demonstrated that the complexity growth of ConvNets was
historically accelerated by the developments in computing platforms. However,
a similar pace in compute performance increase for the coming years is not ex-
pected. Power limitations are nowadays slowing down the performance growth
for each new technology generation. Therefore the remainder of this thesis will

X convolution
layer

ReLU
layer

convolution
layer

+

f(X)

X

f(X)+X

Figure 2.8: A schematic overview of a Residual learning building block. Multiple blocks
can be cascaded, and each block can have a varying depth for network f(X).

2.6. CONCLUSIONS 39

focus on efficiency improvements. We will research and apply high-level algo-
rithm modifications and low-level data movement strategies that exploit data
reuse. Furthermore this thesis will show a custom accelerator architecture in-
cluding advanced optimizing compilers to simplify the mapping.

 40

3.

BENCHMARK APPLICATIONS

In the next chapters several methods will be introduced to improve the ef-
fectiveness of Deep Convolutional Networks. We need benchmark applica-
tions to quantify these improvements. Compute workload models may help
to increase the understanding of trade-offs that are made. In addition, real
applications on different platforms are used to verify our models. In this
chapter we introduce two real-world vision applications for the purpose of
benchmarking. A Speed sign recognition application for autonomous driv-
ing purposes, and a face detection application for surveillance. For both ap-
plications we explain the data collection and training procedure to obtain
an accurate and robust ConvNet. Additionally, the conversion from a patch
classification network to a video detection application is outlined. Finally
we evaluate the performance of our applications on a CPU and a massively
parallel GPU platform.
Parts of this chapter are based on work presented in the 8th International
Automotive Congress 2011 [103]

3.1 Introduction

This thesis proposes multiple contributions that improve the efficiency of deep
convolutional networks, so it also requires evaluation. Each contribution can be
evaluated by a performance or efficiency model. For example such a model could
evaluate the achieved workload reduction. A good model can increase our un-
derstanding of the trade-offs that arise when applying optimizations. On the
other hand, these models and optimizations should be verified with real data or
in our case real-world applications. This ensures that the performance models
are correct and it further increases the understanding of the problem. In some
cases a real experiment will show unexpected side effects that are very valuable.
This holds especially for the machine learning domain where many side effects
can occur, e.g. properties such as overtraining and bad generalization can give

CHAPTER

3.2. OBJECT DETECTION WITH A CONVOLUTIONAL NET 41

deceiving results. Similar effects could occur in computer architecture, e.g. an
optimization that reduces the number of compute operations could give an un-
desired effect due to an increase of data movements .

Many of the published ConvNet implementations focus on the detection net-
work itself. A real machine vision application embeds such a network to solve a
detection or recognition problem. Be aware that the overall application often
changes the characteristics and the important tradeoffs in the ConvNet. The
main focus of thesis is improving the efficiency of deep learning based applica-
tions, so we need real applications to evaluate the efficiency. Therefore, this
chapter will introduce two machine vision applications based upon ConvNets:

1. Speed Sign Detection and Recognition for Autonomous Driving
2. Face Detection for Surveillance

Both applications are relatively small compared to the state-of-the-art in
deep neural networks. However, we demonstrate that a real-time embedded
mapping of such small ConvNet based vision applications is far from feasible on
today’s platforms.

Most literature does not explain how a ConvNet is used in a detection appli-
cation. To clarify the differences this chapter will first outline the process of ap-
plication development for ConvNets in Section 3.2. The guidelines for collecting
training data is discussed in Section 3.3. Next this data is used for training, so we
describe our training strategy for the applications in Section 3.4. The baseline
throughput on different platforms is evaluated in Section 3.5. In Section 3.6 we
discuss the state-of-the-art vision applications for detection and localization as
related work. This chapter ends with conclusions and discussion in Section 3.7.

3.2 Object detection with a convolutional net

In Chapter 1 we outlined the spectacular results that recent deep convolutional
networks (ConvNets) achieve on object classification tasks. In Chapter 2 we
moved on and described these networks in more detail. We showed how a Conv-
Net classifies a 32x32 pixel input patch into high level concepts like the digit 3 or
8. By using global training of the network parameters it is able to detect faces,
recognize speed signs, or pedestrians. Although classification from a patch of
pixel values is impressive it does not make a full application yet.

In this section we discuss the conversion of a patch classification ConvNet to
a full-fledged recognition application that processes a video stream. Such appli-
cations have extra requirements such as scale invariance; furthermore they can
exploit temporal knowledge about the object to improve accuracy.

Our first application performs speed sign detection and recognition for au-
tonomous driving based upon [105]. An in-car camera captures a video stream
that is processed on-the-fly to detect and recognize speed signs. As visualized in
Figure 3.1 these signs occur on different positions in a frame and they differ in
scale depending on the distance to the object. The second application performs
face detection for surveillance based upon a ConvNet developed by [53]. As

42 CHAPTER 3. BENCHMARK APPLICATIONS

shown in Figure 3.2, the application can processes video frames captured at a
busy crossroad to count people. Note that faces occur at different positions and
with different scales.

3.2.1 Patch classification

The core part of both applications is a ConvNet trained to classify a patch of
neighboring pixel values. Depending on the difficulty of the classification prob-
lem the network could be large or small. For speed sign recognition we use a
network based upon LeNet-5 that was originally develop to classify hand written
digits [84]. The configuration of our speed sign classification network is depicted
in Figure 3.3. The motivation for this starting point is the high similarity between
the task of digit and speed sign recognition. Firstly, hand written digits are vis-
ualized in 32x32 pixel patches which is a practical size to display speed signs.
Reducing the patch size makes it difficult to differentiate between a 30 and 80
km/h sign. Increasing the patch size does not add much useful detail to a sign.
Secondly, LeNet-5 has 10 different output classes, digit 0-9. For speed sign de-
tection we define 8 classes (background, 30, 50, 60, 70, 80, 90, and 100 km/h).

As illustrated in Figure 3.4, the face detection network of Garcia et al. [53] is
of similar depth as LeNet-5. However, the face detection network is relatively

Figure 3.1: Speed sign detection and recognition by an in car camera. Speed signs occur
on different locations and with various scales depending on their distance.

Figure 3.2: Face detection demonstrated on a movie video still from “The Matrix” (1999).

3.2. OBJECT DETECTION WITH A CONVOLUTIONAL NET 43

sparse; the model has only 947 trainable parameters. Compared to the 50,356
parameters used for speed sign recognition the face detection model is very
small. This difference is explained by the complexity of the task. Face detection
is a two class problem (background, and face), so the reduced number of model
parameters makes sense.

3.2.2 Frame based detection

A patch classifier is not directly useful as video application. Often the classifier
is used as sliding window to test for an object at each location and scale in a
video frame [147,39]. A naive sliding window search strategy quickly becomes
computationally expensive, especially if high resolution frames are used. There-
fore advanced search algorithms are developed that search by a smart schedule
at the cost of increased control complexity [35]. Many of the complex search
patterns introduce data dependencies that reduce the available parallelism.

ConvNets can use an interesting alternative approach to search a full frame.
The convolution operator can be performed on any patch size, so the patch is

input
36 x 32

feature maps
4@32 x 28

5x5
convolution

2x2
pooling

feature maps
4@16 x 14

feature maps
14@14 x 12

feature maps
14@7 x 6

3x3
convolution

2x2
pooling

7x6
convolution

C1 P1

C2 P2 n1

neurons
14

n2

output
1

Face

1x1
convolution

Figure 3.4: Sparse ConvNet architecture for face detection.

input
32 x 32

feature maps
6@28 x 28

5x5
convolution 2x2

pooling

feature maps
6@14 x 14

feature maps
16@10 x 10 feature maps

16@5 x 5

5x5
convolution

2x2
pooling

fully
connected

or 1x1
convolution

C1
P1

C2

P2 n1

n2

sign
30 km/h

90 km/h
100 km/h

outputs
8

5x5
convolution

neurons
120

Figure 3.3: Dense ConvNet architecture for speed sign recognition.

44 CHAPTER 3. BENCHMARK APPLICATIONS

replaced by a video frame. Figure 3.5 illustrates the result of extending a patch
to a full frame where all feature maps scale accordingly. Note that this reduces
the workload, since the overhead of processing overlapping sliding windows is
automatically eliminated. In addition, the large amount of parallelism in each
layer can be easily exploited since there are no window based data dependencies.
As depicted in Figure 3.5 a map of classification scores is obtained where each
position corresponds to a patch in the input frame.

Often patch detectors are trained with limited scale invariance, so objects are
only detected at the scale available in the training set. Scale invariance can be
further extended by converting frames to an image pyramid as demonstrated in
Figure 3.6. The ConvNet is applied at all scales and the detections are mapped
back to patches in the original frame. Finally, the ConvNet output of multiple
frames can be combined to increase classifier robustness. For example, when a
sign occurs at a certain position it should be detected at similar positions in the
succeeding frames. These assumptions can help in the removal of false detec-
tions. Advanced usage of such assumptions as outlined in section 3.6 is beyond
the scope of this thesis since it is a post-processing step.

Frame based detection applications require substantially more computa-
tional work compared to a patch detector. For example, the patch detectors for
face and speed sign detection require 126,378 and 322,544 MACC operations re-
spectively. For face detection on a single 720p HD frame the workload increases
by 1,355 times to 0.171 GMACC. For speed sign recognition the increase is even
larger; workload increases by 9,662 times resulting in 3.117 GMACC. The huge
number of operations makes frame based detection applications much more
challenging as a benchmark. In Section 3.4.3 on network design and Section 3.5
on throughput evaluation we will discuss more details of workload distribution
in these frame based detection applications.

720 x 1280

720 x 1280

576 x 1024

460 x 819

368 x 655

173 x 313

135 x 249

108 x 197

85 x 156

ConvNet

ConvNet

ConvNet

ConvNet

Figure 3.6: Image pyramid implementation of a ConvNet for multiscale speed sign recog-
nition.

input
720 x 1280

P1

6@358x638
P2

16@177x317

n1

120@173x313 n2

8@173x313
Object

Category + Position

5x5
convolution

2x2
pooling

5x5
convolution

1x1
convolution

at(x,y)
at(x,y)

C1

6@716 x 1276 C2

16@354x634

2x2
pooling5x5

convolution

Figure 3.5: Speed sign recognition ConvNet modified to process 720p HD video frames.

3.3. DATASET CONSTRUCTION 45

3.3 Dataset construction

A very important element in the development of robust and accurate ConvNet
applications is the dataset used for training. Each layer relies on patterns in the
data, e.g., to extract the best features that increase class separation for robust
classification. As a result, the dataset should be representative for the classifica-
tion problem, e.g. for face detection normal faces must be included but also faces
with a moustache or sunglasses. This is not specific for ConvNets, other works
have shown that large datasets with a good variety of examples result in classifi-
ers with excellent generalization and accuracy [99]. In this section dataset col-
lection for our benchmark applications is outlined. We mainly show the
procedure for our speed sign recognition network; to reduce redundancy we
summarize only the differences for face recognition. Note that most of these
techniques can be found in other works, so we discuss them for sake of repro-
ducibility of our experiments.

Construction of the dataset for speed sign recognition is done by gathering
real-world examples. One part is collected by using the Google image search en-
gine for speed signs in the Netherlands. The other part consist of images that are
obtained with Google Street View. In addition, the training set is increased with
a representative data set that was published [98]. Finally the used data set con-
tained 713 images of speed signs, which are cropped to show the full sign with a
small background border. A subset of the training images is depicted in Figure
3.7. Training with these real-world examples creates invariance for natural vari-
ations such as, light conditions, small scale differences, and perspective.

Traffic sign images alone are not sufficient to train a classifier; additionally
good set of background images is required. This background training class pre-
vents false detections and is therefore very important. Example images from our
background class are shown in Figure 3.8. One part of our background class con-
tains random image patches that are collected from road scene images. A second
part contains traffic sign images that look very similar to the speed sign classes.

30 km/h 50 km/h 60 km/h 70 km/h 80 km/h 90 km/h 100 km/h

Figure 3.7: Example images from the collected traffic sign dataset.

Background images hard to suppress Random background image patches

Figure 3.8: Example images from the speed sign background class.

46 CHAPTER 3. BENCHMARK APPLICATIONS

To test the generalization of the classifier a small part (1/7) of the training set
is excluded and later used for testing. An overview of the dataset organization is
depicted in Table 3.1. Collecting a speed sign dataset of this size is time consum-
ing but necessary to obtain a robust benchmark application. To our knowledge
little effort is done to publicize real-world speed sign image databases. Also the
fact that speed signs differ from country to country makes it valuable to publicize
our dataset1. Additionally our public data set increases the reproducibility of the
experiments described in this thesis.

The face detector is trained with the popular and public available Labeled
Faces in the Wild (LFW) dataset [71]. The set of 13,458 face images from the web
is split into 9,992 training and 3,466 testing images. All images contain align-
ment and scale coordinates such that it can be automatically cropped to match
the ConvNet patch.

3.4 Training a convolutional net for machine vision

In Chapter 2 we introduced the well know error back-propagation algorithm
[125]. This algorithm combined with Stochastic Gradient Descent (SGD), is often
used for large-scale learning problems due its high computational efficiency [11].
SGD computes the error gradient for each network parameter and performs
small updates in the negative direction of the error to converge to a minimum
error. The usage of SGD on a large training set often involves a long script with
many problem specific settings to obtain a well-trained network. In this section
we outline the procedure that is used for training of our benchmark applications.
As in the previous section we mainly discuss the speed sign recognition applica-
tion. The differences with face detection are summarized at the end.

1 Our speed sign dataset is publicly available at http://parse.ele.tue.nl/research/speedsign/

Table 3.1: Dataset configuration with the desired output coding for each different class.

Class Output label # Patterns

 Training Testing Total

Background 0 0000000 2489 415 2904
30 km/h max 1 1000000 77 13 90
50 km/h max 1 0100000 120 20 140
60 km/h max 1 0010000 62 10 72
70 km/h max 1 0001000 129 21 150
80 km/h max 1 0000100 75 13 88
90 km/h max 1 0000010 79 13 92
100 km/h max 1 0000001 69 12 81

 3100 517 3617

http://parse.ele.tue.nl/research/speedsign/

3.4. TRAINING A CONVOLUTIONAL NET FOR MACHINE VISION 47

3.4.1 Preprocessing of training data

Before the training procedure is started the data set is prepared. Since both ap-
plications use a single input patch the datasets are converted to grey scale im-
ages. Although color gives extra information we did not use it because color
representations are not very consistent between day and night conditions.

Inspired by the good results for handwritten digit recognition in [137] we ar-
tificially increase our data set by applying small modifications to each training
sample. Adding such small deformations results in better invariance to the ap-
plied distortion, which improves the robustness of the detector. The following
distortions are used to expand the training set:

• Light intensity scaling with clipping by a factor [0.8 0.9 1.0 1.1 1.2].

• Shift in x and y position [-2 -1 0 +1 +2] pixel positions.

• Scaling of the images [0.93 1 1.05], the resulting patch is cropped or
padded to the original size.

• Face detection patches are flipped over the x axis.
The deformations are performed by a function, 𝒙 ← 𝑔(𝒙) that converts patches.

3.4.2 Training loop and recipe

For training a custom MatLab implementation of SGD is used. It is well known
that SGD performs very well on large-scale learning problems [5,12]. Problems
for which the computing time is the bottleneck are considered large-scale learn-
ing. Usually these algorithms are time bound due to the very large number of
training iterations. In addition, to being effective SGD is relatively simple which
improves the reproducibility our benchmarks.

Although SGD is relatively simple there are many variants and modifications
of the algorithm. Additionally, SGD requires multiple hyper-parameters such as,
learning rate 𝜂, and epoch size. The training methodology that is used for our
benchmarks is outlined in the pseudo description given in Algorithm 3.1. Local
gradients diverge over network parameters when computing back from the net-
work output to the input. Therefore each layer has a dedicated learning rate 𝜂𝑙
such that layers further from the output use a larger update this equalizes the
learning speed over all layers.

The first step in training is parameter initialization. For our benchmarks all
coefficients are initialized to small random values taken from the interval

𝜃𝜖 (−
1

8
,
1

8
). Advanced training methods sometimes use unsupervised pre-train-

ing to initialize the network parameters [47]. However, the introduction of Rec-
tified Linear Units ReLU replaced the need for pre-training in deep networks.
We do not discuss pre-training since advanced training methods are beyond the
scope of this thesis. After parameter initialization the training loop is entered;
every iteration performs one epoch of training succeeded by a test loop to meas-
ure generalization. Generalization score 𝐸gen and a predefined number of epochs

is used as stopping criteria. During training a sample is deformed as outlined in

48 CHAPTER 3. BENCHMARK APPLICATIONS

Section 3.4.1 and propagated through the network. The function ℎ() compares

the network output and the label 𝒅(𝑗), when per element differences are within

10% element 𝑦𝑘
(𝑗)

 is set to label 𝑑𝑘
(𝑗)

. This rule removes unnecessary parameter

updates and has two advantages: 1) reduces computational workload since a net-
work quickly classifies a portion of the training data correctly; 2) The unneces-
sary updates could break learned patterns that were learned earlier. The
remaining parameter updates are based upon plain SGD by applying the delta
rule. The cross-entropy (CE) error-function [65] is used for gradient computa-
tion since multiple sources show that CE performs often very well for pattern
recognition problems [78].

Our benchmark training does not use others use techniques to improve con-
vergence speed such as momentum [115] or Nesterov’s accelerated gradients [141].
Again, these more advanced methods increase the number of parameters and
require dedicated tuning to result in a speedup of convergence time.

3.4.3 Network design

In the previous section the implementation of the used learning algorithm is
discussed. In this section we explain how learning is used to obtain a good per-
forming network for our benchmark applications. In Section 3.2.1 the patch de-
tection network for speed sign recognition is given. This ConvNet is based upon
the LeNet-5 configuration for hand written digit recognition. Only the output
layer is modified to be able to separate background from speed signs and per-
form classification.

ALGORITHM 3.1: Custom Stochastic Gradient Descent for ConvNets

Input: weight 𝑾 and bias 𝒃 coefficients as network parameters 𝜽

Input: training set {𝒙(1), … , 𝒙(𝑁)} with corresponding labels {𝒅(1), … , 𝒅(𝑁)}

Input: test set {𝒙(𝑁+1), … , 𝒙(𝑁+𝑀)} with corresponding labels {𝒅(𝑁+1), … , 𝒅(𝑁+𝑀)}
Input: per layer learning rates 𝜂1, 𝜂2, … , 𝜂𝐿
Output: Trained weights 𝑾 and bias 𝒃 coefficients 𝜽

1 while stopping criterion not met do
2 for 𝑖 = 1 to epochsize do

3 Take random sample 𝒙(𝑗) and corresponding label 𝒅(𝑗) from training set

4 Apply deformation on sample: �̂� ← 𝑔(𝒙(𝑗))

5 Forward propagate through network: 𝒚(𝑗) ← 𝑓(𝜃; �̂�)

6 Threshold error: �̂�(𝑗) ← ℎ(𝒅(𝑗); 𝒚(𝑗))

7 if 𝐸CE(�̂�
(𝑗); 𝒅(𝑗)) > 0 then

8 Compute error gradient estimates: �̃�𝜽 ←
𝜕𝐸CE

𝜕𝜃

9 Apply per layer coefficient updates: 𝜃 ← 𝜃 − 𝜂𝑙�̃�𝜽
10 Reset generalization score 𝐸gen ← 0

11 for all test set samples 𝒙(𝑖) do

12 Forward propagate through network: 𝒚(𝑖) ← 𝑓(𝜃; 𝒙(𝑖))

13 Compute generalization score: 𝐸gen ← 𝐸gen + 𝐸CE(𝒚
(𝑖); 𝒅(𝑖))

3.4. TRAINING A CONVOLUTIONAL NET FOR MACHINE VISION 49

In Section 3.2.2 is shown that the video detection application requires
3.117 GMACC operations to evaluate a single 720p video frame, which is a lot. A
more detailed analysis reveals that 83% of the workload is required in the first
neuron layer n1. Since the overall workload is dominated by layer n1 it makes
sense to investigate if it really needs this huge number of parameters. To reduce
the computational workload three different configurations of layer n1 are evalu-
ated:

1. The original LeNet-5 with 120 neurons in layer n1 is trained as a reference.
2. Layer n1 is reduced to 80 fully connected neurons.
3. n1 contains 40 neurons that are connected to feature map 1 to 8 and an-

other 40 to feature map 9 to 16.
Figure 3.9 shows a detailed workload breakdown for the three ConvNet config-
urations.

The training progress for the three network configurations is illustrated in
Figure 3.10. A magnification of the results during the last 100 epochs shows that
network 1 and 3 give the best generalization accuracy. It seems that the 80 neu-
rons of network configuration 2 have a somewhat reduced accuracy on the test
set. However, by enforcing specific connections in configuration number 3 the
generalization performance improves. A reason for the improved performance

0

0.5

1

1.5

2

2.5

3

3.5

C1 S1 C2 S2 N1 N2 total

W
o

rk
lo

ad
 [

G
M

A
C

C
]

Layer

n3 120 neuron n3 80 neuron n3 2 sets 40 neurons

Figure 3.9: Workload distribution over layers of the speed sign detection application.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

10

11
0

21
0

31
0

41
0

51
0

61
0

71
0

81
0

91
0

10
10

11
10

12
10

13
10

14
10

15
10

16
10

17
10

18
10

19
10

M
is

cl
as

si
fi

ca
ti

o
n

s

Training Epoch

Train net1

Test net1

Train net2

Test net2

Train net3

Test net3

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

M
is

cl
as

si
fi

ca
ti

o
n

s

Training Epoch

Train net1

Test net1

Train net2

Test net2

Train net3

Test net3

a) b)

Figure 3.10: Per training epoch classification score for speed sign network configuration
1-3. a) Gives the accuracy over 2000 training epochs. b) Highlights the final accuracy.

50 CHAPTER 3. BENCHMARK APPLICATIONS

could be that dedicated connections enforce features to occur at restricted parts
in the network. Fully connected layers have too much freedom to guide features.

The parameter reduction in layer n1 reduced the single frame workload to
1.384 GMACCs while demonstrating similar generalization performance. Alt-
hough the workload in layer n1 is reduced it still represents 63% of the total
workload. For benchmarking purposes in the later chapters layer n1 is kept in
this dense configuration, likely the number of parameters could be further re-
duced.

The face detection network based upon the work of Garcia [53] is with 947
parameters is very sparse. The computational workload of 0.171 GMACCs per
frame shows that the network is clearly developed with frame based detection
in mind. For this thesis the face detector is not further altered, the relatively low
number of parameters makes it an excellent sparse example for further bench-
marking versus the dense speed sign recognition network.

3.4.4 Iterative bootstrapping

During the first real-world tests with our trained ConvNet benchmark applica-
tions al large number of false detections are measured. The main reason for the
large amount of false detections is that the background class has almost infinite
variety of patterns, which is impossible to include in the training set. To effi-
ciently train the application to suppress background patterns an iterative boot-
strapping procedure similar to the one in [53] is used. The basic idea behind the
algorithm is to add only patterns to the training set which resulted in false de-
tections. This forces the network to learn from his previous errors.

 To automate the bootstrapping procedure 292 road scene images without
speed signs are collected. First the recognition algorithm is executed on the new
dataset with a high detection threshold. This step selects detections with a con-
fidence value above 0.9. The resulting patterns are image patches for which the
classifier is very sensitive. These examples are added to the training set and train-
ing is continued for 200 epochs. Next these steps are repeated with a decreased
acceptance threshold. After 6 bootstrapping iterations is concluded that the
number of false detections above a threshold of 0.5 is acceptable. The results of
the individual bootstrap iterations are outlined in Table 3.2.

Table 3.2: Overview of the rejection score after each bootstrapping iteration.

bootstrap
iteration

false
detections @ 0.5

selection
threshold

detections
selected

Training set
size

1 12595 0.9 361 3461
2 232 0.8 18 3479
3 419 0.7 85 3564
4 18 0.6 7 3571
5 103 0.5 103 3674
6 3 0.4 15 3689
7 1 0.3 19

3.5. THROUGHPUT EVALUATION 51

The network obtained after bootstrapping scores very well on the test set that
was used for training in Section 3.4. For the 517 test images only one misclassifi-
cation is measured. Effectively the percentage of misclassifications is reduced
from 0.77% after training, to 0.19% with bootstrapping. We conclude that for our
applications bootstrapping improved the recognition accuracy by a significant
amount.

For the face detection task a similar bootstrapping procedure is used. Face
detection bootstrapping iteratively gathered false detection samples from detec-
tion threshold [0.9 0.8 0.7 0.6 0.5 0.4]. This significantly reduced the number
of false detections in frames, but the overall detection accuracy is similar. This
indicates that the face detection network is under fitting on the dataset i.e., with
the limited number of parameters there is no further improvement achieved by
applying more data. For the dense speed sign detection network a further im-
provement in accuracy was achieved by performing the bootstrapping proce-
dure.

3.5 Throughput evaluation

In the previous sections we outlined the development of two ConvNet based vi-
sion applications. The final step in this development is the mapping to a com-
putational platform. The goal of such a mapping is to obtain a real-time
detection system. For this purpose a consumer grade Nvidia GTX 460 GPU is
selected as example of a high throughput compute platform. With 336 CUDA
cores this GPU can exploit the huge amount of parallelism in ConvNet applica-
tions. In addition, this graphics card has a memory bandwidth 115 GB/sec to de-
liver the massive data transfer requirements of such applications. Of course the
Thermal Design Power (TDP) of 160 Watts reveals that this is not a mobile or
embedded platform. The GPU mapping is illustrative to show the computational
challenges in these applications. Note that our benchmark applications are ra-
ther small compared to the huge nets in recent publications.

One of the application processing steps is the construction of an image pyr-
amid. This step scales the input image with bilinear filtering using steps of 1.25
to increase scale invariance such that large signs close to the camera are de-
tected. A GPU can perform bilinear filtering very efficient by using dedicated
texture units. The bilinear filtering example from the CUDA programming guide
[101] is used to implemented the image pyramid task.

The next step is processing of the ConvNet layers. First the implementation
is optimized to increase data locality by loop interchange and tiling. For each
layer different thread block configurations are compared to obtain a high CUDA
core utilization and good data locality. Additionally, GPU specific optimizations
described in the CUDA programming guide [101] are applied. For example,
memory accesses to images are grouped such that transfers are coalesced, which
maximizes external memory bandwidth. Kernel coefficients are kept locally on

52 CHAPTER 3. BENCHMARK APPLICATIONS

chip by storing them in the fast constant memory. A final optimization is map-
ping the sigmoid activation functions to the fast GPU special function units.

The execution times of the different steps in the algorithm are illustrated in
Figure 3.11. The total processing time for a four scale detection on a 1280x720 HD
video frame is 38 ms, which results in a practical frame rate of 26 fps. As ex-
pected, the total execution time is dominated by the processing of ConvNet lay-
ers. A detailed breakdown of the single scale execution time given in Table 3.3.
For comparison a C based naïve floating point CPU mapping on a 2.67 GHz Intel
Core-i5 580M processor is given. As expected with a throughput difference of
80 times the CPU mapping performs much slower than the GPU. This results in
a CPU execution time of 2.83 seconds for the four scale application and effec-
tively a frame rate 0.35 fps.

These results again demonstrate that ConvNet applications have a huge effi-
ciency problem. Only a power hungry GPU mapping delivers the required
throughput at a huge energy cost. A mobile CPU with a 35 Watt TDP delivers an
unacceptable performance 0.35 fps. This CPU mapping is far from optimal, one
could divide the workload over two cores, and use the SIMD data path to im-
prove performance. A theoretical linear speedup of 8 times would result in a
disappointing throughput of 2.8 fps, and the 35 Watt dissipation is far beyond
the practical power budget of a mobile or wearable device. Our aim at the mo-
bile 1 Watt or wearable 0.1 Watt at a frame rate of 20 fps seems very challenging.

For face the detection application the workload is much smaller and there-
fore a GPU mapping would perform at a very high framerate. In the later chap-
ters mappings of the face detection network are included. Especially for a low
power ARM-A9 core this workload becomes interesting to take into account.

Table 3.3: Overview of processing time for the single scale speed sign detection ConvNet
on an Nvidia GTX 460 GPU versus a mobile CPU 580M Intel Core-i5.

Platform C1 S1 C2 S2 N1 N2 Total

GPU 1.19 ms 0.40 ms 4.83 ms 0.30 ms 6.34 ms 1.55 ms 14.6 ms
CPU 86 ms 23 ms 451 ms 17 ms 559 ms 46 ms 1182 ms

0

2

4

6

8

10

12

14

16

p
ro

ce
ss

in
g

ti
m

e
[m

s]

copy image to gpu

image pyramid

scale 0

scale 1

scale 2

scale 3

copy result to host

Figure 3.11: Processing time of various tasks in a speed sign detection application on an
Nvidia GTX 460 GPU platform.

3.6. RELATED WORK 53

3.6 Related work

This section will focus on other real-world vision applications that use a ConvNet
for object detection and localization. Recently the computer vision community
embraced ConvNets which is improving the state-of-the-art. It would have been
great to use one of the recently proposed vision pipelines as a benchmark appli-
cation. However, the mapping effort of these new applications would involve a
substantial amount of work. We will see in this section that the main compute
workload in these applications is not any different from our smaller benchmarks.

3.6.1 Region based convolutional networks

Our benchmark applications are designed for scenarios with were one type of
object is localized in a frame. For example, the face detector generalizes such
that many different types of faces (with glasses, facial hear, skin color, etc.) are
detected. The speed sign recognizer detects a relatively small set of signs that all
look very similar. Recently introduced vision applications have increased the
complexity of detection and localization scenarios substantially. A very influen-
tial paper (cited over 3400 times) on the use of ConvNets for object detection is
the work on Region based ConvNets [55]. The region based ConvNets split the
recognition task into a region proposal step and a classification step. Instead of
searching the whole frame a selective search method [144] is used to obtain boxes
or so called region proposals are selected based on texture, color, and intensity
of neighboring pixels. These region proposals are suggestions for objects that are
passed to a powerful classifier such as one of the ImageNet winners
[79,142,138,62]. For each region proposal the following steps are performed:

1. Warp the content to a size fitted for the ConvNet patch size.
2. Compute the ConvNet layers up to the last classification layer.
3. Use a SVM classifier to identify the object.
4. Use a bounding box regressor to refine the proposal region.

The region based ConvNets successfully apply a large ConvNet as feature ex-
tractor in a classical compute vision pipeline. Although the approach works re-
ally well, it is computationally very demanding. About 2000 regions are
generated per image that each require a forward pass through a large network.
Furthermore, the training is demanding since three models are trained: A Conv-
Net to generate image features; the classifier that predicts the class, the regres-
sion model to refine the bounding boxes. To overcome the computational issues
Fast Region ConvNets are introduced [54]. Instead of generating region pro-
posals from the image, the feature map activations in a ConvNet layer are warped
as proposals. The huge advantage is that the feedforward run is performed only
once per image. The network input patch size is stretched to match the image
size, which is far more efficient than evaluating all those proposal patches. In
essence this approach is similar to our benchmarks where we also scale the net-
work to use the full frame. However in this work they use the ConvNet features

54 CHAPTER 3. BENCHMARK APPLICATIONS

on which they perform Region of Interest (RoI) pooling. These features are
warped into the proposal box that is the classification layer input. The final part
of the model uses the RoI feature vector to perform classification with a SoftMax
layer and a regressor for the bounding box refinement. The huge advantage is
that this structure results in a single network model.

Fast region ConvNets provide a 25 times speedup over the original algorithm,
but there is still a performance bottleneck. In a follow-up work so called Faster
Region Proposal ConvNets [122] are introduced. These remove the selective
search step. A new region proposal network is inserted after the last convolu-
tional layer. It uses the raw feature maps to decide if there is an objects and pro-
pose a box location. From that point onwards the same pipeline is used as for
the fast region ConvNets. The faster region proposal ConvNets have increased
throughput by 10 times over the fast region proposal networks. As a result this
work is able to test images in about 0.2 seconds per frame. Note that this is a
GPU accelerated throughput 0f 5 fps, performed by an NVIDIA Tesla K45 that
consumes about 235 Watt of power under load conditions. Unless the huge effi-
ciency improvements that are recently demonstrated it seems that region pro-
posal ConvNets are computationally still way too demanding for real-time
applications on embedded devices. However, we should mention here that re-
gion proposal ConvNets are more accurate and much more general purpose in
classification compared to our benchmarks.

3.6.2 Single shot detectors

A more efficient approach to object detection are the recently introduced Single
Shot Detectors. These perform object detection as a single regression problem,
directly from pixels to bounding box coordinates and class probabilities. A key

Figure 3.12: The output of a single shot detector like the YOLO model. The image is rep-
resented as an S x S grid, each cell is encoded as a vector that contains class probabilities
and the confidence for different bounding boxes. Image source: [86].

