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Optimized Quantization in Zero Leakage
Helper Data Systems

Taras Stanko, Fitria Nur Andini, and Boris Škorić

Abstract— Helper data systems are a cryptographic primitive
that allows for the reproducible extraction of secrets from noisy
measurements. Redundancy data called helper data makes it
possible to do error correction while leaking little or nothing
(Zero Leakage) about the extracted secret string. We study
the case of non-discrete measurement outcomes. In this case, a
quantization step is required. Recently, de Groot et al. described
a generic method to perform the quantization in a Zero Leakage
manner. We extend their work and show how the quantization
intervals should be set to maximize the amount of extracted secret
key material when noise is taken into account.

Index Terms— Helper data, fuzzy extractor, secure sketch, PUF,
biometrics.

I. INTRODUCTION

A. Helper Data Systems

SECURITY with noisy data is the art of reproducibly
extracting secret data from noisy measurements on a phys-

ical system. The two main applications are storage of crypto-
graphic keys using Physical Unclonable Functions (PUFs) [2],
[10], [15], [16], [18], [19] and privacy-preserving storage of
biometric data. Power-off storage of keys in digital memory
can often be considered insecure. PUFs provide an alternative
way to store keys, which allows the designer to exploit the
inscrutability of analog physical behavior. Keys stored in this
way are referred to as Physically Obfuscated Keys (POKs) [9].

In both the biometrics and the PUF/POK case, noise has to
be eliminated, but under the constraint that the redundancy
data (which is visible to attackers) does not endanger the
secret. This problem was addressed by the introduction of a
special security primitive, the Helper Data System (HDS) [14].
A HDS in its most general form is shown in Fig. 1. The Gen
procedure takes as input a measurement X . Gen outputs a
secret S and public Helper Data W . The helper data is stored.
In the reproduction phase, a fresh measurement Y is obtained.
Typically Y is close to X but not identical. The Rec procedure
takes Y and W as input. It outputs Ŝ, an estimate of S. If Y
is sufficiently close to X then Ŝ = S. (See Def. 2 for a more
precise formulation.)
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Two special HDS cases are the Secure Sketch (SS) and the
Fuzzy Extractor (FE) [8]. The SS has S = X (and Ŝ = X̂ , an
estimator for X). If X is not uniformly distributed, then S is not
uniform. The SS is suitable for privacy-preserving biometrics,
where the stored biometric enrollment data is a cryptographic
hash of X , just like hashed storage of passwords; high entropy
of S (given W ) is required, but not uniformity. The FE is
required to have a (nearly) uniform S given W . The FE is
typically used for extracting keys from PUFs and POKs. Note
that there is a generic construction to obtain a FE from a SS:
privacy amplification on X by applying a suitable information-
theoretic hash function. This can be either a Universal Hash
Function (UHF) [3], [13], [17] or, more sophisticatedly,
a q-wise independent hash [7].

We consider the general HDS case (occasionally denoted
as ‘gHDS’ in this paper). The general HDS is of particular
interest when X is a continuum variable: (i) The least sig-
nificant digits of X are not interesting for key extraction and
(ii) In view of the excellent performance of q-wise indepen-
dent hashes [7] it is best to first extract from X a non-uniform
high-entropy discrete secret and then compress it.

B. Zero Leakage Quantisation

In biometrics and in several PUF/POK scenarios the X is
analog. A typical HDS then consists of two stages: (1) a HDS
that discretizes X ; (2) a HDS acting on a discrete source, e.g.
the Code Offset Method [1], [6], [8], [12], [21]. Both stages
use helper data. In the first stage it is possible to make a
construction such that W leaks nothing about S. Intuitively,
W contains the ‘least significant bits’ of X , which are noisy,
while S contains the ‘most significant bits’. A HDS that
achieves independence of S and W is called a Zero Leakage
HDS (ZLHDS). Verbitskiy et al. [20] introduced a Zero
Leakage Fuzzy Extractor (ZLFE) for X ∈ R.1,2 They divided
the space R into N equiprobable intervals A0, . . . ,AN−1.
At enrollment, if X lies in interval A j then S is set to j .
For the helper data they introduced a further division of each
interval A j into m equiprobable subintervals (A j k)

m−1
k=0 . If the

enrollment measurement X lies in interval A j k then the index

1A high-dimensional measurement is usually split into one-dimensional
components, e.g. using Principal Component Analysis or similar methods.
A HDS is then applied to each component individually. The results are
combined and then serve as input for the 2nd stage.

