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In the field of building acoustics, an efficient solution of the linear elasticity equations for vibro-
acoustic problems is of interest. The focus of this work is on the structural part, with plate vibra-
tion problems in particular. The linear elasticity equations in the stress-velocity formulation are 
solved in the time-domain for the three-dimensional plate problem. The numerical solution is 
obtained through the Runge-Kutta discontinuous Galerkin method, which has the potential to be 
highly parallelizable and thereby computationally very efficient. Numerical aspects of applying 
the discontinuous Galerkin method to this problem are discussed, especially on the force excita-
tion and the boundary conditions of the plate problem. The accuracy of applying the discontinu-
ous Galerkin solution is presented by comparing its results to results from analytical solutions. 
Several scenarios of plate variations with different boundary conditions are simulated to demon-
strate the capabilities of the method. 

 Keywords: plate vibration, discontinuous Galerkin method, low frequencies, time domain 

 

1. Introduction 
To design a proper sound insulation, prediction of sound transmission through building compo-

nents is needed. Sound transmission through a panel is frequently predicted using two analytical 
approaches. The first approach calculates sound transmission by simplifying the dynamics of the 
fluid or the structure. Often, this approach idealises the impinging sound wave to the structure as a 
plane wave or assuming a diffuse field condition. The calculation models of this approach include 
plane wave transmission through an infinite plate, and transmission of a diffuse sound field through 
a baffled plate [1]. Moreover, at high frequencies, when the structural field is also a diffuse field, 
the statistical energy analysis (SEA) could be utilized to calculate sound transmission. This ap-
proach is used extensively in many engineering practice since it has a low computational cost. 
However, when the coupling between structure and fluid is strong, for instance at low frequencies, 
the first approach is not appropriate. This leads to the second approach where the dynamics of the 
fluid in a cavity is calculated and coupled with the dynamics of the structure. One way to apply the 
second approach is by representing the unknown variables in each subsystem using a modal expan-
sion method [1] [2]. Afterwards, continuity conditions in the fluid-structure interface are satisfied. 
In case of light fluid loading, structural mode shapes can be obtained in-vacuo, and room mode 
shapes can be obtained by assuming the structure is rigid.  
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The more general way to conduct the second approach is by numerically solving the structure 
and fluid problem using the same variables for both media, i.e. the displacement/velocity and stress 
terms [3]. This methodology can be applied, for instance, using linear elasticity equations. There are 
some advantages of using the linear elasticity equations to solve the sound transmission problem. 
For example: a separate model between thin or thick structure is not needed, and changes in cross 
section area due to stiffeners, junctions, or any discontinuities could be treated directly in the model. 
In this paper, as a first step to solve the fluid-structure interaction problem to model sound insula-
tion of a complex building structure, the dynamics of a plate as a three-dimensional structure are 
modelled by solving the linear elasticity equations using a numerical method. 

The linear elasticity equations have been used frequently to model seismic wave problems, ex-
amples of numerical solutions in the time domain can be found in the work of Vireux using the fi-
nite difference method [4], and in the work of Dumbser using an arbitrary high-order derivatives 
discontinuous Galerkin (DG) method [5]. In the field of building acoustics, the linear elasticity 
equations have been used to model a floor system, and a numerical solution has been developed by 
Toyoda using the finite difference method [6]. In this paper, using the same equations for the plate 
vibration problem, the nodal DG method is used to get the solution. This method is in particular of 
interest as it is very favourable to carry out DG calculations by a parallel implementation, opening 
opportunities of solve real-world problems in a reasonable computation time. Furthermore, hybrid 
approach on nodal DG with Fourier Pseudospectral time-domain has been conducted by Pagán 
Muñoz to solve the acoustic propagation problem in fluid [7], which has the possibility to be cou-
pled with the current structural vibration problem. The nodal DG is one method of applying the DG 
method; it is developed by Hesthaven and Warburton [8] and has been used widely to solve elec-
tromagnetic and fluid mechanics problems. In the next section, brief descriptions of the method 
including source term and boundary conditions are described. Finally, the plate mobility solution 
for different sets of boundary conditions are presented and compared with the thin plate solution. 