3.7. CONCLUSIONS AND DISCUSSION 55

system that adopts this approach is named You Only Look Once (YOLO) [121].
They train a single network to segment an image into a low resolution grid, see
Figure 3.12. Each cell in the grid contains a vector with the probability to be one
of the 20 object classes, and two bounding boxes definitions (xpos, ypos, width,
height, confidence). To filter out the final box positions a Non-Maxima Suppres-
sion algorithm is used as a post-processing step. The base YOLO model requires
input images of 448x448 pixels and performs the detections in real-time at 45
frames per second. This is almost a 10 times increase compared to the Faster
Region Proposal ConvNets. Note that the YOLO model uses less object classes
and it is constrained in the box positioning and sizing accuracy. The 45 fps
throughput is achieved on a NVIDIA Titan X GPU that consumes about 250
Watts of power under load.

Very recently, the concepts of the single shot YOLO approach are further
improved as described in the Single Shot MultiBox Detector (SSD) work [89]. To
improve the detection accuracy SSD uses feature maps of different scales, and
they explicitly separate predictions by aspect ratio. For training they use ad-
vanced data augmentation techniques, like hard negative mining which is essen-
tially similar to iterative bootstrapping see section 3.4.4. The sampling of
training examples is performed under special conditions to improve detection
accuracy, e.g. object boxes with less overlap or the wrong aspect rations. The
SSD on a 300x300 pixel image is with 46 fps slightly faster than the 448x448 pixel
YOLO approach. Both use a NVIDIA Titan X GPU. The main improvement of
the SSD is the substantially better accuracy which is on-par with the much
slower region proposal methods.

The compute workload in Single Shot Detector is very similar to the workload
in our benchmark applications. The techniques proposed in this thesis can bring
further efficiency improvements to enable the use of ConvNet based object de-
tection on power constrained embedded devices. This to replace the 250Watt
power hungry GPU by a low power (≤ 1 Watt) embedded device.

3.7 Conclusions and discussion

In this chapter we demonstrate how a ConvNet based vision application is de-
veloped. We have shown the large computational differences between a single
patch classification ConvNet and a multiscale video detection application that
embeds a ConvNet. Furthermore, the importance of training data collection is
emphasized. A good training and validation set is essential in the development
of vision applications that performs well in a real-world environment. Addition-
ally, the dataset should be used in a network training procedure to obtain a set
of network parameters that solves the recognition problem. Training a ConvNet
is a very demanding task, but often this is a one-time effort that can be done in
a lab. Although this thesis focuses on inference and not on the training task, we

56 CHAPTER 3. BENCHMARK APPLICATIONS

show that during training the network structure should be adapted to substan-
tially improve the efficiency for the inference workload. For example our speed
sign detection workload can be reduced by a factor 2.3 without loss of quality.

Our application development efforts resulted in two ConvNet applications
that are used through the next chapters of this thesis. One is a Speed Sign Detec-
tion application for driver assistance or autonomous driving. The other applica-
tion performs Face Detection for surveillance. Both video applications are very
representative examples of deep learning based machine vision applications that
will be deployed in the very near future as replacements of classical model based
object recognition systems. The more advanced state-of-the-art detection and
localization works often use a different training approach, but except for the post
processing the inference mode is very similar to our benchmark networks. At
this point we conclude that for a wide range of ConvNet structures our applica-
tions are quite representative. The face detection workload is a very sparse ex-
ample where the speed sign network contains a quite dense workload.

By mapping the Speed Sign detection ConvNet to an NVidia Graphics Pro-
cessing Unit (GPU) we demonstrated that our workload is very suitable for par-
allel compute platforms. Furthermore this mapping demonstrates that real-time
detection tasks by ConvNet based vision applications is possible. However the
160 Watt power consumption for this GPU is far above the mobile energy budget.
Another mapping to a mobile CPU shows a disappointing 0.35 fps throughput,
and also this platform consumes a factor 35 more power than allowed. These
mapping reveal the huge compute efficiency problem in ConvNet application
workloads.

To harvest the huge advantages of deep learning based applications for our
mobile devices the efficiency problems must be solved. The remainder of this
thesis will focus on reducing the workload and improving the compute efficiency
of these applications. If we could bring the deep learning techniques to our em-
bedded platforms it will open a whole domain of new application opportunities.
Firstly, the deep learning base applications have shown to outperform classical
approaches in classification quality, for some problems superhuman perfor-
mance is demonstrated. Secondly, application features can be added by a simple
coefficient file update. Or our applications can automatically learn from errors
made in a real-wold environment. These possibilities will greatly improve the
quality of the next generation of machine vision applications.

 57

4.

ALGORITHMIC OPTIMIZATIONS

The huge computational requirements of Convolutional Networks (Conv-
Nets) often reduce their applicability to offline detection tasks. To ease
these requirements we propose a high-level algorithmic modification appli-
cable to the first layers of a ConvNet. These first layers are responsible for
feature extraction by alternating Convolution and Pooling layers. This first
part is often very complicated with multiple layers that often contain over
100,000 interconnected computational nodes. The proposed modification
reduces computational complexity; real benchmarks show 65 - 83% reduc-
tion, with equal recognition accuracy. Often such modifications can intro-
duce severe implications to the available parallelism. Therefore, the
modified CNN algorithm is implemented and evaluated on a GPU platform
to demonstrate the suitability of the proposed modification for massively
parallel platforms. Our benchmark implementation achieves a speedup of
2.5 times w.r.t. the original algorithm.
This chapter is based on work presented in ACIVS 2011 [103]

4.1 Introduction

Although Deep Convolutional Networks (ConvNets) achieve the best accuracy
on many vision or classification tasks they are rarely used in mobile or embedded
applications. In the earlier chapters we motivated that the huge computational
challenges in (ConvNets) often prevent their usage in embedded systems. Often
there exist a less accurate, but computationally cheaper algorithm. In these sce-
narios a classical model based solution is often used that trades functionality,
accuracy, and robustness to obtain a simpler algorithm. Our main goal is to im-
prove the efficiency of ConvNets, such that this class of algorithms with all their
desirable properties can be used in mobile applications. In this first optimization
chapter we focus on reducing the computational complexity without sacrificing
on accuracy or quality.

CHAPTER

58 CHAPTER 4. ALGORITHMIC OPTIMIZATION

ConvNets have many levels of possible improvements e.g., Algorithmic, Til-
ing and Memory, Platform Architecture, and Technology. Here we focus on al-
gorithmic changes, these are more abstract and can have a huge impact on the
performance. A successful example is the 3-D RS motion estimator [41] that im-
proved the expensive full-search block matchers into smart efficient recursive
matchers. This algorithmic optimization is very radical and almost a different
algorithm. However, in essence it still matches the surrounding blocks to find a
best candidate for the motion vector.

In our work a modified feature extraction stage for ConvNets is proposed that
reduces the computational workload and the number of data transfers. Figure
4.1 illustrates the feature extraction part that we optimize. Note that our optimi-
zation does not apply to the classification stage. The optimization can be directly
applied on a trained networks. However, it is also possible to train a ConvNet
structure with this modification, so we derived the required training rules. The
network accuracy after training is evaluated with two real world benchmarks. To
verify the theoretical performance claims, an Intel CPU and an NVIDIA CUDA-
enabled Graphics Processing Unit (GPU) mapping is performed to demonstrate
the achieved performance improvement.

The remainder of this chapter is organized as follows. Section 4.2 contains a
recap of the ConvNet model to explain the proposed optimization. Then section
4.3 describes the algorithmic optimization and new training rules are derived.
Next, section 4.4 evaluates the recognition accuracy of the optimization. Section
4.5 describes our mapping of the feature extractors and the speedup of our mod-
ification is evaluated. Related work and Conclusion are presented in Section 4.6
and 4.7 respectively.

4.2 Feature extraction layers

To explain the proposed algorithmic modifications, we provide a short recap the
feature extraction part of a ConvNet. More details on the algorithm are discussed
in Chapter 2.

input
32 x 32

feature maps
28 x 28

5x5
convolution

2x2
pooling

feature maps
14 x 14

feature maps
10 x 10

feature maps
5 x 5

5x5
convolution 2x2

pooling
fully

connected

C1 P1 C2 P2 n1 n2

output

feature extraction classification

0
1

8
9

Figure 4.1: An example CNN architecture used for a handwritten digit recognition task.

4.2. FEATURE EXTRACTION LAYERS 59

Although ConvNets have different configurations with many or a few layers
they often have a similar structure to the network depicted in Figure 4.1. Their
first layers function as trainable feature extractor, and the second part imple-
ments a classifier. These first layers have constraints like receptive fields and
weight sharing to extract position invariant features from two-dimensional
shapes. Many networks contain two different successive layer types to extract
these features: Convolution Layers, and Pooling Layers.

4.2.1 Convolution layers

In Figure 4.1 layers C1 and C2 are convolution layers. They take inputs from a local
receptive field, and all neighboring neurons share the same set of weights. Basi-
cally it is a similar operation as a convolution by a small weight kernel. The 2d
or 3d operation in a convolution layer that generates a single feature map is de-
fined as:

𝑐[𝑚, 𝑛] = 𝜑(𝑝) = 𝜑(𝑏 +∑ ∑ 𝑤𝑞[𝑘, 𝑙] 𝑥𝑞[𝑚 + 𝑘, 𝑛 + 𝑙]

𝐾−1

𝑘,𝑙=0𝑞∈𝑄

) (4.1)

Here 𝑏 is the bias, 𝑤 the shared weight kernel, and 𝑥 is an input feature map that
is transformed into output feature map 𝑐. The outer sum over 𝑞 is optional, in
layer C2 it is used to sum the contributions of multiple input feature maps. Dif-
ferent activation function 𝜑 can be used, in chapter 1 we discussed several op-
tions.

4.2.2 Pooling layers

As depicted in Figure 4.1 most convolution layers are succeeded by a pooling
layer (P1 and P2) to reduce the number of detected features. There are two pop-
ular pooling functions that reduce the number of features.

1) Subsampling summarizes a window of features by local averaging with a
trainable coefficient and a bias offset. The subsampling operation is defined as:

𝑦[𝑚, 𝑛] = 𝜑(𝑝) = 𝜑 (𝑎 + 𝑣 ∑ 𝑥[𝑚𝑆 + 𝑘, 𝑛𝑆 + 𝑙]

𝑆−1

𝑘,𝑙=0

) (4.2)

Here 𝑣 and 𝑎 are trainable parameter for scaling and bias offset respectively.
2) Max pooling, selects the local maximum from a window.

𝑦[𝑚, 𝑛] = 𝜑(𝑝) = 𝜑 (max
0≤𝑘<𝑆,0≤𝑙<𝑆

(𝑥[𝑚𝑆 + 𝑘, 𝑛𝑆 + 𝑙])) (4.3)

Both function use scale factor 𝑆 as reduction parameter. These reduction param-
eters define the distance between neighboring windows. Note that a window can
have overlap.

60 CHAPTER 4. ALGORITHMIC OPTIMIZATION

4.3 Algorithm optimization

In the previous section the feature extraction layers of a ConvNet are outlined.
Depending on the network configuration these first layers will be responsible for
a significant up to a large portion of the computational workload. The optimiza-
tion proposed in this section focuses on reducing the workload in these first lay-
ers by merging the operation of convolution and pooling into a single operation.
Depending on the network configuration there are two scenarios when our op-
timization is applied be applied:

1) A trained ConvNet can be directly converted into an optimized net if there
is a linear function from the convolution layer inputs to the pooling layer. For
example, conversion is possible when the convolution layer does not use an ac-
tivation function and the pooling function performs subsampling.

2) A ConvNet must be retrained after conversion to the optimized network.
This is necessary when a non-linear activation function is used in the convolu-
tion layer, or when the subsampling layer uses max-pooling.

4.3.1 Merge convolution and pooling

The merge operation of convolution and pooling layers can be derived from de-
pendency analysis. Figure 4.2 illustrates the data dependencies between both
layers; it also shows how a single operation could bypass the convolution result.
In the scenario of direct merging a new operator is obtained by substitution of
the convolution operation (4.1) into the subsample expression (4.2). This substi-
tution of operations is outlined in equation (4.4). The new enlarged kernel �̃� is
constructed from all coefficients that are multiplied by each input 𝑥. The new

bias �̃� is the convolution layer bias 𝑏 multiplied by 𝑣 and summed with the sub-
sample bias 𝑎.

input
X

pooling
Y

convolution
C

S2·K2

kernel

(K+S-1)2

kernel

S2

kernel

Figure 4.2: Dependency analysis for a 2d-convoluiton kernel of size 𝑲 = 𝟑 and pooling
layer where 𝑺 = 𝟐. The dependencies from the input to convolution layer are given in red
these results are consumed by the pooling layer. The merged solution directly consumes
the inputs to generate the pooling result.

4.3. ALGORITHM OPTIMIZATION 61

From Figure 4.2 and equation (4.4) it is visible that merging a linear convo-
lution and subsample layer result in a significant reduction of MACC operations
while retaining functional correctness. In addition, there are less memory trans-
fers since there is no intermediate storage of convolution results. The reduction
of MACC operations depends on the 𝐾 and 𝑆 parameters of the original network,
their relation is given in Table 4.1. Large 𝐾 and 𝑆 sizes experience a more work-
load reduction as indicated in Figure 4.3. Inspection of Table 4.1 indicates that
there is also negative effect of merging; it increases the relatively small number
of the kernel coefficients.

Important to underline is that new coefficients for �̃� and �̃� cannot be derived
when the convolution layer uses a non-linear activation function. This is not a
severe problem, since the network can be retrained by an adapted learning algo-
rithm. Since the weight space of the merged network has increased it could find

feature extractor kernel weights MACC operations

separated 𝐾2 𝑆2(𝐾2 + 1)

merged (𝐾 + 𝑆 − 1)2 (𝐾 + 𝑆 − 1)2

𝑦[𝑚, 𝑛] = 𝜑𝑝 (𝑎 + 𝑣 ∑ 𝑐[𝑚𝑆 + 𝑖, 𝑛𝑆 + 𝑗]

𝑆−1

𝑖,𝑗=0

)

= 𝜑𝑝 (𝑎 + 𝑣∑𝜑𝑐 (𝑏 + ∑ 𝑤[𝑘, 𝑙] 𝑥[𝑚𝑆 + 𝑖 + 𝑘, 𝑛𝑆 + 𝑗 + 𝑙]

𝐾−1

𝑘,𝑙=0

)

𝑆−1

𝑖,𝑗

) (4.4)

= �̃� (�̃� + ∑ �̃�[𝑘, 𝑙] 𝑥[𝑚𝑆 + 𝑘, 𝑛𝑆 + 𝑙]

𝐾+𝑆−2

𝑘,𝑙=0

)

Table 4.1: Comparison of the required kernel coefficients and operations for neurons in
an original versus merged feature extraction layers. The improvement varies per layer
configuration (different kernel size 𝑲 and subsample factor 𝑺).

2
3

4

50%
55%
60%
65%
70%
75%
80%
85%
90%

2 3 4 5 6 7 8 9

55%
60%

63%
65% 67% 68% 69% 70%64%

72%
76%

79% 81% 82% 83% 84%

69%

78%
82%

85% 86% 88% 88% 89%

S

M
A

C
C

 R
e

d
u

ct
io

n

K
Figure 4.3: Influence of kernel size 𝑲 and subsample size 𝑺 on the compute workload
reduction due to feature map merging.

62 CHAPTER 4. ALGORITHMIC OPTIMIZATION

even better solutions. The recognition accuracy after retraining is further evalu-
ated in Section 4.4.

The remaining part of this chapter uses the new merged layers; named as
Feature Extraction Layers (FELs). For completeness the new expression is given:

𝑦[𝑚, 𝑛] = 𝜑(𝑏 +∑ ∑ 𝑤𝑞[𝑘, 𝑙] 𝑥𝑞[𝑚𝑆 + 𝑘, 𝑛𝑆 + 𝑙]

𝐾−1

𝑘,𝑙=0𝑞∈𝑄

) (4.5)

Here 𝑦 is the new feature map result (former pooling), and 𝑥 is the input as de-
tailed in Figure 4.4. Note that a new value 𝐾 is used to define the merged window
size. Figure 4.5 shows the new merged network where convolution and pooling
layers are replaced.

4.3.2 Training with error back-propagation

In the previous section we have seen that for some networks the new coefficients
cannot be derived. In this section we will outline the retaining procedure. The
learning algorithm is based upon stochastic gradient descent (SGD), also known
as the on-line mode of error back-propagation [125]. The training algorithm is
described in detail, because merged FELs substantially change the published
training algorithms for ConvNets [84].

x[mS+k,nS+l]

y[m,n]

S K

w[k,l]

input kernel output

Figure 4.4: Feed-forward computation through merged Feature Extraction Layers (FELs)

input X0

Y0
1

Y1
1

Y0
2

Y1
2

Y2
2

Y3
2

y3

y4

unique
weights

unique
weights

Figure 4.5: Merged network overview; separate convolution and pooling layers are re-
placed by FELs.

4.3. ALGORITHM OPTIMIZATION 63

In chapter 2 the Stochastic Gradient Descent (SGD) algorithm is introduced.
Here we explain the modifications that are necessary to apply SGD on ConvNets
with merged FELs. The basic idea does not change; again partial derivatives of
the error in function of the weights are computed for a given input pattern.
These derivatives are used to reduce the error by small weight updates in the
negative direction of the derivative. For clarity this procedure is split in three
parts; feed-forward processing, partial derivative computation, and weight up-
dates. During the outline of the algorithm we use the notation given in Figure
4.4 to describe signals in different layers.

Feed-forward processing

Before training all coefficients are initialized to a small random value. First a
pattern from the training set is processed in feed-forward by the merged Conv-
Net, using equation (4.5) for the FELs and a regular multi-layer perceptron (1.8)
for the classification part. Next, the network outputs are compared with the de-
sired output in an error-function. In this case we used the cross-entropy error
function [64] as given in equation (4.6). Here 𝑁 is the set output neurons, 𝑑𝑛 the
target labels, and 𝑦𝑛 the output neuron values.

𝐸CE = − ∑ 𝑑𝑛 log(𝑦𝑛) + (1 − 𝑑𝑛) log(1 − 𝑦𝑛)

∀𝑛∈𝑁

 (4.6)

Compute partial derivatives

The previous expressions us 𝑥 for layer inputs and 𝑦 for outputs. The back prop-

agation of derivatives over layers requires more variables, so we use 𝑦𝜆 to specify
from which relative layer we obtain inputs. We start computing local gradients
from the output of the network towards the input. This is done by applying the
chain rule on the cross-entropy error function, which results in:

𝜕𝐸CE

𝜕𝑤𝑛
𝜆[𝑘]

=
𝜕𝐸CE

𝜕𝑦𝑛
𝜆

𝜕𝑦𝑛

𝜆

𝜕𝑝𝑛
𝜆

𝜕𝑝𝑛

𝜆

𝜕𝑤𝑛
𝜆[𝑘]

=
𝑦𝑛
𝜆 − 𝑑𝑛

𝑦𝑛
𝜆(1 − 𝑦𝑛

𝜆)
 𝜑′(𝑝𝑛

𝜆) 𝑦𝑘
𝜆−1 (4.7)

= (𝑦𝑛
𝜆 − 𝑑𝑛) 𝑦𝑘

𝜆−1

= 𝛿𝑛
𝜆 𝑦𝑘

𝜆−1

Important for the simplification is:

𝜑′(𝑥) = 𝜑(𝑥)(1 − 𝜑(𝑥)) = 𝑦𝑛(1 − 𝑦𝑛) (4.8)

𝛿 =
𝜕𝐸CE
𝜕𝑦

𝜕𝑦

𝜕𝑝
 (4.9)

Efficient computation of partial derivatives for the non-output neuron layers can
be done by reusing the local gradients 𝛿 of the output layer.

64 CHAPTER 4. ALGORITHMIC OPTIMIZATION

𝜕𝐸CE

𝜕𝑤𝑛
𝜆−1[𝑘]

=∑
𝜕𝐸CE

𝜕𝑦𝑖
𝜆

𝜕𝑦𝑖

𝜆

𝜕𝑝𝑖
𝜆

𝜕𝑝𝑖

𝜆

𝜕𝑦𝑛
𝜆−1

𝑖∈𝐷

𝜕𝑦𝑛
𝜆−1

𝜕𝑝𝑛
𝜆−1

𝜕𝑝𝑛

𝜆−1

𝜕𝑤𝑛
𝜆−1[𝑘]

=∑𝛿𝑖
𝜆 𝑤𝑖

𝜆[𝑛] 𝑦𝑛
𝜆−1(1 − 𝑦𝑛

𝜆−1)𝑦𝑘
𝜆−2

𝑖∈𝐷

 (4.10)

= 𝛿𝑛
𝜆−1 𝑦𝑘

𝜆−2

The set 𝐷 contains all neurons of the succeeding layer that are connected to

neuron 𝑦𝑛
𝜆−1 or 𝑦𝑛

3 in Figure 4.4. In case of a fully connected layer all output
neurons are connected. Equation (4.10) can be used recursively to compute the
partial derivatives for multiple neuron layers.

The computation of local gradients for the weight kernels in the feature ex-
traction layers is done in two steps. First, the local gradients of the neurons are
computed by back-propagating from the succeeding layer (one closer to the out-
put). Second, the local gradients are used to compute the gradients of the weight
kernels. For the first step there are two scenarios: 1) the feature extraction layer
is connected to a neuron layer (e.g. 𝑦2 in Figure 4.4). Computation of local gra-
dients is done by:

𝛿𝜆[𝑚, 𝑛] = ∑𝛿𝑖
𝜆+1 𝑤𝑖

𝜆+1[𝑚, 𝑛] 𝜑′(𝑝𝜆[𝑚, 𝑛])

𝑖∈𝐷

 (4.11)

Note that the expression is very similar to equation (4.10). However, in the other
scenario the expression will change a lot: 2) the succeeding layer is a FEL (e.g. 𝑦1
in Figure 4.4). In this case only a select set of neurons of the succeeded FEL is
connected, so we should only propagate the gradients of connected neurons as
shown in Figure 4.6. Since, the connection pattern depends on the current neu-
ron indices the summing of gradients restricts to a range of connected neurons:

𝛿𝜆[𝑚, 𝑛] = ∑ ∑ ∑ 𝛿𝑞
𝜆+1[𝑘, 𝑙]𝑤𝑞

𝜆+1[𝑚 − 𝑆𝑘, 𝑛 − 𝑆𝑙]𝜑′(𝑝𝜆[𝑚, 𝑛])

𝐿min

𝑙=𝐿min

𝐾max

𝑘=𝐾min𝑞∈𝑄

 (4.12)

where,

𝐾max = ⌊
𝑚

𝑆
⌋ , 𝐾min = ⌊

𝑚 − 𝐾 + 𝑆

𝑆
⌋ , 𝐿max = ⌊

𝑛

𝑆
⌋ , 𝐿min = ⌊

𝑛 − 𝐾 + 𝑆

𝑆
⌋.

Border effects restrict 𝐾max, 𝐾min, 𝐿max, and 𝐿min to the featuremap indices.

δλ[n] 0 1 2 3 4 5

0 1

 6 7

2

wλ+1[n-Sk]

δλ+1[k]

yλ

yλ+1

Figure 4.6: Gradient back-propagation through one dimensional feature extraction lay-
ers. This example uses layer parameters 𝑲 = 𝟒 and 𝑺 = 𝟐.

4.4. EVALUATE RECOGNITION PERFORMANCE 65

In the second step, the local neuron gradients are used to compute the gra-
dients of FEL coefficients. Since, the bias is connected to all feature map neurons
we obtain its gradient by summing over the local gradients:

𝜕𝐸CE
𝜕𝑏

= ∑ 𝛿[𝑚, 𝑛]
0≤ 𝑚 < 𝑀
0≤𝑛<𝑁

 (4.13)

The gradients for the kernel coefficients are obtained by:

𝜕𝐸CE

𝜕𝑤𝜆[𝑘, 𝑙]
= ∑ 𝛿𝜆[𝑚, 𝑛] 𝑦𝜆−1[𝑚𝑆 + 𝑘, 𝑛𝑆 + 𝑙]

0≤ 𝑚 < 𝑀
0≤𝑛<𝑁

 (4.14)

Update network coefficients

The standard delta rule for SGD is used for updating to keep training simple and
reproducible with 𝜂 as single tuning parameter. This well-known coefficient up-
date function uses the computed gradients to push the weights to a better solu-
tion.

𝑊new = 𝑊old − 𝜂
𝜕𝐸CE
𝜕𝑊old

 (4.15)

In the update function (4.15) 𝑊 refers to all weigths 𝑤 and bias 𝑏 values in the
network.

4.4 Evaluate recognition performance

In the previous section we introduced merging of convolution and pooling layers
to reduce computational workload. If a ConvNet uses max-pooling or the con-
volution layer has a non-linear activation function the network must be retained
to obtain a new coefficient set. In this section we evaluate the recognition accu-
racy after merging and retraining. Obviously, in case direct computation of the
weights is possible there is no difference in accuracy.

To evaluate the recognition performance we use two well-known data sets
with known network configurations, which increases reproducibility. The first
evaluation is done on the MNIST handwritten digit dataset [84]. MNIST consists
of 70.000 samples, each containing a 28x28 pixel digit as shown in Figure 4.7a.
We use the LeNet-5 ConvNet to compare separated versus merged accuracy [84].
The second dataset is the small-NORB object classification dataset [85]. NORB
consist of 48,600 stereoscopic image pairs, each 96x96 pixels as shown in Figure
4.7b. This set contains 50 different objects from different angles, distributed over
5 classes. For evaluation we use the LeNet-7 network, which is substantially
larger compared to LeNet5. For training we used our MATLAB implementation
of both networks and our implementation of the SGD training algorithm. As in
the benchmark papers we used the original dataset division: MNIST 60,000 for

66 CHAPTER 4. ALGORITHMIC OPTIMIZATION

training and 10,000 for testing; NORB 24,300 for training and 24,300 for testing.
Table 4.2 contains the results that demonstrate the performance of our FELs that
merge convolution and subsample layers. Firstly we observe that merging does
not negatively influences the networks ability to generalize. For MNIST merging
improves the final accuracy and for NORB merging performs on par with sepa-
rated convolution and subsampling. Note that our implementations perform a
bit better compared to the presented results in [84] and [85]. This shows that
our training implementation results in a realistic and good operating point. The
small improvement can be caused by small differences in the training algorithm.
As predicted in section 4.3 the computational workload reduction in the feature
extraction stage is substantial at the cost of extra weights.

4.5 Experimental mapping

The workload reduction presented in Table 4.2 of Section 4.4 is based upon the
feature extraction layers of a small network that is used for training. However,
in real applications the small input patch is often scaled to a 720p HD video
frame. This scaling of the network increases the total workload, but it changes
also the workload division. In addition, a workload reduction does not always
result in a similar amount of speedup. Often there are other issues that influence

Table 4.2: Evaluation of merged feature extraction layers for MMNIST and NORB dataset.

Benchmark Misclassification MACC ops. FEL Coefficient

MNIST LeNet-5 [84] 0.82% 281,784 1,716

separated 0.78% 281,784 1,716

merged 0.71% 91,912 2,398

reduction 8.97% 65% -40%

NORB LeNet-7 [85] 6.6% 3,815,016 3,852

separated 6.0% 3,815,016 3,852

merged 6.0% 632,552 6,944

reduction 0% 83% -80%

a) MNIST b) small-NORB

Figure 4.7: Subset of the visual patterns, used for accuracy evaluation.

4.5. EXPERIMENTAL MAPPING 67

the speedup e.g., the memory behavior (cache misses), or the utilized parallel-
ism. To quantify the real speedup we mapped our speed sign recognition appli-
cation with merged FELs to a CPU and a GPU. These mapping results are
compared to the results we presented in Chapter 3 to obtain a quantitative meas-
ure of speedup.

First a single core C implementation is developed for a 2.66 GHz Intel Core-
i5 M580 processor. This mapping is optimized for data locality by loop inter-
changes. The code is compiled with MS Visual Studio 2010 where the compiler
flags are set to optimize for execution speed.

Secondly, a massively parallel implementation is developed for an NVIDIA
GTX460 GPU platform. Feature extraction layers contain a lot of parallelism, so
a good speedup is expected. For fair comparison of the feature extraction layers
we tuned the code to utilize the GPU thread parallelism and to improve data
locality (loop interchanges and tiling). In addition, GPU specific optimizations
described in the CUDA programming guide [101] are applied. For example,
memory accesses to the images and feature-maps are grouped to enforce fast
coalesced memory accesses. The kernel coefficients are stored in fast constant
memory. As final optimization the non-linear sigmoid activation function is
evaluated fast using the special function units on the GPU. To enable this last
optimization specific intrinsics from the programming guide are used:

__fdividef(1,1+__expf(-x));

The execution times for the CPU and GPU mappings are presented in Table
4.3. The speed sign application uses window size 𝐾 = 5 and subsample factor
𝑆 = 2, so according to Figure 4.3 there should be a workload reduction of 65%.
This workload reduction is very much in line with the 2.84 times speedup that
is demonstrated on the CPU platform. For the sequential case we demonstrated
an effective speedup similar to the workload reduction. However for the parallel
platform this is not entirely true. Although the speedup of 2.48 times is consid-
ered as quite good, it is 13% less than the theoretical improvement. A parallel
mapping of merged layers has more complicated access patterns and it utilizes
less data reuse; both make that the theoretical speedup is not achieved. Still it is
important to underline that our merged feature extractors improve the real GPU
implementation by 2.48 times, which is a substantial speedup.

Table 4.3: Speed sign recognition application execution time comparison of separated
versus merged feature extraction stage.

configuration CPU GPU speedup

separate conv. & sub. 577 ms 6.72 ms 86 x

merged FELs 203 ms 2.71 ms 75 x

speedup 2.84 x 2.48 x

68 CHAPTER 4. ALGORITHMIC OPTIMIZATION

4.6 Related work

Improving the throughput of ConvNets is not a new field of research. In the last
decade many works proposed dedicated hardware implementations and accel-
erators for ConvNets [16,51]. These implementations often reduce execution time
by the use of hand crafted systolic implementations of the convolution opera-
tion, which heavily reduces the flexibility. For example, a 3x3 convolution per-
formed by a systolic 10x10 array results in a utilization of only 9% of the
multipliers.

Improving the throughput by algorithmic optimization is often much more
flexible and it can be applied to multiple platforms. For example, a related accel-
eration approach was presented in [137], where the authors give a reduced type
of ConvNet. Instead of averaging with subsampling by using equation (4.2) they
only compute one of the convolution results in an 𝑆2 window. Similar to our
approach this reduces computational complexity, however the number of net-
work parameters is not increased. The paper does not report on any quality loss,
but this could occur if one only reduces the number of operations. Furthermore,
the work in [137] differs because there is no analysis published that shows how
kernel size 𝐾 and pooling factor 𝑆 influence the reduction of computational
complexity. Finally, there are no performance measurements on parallel plat-
forms such as a GPU.

Nowadays it is evident that the excessive workload of ConvNets poses huge
challenges for computing platforms. As a result multiple recent works on algo-
rithmic optimization are published. For example, the well-known Strassen algo-
rithm for efficient matrix multiplication is used to reduce the multiplication
workload in ConvNets [36]. To enable this optimization series of input images is
buffered (a batch). This creates an opportunity to rewrite a ConvNet as a Con-
volutional Matrix Multiplication for which many optimized mappings are exist
from the linear algebra domain. Although the theoretical workload reduction of
65% is substantial, the average measured runtime reduction of 17% is minimal.
The main cause of this gap is because the technique trades multiplications for
additions. This tradeoff could also result in more memory accesses due to the
partial results that must be computed, and they must buffer a series of input
frames. Instead of mobile accelerators, datacenters could be an excellent domain
to apply the Convolutional Matrix Multiplication. However, their technique is
not evaluated on a parallel platform, so for parallel scalability further research is
required.

A similar but more refined optimization uses Winograd’s algorithm for min-
imal filtering [81]. Their minimal filtering is able to reduce the multiplications
without creating excessive overhead. CPU mappings demonstrate a 2.58 times
speedup, and GPU mappings give a 2.26x speedup compared to direct imple-
mentation. This complicated technique is highly tuned for 3x3 filter sizes, which
give a very efficient Winograd transform. For larger kernel sizes such as 5x5 the

4.7. CONCLUSION 69

transform costs increase quickly and will overwhelm any savings in the number
of multiplications.

Another high-level optimization approach performs convolutions in the fre-
quency domain [145]. In frequency domain convolutions are point wise multipli-
cations and therefor much cheaper compared to spatial domain. However, for
small convolution kernels and small batch sizes the transformation costs destroy
the savings in the number of multiplications. A combination of the Winograd
and Frequency transform would probably give very competitive results.

A closely related work [75] also exploits the redundancies in representations
that occur in ConvNet layers. They approximate the 2d convolution filters as
combinations of a rank-1 filter basis (separable filters). Direct training a network
on their rank-1 filter banks does not give good results. As a result, their approach
requires an additional optimization on a trained network to find the optimal
filter approximations. They report 2.4 times speedup without loss of accuracy.
Their method also allows more accuracy loss e.g., at 1% accuracy loss they show
4x speedup.