2In the literature the FE and SS terminology is not always used in exactly
the same way. The definition in [6] considers a class of source distributions,
whereas [20] and many other works target a specific variable X with a fixed
distribution. We adopt the latter approach.
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Fig. 1. Data flow in a generic helper data system.

k is stored as helper data. The fact that all these subintervals
are equiprobable leads to independence between the helper
data and the secret. De Groot et al. [5] took the limit m → ∞
and showed that the resulting scheme is not just a ZLFE but
the generic best performing ZLFE for X ∈ R; other ZLFEs for
X ∈ R can be derived from the generic scheme. Furthermore,
de Groot et al. generalized the scheme of [20] from ZLFEs to
general ZLHDSs by allowing intervals A0, . . . ,AN−1 that are
not equiprobable. Several questions were left open regarding
the Rec procedure in general ZLHDSs and the performance
of ZLHDSs compared to ZLFEs.

C. Contributions and Outline

Our contributions relate only to the first stage of ZLHDSs.
We investigate the case X ∈ R.

• We derive an optimal Rec procedure that minimises the
probability of errors. We obtain analytic formulas for
Gaussian noise and for Lorentz-distributed noise, which
is also sometimes encountered [11].

• Using this Rec procedure we study the performance of
ZLHDSs compared to ZLFEs. We define performance as
the mutual information between S and Ŝ conditioned on
W . This mutual information I (S; Ŝ|W ) represents the
maximum amount of secret key material that can be
extracted from X using a ZLHDS. The intricacies of the
Rec procedure cause the mutual information to become
a complicated function of the choice of quantisation
A0, . . . ,AN−1. We resort to numerics. Our numerical
results for Gaussian source and Gaussian noise show
that optimisation of the quantisation intervals yields an
improvement with respect to the ZLFE in terms of mutual
information as well as reconstruction error probability.
In most cases the gain in I (S; Ŝ|W ) is modest, but the
reduction of the error rate can be substantial. We conclude
that it is better to use a ZLHDS than a ZLFE.

In Section II we introduce notation and summarize the
results of [5]. In Section III we derive the optimal Rec proce-
dure and provide analytic expressions (as far as possible) for
the mutual information and the error rate. Section IV presents
the numerical results for Gaussian source and Gaussian noise.

II. PRIOR WORK

A. Notation and Terminology

We use capitals to represent random variables, and lower-
case for their realizations. The input and output variables of the
HDS are as depicted in Fig. 1. Sets are denoted by calligraphic
font. The set S is defined as S = {0, . . . , N−1}. For α ∈ S we

define pα = Pr[X ∈ Aα]. The expected value with respect to
a random variable Z is denoted as Ez . The mutual information
(see e.g. [4]) between X and Y is I (X; Y ), and the mutual
information conditioned on Z is I (X; Y |Z). The probability
density function (pdf) of the random variable X ∈ R in written
as f (x) and its cumulative distribution function (cdf) as F(x).

B. Zero Leakage Definition

De Groot et al. used the following definition of the ZL
property.

Definition 1 (Zero Leakage): Let W ∈ W . We call a HDS
a Zero Leakage HDS if and only if

∀V⊆W Pr[S = s|W ∈ V] = Pr[S = s]. (1)
The property (1) implies I (W ; S) = 0. The converse is not the
case, since for continuous W one may allow isolated points
w ∈ W where (1) does not hold.