     

2. Formulation 

2.1 Linear Elasticity Equations 
 
In solid isotropic media, linear vibrations can be modelled by equations of motion and constitu-

tive equations; this set of equations is known as the linear elasticity equations. By having the time 
derivative of the stress-strain constitutive equations, the isotropic linear elasticity equations can be 
written in the stress-velocity form using three-dimensional Cartesian coordinates as: 
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0 0 0 0 0 0x y z

T
g g g =  g , 

with q  the vibration variables vector, iv  the velocity vector, ijτ  the stress tensor, and g  the body 
force vector. A is the fluxes Jacobian which includes the material property: the density ρ , and the 
Lamé parameters ,λ µ . The coefficients xn , yn , zn  are the unit normal of the control surface. The 
problem specification is completed by defining the problem domain, initial and boundary condi-
tions. This set of equations consists of nine variables, and all derivative operators are of first order. 
In this study, the solution of the linear elasticity equations is obtained by evaluating the spatial dif-
ferential operator using the nodal DG method, and integrating the time differential operator using 
the Runge-Kutta method.  

 

2.2 Nodal Discontinuous Galerkin Method  
 
To solve partial differential equations, the DG method discretizes the problem domain into sev-

eral discontinuous conforming elements. On each element D , the problem’s variational form is sat-
isfied to obtain a solution where the unknown variables are approximated using a combination of 
basis functions. Moreover, the DG method solves the integration of numerical fluxes along the 
boundaries D∂  using a Riemann solver. In this study, the nodal approach of the DG method as pre-
sented by Hesthaven and Warburton is applied [8]. This approach uses the strong variational form 
and Lagrange interpolating polynomials ( )pϕ x  as the basis function. For the local solution, un-
known variables are expressed using summation of the basis function as: 

      ( ) ( ) ( )
1

pN

h h p p
p

,t ,t ϕ
=

= ∑q x q x x ,      (2) 

where hq is the local solution of Eqs. (1) for unknown variables q , subscript p  is the index of the 
basis function, and pN is the maximum order of the basis function that is used. Using the interpolat-
ing polynomials as basis function, nodal DG distributes pN  number of nodes in each element. The 
details on the nodal distribution can be seen in the work of Hesthaven [8]. To obtain the strong 
form, Eqs. (1) are multiplied with a test function, where in Galerkin method the test function is 
same as the basis function. Afterward, integration over the volume V of each element is applied 
twice over the element: 

    ( ) *. dV dV . dSh
h p h p h p

D D Dt
ϕ ϕ ϕ

∂

∂   + ∇ = − −   ∂ ∫ ∫ ∫
q

Aq g f Aqn  ,    (3) 

where *f  is the numerical flux, and n is the normal vector to the element boundary D∂ . In this 
study, to solve the Riemann problem a numerical flux from Godunov’s method is used. The deriva-
tion of this flux can be seen in [5] [9], and reads as: 

      * − += + -1 - -1f RΛ R q +RΛ R q ,      (4) 

where R  are the right eigen-vectors of matrix A , +Λ are the positive eigenvalues of R , −Λ are the 
negative eigen-values of R , −q are the element vibration variables on the element boundary, and +q  
are the neighbour elements vibration variables that coincide with −q . By inserting Eq. (2) to Eq. (3), 
and exploring the orthonormal properties of the basis function, the final semi-discrete form of 
Eqs. (1) can be written as: 

     ( )*

, , 1

i

b
DD Dh

j j h h h
j x y z it

∂

= =
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M K A q M g M f Aq ,   (5) 
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where DM is the mass matrix of the element, jK is the stiffness matrix on each spatial derivative, 
iD∂M is the mass matrix of the element face i, and b is the number of faces on each element. These 

matrices are obtained by transforming all elements into a reference element, and pre-calculated for 
each element before time integration is conducted. Having this form, time integration is applied to 
march forward from the initial conditions. In this work, the low storage Runge-Kutta method of 
order 4 and with 5 stages is used. More details on the nodal DG method can be found in [8]. 