Very recent work demonstrated that the weights in a deep ConvNet can be
reduced to 1 bit (representing +1, or -1) with a scale factor 𝛼 per kernel [120]. In
essence this convolution approximation is similar to the rank-1 filters of [75] but
theirs is reduced even further. This so called Binary Weight Network must be
trained with a custom implementation of SGD, and is able to achieve on-par
performance with AlexNet [79]. However, on other large networks [142] a rela-
tively large accuracy penalty of 5-10% is reported. The authors of [120] reduce the
precision further by XNOR networks that additionally enforces the inputs of
convolutions to 1 bit values (+1, or -1). XNOR nets use a trained scale matrix 𝛽𝑖,𝑗

for all outputs, and the 𝛼 scale per weight kernel. The XNOR approximates con-
volutions with less parameters than the Binary Weight Network. As a result, the
accuracy penalty on AlexNet [79] is 5-10%, and for GoogLenet [142] it does not
converge anymore. Both Binary Weight Networks and XNOR exploit the param-
eter redundancy in ConvNets to the extreme. As a result both substantially re-
duce the memory footprint. Although throughput measurements for real
network are not given we do expect a significant speedup due the this approxi-
mation.

4.7 Conclusion

In this chapter a high-level algorithm modification is proposed to reduce the
computational workload of the trainable feature extractors in a ConvNet. We
demonstrated that the learning abilities of the modified algorithm did not de-
crease; this is verified with real-world benchmarks. Our benchmarks show that
the proposed modifications result in a MACC operation reduction of 65-83% for
the required number of MACC operations in feature extraction layers.

To measure the actual application speedup due to workload reduction; our
road sign classification application from Chapter 3 is used. This application is

70 CHAPTER 4. ALGORITHMIC OPTIMIZATION

mapped to a CPU and GPU platform. The speedup on CPU is a factor 2.7 where
GPU implementation gains a factor 2.5, compared to the original convolution
and subsample feature extractor. These speedups demonstrate that our modifi-
cation is suitable for parallel implementation.

The modifications proposed in this chapter reduce the huge performance gap
between the requirements of current ConvNets and the capabilities of todays
embedded platforms. Although the factor 2.5-2.7 is not enough to close the per-
formance gap it is a significant improvement that can be combined with other
optimizations. In the next chapters we continue with different optimizations
that use incorporate this layer merging technique.

 71

5.

INTER-TILE REUSE OPTIMIZATION

Dedicated hardware acceleration of Convolutional Networks (ConvNets)
can give a huge efficiency improvement over general purpose CPUs. A com-
plex scaling problem that remains is the data transfer bottleneck. To scale-
up performance accelerators require huge amounts of data, and often they
are limited by interconnect resources. In addition, the energy spend by the
accelerator is dominated by the transfer of data, either in the form of
memory references or data movement over the interconnect. In this chapter
we drastically reduce accelerator communication by exploration of compu-
tation reordering and local scratchpad memory usage. Consequently, we
present a new analytical methodology to optimize nested loops for inter-tile
data reuse with loop transformations like interchange and tiling. We focus
on embedded accelerators that can be used in a multi-accelerator System
on Chip (SoC), so performance, area, and energy are key in this exploration.
1) We demonstrate that our methodology reduces external memory com-
munication up to 2.1 times compared to the best case of intra-tile optimiza-
tion. This is done on our Speed Sign ConvNet and two common embedded
image/video processing workloads (demosaicing and block matching). 2)
We demonstrate that our small accelerators (1-3% FPGA resources) can
boost a simple Microblaze soft-core to the performance level of a high-end
Intel-i7 processor.
This chapter is based on work presented in ICCD 2013 [108] and DATE 2015 
[104]

5.1 Introduction

For many algorithms the compute efficiency is improved orders of magnitude by
using specialized hardware accelerators instead of general purpose processor
cores [58]. Designers of embedded compute platforms embrace customization

CHAPTER

72 CHAPTER 5. INTER-TILE REUSE OPTIMIZATION

to realize the best possible performance within a low power envelope [114]. This
trend has successfully brought complex tasks e.g., HD video playback to
Smartphones, and in the extreme to wearable devices such as Smartwatches or
Glasses. For this class of dedicated accelerators the compute primitives are cus-
tomized for the compute workload. If we for example, consider FPGAs there is
plenty of hardware for parallel compute units.

By specializing the compute operators a more complex scaling problem is
introduced. Providing these parallel compute units with the required high-speed
data streams is a major challenge. This is particularly difficult if the system is
equipped with multiple parallel accelerator cores, see Figure 5.1. Especially in the
computer vision and image processing domain the data transfer requirements
are challenging, since high resolution frames or images that must be processed
do not fit in on-chip memories. Therefore, frames are stored in external memory
which has limited transfer throughput, and requires much more energy per ac-
cess compared to on-chip memories. As a result most compute platforms spend
the majority of energy consumption on data movement and computation is al-
most for free.

Deep Convolutional Network (ConvNet) applications have this similar data
transfer problem. There is sufficient parallelism to execute hundreds of opera-
tions in parallel. However supplying the data streams is very challenging and it
dissipates a lot of energy. For example, our speed sign detection application from
Chapter 3 requires 3.5 billion memory accesses in a single layer. Without an on-
chip buffers all accesses will communicate through slow and costly external
memory. These involved data elements are often required several times for the
computation, so there is reuse of data elements. Therefore, elements can be tem-
porally stored into on-chip caches or buffers such that a huge number of external
transfers can be overcome by efficient local reuse of data. Varying the on-chip
memory size is in essence trading chip area versus external memory bandwidth.
E.g. 4 MB on-chip memory can already reduce the external accesses in a dense
speed sign detection layer from 3.5 billion to 5.4 million, which is a substantial
reduction of external communication.

We estimated the data transfer energy for varying on-chip memory sizes with
a memory tracing tool [6], additionally we performed energy estimation for ex-
ternal [17] and on-chip [97] accesses. From the result, as depicted in Figure 5.2,

Host ProcessorExternal RAM

Accelerator
2

Accelerator
3

Accelerator
1 Local

Buffer

Data path

acc* +

acc* +

Figure 5.1: A host processor with multiple accelerator to achieve high compute efficiency
by heterogeneity. Data transfer is reduced by local buffers that exploit data reuse.

5.1. INTRODUCTION 73

we conclude that increasing accelerator utilization with a lot of external memory
bandwidth is bad for energy. This huge external bandwidth scenario is used by
GPU platforms, and it explains why GPUs consume a lot of power. Although on-
chip memories can help increase accelerator utilization, along with the size, the
energy consumption per access also increases. In other words, large on-chip
memories do not solve the energy problem. The large cache scenario is used by
general purpose CPUs, and also this causes efficiency problems.

Careful analysis of Figure 5.2 reveals that the sweet spot for energy efficiency
lies somewhere in the middle i.e., small local buffers reduce external accesses
and don’t add a large energy penalty. In this chapter we propose a methodology
to maximize data reuse in small local buffers. It is well-known that advanced
code transformations such as interchange and tiling can increase data locality.
However, obtaining the best set of transformations is often intractable due to
the huge design space. We propose combinations of tiling and interchange that
result into efficient tile-strips. In contrast to others, our method optimizes the
inter-tile reuse which open more reuse opportunities, and is perfectly suited for
accelerator controlled local memories. We make the following new contribu-
tions:

• Development of analytical data transfer models that take inter-tile reuse
into account. (Section 5.4)

• Pruning of the search space to enable quick design space exploration for
the best schedules, given a buffer size. (Section 5.5)

• Demonstrator by using our technique to equip a simple processor with
high performance accelerators. (Section 5.6)

• Evaluation on ConvNet workload and two other common embedded ap-
plications, and show that huge speedups can be achieved with a modest
amount of buffer size. (Section 5.7 and 5.8)

0.0001

0.001

0.01

0.1

1

10

100

En
er

gy
 f

o
r

D
at

a
Tr

an
sf

er
 [

J]

On-Chip Cache Size [Words]

DRAM Cache Total

Figure 5.2: Data transfer energy for external DRAM and On-Chip cache ac-
cesses.

74 CHAPTER 5. INTER-TILE REUSE OPTIMIZATION

First we present related work in Section 5.2. Next continue with a motivating
example in of iteration reordering in Section 5.3. After the main contributions
this chapter will end with conclusions in Section 5.9.

5.2 Related work

The scheduling of loop iterations for data locality is studied for decades for dec-
ades [150]. A milestone in this field is the Data Transfer and Storage Exploration
(DTSE) methodology [14]. For embedded processors DTSE uses loop fusion and
interchange to improve access regularity and locality. More recent works rely on
a Polyhedral description [8] of the loop iterations on which automatic transfor-
mations are applied that enhance performance. State-of-the-art approaches for
x86 CPU code that are used in production compilers are, Pluto [9], and POCC
[111]. These works select transformations for communication-minimized paral-
lelization and locality, in some sense this looks very similar to inter-tile data re-
use optimization. However, their approach is opposite to ours we maximize
communication between tiles, and convert that into reuse. Their approach is
similar to intra-tile reuse optimization i.e., maximize reuse within a tile and min-
imize communication over tiles, which is good for parallelization and locality.
In Section 0 (intra-tile opt.), we compare with such scheduling approaches and
show significant data transfer reductions.

Exploiting data overlap of successive tiles is introduced only very recently [1],
here it is used after optimization to remove redundant transfers. In Section 0 we
compare to this strategy (inter-tile reuse) and show that it is important to in-
clude inter-tile reuse into the tile size selection process. Their follow-up work
[40] parameterizes the tile size selection, so time consuming empirical search
methods with the system in the loop can be used to find good parameter config-
urations.

The tile size selection problem is not solved, with analytical bounds and em-
pirical search methods it is possible to find good performing tile parameters for
CPU caches [133]. This work is extended with multi-level caches, conflict misses,
and vectorization [95]. We focus on low-power accelerators that rely on more
area and power efficient scratchpad memories. For compile-time known access
patterns [74] shows that efficient data placement for reuse is more efficient than
cache, but in contrast to us they consider the iteration order fixed.

The Halide compiler [117] also focuses on static image processing and com-
puter vision applications, but for x86 and GPUs. In their work Interval Analysis
is used for optimization with a stochastic auto tuner that takes up to 2 days to
converge to good solutions. In [90] the data reuse optimization problem for
FPGA hardware is solved by efficient geometric programming. To use geometric
programming a simplified data reuse model is used. In contrast to our method,
important properties such as overlap between successive tiles is neglected.

Recently a new tool is developed that optimizes HLS input descriptions for
parallelism and locality [112]. This method uses the polyhedral framework for

5.3. MOTIVATION: SCHEDULING FOR DATA LOCALITY 75

transformations and uses a HLS tool such as Vivado HLS (former AutoESL) to
estimate the quality of result. The downside of this approach is its long iteration
time; e.g. testing 100 design points can take up to five hours. Secondly, the pol-
yhedral framework generates x86 optimized code with complicated loop bounds
resulting in many extra divisions, and min/max operations. In [156] the authors
remove some of the x86 artefacts in the generated output code with a HLS
friendly code generator, but the fundamental problem of complex bounds re-
mains.

5.3 Motivation: scheduling for data locality

For hardware controlled local memories, such as caches, the reuse distance [44]
is a good metric to predict if a value can be reused given a certain cache size.
Reuse distance is defined as: the number of distinctive data elements accessed
between two consecutive uses of the same element. A modification in the iteration
order of a loop nest can change the reuse distance of the enclosed array accesses.
Hence, data transfer requirements can be changed by reordering loop nest iter-
ations. Important transformations that are used for this purpose are loop inter-
change and tiling.

The effect of transformations is demonstrated on an educational example of
matrix multiplication, the corresponding loop nest is given in Listing 5.1 For sim-
plicity the result matrix C is already initialized to zero, and the sizes of loop
bounds is set to: Bi=500, Bj=400, and Bk=300. The inner loop iterates over k, so

0

50

100

150

200

2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10 2^11

Ex
te

rn
al

 m
em

o
ry

 a
cc

es
se

s
[N

x1
0

6
]

Reuse distance or scratchpad memory size [elements]

original ijk interchange jki tiling Tj4

tiling Tj16 tiling Ti16 Tj16 tiling Ti16 Tj16 Tk16

Figure 5.3: Data transfer histogram for the matrix multiplication kernel given in List-
ing 5.1. Loop transformations such as interchange and tiling have a huge impact on the
external data transfer.

76 CHAPTER 5. INTER-TILE REUSE OPTIMIZATION

each iteration one element of C is reused. After Bk iterations a row of A is reused.
We used Suggestions for Locality Optimizations (SLO) [6], a reuse profiling tool,
to visualize the remaining data transfers. Remaining transfers are defined as the
total number of memory accesses minus the reuses of data elements. Figure 5.3
shows these remaining transfers for different local buffer sizes. With a very small
buffer (22 elements) only accesses to C are reused, the elements of A are reused
when the buffer increases to 210 elements.

for(i=0; i<Bi; i++){
 for(j=0; j<Bj; j++){
 for(k=0; k<Bk; k++){
 C[i][j] += A[i][k] * B[k][j];
} } }

Listing 5.1: Nested loop code description of a matrix multiplication kernel as a running
example.

By loop interchange, loop i can be positioned as inner loop, so reuse of B is
exploited. However, Figure 5.3 shows that an interchange does not improve but
worsens the total amount of data reuse, since it removed the reuse in array A and
C. One could better perform tiling of loop j with factor Tj=4, as a result the reuse
distance of A is reduced to 24 entries. Tiling can also be performed in other di-
rections and with different factors. Listing~2 demonstrates tiling in all three di-
mensions. Further experiments with different tile factors on multiple loops,
reveal that obtaining the best configuration for a buffer size is a very intricate
problem. Even worse is the huge difference in data transfers for different config-
urations, i.e. the design space is very chaotic. For example, loop tiling with Ti=16
and Tj=16 gives excellent results for a buffer size of 29, but for 28 it is one of the
worst schedules. If the designer could find the best schedules a huge reduction
in the number of communications could be achieved, at the cost of a modest
amount of buffer area.

for(ii=0; ii<Bi; ii+=Ti){
 for(jj=0; jj<Bj; jj+=Tj){
 for(kk=0; kk<Bk; kk+=Tk){
 for(i=ii; i<ii+Ti; i++){
 for(j=jj; j<jj+Tj; j++){
 for(k=kk; k<kk+Tk; k++){
 C[i][j] += A[i][k] * B[k][j];
} } } } } }

Listing 5.2: Loop tiling to transfer parts of loop i, j, and k to the inner loop.

5.4 Modelling the scheduling space

To obtain the best tiling and interchange transformations for a loop nest we for-
mulate an optimization problem. This starts with the derivation of a cost func-
tion that represents the number of external transfers. In addition, a bounding
function is used to limit the required buffer size.

5.4. MODELLING THE SCHEDULING SPACE 77

5.4.1 Modelling intra-tile reuse

For the cost function we assume that a loop nest is split into two parts; an inner
part (zero or more loops) for execution on the accelerator, and an outer part that
runs on a host processor. The outer part facilitates the data transfer between the
external memory and the accelerator. The inner part uses this data to perform
computations, which results in partial or finished output results that are trans-
ferred back to the host. Our cost function represents the number of transfers to
and from accelerator. For the loop nest in Listing 5.2 the cost function is given
below:

𝑁tiles(
datatransfer

tile⁄) = ⌈
𝐵𝑖
𝑇𝑖
⌉ ⌈
𝐵𝑗

𝑇𝑗
⌉ ⌈
𝐵𝑘
𝑇𝑘
⌉ (2𝑇𝑖𝑇𝑗 + 𝑇𝑖𝑇𝑘 + 𝑇𝑘𝑇𝑗) (5.1)

The first part of equation (5.1) models the number of tiles by dividing the do-
main of each loop by the corresponding tile factor. By ceiling the number of tiles
the required padding values for tile factors that are no divisor of the bound are
automatically taken into account. This ensures that our cost function favors tile
factors that result in minimal padding of tiles, since padding values are counted
as extra transfers. Alternatively, we could implement another check on the inner
loop containing an expensive MIN/MAX operator to handle the border tiles dif-
ferently. In this case no padding is required at the cost of more complex tile op-
erator control. General purpose x86 optimization frameworks like Pluto [9] and
POCC [111] use the later strategy since. However, we use padding of tiles since it
results in more regular accelerator code, which is good for throughput and en-
ergy.

The second part of equation (5.1) represents the data transfers per tile. De-
pending on the loop body it contains multiple terms that count the unique array
references for reading/writing that dependents on the tile size. The term 2𝑇𝑖𝑇𝑗

models reads and writes to array C. Array A is only read in code Listing 5.2, so
the communication volume is modeled by 𝑇𝑖𝑇𝑘 . Accesses to array B are very sim-
ilar to array A, only the loop iterators that access elements are different 𝑇𝑘𝑇𝑗.

Tile factors should fit in a local buffer, otherwise the reuse cannot be utilized.
Valid tile factors are obtained by using a buffer requirement model as a con-
straint. The buffer requirement is modeled as the number of distinct array ele-
ments accessed in an inner tile. For Listing 5.2 this results in expression (5.2).
The selected tile factors with their array indices select the data volume of the
inner tile.

𝑇𝑖𝑇𝑗 + 𝑇𝑖𝑇𝑘 + 𝑇𝑘𝑇𝑗 ≤ [Buffer size] (5.2)

5.4.2 Adding inter-tile reuse to the model

For simple accelerators that overwrite all buffer content after processing a tile,
the intra-tile reuse model described in Section 5.4.1 is correct. However, much

78 CHAPTER 5. INTER-TILE REUSE OPTIMIZATION

more reuse can be utilized if the inter-tile reuse is taken into account. For inter-
tile we should exploit knowledge about the contents of the next tile. This in-
creases complexity, since the first tile (prolog) of a series must perform initiali-
zation. The successive tiles (steady-state) should only load new data content and
store this over old unnecessary data, exploiting the data overlap. Furthermore,
dependencies are created between successive tiles that reduce inter-tile parallel-
ism. Nevertheless, inter-tile reuse can substantially reduce data transfer, which
is a key issue affecting the performance of many applications.

Figure 5.4a depicts an example that visualizes data transfer for matrix multi-
plication. Optimizing for intra-tile reuse with a buffer size constraint of 32 ele-
ments result in tile factors Ti=3, Tj=3, Tk=3. Without inter-tile reuse the host
would send 27 values (3x3 patch of A, B, and C), and receive 9 values (3x3 patch
of C) for every tile. However, if data overlap of successive tiles is exploited, only
18 values (3x3 patch of A and B) are transferred in the steady-state tiles. As de-
picted in Figure 5.4b the data of C can be reused. Hence, data transfer for all
steady-state tiles is reduced by a factor two.

The cost function of Section 5.4.1 does not take inter-tile reuse into account,
so tile factors and loop interchanges are suboptimal regarding data transfer. The
key observation that opens opportunities to find even better schedules is that
tiling of the inner control loop does not influence inter-tile reuse. For example,

Tile iteration kk
Data transfer intra-tile = (27 load + 9 store) / 27 iterations = 1.33 access/iter.

Tile iteration kk+Tk
Data transfer with inter-tile = 18 load / 27 iterations = 0.67 access/iter.

C[][]

C[][] A[][] B[][]

A[][] B[][]

0 1 2 3 4 5 j

i

0

1

2

3

4

5

i

0

1

2

3

4

5

0

1

2

3

4

5

k

k j0 1 2 3 4 5 0 1 2 3 4 5

0

1

2

3

0

1

2

3

0

1

2

3

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5j j

kii

Buffer size requirement = 27

k
a)

b)

Tile iteration kk+Tk
Data transfer with inter-tile = 6 load / 9 iterations = 0.67 access/iter.

C[][] A[][] B[][]

0

1

2

3

0

1

2

3

0

1

2

3

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5j j

kii

Buffer size requirement = 15

k
c)

Buffer size requirement = 27

Load and
Store

Load

Reuse

Tile data volume

Figure 5.4: Data access pattern for matrix multiplication based on code Listing 5.2. a)
Demonstrates the data transfer for intra-tile reuse in which all accessed elements must
be transferred. b) Demonstrates the 2x data transfer reduction when inter-tile reuse is
exploited. All elements of C can be reused over successive tiles, which saves a load and
a store communication. c) Reducing the tile size in the dimension of loop k results in
equal communication with a smaller buffer capacity constraint.

5.4. MODELLING THE SCHEDULING SPACE 79

if Tk=1 as in Figure 5.4c the number of accesses per compute iteration does not
change, but the memory footprint reduces. As a result, not tiling the inner con-
trol loop opens opportunities in other dimensions to increase reuse. To include
the effects of inter-tile reuse our transfer model in expression (5.1) can be used.
However, the full range of the inner control loop should be modeled as a single
tile or a tile strip. In a tile strip the transfers of the prolog, steady-state, and epilog
are all included. Equation (5.3) shows the updated tile strip data transfer model
with kk as inner control loop. Note that for each inner control loop (e.g., ii, jj,
and kk) there is a different tile strip model.

𝑁tiles(
datatransfer

tile⁄) = ⌈
𝐵𝑖
𝑇𝑖
⌉ ⌈
𝐵𝑗

𝑇𝑗
⌉ ⌈
𝐵𝑘
𝐵𝑘
⌉ (2𝑇𝑖𝑇𝑗 + 𝑇𝑖𝐵𝑘 + 𝐵𝑘𝑇𝑗)

(5.3)

= ⌈
𝐵𝑖
𝑇𝑖
⌉ ⌈
𝐵𝑗

𝑇𝑗
⌉ (2𝑇𝑖𝑇𝑗 + 𝑇𝑖𝐵𝑘 + 𝐵𝑘𝑇𝑗)

Equation (5.3) can be derived from the intra-tile data transfer expression (5.1)
by subtracting the inter-tile reuses in a strip. Inter-tile reuses of C occur between
the first load and the final store in a sequence of small tiles of control loop kk.
As a result, the reuses should be subtracted as demonstrated in expression (5.4).

⌈
𝐵𝑖
𝑇𝑖
⌉ ⌈
𝐵𝑗

𝑇𝑗
⌉ ⌈
𝐵𝑘
𝑇𝑘
⌉ (2𝑇𝑖𝑇𝑗 + 𝑇𝑖𝑇𝑘 + 𝑇𝑘𝑇𝑗) − ⌈

𝐵𝑖
𝑇𝑖
⌉ ⌈
𝐵𝑗

𝑇𝑗
⌉ (⌈

𝐵𝑘
𝑇𝑘
⌉ − 1) 2𝑇𝑖𝑇𝑗

= ⌈
𝐵𝑖
𝑇𝑖
⌉ ⌈
𝐵𝑗

𝑇𝑗
⌉ ⌈
𝐵𝑘
𝑇𝑘
⌉ (𝑇𝑖𝑇𝑘 + 𝑇𝑘𝑇𝑗) + ⌈

𝐵𝑖
𝑇𝑖
⌉ ⌈
𝐵𝑗

𝑇𝑗
⌉ 2𝑇𝑖𝑇𝑗 (5.4)

= ⌈
𝐵𝑖
𝑇𝑖
⌉ ⌈
𝐵𝑗

𝑇𝑗
⌉ (2𝑇𝑖𝑇𝑗 + ⌈

𝐵𝑘
𝑇𝑘
⌉ 𝑇𝑖𝑇𝑘 + ⌈

𝐵𝑘
𝑇𝑘
⌉ 𝑇𝑘𝑇𝑗)

When 𝐵𝑘 is a multiple of 𝑇𝑘 equation (5.4) is can be simplified into (5.3), which
shows that the size of 𝑇𝑘 does not influence the communication volume. How-
ever, to create space in the buffer size constraint of equation (5.2) 𝑇𝑘 should be
minimized, so 𝑇𝑖 , and 𝑇𝑗 can be maximized. In other words, one dimension of

the loop nest gets all reuse for free.
A different inner control loop for the tile stip influences the amount of data

overlap between successive tiles. In the example of Listing 5.2 the inner control
loop is kk. Hence, C[i][j] is reused and the send and receive transfers for array
C are minimized. By loop interchange jj becomes the inner control loop, and
instead send transfers for array A are minimized. The corresponding model is
given in equation (5.5). For complete evaluation of the solution space each pos-
sible inner control direction is modeled separately.

⌈
𝐵𝑖
𝑇𝑖
⌉ ⌈
𝐵𝑘
𝑇𝑘
⌉ (2𝑇𝑖𝐵𝑗 + 𝑇𝑖𝑇𝑘 + 𝑇𝑘𝐵𝑗) (5.5)

80 CHAPTER 5. INTER-TILE REUSE OPTIMIZATION

With inter-tile data reuse models it is possible to obtain schedules that re-
quire less accelerator communication. In Figure 5.5a the best schedule for matrix
multiplication with a buffer size constraint of 32 elements is visualized. The in-
ner control loop is kk, and the tile factors are Ti=5, Tj=4, and Tk=1. Similar to
Figure 5.4a it outlines the communication requirement for only intra-tile reuse.
As expected, considering intra-tile reuse the new schedule performs much
worse. However, if we compare the data transfer requirement with inter-tile re-
use a reduction of 1.48 times per compute iteration is achieved over the schedule
of Figure 5.4c. As demonstrated by this matrix multiplication example, the ef-
fects of inter-tile reuse must be taken into account when optimizing the iteration
order. If not, a sub-optimal solution will be obtained.

5.5 Scheduling space exploration

When considering valid transformations such as loop interchange and tiling on
deep nested loops the scheduling space can be huge, as shown in Section 5.3. We
use the models proposed in Section 5.4 to obtain the best schedules, and this
will take only seconds instead of hours or days as reported by other search meth-
ods [112,117]. This target is achieved by using analytical models that can be eval-
uated quickly. Additionally, inter-tile reuse optimization prunes the search space
by evaluating tile strips instead of all combinations of tile factors. Our scheduling
approach is outlined by a simple 1D-convolution kernel, see Listing 5.3. This code
example demonstrates the modeling of convolution access patterns as required
for array reference X[i+j]. Basically convolutional nets have the same inner op-
erator where X[i+j] is an input featuremap, H[j] the weights, and Out[i] the

Tile itereration kk
Data transfer intra-tile = (29 load + 20 store) / 20 iterations = 2.45 access/iter.

Tile iteration kk+Tk
Data transfer with inter-tile = 9 load / 20 iterations = 0.45 access/iter.

C[][]

C[][] A[][] B[][]

A[][] B[][]

0 1 2 3 4 5 j

i

0

1

2

3

4

i

0

1

2

3

4

0

1

2

3

4

k

k j0 1 2 3 4 5 0 1 2 3 4 5

0

1

2

3

0

1

2

3

0

1

2

3

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5j j

kii

Buffer size requirement = 29

4 4 4

k
a)

b)
Buffer size requirement = 29

Load and
Store

Load

Reuse

Tile data volume

Figure 5.5: Inter-tile optimized data access patterns for matrix multiply. a) The data com-
munication volume of intra-tile is larger compared to the schedules of Figure 5.4a. b)
Communication volume for inter-tile reuse is less than in Figure 5.4b. With a buffer size
constraint of 32 elements inter-tile reuse optimization with tile factor Tk=1 utilizes the
most data reuse.

5.5. SCHEDULING SPACE EXPLORATION 81

neuron results. Extending this example to the 2-d access patterns in a ConvNet
is straightforward. The loop bounds in the example nesting are Bi=50 and
Bj=100.

for(i=0; i<Bi; i++){
 for(j=0; j<Bj; j++){
 Out[i] += X[i+j] * H[j];
} }

Listing 5.3: Nested loop code example for 1d-convolution.

For intra-tile optimization different tiling factors should be explored e.g.,
combinations of Ti for loop i, and Tj for loop j that fit the constraints. The
search space for this problem is depicted in Figure 5.6. However, for inter-tile
optimization the search space is much smaller. One loop e.g. ii is selected as
inner control loop and for the other loop j, tile sizes are evaluated. In addition,
this is evaluated for the other option with jj as control loop. Effectively one
dimension of the search space is removed. The corresponding cost functions are
given in equation (5.6), and the buffer size constraint is given in equation (5.7).

Cost =

{

 ⌈
𝐵𝑖
𝑇𝑖
⌉ (2𝑇𝑖 + (𝑇𝑖 + 𝐵𝑗 − 1) + 𝐵𝑗), 𝑇𝑗 = 1

⌈
𝐵𝑗

𝑇𝑗
⌉ (2𝐵𝑖 + (𝐵𝑖 + 𝑇𝑗 − 1) + 𝑇𝑗), 𝑇𝑖 = 1

 (5.6)

𝑇𝑖 + (𝑇𝑖 + 𝑇𝑗 − 1) + 𝑇𝑗 ≤ [Buffer size] (5.7)

Ti

Tj
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

buffer size ≤ 8

buffer size ≤ 16

buffer size ≤ 32

best config. ≤ 8

best config. ≤ 16

best config. ≤ 32

inter tile config.

intra tile config.

Figure 5.6: Design space for tiling configurations on the convolution code in Listing 5.3.
Each axis represents a possible tile factor as parameter. For inter-tile reuse optimization
one of the tile factors is fixed to one, which prunes the space. Two options remain Ti=1
or Tj=1 the other free parameter is optimized. The best configuration given a buffer size,
is not always located on the border as shown for a buffer constraint of 32 elements.

82 CHAPTER 5. INTER-TILE REUSE OPTIMIZATION

The search for the best configuration is performed by a bounded search
through the valid solution space. Since the buffer size requirement function is
monotonic, the bounds on the valid solution space can be efficiently set with the
guarantee that optimal solutions are obtained. This search method is visualized
in Figure 5.6. Important to note is the short search time that is required to obtain
the best schedules for very deep nested loops. On a standard laptop the search
space for an 8-level deep loop nest for motion estimation is explored in 4.2 sec-
onds, with a buffer size constraint of 1024 elements.

5.6 Implementation demonstrator

An optimized schedule should be converted to host processor code and an HLS
accelerator description according to the steps outlined in Figure 5.7. The re-
quired conversions are described by our educational matrix multiplication ex-
ample for a buffer size constraint of 32 entries. The optimal schedule derived
from Listing 5.2 and inter-tile reuse optimization has tiling parameters Ti=5,
Tj=4, and the inner control loop is kk. The resulting data access pattern is de-
picted in Figure 5.5b.

The host processor code executes the outer control loops, and performs data
transfer of tiles between host and accelerator, see Figure 5.8 for a graphical illus-
tration of the communication. Basically, the outer control loops of Listing 5.2 are
used. Furthermore, the prolog and epilog parts are inserted, which transfer input
data and output results, respectively. Finally, the inner control loop is inserted,
which transfers the steady-state data chunks. In Listing 5.4, a description of the
host code is given. Note that the Send and Receive functions facilitate FIFO
based communication. For the connection between the host and accelerator we
use the Fast Simplex Links (FSLs) from Xilinx.

construct
access

functions

extract
reuse

directions

fast scheduling
DSE

port inter-tile
control code

to µB

tile strip
compute

code to HLS

derive
access/

iteration cost
function

derive tile
buffer size
constraint

application
description

Figure 5.7: Design space exploration flow for inter-tile optimized accelerator develop-
ment.

5.6. IMPLEMENTATION DEMONSTRATOR 83

for(ii=0; ii<Bi; ii+=Ti){
 for(jj=0; jj<Bj; jj+=Tj){
 //prolog part nothing to send
 for(k=0; k<Bk; k++){ //steady state
 Send(A[ii:ii+Ti-1][k]);
 Send(B[k][jj:jj+Tj-1]);
 }
 //epilog part receive results
 Receive(C[ii:ii+Ti-1][jj:jj+Tj-1]);
} }

Listing 5.4: Host processor code that corresponds to the matrix multiply example in List-
ing 5.2. This code performs data transfer by executing the outer control loops.

The accelerator code performs the content of the tiles, which is the main
compute workload. It has no notion of the position in the program; it just repeats
execution of streams with overlapping tiles. Furthermore, it describes the
load/store policy in the local buffers. The prolog and epilog parts are specified,
and in addition the steady state inner control loop is inserted. This last part con-
tains a data transfer and a compute part. If required, the compute part can be
parallelized by adding HLS specific pragmas for pipelining or unrolling [154].
Listing 5.5 shows the accelerator code:

Init(C[0:Ti-1][0:Tj-1]); //prolog
for (k=0; k<Bk; k++){ //steady state
 Receive(A[0:Ti-1]);
 Receive(B[0:Tj-1]);
 for(i=0; i<Ti; i++){
 for(j=0; j<Tj; j++){
 C[i][j]+=A[i]*B[j];
} } }
Send(C[0:Ti-1][0:Tj-1]); //epilog return results

Listing 5.5: Accelerator code, which computes on incoming data by executing inner loops
of the matrix multiply example

prolog
initialize tile

weights

next prolog

epilog send
last results

Accelerator

DDR

inter-tile
steady state
send small
input tiles

results from
steady state

tiles e.g.,
neuron vals.

input FSL output FSL

Figure 5.8: Schematic overview of the pipelined communication stream to an accelerator.