C. Noise Model

We adopt the noise model from [5]. The X and Y are
noisy versions of an underlying ‘true’ value. Without loss
of generality X is taken to have zero mean. The standard
deviations of X,Y ∈ R are denoted as σX and σY respectively.
The verification sample Y is related to the enrollment measure-
ment as Y = λX + R, where λ ∈ [0, 1] is the attenuation
parameter and R is zero-mean additive noise, independent
of X . We have σ 2

Y = λ2σ 2
X + σ 2

R . The correlation between
X and Y is

ρ
def= E[XY ] − E[X]E[Y ]

σXσY
= λ

σX

σY
, (2)

with ρ ∈ [−1, 1]. Furthermore λ2 = ρ2

1−ρ2
σ 2

R
σ 2

X
. Two special

cases are often considered:
1) Perfect Enrollment: During enrollment there is no noise.

The X equals the ‘true’ value. In this situation it holds that
σ 2

Y = σ 2
X + σ 2

R and λ = 1.
2) Identical Conditions: The amount of noise is the same

during enrollment and reconstruction. In this situation σ 2
Y =

σ 2
X and λ2 = ρ2 = 1 − σ 2

R/σ
2
X . The pdf of Y given

X = x is denoted as ψ(y|x) = v(y − λx). The noise is
symmetric and fading, i.e. v(−z) = v(z) and v(z) is a decreas-
ing function of |z|. The cdf corresponding to v is denoted
as V .

D. The ZL Scheme of [5]

The helper data is considered to be continuous, W ∈
W ⊂ R, and without loss of generality de Groot et al. set
W = [0, 1). The left boundary of the quantisation region Aα

is denoted as �α , α ∈ S. (See Fig. 2.) It holds that

�α = F inv

(
α−1∑
i=0

pi

)
, (3)
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Fig. 2. Illustration of the quantization boundaries �α and regions Aα .

Fig. 3. Decision boundaries. (Reconstruction phase.)

where F inv stands for the inverse function of F . Note that
�0 = −∞. The Gen procedure is written as s = Q(x), w =
g(x), where the Q and g functions are given by

Q(x) = max{α ∈ S : x ≥ �α}
g(x) = F(x)− F(�Q(x))

pQ(x)
= F(x)− ∑Q(x)−1

i=0 pi

pQ(x)
. (4)

The relation between x , s and w can be written in a more
friendly form as

F(x) = F(�s)+wps = ∑s−1
i=0 pi +wps. (5)

The thus defined w ∈ [0, 1) is called quantile helper data
since it measures which quantile of the probability mass ps is
located between F(�s) and x . It was shown that the random
variable W , given S, has a uniform pdf. Consequently the
scheme is a ZLHDS. The mapping of x to (s, w) is a bijection.
For the mapping of (s, w) to x the following notation is used,3

ξs,w
def= F inv(

∑s−1
i=0 pi + wps). (6)

In the FE case (uniform pα = 1/N for all α ∈ S) the opti-
mal reconstruction procedure was found to be the following
maximum-likelihood ‘decoder’,

ŝ = RecFE(y, w) = arg maxα∈S ψ(y|ξαw). (7)

Eq. (7) can be conveniently implemented by defining decision
boundaries (ταw)N

α=0. If y ∈ [ταw, τα+1,w), then ŝ = α. In the
case of symmetric fading noise the location of the decision
boundaries dictated by (7) was found to be

τFE
αw = λ(ξα−1,w + ξαw)/2. (8)

Here ξ−1,w = −∞ and ξNw = ∞, resulting in τ0w = −∞,
τNw = ∞. Fig. 3 shows how to understand (8). Each pdf
ψ(y|ξαw) in (7) is centered around y = λξαw and drops off

3 We often omit the comma and write ξsw instead of ξs,w .

symmetrically. The point where one α-value becomes more
likely than another lies halfway between the centers of two
neighbouring pdfs; the crossing point is a decision boundary.

III. GENERAL ZLHDS OPTIMIZATION

In this section we extend the results of
de Groot et al. [5]. We generalize equations (7) and (8).
Then we derive analytic expressions for I (S; Ŝ|W ) and the
reconstruction error probability Perr in terms of the scheme’s
parameters. We also discuss the relation between Perr and the
bit error rate.

