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ABSTRACT: Cooperative Adaptive Cruise Control (CACC) improves road throughput by employing inter-
vehicle wireless communications. The inherent communication time delay significantly limits the minimum
inter-vehicle distance in view of string stability. Applying a Padé approximation leads to a model with a rational
transfer function, which allows many control methods to compensate for this delay to a certain extent. Our
objective is to find the lowest possible order of Padé approximations, which is sufficiently accurate in view of
string stability. To this end, the minimum string-stable time gaps are chosen as the main criterion against which
the quality of the Padé approximations is measured. The results indicate that it is feasible to apply a 2nd-order
Padé approximation in the given CACC system.

1 INTRODUCTION

Advanced Driver Assistance systems have signifi-
cantly developed in the last decades. Adaptive Cruise
Control (ACC) systems equipped with radar or cam-
era, which relieve the drivers’ task by automatically
keeping a desired inter-vehicle distance (Marsden,
McDonald, & Brackstone 2001), are penetrating into
the market. To realize a shorter inter-vehicle distance
and, consequently, to improve highway capacity, Co-
operative ACC (CACC) systems have been devel-
oped, which use wireless inter-vehicle communica-
tions (Naus et al. 2010, Shladover et al. 2012). String
stability, which refers to the attenuation of the effects
of disturbances in upstream direction of the string of
vehicles, is a primary requirement for a vehicle pla-
toon. CACC systems can significantly improve string
stability, that prevent traffic jams while increasing
highway throughput (Ploeg et al. 2011).

However, string stability can be affected by wire-
less communication impairments, such as time de-
lays, sampling intervals, packet loss and communi-
cation constraints (Heemels & van de Wouw 2010).
Thus, it is critical to take communication delays into

account to design and analyze a CACC string (Liu
et al. 2001, Naus et al. 2010, Ploeg et al. 2011, among
others).

However, considering time delays leads to a non-
rational transfer function, which poses a problem for
many controller design methods. Consequently, many
studies have paid attention to rational approximations
of time delays. Padé approximation is widely used,
since it often gives a better approximation of the de-
lay system than other series of the same order (Golub
& Van Loan 1989). However, the order of the Padé
approximation, used in CACC systems (Kianfar et al.
2012, Öncü et al. 2014, Ploeg et al. 2014), was not ex-
plicitly motivated. Although a higher order Padé ap-
proximation leads to a more accurate representation,
the resulting system is more complex. In addition, a
too high-order Padé approximation may cause numer-
ical problems.

This paper focusses on finding a suitable (low) or-
der for the Padé approximation for the communica-
tion delay in view of string stability. To this end,
the minimum string-stable time gap is chosen as the
string stability property, in the sense that the mini-
mum time gap for the approximated CACC system
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Figure 1. CACC-equipped string of vehicles.

with selected order should be sufficiently close to the
one of the original system. The selected order Padé
approximation of a PD controller is quite possibly
suitable to other linear controllers approximately real-
izing the same bandwidth as the PD controller, which
suffices CACC (string) stability.

The outline of this paper is as follows. The next sec-
tion introduces a model of a CACC-controlled vehi-
cle string with wireless communication delay. Section
3 presents a frequency-domain method to pursue the
appropriate order of the Padé approximation in view
of string stability, followed by time-domain analysis
in Section 4. The last section summarizes the conclu-
sions.

2 CACC-CONTROLLED PLATOON

2.1 Platoon with communication delay

A homogeneous CACC string is considered in this pa-
per, as shown in Fig. 1, where li, vi and ui are the
length, the velocity, and the desired acceleration of
vehicle i, respectively; dr,i and di represent the de-
sired distance and the actual distance between vehicle
i and its preceding vehicle i− 1, respectively.

In a CACC system, the wireless inter-vehicle link
is employed for feedforward purposes. In our case
the feedforward input is the desired acceleration ui−1

of the preceding vehicle. Although the wireless com-
munication time delay has decreased largely with the
recent developments of both software and hardware
(Ploeg et al. 2014), it still has a significant effect on
string stability of CACC. Thus, considering the wire-
less communication θc, the true feedforward input of
vehicle i is

ui−1,c(t) = ui−1(t− θc), (1)

where θc consists of the total time delay due to queue-
ing, contention, transmission, and propagation. Note
that other network effects in wireless communication,
such as packet loss and sampling effects, are not taken
into account in this paper. The string is assumed to be
homogeneous, which is why the communication de-
lay θc is independent of the vehicle index i.