84 CHAPTER 5. INTER-TILE REUSE OPTIMIZATION

5.7 Evaluation methodology

To evaluate the effectiveness of inter-tile reuse optimization for dedicated accel-
erators, we study a representative set of real-world applications. Our study will
first look at the number of data transfers for different memory sizes. For this our
analytical modeling framework is used to compute the number of external ac-
celerator communications.

To analyze the effect of communication reduction real mappings of the ap-
plications are done. Firstly on fixed platforms to set a baseline execution time
score. Secondly, these mappings are performed for dedicated accelerators con-
nected to an embedded MicroBlaze core to demonstrate the impressive perfor-
mance of inter-tile optimized accelerators.

5.7.1 Benchmark applications

Our first focus is the workload in Convolutional Networks (ConvNets). However,
the inter-tile optimization method is much broader applicable, so we include a
few applications from the image and video processing domain with extensive
data transfer requirements. As outlined these applications should contain loops
nests that can be written as static affine loops, and these should represent the
major compute workload. A short overview of the applications is given below
and in addition their sources are made available on the web5.

Convolutional network

ConvNets should be used for state-of-the-art object detection and recognition,
e.g. face detection in photo cameras [53], and speed sign recognition in portable
navigation devices [105]. To comply with the restricting power budgets in em-
bedded devices fixed function accelerators are an interesting target that could
give enough compute throughput. In our evaluation we use the dense speed sign
recognition application that’s introduced in Chapter 3. More specifically, we use
the optimized version with merged feature extraction layers, see Chapter 4. For
our benchmarks the application used on a 720p HD video stream.

Demosaicing

Camera processing pipelines typically require a demosaicing step, since the red,
green, and blue (RGB) channels of the sensor are laid out in a Bayer [3] pattern.
A demosaicing algorithm interpolates the two missing color values, at each pixel
position. However, interpolation is difficult because the color channels have an
inadequate sampling resolution, which causes color artifacts. We use a 5x5 posi-
tion adaptive interpolation kernel based upon the Malvar-He-Cutler [92]

5 Benchmark sources can be downloaded from: http://parse.ele.tue.nl/research/locality/

http://parse.ele.tue.nl/research/locality/

5.7. EVALUATION METHODOLOGY 85

method. Furthermore, an 8 Mpixel input image is used for realistic data transfer
figures.

for (y=0; y<By; y++){
 for (x=0; x<Bx; x++){
 for (c=0; c<Bc; c++){
 for (k=0; k<Bk; k++){
 for (l=0; l<Bl; l++){
 Out [y][x][c] += In[y+k][x+l] * W[y&1][x&1][c][k][l];
} } } } }

Listing 5.6: Pseudo description of the Malvar method for demosaicing.

Motion estimation

An important step in video coding is Motion Estimation; since it significantly
improves compression, though substantially increasing complexity. In modern
coding standards, such as H.264, the Integer Motion Estimation (IME) step rep-
resents 78% of the compute workload, and 78% of the memory accesses [19]. We
use a full-search block matching kernel with a window of 32x32 that searches in
a previous and future reference frame for the best matching block, using the Sum
of Absolute Differences (SAD) cost function. Furthermore, there are four HD
720p frames between two reference frames that must be encoded by motion vec-
tors. As outlined in Listing 5.7 the algorithm can be described by a very deep
loop nest, with reuse opportunities in all dimensions.

for (f=0; f<Bf; f++){ // encoded frame nr.
 for (by=0; by< Bby; by++){ // macro block
 for (bx=0; bx< Bbx; bx++){
 min = 65535;
 for (r=0; r<Br; r++){ // reference frame
 for (sy=0; sy< Bsy; sy++){ // search window
 for (sx=0; sx< Bsx; sx++){
 diff = 0;
 for (y=0; y<By; y++){ // block difference
 for (x=0; x<Bx; x++){
 diff += abs(in[f][by,y][bx,x] -
 ref[r][by,sy,y][bx,sx,x]);
 } }
 if (diff<min){ // update best match
 min = diff;
 vec = (ref<<15)|((sy<<8)|sx);
 } } } }
 idx[f][by][bx] = vec;
} } }

Listing 5.7: Pseudo description of Integer Motion Estimation (IME) for a video coding
application.

86 CHAPTER 5. INTER-TILE REUSE OPTIMIZATION

5.7.2 Platform and tools

As a baseline reference for evaluation fixed-point implementations of the appli-
cations are mapped to three different platforms:

• Intel Core-i7 960 CPU at 3.2GHz

• Arm-A9 CPU at 667MHz, Xilinx Zynq SoC

• MicroBlaze soft core configured for performance, at 200MHz
In addition, our methodology is used to develop hardware accelerators that in-
crease the performance of the MicroBlaze host processor. The designs are syn-
thesized for the Xilinx ML605 board, which has one Virtex-6 FPGA (xc6vlx240t-
1ffg1156). For development we use the Xilinx Vivado 2012.3 tools, including Vi-
vado HLS (AutoESL), which is used to create accelerators. The clock frequency
of our FPGA designs is set to 200 MHz.

5.8 Experimental results

To quantify the effectiveness of inter-tile reuse optimization the number of data
transfers for the three benchmark applications computed. For each application
the cost functions and buffer size requirements are derived. With these descrip-
tions the scheduling space exploration is performed for different buffer size con-
straints, as outlined in Section 5.5.

5.8.1 Data transfer volume for inter-tile schedules

Figure 5.9 shows the data transfer requirements for the original iteration order-
ing versus three other optimization strategies. Data transfer is specified as a fac-
tor with respect to the theoretical minimum, i.e. communicating each input and
final output only once. This can always be achieved with an infinite buffer size.
The communication volume is plotted for the required buffer size, which pref-
erably is as small as possible.

Intra-tile optimization shows the result for accelerators that reset all buffer
contents after each tile, which is outlined in section 5.4.1. This optimization tar-
get does not enforce any ordering between tiles which is good for parallelism; as
a result it sometimes gives worse results compared to the original iteration or-
der. If we exploit the available inter-tile reuse for schedules optimized for intra-
tile reuse the communication volume is significantly reduced. Finally, the sched-
ule dimensions are optimized for inter-tile reuse, which for all benchmarks re-
sults in the smallest communication volume.

Important to note, are the huge data transfer reductions. E.g. in the motion
estimation benchmark the best schedule can reduce data transfer up to 50x com-
pared to the original. Furthermore, we demonstrate that a relatively small local
buffer of 1024 elements can substantially reduce data transfer. For motion esti-
mation and object recognition the remaining number of transfers is within one
order of magnitude of the minimum. However, for demosaicing the minimum is

5.8. EXPERIMENTAL RESULTS 87

(a) Convolutional network

(b) Demosaicing

(c) Motion estimation

Figure 5.9: External data transfers versus accelerator buffer size. The original loop order-
ing is compared with: intra-tile schedules; intra-tile schedules where inter-tile reuse is
utilized; and full optimization where inter-tile schedule dimensions are optimized.

1

10

100

1000

2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10

x
ti

m
es

 m
in

im
u

m
 e

xt
e

rn
al

 t
ra

n
sf

er
s

Local buffer size [elements]

original

intra-tile opt.

inter-tile reuse

full-opt. (our work)

1

10

100

2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10

x
ti

m
e

s
m

in
im

u
m

 e
xt

e
rn

al
 t

ra
n

sf
er

s

Local buffer size [elements]

original

intra-tile opt.

inter-tile reuse

full-opt. (our work)

1

10

100

1000

10000

2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10

x
ti

m
es

 m
in

im
u

m
 e

xt
e

rn
al

 t
ra

n
sf

er
s

Local buffer size [elements]

original
intra-tile opt.
inter-tile reuse
full-opt. (our work)

88 CHAPTER 5. INTER-TILE REUSE OPTIMIZATION

already reached with a buffer of 512 elements. A designer should stop increasing
buffer size after this point, because the amount of data transfer stays constant
and it only increases the area footprint.

5.8.2 Quality of results

As demonstrated, there is a trade-off between buffer size and communication
requirements for hardware accelerators. In addition, the amount of compute re-
sources influence the communication requirements. For HLS descriptions this
is achieved by unrolling parts of algorithm code. As a result, the data path is
replicated to utilize available parallelism, which requires more data to feed the
extra compute resources. Figure 5.10 presents execution time measurements for
different accelerator configurations. Accelerators with a small buffer (e.g. 32 el-
ements like a register file) are bandwidth limited, so throughput will not scale
with extra compute resources.

The quality of implemented accelerator schedules is evaluated by comparing
execution time with resource usage. For FPGAs, resource usage is defined as:
MAX(%DSPs, %BRAMs, %LUTs, %flip-flops). In Figure 5.11 the execution time
versus resource usage is visualized by plotting the design points of figure Figure
5.10. In addition, the area-delay product is used to define the efficiency of differ-
ent implementations. For each benchmark the best area-delay product is extrap-
olated and plotted as a dotted line in the comparison.

The results for the ConvNet and Demosaicing application behave intuitive.
Designs that are balanced score close to the dotted line, while designs severely
limited by either compute or buffer resources occur further from this line. As
predicted in Figure 5.9 for Demosaicing increasing the buffer size beyond 512
entries does not improve the design any further. However, for Motion Estima-
tion a few results behave counter intuitive, e.g. increasing parallelism in small
data buffer designs can reduce the resource usage. Vivado HLS is a production
tool, and therefore a small change in the input description can trigger different
optimizations. Due to unrolling with a factor two the number of required LUTs
in the 32 and 64 entry designs are reduced, which reduces overall resource usage
and the area delay product.

Finally, the best accelerators are compared with other platforms, as shown in
Table 5.1. These accelerators do not have a dedicated DMA controller, which se-
verely constraints the available communication bandwidth. However our inter-
tile accelerators can increase the original MicroBlaze performance by 16 to 82
times, at the cost of a very small increase of overall resource usage. Hence simple
embedded processors can perform on par with a high-end general purpose pro-
cessor. Dedicated DMA can be added, but it will only shift the result of Figure
5.11.

5.8. EXPERIMENTAL RESULTS 89

(a) Convolutional network

(b) Demosaicing

(c) Motion estimation

Figure 5.10: Execution time scaling for different buffer size optimized accelerators. Par-
allelism is increased by unrolling in the HLS compute code. The dotted line represents
the ideal execution time assuming no data transfer time. As Figure 5.9 predicted, de-
mosacing exploits all available reuse with a 512 entry buffer.

0.1

1

10

1 10

Ex
e

cu
ti

o
n

 T
im

e
[s

]

Parallel PE

32 entry buf
64 entry buf
128 entry buf
256 entry buf
512 entry buf
1024 entry buf
compute bound

2 3 4 5 6 7 8 9 20

5

0.5

0.2

2

20

1

10

1 10

Ex
e

cu
ti

o
n

 T
im

e
[s

]

Parallel PE

32 entry buf
64 entry buf
128 entry buf
256 entry buf
512 entry buf
1024 entry buf
compute bound

2 3 4 5 6 7 8 9 20 30

9
8
7
6
5

4

3

2

1

10

100

1 10

Ex
e

cu
ti

o
n

 T
im

e
[s

]

Parallel PE

32 entry buf
64 entry buf
128 entry buf
256 entry buf
512 entry buf
1024 entry buf
compute bound

2 3 4 5 6 7 8 9 20 30

5

50

20

2

90 CHAPTER 5. INTER-TILE REUSE OPTIMIZATION

(a) Convolutional network

(b) Demosaicing

(c) Motion estimation

Figure 5.11: FPGA resource utilization for accelerator mappings with an inter-tile itera-
tion order. The best area delay product is selected as most efficient solution and extrap-
olated by the dotted line.

0.1

1

10

0.1% 1.0%

Ex
e

cu
ti

o
n

 T
im

e
[s

]

FPGA Resources Used

32 entry buf
64 entry buf
128 entry buf
256 entry buf
512 entry buf
1024 entry buf
area delay prod.

0.2% 0.5% 2.0% 5.0%

0.2

0.5

2

5

20

1

10

0.1% 1.0%

Ex
e

cu
ti

o
n

 T
im

e
[s

]

FPGA Resources Used

32 entry buf
64 entry buf
128 entry buf
256 entry buf
512 entry buf
1024 entry buf
area delay prod.

9
8
7
6
5

4

3

2

0.5% 5.0%0.2% 2.0%

1

10

100

0.1% 1.0%

Ex
e

cu
ti

o
n

 T
im

e
[s

]

FPGA Resources Used

32 entry buf
64 entry buf
128 entry buf
265 entry buf
512 entry buf
1024 entry buf
area delay prod.

0.2% 0.5% 2.0%

2

5

20

50

5.8. EXPERIMENTAL RESULTS 91

Platform Demosaic [s] Block Match [s] ConvNet [s]

Intel-i7 0.54 8.12 0.63
Arm-A9 5.75 72.32 5.92
MicroBlaze 22.10 283.96 19.05
Accelerator 1.36 3.45 0.75

Table 5.1: Execution time comparison for multiple platforms.

5.8.3 Energy consumption

In the previous section throughput and resource utilization are evaluated. An-
other key parameter for embedded systems is energy efficiency. Energy con-
sumption is evaluated by FPGA bit toggling simulations for the real applications.
To measure bit toggling during application runtime the Xilinx ISIM simulator is
used. This simulator performs a behavioural simulation of the MicroBlaze core
including connected peripherals like the Memory Interface Controller (MIC), or
dedicated accelerators. Due to the excessive simulation time of such large sys-
tems only 1 ms of the real workload (the initialization part is not recorded) is
recorded in a Switching Activity Interchange Format (SAIF) file.

The Xilinx XPower tools combine the SAIF file with the placed and routed
design to estimate the FPGA power usage. For a complete power figure we in-
cluded the activity of the external DDR3 memory module. This is performed by
recording the output of the Xilinx soft-core memory controller, and feed the
memory command sequence to a DDR3 memory energy estimator [17].

The estimated system power consumption during 1 ms of effective workload
is extrapolated to the run time of each complete application. Figure 5.12 presents
the energy consumption to run each complete application for the different map-
pings. These figures demonstrate that even the very small accelerators with 32
buffer entries can substantially improve energy efficiency, factors of 2.5 up to 5.8
better efficiency are shown. However, if data transfer is reduced aggressively by
using the best area delay product mappings energy efficiency increases by 18 to
82 times compared to the MicroBlaze mapping.

The huge energy efficiency improvement is mainly caused by execution time
reduction, since dynamic power usage changes only by a small amount. The ex-
act power figures are outlined in Table 5.2, which reveals that the major portion
of power consumption is static. This is mainly due to large design area used for
the Memory Interface Controller and the MicroBlaze core, see Figure 5.13. These
results indicate that the addition of the relatively small accelerators does not
increase power usage significantly. In addition, though the use of efficient data
reuse in local buffers the data movement does not increase. The relatively small
accelerators and optimized data reuse schedules do not increase power usage,
but they reduce execution time tremendously which gives a boost to energy ef-
ficiency. Although energy efficiency improved a lot, the energy per effective op-
eration is still 1 to 7 nJ depending on the application data reuse. For smartphone
or wearable scenarios this is a good step forward, but not enough. These use
cases require one or two orders of magnitude efficiency improvement.

92 CHAPTER 5. INTER-TILE REUSE OPTIMIZATION

Figure 5.12: Full application energy consumption for three mappings: MicroBlaze only;
Accelerator with 32 buffer entries; And the accelerator with the best area delay product.

Application Mapping Dynamic Static DDR3 Total
Power

Joule/op.

Demosaic
 MB 2438 mW 3092 mW 310 mW 5841 mW 138 nJ/op
 acc 32 2420 mW 3092 mW 312 mW 5823 mW 34 nJ/op
 acc 512 2427 mW 3092 mW 317 mW 5836 mW 7 nJ/op

Motion Est.
 MB 2426 mW 3092 mW 313 mW 5832 mW 109 nJ/op
 acc 32 2395 mW 3091 mW 311 mW 5797 mW 19 nJ/op
 acc 1024 2439 mW 3092 mW 311 mW 5843 mW 1 nJ/op

ConvNet
 MB 2413 mW 3092 mW 310 mW 5841 mW 98 nJ/op
 acc 32 2417 mW 3092 mW 313 mW 5822 mW 37 nJ/op
 acc 1024 2445 mW 3093 mW 317 mW 5854 mW 3 nJ/op

Table 5.2: Platform power usage and energy efficiency overview.

Figure 5.13: FPGA mapping of the SoC, a MicroBlaze core equipped with the three best
area delay product accelerators. The three accelerators occupy only 7.4% of the available
FPGA resources. The resources in red and yellow are used for the MicroBlaze and the
DDR memory controller respectively; combined these consume 9.8% of FPGA resources.

175

1656

169

43

284

64

9

20

6

1

10

100

1000

10000

Demosaic Motion Estimation Convolutional Net

A
p

p
lic

at
io

n
 E

n
er

gy
 [

Jo
u

le
]

Microblaze

Acc 32 entry buf

Acc best area delay prod.

Xilinx Memory
Controller

MicroBlaze
Soft Core

Demosaic

Block Match

Convolutional
Network

5.9. CONCLUSIONS 93

5.9 Conclusions

In this Chapter we presented our new inter-tile reuse optimization strategy for
nested loop accelerators. This optimization strategy searches the best combina-
tion of loop interchange and tiling with optimal tile sizes. We demonstrated that
maximizing efficiency for local buffers in FPGA based accelerators gives a sub-
stantial performance improvement. These improvements are enabled by effi-
ciently exploiting local buffering with data access optimizations for nested loops.
Our optimizations manage to limit buffering requirements while achieving a sig-
nificant reduction of external data transfer. The main improvement is achieved
by optimizing for inter-tile reuse. Although the design space can be huge and
chaotic for deeply nested loops, we show that the best configuration of transfor-
mations can be found with a model-based approach. Our focus on inter-tile re-
use effectively prunes the search space of configurations, and limits the effort of
exploration to mere seconds. The fruits of our optimizations are verified with
the Xilinx Vivado HLS tools, and we observe a significant reduction in the effort
of designing efficient dedicated accelerators. With our approach the number of
required design iterations is minimized, by directly computing the best candi-
dates before time consuming synthesis. As a result, the mapping process of static
image or video processing applications to dedicated hardware accelerators is
much better manageable.

 94

6.

NVE: A FLEXIBLE ACCELERATOR

As outlined in the earlier chapters Convolutional Networks (ConvNets) en-
able record breaking classification performance for many daily tasks. How-
ever the associated demands on computation and data transfer prohibit
straightforward adoption by energy constrained wearable consumer plat-
forms. The computational burden can be overcome by dedicated hardware
accelerators, but it is the sheer amount of data transfer, and level of utili-
zation that largely determines the energy-efficiency of such implementa-
tions. This chapter presents the Neuro Vector Engine (NVE) a SIMD
accelerator template for ConvNet based vision applications, targeting the
consumer market, in particular the ultra-low power wearable devices. The
NVE is very flexible due to the use of a VLIW ISA, which comes at the cost
of instruction fetch overhead. We demonstrate that this overhead is insig-
nificant when the flexibility enables advanced data locality optimizations
from the previous chapters. In addition, our flexibility ensures an excellent
hardware utilization for different ConvNet vision applications. By co-opti-
mizing accelerator architecture and applying the inter-tile reuse optimiza-
tion methodology, 30 Gops is achieved within a power envelope of 54 mW
and only 0.26 mm2 silicon footprint in TSMC 40 nm technology. These per-
formance numbers enable high-end visual object recognition by portable
and even wearable devices.
This chapter is based on work presented at DATE 2016 [109].

6.1 Introduction

Although Convolutional Networks (ConvNets) achieve superior results for ma-
chine vision, they lack an attribute crucial for mobile and wearable applications,
and that is energy-efficiency. The rather large computational workload and data
intensity has motivated optimized implementations on CPUs [18], GPUs [28] and
FPGAs [108,155]. All these implementations do not fit the very constrained (less

CHAPTER

6.1. INTRODUCTION 95

than 1 Watt) mobile power budget. In Chapter 5 we demonstrated with dedi-
cated FPGA accelerators that it is very challenging to reach the sub 1 Watt target
while achieving sufficient compute performance. Although FPGAs have the flex-
ibility to reprogram the data path their operators simply consume too much en-
ergy compared to their ASIC counterparts. On the other hand, instruction based
CPUs or GPUs spend way too much energy on non-compute related control
structures, e.g. instruction fetch, decode, pipeline management, program se-
quencing, etc.

The computer architecture community is well aware of the trend towards
heterogeneous computing where architecture specialization is used to achieve
high performance at low energy [58]. A few research groups use the customiza-
tion paradigm to design highly specialized hardware accelerators that could en-
able excellent machine vision for mobile devices [16,50,20]. The main challenge
in accelerator design is to reconcile architecture specialization and flexibility.
Especially, the right level of flexibility is key for the energy-efficiency of an ac-
celerator. ConvNets have many parameters such as the layers, feature maps, and
kernels, which are different for every task. Hence the architecture should sup-
port different parameters efficiently, and on the other hand data storage struc-
tures should be tuned to the data-flow and data-locality requirements. Earlier
works focused on this last aspect by focusing on efficiently implementing the
compute primitives. However, by adding more flexibility we demonstrate an ad-
ditional efficiency improvement that is counter intuitive, but crucial for real-
world ConvNet vision applications.

In this chapter we present the Neuro Vector Engine (NVE), an ultra-efficient
accelerator template for ConvNet based vision applications. The design builds
on efficient SIMD operations that focus on data reuse opportunities by employ-
ing a local scratchpad buffer. The VLIW ISA enables a very high utilization; real-
world benchmarks demonstrate an excellent silicon area efficiency (perfor-
mance/area = 115 Gops/mm2). In addition, the VLIW ISA enables advanced data
locality optimizations that increase energy efficiency tremendously (perfor-
mance/power = 559 Gops/W). Our main contributions are:

• A new ultra-low power accelerator template for ConvNets.

• The first extremely flexible ConvNet accelerator with full VLIW com-
piler support.

• Extensive evaluation of the architectural design involving data move-
ment analysis due to the inter-tile data locality optimization.

• Detailed comparison with a low-power ARM-A9 core and an embedded
NVIDIA TK1 GPU.

First, Section 6.2 gives an overview of related work. Next in Section 6.3 the
inefficiencies of general purpose CPUs are analyzed. In Section 6.4 these ineffi-
ciencies are addressed by the NVE architecture. Section 6.5 presents an in depth
evaluation of the NVE architecture. Section 6.6 will evaluate different instances
of the template and will discuss limitations and future work. The chapter is fi-
nalized with conclusions in Section 6.7.

96 CHAPTER 6. NVE: A FLEXIBLE ACCELERATOR

6.2 Related work

The energy constraints on mobile and embedded devices, forces researchers to
find solutions that improve efficiency. In this search others have proposed cus-
tom accelerator architectures of ConvNets for FPGA or ASIC. In this section we
will investigate popular architectures that are proposed in the literature. We will
show that most of the work is too specific, i.e. when different networks must be
supported the efficiency drops substantially.

Many works focus on a computational operator that implements the filtering
part in a ConvNet. Filtering represents 90% of the computational workload, so
it is an important part. A systolic implementation seems a natural fit since these
structures are very efficient at filtering. Two popular works propose the use of a
systolic implementation of a 2D convolution operation [16,50]. Figure 6.1 illus-
trates the architectural concept of a systolic array for 2D convolution. In this
structure the weight coefficient registers w11-wkk are programmed by a host pro-
cessor. Next, image lines are streamed in and the outputs are streamed out for a
complete output image. No instructions are required only input and output
streams and almost all resources are dedicated to the computation.

Although systolic implementations are computationally efficient they have
limited flexibility. For example, running the benchmark networks from Chap-

Image row
m+1

Image row
m

Image row
m+K

*

W1K

+

*

W1K-1

+

*

W11

+

*

W2K

+

*

W2K-1

+

*

W21

+

*

WKK

+

*

WKK-1

+

*

WK1

+

+

+

+

OUT

Load from
off-chip
DRAM

K
FIFOs
line
memories

K2+K DSP units chained

B1

Figure 6.1: Architecture of a systolic 2d convolution operation [119]. The systolic struc-
ture has a peak throughput of one KxK dot product per cycle. For K=7 this results in 49
MACC operations per cycle. For a single 2d convolution all data reuse is exploited.

6.2. RELATED WORK 97

ter 3 on this systolic architecture would involve many load/store streams for fea-
ture maps. The fixed structure does not exploit data reuse over feature maps. As
a result, accelerator architectures that employ systolic convolution structures
resort to complex arbitration logic to share input streams, e.g. in [16] they use
energy hungry multi-channel memory controllers to meet the huge memory
bandwidth requirements.

The NeuFlow [50] processor in Figure 6.2 uses systolic arrays organized in
processing tiles (PTs) to create a dataflow processor. This creates the flexibility
to reuse incoming data streams. However, for many ConvNet configurations
processing tiles will be underutilized, e.g. in the illustrated configuration three
of the systolic arrays PT(2, 4, and 6) are disabled. Secondly, a systolic array has
limited flexibility to cope with varying convolution kernel sizes. A 7x7 array can
be used to compute 3x3 convolutions, but only 18% of the MACC units are uti-
lized in this scenario. We conclude that systolic convolution structures are ex-
tremely efficient but do not offer enough flexibility to execute different ConvNet
workloads with a good utilization. As a result, for nets with different parameter
settings NeuFlow is inefficient, i.e. low silicon and energy efficiency.

A more flexible but similar accelerator is presented in [37] where Hardware
Convolution Engines (HWCE) implement a dedicated dot product operation.
Figure 6.3 illustrates the data path architecture consisting of line buffers, an ar-
ray of multipliers, and an adder tree. The HWCEs have programmable control
logic and a dedicated weight loader mechanism to quickly change weight sets.
This enables the HWCE to perform larger convolutions e.g. 11x11 by reloading
multiple 5x5 convolution windows. This reloading will give a performance pen-
alty but for networks with varying layer workloads this flexibility can improve
utilization. The line buffer ensures single feature map locality, but data reuse
over feature maps must be solved externally. Pooling and activation function
operations are not supported. This results in extra memory transfers to execute

Figure 6.2: The tiled organisation of NeuFlow [48] based accelerator core. Processing
Tiles (PT) can be configured to implement a dataflow for ConvNet workloads. In this
example three feature maps are computed.

PT 1

MUX

+ φ()

PT 2

MUX

+ φ()

PT 3

MUX

+ φ()

PT 4

MUX∑wx

+ φ()

PT 5

MUX

+ φ()

MUX

+ φ()

∑wx∑wx

∑wx∑wx

∑wx

PT 6

SMART

DMA
External
DRAM

98 CHAPTER 6. NVE: A FLEXIBLE ACCELERATOR

these steps in software. The HWCEs are integrated in a multi-core RISC cluster,
so moving the missing parts to software is possible but it reduces energy effi-
ciency.

Another important work is DianNao [20], a high-throughput standalone
pipelined accelerator core. Similar to the other accelerators DianNao imple-
ments a dot product operator, see the pipelined datapath in Figure 6.4. The im-
plemented dot product operator is more configurable compared to other works.
The first stage is a multiplier stage, followed by a reduction stage that configures
adder trees or implements max pooling operators. The last stage performs acti-
vation function interpolation. Multiple multipliers are used to exploit the paral-
lelism over many input feature maps. The rationale is that convolution windows
have 5x5 sizes where the number of input maps in large networks can run into
hundreds. Utilizing parallelism only over input feature maps and not over win-
dow operations makes that the input vector is 1d instead of 2d. By repeating the
1d operation for multiple input window positions a convolution window is con-
structed.

Compared to earlier works DianNao focusses much more on data locality in
the reuse buffers. They use separate buffers for synaptic weights (SB), input maps
(NBin) and output maps (NBout). These buffers hold vectors with the data ele-
ments. The vectors do not exploit reuse over different convolution kernel posi-
tons, so unique weights are send out into the data path causing many loads from
the SB memory. DianNao focusses on very large networks with many feature
maps. However, the face detection workload from Chapter 3 reveals that vision
applications can have ConvNets with only few input feature maps per layer. This
severely limits the parallelism that can be used by the DianNao accelerator re-
sulting in underutilization.

All these architectures implement a dedicated dot product operator, some in
a streaming pipeline others as a configurable operator. For all these accelerators
we observe significant flexibility issues. If the network operators are tuned to the

Line Buffer

*0 *24 *0 *24

W 25 px (16bit)

Xin

ADDER
TREE

ADDER
TREE

Yin

1 packet
(32bit)

1 packet
(32bit)

25 px (16bit)

25 px (16bit)25 px (16bit)

1 px (16bit)
1 px (16bit) 1 packet

(32bit)

Figure 6.3: Hardware Convolution Engine (HWCE) unit, used as accelerator for Con-
vNets in [36].

6.3. SOURCES OF INEFFICIENCY IN GENERAL PURPOSE CPUS 99

accelerator data path a good efficiency level can be achieved. However a Con-
vNet with different parameters results in a substantial reduction of efficiency.
The goal of the Neuro Vector Engine is to deliver a constant and high efficiency
level on different ConvNets. To achieve a more constant and high efficiency level
more control flexibility is necessary. This is a challenging goal, because often this
control flexibility results in a reduced efficiency.

6.3 Sources of inefficiency in general purpose CPUs

In the previous section we showed the utilization problem for very dedicated
accelerator cores. When multiple networks with varying parameters are used the
efficiency often drops substantially. To increase accelerator flexibility we study
the properties of general purpose CPUs but we try to minimize their excessive
inefficiency’s.

It is well known in the domain of computer architecture that general-purpose
processors spend most energy on instruction control. This definitely holds for
advanced out-of-order superscalar designs that consume a lot of energy in the
instruction reorder part. The energy consumption of a much simpler RISC pro-
cessors is also dominated by instruction overheads such as instruction fetch, de-
code, pipeline management, program sequencing, etc. This energy consumption
distribution is extensively studied in [113,58]. Figure 6.5 illustrates the energy
distribution for a simple RISC (45 nm @ 0.9V technology) ADD instruction,
which consumes about 70 pJ of energy. A load/store type of instruction would
use the data cache and increases instruction energy to 95 pJ. The energy dissipa-

+*

*

*

*

+

+

+

+

+

φ

φ

NFU-1 NFU-2 NFU-3

NBin

SB

NBout

M
e

m
o

ry In
te

rface

Control Processor (CP)

Figure 6.4: The pipelined data path of the DianNao accelerator core [19]. Separate mem-
ories load vectors for

100 CHAPTER 6. NVE: A FLEXIBLE ACCELERATOR

tion in a functional unit to add two 32-bit numbers is only 0.5 pJ. This huge dif-
ference in energy consumption demonstrates that the useful fraction of energy

in an ADD operation is only
1

140
. In practice it is even worse, because such oper-

ations are often done in loops that require overhead instructions for loads and
branching. Overhead instructions further reduce the useful energy fraction to
1

850
. This example clarifies why custom accelerators can be 100 times more effi-

cient than general purpose CPUs, they simply don’t need all those instructions.
To use the flexibility of instruction programmed accelerators, but with a

much better energy efficiency the overhead should be drastically reduced.
1. Many useful operations should be performed per instruction. This can be

achieved by the Single Instruction Multiple Data (SIMD) paradigm. E.g., a
16 element vector ADD could increase the amount of useful work per in-

struction from
1

140
 to

1

10
, see Figure 6.6.

2. The ratio of useful instructions should be high, so overhead instructions
should be minimized. This involves minimizing the number of load/store
operations (locality), and replacing them by more efficient vector
load/stores. An instruction pattern as depicted in Figure 6.6 improves the

loop efficiency from
1

850
 to

1

18
. Note that control instructions like the branch

are replaced by a hardware loop counter.
Switching to vector instructions and increasing register level data reuse im-
proves the energy efficiency almost by 50 times. This does not result in the same
efficiency levels as presented by dedicated accelerators, but it will give a much
higher degree of flexibility. In addition, other optimizations like loop transfor-
mations, fixed point precision exploration, should be applied to further increase
the efficiency. Motivated by this example of processor architecture modifica-
tions towards a flexible and efficient accelerator we developed the Neuro Vector
Engine (NVE). An accelerator template based upon energy efficient processors.
The NVE is positioned between the design points of high efficiency custom ac-
celerators and general purpose processors. This to combine the best of both
worlds, high efficiency, good utilization and a high degree of flexibility.

LD

LD

ADD

ST

BR

D-cache
access

I-cache
access

Register
access

Control ALU

25 pJ

25 pJ

25 pJ

25 pJ

25 pJ

25 pJ

25 pJ

25 pJ

4 pJ

4 pJ

4 pJ

4 pJ

4 pJ

32-bit ADD
≈ 0.5 pJ

Overhead
instructions

Overhead
instructions

Figure 6.5: Instruction energy breakdown for a typical addition loop executed by a 45 nm
RISC core at 0.9V [54,107]. Note the very small portion of energy spend on the actual
addition. This is an example of the large inefficiencies in general purpose CPUs.

