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Summary

Large matroids: enumeration and typical

properties

A matroid is an abstract geometrical configuration of points, lines,
planes, and higher-dimensional analogues. Matroid theory is strongly
tied to other areas of mathematics, such as linear algebra, graph the-
ory, and the design and analysis of algorithms. Many objects that occur
naturally throughout mathematics, such as graphs, vector spaces, and
combinatorial designs, give rise to matroids. In addition, many combi-
natorial algorithms, such as Kruskal’s algorithm for finding minimum-
weight spanning trees in graphs, or finding maximal matchings in bi-
partite graphs, are special cases of matroid algorithms.

Matroids come with a notion of size: the cardinality of their ground
set. This thesis focusses on large matroids, i.e. matroids whose ground
set is large. It addresses two closely related problems: asymptotic enu-
meration and identification of typical properties.

Enumeration is a central problem in discrete mathematics. In this
thesis, it pertains to obtaining good upper and lower bounds on the
number of matroids on a given ground set (and given rank) as a function
of its size.

There is a close relationship between enumeration and descriptive
complexity. To illustrate this connection, suppose that a description of
k bits suffices to describe a matroid of given size. As there are 2k bit
strings of length k, this immediately implies that there are at most 2k

matroids of that size.

In this thesis, matroid enumeration is approached by exploiting this
connection. If a matroid can be encoded as an object whose complexity
is known, then this complexity translates to an upper bound on the
number of matroids. If such a description is concise, then the resulting
upper bound is close to the actual number of matroids. Several such
encoding schemes are considered:
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• A method of describing a matroid as the sequence of its trunca-
tions, in which every term is generated as an erection of the pre-
vious term using a small amount of additional information. The
resulting upper bound, combined with a matching lower bound,
gives rise to a good approximation of the numer of matroids of
fixed rank.

• A method of describing any matroid as a stable set in the Johnson
graph, augmented with a relatively small amount of additional
information. This method results in an improved upper bound on
the number of matroids which, on logarithmic scale, comes within
a factor 2 + o(1) of the best known lower bound.

In addition, several general methods for transferring enumeration results
for matroids of fixed rank to matroids of general rank are developed.

A matroid property is typical if it is satisfied by all but a vanishing
fraction of matroids on a given ground set. In discrete probability the-
ory, this is sometimes expressed as “almost every matroid satisfies prop-
erty X”, or even “the random matroid satisfies property X”. There is a
large body of work on random discrete objects such as random graphs
and random matrices. By contrast, the picture for random matroids is
relatively bleak: although there is a large number of conjectured typical
properties, results are scarce.

In this thesis, the relation between complexity and enumeration is
used to provide a crude but effective method to prove that certain prop-
erties are typical. If absence of a certain property allows for more concise
descriptions, then it implies a bound on the number of matroids not sat-
isfying the property that is stronger than the enumeration result. If this
effect is sufficiently strong, then it follows that the property is typical.
Using this type of reasoning, the following results are proved:

• Almost every matroid has high girth and high connectivity.

• Almost every matroid has an automorphism group that is gener-
ated by at most one transposition.

• Almost every matroid has a number of bases that is between a
Ω(1/n) and an O

(
log3 n/n

)
fraction of r-subsets, and has rank

asymptotic to half its size.

• Almost every matroid contains an N -minor, if N is either a uni-
form matroid or one of several small matroids.
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chapter 1

Introduction

1.1 Matroids

Matroids emerged in the 1930’s as a common abstraction of a number of
mathematical objects. In his seminal paper [Whi35], Whitney observed
a number of key properties shared by independent vectors in a vector
space, and spanning trees in graphs. He named set systems satisfying
these properties matroids.

In terminology that we will use in this thesis, a matroid is a set
system (E,B) on a finite ground set E, in which the collection of bases,
B, is a non-empty collection of subsets of E satisfying the basis-exchange
axiom

For all B,B′ ∈ B, and for all b ∈ B \B′,
there exists b′ ∈ B′ \B such that (B \ {b}) ∪ {b′} ∈ B. (1.1)

Let us consider two examples of matroids, that serve to illustrate
the diverse background of matroid theory.