Considering non-linear dynamics of engine and
drive train, and aerodynamic drag and rolling resis-
tance, feedback linearization is often adopted to ar-
rive at a suitable model for CACC design (Hedrick,

Tomizuka, & Varaiya 1994). As a result, the acceler-
ation ai of vehicle i follows

τ ȧi(t) + ai = ui(t), (2)

where the vehicle actuator time constant τ represents
the longitudinal vehicle response, which is set iden-
tical for both acceleration and brake situations, for
the sake of simplicity. In addition, the transfer func-
tionG(s) from the desired acceleration to the position
reads,

G(s) =
1

s2(τs+ 1)
, (3)

where s ∈ C is the Laplace variable.

2.2 CACC Controller

In a CACC string, each vehicle (except the lead vehi-
cle) aims to keep a desired distance dr,i to its preced-
ing vehicle. The constant time gap policy is utilized,
which is the most common one to improve string sta-
bility, see Naus et al. (2010) and the references con-
tained therein. Thus, the desired inter-vehicle distance
involves a standstill distance and a velocity-dependent
part:

dr,i(t) = r+ hvi(t) i > 1, (4)

where r represents the standstill distance, and h is
a constant time gap. We pursue a small value of h
to increase traffic throughput. However, inherent time
delays in the wireless communication yield a lower
bound for the time gap from a string-stability perspec-
tive (Naus et al. 2010, Ploeg et al. 2011).

To realize the vehicle-following objective, the
inter-vehicle distance error ei, defined as

ei(t) = di(t)− dr,i(t), (5)

should asymptotically converge to zero. To this end,
a variety of controllers have been proposed (Hedrick,
Mcmahnon, & Swaroop 1993, Huang & Ren 1997,
Stanger & del Re 2013, among others). However, a
linear PD controller is most widely adopted, espe-
cially in experimental applications (Ploeg et al. 2011,
Milanés et al. 2014). Adopting the controller structure
in the work of Ploeg et al. (2011), a pre-compensator
is used, introducing a new input ξi is as,

ξi(t) := hu̇i(t) + ui(t). (6)

Together with applying a standard PD controller,
given by

K(s) = ωp + ωds, (7)

where ωp and ωd represent the proportional and
derivative parameters, respectively, it leads to the con-
troller of vehicle i > 1 to be,

ξi(t) = ui−1(t− θc) + ωpei(t) + ωdėi(t). (8)
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Figure 2. Block scheme of the CACC system.

For analytic convenience,

ωp = ω2
d (9)

is chosen, which reduces an overflow of controller pa-
rameters in the sequel (Naus et al. 2010, Öncü et al.
2014). Consequently, the control structure with wire-
less communication delay θc can be depicted as in Fig.
2, where H(s) and Dc(s) are given by

H(s) = hs+ 1 Dc(s) = e−θcs. (10)

Thus, the transfer function C(s) from the external in-
put ui−1 to the inter-vehicle distance error ei reads,

C(s) =
G(s)(1−Dc(s))

1 +G(s)K(s)
. (11)

Individual vehicle stability requires that all the roots
of the denominator of (11) should have negative real
parts, where the Routh-Hurwitz stability criterion can
be applied, resulting in that the CACC string can be
stabilized for 0 < ωd <

1
τ
. The PD controller (7) can

provide the freedom to choose the bandwidth of (11)
as the frequency at which |G(jω)K(jω)| crosses 0 dB
in the downwards sense.

Note that the communication delay θc occurring in
the feedforward loop does not influence individual ve-
hicle stability in the presented CACC structure.

3 STRING STABILITY BASED ON PADÉ
APPROXIMATIONS

3.1 Padé approximations of delays

Padé approximation of a time delay yields a finite-
dimensional state-space model with a rational transfer
function:

e−θcs ∼=
∑p

k=0 βk(−θcs)k∑p
k=0 βk(θcs)

k
, (12)

where p represents the approximation order, and the
coefficients βk are given by

βk =
(2p− k)!p!

(2p)!k!(p− k)!
. (13)

Increasing the order can lead to a more accurate ap-
proximation, while the resulting model is more com-
plex. The 1st-, 2nd-, and 3rd-order Padé approximations

of a delay are represented as

P1(s) =
1− 1

2
θcs

1 + 1
2
θcs

(14a)

P2(s) =
1− 1

2
θcs+

1
12
(θcs)

2

1 + 1
2
θcs+

1
12
(θcs)2

(14b)

P3(s) =
1− 1

2
θcs+

1
10
(θcs)

2 − 1
120

(θcs)
3

1 + 1
2
θcs+

1
10
(θcs)2 +

1
120

(θcs)3
(14c)

To arrive at a suitable order of the Padé approxima-
tion, we apply a large range of system parameters, to
find an order leading to similar string stability prop-
erty as the aforementioned CACC system with pure
delays.