6.4. THE NEURO VECTOR ENGINE (NVE) ARCHITECTURE 101

6.4 The Neuro Vector Engine (NVE) architecture

In this section our flexible NVE accelerator template is outlined. As the name
suggests all operations are done on vectors to achieve a good efficiency. A bal-
ance between efficiency and flexibility is created with a VLIW based processor
template that is equipped with vector operations tuned for ConvNets. Figure 6.7
illustrates the 6 issue slot VLIW template. A VLIW organization gives flexibility
to program the accelerator for different ConvNet workloads. Secondly this tem-
plate supports the advanced access patterns required for inter-tile data reuse
optimization, see Chapter 5. Here we focus on a single instance of the template,
but custom modifications can be easily performed. We will comment on possible
modifications at the end of this section.

6.4.1 Vector data path

Often systolic or dedicated convolution operators are used in custom accelera-
tors (see Section 6.2). The NVE uses a different and more flexible iterative oper-
ation for the computation of convolutions. The main compute operation is a
vector Multiply Accumulate (MACC), i.e. �⃗� ← �⃗� + �⃗� × 𝑤. It modifies an array of
accumulator values �⃗� where each value represents a neighbouring neuron. By
sequentially repeating this operation over all inputs of a 2D or 3D convolution
window the reduction operation is performed. For varying kernel sizes a MACC
resource is well utilized. Other accelerators use dedicated adder trees for the
reduction [20,37] which has the disadvantage that reconfiguring for other kernel
sizes is costly. The usage of accumulation registers in the NVE makes it relatively
simple to implement other operations like the MAX operation used in max pool-
ing layers.

SIMD OP 25 pJ 8 pJ

25 pJ 8 pJSIMD OP

SIMD OP 25 pJ 8 pJ

25 pJ 8 pJSIMD OP

50 pJ 8 pJ25 pJ

50 pJ 8 pJ25 pJ

SIMD LD

SIMD ST

D-cache access I-cache
Vect.

Register Control 16 lane SIMD ALU

Figure 6.6: Instruction energy breakdown for a simple SIMD processor. Vector loads and
register accesses consume more energy than scalar ones. However, reduction of overhead
instructions and a substantial increase of useful work improves efficiency by 50 times
compared to the scalar version.

102 CHAPTER 6. NVE: A FLEXIBLE ACCELERATOR

The locality optimized tile strips from Chapter 5 map straightforward to an
array of MACC units. First a series of neighboring neurons in a feature map are
initialized to a bias value, which is implemented by setting the accumulation
registers. Secondly, the PE array performs a series of MACC operations that cor-
responds with the kernel size. Finally when all connected inputs are accumu-
lated the result is output to the activation function lookup tables. The MACC
vector operations are similar to a series of iterations for loop iterator m or n, as
shown in Listing 2.1 of Chapter 2. The Vector MACC unit is positioned in the
middle of the data path, as shown in Figure 6.7 in purple. To achieve a high clock
frequency a three stage pipelined MACC design is used.

Arithmetic precision

Instead of floating point data representation the more simple but energy effi-
cient fixed point data types are used. It is well known that neural networks do
not require the range and precision of a 32-bit floating point type [70]. To obtain
the minimum precision we explored the accuracy requirements of a ConvNet
trained for the MNIST digit recognition task [84]. We trained the well-known
Lenet-5 configuration on 60,000 images using floating point precision and eval-
uated the accuracy on 10,000 separate test images. The floating-point baseline
has an error rate of 70 misclassifications (0.7%), which is in line with [84]. We
used the MatLab fixed-point toolbox to reduce the fixed-point accuracy in the
network, the results are illustrated in Figure 6.8. We conclude that ConvNets
require only 8-bit fractional precision, which is in line with earlier studies on

Vector
MACC

IMG
Reg
0-7

IMG
Reg
8-15

IMG
Reg

16-22

W
Reg
0-3

Reg Op

Scratchpad
Memory

1024x
64 bit

Rd
Port

A

Rd
Port

B

Wr
Port

A

LoadStore

O
Reg
0-7

O
Reg
8-15

Saturate ActivationDataBuffer

PE
0-15

+*
+*
+*
+*

+*

Act
LUT

Wr
Port

B

Input Bus
64 bit

Output
Bus 64 bit

Arch. Parameters NVE Instance

1: NPE 16 pe

2: Vector Ops
{Set Bias, MACC,

MAX}

7: IMG Reg.0 Size

8: IMG Reg.0 Ops

23 elements

{set, shift, shiftin}

3: SPM port size

5: Weight Reg. Ops {Set, Shift}

64 bit

4: Weight Reg. 16 bit

6: IMG Element 8 bit

9: IMG Reg.1 Size

10:IMG Reg.1 Ops

39 elements

{set0, set1, shift,
shiftin}

Figure 6.7: Pipelined accelerator datapath with 6 connected issue slots: Store Scratchpad;
Load Scratchpad; Register Reorder; Vector MACC; Saturate; Activation. The vector oper-
ations of issue slots are selected by VLIW instructions. The right hand table outlines the
parameters of this NVE instance. Modifications like a single port scratchpad are possible.

6.4. THE NEURO VECTOR ENGINE (NVE) ARCHITECTURE 103

classical neural nets. Table I, gives the exact configuration of the data types that
are used in the NVE accelerator design. The MACC PE array has a 16-bit (weight)
and 8-bit (neuron) input that are used by a truncated multiplication. The accu-
mulation register is extended to 9 integer bits with a hardware check to prevent
overflow. Before activation function lookup the accumulation value is saturated
to the 10-bit potential format given in Table 6.1. The Activation Function is im-
plemented at the end of the pipeline with a look-up memory of 1024 entries of
8-bit, see Figure 6.7. As a result it is possible to implement any activation func-
tion efficiently by reloading the activation LUT.

6.4.2 Memory system

To exploit the inter-tile reuse opportunities that are proposed in Chapter 5 a
programmable and flexible memory system is implemented. There is no need for
expensive caches, because the access functions in ConvNets are static and pred-
icable. Hence, we use an efficient scratch pad memory and vector reorder regis-
ters to exploit data reuse. Separating the accessing of values over two different
data structures gives a huge complexity reduction. A 2D register file or scratch
pad with reordering functionalities would be complex. Therefore 1D reordering
is performed in L0 (registers), and the orthogonal 1D reordering by reloading in
L1 (scratchpad).

L0: Vector reorder registers

To feed the vector MACC unit with weight coefficients and input values dedi-
cated vector reorder registers are used. These registers are located in the Reg Op

Table 6.1: Fixed-point data word configurations for the NVE instantiation.

Data type Word size Fixed point format

Weights 16 bit SIIIIIII.FFFFFFFF

In/Act 8 bit .FFFFFFFF

Potential 10 bit SIII.FFFFFF

Figure 6.8: ConvNet fixed point accuracy exploration for varying fractional precision.

104 CHAPTER 6. NVE: A FLEXIBLE ACCELERATOR

stage in Figure 6.7. They are designed to exploit data reuse at the level of neigh-
bouring neurons by performing several reorder and broadcast operations. For
example, the code listings in section 2.3 show that all layer types share weights
in the direction of loop n and m. As a result, a broadcast register is implemented
that sends out one of the vector weights to all PE. The reuse over neighbouring
input values is exploited by a flexible 1D shift register. It supports filter kernels
of any size since a dedicated shift in register is used. To ensure a high utilization
of the Vector MACC unit the shift in register can reload a vector on the fly with-
out stall cycles.

L1 Local scratchpad memory

Vector registers are loaded from a local scratchpad memory that is placed in the
first two issue slots. The scratchpad adds orthogonal dimensions of data reuse,
this to simulate the working of a 2D or 3D shift register. For energy-efficient
access to the scratchpad weights and inputs are stored as 64-bit vectors. This is
motivated by simulations using CACTI [97] on an 8kB SRAM in 40nm technol-
ogy. Figure 6.9 demonstrates that a vector access per byte (e.g. from 64-bit) is
far more energy-efficient compared to short loads (e.g. from 8-bit). Furthermore,
dual-ported memory can be uses because it gives much more flexibility at the
cost of an energy overhead of only 17%6. The flexibility of dual-ported memory
is important in the NVE template, because multiple data streams access scratch-
pad concurrently. For example, new data is stored into the scratchpad, and con-
currently multiple register reads occur. When memory ports are shared the data

6 For dual-ported SRAM the energy penalty is relatively small, but area increases a factor two.

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32

En
er

gy
/B

yt
e

si
n

gl
e

re
ad

 [
p

J]

SRAM width [Bytes]

Single port

Simple dual port

True dual port

Figure 6.9: CACTI 8 KB SRAM read energy exploration at 40 nm technology. The energy
overhead when reading from a dual ported memory is marginal for vectors.

6.4. THE NEURO VECTOR ENGINE (NVE) ARCHITECTURE 105

path should stall more often, which reduces hardware utilization. One could use
multiple separate memories e.g., for weights, inputs, and temporal results. How-
ever it is very difficult to effectively utilize the capacity and throughput of these
memories. Each layer has different requirement w.r.t. the ratio of weights and
inputs, so with a single shared flexible buffer we can utilize buffer capacity and
throughput over different workloads.

6.4.3 Control and programming

The NVE architecture exist of 6 successive issue slots; each performs a different
functionality. The control of issue slots is distributed over one Very Long In-
struction Word (VLIW). Using instructions improves flexibility substantially at
the cost of instruction fetch overhead. Each issue slot is very specific so the in-
struction width can be small (54-bit). To minimize the overhead we use three
techniques:

1. An energy-efficient on-chip loop buffer that holds 512 instructions.
2. Modulo software pipelining [80] to efficiently fold instructions together.
3. Modulo address generators to remove many instructions.

In addition, all issue slot operations of the NVE are performed on vectors, which
increases the amount of useful work per instruction, see Section 6.3.

Software pipelining

A high data path utilization with a small code size is achieved by software pipe-
lining operations of successive issue slots. The basic idea is to translate the re-
petitive operations in a tile strip to a steady-state description. Many iterations of
the steady-state are repeated to execute a complete tile strip, which improves
instruction reuse. As an educational example the steady-state program of 16 con-
current rows of 3x3 convolution is given in Figure 6.10. Note that our techniques
push a lot of work from each instruction. Each steady-state (10 instructions) pro-
cess 16 dot products (144 MACC operations) this excludes, load/stores, vector

st [s(i+2) word0]

ld [s(i+2) word0]

MEM B

ld [s(i+0) word1] shift

WREG

set [b w0 w1 -]

shift

macc rw,ri

VMACC

set rw

macc rw,ri

macc rw,ri

macc rw,ri

shift

set [w5 w6 w7 w8]

set [w2 w3 w4 -]

ld [s(i+1) word1]

ld [s(i+0) word2]

shift

shift

macc rw,ri

macc rw,ri

macc rw,ri

shift

ld [s(i+2) word1]

MEM A WB Sgm

act [s(i-1) word0]

act [s(i-1) word1]

ld [s(i+2) word2]

shift

ld [s(i+1) word2]

1

2

3

4

5

6

7

8

9

10

Cycle

ld [b w0 w1 -]

ld [s(i+0) word0]

st [s(i+2) word1]

ld [w2 w3 w4 -]

ld [s(i+1) word0]

st [s(i+2) word2]

ld [w5 w6 w7 w8]

shift

IREG

set r0,r1

set r2 shift

shift

shift

set r2 shift

set r0,r1

set r2 shift

set r0,r1

macc rw,ri

macc rw,ri

Figure 6.10: VLIW assembly description of a steady-state program for 3x3 convolution in
a feature map. Note that control is distributed over the different NVE issue-slots. Image
load/stores of the scratchpad use modulo addressing over steady-state iterations to max-
imize the storage efficiency (i.e. old data is immediately overwritten by new).

106 CHAPTER 6. NVE: A FLEXIBLE ACCELERATOR

reorder operations, and activations. Before the steady-state begins prolog code
initializes weight vectors and first image vectors in the local scratchpad.

Modulo address generators

For efficient execution of tile-strips input columns in the scratchpad are replaced
by a modulo addressing scheme. Combined with the 1D shift register the ad-
dressing effectively simulates a 2D or even 3D shift register. To provide the
load/store addresses with a modulo replacement scheme dedicated address gen-
erators are developed. Figure 6.11 illustrates an address generator, both memory
ports have a dedicated generator. Address generators use a part of the instruc-
tion word i.e., an offset memory, an update counter, and a pattern mode. The
separate mode register implements different patterns e.g., weights are loaded
from the same position, so the increment is zero over each steady-state interval.
However, image vectors are over written with a step size increment and a toggle
value to jump back to the first value. A shown in Figure 6.11, the address gener-
ator updates instruction address field for the next steady-state iteration. Address
generators reduce the number of required instructions resulting in a compressed
and efficient program.

6.5 Experimental evaluation

To evaluate the NVE accelerator architecture and the inter-tile reuse transfor-
mation techniques we used a set of tools and applications. The settings of our
setup are further outlined in this section.

Figure 6.11: (left) Architecture of based modulo address generator. (right) Instruction
memory contents for the 3x3 convolution example.

updateoffset

= +

selectmem. port A
address

0+

toggle inc

X0
0 1810 19

0 8 11

modeupdateoffset
164
000
104
165

1:st i20

2:ld w0

3:ld i00

4:st i21

0015:ld w1

1346:ld i10

0667:st i22

0028:ld w2

9:ld i20 164
10:x xxx

inctoggle
00
36

mode: 0

mode: 1

register

instruction word MEM A

6.5. EXPERIMENTAL EVALUATION 107

6.5.1 Benchmark setup

To NVE architecture is evaluated with the two Convolutional Network recogni-
tion applications introduced in Chapter 3. These applications are the Face de-
tection network [53], and Speed sign detection [105]. In addition, the educational
example of 3x3 convolution is used for evaluation. All applications run on a
HD720p video stream and for best performance we use the optimized imple-
mentations with merged convolution and subsample layers as described in
Chapter 4. The two real-world applications contain a mix of different layers with
varying kernel sizes, dense and sparse connectivity, as detailed in Table 6.2.

Baseline commercial platform mappings

As baseline to compare the NVE an ARM Cortex-A9 core is selected. Due to its
good energy efficiency and performance it is a popular embedded platform in
many Smartphones. In addition, we compare with an Nvidia Embedded GPU the
Jetson TK1 with 192 Cuda cores [100]. The NVE is positioned as flexible IP core
for the next generation of smart compute platforms, so the ARM A9 and Nvidia
TK1 are direct competitors.

For fair comparison it is important that both ConvNet vision applications are
optimized. For the ARM-A9, we used all compiler optimizations of GCC 4.7,
which made the C implementation of speed sign detection 13.4x faster with an
energy efficiency increase of 13.3x. In addition, usage of SIMD NEON intrinsics
resulted in an extra speedup of 2.7x with an energy efficiency increase of 1.8x.

For the TK1 mapping we used a CUDA optimized mapping, e.g., we use the
constant memory for coefficients, exploit tiling and memory access coalescing.
For the ARM core we use a GEM5 [7] and McPAT [88] simulator setup. The
model assumes a 4-issue superscalar core with 800MHz clock, 32kB instruction
and 64kB data cache with an associativity of 2, and a line size of 64 bytes. McPAT
is configured for low power operating mode in 40nm technology. The Jetson TK1
measurements are done on the NVidia development board.

Face Detection [53] No Ni Nm Nn Nk Nl S
Layer 1 4 1 638 358 6 6 2
Layer 2 14 2 317 177 4 4 2
Layer 3 14 1 312 172 6 6 1
Layer 4 1 14 312 172 1 1 1

Speed Sign [105] No Ni Nm Nn Nk Nl S
Layer 1 6 1 638 358 6 6 2
Layer 2 16 3 317 177 6 6 2
Layer 3 80 40 313 173 5 5 1
Layer 4 8 80 312 172 1 1 1

Table 6.2: Convolutional Network application parameters.

108 CHAPTER 6. NVE: A FLEXIBLE ACCELERATOR

NVE instantiation

For evaluation of the NVE architecture a 16 MACC PE data path with all control
is designed in VHDL. The required memories in the design are configured as
follows:

• 8 kB dual-port scratchpad with 64-bit entries

• 8 activation function LUT memories of 1 kB each

• a 54-bit wide 512 entry instruction buffer
Although we target ASIC technology the functional correctness of the design is
verified by FPGA mapping. For estimation of ASIC properties the design is syn-
thesized with Cadence Encounter RTL Compiler from a 40 nm TSMC low power
library. The SRAM memories are simulated with CACTI [97] for a similar 40nm
low power library. The target clock frequency of 1 GHz is achieved by pipelining
of the stages in the data path. It is important to enable retiming, since it reduced
area by 32% and power consumption by 41%.

For accelerator mapping an optimizing compiler [107] is used. This compiler
reads a JSON ConvNet descriptions that is automatically converted into opti-
mized software pipelined VLIW programs. These programs are automatically
converted into VHDL test benches that are simulated on the post-synthesis re-
sult for energy estimation. An extensive review of this compiler is given in Chap-
ter 7.

6.5.2 Accelerator characteristics

The total area footprint of the accelerator is 0.26 mm2, which makes it a very
small design, e.g., the McPAT ARM core requires 14 mm2. The area breakdown
of the different components in the synthesized accelerator is given in Table 6.3.
From the results is observed that (71%) of the area is spend on the on-chip SRAM.
Given the fact that the complete architecture aims at minimizing external com-
munication by reusing data or instructions in local buffers this is in line with our
expectation.

The power results are obtained by post-synthesis simulation of tile strips
from the vision applications implemented as steady-state programs similar to
the 3x3 convolution code in Figure 6.10. Table 6.3 presents the average power
breakdown of the simulations. The major energy portion is consumed by the

Module Area [mm2] (%) Power [mW] (%)
Accelerator 0.259 54.1

Logic 0.076 (29%) 43.3 (80%)
Scratchpad 0.112 (43%) 5.9 (11%)
Act. LUT 0.045 (17%) 1.5 (3%)
Instr. Buf. 0.026 (10%) 3.4 (6%)

Table 6.3: Breakdown of synthesized area and power during simulation at 40 nm.

6.5. EXPERIMENTAL EVALUATION 109

logic (80%), which contains the multipliers, adders, registers, instruction de-
coder, etc. The on-chip memory is responsible for only a small amount of power.
The main reason is the relatively small number of accesses to the memories due
to data reuse in the special purpose registers, which significantly reduces the
memory pressure. For example in layer 1 of the speed sign application there are
1.66 scratchpad accesses per cycle on average. However, every cycle also 16
MACC operations are performed. This large ratio explains the difference be-
tween logic power and on-chip memory accesses. Note that the instruction
buffer consumes only 6% of the total power budget. Given the substantial flexi-
bility improvement the 6% energy penalty of the instruction fetch system is de-
fendable.

Throughput

With a full utilization of the vector MACC stage the accelerator theoretically
performs 32 fixed point operations/cycle. Additionally, the activation function
array can perform 8 activation function lookups in parallel. Combined a peak
performance of 40 GOp/s can be reached at 1 GHz operation. For real-world
ConvNet applications the performance number is less e.g., time is required to
load instructions, execute the prolog part, or stall cycles due to conflicts. The
mapping of the speed sign detection ConvNet layers demonstrated a weighted
average of 30.2 GOp/s. Due to the higher degree of register locality convolution
layers without subsampling perform best in the range of 32 GOp/s. On the other
hand, output layers with 1x1 convolutions have no register locality, so these have
a lower performance of 10 GOp/s.

The throughput comparison between ARM-A9, NVIDIA TK1 and the NVE is
given in Figure 6.12. The NVE shows a speedup of 20x compared to the ARM,

0

5

10

15

20

25

30

35

Th
ro

u
gh

p
u

t
[G

o
p

s]

Arm-A9 TK1 NVE

Face Detection Speed Sign Detection

Figure 6.12: Throughput comparison ARM-A9, NVidia Jetson TK1, and NVE. The NVE
shows very constant throughput level compared to the commercial platforms.

110 CHAPTER 6. NVE: A FLEXIBLE ACCELERATOR

surprisingly the NVE is also able to beat the TK1 by a factor 1.2-2.6 depending on
the application. Note that the flexible NVE achieves a very constant utilization
over the different layers, only the classifier layers with substantially less data re-
use perform worse.

Energy

The energy consumption of the ARM core versus the NVE is compared in Figure
6.13, which shows a very similar trend. On average the accelerator reduces energy
consumption by 430x, which is a lot considering we compare with an embedded
ARM core that uses energy efficient SIMD operations. With a power requirement

of 54 mW, a compute efficiency of
30.2 Gop/s

54 mW
= 559 GOps/Watt is achieved. As a

result the average energy per fixed point operation is 1.8 pJ, which is very com-
petitive for 40nm technology. From this observation we conclude that the accel-
erator does not sacrifice compute efficiency as a tradeoff for the increased
flexibility.

The NVIDIA TK1 consumes 6.9 Watt of power [100] this is substantially more
than the NVE with 54mW. This is expected because the TK1 is a far more generic
platform designed for Tablets with a larger energy budget. In the energy simula-
tions the external data transfer is not taken into account. When we add the en-
ergy spend by DMA and external memory requests, the majority of the energy
budget is on memory transfers. This is not caused by a bad data-reuse strategy,
but the energy consumed by the NVE is reduced to a very low level, which was
the main goal of this work.

0

200

400

600

800

1000

1200

1400
En

er
gy

 R
ed

u
ci

to
n

ARM NEON/Accelerator

Face Detection Speed Sign Detection

Figure 6.13: Energy consumption reduction NVE vs NEON optimized ARM-A9.

6.5. EXPERIMENTAL EVALUATION 111

6.5.3 Comparison against other ASIC accelerators

Researchers and computer architects nowadays recognize that the major im-
provements in cost-energy-performance should come from domain specific
hardware. This trend caused the introduction of many very new dedicated ASIC
accelerators for ConvNet workloads. In Table 6.4 a number of ASIC based Conv-
Net accelerators is compared to our default NVE configuration. We tried to ob-
tain all accelerator characteristics, such as clock frequencies, technology node,
and core voltages. Our proposed NVE accelerator has with only 16 MACC units
less computational resources than the other comparison targets. For example, in
the extreme there is a Tensor Processing Unit (TPU) [77] with 64k Multiply and
Add units. The smallest accelerators are represented by Origami [15] and ShiDi-
anNao [46], with 196 and 64 multipliers respectively.

The listed accelerators employ different techniques for parallelizing compu-
tations. The NVE and ShiDianNao perform convolution in time and thereby
maps computational resources to different output neurons. This makes utiliza-
tion of the MACC units invariant to convolution window size. The other accel-
erators such as DianNao and Origami, perform convolutions in space, so
mapping computational resources to different pixels on the receptive fields of a
neuron. Mapping convolutions in space makes the computational efficiency de-
pendent on window size and negatively impacts utilization when the network
parameters do not match the hardware.

The accelerator presented in [132] avoids most multiplications by performing
lookups in a Q-table that contains pre-computed multiplication results. It uses
a custom instruction set based controller that configures finite state machines
on lower lever convolution cores. The chip presented in [43] contains multiple

Accelerator mW V Tech. MHz Gops Gops/
W

On-Chip
Mem.

Con-
trol

mm2 Gops/mm2

NeuFlow [110] 600 1.0 45 SOI 400 294 490 75 kB Data-
flow

12.5 23.5

Origami [15] 93 0.8 umc 65 189 55 803 43 kB Config 1.31 42

NVE [109] 54 - TSMC
40

1000 30 559 20 kB VLIW 0.26 115

DianNao [20] 485 - TSMC
65

980 452 931 44 kB FSM 3.02 149.7

ShiDianNao
[46]

320 - TSMC
65

1000 128* 400 288 kB FSM 4.86 26.3

Desoli et al.
[43]

51 0.58 28 FD-
SOI

200 78 1277 6 MB Config 34 2.29

Shin et al.
[132]

35 0.77 65 1P8M 50 73 2100** 290 kB FSM 16 4.5

TPU [77] 40,000 - 28 nm 700 46,000 1150 28 MB CISC <331 >139

* Only gives theoretical peak performance, as opposed to actual measurements on a real network.
** Q-table lookup of precomputed multiplication results.

Table 6.4: Dedicated ASIC accelerator overview for ConvNets.

112 CHAPTER 6. NVE: A FLEXIBLE ACCELERATOR

DSP cores for general vision processing, a big on-chip memory, and a co-proces-
sor subsystem with multiple convolution accelerators. The paper only lists
power consumption for the co-processor, excluding on-chip memory. Control of
the accelerator is handled through a set of configuration registers that configure
a stream switch, allowing the reuse of data streams (similar to [16,110]).

The Tensor Processing Unit (TPU) [77] is a huge accelerator designed for
server applications. The reported performance and power consumption are sev-
eral orders of magnitude larger compared to the other designs, but still it is very
efficient and makes good use of data reuse in the large on-chip memory. The
control of a TPU is handled by complex high-level instructions that take multiple
cycles to complete.

A computational throughput comparison of the accelerators shows that the
NVE achieves 30 Gops, which is a relatively a low throughput. Note that the
throughput numbers in Table 6.4 are the measured numbers that are given in
the papers. The only exception is ShiDianNao [46] that only reports peak perfor-
mance. Due to the large architectural differences it would be very interesting to
simulate our real-world vision benchmarks on these architectures. Big accelera-
tors such as a TPU are only well utilized if the workload fits their architecture.
For instance the 256x256 Multiply Add array of a TPU would be completely un-
derutilized when we map the Speed sign or Face detection workload. Underuti-
lization effects would also occur for DianNao and Origami, because they use
fixed convolution window sizes. Underutilization would substantially reduce the
efficiency numbers of the other accelerator that are given in Table 6.4.

The NVE can perform layer merging technique as proposed in Chapter 4. For
networks that support merging this results in a higher effective throughput. Our
benchmark results in Figure 6.12 demonstrate that the NVE achieves a high uti-
lization degree for different layers and convolution window configurations. One
of the reasons is the VLIW based control model that also enables the use of op-
timizing compilers. Important to note is that the NVE is by far the smallest de-
sign and upon the three best designs regarding power consumption. These
aspects make the NVE an excellent addition for ultra-low power systems on chip.

6.6 NVE instantiation and customization

During the evaluation a very flexible NVE instance is used. However the NVE is
an accelerator template i.e., it is possible to modify the architecture at design
time to specialize for different workloads. In this section an overview of some
important configurations is given and the consequences of these modifications
are discussed.

As demonstrated in Section 6.5.2 the largest component in silicon area (43%)
is the local scratchpad memory. On the total energy budget the scratchpad con-
sumes (11%). Different buffer configurations could reduce silicon area or energy
consumption. For a quick exploration we evaluate 3 alternative memory config-
urations:

6.6. NVE INSTANTIATION AND CUSTOMIZATION 113

1. Single port scratchpad, one load/store port 64-bit.
2. Simple dual port scratchpad, one load and one store port 64-bit.
3. Single port scratchpad, one load/store port 128-bit.

These configurations are compared against true dual port memory configuration
(two load/store ports 64-bit wide) that maximizes flexibility. The 3x3 convolu-
tion example from Figure 6.10 is used to evaluate the properties. The new sched-
ules are given in Figure 6.14, Figure 6.15, and Figure 6.16.

The single port 64-bit wide memory (see Figure 6.14) has a clear memory
bandwidth problem. The memory port is fully utilized and the vector MACC
stage is stalling quite often. On the other hand, this single 64-bit ported memory
has a significantly smaller silicon footprint, see Table 6.6. At the cost of a
throughput reduction the NVE instantiation would shrink to 0.194 mm2, which
is the smallest design. Because it is a single port design one of the AGUs can be
removed, which reduces the power consumption. Table 6.5 shows that the single
port memory consumes less power than others, but the energy efficiency is re-
duced due to the low utilization of the vector MACC stage.
A simple dual port configuration increases memory bandwidth. Although loads
and stores can be performed concurrently the schedule in Figure 6.15 reveals that
the load bandwidth is a performance bottleneck. Table 6.5 shows that the simple
dual port memory is relatively large and has a lower energy efficiency. A further
increase of scratchpad bandwidth is achieved by using a 128-bit wide single port
memory. This configuration uses less silicon area w.r.t. the true dual port
memory, and it offers similar data load bandwidth at a small flexibility penalty.
According to Figure 6.9 single port loads of 128-bit require less energy per byte
than any of the other configuration. However, the wide memory port loads re-
quire more unnecessary data since the shift-in vector always contains 16 values
that are fully utilized for convolutions with kernel windows of 16 elements. From
the schedule in Figure 6.16 we conclude that throughput can be similar to the
true dual ported configuration. However, the external input port should send
more data into the accelerator due to the vector size inefficiency. The overview
Table 6.5 shows that there is an energy efficiency advantage for the wide vector
memory, over all other configurations. If we would take external memory energy
into account this gain over the other configurations could be removed.

114 CHAPTER 6. NVE: A FLEXIBLE ACCELERATOR

Figure 6.14: Assembly schedule for a single port 64-bit wide scratchpad. Note that the
VMACC stage is underutilized due to a bandwidth bottleneck with the scratchpad.

Figure 6.15: Assembly schedule for a simple dual port 64-bit wide scratchpad. The dedi-
cated load port is a still a performance bottleneck for the VMACC issue slot.

Figure 6.16: Assembly schedule for a single port 128-bit wide scratchpad. The VMAC issue
slot can be fully utilized since there is enough memory bandwidth to the scratchpad.

1

2

3

4

5

6

7

8

9

10

Cycle

11

12

13

14

15

st [s(i+2) word0]

ld [s(i+2) word0]

MEM port A

ld [b w0 w1 -]

ld [s(i+0) word0]

st [s(i+2) word1]

ld [w2 w3 w4 -]

ld [s(i+1) word0]

st [s(i+2) word2]

ld [w5 w6 w7 w8]

ld [s(i+0) word1]

ld [s(i+0) word2]

ld [s(i+1) word1]

ld [s(i+1) word2]

ld [s(i+2) word1]

ld [s(i+2) word2]

shift

Weight REG

set [b w0 w1 -]

shift

shift

set [w5 w6 w7 w8]

set [w2 w3 w4 -]

shift

shift

shift

shift

shift

Image REG

set r0

set r2 shift

shift

shift

set r2 shift

set r0

set r2 shift

set r1

set r1

set r1

set r0

macc rw,ri

VMACC

set rw

macc rw,ri

macc rw,ri

macc rw,ri

macc rw,ri

macc rw,ri

macc rw,ri

macc rw,ri

macc rw,ri

act [s(i-1) word0]

act [s(i-1) word1]

VACT

1

2

3

4

5

6

7

8

9

10

Cycle

11

12

13

st [s(i+2) word0]

ld [s(i+2) word0]

MEM port A
ld [b w0 w1 w2]

ld [s(i+0) word0]st [s(i+2) word1]

ld [w3 w4 w5 -]

ld [s(i+1) word0]

st [s(i+2) word2]

ld [w6 w7 w8 -]

ld [s(i+0) word1]

ld [s(i+0) word2]

ld [s(i+1) word1]

ld [s(i+1) word2]

ld [s(i+2) word1]

ld [s(i+2) word2]

Weight REG Image REG VMACC VACTMEM port B

shift

set [b w0 w1 -]

shift

shift

set [w5 w6 w7 w8]

set [w2 w3 w4 -]

shift

shift

shift

shift

shift

set r0

set r2 shift

shift

shift

set r2 shift

set r0

set r2 shift

set r1

set r1

set r1

set r0

macc rw,ri

set rw

macc rw,ri

macc rw,ri

macc rw,ri

macc rw,ri

macc rw,ri

macc rw,ri

macc rw,ri

macc rw,ri

act [s(i-1) word0]

act [s(i-1) word1]

1

2

3

4

5

6

7

8

9

10

Cycle
st [s(i+2) word0]

ld [s(i+2) word0]

MEM port A

ld [b w0 - w4]

ld [s(i+0) word0]

st [s(i+2) word1]

ld [s(i+1) word0]

ld [w6 w7 w8 -]

ld [s(i+0) word1]

ld [s(i+1) word1]

ld [s(i+2) word1]

Weight REG Image REG VMACC VACTMEM port B

set [b w0 - w4]

shift

shift

set [w5 w6 w7 w8]

shift

shift

shift

shift

set r0

set r1, shift

shift

shift

set r0

set r1, shift

set r1, shift

set r0

macc rw,ri

set rw

macc rw,ri

macc rw,ri

macc rw,ri

macc rw,ri

macc rw,ri

macc rw,ri

macc rw,ri

macc rw,ri

act [s(i-1) word0]

act [s(i-1) word1]

shift

shift

shift

6.6. NVE INSTANTIATION AND CUSTOMIZATION 115

6.6.1 Limitations and future directions

As show by the short scratchpad memory exploration different trade-offs are
possible in NVE configurations. Depending on the application set one could se-
lect the perfect NVE instantiation at design time. A similar exploration could be
done for the size of the vector MACC array. The 16 processing elements that are
selected for this chapter are very well utilized for different workloads. Due to
aggressive pipelining a clock speed of 1 Ghz is achieved that gives 32 Gop/s peak
convolution performance. For some applications this is not enough, and one
could evaluate larger vector arrays of 32, 64, or 128 MACC units. Note that the
utilization of the vector MACC units will quickly decrease due to border effects.
The NVE template really focusses at the ultra-low power domain below 100mW
which will limits the wide vector scalability. Probably a multi-processor config-
uration of NVE instances would give more flexibility and better scaling.