 

3. Plate vibration application 

3.1 Problem setting 
 
In this section, the plate vibration problem is described. There are three plates with a different 

thickness 0.12m;  0.08 m;  and 0.04 mh = . Each plate is made of concrete with Young’s modulus 
33.7 GPa, density 2300 3kg m , Poisson’s ratio 0.225, and area 21.8 1.2 m× . The plate is illustrated in 
Fig. 1 using a Cartesian coordinate system with the origin at (0,0,0). The objective of the problem is 
to get the transfer mobility between force located at (0.42, 0.99, h) m (marked as a blue dot) and 
velocity located at (1.35, 0.99, h) m (marked as a red dot). 

 

 
Figure 1: Illustration of plate, and source and receiver 

position 

 

 
Figure 2: Illustration of the used discretization. 

The force function is a Ricker wavelet as defined in Eq. (6)  with centre frequency 500 Hzcf = . 
This frequency is taken, since the interest frequency range is below 1kHz. In the simulation, a time 
delay 5 msdt =  is given to get a smooth force function.  

     ( ) ( )( )( ) ( )( )( )2 2
, 0.5  expzz c d c dt f t t f t tτ p p= − − −0x .    (6) 

  
Table 1: Specification of boundary conditions in each case 

Face Free conditions Clamped conditions Simply supported conditions 
top∂Ω  0izτ =  0izτ =  0izτ =  
bot∂Ω  0izτ =  0izτ =  0izτ =  

1edge∂Ω  0ixτ =  0iv =   0; 0;  0;

0;  0;  0. 
y z

y

xx

y yzzz

v v τ

τ τ τ

= = =

= = =
 

2edge∂Ω  0iyτ =  0iv =  0;   0;  0;

0;  0;  0.
x z yy
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v v τ

τ τ τ

= = =

= = =
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To complete the problem definition, boundary conditions should be ascribed to each plate face. 
The plate boundary conditions are given in three sets of cases: free conditions, clamped conditions, 
and simply supported conditions. The description of each condition case is given in Table 1. Where 

top∂Ω  is the plate top face at z h= , bot∂Ω  is the plate bottom face at 0z = , 1edge∂Ω  are the plate edge 
faces at 0x =  and 1.8x = , and 2edge∂Ω  are the plate edge faces at 0y =  and 1.2y =  with index i  
equal to ,x y  or z . To summarize, there are nine plate examples varying with thickness and bounda-
ry conditions. The details considering the simply supported conditions on a three-dimensional plate 
can be seen in the work of Srivinas [9]. 

 

3.2 Numerical setting 
 
The plate is discretized using unstructured tetrahedral elements that are generated by the Gambit 

mesh generator. The maximum element size is 0.16 m for every plate case, and a mesh illustration 
can be seen in Fig. 2. In every numerical calculation, basis functions with maximum order three are 
used. By this setting, 20 nodes are created in each element. In the nodal DG, to update the solution 
on each element, the neighbour element information +q  is needed. For nodes on the boundary faces, 
the value of +q  is obtained from −q  and the condition at the surface, either a boundary condition 
from Table 2 or the source function. The methodology in defining +q  is quite similar to the finite 
volume methodology while defining the ghost nodes. In Table 2, the counterpart of Table 1 as the 
numerical boundary condition settings is presented. In this table, the +q  on each set of faces and 
case are given, with each index ,i j  equal to ,x y  or z . 

 
Table 2: Boundary conditions settings in the nodal DG 

Face Free conditions Clamped conditions Simply supported conditions 
top∂Ω  

iz izτ τ+ −= − ; i iv v+ −=  iz izτ τ+ −= − ; i iv v+ −=  iz izτ τ+ −= − ; i iv v+ −=  
bot∂Ω  iz izτ τ+ −= − ; i iv v+ −=  iz izτ τ+ −= − ; i iv v+ −=  iz izτ τ+ −= − ; i iv v+ −=  

1edge∂Ω  ;  ;

;  
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To insert the force, since it is acting on the boundary of the plate, the normal stress component 
( ),zz s tτ x  is defined on the face of the element where the force is located. First, the mesh face where 

the impact point is located should be identified. Then, following the LeVeque’s work in finite vol-
ume method [10], the stress component of nodes at the face sx  is expressed using 