A. Formal Definition of a HDS

In Section I-A we discussed HDSs without providing a
definition. For completeness we give a definition in the spirit
of [14] using the terminology of [8]. The definition makes use
of a distance measure ‘dis’ on the source space X and of the
statistical distance ‘SD’ (total variation distance). Note that X
can be a continuum, and that a HDS is defined for a specific
distribution on X .

Definition 2: A (X,S, t, ε)-HDS for a variable X ∈ X is
a pair of functions Gen : X → S × {0, 1}∗ and Rec : X ×
{0, 1}∗ → S, with the following properties.

1) Correctness. Let (S,W ) = Gen(X). If dis(X,Y ) ≤ t
then Rec(Y,W ) = S.

2) Security. Let (S,W ) = Gen(X). Let fSW denote the
probability distribution of (S,W ). Let fS and fW be
the marginal distributions. It holds that SD( fSW , fS fW )
≤ ε.

Optionally, the Gen is randomized using public randomness.

B. ZLHDS Reconstruction

For the sake of completeness we explicitly show that W
given S = s is uniform. (This fact was implicit in [5] but it
was not separately stated.)

Lemma 1: The probability density function of the helper
data W given the secret S is uniform.

Proof: For the pdf of W given S = α we write ρ(w|α). We
start from pαρ(w|α)dw = f (ξαw)dξαw. (The validity of this
equation is readily verified. Applying

∫ 1
0 to the left hand side

yields pα by definition; on the right hand side the equivalent
operation is integration over ξαw on the interval Aα , which
also yields pα.) Now we can write ρ(w|α) = f (ξαw)

pαdw/dξαw
=

f (ξαw)
dF(ξαw)/dξαw

= f (ξαw)
f (ξαw)

= 1. In the second equality we used (5)
with s = α kept constant while w varies.

Lemma 2: For the general HDS the optimal reconstruction
procedure is given by

ŝ = Rec(y, w) = arg maxα∈S pαψ(y|ξαw). (9)
Proof: This is a slight modification of [5, Lemma 5.1],

with the same starting point.

Rec(y, w) = arg max
α∈S

Pr[S = α|Y = y,W = w]

= arg max
α∈S

Pr[S = α,Y = y,W = w]
Pr[Y = y,W = w] . (10)
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The denominator does not depend on α. It can be eliminated.

Rec(y, w) = arg max
α∈S

Pr[S = α,Y = y,W = w]
= arg max

α∈S
Pr[Y = y|S = α,W = w]ρ(w|α)pα.

Using Lemma 1 we get

ŝ = Rec(y, w) = arg maxα∈S pαPr[Y = y|S = α,W = w].
(11)

Since (α,w) uniquely defines ξαw, the probability Pr[Y =
y|S = α,W = w] equals Pr[Y = y|X = ξαw], for which the
notation ψ(y|ξαw) is used.
From (9) we can derive an optimal placement of the boundaries
ταw for general noise and general HDS.

Lemma 3: For a ZLHDS the reconstruction boundary ταw
obtained using pdf intersections satisfies the following equa-
tion:

pα−1ψ(ταw|ξα−1,w) = pαψ(ταw|ξαw). (12)
Proof: From Lemma 2 we see that the decision boundary

is the point y where the function pαψ(y|ξαw) intersects the
function pα−1ψ(y|ξα−1,w).
In the FE case, pα−1 = pα and (12) reduces to
ψ(ταw|ξα−1,w) = ψ(ταw|ξαw), which directly yields (8).
In the general HDS case, however, the difference between the
pα parameters changes the heights of the pdfs ψ(y| · · · ) in
Fig. 3, which leads to a more complicated solution.

Theorem 1: Let the noise be zero-mean Gaussian with
variance σ 2

R . Then the intersection points as specified in (12)
are

ταw = λ
ξα−1,w + ξαw

2
+

σ 2
R ln pα−1

pα

λ(ξαw − ξα−1,w)
. (13)

Proof: The Gaussian noise is given by
ψ(y|x) = 1√

2πσR
exp[− (y−λx)2

2σ 2
R

]. Eq. (12) then becomes

pα−1√
2πσR

e
− (ταw−λξα−1,w)

2

2σ2
R = pα√

2πσR
e
− (ταw−λξαw)2

2σ2
R . (14)

Taking the logarithm on both sides of the equation yields a
linear equation in ταw, with solution (13).