The first example is that of a representable matroid. Let A be a
matrix over some field F, and suppose that its columns are indexed
by E. If B is the collection of indices such that the corresponding
columns form a basis of the column space of A, then B satisfies (1.1). (In
this setting, (1.1) follows from an application of the Steinitz exchange
lemma.) Thus, matrices give rise to matroids, and matroids arising in
this way are called representable or linear. (Incidentally, this example
explains the origin of the term “basis”.)

The second example is that of a graphic matroid. If G = (V,E) is a
graph, and B is the collection of subsets of E that inclusionwise-maximal
acyclic subgraphs (forests) in G, then B satisfies (1.1). This can be seen
by removing the edge b from G, and then greedily extending B \ {b}

1
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1 2 3 4 5( )
1 0 0 1 1
0 1 0 1 1
0 0 1 0 1

(a) A matrix over the binary field.

12

4

53

(b) A graph.

Figure 1.1: A linear and a graphic representation of the same
matroid: the matroid has ground set E = {1, 2, 3, 4, 5}, whose
bases are all 3-subsets except {1, 2, 4} and {3, 4, 5}.

to a maximal acyclic subgraph of G′ = (V,E \ {b}). Thus, graphs give
rise to matroids as well, and matroids arising from graphs in this way
are called graphic. See Figure 1.1 for an example of a matroid that has
both a linear and a graphic representation.

Graphic and linear matroids are the two examples that Whitney
provided in [Whi35]. Several other authors observed similar properties
in different situations, such as lattices, algebraic geometry, and geome-
try. Kung [Kun86] reprints and comments on many of these historical
papers, while Schrijver [Sch03, Chapter 39.10b] provides historical notes
and connections to earlier work.

In the 1950’s and 1960’s, interest in matroid theory grew rapidly af-
ter their strong ties with discrete optimisation were discovered. Suppose
that the elements of the ground set E each have a weight. Generalising
Kruskal’s algorithm for finding maximum spanning trees, a greedy al-
gorithm can be used to find a basis of maximum weight in the matroid.
One striking observation is that matroids are precisely those hereditary
structures for which the greedy algorithm works, no matter how the
elements are weighted (cf. [Oxl11, Section 1.8], [Sch03, Chapter 40]).

More generally, finding a maximum-weight independent set in the
intersection of two matroids can be solved efficiently, due to the matroid
intersection theorem by Edmonds [Edm70]. (The problem becomes NP-
hard when three matroids are involved.) Matroid intersection contains
as special cases the problem of finding maximal matchings in bipartite
graphs, and arborescences in directed graphs. A brief account of these
first connections between matroids and combinatorial optimisation can
be found in Cunningham [Cun12].

More recently, matroids have become more popular in the study
of various algorithmic problems, such as mechanism design (see e.g.
[BIK07, FGH+17]) and coding theory (see e.g. [Kas08]).
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1.2 Large matroids

Reflecting the advent of data science and the emergence of large net-
works, working with huge discrete objects has become increasingly com-
monplace. One can think of large networks (graphs), such as the world
wide web, protein interaction networks, and chip design [Lov12, vdH16],
and large matrices, prevalent in applications such as statistics and ma-
chine learning.

This thesis deals with large matroids. More precisely, we focus on
matroids on a ground set of cardinality n, and study their properties
as n tends to infinity. The type of result that we are interested in, will
be of the form “a typical matroid has property Π”. Here, “typical”
means that, as n tends to infinity, we allow for a vanishing proportion
of matroids to fail property Π.

The results in this thesis fit in three themes, which themselves are
strongly interrelated.

Enumeration

Enumeration, or counting, is a central problem in discrete mathematics.

Enumeration of matroids started in the 1960’s. Crapo [Cra65] de-
scribed a theory of extensions of matroids, which allowed him to show
that there are at least 2n non-isomorphic matroids on a ground set of
n elements. Following an earlier, unpublished, enumeration of matroids
up to 7 elements by Higgs, Blackburn, Crapo, and Higgs [BCH73] pub-
lished a catalogue of matroids1 on at most 8 elements. They obtain 950
such matroids on 8 elements. Their catalogue was not extended until
this century, when Mayhew and Royle [MR08] extended it with the ma-
troids on 9 elements. They obtained 383172 non-isomorphic matroids
on that number of elements, of which a majority of 376467 are simple.