The current true dual ported implementation with 16 PEs achieves 13 fps real-
time performance on the speed sign detection application. Wide vector imple-
mentations or multi NVE accelerator configurations can certainly further im-
prove on this performance. In addition, further work on the DMA engines is
required. The NVE benefits a lot from streaming data that is well prepared for
the architecture, e.g. packed coefficient vectors, or columns of feature map data.
In [153] we developed a custom shuffling unit that can reorder and send the data
vectors efficiently to the NVE accelerator. These Reordering Units are placed be-
tween the memory interface controller and the NVE FIFO streams, as depicted
in Figure 6.17. With larger memory structures these Reorder Engines could be
used to exploit more data reuse over successive tile strips.

Table 6.5: NVE benchmark characteristics for the different scratchpad memory configu-
rations while running the 3x3 convolution application.

Scratchpad config. Area [mm2] (%) Power [mW] (%)
single port 64 bit 0.047 24% 3.445 6.7%
simple dual port 64 bit 0.088 37% 4.397 8.6%
single port 128 bit 0.070 32% 5.147 9.6%
true dual port 64 bit 0.112 43% 5.926 10.9%

Scratchpad Config. Throughput Area NVE Power Gop/Watt pJ/Op
single port 64 bit 21.3 Gop/s 0.194 mm2 45.3 mW 470 2.12
simple dual port 64 bit 24.5 Gop/s 0.235 mm2 50.6 mW 484 2.06
single port 128 bit 31.9 Gop/s 0.217 mm2 51.4 mW 621 1.61
true dual port 64 bit 31.9 Gop/s 0.259 mm2 54.1 mW 589 1.70

Table 6.6: Area and power consumption overview for different scratchpad configura-
tions. All memories sizes are configured to have 8 Kbyte.

116 CHAPTER 6. NVE: A FLEXIBLE ACCELERATOR

6.7 Conclusions

Customized hardware acceleration for visual object classification has signifi-
cantly improved the computational efficiency of Convolutional Networks (Conv-
Nets). The current works are very specialized, which is often suboptimal for var-
ying network configurations. We have presented a new SIMD architecture tem-
plate for hardware-acceleration, the Neuro Vector Engine (NVE). In addition we
demonstrated mapping and optimizations for inter-tile reuse to exploit the data
locality optimizations from Chapter 5.

A VLIW-type of controller allows for sufficient flexibility to encode many
ConvNet based machine vision applications. Synthesis on a low power 40 nm
CMOS technology library resulted in a pipelined circuit that operates at 1 GHz,
yielding an effective performance of 30.2 GOp/s on real benchmarks (20x faster
w.r.t. a SIMD optimized ARM-A9). Considering the power budget of only 54
mW, this accelerator is suitable for embedment in the next-generation mobile
devices and bring smart features like real-time visual object classification and
speech recognition to our cherished portable companions.

Figure 6.17: Inter connection overview for a SoC equipped with an NVE instance.

DDR Memory

Memory Interface
Controller

Host Processor
ARM core,
MicroBlaze

Data
Reorder
Engine

Data
Reorder
Engine

NVE instance

FIFO streams

AXI4

AXI4Lite

Interrupt control

DDR IFOff-chip

On-chip

 117

7.

ACCELERATOR CODE GENERATION

This chapter presents a compiler flow to map Deep Convolutional Networks
(ConvNets) to highly specialized VLIW accelerator cores targeting the ul-
tra-low power embedded market. Earlier works focused on energy efficient
accelerators for this class of algorithms, but none of them provides a com-
plete and practical programming model or a compiler. Due to the large pa-
rameter set of ConvNets it is important that the user can abstract from the
accelerator architecture and does not have to rely on an error prone and ad-
hoc assembly programming model. By using automatic advanced code op-
timization techniques such as data layout modification, modulo scheduling
for software pipelining, and schedule combining for locality, we demon-
strate that our compiler can produce highly optimized accelerator code. We
evaluated our compiler on complex real-world vision applications with dif-
ferent network layer configurations. The average throughput of our com-
piler mapped applications is on-par with manual mappings by architecture
experts that required multiple days of tuning. By combining multiple task
schedules in ConvNet layers our compiler is able to reduce data transfers
which is important for energy. More importantly our compiler solution re-
duces the huge manual workload to efficiently map ConvNets to energy-
efficient accelerator cores for the next-generation of mobile and wearable
devices.
This chapter is based on work presented at SCOPES 2015 [107].

7.1 Introduction

In Chapter 4, 5, and 6 we have shown that Convolutional Networks (ConvNets)
have multiple computational challenges. Firstly, the computational workload in
the number of operations is very high, which is addressed in Chapter 4 by con-
volution and subsample merging. Secondly, the required data movement is a

CHAPTER

118 CHAPTER 7. ACCELERATOR CODE GENERATION

performance bottleneck and it consumes a lot of energy. The inter-tile reuse op-
timization strategy from Chapter 5 reduces off-chip data transport a lot. Finally,
we addressed the inefficiencies in general purpose computer architectures and
existing accelerators in Chapter 6 by presenting the Neuro Vector Engine (NVE),
a VLIW based accelerator that relies on vector operations.

Our community is well aware of the fact that architecture specialization is
often required to achieve the best performance at low energy [113]. Other re-
search groups also exploited the customization paradigm to design highly spe-
cialized, and thus highly efficient cores that enable excellent machine vision for
mobile devices [16,50,20,37,46]. These cores achieve most of their efficiency
gains by tuning data storage structures to the dataflow and data-locality require-
ments of the algorithm. The main challenge in accelerator design is to improve
efficiency by architecture specialization, but maintain the flexibility. Especially,
this flexibility is key for adoption of a new core. ConvNets have many parameters
such as the number and type of layers, feature maps, and kernels, which are dif-
ferent for every task. Hence the architecture should support different parameter
combinations efficiently and it should have a programming model. A program-
ming model can be an Instruction Set Architecture (ISA), or a configurable state
machine. The NVE architecture is designed to be flexible in multiple ways: 1. A
NVE is customizable such that it can be tuned at design time to match the user
needs; 2. It achieves high data path utilization for many ConvNet workloads, so
it is workload flexible; 3. It has the flexibility of being fully programmable; by
loading an instruction sequence it can execute a different ConvNet.

Most earlier works focus on efficiently implementing compute primitives,
but none provides a flexible architecture template. Additionally, these published
architectures do not have a practical programming model or a compiler. They
voluntarily ignore programming for simplicity [16], or they refer to an ad-hoc
and therefore impractical assembly program [20,37], or a restrictive state ma-
chine [46]. Only the Neuflow work [50] has a compiler model, but for this in-
stance the architecture is very dedicated to a single network operator size.

In this chapter we present CONVE: a COmpiler for Neuro Vector Engines. To
the best of our knowledge this is the first ConvNet compiler for a flexible accel-
erator template such as, the Neuro Vector Engine [109] see Chapter 6. The auto-
matic CONVE flow replaces the complicated and error prone task of manual
assembly writing by a network specification in our Design Specific Language
(DSL). This DSL is compiled into optimized VLIW assembly programs. This in-
creases another degree of efficiency which is the mapping efficiency, i.e. the time
and energy required to obtain an efficient mapping. Often the quality of gener-
ated code is far lower than manually tuned code. However the performance on
our compiled benchmark applications is slightly better than code optimized for
days by architecture experts. The main contributions of this chapter are:

• Building a flexible VLIW compilation flow from a high level .json net-
work description to assembly output.

7.2. BACKGROUND AND RELATED WORK 119

• A new bottom-up list scheduling approach that can be adapted for dif-
ferent accelerator instantiations.

• New optimization steps:
o Data layout modification to resolve resource conflicts;
o Automatic modulo software pipelining to increase utilization;
o Schedule combining to maximize performance and increase

data locality.

• An in-depth evaluation against manual written assembly code that’s
written by architecture experts by using real-world ConvNet vision ap-
plications.

This chapter is organized as follows: Section 7.2 gives an overview of related work
in the field of compilers for accelerators and ConvNets. Section 7.3 introduces
our Domain Specific Language (DSL) to specify network configurations for
CONVE. Section 7.4 presents the CONVE code generation flow, and Section 7.5
discusses the advanced code optimization steps. In Section 7.6 we present an in-
depth evaluation of the compiler results. Finally, Section 7.7 ends this chapter
with conclusions.

7.2 Background and related work

Dedicated application accelerators are commonly used to process the dedicated
workloads of different application domains. For example, our smartphones, dig-
ital (video) cameras, and tablets all capture and process high-resolution images
or video with a power constrained compute platform. Performing the compli-
cated real-time processing tasks on high rate pixel streams require fixed function
accelerators. Often these accelerators have limited flexibility, so no support for
different coding standards or data processing steps. Much more flexibility is
achieved with software defined solutions, such as a Digital Signal Processor
(DSP), and Image Signal Processor (ISP), or techniques to enable Software De-
fined Radios. In these cases programmable solutions are used which are more
flexible and able to perform multiple tasks (better silicon efficiency). In addition,
flexible cores can implement new functionalities or support new standards with
a simple firmware update.

The NVE is a similar flexible signal processor specialized at ConvNet work-
loads. The NVE template uses concepts from Very Long Instruction Word
(VLIW) [52] based processors. The VLIW approach is popular among commer-
cial DSPs e.g., the Tensilica Xtensa [57], or Silicon Hive [135] processor, or the
more recent Qualcomm Hexagon [33] DSP; al are used in high end smartphones.
A VLIW puts the complex scheduling responsibility for instruction level paral-
lelism into a compiler and thereby avoids costly and power-hungry dynamic-
scheduling hardware. By moving the complicated scheduling to a compiler the
processor can be rather simple while it is able to achieve high performance.
However, compiling efficient code for a general purpose VLIW core is challeng-

120 CHAPTER 7. ACCELERATOR CODE GENERATION

ing. The compilation challenges make that it is difficult to map applications ef-
ficiently; as a result the programmer has to optimize his code manually or accept
a bad hardware utilization. In conclusion, VLIW cores require a good optimizing
compiler, otherwise the programmer must spend a tremendous effort in map-
ping applications.

The CONVE compiler focusses on ConvNets, so the input programs have a
regular structure. By narrowing the group of target applications compilation and
optimization becomes more specific. As a result, more effort is spend in compi-
lation routines that produce code that achieve close to peak performance on the
NVE template without manual tuning.

Next to the general purpose VLIW base accelerator DSP cores there are many
fixed function cores focussing on ConvNets. However most of them are less flex-
ible compared the NVE template. These works mainly focus on the convolution
operations, but programmability or efficient code generation are out of the scope
or simply neglected. Some exceptions do exist, for instance the NeuFlow [50]
dataflow architecture which uses a software API called LuaFlow. Their flow con-
verts descriptions, using Torch [34] into dataflow programs. In Torch ConvNets
are specified layer-by-layer, each with parameters such as kernel size, subsample
factor, number of inputs, and number of outputs for each layer. However, Torch
lacks the freedom to assign a custom feature map connectivity. Only several con-
nection types are allowed, e.g. fully connected, one-to-one, or random. For our
vision benchmarks this would be too restrictive and forcing us to make many
extra connections with coefficient values set to zero. In addition, the operators
are specified as systolic array streams, which are underutilized if multiple vary-
ing kernel sizes are used.

Another recent fixed function accelerator program flow is used in the ShiDi-
anNao [46] work. ConvNets are described as a Hierarchical Finite State Machine
(FSM), see Figure 7.1. Two hierarchical FSM levels are used where the first de-
scribes the high-level flow through the network and the second controls low-

S6 S7

S1

S2
S3

S4

S5
S0

matrix others

conv.

pooling

classifier

ALU

square

s10 s11

s12s13

s14

s15

idle init

h-modev-mode

fill

finish

start

load

 one
row

next window

next
row

 finish

First-Level States Second-Level States

Figure 7.1: Hierarchical control finite state machine of the ShiDianNao accelerator.

7.3. CONVNETS IN A DOMAIN SPECIFIC LANGUAGE 121

level details, e.g., the operation patterns of convolution or pooling. This ap-
proach replaces the use of instructions by FSM parameters, but these are less
flexible and limited by the number of FSM states. For the FSM there is no high-
level language, so programmers must create their own low-level FSM parameters
to express each new network. Note that while the ShiDianNao accelerator has
worked out an energy efficient control mechanism other key works still neglect
this very important part. For example, the very recent and detailed Eyeriss pub-
lications [22,21] do not discuss their control architecture or input code genera-
tion. These papers present an in-depth study on data movement patterns and
compute workload. For some reason the control architecture is left out and also
input code generation is not covered. We argue that control and input code are
key parts to improve the efficiency of an accelerator core. Therefore we discuss
the details of building an application specific compiler. Firstly, the challenge that
must be overcome is to generate code that achieves high accelerator utilization.
Secondly, the mapping process needs to be simplified for applications on accel-
erators or improving the programmer’s productivity, which is also an efficiency.

7.3 ConvNets in a domain specific language

As shown in the previous section many related ConvNet accelerators do not dis-
cuss their method of programming network parameters into their design. On
the opposite there are also general purpose accelerator cores that use the C lan-
guage with advanced compilers. These cores often struggle with the wide range
of input programs for which always valid machine code should be generated.
The CONVE framework takes a more abstract approach by relying on a Domain
Specific Language (DSL) for ConvNets.

Our DSL is based upon the network description format fort he popular soft-
ware library Caffe [76]. Caffe is used to train Deep ConvNets with consumer
hardware like GPUs. It brings the complicated training algorithms that are used
for Deep Learning to the mass public. Their input description is based on .json,
an open-standard format that uses human-readable text to define data objects.
By default their language assumes full connectivity between feature maps, but
the connectivity can be split with “group” parameters. These “group” parameters
do not support the specification of custom layer-to-layer connectivity, which is
important for workload reduction. Therefor we modified the CONVE input lan-
guage such that users are able to express custom networks with sparse feature
map connectivity. Furthermore, our CONVE input format is restrictive to Conv-
Net workloads such that unsupported program flows are prevented. This makes
it much simpler to generate correct code from our DSL input.

Caffe trained networks can be easily mapped to our platform, since both de-
scription languages are very similar. The main difference is the flexibility to use
connectivity patterns that are supported by the NVE. These sparse maps are key
for efficient processing, since it substantially reduces the workload. Listing 7.1
gives an example description for the first and second layer of the face detection

122 CHAPTER 7. ACCELERATOR CODE GENERATION

benchmark. First an application (name) is specified and then the network (lay-
ers). Each layer has a descriptor which lists parameters such as output size
(output.size), activation function (output.act), output mapping (out-
put.map), kernel size (kernel.size), pooling size (kernel.pool.size), and
pooling kernel type (kernel.pool.type).

7.4 Automatic code generation flow

This section presents our automatic code generation flow in detail. As illustrated
by Figure 7.2 the flow starts with a high-level ConvNet input description (Section
7.3). This description is converted into a separate task graph for each output fea-
ture map (Section 7.4.1). The taskgraph can be optimized by coefficient repack-
ing (Section 7.5.1) The instruction scheduling step constructs a schedule for
every graph (Section 7.4.2). Further optimization steps are performed: e.g. mod-
ulo scheduling to increase utilization (Section 7.5.2); and combine feature map
schedules to improve locality (Section 7.5.3). Physical buffer space is assigned for

{
 "name": "Face Detector",
 "layers": [{
 "output": {"size": [638,358],"act": "sigm",
 "map": [
 [0,1,2,3]
]
 },
 "kernel": {"size": [6,6],"pool": {"size": [2,2],"type": "avg"}}
 }, {
 "output": {"size": [317,177], "act": "sigm",
 "map": [
 [0,1,8,11,13],
 [2,3,8,9,12],
 [4,5,9,10,11],
 [6,7,10,12,13]
]
 },
 "kernel": {"size": [4,4],"pool": {"size": [2,2],"type": "avg"}}
 }]
}

Listing 7.1: JSON Convolutional network description of first and second layer of the face
detection benchmark workload.

Task Graph
Generation

Instruction
Scheduling

Buffer
Allocation

.json
ConvNet

VLIW
program

Assembling

Coefficient
Packing

Schedule
Combining

Modulo
Scheduling

Added
optimization

steps

Normal
flow

Figure 7.2: The CONVE automatic NVE code generation flow.

7.4. AUTOMATIC CODE GENERATION FLOW 123

the schedules (Section 7.4.3), and finally these are converted into executable bi-
naries for the VLIW instruction memory.

7.4.1 Task graph construction

The first step of the VLIW code generation is to represent the network layers as
task graph or a Direct Acyclic Graph (DAG). These graphs are constructed by
tracing back through the computation sequence for neuron outputs. This is per-
formed by our graph constructor that creates a DAG from the .json input de-
scription. The graph is constructed by applying the structure rules of a ConvNet.
The details of construction are discussed by an educational example of a 3x3 fil-
ter application.

Convolution outputs of 3x3 kernels require 9 MACC and one set bias initial-
ization. In addition, these operations require coefficients, e.g., one bias, and 9
weight values that are broadcasted to the MACC vector unit, recall Figure 6.7.
The weight register loads a word of four 16-bit coefficients (full capacity). The
first entry is broadcasted directly after the load and the others by shift opera-
tions. As a result, three weight register set, and 7 shift operations are instan-
tiated. The corresponding image data must be loaded in the image registers.

sh rw

setsh

ri

macc

set ri

ld

set b

set rw

ld

st

st

macc

set b

1

1

set ri

set rw

macc

set b

1

1

1

sh rw

1

1

1

sh rw

1

sh rw

setsh

ri

set ri

set rw

macc

set b

1

1

1

1

1

sh rw

1

0

00

sh rw

setsh

ri

set ri

set rw

macc

set b

1

1

1

1

1

sh rw

1

0

00

2 2

2

2

connect
anti-dependencies

connect
read & write operations

connect
register-mac dependencies

connect
register dependencies

define
computations

ld

st

2

2

Figure 7.3: Direct Acyclic Graph (DAG) construction for computation of an output fea-
ture map.

124 CHAPTER 7. ACCELERATOR CODE GENERATION

Depending on the number of MACCs, pooling stride, and kernel shape a se-
quence of image register operations is selected. For 3x3 convolution the se-
quence is: set, set shift, and shift which is repeated for each column. The
register set operations require loads from the scratchpad memory e.g., for
weights three loads from port A. A register set on the image register re-
quires two loads (port A and B) to fill position 0-15. The image register set and
shift operation require a single load from port B, which fills the shift-in regis-
ter. The small example requires 9 scratchpad loads for image data per group of
16 neurons. In case of a pooling factor a different set of image registers is used
that require four loads to fill the larger image vector.

Operations in a task graph or Direct Acyclic Graph (DAG) must be connected
with their dependencies, e.g., a set bias occurs before the first MACC operation
so a dependence is connected, see Figure 7.3 (top-left). MACC operations require
data from registers, so dependence arrows from register operations are con-
nected (topmiddle). Successive register shift operations are connected,
since they depend on the previous value (top-right); Anti-dependencies from
MACCs to the registers are added as depicted in Figure 7.3 (bottom-left). These
anti-dependencies ensure that the weights and pixels are not overwritten before
the associated MACC operation takes place. Finally, dependencies between reg-
ister set operations and scratchpad load operations are connected (bottom-
right). A load has a dependency to a preceding store operations. All depend-
encies have a distance parameter representing the minimum latency between
adjacent vertices. A simplified task graph construction pseudo description is
given in Algorithm 8.1.

ALGORITHM 8.1: Direct Acyclic Graph (DAG) construction for an output feature map
input: kernel size 𝑘𝑥 and 𝑘𝑦, subsample 𝑝𝑥 and 𝑝𝑦, number of inputs 𝑝

output: graph 𝐺(𝑣, 𝑒)
1 graph 𝐺;
2 vertex 𝑣;
3 𝑣 ←set bias; //initialize neurons
4 insert_vertex(𝑣, 𝐺);
5 for 𝑖 < 𝑘𝑥 ∗ 𝑘𝑦 do

6 𝑣 ←MACC; //process neuron inputs
7 insert_vertex(𝑣, 𝐺);
8 end
9 create dependencies between set bias and first MACC vertices in 𝐺;
10 for 𝑖 < 2 do
11 𝑣 ← activation; //two acts per vector for this NVE instance
12 insert_vertex(𝑣, 𝐺);
13 insert_dep(𝑣setbias, 𝑣, 𝐺);
14 end
15 for 𝑖 < 𝑛 ∗ 𝑘𝑥 ∗ 𝑘𝑦 do

16 if 𝑖%𝑘𝑦 = 0 then

17 𝑣 ← set ri; //each ky a set register
18 else if 𝑖%𝑘𝑦 = 1 then

19 𝑣 ← set shift ri; //load the shift-in register

7.4. AUTOMATIC CODE GENERATION FLOW 125

20 else if then
21 𝑣 ← shift ri; //shift the image registers
22 insert_vertex(𝑣, 𝐺);
23 end
24 create dependencies between set ri and following shift ri vertices in 𝐺;
25 create dependencies between shift ri and following shift ri vertices in 𝐺;
26 create dependencies between MACC and adjacent ri vertices in 𝐺;
27 create dependencies between ri operations with adjacent MACC in 𝐺;
28 PackCoefficients() ; //see section 7.5.1
29 foreach set ri/rw in 𝐺 do
30 𝑣 ← ld ri/rw; //load operation from local scratchpad
31 insert_vertex(𝑣, 𝐺)
32 𝑣 ← st ri/rw; //store operation into local scratchpad

33 insert_vertex(𝑣, 𝐺);
34 end
35 foreach ld ri/rw in 𝐺 do
36 insert_dep(𝑣ld, 𝑣set, 𝐺); //connect load and set registers
37 end
38 foreach st ri/rw in 𝐺 do
39 insert_dep(𝑣st, 𝑣ld, 𝐺); //connect store and load operations
40 end

7.4.2 Instruction scheduling

A task graph alone cannot be executed by our accelerator. It is an intermediate
representation for the operations with their dependency constraints. This graph
must be converted into operations that are timed in the VLIW slots. Algo-
rithm 8.2 describes our custom list scheduling procedure that works bottom up
through the graph. At the bottom there exist a single root where at top multiple
start vertices should be evaluated. Breadth First Search (BFS) is used to visit and
schedule vertices with a complexity of 𝑂(𝑉 + 𝐸). For example, BFS starts by add-
ing the bottom vertex (𝑥) of task graph (𝐺) to a queue (𝑄) then all parents of
(𝑥) are visited one-by-one. During a visit, a time slot (𝑡) is assigned to the visited
parent vertices (𝑤), these time slots are based on the time slots of child vertices
(𝑣) and distance (𝑑).

In Figure 7.4 the scheduling procedure is demonstrated on the 3x3 filter ex-
ample. First, time slot 0 is assigned to the bottom vertex. By applying BFS time
slots are assigned bottom-up to the parent nodes based upon the dependence
distances. The required resources are claimed, however in some cases these are
already occupied which causes a delay slot in the schedule. For example, a bit
further in the graph a MACC operation is assigned to slot (-5). The connected
parent nodes (see dashed nodes in Figure 7.4) require a set weight (set rw) and
a set image register (set ri) operation. The scratchpad memory port con-
straints allow only one of the two set register operations at a time. As a result,
the first visited (set rw) is assigned to slot -6. In the set register resource table
slot -6 is claimed, see Figure 7.5. When the other parent node is visited a conflict

126 CHAPTER 7. ACCELERATOR CODE GENERATION

occurs, because the set register resource at slot -6 is already claimed and there-
fore the set ri is scheduled at -7.

ALGORITHM 8.2: Instruction Scheduling
input: graph 𝐺(𝑣, 𝑒), bottom vertex 𝑥
output: VLIW schedule for graph 𝐺(𝑣, 𝑒)

1 create queue 𝑄;
2 create table 𝑇;
3 𝑡𝑥 ← 0; //assigned time slot
4 𝑠𝑥 ← visited; //scheduled operations
5 insert 𝑥 to 𝑄;
6 while 𝑄 is not empty do;
7 𝑣 ← first element in 𝑄;
8 foreach edges 𝑒 from 𝑤 to 𝑣 in 𝐺 do
9 if 𝑖𝑤 ≠ st and 𝑖𝑤 ≠ act then
10 if 𝑠𝑤 ≠ visited then
11 𝑡𝑤 ← 𝑡𝑣 − 𝑑𝑒; //compute new time slot
12 𝑠𝑤 ← visited;
13 if 𝑖𝑤 = set reg then
14 while 𝑡𝑤 exist in table 𝑇 do
15 𝑡𝑤 ← 𝑡𝑤 − 1; //resource occupied shift slot up
16 end
17 insert 𝑡𝑤 into 𝑇;
18 end
19 else
20 𝑡 ← 𝑡𝑣 − 𝑑𝑒; //check if different path distance is valid

21 if 𝑡 < 𝑡𝑤 then
22 𝑡𝑤 ← 𝑡;
23 end
24 end
25 end
26 end
27 end

A challenging example is 1x1 convolution (an output neuron layer) as illus-
trated in Figure 7.6. There is no data reuse in a kernel window which requires
the image register to load every cycle. When scheduling bottom-up through the
graph the scheduler quickly runs into conflicts. For example, after the MACC in
slot -2 it schedules a set rw at -3, a resource conflict enforces the (set ri) to
be delayed to -4. The instruction table in Figure 7.7 reveals that many stalls will
be inserted.

Note that the instruction scheduling procedure ignores all stores into the
scratchpad memory and the activation function lookups. Activation operations
are inserted in an As Soon As Possible (ASAP) time slot selection after schedul-
ing. To hide the 3 cycle latency of the MACC stage activations from the previous
iteration (s(i-1)) are scheduled in the current iteration, otherwise the complete
schedule would become much longer, see Figure 7.8. Store operations are di-
vided in two parts: 1) The initialization part or prolog of the program. Here the
required coefficients are stored and the first pixels are placed before starting the

7.4. AUTOMATIC CODE GENERATION FLOW 127

second part; 2) The repetitive part or steady-state, where only the new pixels for
each tile are stored. For inter-tile strips only the few new columns of pixels from
the new tile are stored, the overlapping ones from the previous tile are kept. The
new pixel write operations in the steady-state are inserted in an As Late As Pos-
sible (ALAP) scheme. This ensures that the write operation can fill the schedul-
ing gaps in the local scratchpad buffer.

sh rw sh ri

sh rw
set
sh ri

macc

macc

macc

set rw set ri

0 0

11

00

11

1 1
00

ld

ld

ld

2

2

2

-5-5

-5

-6 -6 -7

-8
-7

-9

-9

-8

-8

-8

macc
0

set bset rw 1

ld2

st

2

st

2
st

2

st2

X

X X

X

-10-11

-13

ld

2

-7

st

2

X

Figure 7.4: Assigning time slots to a 3x3 convolution task graph.

MEM B

ld [s(i+1) word2]

set [w3 w4 w5 w6]

WREG

shift macc rw,ri

VMACC
macc rw,ri

macc rw,ri

MEM A VACT
shift-8

-7

-6

-5

Cycle IREG

set r0,r1

shift

set r2 shift

nop

ld [w3 w4 w5 w6]

-7

-6

-5

Set REG

Figure 7.5: Partial VLIW instruction schedule of the 3x3 convolution example.

128 CHAPTER 7. ACCELERATOR CODE GENERATION

Figure 7.8: Finished instruction schedule for 3x3 convolution with store operations as-
signed to the free memory port A slots.

sh rw
set
sh ri

macc

macc

set rw set ri

00

11

1 1
00

ld
ld

ld

2

2

2

-2-2

-2

-3 -3 -4

-5
-4 -6

-6

macc
0

set bset rw 1

ld2

st 2
st2

st2

st2

X
X

X

X

-17-18

-20

ld2
-4

st2
X

ld
-42

st2
X

MEM B

ld [s(i+0) word1]

set [w3 w4 w5 w6]

WREG

shift macc rw,ri

VMACC

macc rw,ri

MEM A VACT
-5

-4

-3

-2

Cycle IREG

set r0,r1

set r0,r1

nop

ld [w11 w12 w13 -]-5

-4

-3

-2

Set REG

ld [s(i+0) word0]

st [s(i+2) word0]

ld [s(i+2) word0]

MEM B

ld [s(i+0) word1]

shift

WREG

set [b w0 w1 w2]

shift

macc rw,ri

VMACC

set rw

macc rw,ri

macc rw,ri

macc rw,ri

shift

set [w7 w8 -]

set [w3 w4 w5 w6]

ld [s(i+1) word1]

ld [s(i+0) word2]

shift

shift

macc rw,ri

macc rw,ri

macc rw,rishift

ld [s(i+2) word1]

MEM A VACT

act [s(i-1) word0]

act [s(i-1) word1]

ld [s(i+2) word2]

shift

ld [s(i+1) word2]

1

2

3

4

5

6

7

8

9

10

Cycle
ld [b w0 w1 w2]

ld [s(i+0) word0]

st [s(i+2) word1]

ld [w3 w4 w5 w6]

ld [s(i+1) word0]

st [s(i+2) word2]

ld [w7 w8 - -]

shift

IREG

set r0,r1

set r2 shift

shift

shift

set r2 shift

set r0,r1

set r2 shift

set r0,r1

macc rw,ri

macc rw,ri

11

12

13

14

Figure 7.6: Assigning time slots to a 1x1 convolution schedule for an output
layer.

Figure 7.7: Partial schedule of 1x1 convolution on 14 input feature maps.

7.4. AUTOMATIC CODE GENERATION FLOW 129

7.4.3 Scratchpad memory allocation

The last step in completing an accelerator program is assigning scratchpad
memory locations to the load/store operations in the instruction schedule. Due
to our dedicated Address Generation Units (AGUs) each address consist three
fields: offset; update; and mode field. Along with toggle and increment register
settings, the address field can produce modulo addressing patterns. Allocation
starts at address 0 for the prologue part, since the prologue is executed only once
all the addressing is static, so the offset field is assigned to contain the address
and the other parameters are set to 0 to prevent updates.

In the steady-state part the pixel store and load operations are assigned with
modulo addressing. This is done by assigning a base address pointing to the first
pixels in the buffer which are used by this instruction. To perform modulo ad-
dressing an automatic increment value is set, which is defined by the subsample
stride parameter. In addition, a toggle value is used to trigger the jump back after
the last value in the kernel sequence is loaded. Coefficient load operations again
use static addressing, because their location does not change. The scratchpad
memory operation assignment is outlined in Algorithm 8.3.

ALGORITHM 8.3: Buffer Allocation
input: schedule 𝑋, consists of prologue 𝑋𝑝, and steady-state 𝑋𝑠

output: allocated schedule 𝑋, toggle and increment register settings
1 addr ← 0;
2 base ← 0; //start point of feature map values
3 foreach memory operation 𝑣 in 𝑋𝑝 do

4 𝑣.offset ← addr;
5 if 𝑣 is first feature map operation then
6 base ← addr; //set feature map start point
7 end
8 addr++;
9 𝑣.update ← 0; //no update value for prologue

10 𝑣.mode ← 0; //static address mode 0
11 end
12 if base = 0 then
13 base ← addr; //no prolog feature map values
14 end
15 foreach store operation 𝑣 in 𝑋𝑠 do
16 𝑣.offset ← base; //start store sequence
17 𝑣.update ← addr − base; //iteration jump
18 𝑣.mode ← 1;
19 addr++;
20 end
21 toggle ← N kernel loads; //img register loads in kernel iteration
22 inc ← pooling step; //img register load offset between tiles
23 addr ← 0;
24 foreach load operation 𝑣 in 𝑋𝑠 do
25 if load coefficients then
26 𝑣.offset ← addr; //coefficients are static

130 CHAPTER 7. ACCELERATOR CODE GENERATION

27 𝑣.update ← 0; //no updating of addresses
28 𝑣.mode ← 0;
29 addr++;
30 end
31 end
32 addr ← 0;
33 foreach load operation 𝑣 in 𝑋𝑠 do
34 if load feature map then
35 𝑣.offset ← base; //start load sequence
36 𝑣.update ← addr;
37 𝑣.mode ← 1;
38 addr++;
39 end
40 end

7.4.4 Generalization towards VLIW architecture

The CONVE compiler framework is designed with flexibility in mind. In case the
instantiation of an NVE core changes (see parameters in Figure 6.7) small mod-
ifications to the task graph construction procedure are required. These tech-
niques are well-known from VLIW processor design e.g. Tensilica Xtensa [57] or
the Silicon Hive [135] tools. For example, when instructions are added or re-
moved the operators in the task graph should be changed accordingly based
upon the new set of operations. Additionally, the dependencies among vertices
can change based upon modifications in the processing pipeline. Instruction
scheduling is adapted mainly in the resource conflict resolution scheme. For ex-
ample, the use of a single port scratchpad memory changes the resource alloca-
tion table.