Theorem 2: Let the noise be Lorentz-distributed, ψ(y|x) =
1/σR

1+π2(y−λx)2/σ 2
R

. Let pα �= pα−1. If

pα pα−1(λξα,w − λξα−1,w)
2 ≥ σ 2

R
(pα − pα−1)

2

π2 , (15)

then the reconstruction boundary ταw is given by

ταw = pα−1λξαw − pαλξα−1,w

pα−1 − pα
− 1

pα−1 − pα
·

×
√

pα pα−1(λξαw − λξα−1,w)2 − σ 2
R

π2 (pα−1 − pα)2.

(16)
Proof: Substitution of the distribution into (12) yields

pα

1 + π2σ−2
R (ταw − λξαw)2

= pα−1

1 + π2σ−2
R (ταw − λξα−1,w)2

.

(17)

Inverting both sides gives a quadratic equation in ταw.
(If pα = pα−1 then it reduces to a linear equation with (8)
as the solution.) The quadratic equation has solutions if the
discriminant is nonnegative, which is equivalent to condi-
tion (15). We have to choose the correct sign preceding the
square root of the determinant. We choose the sign such that
λξα−1,w < ταw < λξαw . We verify that (16) indeed satisfies
these inequalities. On the one hand, (16) can be written as

ταw = λξαw + pαλ(ξαw − ξα−1,w)− √· · ·
pα−1 − pα

. (18)

Note that ξαw−ξα−1,w > 0. If pα−1 > pα then the
√· · · ‘wins’

and the numerator of the fraction is negative, as it should be.
If pα−1 < pα then the denominator is negative and the

√· · ·
‘loses’, making the numerator positive. On the other hand, (16)
can also be written as

ταw = λξα−1,w + pα−1λ(ξαw − ξα−1,w)− √· · ·
pα−1 − pα

. (19)

If pα−1 > pα then the
√· · · ‘loses’ and the fraction is positive.

If pα−1 < pα then the
√· · · ‘wins’ and the fraction is positive.

Remark: If one adopts (13) as decision boundaries, an
incorrect reconstruction procedure may result under some
pathological circumstances. This can happen, for example, if
for some α it happens that pα  pα−1 and pα  pα+1; then
in Fig.3 the middle curve is located beneath the intersection
of its neighbours, and ŝ cannot equal α even if s = α. In
practice we will never see this pathological case.

C. Optimization of the Quantization Intervals

As announced in Section I-C, we want to maximize the
amount of key material extracted from X by the ZLHDS.
We have to take into account two effects: the noise, which
limits how much of the entropy of X can be recovered in the
reconstruction phase, and the fact that the adversary knows W .
The quantity of interest is the mutual information between
S and Ŝ given W : I (S; Ŝ|W ). This represents the ‘secrecy
capacity’ or quality of the channel from S to Ŝ created by the
ZLHDS. If a perfect error correction mechanism is used as the
second-stage HDS, i.e. one that achieves the Shannon bound,
then I (S; Ŝ|W ) is the achievable key length.

We note that even though H(S|W ) = H(S), we have
I (S; Ŝ|W ) �= I (S; Ŝ) because Ŝ is not independent of W .

Lemma 4: For a zero leakage helper data system the mutual
information can be expressed as