Write m(n) for the number of matroids on ground set [n]. As each
matroid is a set system, we obtain the easy upper bound m(n) ≤
22n . Piff and Welsh [PW71] were the first to show that this double-
exponential growth is essentially the right behaviour of m(n), by con-
structing a family of non-isomorphic matroids on n elements that con-

tains at least n2nn−5/2

matroids. The fast growth of the number of
matroids is hence not surprising, and computing catalogues of even
larger matroids than the ones considered by Mayhew and Royle will
be increasingly unwieldy.

1Strictly speaking: non-isomorphic, simple matroids. This terminology will be
explained in the next chapter.
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The best lower bound on m(n) for large n to date follows from a
bound in coding theory by Graham and Sloane [GS80] or Kløve [Klø81].
The relation between these results and matroid theory was realised by
Mayhew and Welsh [MW13], who used it to prove that

logm(n) ≥ 1

n

(
n

n/2

)
= Θ

(
2n

n
√
n

)
.

The bound is obtained by constructing a large collection of so-called
sparse paving matroids, or equivalently, a large stable set in the Johnson
graph. Sparse paving matroids and the Johnson graph will play a central
role in this thesis, and their connection is explored in Section 2.6.

In the other direction, Piff [Pif73] proved that

logm(n) ≤ O
(

2n log n

n

)
.

There is a gap of size O(
√
n log n) between the upper bound and

lower bound on logm(n). One of the results in this thesis is an im-
provement of the upper bound to within a factor 2 + o(1) of the lower
bound.

Structure and complexity

The complexity of an object is, loosely speaking, the length of a shortest
description of that object. There is a strong connection between com-
plexity and enumeration: If all objects in a certain class are uniformly
non-complex, then the class is necessarily small, since there is only a
bounded number of descriptions of a certain length.

Prescription (or avoidance) of structure may have a profound effect
on an object’s complexity, and hence on enumeration results, even if the
prescribed structure is of a very local nature. Consider the following
illustrative, if somewhat contrived, example. Let Σn be the class of
binary strings of length n. Often, the shortest description of an element
in Σn is the string itself, so objects in Σn tend to be fairly complex.
This is reflected in its cardinality: |Σn| = 2n. On the other hand, for
the subclass Σ′n ⊆ Σn of strings avoiding the simple local structure 10
(i.e. a 1 followed by a 0) ensures that each object can be described by
a single natural number ` ∈ {0, 1, . . . , n}, e.g. indicating the number
of zeroes in the string. Thus, avoiding the substring 10 reduces the
complexity drastically; again, this is reflected in the cardinality of Σ′n:
|Σ′n| = n+ 1.

More profound examples can be found in the area of graph theory.
For example, if H is any fixed graph, then a sufficiently large random
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graph contains H as a subgraph (with probability close to 1) [J LR00,
Theorem 3.4], so excluding H as a subgraph necessarily reduces com-
plexity. Similarly, it was shown in [NSTW06] that every proper minor-
closed class of graphs is small, and hence particular graphs in such a
class have relatively small complexity.

Randomness

Random discrete structures form perhaps the most natural setting for
questions about typical structure, and there are many examples.

Perhaps the most well-known example of random discrete structures
is the random graph. In its simplest form, the random graph G(n, p)
consists of n labelled vertices, in which all edges are present with prob-
ability p, independently of all other edges. Since its inception by Erdős
and Rényi [ER59, ER60] and Gilbert [Gil59], random graph theory has
blossomed into a thriving area with a rich body of results and differ-
ent models of random graphs, catering to a wide range of modelling
situations (cf. [J LR00, vdH16]).

A similarly simple model exists for random matrices over finite fields.
One can construct, for example, a random rectangular matrixAm×n(F),
whose entries are chosen from the finite field F, randomly and indepen-
dently from all other entries. This model is surveyed by Blake and
Studholme [BS06]. A related model is the so-called Bernoulli ensem-
ble, Am×n(±1), in which the entries are random ±1-values, see [TV07].
Such random matrices are in one-to-one correspondence with random
directed graphs.

Although matroids generalise both graphs and matrices, to date only
few results on random matroids exist. Mayhew, Newman, Welsh, and
Whittle [MNWW11] comment:

“Indeed, there are almost no results on the asymptotic be-
haviour of classes of matroids. This seems to be due to the
lack of a successful model of a random matroid.”