The memory address allocation is rather specific due to the use of AGUs. In
case the AGUs are removed addresses would be static which removes the huge
advantages of inter-tile reuse patterns. Note that dedicated Caches could largely
solve these issues at the cost of an area and energy penalty. Finally the transla-
tion of a new instruction scheme into executable binaries is straight forward but
it must comply with the VLIW slots of the architecture.

From this point onwards different architecture variants can be explored.
Consider a case where the NVE instance has more scratchpad memory ports, e.g.
a dedicated port assigned to each set register operation this to remove conflict
nop operations. Another example would be doubling the size of the vector MACC
unit, which will result in more image register operations in case the vector
memory size of 8 byte is kept. All these alternatives could be explored in future
work to find good performance/area/energy configurations.

7.5. ADVANCED CODE OPTIMIZATIONS 131

7.5 Advanced code optimizations

Compiling high-level program descriptions into correct assembly programs is
essential for any accelerator. Without such tools mapping of complicated tasks
would become almost impossible. Another aspect is the code quality, ideally it
performs similar to a manual mapping. However, often an automatic compiler
path generates low-quality code, reducing the energy and performance ad-
vantages of dedicated architectures like the NVE. In this section we focus on
advanced code optimizations to generate code that performs on-par with an ex-
pert programmer.

Careful analysis of manual (Figure 6.10) and default compiler (Figure 7.8)
generated schedules reveals that the later one reduces throughput by 1.4 times.
Generated instruction schedules contain more NOP gaps due to resource con-
flicts and idle time between steady-state iterations. Furthermore, there is no data
locality optimization for shared inputs over output feature maps. The following
optimizations sections will improve performance by addressing these three
missing optimization steps.

7.5.1 Coefficient layout optimizations

Register load port sharing is one of the architecture constraints that sometimes
inserts NOP gaps since the set register of a weight and image register cannot
execute in the same cycle. The default compiler resolves such resource conflicts
by delaying one of the operations, which causes a NOP in the VMACC slot. This is
illustrated in the task graph of Figure 7.4 and the instruction schedule of Figure
7.5. An expert programmer resolves such conflicts by off-line altering coefficient
layout of scratchpad vectors. As a result, a weight set and shift operation can be
interchanged which often avoids the conflict and the inserted NOP. Our compiler
uses a similar coefficient packing procedure in the task graph generation step
that reduces the number of weights in a vector before a conflict occurs. This
procedure imitates the manual optimization strategy. Note that this procedure
does not always solve the conflicts, sometimes the upper load port is over-uti-
lized. For example, in the 1x1 convolution benchmark there is no image register
reuse and therefore every cycle a set register operation is requested. Without
insertion of stalls there are simply no free slots to load the weight register (see
Figure 7.6 and Figure 7.7). In these cases our compiler accepts the penalty and
packs the weight vectors with the maximum number of weights.

7.5.2 Modulo scheduling

Modulo scheduling is implemented by measuring the Resource Minimum Initia-
tion Interval (ResMII), which is defined by the issue slot that requires the longest
sequence of execution cycles. The ResMII is used to wrap the schedule and con-

132 CHAPTER 7. ACCELERATOR CODE GENERATION

tinue scheduling at modulo ResMII positions i.e., 𝑡new = 𝑡old𝐦𝐨𝐝(𝑅𝑒𝑠𝑀𝐼𝐼). Fig-
ure 7.9 demonstrates the beneficial effect of modulo scheduling, which is applied
directly after instruction scheduling. Resource under-utilization problems at the
start and end of a schedule are removed and maximum utilization of the VMACC
unit is achieved.

7.5.3 Feature map combining

ConvNet layers often have feature maps that share input maps e.g., see layer 2
in our benchmark workloads Figure 3.3 and Figure 3.4 in Chapter 3. Reusing in-
put maps in the scratchpad improves locality, however due to the sparse nature
of feature map connections it is challenging to find the best combination that
maximize locality for a fixed capacity constraint.

Consider two feature maps 𝐼0 = [0,1,2,3] and 𝐼1 = [1,2,3,4] where the array
defines connected input maps. These maps share three inputs that can be reused
when the schedules are combined. Using the maximum intersection does not
guarantee an optimal reuse solution. Suppose, three input sets 𝐼0 = [0,1,2,3],
𝐼1 = [1,2,3,4], and 𝐼2 = [1,3,5], and 𝐼3 = [0,2,4] are given. The possible combina-
tions are:

• Combining 𝐼0 − 𝐼1 that share three maps.

• All combinations where 𝐼0 or 𝐼1 is combined with either 𝐼2 or 𝐼3 share
two maps.

• Combining 𝐼2 − 𝐼3 that do not share any map.
A greedy approach combines the largest intersection and therefore it starts with
𝐼0𝐼1 to share three maps. It could happen that no further combining is possible,
because the data buffer is full or the instruction buffer cannot hold larger pro-
grams. The other combination would be 𝐼2𝐼3 which have no reuse. A full-search
method would have combined 𝐼0𝐼4 and 𝐼1𝐼3, both reuse two feature maps. As a
result the full-search would reuse 4 maps where the greedy solution reuses 3
maps.

In practice it is very challenging to take all constraints into account. Pro-
grams must fit into the instruction buffer, and the data buffer has a capacity
constraint. Full-search always gives the best result at the cost of excessive search

st [s(i+2) word0]

ld [s(i+2) word0]

MEM B

ld [s(i+0) word1]

shift

WREG

set [b w0 w1 -]

shift

macc rw,ri

VMACC

set rw

macc rw,ri

macc rw,ri

macc rw,ri

shift

set [w5 w6 w7 w8]

set [w2 w3 w4 -]

ld [s(i+1) word1]

ld [s(i+0) word2]

shift

shift

macc rw,ri

macc rw,ri

macc rw,ri

shift

ld [s(i+2) word1]

MEM A VACT

act [s(i-1) word0]

act [s(i-1) word1]

ld [s(i+2) word2]

shift

ld [s(i+1) word2]

1

2

3

4

5

6

7

8

9

10

Cycle

ld [b w0 w1 -]

ld [s(i+0) word0]

st [s(i+2) word1]

ld [w2 w3 w4 -]

ld [s(i+1) word0]

st [s(i+2) word2]

ld [w5 w6 w7 w8]

shift

IREG

set r0,r1

set r2 shift

shift

shift

set r2 shift

set r0,r1

set r2 shift

set r0,r1

macc rw,ri

macc rw,ri

Figure 7.9: The resulting schedule after modulo rescheduling. Instructions in red belong
to a previous itration.

7.5. ADVANCED CODE OPTIMIZATIONS 133

time for large layers. As a trade-off we implemented greedy feature map com-
bining. For many layers our greedy scheduling finds a solution close to the opti-
mum and is already much better than not combining at all.

Algorithm 8.4 lists our combining procedure, where 𝐿 holds individual
schedules and 𝑅 a list of combined programs. First, it searches for the program
with the largest number of input featuremaps. The selected featuremap is com-
bined with another map that gives: 1) Minimizes the difference 𝛼 of input maps;
2) Obtain the largest intersection 𝛽. This repeats until the scratchpad buffer or
the instruction buffer is filled and the program 𝑓 can be stored as a valid sched-
ule. Next, the procedure repeats for the remaining featuremaps until all maps
are stored. Featuremap combining is performed before modulo scheduling, since
the modulo operation merges a program across iterations, which makes it diffi-
cult to insert another featuremap. Combining featuremaps and afterwards per-
forming modulo scheduling is much simpler and gives benefit of both
optimizations. Note that modulo scheduling is tested after every new combina-
tion to validate the instruction memory capacity constraint.

ALGORITHM 8.4: Feature Map Fusion
input: list of individual feature map schedules 𝐿
output: list of combined schedules 𝑅.

1 𝑓 ← first schedule in 𝐿;
2 foreach schedule 𝑣 in list 𝐿 do
3 if 𝑠𝑣 > 𝑠𝑓 then

4 𝑓 ← 𝑣;
5 end
6 end
7 remove 𝑓 from 𝐿;
8 𝑔 ← 𝑓; //take featuremap with the most input maps
9 while 𝐿 is not empty do
10 𝛼 ← ∞; //non overlapping input featuremaps
11 𝛽 ← 0; //overlapping input featuremaps
12 foreach schedule 𝑣 in list 𝐿 do

13 if |𝐼𝑓 △ 𝐼𝑣| < 𝛼 then; //symmetric difference should be small

14 𝛼 ← |𝐼𝑓 △ 𝐼𝑣|; //featuremaps without reuse are minimized

15 𝛽 ← |𝐼𝑓 ∩ 𝐼𝑣|;

16 𝑐 ← 𝑣;

17 else if |𝐼𝑓 △ 𝐼𝑣| = 𝛼

18 if |𝐼𝑓 ∩ 𝐼𝑣| > 𝛽 then //more reuse is preferred

19 𝛼 ← |𝐼𝑓 △ 𝐼𝑣|;

20 𝛽 ← |𝐼𝑓 ∩ 𝐼𝑣|;

21 𝑐 ← 𝑣;
22 end
23 end
24 end
25 𝑔 ← combination of 𝑔 and 𝑐;
26 ℎ ← 𝑔;
27 modulo scheduling ℎ;

134 CHAPTER 7. ACCELERATOR CODE GENERATION

28 if 𝑠ℎ > INSTRUCTION_BUFFER_SIZE then
29 modulo scheduling 𝑓; //revert previous solution and add to list
30 insert 𝑓 to 𝑅;
31 𝑓 ← first schedule in 𝐿;
32 foreach schedule 𝑣 in list 𝐿 do
33 if 𝑠𝑣 > 𝑠𝑓 then

34 𝑓 ← 𝑣;
35 end
36 end
37 remove 𝑓 from 𝐿;
38 𝑔 ← 𝑓; //select featuremap with the most input maps
39 else
40 𝑓 ← 𝑔; //continue combining with the current set
41 remove 𝑐 from 𝐿;
42 end
43 end

7.6 Experimental evaluation

To understand the performance of the NVE an ARM-based processor is used as
a baseline reference platform. An ARM Cortex A9 is chosen since it is used in
many mobile devices and represents the performance of currently available em-
bedded computing solution in the market. This ARM platform is compared with
an instance of the NVE template to measure the differences in performance.
Firstly both platforms are discussed in detail.

7.6.1 Experimental setup

The general purpose ARM architecture has many variants for a wide range of
embedded applications. In this experiment the ARM Cortex-A9 is used as a base-
line. The core has a 64-bit wide NEON SIMD coprocessor that enables accelera-
tion by exploiting sub word parallelism. The NEON coprocessor can perform up
to four 16-bit operations or eight 8-bit operations per cycle. The NEON opti-
mized code can either be generated by the compiler or manually written using
NEON intrinsic or assembly code.

The NVE instance is implemented on the Zynq SoC which uses an ARM Cor-
tex-A9 as host processor. The interconnects use the AXI standard interfaces for
interconnection with the FPGA part. Our setup uses the AXI-Lite interfaces for
setting control registers and high bandwidth AXI-Stream interface for data com-
munication. These data streams consist of instructions, coefficients, and pixels
or neuron values. The AXI-Stream interfaces are connected to dedicated Direct
Memory Access (DMA) devices with scatter-gather transfer modes. The scatter-
gather mechanism provides a sequence of individual transfers without the need
of new commands by using a sequence of Buffer Descriptor (BD). The BDs are
arranged as a linked-list and each of them contains information of a new transfer

7.6. EXPERIMENTAL EVALUATION 135

such as starting address, size, and pointer to the next BD. The ARM core places
the BDs in memory after which it initiates the execution sequence. Then the
DMAs automatically fill the instruction memory, and continue with pixel pro-
cessing. Our code correctness is verified by executing generated programs for
our face detection and speed sign detection workloads (see Chapter 3).

7.6.2 Performance metrics

Our definition of code quality is the number of computations (effective MACCs)
per VLIW instruction. This represents only effective workload, but note that
there are many load/store ops., and data reorder ops. that are neglected by this
definition. Low quality code has a low MACC unit utilization due to NOP slots in
the pipeline or loop overhead (additional prolog/epilog code to start and finish
a loop). Additionally, the amount of external data transfer is important. Firstly,
it can stall the pipeline if DMAs cannot keep up with the accelerator, and sec-
ondly it is often bad for energy consumption.

7.6.3 Performance analysis

CONVE generated code quality is evaluated by comparison against manual cod-
ing by architecture experts. These experts spent days to write and optimize a
complete ConvNet assembly program which is generated in a few seconds by our
compiler. Figure 7.10 summarizes the performance on our benchmarks for dif-
ferent optimization flows. For example, the first graph gives the performance of
manual mapping, compared to the second (CONVE without optimization) the

0

2

4

6

8

10

12

14

16

L1 L2 L3 L4 L1 L2 L3 L4

Face Detection Speed Sign Detection 3x3

M
A

C
C

 /
 in

st
ru

ct
io

n

Manual Automatic Automatic + Coeff. Packing Automatic + Coeff. Packing + Modulo Sched. Automatic + Coeff. Packing + Modulo Sched. + Combining

Figure 7.10: HW utilization comparison of manually written programs versus multiple
performance settings of the automatically generated programs.

136 CHAPTER 7. ACCELERATOR CODE GENERATION

manual mapping achieves a 7 up to 28% better MACC unit utilization. This in-
dicates that the default CONVE flow is already quite competitive to a fine-tuned
manual mapping.

The set of bars on the left hand side shows performance on the educational
example of a 3x3 convolution. Both steady-state schedules with 10 instructions
manual and 14 automatic is relatively short, therefore the relative performance
difference is large. In a dense workload like layer 3 of our speed sign application
the difference is relatively small. Both steady-state schedules contain over 200
instructions. This example shows that workloads will behave different and it is
not always obvious why code under-performs. For very long schedules the effect
of missing modulo scheduling is relatively small, since the borders of a schedule
represent a minor portion. On the other hand, for short schedules like in our 3x3
convolution this effect is very dominant.

The first optimization performs resource conflict resolving through coeffi-
cient layout optimization, which reduces the number of NOP slots. On average
coefficient repacking improves performance by 2%. For layer 3 of the speed sign
detection workload the schedule compresses enough to beat the manual expert.
This is an example where the schedule was too complicated for our manual ex-
pert programmer, hence he could not find all optimizations. For some short
schedules like 3x3 convolution the removal of NOP slots does not reduce the
schedule length, which is due to the necessary stores in the scratchpad memory.

The second optimization reduces under-utilization between iterations of the
schedule by modulo scheduling. Modulo scheduling on average gives an addi-
tional performance improvement of 7%. With modulo scheduling most bench-
mark layers perform very close to the manual implementation. For the very
dense ConvNet layers like layer 3 the performance is very important since they
represent the major part of application workload. It is clear that for these dense
layers the performance is close to the accelerator peak performance of 16 MACCs
per instruction. For the other layers the performance lacks behind, which is of-
ten caused due to communication bandwidth limitations on the local scratchpad
ports. Layer 1 and 2 of both applications contain a 2x2 pooling which increases
the data volume for 16 parallel convolution results. In layer 4 there is even less
register reuse due to 1x1 convolution operations. Both configurations stress the
scratchpad memory bandwidth.

The final optimization under evaluation is featuremap combining which in-
creases data locality. For some layers the number of scratchpad store operations
are reduced which gives a performance increase, see Figure 7.10. More important
is the data communication reduction with external memory. Figure 7.11, reveals
that featuremap combining is sometimes needed to perform on-par with the
manual experts. Due to our efficient inter-tile execution patterns data-reuse in
convolution windows and over input featuremaps is already very well utilized.
Mostly the sparsely connected layers such as layer 1 and 2 benefit from this op-
timization. Note the large communication reductions on the logarithmic scale.
In very dense layers the instruction loop buffer with only 512 entries prevents

7.7. CONCLUSIONS 137

combining feature maps. To enable combining for these layers a larger instruc-
tion buffer and a larger scratchpad memory are required.

Combining all optimizations improves MACC unit utilization up to 16.5%.
However for some layers like output layer 4 of the benchmarks CONVE gener-
ated schedules perform 20% worse than the manual code. In this case the man-
ual programmer uses half vectors (8 MACC operations), which is not yet available
in CONVE. For the evaluated NVE instance the half vectors reduce load pressure
from scratchpad port A. Remember that layer 4 is only a small portion of the
total workload. The performance of the complete benchmark applications (all
layers) is better for the CONVE generated code. In conclusion for very specific
workloads (layer 4) the manual programmer is the better one, but for large com-
plicated workloads CONVE performs better, see layer 3. In addition, our fea-
turemap combining step improves data locality at the cost of more complicated
schedules. A manual programmer faces a huge challenge when he has to imple-
ment such combinations. It is simply difficult to overlook the huge set of sched-
ule combinations and match those with the many platform constraints.

7.7 Conclusions

Dedicated hardware accelerators for Convolutional Networks (ConvNets) have
substantially improved the computational efficiency of this challenging algo-
rithm. One of the remaining bottlenecks for broad usage of such accelerators is
the large complexity involved when programming such accelerators. For many
of the proposed accelerators this problem is simply ignored, as a result these

1

10

100

1000

L1 L2 L3 L4 L1 L2 L3 L4

Face Detection Speed Sign Detection 3x3

D
at

a
Tr

an
sf

er
s

(1
0

3
w

o
rd

s
o

f
6

4
 b

it
)

Manual Automatic Automatic + Coeff. Packing Automatic + Coeff. Packing + Modulo Sched. Automatic + Coeff. Packing + Modulo Sched. + Combining

Figure 7.11: Data transfer comparison of manually written programs versus different con-
figurations of automatically generated programs.

138 CHAPTER 7. ACCELERATOR CODE GENERATION

accelerators are often not used in embedded platforms due to their huge map-
ping complexity.

We demonstrated with our new COmpiler for Neuro Vector Engines
(CONVE) that optimized accelerator code for VLIW based vector accelerators
can be generated from high-level .JSON ConvNet descriptions. This technique
is very generic and straight forward such that it can be applied to different in-
stances of the NVE template. By using advanced code optimization with Modulo
Scheduling and data layout optimization CONVE generates codes that achieves
hardware utilization levels on-par with code manually optimized by architecture
experts. Due to techniques like inter-tile optimization and feature-map combin-
ing our generated code has better data locality, which reduces the challenging
data transfer requirements.

The introduction of the CONVE flow enables users to abstract from the NVE
accelerator architecture and only specify a ConvNet and choose an instance of
the NVE Template. This abstraction reduces the programming workload for
ConvNet vision application development from days to minutes. The removal of
this last productivity bottleneck enables the adoption of ConvNets in the next-
generation mobile and wearable devices. This step will bring 'intelligent' features
like real-time machine vision and speech translation to our portable compan-
ions.

 139

8.

CONCLUSIONS AND FUTURE WORK

This chapter concludes the thesis. It is subdivided in two main sections. The
first summarizes the conclusions of the individual chapters and reflects
how these address the issues identified in the problem statement of Chap-
ter 1. The second section presents some open issues that still remain to be
solved, as well as, ideas that are not fully worked out and remain as future
work.

8.1 Conclusions

Deep Learning and Convolutional Networks (ConvNets) have become increas-
ingly popular as pattern recognition methods to solve complicated problems in
many different domains. These machine learning techniques have set many new
accuracy records and have shown super human performance on various tasks.
However, for consumer applications in the mobile or wearable domain these im-
pressive classifier models are not often used. The huge number of model param-
eters and the challenging compute workload make it difficult to use these nets
on an ultra-low power platform. The general purpose CPUs and GPUs do not fit
the power requirements and embedded processors do not deliver the required
performance. The use of these techniques in embedded platforms is key to de-
velop save autonomous driving solutions. Or it should give drones the intelli-
gence to automatically navigate and deliver packages that are ordered remotely.
In continuously operating or so called “always on” wearable companion devices,
it could help us in daily tasks. For these reasons industry and academia have
started to investigate different techniques to improve the energy efficiency of
ConvNets. This has led to various results on high-level optimizations, dedicated
function accelerators, and compilation frameworks for deployment.

The problem statement (Chapter 1.4) defines the number of required com-
pute operations as one of the key quantitative properties that influences the en-
ergy efficiency. Chapter 4 of this thesis addresses the huge computational

CHAPTER

140 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

workload in ConvNets by an algorithmic transformation that merges Convolu-
tion and Averaging Pooling layers. Our technique can be used on trained net-
works with average pooling layers without sacrificing accuracy. On the other
hand it can also be used to train new nets with merged layers, which enables
approximation and replacement of nets having max pooling layers. Real bench-
mark applications demonstrate 65% to 83% workload reduction, without reduc-
ing accuracy. The impact of MACC workload reduction on compute
performance is measured with a CPU and GPU platform mapping. Compared to
the original convolution and subsample part the CPU mapping is 2.7 times faster
where the GPU mapping improves 2.5 times. An efficiency improvement of 2.5-
2.7 times is a first step towards mapping on power constrained platforms. The
important part is that this optimization can be combined with other optimiza-
tions to achieve a much more aggressive efficiency improvement.

Another important other efficiency problems is data movement. The thesis
problem statement defines the number of external memory transfers as a quan-
titative metric for data movement efficiency. Nowadays, data movement is re-
sponsible for a large portion of the consumed energy in compute platforms.
Inter-tile data reuse optimization is a new tiling or blocking technique that con-
siderably improves data reuse in nested loop accelerators. Before this work ac-
celerators could exploit the data overlap between successive tiles, but not
automatically shape the tiles to maximize this overlap. With real benchmarks
we show that optimizing the tile shape for inter-tile reuse can further reduce
external memory accesses up to 52% compared to an already aggressively opti-
mized schedule. To exploit maximum inter-tile overlap we developed an analyt-
ical data reuse model that quickly gives the number of external accesses and the
required buffer size to fit this schedule into a local scratchpad. With our model-
based search approach we obtain the best schedules in mere seconds. These best
schedules are evaluated with real FPGA mappings done by the Xilinx Vivado HLS
tools. This resulted in a locality optimized design workflow that eases the map-
ping of ConvNets to dedicated hardware accelerators.

Dedicated function accelerators in FPGAs are a flexible alternative for CPUs
and GPUs. To improve the energy-efficiency even further we propose the Neuro
Vector Engine (NVE), a flexible accelerator template for ASIC implementation.
The NVE performs extremely efficient SIMD operations on vector words. In ad-
dition, it has flexible VLIW-type control such that it can use layer merging and
inter-tile reuse optimizations. This combines the optimizations from earlier
chapters into an efficient accelerator template. Synthesis of a good performing
instance of the template with a 40nm low power TSMC library demonstrated
that the NVE is a very small design, requiring only 0.259 mm2. On our real world
speed sign recognition benchmark and face detection application our 1 Ghz in-
stance achieves 30.2 GOp/s. This is 20 times faster than our NEON optimized
mappings on an ARM-A9 Core. In addition, it is benchmarked against CUDA
optimized mappings for an NVIDIA TK1 embedded GPU. Depending on the layer
configurations the NVE is 1.2 to 2.6 times faster than the GPU. Considering the
ultra-low power consumption of NVE (only 54 mW), this is a very impressive

8.2. FUTURE WORK 141

result. Especially the high degree of flexibility makes that our NVE has a high
utilization which is important for efficiency. Many other accelerators are too
dedicated to the convolution operation. As a result, they require more data
movement, or have a low utilization during several stages of the algorithm; both
reduce energy efficiency substantially.

This thesis has shown that dedicated accelerators can bridge the energy effi-
ciency gap for ConvNets. However, the programmability of many accelerators
can be improved a lot from both an architectural and a compiler perspective.
The thesis problem statement defines the utilization level that a normal pro-
grammer can achieve when mapping different network workloads as a quantita-
tive metric for flexibility, which again results into efficiency. Our work proposes
a flexible VLIW instruction format for the NVE to obtain a very programmable
architecture. In addition, the compiler part opens opportunities to improve ap-
plication portability and designer productivity by abstracting away from target
specific assembly languages. Our COmpiler for Neuro Vector Engines (CONVE)
addresses the portability and productivity problems. By using an abstract .JSON
network description the programmer does not have to think of architectural de-
tails. Also the application fine tuning is handled by the CONVE framework. Ad-
vanced code optimizations such as, modulo scheduling, and feature map
combining ensure that an expert level of optimization is achieved automatically.

Although this thesis focused on a broad range of techniques to improve the
computational efficiency of ConvNets, it is also applicable to a much broader
application domain. Other image/video processing pipelines, such as Motion Es-
timation for video coding can benefit from the proposed contributions. Algo-
rithms that require several Linear Algebra operations can be made much more
efficient with the contributions of this thesis. In Chapter 5 we presented detailed
evaluations of the effect of inter-tile reuse optimization for such applications. In
addition the NVE is basically a vector processor that can accelerate these and
many other workloads for the embedded domain. This also holds for the quickly
developing field of Deep Learning. New network architectures that contain for
instance residual nodes or recurrent nodes can benefit a lot from the ideas on
inter-tile reuse and the NVE with the CONVE framework.

8.2 Future work

This thesis is written in a time where Deep Learning based algorithms became
very popular. Nowadays many research groups are studying the efficiency prob-
lems in deep learning. Keeping up with the state-of-the-art was one of the major
challenges for this work. This section will discuss limitations of this work with
regard to new deep learning techniques. In addition, to a changing field with
new contributions we encountered several opportunities for improvement of the
various efficiency optimization techniques. Some of these opportunities deserve
to be mentioned as possible extensions of the presented work.

142 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Network compression for further computational workload reduction: Very re-
cent works on workload reduction have further reduced the computational re-
quirements [60,120]. For instance they perform advanced network pruning
techniques that remove unnecessary parts in deep networks. This often reduces
the required computational workload, but it makes networks less regular. Our
layer merging technique and fixed point accuracy exploration from Chapter 4
had a similar goal. However, our early work from 2011 did not go as far as these
new solutions. Still our work is very valuable next to other works. For example
the Deep Compression work [60] focuses on reducing the weight set. The huge
amount of intermediate neuron data per layer should still be communicated to
larger memories. Their work could be further improved by merging layers like
we did. This will reduce the intermediate data communication significantly. An-
other aspect is the regularity of the networks. Our reduction maintains a regular
network structure where these newer techniques create very irregular and sparse
structures. For these compute workloads it is difficult to achieve a high utiliza-
tion. Future work into more advanced architectures is necessary to cope effi-
ciently with very irregular compute workloads. Alternatively, we need different
network compression techniques that enforce regular network structure to ex-
ploit existing computer architecture techniques such, as sub word parallelism by
SIMD, and spatial locality by wide cache lines.

Aggressive data locality optimization by layer fusion and re-computation: Our
work on inter-tile reuse optimization (Chapter 5) is an important technique to
improve the data locality for deep ConvNets. However, we did not address the
depth of the networks. Inter-tile optimizations are performed on single or a
merged layer. New recent works exploit the data reuse over successive layers [2].
The difficulty in fusing layers is the growing set of data dependencies per layer.
Before fusing two layers a portion of the fist layer must be computed, next this
portion is consumed by the second layer. This producer consumer relation and
the fact that a larger portion from an early layer is required to compute a small
portion of a later layer make it difficult to implement fusion efficiently. Also the
work in [2] is challenged with these dependencies. They use sliding window tiles
that contain a few fused layers. For these fused tiles a lot of local buffer space is
required to meet the inter layer dependencies. We developed an early technique
to fuse layers as addition to the inter-tile work. It is quite easy to interleave suc-
cessive tile strips from succeeding layers. Our new method does even take re-
computation of intermediate results into account to reduce the number of de-
pendency constraints. As a result, an additional external traffic reduction of 1.5
to 2 times is demonstrated upon the best schedules of our inter-tile work. This
work is presented on the NeuroArch workshop at ISCA 2014 [102]. At the time of
writing this thesis we are working out the mathematical details of this improved
data locality optimization technique.

Improving the NVE template: During our work on the NVE accelerator tem-
plate we identified opportunities for further improvement. The NVE aims at the
ultra-low power embedded SoC domain. Therefore, the energy efficiency is very

8.2. FUTURE WORK 143

high at an effective compute throughput (in multiply and accumulate opera-
tions) in the range of 30 Gop/s. A silicon efficiency of 115 Gops/mm2 and an en-
ergy efficiency of 559 Gops/W is demonstrated. Note that in addition to the 30
Gop/s of effective neuron operations a substantial amount of data re-order and
address computation is performed by the dedicated function units. Scaling up
the effective performance beyond 300 Gop/s is rather difficult. Wider vector pro-
cessing gives a performance increase but, it reduces the vector MACC unit utili-
zation and thereby the energy efficiency. To increase performance further a
multiprocessor configuration should be developed. Since data sharing between
processing nodes is key the multiprocessor design should have a flexible com-
munication structure.

Memory reordering units for the NVE: The NVE benefits from excellent data
locality in the computations due to inter-tile reuse optimization. This works very
well if incoming and outgoing data streams are controlled by flexible Direct
Memory Access (DMA) controllers. In a report [152] we show the first efforts
towards flexible DMA devices. These can offer high bandwidth and flexibility.
Further improvements on dedicated DMAs and the memory subsystem are im-
portant for accelerator developments.

More efficient ConvNet operations: As demonstrated in this thesis the com-
putational workload in a ConvNet is dominated by MACC operations. To im-
prove the efficiency at the operator level we could further improve these MACC
operations. In a short study we looked into Carry Save Multiply Accumulates. It
requires that the accumulator uses numbers in its carry save format. This signif-
icantly reduces the complexity of multiplications and the accumulations. Only
after the last accumulation the independent sum and carry part should be com-
bined with a more costly conventional adder. This technique could be further
developed and used as a compute element in the NVE template to increase effi-
ciency.

Compute architecture for irregular ConvNets: With the introduction of
XNOR-net [120] and network compression techniques [60] their workload has
become irregular. These new techniques have e.g. introduced the requirement
to perform sparse matrix operations efficiently. However, from a compute per-
spective this opens new challenges for computational efficiency. The work in
[59] is one of the first accelerator architectures that focusses on the irregular
operations for compressed networks. These new works design advanced circuits
to perform network operators very efficiently. However, these irregular work-
loads require a well-tuned ISA to achieve flexibility and efficiency. Maybe the
ISA is even more important since the program control becomes more compli-
cated. In addition, good compilers such as our CONVE framework are key to
achieve good hardware utilization on such sparse network accelerators. Future
work in these domains are important to further increase ConvNet efficiency.

 144

BIBLIOGRAPHY

[1] C. Alias, A. Darte, and A. Plesco, "Optimizing Remote Accesses for
Offloaded Kernels: Applications to high-level synthesis for fpga," in
Proceedings of the Conference on Design, Automation and Test in Europe
(DATE '13), 2013, pp. 575-580.

[2] M. Alwani, H. Chen, M. Ferdman, and P. Milder, "Fused-Layer CNN
accelerators," in 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2016, pp. 1-12.

[3] B. Bayer, "Color imaging array," US Patent 3,971,065, 1976.

[4] H. Bay, T. Tuytelaars, and L. van Gool, "Surf: Speeded up robust features,"
in Computer vision - ECCV, 2006, pp. 404-417.

[5] Y. Bengio, "Practical recommendations for gradient-based training of
deep architectures," in Neural Networks: Tricks of the Trade, K.-R. Müller,
G. Montavon, and G.B. Orr, Eds.: Springer, 2013, ch. 19.

[6] K. Beyls and E.H. D'Hollander, "Refactoring for data locality," Computer,
vol. 42, no. 2, pp. 62-71, 2009.

[7] N. Binkert et al., "The gem5 simulator," SIGARCH Computer Architecture
News, vol. 39, no. 2, pp. 1-7, 2011.

[8] U. Bondhugula et al., "Automatic Transformations for Communication-
minimized Parallelization and Locality Optimization in the Polyhedral
Model," in Proceedings of the Joint European Conferences on Theory and
Practice of Software 17th International Conference on Compiler
Construction , 2008, pp. 132-146.

[9] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, "A
practical and fully automatic polyhedral program optimization system,"
in Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2008, pp. 101-113.

[10] S. Borkar and A.A. Chien, "The future of microprocessors,"
Communications of the ACM, vol. 54, no. 5, pp. 67-77, 2011.

[11] L. Bottou, "Large-scale machine learning with stochastic gradient
descent," in In Proceedings of COMPSTAT, 2010, pp. 177-186.

 145

[12] L. Bottou, "Stochastic gradient descent tricks," in Neural Networks: Tricks
of the Trade.: Springer, 2012, ch. 18, pp. 421-436.

[13] L. Bottou et al., "Comparison of classifier methods: a case study in
handwritten digit recognition," in Proceedings of the 12th International
Conference on Pattern Recognition and Neural Network, 1994, pp. 77-82.

[14] F. Catthoor et al., Data access and storgage management for embedded
programmable processors.: Springer Science & Business Media, 2013.