I (S; Ŝ|W ) = H(S)− H(S|Ŝ,W ) = I (S; Ŝ,W ). (20)
Proof: We write I (S; Ŝ|W ) = H(S|W )−H(S|Ŝ,W ). Due

to the ZL property it holds that H(S|W ) = H(S).
The mutual information I (S; Ŝ|W ) can be seen as a function

of the system parameters p0, . . . , pN−1. These parameters
completely fix the Gen and Rec procedures. (The λ, σX and
σR are given by nature and cannot be chosen). Hence we want
to determine how to set vector (pα)α∈S as a function of λ,
σX , σR so as to maximize our target function. Unfortunately,
I (S; Ŝ|W ) depends on the pα parameters in a very compli-
cated way. The Gen is simple enough, but the Rec procedure
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has decision boundaries ταw (12) that depend on p0, . . . , pN−1
not only directly but also via the ξαw points as specified
in (6); this dependence is quite convoluted as the ξαw invoke
the non-smooth stepwise function Q as well as the nonlinear
F inv. Analytic maximisation of I (S; Ŝ|W ) is intractable. It is
clear, however, that a maximum must exist. Consider the ZLFE
at fixed N ≥ 3. Not all intervals Aα have equal width, which
leads to unequal probabilities for jumping from one interval to
another due to noise. Making the narrowest intervals slightly
broader reduces the reconstruction error probability (with a
positive effect on our target function) and the entropy of S
(with a negative effect). It is intuitively clear that at large σR

the effect of reconstruction errors weighs more heavily than
the H(S) effect; then we expect a nontrivial maximum at a pα
setting different from the FE’s pα = 1/N . The numerics in
Section IV show that this is indeed the case.

For the efficiency of the numerical optimisation we now
look for a simple form in which to represent I (S; Ŝ|W ).
We introduce the following notation,

ϒŝ|sw
def= Pr[Ŝ = ŝ|S = s,W = w] =

∫ τŝ+1,w

τŝw

ψ(y|ξsw)dy

= V (τŝ+1,w − λξsw)− V (τŝw − λξsw). (21)

The first equality follows from the reconstruction rule y ∈
(τŝw, τŝ+1,w) �⇒ Ŝ = ŝ. The last step follows from
ψ(y|x) = v(y − λx) and V being defined as the integral of v
(Section II-C). We can express the mutual information entirely
in terms of the pα and ϒŝ|sw parameters.

Lemma 5: For the ZLHDS it holds that

I (S; Ŝ|W ) =
N−1∑
s=0

N−1∑
ŝ=0

∫ 1

0
dw psϒŝ|sw log

ϒŝ|sw∑N−1
β=0 pβϒŝ|βw

.

(22)
Proof:

I (S; Ŝ|W ) = Esŝw log
Pr[S = s, Ŝ = ŝ|W = w]

Pr[S = s|W = w]Pr[Ŝ = ŝ|W = w]
= Ew

∑N−1
s,ŝ=0Pr[S = s|W = w]ϒŝ|sw ·

× log
Pr[S = s, Ŝ = ŝ|W = w]

Pr[S = s|W = w]Pr[Ŝ = ŝ|W = w] .
(23)

In the last line we used the chain rule Pr[S = s, Ŝ = ŝ,W =
w] = EwPr[S = s|W = w]ϒŝ|sw. Next we use Ew(· · · ) =∫ 1

0 dw(· · · ) as implied by Lemma 1, and Pr[S = s|W = w] =
ps by the ZL property. We apply these rules, and Pr[Ŝ =
ŝ|W = w] = ∑

s psϒŝ|sw, inside the logarithm.

D. Reconstruction Errors

While we are mainly interested in the mutual information,
we also care about the practical implementation aspects of the
second-stage HDS. The second-stage HDS typically employs
an Error-Correcting Code (ECC). If the output of the first-
stage HDS has a high bit error rate, this causes problems for
the ECC. In our numerics we keep track of the error rate.

TABLE I

THREE-BIT GRAY CODE USED FOR N = 5 AND N = 6. THE HIGHLIGHTED
CELL SHOWS THE TWO-BIT GRAY CODE FOR N = 3 AND N = 4

Fig. 4. Mutual information versus Perr for perfect enrollment (upper figure)
and identical conditions (lower figure). At fixed σR , data points for the general
HDS are connected with a solid line, while a dashed line corresponds to
the FE.