Both random graphs and random matrices over finite fields admit a rep-
resentation as a product probability space. Loosely speaking, a random
graph can be obtained by tossing a coin for each edge, and including
only these edges for which the coin came up heads. A random matrix
can be constructed similarly, by choosing its elements one at a time.
By contrast, matroids do not have such a straightforward construction.
For example, one cannot select a random collection of subsets of [n] and

5
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hope that these satisfy the basis-exchange axiom.2

Knuth [Knu75] described a construction of matroids that is capable
of generating an arbitrary matroid, and commented that by randomising
the choices made in his construction, in principle a random matroid can
be constructed. Analysis of his algorithm remains an open question.
Attempts to analyse random representable matroids have been more
fruitful, see e.g. the works by Oxley [Oxl84], Kelly and Oxley [KO82b,
KO82a, KO84], Kordecki [Kor88, Kor95, Kor96], Kordecki and  Luczak
[K L91, K L99], Altschuler and Yang [AY17], and Cooper, Frieze, and
Pegden [CFP17].

We close this section by mentioning two recent results in the area
of random matroid theory. Both results show that a certain algorithm
works well on a random (or typical) instance, while the worst-case be-
haviour is either unknown or bad.

• The matroid secretary problem [BIK07] is a generalisation of the
classical secretary problem. Huynh and Nelson [HN16] recently
proved that a particular randomised algorithm isO(1)-competitive
for a typical matroid, while the best known result for all matroids
is O(log log r)-competitive [Lac14].

• Counting the number of bases of a matroid is a problem that
contains, as a special case, enumeration of spanning trees in con-
nected graphs. Although counting spanning trees can be done in
polynomial time by Kirchhoff’s matrix-tree theorem, the problem
of counting bases in a matroid3 is ]P -hard. In addition, Azar,
Broder, and Frieze [ABF94] proved that it is not even possible to
obtain an accurate approximation of the number of bases in deter-
ministic polynomial time. By contrast, Cloteaux [Clo10], building
on work by Chávez Lomeli and Welsh [CLW96], showed that the
number of matroids can be effectively approximated for a typical
matroid.

1.3 In this thesis

In this section, we provide an overview of some of the open questions
concerning large matroids. The questions presented here fit roughly

2This procedure will in fact produce a random matroid. However, the chance of
success is extremely slim, and hence not useful for any practical applications. At the
same time, the approach gives little possibility for a successful probabilistic analysis.

3Presented by an independence oracle
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in three overarching themes: enumeration, minor-closed classes, and
connectivity. Most of the conjectures presented below can be found in
Mayhew, Newman, Welsh, and Whittle [MNWW11].

Most of the conjectures are phrased as “almost every matroid satis-
fies property Π”. This phrase is used in the precise meaning that the
fraction of matroids on ground set E = [n] that satisfy property Π tends
to 1 as n tends to infinity.

Theme I: Enumeration

A central role in this thesis is played by several enumerative results. A
central question in the area of large matroids is the following. Write
m(n) for the number of matroids on ground set [n].

Question 1.3.1. What is the asymptotic behaviour of m(n)?

Given a matroid M , it can be shown that each basis of the matroid
M has the same cardinality, which is called the rank of M . Write
m(n, r) for the number of matroids of rank r on ground set [n]. Then
one could similarly consider the asymptotic behaviour of m(n, r), for
example when r is a fixed constant or grows linearly in n.

The function m(n) is roughly doubly exponential in n. This was
first shown by Piff and Welsh [PW71], who constructed a large family
of so-called sparse paving matroids.Later, an even larger family of such
sparse paving matroids was constructed by Knuth [Knu74], which was
again improved by Graham and Sloane [GS80] and Kløve [Klø81] (we
consider their construction in Section 2.8).

Mayhew, Newman, Welsh, and Whittle [MNWW11, Conjecture 1.6]
conjecture that almost every matroid is a so-called paving matroid, and
note that this is equivalent to the following (seemingly stronger) con-
jecture.4

Conjecture 1.3.2. Almost every matroid is sparse paving.