[15] L. Cavigelli et al., "Origami: A convolutional network accelerator," in 25th
edition of the ACM/IEEE Great Lakes Symposium on VLSI (GLS-VLSI),
2015, pp. 199-204.

[16] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari
Cadambi, "A dynamically configurable coprocessor for convolutional
neural networks," in Proceedings of the 37th annual international
Symposium on Computer Architecture, 2010.

[17] K. Chandrasekar, B. Akesson, and K. Goossens, "Improved Power
Modeling of DDR SDRAMs," in Euromicro Conference on Digital System
Design (DSD), 2011, pp. 99-108.

[18] K. Chellapilla, S. Puri, and P. Simard, "High performance convolutional
neural networks for document processing," in 10th International
Workshop on Frontiers in Handwriting Recognition, 2006.

[19] T.-C. Chen et al., "Analysis and architecture desing of an hdtv 720p 30
frames/s h264/avc encoder," IEEE Transactions on Circuits and Systems
for Video Technology, pp. 16:673-688, 2006.

[20] T. Chen et al., "DianNao: a small-footprint high-throughput accelerator
for ubiquitous machine-learning," in Proceedings of the 19th international
conference on Architectural support for programming languages and
operating systems, 2014, pp. 269--284.

[21] Y. Chen, J. Emer, and V. Sze, "Eyeriss: A Spatial Architecture for Energy-
efficient Dataflow for Convolutional Neural Networks," in Proceedings of
the 43rd International Symposium on Computer Architecture (ISCA),
Seoul, Republic of Korea, 2016, pp. 367-379.

[22] Y. Chen, T. Krishna, J. Emer, and V. Sze, "Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks," in
IEEE International Solid-State Circuits Conference (ISSCC), 2016, pp. 262-
263.

[23] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, "Deep Learning-Based
Classification of Hyperspectral Data," IEEE Journal of Sleceted Topics in
Applied Earth Observations and Remote Sensing, vol. 7, no. 6, pp. 2094-
2107, June 2014.

[24] W. Chen, J.T. Wilson, S. Tyree, K.Q. Weinberger, and Y. Chen,
"Compressing neural networks with the hashing trick," in Proceedings of

146 BIBLIOGRAPHY

the 32nd International Conference on Machine Learning, 2015, pp. 2285-
2294.

[25] D. Ciresan, A. Giusti, L.M. Gambardella, and J. Schmidhuber, "Deep
Neural Networks Segment Neuronal Membranes in Electron Microscopy
Images," Advances in Neural Information Processing Systems 25, pp. 2843-
2851, 2012.

[26] D.C. Ciresan, A. Giusti, L.M. Gambardella, and J. Schmidhuber, "Mitosis
detection in breast cancer histology images with deep neural networks,"
in Medical Image Computing and Computer-Assisted Intervention-
MICCAI, 2013, pp. 411-418.

[27] D.C. Ciresan, U. Meier, L.M. Gambardella, and J. Schmidhuber, "Deep,
big, simple neural nets for handwritten digit recognition," Neural
Computation, vol. 22, no. 12, pp. 3207-3220, 2010.

[28] D.C. Ciresan, U. Meier, J. Masci, J.M. Gambardella, and J. Schmidhuber,
"Flexible, high performance convolutional neural networks for image
classification," in IJCAI Proceedings-International Joint Conference on
Aritficial Intelligence, 2011, pp. 1237-1242.

[29] D.C. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, "A committee of
neural networks for traffic sign classification," in IJCNN International
Conference on Neural Networks, 2011, pp. 1918-1921.

[30] D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber, "Multi-column deep
neural network for traffic sign classification," Neural Networks, vol. 32, pp.
333-338, 2012.

[31] D.C. Ciresan, U. Meier, and J. Schmidhuber, "Multi-column deep neural
networks for image classification," in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2012, pp. 3642-3649.

[32] A. Coates, B. Huval, T. Wang, D.J. Wu, and A.Y. Ng, "Deep learning with
COTS HPC systems," in Proceedings of the 30th international conference
on machine learning, 2013, pp. 1337-1345.

[33] L. Codrescu et al., "Hexagon DSP: an Architecture Optimized for Mobile
Multimedia and Communications," IEEE Micro, vol. 34, no. 2, pp. 34-43,
March 2014.

[34] R. Collobert, K. Kavukcuoglu, and C. Farabet, "Torch7: A matlab-like
environment for machine learning," in BigLearn, NIPS Workshop, 2011.

[35] F. Comaschi, S. Stuijk, T. Basten, and H. Corporaal, "RASW: a run-time
adaptive sliding window to improve viola-jones object detection," in
Proceedings of 7th International Conference on Distributed Smart Cameras
ICDSC, 2013, pp. 1-6.

[36] J. Cong and B. Xiao, "Minimizing computation in convolutional neural
networks," in International Conference on Aritficial Neural Networks, 2014,
pp. 281-290.

 147

[37] F. Conti and L. Benini, "A Ultra-Low-Energy Convolution Engine for Fast
Brain-Inspired Vision in Multicore Clusters," in Proceedings of the Desing,
Automation & Test in Europe Conference & Exhibition, 2015, pp. 683-688.

[38] N. Dalal and B. Triggs, "Histograms of oriented gradients for human
detection," in IEEE Computer Society Conference on Computer Vision and
Pattern Recognition CVPR, 2005, pp. 886-893.

[39] N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human
Detection," in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recogniton CVPR, 2005, pp. 886-893.

[40] A. Darte and A. Isoard, "Parametric Tiling with Inter-Tile Data Reuse," in
In 4th International Workshop on Polyhedral Compilation Techniques
(IMPACT'14), 2014.

[41] G. De Haan, P.W. Biezen, H. Huijgen, and O.A. Ojo, "True-motion
estimation with 3-D recursive search block matching," IEEE Transactions
on Crircuits and Systems for Video Technology, vol. 3, no. 5, pp. 368-379,
1993.

[42] R.H. Dennard, J. Cai, and A. Kumar, "A perspective on today's scaling
challenges and possible future directions," Solid-State Electronics, vol. 51,
no. 4, pp. 518-525, 2007.

[43] G. Desoli et al., "A 2.9 Tops/w deep convolutional neural network soc in
fd-soi 28nm for intelligent embedded systems," in IEEE International
Solid-State Circuits Conference, 2017, pp. 238-239.

[44] C. Ding and Y. Zhong, "Predicting Whole-program Locality Through
Reuse Distance Analysis," in PLDI '03, 2003, pp. 245-257.

[45] C. Ding and Y. Zhong, "Reuse Distance Analysis," University of Rochester,
2001.

[46] Z. Du et al., "ShiDianNao: Shifting vision processing closer to the sensor,"
in Proceedings of the 42nd Annual International Symposium on Computer
Architecture ISCA, Portland, Oregon, 2015, pp. 92-104.

[47] D. Erhan et al., "Why does unsupervised pre-training help deep learing?,"
Journal of Machine Learning Research, pp. 625-660, 2010.

[48] H. Esmaeilzadeh, E. Blem, R. St. Amant, K Sankaralingam, and D Burger,
"Dark Silicon and the End of Multicore Scaling," in 38th Annual
International Symposium onComputer Architecture (ISCA), 2011, pp. 365-
376.

[49] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, "Learning hierarchical
features for scene labeling," Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 35, pp. 1915-1929, 2013.

[50] C. Farabet et al., "Neuflow: A runtime reconfigurable dataflow processor
for vision," in IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2011, pp. 109-116.

148 BIBLIOGRAPHY

[51] C. Farabet, C. Poulet, J. Han, and Y. LeCun, "An FPGA-based processor for
convolutional networks," in International Conference on Field
Programmable Logic and Applications FPL , 2009, pp. 32-37.

[52] J.A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A VLIW
Approach to Architecture, Compilers and Tools.: Morgan Kaufmann, 2012.

[53] C Garcia and M Delakis, "Convolutional face finder: a neural architecture
for fast and robust face detection," IEEE Transaction on Pattern Analysis
and Machine Intelligence, vol. 26, pp. 1408-1423, 2004.

[54] R. Girshick, "Fast R-CNN," in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2015.

[55] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies
for accurate object detection and semantic segmentation," in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2014,
pp. 580-587.

[56] X. Glorot, A. Bordes, and Y. Bengio, "Deep Sparse Rectifier Neural
Networks," in 14th International Conference on Artificial Intelligence and
Statistics, 2011, pp. 315-323.

[57] R.E. Gonzales, "Xtensa: a configurable and extensible processor," in IEEE
Micro, 2000, pp. 60-70.

[58] R. Hameed et al., "Understanding sources of inefficiency in general-
purpose chips," ACM SIGARCH Computer Architecture News, vol. 38, no.
3, pp. 37-47, 2010.

[59] S. Han et al., "EIE: Efficient Inference Engine on Compressed Deep Neural
Networks," in Proceedings of the 43rd International Symposium on
Computer Architecture (ISCA), 2016, pp. 243-254.

[60] S. Han, H. Mao, and W.J. Dally, "Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization and Huffman
Coding," in International Conference on Learning Representations (ICLR),
2016.

[61] S.O. Haykin, Neural Networks and Learning Machines, 3rd ed.: Prentice
Hall, 2008.

[62] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image
Recognition," arXiv preprint arXiv: 1512.03385, 2015.

[63] K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification," in The
IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1026-
1034.

[64] G.E. Hinton, "Connectionist learing procedures," Artificial intelligence,
vol. 40, no. 1, pp. 185-234, 1989.

[65] G.E. Hinton, "Connectionist learning procedures," Artificial intelligence,
vol. 40, no. 1, pp. 185-234, 1989.

 149

[66] G. Hinton et al., "Deep Neural Networks for Acoustic Modeling in Speech
Recognition: The Shared Views of Four Research Groups," Signal
Processing Magazine, IEEE, vol. 29, pp. 82-97, 2012.

[67] G.E. Hinton, S. Osindero, and Y.W. Teh, "A fast learning algorithm for
deep belief nets," Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006.

[68] G.E. Hinton and R.R. Salakhutdinov, "Reducing the dimensionality of data
with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.

[69] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, "Improving neural networks by preventing co-adaptation
of feature detectors," Technical Report, arXiv: 1207.0580 2012.

[70] J.L. Holi and J.N. Hwang, "Finite precision error analysis of neural network
hardware implementations," IEEE Transactions on Computers, vol. 42, no.
3, pp. 281-290, 1993.

[71] G. Huang, M. Mattar, H. Lee, and E.G. Learned-Miller, "Learning to align
from scratch," In Advances in Neural Information Processing Systems, pp.
764-772, 2012.

[72] Intel. ARK Processor Database. [Online]. http://ark.intel.com/

[73] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network
training by reducing internal covariate shift," in ICML, 2015.

[74] I. Issenin, E. Brockmeyer, M. Miranda, and N. Dutt, "DRDU: A Data Reuse
Analysis Technique for Efficient Scratch-pad Memory Management,"
ACM Trans. Des. Autom. Electron. Syst., vol. 12, no. 2, 2007.

[75] M. Jaderberg, A. Vedaldi, and A. Zisserman, "Speeding up convolutional
neural networks with low rank expansions," arXiv preprint,
arXiv:1405.3866 2014.

[76] Y. Jia et al., "Caffe: Convolutional Architecture for Fast Feature
Embedding," in Proceedings of the 22nd ACM International Conference on
Multimedia, Orlando, Florida, USA, 2014, pp. 675-678.

[77] N.P. Jouppi et al., "In-datacenter performance analysis of a tensor
processing unit," in Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA), 2017, pp. 1-12.

[78] D. Kline and V. Berardi, "Revisting squared-error and cross-entropy
functions for training neural networks classifiers," Neural Computing &
Applications, vol. 14, no. 4, pp. 310-318, 2005.

[79] A. Krizhevsky, S. Ilya, and G.E. Hinton, "ImageNet Classification with
Deep Convolutional Neural Networks 25," Advances in Neural Information
Processing Systems, pp. 1097-1105, 2012.

[80] M. Lam, "Software pipelining: an effective scheduling technique for VLIW
machines," in Proceedings of the ACM SIGPLAN conference on
Programming language design and implementation (PLDI), 1988, pp. 318-
328.

http://ark.intel.com/

150 BIBLIOGRAPHY

[81] A. Lavin and S. Gray, "Fast algorithms for convolutional neural networks,"
arXiv preprint, preprint arXiv: 1509.09308, 2015.

[82] Y. LeCun et al., "Backpropagation Applied to Handwritten Zip Code
Recogonition," Neural Computation, vol. 1, no. 4, pp. 541-551, 1989.

[83] Y. LeCun et al., "Handwritten Digit Recognition with a Back-propagation
Network," Advances in Neural Information Processing Systems NIPS 2, pp.
396-404, 1990.

[84] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning
applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov 1998.

[85] Y. LeCun, F.J. Huang, and L. Bottou, "Learning methods for generic object
recognition with invaricance to pose and lighting," in Proceedings of the
Computer Society Converencde on Computer Vision and Pattern
Recognition CVPR, 2004, pp. 97-104.

[86] Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp, "Off-road obstacle
avoidance through end-to-end learning," Advances in Neural Information
Processing Systems, pp. 739-746, 2005.

[87] Q.V. Le et al., "Building high-level features using large scale unsupervised
learing," in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2013, pp. 8595-8598.

[88] S. Li et al., "Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures," in Proccedings of
the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2009, pp. 469-480.

[89] W. Liu et al., "SSD: Single Shot MultiBox Detector," in European
conference on computer vision (ECCV), 2016.

[90] Q. Liu, G.A. Constantinides, K. Masselos, and P.Y.K. Cheung, "Combining
Data Reuse With Data-Level Parallelization for FPGA-Targeted Hardware
Compilation: A Geometric Programming Framework," in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 3, pp. 305-315, 2009.

[91] D.G. Lowe, "Object recognition from local scale-invariant features," in
Proceedings of the 7th IEEE International Coference on Computer Vision,
1999, pp. 1150-157.

[92] R. Malvar, L. He, and R. Cutler, "High-Quality Linear Interpolation for
Demosaicing of Bayer-Patterned Color Images," in IEEE International
Conference of Acoustic, Speech and Signal Processing, 2004.

[93] J. Ma, R.P. Sheridan, A. Liaw, G.E. Dahl, and V. Svetnik, "Deep Neural Nets
as a Method for Quantitative Structure−Activity Relationships," Journal of
Chemical Information and Modeling, vol. 55, no. 2, pp. 263-274, 2015.

 151

[94] W.S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent
in nervous activity," Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133,
1943.

[95] S. Mehta, G. Beeraka, and P.-C. Yew, "Tile size selection revisited," ACM
Trans. Archit. Code Optim., vol. 10, no. 4, pp. 35:1-35:27, 2013.

[96] G.E. Moore, "Cramming more components onto integrated circuits.,"
Electronics, vol. 38, no. 8, April 1965.

[97] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, "Optimizing
NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0," in 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2007, pp. 3-14.

[98] Y.-Y. Nguwi and S.-Y. Cho, "Emergent self-organizing feature map for
recognizing road sign images," Neural Computing and Applicaitons, vol.
19, no. 4, pp. 601-615, 2010.

[99] D. Nistér and H. Stewénius, "Scalable recognition with a vocabulary tree,"
in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition CVPR, 2006, pp. 2161-2168.

[100] "NVIDIA Jetson TK1 Development Kit, Bringing GPU accelerated
computing to Embedded Systems," Technical Brief 2014.

[101] Nvidia, "NVIDIA CUDA C Programming Guide 3.2," NVIDIA Corporation,
2010.

[102] M. Peemen, B. Mesman, and H. Corporaal, "A Data-Reuse Aware
Accelerator for Large-Scale Convolutional Networks," in Workshop on
Neuromorphic Architectures (NeuroArch), 2014.

[103] M. Peemen, B. Mesman, and H. Corporaal, "Efficiency Optimization of
Trainable Feature Extractors for a Consumer Platform," in Advanced
Concepts for Intelligent Vision Systems, 2011, pp. 293-304.

[104] M. Peemen, B. Mesman, and H. Corporaal, "Inter-tile reuse optimization
applied to bandwidth constrained embedded accelerators," in Desing
Automation and Test in Europe (DATE), Grenoble, France, 2015.

[105] M. Peemen, B. Mesman, and H. Corporaal, "Speed sign detection and
recognition by convolutional neural networks," in 8th International
Automotive Congress, Eindhoven, 2011.

[106] M. Peemen, W. Pramadi, B. Mesman, and H. Corporaal, "VLIW code
generation for a convolutional network accelerator," in In proceedings of
the 18th International Workshop on Software and Compilers for Embedded
Systems, 2015, pp. 117-120.

[107] M. Peemen, W. Pramadi, B. Mesman, and H. Corporaal, "VLIW Code
Generation for a Convolutional Network Accelerator," in Proceedings of
the 18th International Workshop on Software and Compilers for Embedded
Systems (SCOPES), 2015, pp. 117-120.

152 BIBLIOGRAPHY

[108] M. Peemen, A.A.A. Setio, B. Mesman, and H. Corporaal, "Memory-centric
accelerator design for convolutional neural networks," in Computer
Design (ICCD), IEEE 31st International Conference on, Ashville, 2013.

[109] M. Peemen et al., "The neuro vector engine: flexibility to improve
convolutional net efficiency for wearable vision," in Design, Automation
& Test in Europe Conference & Exhibition (DATE), Dresden, 2016, pp. 1604-
1609.

[110] P.H. Pham et al., "Neuflow: Dataflow vision processing system-on-a-chip,"
in IEEE 55th International Midwest Symposium on Circuits and Systems,
2012, pp. 1044-1047.

[111] L.-N. Pouchet et al., "Loop Transformations: Convexity, Pruning and
Optimization," in Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2011, pp. 549-562.

[112] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, "Polyhedral-based
Data Reuse Optimization for Configurable Computing," in Proceedings of
the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, 2013, pp. 29-38.

[113] W. Qadeer et al., "Convolution Engine: Balancing Efficiency and
Flexibility in Specialized Computing," Communications ACM, vol. 58, no.
4, pp. 85-93, March 2015.

[114] W. Qadeer et al., "Convolution Engine: Balancing Efficiency and
Flexibility in Specialized Computing," in Proceedings of the 40th Annual
International Symposium on Computer Architecture, 2013, pp. 24-35.

[115] N. Qian, "On the momentum term in gradient descent learning
algorithms," Neural Networks, vol. 12, no. 1, pp. 145-151, 1999.

[116] J. Ragan-Kelley, Decoupling algorithms from the organization of
computation for high performance image processing.: Ph.D. Dissertation.
Massachusetts Institute of Technology., 2014.

[117] J. Ragan-Kelley et al., "Halide: a language and compiler for optimizing
parallelims, locality, and recomputation," in Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2013, pp. 519-530.

[118] R. Raina, A. Madhavan, and A.Y. Ng, "Large-scale Deep Unsupervised
Learning Using Graphics Processors," in Proceedings of the 26th Annual
International Conference on Machine Learning, 2009, pp. 873-880.

[119] M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun, "Efficient learning of
sparse representations with an energy-based model," Advances in Neural
Information Processing Systems 19, pp. 1137-1144, 2006.

[120] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, "XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Networks,"
arXiv preprint, arXiv:1603.05279 2016.

 153

[121] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once:
Unified, Real-Time Object Detection," in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[122] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time
object detection with region proposal networks. ," in Advances in neural
information processing systems., 2015.

[123] F. Rosenblatt, "The Perceptron: A probalistic model for information
storage and organization in the brain," Psychological Review, vol. 65, pp.
386-408, 1958.

[124] H. Rowley, S. Baluja, and T. Kanade, "Neural network-based face
detection," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, pp. 22-38, 1998.

[125] D.E. Rumelhart and J.L. McClelland, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, 1st ed. Cambridge, MA:
MIT Press, 1986.

[126] O. Russakovsky et al., "ImageNet Large Scale Visual Recognition
Challenge," International Journal of Computer Vision, vol. 115, no. 3, pp.
211-252, 2015.

[127] T.N. Sainath, A.-R. Mohamed, B. Kingsbury, and B. Ramabhadran, "Deep
convolutional neural networks for LVCSR," in Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on, 2013,
pp. 8614-8618.

[128] M. Sankaradas et al., "A Massively Parallel Coprocessor for Convolutional
Neural Networks," in IEEE International Conferenc on Application -specific
Systems, Architectures and Processors, 2009, pp. 53-60.

[129] N. Satish et al., "Can Traditional Programming Bridge the Ninja
Performance Gap for Parallel Computing Applications?," in In ISCA 39,
2011, pp. 440-451.

[130] T.J. Sejnowski and C.R. Rosenberg, "Parallel networks that learn to
pronounce English text," Complex Systems, vol. 1, pp. 145-168, 1987.

[131] P. Sermanet et al., "Overfeat: Integrated recognition, localization and
detection using convolutional networks," in International Conference on
Learning Representations (ICLR), 2013.

[132] D. Shin, J. Lee, J. Lee, and H.J. Yoo, "DNPU: an 8.1TOPS/W reconfigurable
CNN-RNN processor for general-purpose deep neural networks," in IEEE
International Solid-State Circuits Conference, 2017, pp. 240-241.

[133] J. Shirako et al., "Analytical bounds for optimal tile size selection," in in
Proceedings of the 21st International Conference on Compiler Construction,
2012, pp. 101-121.

154 BIBLIOGRAPHY

[134] R. Shiveley. (2008) Performance scaling in the multi-core era. [Online].
http://software.intel.com/en-us/articles/performance-scaling-in-the-
multi-core-era

[135] Silicon Hive, "Silicon Hive Technology Primer," Phillips Electronics NV,
The Netherlands, 2003.

[136] D. Silver et al., "Mastering the game of Go with deep neural networks and
tree search," Nature, vol. 529, pp. 484-489, January 2016.

[137] P.Y. Simard, D. Steinkraus, and J.C. Platt, "Best Practices for
Convolutional Neural Networks Applied to Visual Document Analysis,"
Proceedings of the Seventh International Conference on Document
Analysis and Recognition, vol. 2, pp. 958-962, 2003.

[138] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for
Large-Scale Image Recognition," in International Conference on Learning
Representations (ICLR), 2015.

[139] PassMark Software. CPU Benchmark Charts. [Online].
http://www.cpubenchmark.net

[140] T. Starner, "Project Glass: An Extension of the Self," Pervasive Computing,
IEEE, vol. 12, pp. 14-16, 2013.

[141] I. Sutskever, J. Martens, G.E. Dahl, and G.E. Hinton, "On the importance
of initialization and momentum in deep learning," in International
Conference on Machine Learning (ICML), 2013, pp. 1139-1147.

[142] C. Szegedy et al., "Going Deeper With Convolutions," in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp.
1-9.

[143] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, "DeepFace: Closing the
Gap to Human-Level Performance in Face Verification," in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp.
1701-1708.

[144] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, "Selective search
for object recognition," in IJCV, 2013.

[145] N Vasilache, J. Johnson, M. Mathieu, S. Chintala, and Y. LeCun, "Fast
convolutional nets with fbfft: A GPU performance evaluation," in
International Conference on Learning Representations, 2014.

[146] A. Vasilyev, "CNN optimizations for embedded systems and FFT,"
Stanford, Thesis 2015.

[147] P. Viola and M. Jones, "Rapid object detection using a boosted cascade of
simple features," in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pettern Recognition CVPR, 2001, pp. 511-518.

[148] Wikipedia. List of AMD Microprocessors. [Online].
https://en.wikipedia.org/wiki/List_of_AMD_microprocessors/

http://software.intel.com/en-us/articles/performance-scaling-in-the-multi-core-era
http://software.intel.com/en-us/articles/performance-scaling-in-the-multi-core-era
http://www.cpubenchmark.net/
https://en.wikipedia.org/wiki/List_of_AMD_microprocessors/

 155

[149] Wikipedia. List of Intel Microprocessors. [Online].
http://wikipedia.org/wiki/List_of_Intel_microprocessors/

[150] M.E. Wolf and M.S. Lam, "A data locality optimizing algorithm," in
Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 1991, pp. 30-44.

[151] W.A. Wulf and S.A. McKee, "Hitting the memory wall: implications of the
obvious," ACM SIGARCH computer architecture news, vol. 23, no. 1, pp.
20-24, 1995.

[152] R.Z. Xie, "A flexible memory shuffling unit for image processing
accelerators," Eindhoven University of Technology, Msc Thesis 2013.

[153] R.Z. Xie, M. Peemen, and H. Corporaal, "A flexible memory shuffling unit
for image processing accelerators," Eindhoven University of Technolgy,
Master graduation report 2013.

[154] Xilinx, "Vivado Desing Suite User Guide, High-Level Synthesis," UG902
2014.

[155] C. Zhang et al., "Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks," in Proceedings of the ACM/Sigda
International Symposium on Field-Programmable Gate Arrays, 2015, pp.
161-170.

[156] W. Zuo et al., "Improving Polyhedral Code Generation for High-level
Synthesis," in Proceedings of the Ninth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis, 2013,
pp. 15:1-15:10.

http://wikipedia.org/wiki/List_of_Intel_microprocessors/

 156

LIST OF PUBLICATIONS

Refereed papers covered in this thesis

[1] M. Peemen, B. Mesman, and H. Corporaal, "Inter-Tile Reuse Optimization
Applied to Bandwidth Constrained Embedded Accelerators," in DATE:
Design Automation and Test in Europe, pp. 169-174, 2015.

[2] M. Peemen, A.A.A. Setio, B. Mesman, and H. Corporaal, "Memory-Centric
Accelerator Design for Convolutional Neural Networks," in ICCD:
International Conference on Computer Design, pp. 13-19, IEEE, 2013.

[3] M. Peemen, B. Mesman, and H. Corporaal, "Efficiency Optimization of
Trainable Feature Extractors for a Consumer Platform," in ACIVS:
Advanced Concepts for Intelligent Vision Systems, pp. 293-304, LNCS, 2011.

[4] M. Peemen, B. Mesman, and H. Corporaal, "Speed Sign Detection and
Recognition by Convolutional Neural Networks," in International
Automotive Congress, pp. 162-170, 2011.

[5] M. Peemen, W. Pramadi, B. Mesman, and H. Corporaal, "VLIW Code
Generation for a Convolutional Network Accelerator," in SCOPES:
International Workshop on Software and Compilers for Embedded Systems,
2015.

[6] M. Peemen, B. Mesman, and H. Corporaal, "A Data-Reuse Aware
Accelerator for Large-Scale Convolutional Networks," in NeuroArch
Workshop at ISCA, 2014.

[7] M. Peemen, B. Mesman, R. Shi, S. Lal, B. Juurlink and H. Corporaal, "The
Neuro Vector Engine: Flexibility to Improve Convolutional Network
Efficiency for Wearable Vision," in DATE: Design Automation and Test in
Europe 2016.

 157

Other (co-)authored papers

[8] S. Tabik, M. Peemen, N. Guil, and H. Corporaal, "Demystifying the 16x16
thread-block for stencils on the GPU," Concurrency and Computation:
Practice and Experience, Design Automation and Test in Europe, 2015.

[9] S. Tabik, M. Peemen, L.F. Romero, and E. Zapata, "Iterative Multiple 3d-
stencil pipeline on GPUs," International Journal of High Performance
Computing Applications, Under review.

[10] R. Shi, Z. Xu, Z. Sun, M. Peemen, A. Li, H. Corporaal, and D. Wu, "A Locality
Aware Convolutional Neural Networks Accelerator," in Euromicro DSD:
Conference on Digital System Design, IEEE, 2015.

[11] T. Geng, L. Waeijen, M. Peemen, H. Corporaal, Y. He, “MacSim: A MAC-
Enabled High-Performance Low-Power SIMD architecture” in Euromicro
DSD: Conference on Digital System Design, IEEE, 2016

[12] Y. He, M. Peemen, L. Waeijen, E. Diken, M. Fiumara, G. Rauwerda, H.
Corporaal, T. Geng, “A configurable SIMD architecture with explicit
datapath for intelligent learning,” in International Conference on
Embedded Computer Systems: Architectures, Modeling and Simulation
(SAMOS), IEEE, 2016

 158

ACKNOWLEDGEMENTS

This thesis is the result after an intense period of hard work that could only be
completed with the support of many people around me. A key person in this is
my promotor Henk Corporaal who always provided guidance, inspiration, crea-
tive ideas, and the encouragement to continue and finish my research. Together
with my copromotor Bart Mesman you invited me to join the Electronic Systems
(ES) Group and created the opportunity to work on Convolutional Networks,
which at that time (2010) was a new and risky topic. I really appreciated the su-
pervision style that encouraged independent work, greatly stimulating creativ-
ity. I also thank Ralph Otten, who was my second promotor during my research
period in the ES group. It is very sad that Ralph passed away last year, the result
of this thesis benefited considerably from his feedback and advice.

I thank Cees Snoek, Luca Benini, Olivier Temam, Kees van Berkel, and Peter
de With for being part of my Doctoral Committee, and for their time and effort
in reviewing the manuscript. I also like to thank the different industrial collabo-
ration partners that provided several interesting real-world problems, which im-
proved the applicability of my Ph.D. research. For instance the collaboration
with TomTom initiated the development of my speed sign detector as part of the
SPITS project. The company Assembléon introduced me to challenging recogni-
tion problems in the EVA project. With RECORE Systems we worked on wide
SIMD architectures for deep learning in the RECA project. I really appreciated
these industrial collaborations.

The many collaboration in the ES group also contributed greatly to the work
in this thesis. Being a member of the PARsE research team helped to get good
feedback on my research ideas and improved my understanding. The synergy
between the members and different topics in the team accelerated research by
quickly shaping raw ideas into methodologies and experiments. I thank Zhenyu,
Yifan, Dongrui, Cedric, Gert-Jan, Shakith, Roel, Erkan, Ang, Luc and Mark for
their feedback and advice during the biweekly PARsE meetings. Especially the
support from Gert-Jan, who was my office friend during my research period at
the TU/e, helped me a lot. I thank him for the practical help on so many topics
and the good reviews of my papers. I also thank him for the time that we spent
traveling. On conferences like ICCD in Asheville, NC, USA, and the summer
school in Fiuggi, Italy, it was always great to have you around.

 159

Many thanks to everyone at the ES group, you all made my work at the TU/e
a success. I value the work, support, and care of the group leaders Ralph Otten
and Twan Basten, the project manager Jan van Dalfsen, and the secretaries
Marja, Rian, and Margot. I thank Kees Goossens for the experience of being
teaching assistant in your system design courses, it was fun and an excellent ex-
perience. Also many thanks to the people who joined our (non)scientific discus-
sions at the coffee table: Marc, Sander, Luc, Raymond, Marcel, Martijn, Sven,
Andrew, Joost, and all the others.

One of the best experiences of my Ph.D. work are the many Master student
projects that I supervised together with Henk. The projects of Roy, Rui Zhou,
Peter, Arnoud, Wisnu, and Gaurav contributed to the content in this thesis. It
was great to have you on board, your contributions really made this a team ef-
fort. I also express my gratitude for the good collaborative work with Siham Ta-
bik from Málaga, Spain. Our work on GPU thread-block scheduling did not
directly end up in this thesis, but it did result in efficient GPU mappings for the
NVE comparisons.

A big word of thanks goes to the Dutch railway operator “Nederlandse Spoor-
wegen (NS)”. Every day I commuted from Breda to Eindhoven by train. For some
reason this environment had a very creative effect on my thinking. For example,
my first data access patterns that resulted into the inter-tile reuse methodology
have been created during sketching and thinking while traveling home. On the
other hand, I probably also lost a few good ideas while I was freezing on a cold
train station and had to wait forever due to train breakdowns.

I thank my family and friends for being supportive, and creating the neces-
sary distraction that was needed for creativity. Dad and mom, you always helped
me in any possible way to develop into the person that wrote this thesis. You
both showed me that anything is possible with the right mindset, thank you.
Finally, this thesis would never have been finished without the support and en-
couragement of my beautiful wife Marie-Louise. You’ve let me trade quality time
for work time, managed tasks at home such that I could focus on research, and
kept life in balance. You also gave me our beautiful son Mika that brings joy and
new inspiration. This thesis is dedicated to both of you.

Maurice Peemen
September 2017

 160

ABOUT THE AUTHOR

M.C.J. (Maurice) Peemen was born in Rijsbergen, the
Netherlands, on August 26, 1983. He received a B.Eng.
degree in Electrical Engineering from Fontys University
of applied sciences in 2007. His Bachelor’s graduation
project was at CNSE in Albany, New York, USA on a EUV
lithography mask flatness metrology tool.

In 2010 he obtained his M.Sc. degree in Electrical En-
gineering with the predicate ‘cum laude’ from Eindhoven
University of Technology. The focus of his Master’s thesis
was the mapping of Convolutional Networks to FPGAs.
After graduating Maurice worked as a researcher in the
Electronic Systems group at Eindhoven University of Technology until 2011, and
then started as a Ph.D. student in the same group. His research interests include
deep learning, loop transformations, and accelerator architectures.

In 2015 he left the ES group to start as Research Scientist at Thermo Fisher
Scientific (formerly FEI Company) to work on high-performance microscopy
workflow solutions.