We write Perr = Pr[Ŝ �= Q(X)] for the overall probability
that Ŝ is not equal to S. This is an averaged quantity,
i.e. averaged over X . For fixed x we have

Pr[Ŝ = Q(X)|X = x] = ϒQ(x)|Q(x),g(x). (24)

Averaging over x gives

1 − Perr = Ex Pr[Ŝ = Q(X)|X = x] = ExϒQ(x)|Q(x),g(x)
= ∑

s∈S ps
∫ 1

0 dw ϒs|sw. (25)

In the last step we used that x uniquely maps to (s, w) =
(Q(x), g(x)). Eq. (25) together with (21) is the most conve-
nient way to analytically express the error probability.

We consider the case where s is encoded as a Gray code.
This is a well known technique to reduce the number of bit
flips when a reconstruction error occurs. Table I lists the Gray
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Fig. 5. Mutual information versus BER for perfect enrollment (upper figure) and identical conditions (lower figure). At fixed σR , data points for the general
HDS are connected with a solid line, while a dashed line corresponds to the FE.

code. (Other, equivalent, encodings are possible.) We will look
at N ∈ {3, 4, 5, 6}. The length of the Gray code is �log N�.

The Bit Error Rate (BER) is given by

BER = E[# bit errors]
�log N� = 1

�log N�
�log N�∑

t=0

t Pr[#bit errors = t].
(26)

We introduce the following notation,

�ŝ|s
def= Pr[Ŝ = ŝ|S = s] = Ewϒŝ|sw. (27)

All the probabilities in (26) can be calculated in terms of the
�ŝ|s probabilities. The details are given in the Appendix.
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Fig. 6. Bit Error Rate as a function of the noise parameter σR/σX . Perfect enrollment.

IV. NUMERICAL RESULTS

We present numerical results for the optimization described
in Section III, for N ∈ {3, 4, 5, 6}. We consider a Gaussian
source X and Gaussian noise. (This is already a rather accurate
model for Coating PUFs [18]). Without loss of generality
we set σX = 1. Only the ratio σR/σX matters. We consider
the two cases defined in Section II-C: perfect enrollment and
identical conditions. We implemented (22) in Wolfram Mathe-
matica 10.2 as a symbolic function. We used FindMaximum
to obtain optimum values for p0, . . . , pN−1. To reduce the
dimension of the search space we imposed the symmetry
pN−1−α = pα by hand. In the figures the label ‘gHDS’ stands
for general HDS (as opposed to FE). Fig. 4 shows I (S; Ŝ|W )
versus Perr for various σR .

• For small σR , the optimum setting of the gHDS is close to
the FE setting pα = 1/N , and it is visible that increasing
N has a huge benefit for the mutual information.

• For somewhat larger σR , there is a clear difference
between the optimised gHDS and the FE. For example,
in the λ = 1 graph at σR = 0.25 we see that at N = 6 the
transition from FE to gHDS brings a modest improvement
of the mutual information and a reduction of Perr from
≈ 23% to ≈ 10%. The reduced Perr means that the ECC
in the second stage is much easier to implement for the
gHDS than for the FE.

• At σR > 0.5 the noise is so bad that the gHDS and
the FE perform almost equally badly (though the gHDS
is always slightly better). Increasing N improves the
mutual information only slightly, and at the cost of a
large increase in Perr.

The choice of algorithm is not important. Eq. (22) is smooth and does not
have spurious local maxima in the parameter region of interest.

Fig. 5 shows the same data, but with the BER on the hor-
izontal axis. The ‘zigzag’ at the transition from N = 4 to
N = 5 occurs because the Gray code jumps from a 2-bit
representation of s to a 3-bit representation, with little noise
in the first of the three bits.

Fig. 6 shows the BER as a function of σR/σX . The curves
for N = 4 and N = 5 cross each other; this causes the ‘zigzag’
in Fig. 5. Apart from this crossing, in general increasing N
increases the BER. The graphs of Perr as a function of σR/σX

(Fig. 7) are much smoother. Unsurprisingly, for extremely
strong noise the Perr for the gHDS and the FE is practically
the same. For completeness Fig. 8 plots the BER versus Perr.
The relation is nonlinear. Again it is visible that the gHDS
outperforms the FE at every combination of σR/σX and N .