Sparse paving matroids are very benign objects compared to general
matroids, and an affirmative answer to Conjecture 1.3.2 would be a very
powerful result. Indeed, several hard conjectures, that have not yet

4Versions of the conjecture date back to the 1970’s. Based on a catalogue of
matroids on up to 8 elements by Blackburn, Crapo, and Higgs [BCH73], Crapo
and Rota consider it likely that paving matroids “would actually predominate in
any asymptotic enumeration of [matroids]” [CR70, p. 3.17], while Welsh [Wel76,
Ex. 3.2.3] asks whether the predominance of paving matroids among small matroids
holds in general. Mayhew and Royle [MR08] confirmed that the paving matroids
still predominate among matroids on 9 elements.
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been proved for general matroids, have been proved for (sparse) paving
matroids [Bon13, GH06, Jer06, MNRIVF12]. Conjecture 1.3.2 would
immediately imply that each of these conjectures hold for almost every
matroid.

Noting that m(n, r) = m(n, n − r) for all 0 ≤ r ≤ n, Welsh asked
if more of a ‘binomial character’ is visible in the sequence {m(n, r) :
0 ≤ r ≤ n}. For example, is the sequence unimodal [Wel71, P19], and
does it assume its maximum when r = bn/2c [Wel71, P20]?5 Mayhew,
Newman, Welsh, and Whittle propose that Welsh’s problem P20 holds
in the following strong sense.

Conjecture 1.3.3 ([MNWW11, Conjecture 1.10]). Almost ev-

ery matroid satisfies rk(M) ∈
{⌊
|M |

2

⌋
,
⌈
|M |

2

⌉}
.

An automorphism of a matroid is a permutation of its ground set
that maps bases to bases and nonbases to nonbases. A matroid is asym-
metric if the identity permutation is its only automorphism.

Conjecture 1.3.4 ([MNWW11, Conjecture 1.2]). Almost every
matroid is asymmetric.

The conjecture would imply that for every property Π that does not
depend on the labelling of the elements of the matroid, almost every
matroid satisfies Π if and only if almost every unlabelled matroid does.

Theme II: Minor-closed classes

A matroid N is a minor of a matroid M if it can be obtained from M
by a sequence of deletions and contractions of elements. We postpone
a formal definition to Chapter 2, noting here that minors in matroids
generalise the notion of minors in graphs. A class of matroids is called
minor-closed if it is closed under taking minors and under relabelling of
elements. Minor-closed classes can be described by listing their excluded
minors: these are the matroids that themselves are outside the class,
while all of their proper minors are in the class. A prototypical such
excluded-minor characterisation in graph theory is Wagner’s theorem,
which identifies the planar graphs as those graphs that have neither
K5 nor K3,3 as a minor (cf. [Die16, Theorem 4.4.6]), while a classical
such characterisation in matroid theory is Tutte’s characterisation of
the binary matroids (matroids that are representable over the binary

5Actually, Welsh asksed these questions concerning non-isomorphic matroids.
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field) as those matroids that do not have the uniform matroid U(2, 4)
as a minor (cf. [Oxl11, Theorem 9.1.3]).

Mayhew, Newman, Welsh, and Whittle make the following striking
conjecture about the pervasiveness of sparse paving matroids.

Conjecture 1.3.5 ([MNWW11, Conjecture 1.7]). Let N be a
sparse paving matroid. Almost every matroid has an N -minor.

They isolate N = V8, the Vámos matroid, as a case of special in-
terest [MNWW11, Conjecture 1.8]. As V8 is not representable over any
field, an affirmative answer to Conjecture 1.3.5 would imply an affirma-
tive answer to the following conjecture.

Conjecture 1.3.6 ([MNWW11, Conjecture 1.9]). Almost every
matroid is not representable over any field.

Conjecture 1.3.6 was recently proved by Nelson [Nel16], using a dif-
ferent approach than suggested by Mayhew, Newman, Welsh, and Whit-
tle.

Since V8 is not algebraic over any field (which is stronger than non-
representability), an affirmative answer to Conjecture 1.3.5 would also
imply an affirmative answer to the following (stronger) conjecture.

Conjecture 1.3.7. Almost every matroid is not algebraic over
any field.

Theme III: Connectivity

A matroid is k-connected, roughly, if it cannot be broken into smaller
pieces across small separations, similar to the way a k-connected graph
cannot be broken into smaller pieces by removing few edges. Connec-
tivity plays a pivotal role in matroid structure theory.

Conjecture 1.3.8 ([MNWW11, Conjecture 1.5]). Let k > 1.
Almost every matroid is k-connected.