( ) ( ) ( )0, 2 ,z s zz z szt g t A tτ τ+ −= −x x , with face area sA and gz the body force in N. Other stress components 
are not specified, which lead to the following expressions: ( ) ( ), ,xx xxs st tτ τ+ −=x x , ( ) ( ), ,yy yys st tτ τ+ −=x x , 

( ) ( ), ,xz xzs st tτ τ+ −=x x , ( ) ( ), ,yz yzs st tτ τ+ −=x x , and  ( ) ( ), ,xy xys st tτ τ+ −=x x . It should be noted here that the force 
is acting on a finite area and not a point, since for a point the normal stress cannot be defined. An-
other approach is to apply a varying stress distribution on the area with maximum stress in a point 
of force insertion, but to fulfil the current objective and frequency range, the constant distribution is 
sufficient. 
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3.3 Thin plate reference  
 
To validate the nodal DG method, the transfer mobilities of the plate examples are calculated us-

ing the thin plate theory, and the results are taken for comparison. The thin plate theory calculates 
the bending wave response of a plate due to a transverse point force using a modal expansion ap-
proach. This modal function should satisfy the given boundary conditions. The plate mobility by 
thin plate theory is given by: 

  

     ( )
( )

( ) ( ), ,
2 2

1 1 , ,

, ,,
,

m n r r m n s sz r r

m nz s s m n m n

x y x yv x y
i

F x y
ω

ω ω

∞ ∞

= =

F F
=

 Λ − 
∑∑ ,     (6) 

 
with ,m nF the mode function of the plate, mnΛ the norm of the plate, ,m nω the natural angular 

frequency, ω  the force angular frequency, ,r rx y  the location of the receiver point, and ,s sx y the 
location of the source point. The indices ,m n represent the numbers of the eigenmodes ,m nF in the 

,x y . In this work, the details of the modal functions for the given set of boundary conditions, and 
the natural angular frequencies, are adopted the work by Gardonio and Elliot [11]. 

 

4. Results and discussion 

  
(a) (b) 

 

(c) 
Figure 3: Plate mobility with simply supported boundary conditions for h = (a) 0.12m, (b) 0.08m, (c) 0.04m. 

Black line: nodal DG calculation, blue line: thin plate calculation. 
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(a) (a) 

  
(b) (b) 

  
(c) (c) 

Figure 4: Plate mobility with clamped boundary con-
ditions, for h = (a) 0.12m, (b) 0.08m, (c) 0.04m. 

Black line: nodal DG calculation, blue line: thin plate 
calculation. 

Figure 5: Plate mobility with free boundary condi-
tions, for h = (a) 0.12m, (b) 0.08m, (c) 0.04m. Black 
line: nodal DG calculation, blue line: thin plate cal-

culation. 
 
The nodal DG results shown in this section are obtained by having Fourier transformation of 1 s 

time domain numerical calculations. From Fig. 3 and Fig. 4, it can be seen that the DG results are in 
good agreement with the thin plate reference in the low frequencies region and for thinner plate. 
However, it can be seen that the discrepancy between results is increasing, as the frequency is get-
ting higher. This discrepancy is expected, since the thin plate theory underestimates the plate inertia 
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and flexibility, which resulted in an overestimation of natural frequencies [12]. Results for the plate 
with free boundary conditions is shown are Fig. 5, showing a larger discrepancy than in figures 3 
and 4. These discrepancies happen since the linear elasticity equations allow a variation of the dis-
placement over the z-direction, which induces more modes. It should be noted that damping is not 
introduced into the DG model and in the thin plate reference. This creates sharp resonance peaks in 
the results. 

 

5. Conclusions 
To model vibrations in plates, a nodal time-domain discontinuous Galerkin method is presented 

to solve the linear elasticity equations. The free, clamped, and simply supported boundary condi-
tions have been implemented in DG methodology, along with an external force insertion applied as 
a normal stress on the boundary. For all plate cases, the results show a reasonable agreement with 
the thin plate theory especially at low frequencies and at smaller thickness. To get a more accurate 
validation, the nodal DG solution should be compared to a thick plate theory. Further work will 
contain an extension to the fluid media such that fluid-structure problems in acoustics can be 
solved. In addition, an acceleration of the DG method by a parallel implementation will make this 
method highly useful for industrial applications. 
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