Fig. 9 shows the optimal values of p0, . . . , pN−1 for the
perfect enrollment case (λ = 1). At σR = 0 it holds that
pα = 1/N for all α, which is the FE configuration. When
σR increases, the outer regions A0, AN−1 shrink while the
central region(s) become broader. (This makes intuitive sense:
the FE’s central intervals are more narrow than the outer
intervals and therefore more susceptible to noise.) Then this
trend reverses. At very large σR the pα values stabilize, but
not into the FE configuration.

Figs. 6–9 show λ=1. The results for the identical conditions
case look similar.

V. SUMMARY

We have extended the results of de Groot et al. [5] in
the case of non-equiprobable quantisation intervals. Lemma 3
gives the recipe for finding the optimal decision boundaries
used in Rec. The result for Gaussian and Lorentzian noise is
given in Theorems 1 and 2.
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Fig. 7. Perr as a function of the noise parameter σR/σx . Perfect enrollment.

Fig. 8. BER versus reconstruction error probability Perr. Perfect enrollment. At given σR , data points for the HDS are connected with a solid line, while a
dashed line corresponds to the FE.

We have studied the mutual information I (S; Ŝ|W ), which
is an upper bound on the amount of secret key material that
can be robustly extracted from X . The mutual information is
most conveniently expressed in terms of the ps and ϒŝ|sw para-
meters (22). The dependence of the ϒŝ|sw on p0, . . . , pN−1

is so complicated that optimisation of I (S; Ŝ|W ) cannot be

done analytically. The figures in Section IV show the results of
numerical optimisation in a simple model where the source and
the noise are Gaussian. Such a model is reasonably accurate
for Coating PUFs. For every combination (N, σR/σX ) the
optimized ZLHDS clearly performs better than the ZLFE in
terms of both mutual information and bit error rate. The
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Fig. 9. The optimized pα values as a function of the noise parameter σR/σX , for λ = 1, N = 3, 4, 5, 6.

reduction in the BER is substantial. This makes the design
of a second-stage HDS much more practical, since it makes it
easier to implement an ECC that can cope with the bit errors
introduced by reconstruction errors.

We notice that the numerical results for the perfect enroll-
ment and identical conditions noise models are very similar.
This gives some indication (but does not prove) that mistakes
in the estimation of the parameters σX , σR do not have serious
consequences. This question is left for future work. Another
topic for future work is applying the numerical optimisation
to different source distributions.

APPENDIX

We list expressions for the BER (26) in terms of the �ŝ|s
probabilities (27), when the Gray code of Table I is used. We
assume a symmetric source pdf f and symmetric noise. As
a result the optimal pα values have the symmetry pN−1−α =
pα, and there is a large number of symmetries between the
�-values, �N−1−ŝ |N−1−s = �ŝ|s .

N N ·BER

3 2 p0(�1|0 + 2�2|0)+ 2 p1�2|1
4 2 p0(�1|0 +�3|0 + 2�2|0)

+2 p1(�0|1 +�2|1 + 2�3|1)
5 2 p0(�1|0 +�3|0 + 2�2|0 + 2�4|0)

+2 p1(�0|1 +�2|1 + 2�3|1 + 3�4|1)
+2 p2(�1|2 + 2�0|2)

6 2 p0(�1|0 +�3|0 + 2�2|0 + 2�4|0 + 3�5|0)
+2 p1(�0|1 +�2|1 + 2�3|1 + 2�5|1 + 3�4|1)
+2 p2(�1|2 +�3|2 + 2�0|2 + 2�4|2)

The p-index in this table runs only to �N/2� − 1 because
of the α ↔ N − 1 − α symmetry; this also gives rise to
the factor 2 in front of each pα. Inside the parentheses, the
numerical factor in front of each � indicates the number of
bit flips that occur due to that specific transition.
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Boris Škorić received the Ph.D. degree in theoretical physics from the
University of Amsterdam in 1999. From 1999 to 2008, he was a research
scientist at Philips Research, working first on display physics and later
on security topics. In 2008 he joined the Department of Mathematics and
Computer Science at Eindhoven University of Technology, the Netherlands,
as Assistant Professor.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