The special cases k = 2 and k = 3 of Conjecture 1.3.8 were proved
by Lowrance, Oxley, Semple, and Welsh [LOSW13, Theorem 4.2].
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1.4 Outline

Finishing the introduction, we briefly sketch the contents of the remain-
ing chapters.

Enumeration and concise descriptions

Here, we sketch the relation between enumeration and structural com-
plexity, which plays a central role in this thesis.

Suppose that we are interested in enumeration of the set X . If there
exists an injective function f : X → Y, then we refer to f as an encoding
of the elements of X , and for we may call f(X) a description of X ∈ X .
It is important to note that, in this context, A is uniquely determined
by f(A).

If f is an encoding of X , then clearly |X | ≤ |Y|. Therefore, the
cardinality of Y provides an upper bound for the enumeration problem
that we are interested in. Obviously, such a result is most useful if Y is
not much larger than X . This means that we are particularly interested
in descriptions that are not only faithful, but also concise.

This idea is related to data compression, which is the encoding of
information using fewer bits than the original representation. Such data
compression is obtained by eliminating redundant information.

A large part of this thesis is dedicated to the elimination of re-
dundant information from matroid descriptions, thus leading to concise
descriptions.

Chapter 2 — Preliminaries

In Chapter 2, we establish notation and review most of the background
material that is required for reading the thesis. In particular, we provide
a brief introduction to matroid theory and describe the Johnson graphs,
which also play a major role in this thesis.

Chapter 3 — Entropy

The entropy of a random variable is a measure for the uncertainty in
any realisation. Entropy methods can be used to prove many results in
discrete mathematics. In particular, Shearer’s Entropy Lemma is useful
for bounding the entropy of random variables in terms of projections into
lower-dimensional subspaces. In Chapter 3, we use Shearer’s Entropy
Lemma to provide bounds on the number of matroids in a class in terms
of their deletions and contractions. This allows us to bound the number
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of matroids in a certain class in terms of bounds on the number of
matroids of a certain fixed rank in such a class.

Chapter 4 — Cover complexity

In Chapter 4, we introduce cover complexity as the minimal size of a
certain faithful description of matroids. Cover complexity is a measure
of structural complexity of a matroid. We show how a bound on the
cover complexity of the matroids in a class implies a bound on the size
of that class.

We prove a technical result that can be used to translate bounds
on the cover complexity of matroids of a certain fixed rank in a minor-
closed class of matroids to a bound on the size of that class, and use
this result that several minor-closed classes are small.

Chapter 5 — Enumeration of matroids of fixed rank

In Chapter 5, we turn our attention to matroids of fixed rank. We show
how every matroid can be encoded as a stack of paving matroids of
increasing rank, and use this to obtain enumerative results. Our method
shows that essential flats and their ranks give a concise description of
matroids. In addition, we obtain strong bounds on the number of paving
and sparse paving matroids of fixed rank.

Chapter 6 — Enumeration of matroids

Recently, the container method has found successful application in the
enumeration of discrete structures such as stable sets in graphs. Sparse
paving matroids can be described as such a stable set, and in Chapter 6
we use the container method to obtain an upper bound on the number
of sparse paving matroids that is the square of the best lower bound.

Next, we combine the container method with some of the cover com-
plexity results from Chapter 4 to obtain a variant of the container
method that can deal with general matroids as well. This extension
results in a bound on the number of matroids that is qualitatively the
same as that on the number of sparse paving matroids.

In addition, a careful analysis of the method implies that most ma-
troids have few non-bases.

Chapter 7 — Typical properties

In Chapter 7, we prove a lower bound on the likely number of bases
that is complementary to the upper bound obtained in Chapter 6. As
a corollary, we obtain, with relatively little additional effort, some of

11



c
h
a
p
t
e
r
1
in
t
r
o
d
u
c
t
io
n

the strongest results in asymptotic matroid theory in this thesis. In
particular, we show that most matroids have arbitrarily large uniform
minors, arbitrarily high connectivity, arbitrarily high girth, and do not
arise as the truncation of another matroid. In addition, we show that
most matroids have an automorphism group that is either trivial or
generated by a single transposition.

Chapter 8 — Discussion and future work

In this thesis a number of open questions about the structure of large
matroids are answered. Many other questions remain open; perhaps the
most striking of these is that of asymptotic enumeration. In Chapter 8,
we consider a number of remaining questions, and indicate directions in
which the results in this thesis may be extended.