3.2 String stability

Since the constant time gap policy (4) is introduced
to achieve string stability, we choose the minimum
string-stable time gap as the string stability property
to arrive at the lowest possible Padé approximation
order. In other words, the minimum string-stable time
gaps for the CACC system with approximated delays
and with pure delays should be sufficiently close. To
this end, a range of values for the parameters of the
vehicle actuator lag τ , the controller parameter ωd,
and the communication delay θc are considered.

In the frequently applied performance-oriented ap-
proach, string stability is characterized by the ampli-
fication in upstream direction of the signal of interest
(Naus et al. 2010, Ploeg et al. 2011). Denote the string
stability transfer function as S(s), which describes the
relation between a relevant (scalar) signal of vehicle
i and the corresponding signal of its preceding vehi-
cle i − 1. In CACC systems, the signals of interest
generally involve the inter-vehicle distance error, the
acceleration, the velocity, and the distance. Then the
system of interconnected vehicles is string stable if
and only if

sup
ω
|S(jω)| ≤ 1, (15)

with the frequency ω ∈ R+. Note that S(s) is inde-
pendent of the vehicle index i due to the homogeneity
assumption.

Let Ei(s), Ui(s), Vi(s), and Qi(s) represent the
Laplace transforms of the inter-vehicle distance er-
ror, the vehicle input (desired acceleration), the veloc-
ity, and the position of vehicle i, respectively. Under
the assumption of homogeneous traffic, the string sta-
bility transfer function S(s) does not depend on the
choice of the signal, yielding,

S(s) =
Ei(s)

Ei−1(s)
=

Ui(s)

Ui−1(s)
=

Vi(s)

Vi−1(s)
=

Qi(s)

Qi−1(s)

=
1

H(s)

Dc(s) +G(s)K(s)

1 +G(s)K(s)
(16)
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Figure 3. (a) The minimum string-stable time gap hmin for
CACC with pure delays; differences hmin − hmin,p of (b) the
1st-order, (c) the 2nd-order, and (d) the 3rd-order Padé approxi-
mations, with τ = 0.2 s, θc ∈ [0,0.2] s, and ωd ∈ [0.1,3] rad/s.

Substituting (3), (7), (10) and (16) in (15) yields

sup
ω
(
∣∣ 1

hjω + 1

∣∣ · ∣∣e−θcjω + ωp+ωdjω

(jω)2(τjω+1)

1 + ωp+ωdjω

(jω)2(τjω+1)

∣∣) ≤ 1 (17)

to realize string stability.
In the case without communication delay, (17) re-

duces to

sup
ω

∣∣ 1

hjω + 1

∣∣ ≤ 1, (18)

which is fulfilled for any non-negative time gap, i.e.,
h ≥ 0 s. However, as previously stated, in reality a
communication delay exists, which plays a significant
role in designing the time gap for string stability.

When θc > 0 s, the magnitude of the string stability
transfer function can be expressed as

|S(jω)| = 1√
(hω)2 + 1

∣∣M(jω)

N(jω)

∣∣ (19)

where

M(jω) = e−θcjω +
ωp + ωdjω

(jω)2(τjω + 1)
(20a)

N(jω) = 1 +
ωp + ωdjω

(jω)2(τjω + 1)
(20b)

from which it follows that string stability can be guar-
anteed for h ≥ hmin, where

hmin = sup
ω
(

√
|M(jω)
N(jω)

|2 − 1

ω
). (21)

Substituting (14) and (20) in (21), results in an ap-
proximated minimum time gap hmin,p, where p repre-
sents the order of Padé approximation.

0
0.2

0.4

0
1

2
0

1

2

3

τ [rad/s]ωd[s]

h
m
in
[s
]

(a)

0
0.2

0.4

0
1

2
0

0.02

0.04

τ [rad/s]ωd[s]

h
m
in
−
h
m
in
,1
[s
]

(b)

0
0.2

0.4

0
1

2
0

0.5

1
x 10

-4

τ [rad/s]ωd[s]

h
m
in
−
h
m
in
,2
[s
]

(c)

0
0.2

0.4

0
1

2
0

0.5

1
x 10

-7

τ [rad/s]ωd[s]

h
m
in
−
h
m
in
,3
[s
]

(d)
Figure 4. (a) The minimum string-stable time gap hmin for
CACC with pure delays; differences hmin − hmin,p of (b) the
1st-order, (c) the 2nd-order, and (d) the 3rd-order Padé approxi-
mations, with θc = 0.2 s, τ ∈ (0,0.4] s, and ωd ∈ [0.1,2] rad/s.

Thus, our objective is to find the lowest possible or-
der p such that hmin,p is sufficiently close to hmin. In
practice, the time gap h is changed with increments
of 0.1 s. Hence, a controller designed on the basis of
Padé approximations should be significantly more ac-
curate regarding string-stable time gap, which is why
we assume a maximum error of 0.001 s, i.e.,

|hmin − hmin,p| < 0.001. (22)

Note that hmin,p is not guaranteed to be larger than
hmin, i.e., string stability of the approximated system
does not imply string stability of the system with pure
delay.

Firstly, choose vehicle actuator lag τ = 0.2 s, and
controller parameter range ωd ∈ [0.1,3] rad/s, meet-
ing the individual vehicle stability requirement 0 <
ωd <

1
τ
. The time delay range θc ∈ [0,0.2] s is consid-

ered, which covers possible communication delay of
CACC systems, even when mild packet loss occurs.
Fig. 3 shows the minimum time gap hmin and the dif-
ferences hmin − hmin,p, with p = 1,2,3, as a function
of θc and ωd. Time gaps above the surface in Fig. 3(a)
will guarantee string stability of the CACC string. Fig.
3(b) indicates that the differences hmin − hmin,1 are
nearly 0.03 s for the 1st-order Padé approximation. In
Fig. 3(c) and (d), for 2nd- and 3rd-order Padé approx-
imations, hmin − hmin,p are less than 2× 10−4 s and
1.0 × 10−6 s, respectively, which meet the accuracy
requirement (22). Hence, there is no necessity to con-
sider a higher order Padé approximation.

Then, Fig. 4 shows the numerical results of the
minimum time gap as a function of ωd and τ , with
a quite large value of θc = 0.2 s, since the approxi-
mation of a large time delay yielding a sufficiently
similar time gap hmin, is very likely to also suffice
for smaller time delays. The value of the vehicle ac-
tuator lag is extended to a large range for passenger
vehicles as τ ∈ (0,0.4] s. A controller parameter in
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Figure 5. Time responses of (a) the acceleration ai, (b) the ve-
locity vi, (c) the inter-vehicle distance di, (d) the distance error
ei of CACC with pure delays.

the range ωd ∈ [0.1,2] rad/s is adopted, where indi-
vidual vehicle stability is guaranteed. Fig. 4(a) shows
how the minimum time gap hmin depends on τ and
ωd with pure delays. In Fig. 4(b), (c) and (d), the dif-
ferences of the minimum time gap between the model
with pure delays and 1st-, 2nd- and 3rd-order Padé ap-
proximations are less than 3.0× 10−2 s, 1.0× 10−4 s
and 1.0 × 10−7 s, respectively. Therefore, adopting
2nd- or 3rd-Padé approximations can obtain a suffi-
ciently small value of the difference hmin − hmin,p.
Note that the same process can be applied with inde-
pendent proportional and derivative controller param-
eters, whereas the resulting differences hmin − hmin,p
have the close values for the corresponding orders of
Padé approximations to these as shown in Fig.3 and
Fig. 4.

In summary, taking a 2nd-order Padé approximation
for communication delays leads to similar minimum
string-stable time gap for the original system with ex-
act delays and for the system with the approximated
delays.

4 SIMULATION IN TIME-DOMAIN

To validate the accuracy of the 2nd-order Padé approx-
imation of the communication delays, time-domain
simulations have been carried out for a CACC string
with four vehicles with the standstill distance r = 5 m,
the length of vehicle as l = 3 m, the vehicle actuator
lag τ = 0.2 s, and communication delay θc = 0.2 s.
According to Fig. 3(a), the controller gain is chosen
as ωd = 0.8 rad/s and the time gap as h = 1 s to guar-
antee both string stability and individual vehicle sta-
bility.

The external input to the string is desired accelera-
tion u0 of the leading vehicle, and approximations of
delays are most sensitive to a step response. Thus, the
desired acceleration for the leading vehicle is set as
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Figure 6. Differences of time responses of (a) the acceleration
ai − ai,2, (b) the velocity vi − vi,2, (c) the inter-vehicle distance
di− di,2, and (d) the distance error ei− ei,2, between the CACC
models with pure delays and with 2nd-order Padé approximated
delays.

follows,

u0 =

{
1 5 s 6 t 6 20 s
0 other

, (23)

where the acceleration interval is chosen such that all
follower vehicles can reach the desired acceleration.
The initial velocity of all vehicles in this CACC string
is vinitial = 20 m/s. All vehicles start with the desired
distance 25 m.

Fig. 5 shows the time responses of the CACC
string with pure delays. There is a slight overshoot
in the acceleration responses in Fig. 5(a), fulfilling
the frequency-domain string stability criterion (15)
does not guarantee the absence of overshoot in time-
domain (Ploeg et al. 2011, Ploeg et al. 2014). The ve-
locity, inter-vehicle distance, and the distance error re-
sponses clearly show that this system is string stable
from in Fig. 5(b), (c), and (d).

Applying the 2nd-order Padé approximation for
communication delays, results in the approximated
responses ai,2, vi,2, di,2 with the same input (22). The
differences between the CACC string responses with
pure delays and the ones with approximated delays
are shown in Fig. 6, for vehicle 1, 2, and 3, which are
CACC controlled. In Fig. 6, all differences of vehicle
signals decrease with vehicle number i in the CACC
string, i.e., the largest difference occurs in the re-
sponses of the first follower vehicle 1. We only zoom
in around t = 5s in Fig. 6(a), when the acceleration
changes, to show the differences clearly. Similar re-
sults around t = 20s are omitted here. The accelera-
tion differences reach 3.0× 10−3 m/s2, which is much
smaller than the step input of 1 m/s2. Fig. 6(b) shows
that the velocity differences due to the 2nd-order Padé
approximation of delays are less than 1.5× 10−4 m/s.
The differences of inter-vehicle distances and the dis-
tance errors are less than 2.0× 10−4 m as shown in
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Fig. 6(c) and (d), which are even less than the possi-
ble measurement noise of the inter-vehicle distance.
Consequently, it is suitable to select a 2nd-order Padé
approximation for communication delays in the string
of CACC-equipped vehicles.

5 CONCLUSIONS

In CACC-controlled vehicle platoons, communica-
tion time delay inherently exists. Adopting a (low or-
der) Padé approximation for the communication de-
lay leads to a rational transfer function representa-
tion of the CACC string, which allows many con-
troller design methods. To arrive at a suitable Padé
approximation order, the string stability properties of
the system with pure delay and with approximated de-
lay are compared. In particular, the minimum string-
stable time gaps are selected as string stability prop-
erty. With a PD controller, we obtain a satisfying be-
haviour in terms of bandwidth, as also shown in prac-
tice (Naus et al. 2010, Öncü et al. 2014). Hence, for
linear controllers approximately realizing the same
bandwidth, the results of the selection of Padé ap-
proximation orders are probable to hold as well. In
this paper, the minimum string-stable time gap for the
system with pure delay and for the system with ap-
proximated delay of various orders have been deter-
mined as a function of controller parameter ωd, com-
munication delay θc and vehicle actuator lag τ . With
the frequency-domain analysis, a 2nd-order approxi-
mation appears to give satisfying results, providing
a good balance between the (low) order and the ac-
curacy in terms of minimum string-stable time gap.
Time-domain simulations have been conducted to val-
idate the results.
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Öncü, S., J. Ploeg, N. van de Wouw, & H. Nijmeijer (2014). Co-
operative adaptive cruise control: Network-aware analysis of
string stability. IEEE Trans. Intell. Transp. Syst. 15(4), 1527–
1537.

Ploeg, J., B. Scheepers, E. Van Nunen, N. Van de Wouw, &
H. Nijmeijer (2011). Design and experimental evaluation of
cooperative adaptive cruise control. In Proc. IEEE Intell.
Transp. Syst. Conf., pp. 260–265.

Ploeg, J., D. P. Shukla, N. van de Wouw, & H. Nijmeijer (2014).
Controller synthesis for string stability of vehicle platoons.
IEEE Trans. Intell. Transp. Syst. 15(2), 854–865.

Ploeg, J., N. Van De Wouw, & H. Nijmeijer (2014). Lp string
stability of cascaded systems: Application to vehicle platoon-
ing. IEEE Trans. Control Syst. Technol. 22(2), 786–793.

Shladover, S. E., D. Su, & X.-Y. Lu (2012). Impacts of cooper-
ative adaptive cruise control on freeway traffic flow. In Proc.
91st TRB Annu. Meet, pp. 1–17.

Stanger, T. & L. del Re (2013). A model predictive cooperative
adaptive cruise control approach. In Proc. American Control
Conference (ACC), pp. 1374–1379.

AVEC'16