12



chapter 2

Preliminaries

In this chapter, we establish some basic notation, and introduce the
protagonists of this thesis: matroids, and the Johnson graph.

In this chapter, we restrict our attention to notation and results
that play a role throughout the thesis. Where, in later chapters, addi-
tional results are required that are local to that chapter, such result are
introduced there.

The remainder of this chapter is organised as follows. In Section 2.1,
we define some basic notation, and in Section 2.2, we review some
bounds on binomial coefficients. In Section 2.3, we define matroids,
and review some definitions and results that are used throughout this
thesis. In Section 2.4–2.5, we define matroid classes, and give a pre-
cise definition of the phrase “almost every matroid”. In Section 2.6, we
introduce the Johnson graph, which in Section 2.7 is related to sparse
paving matroids and Steiner systems. Finally, in Section 2.8, we review
the best known lower bounds on the number of matroids.

2.1 Notation

Sets

Z (Z≥0, Z>0) denotes the set of integers (nonnegative integers, positive
integers), and we write Zn for the integers modulo n. In addition, R
denotes the real number field.

For an integer n ≥ 1, we write

[n] := {1, 2, . . . , n}.
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If E is a set, then we write P(E) for its power set, and(
E

r

)
:= {X ∈P(E) : |X| = r}

for the subsets of cardinality r, and similarly
(
E
≤r
)

for the subsets of
cardinality at most r.

A4B denotes the symmetric difference between the sets A and B.

Throughout this thesis, we work with sets, as well as collections of
subsets. Generally, sets are denoted by capital letters (e.g. X ⊆ E if X
is a subset of E), while collections of subsets are denoted by calligraphic
letters (e.g. B ⊆

(
E
r

)
indicates that B is a collection of r-subsets of E).

In addition, the letters M and N are used for classes of matroids.

An antichain in P(E) (strictly speaking: in the lattice of subsets of
E, partially ordered by inclusion) is a collections A ⊆ P(E) with the
property that for A1, A2 ∈ A with A1 ⊆ A2, then A1 = A2. Thus, no
element of A is properly contained in another.

Graphs

A graph is a pair G = (V,E), in which V is a finite set of vertices, and
E is a set of unordered pairs of elements of V , which are called edges.
An edge {u, v} ∈ E is called incident on the vertices u and v. If {u, v}
is an edge, then we write u ∼ v, and say that u and v are adjacent
or neighbours; additionally, we say that u and v are the ends of the
edge {u, v}. If v ∈ V , then we write N(v) := {w ∈ V : v ∼ w ∈ E}
for its neighbourhood. More generally, for subsets U ⊆ V , we write
N(U) :=

⋃
u∈U N(u).

The degree d(v) := |N(v)| of the vertex v is the number of edges
incident to v. We shall write δ(G) for the minimum degree in G, and
∆(G) for the maximum degree in G. The graph G is called regular if
δ(G) = ∆(G), and we say that it is d-regular if this common value is d.

If U and U ′ are disjoint subsets of V , then we write ∇(U,U ′) for the
set of edges with exactly one of their ends in U and U ′ each.

If A ⊆ V , then we write G[A] for the subgraph induced by A; this
is the subgraph of G obtained by restricting its vertex set to A, and its
edge set to those edges that are subsets of A.

A stable set1 in G is a subset I ⊆ V of which the elements are
pairwise nonadjacent. We write Ind(G) for the collection of all stable

1Stable sets are often called independent sets in graph theory. As “independent
set” has a different meaning in matroid theory, our using of the phrase “stable set”
in its stead serves to avoid confusion.
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sets in G, and ind(G) = | Ind(G) | for the cardinality of this collection.
When necessary, we shall adorn this notation with extra parameters; for
example, ind(G,≤ k) denotes the number of stable sets of cardinality
at most k in G.

A maximum stable set is a stable set of maximum size; if I is such
a maximum stable set, then we write α(G) := |I|/|V | for the stability
ratio. A stable set is maximal if there is no stable set that strictly
includes it.

The adjacency matrix of G is a {0, 1}-matrix A, whose rows and
columns are indexed by V , that encodes the edges of G by putting
A(u, v) = 1 if and only if u and v are adjacent. The eigenvalues of
G are the eigenvalues of its adjacency matrix; spectral graph theory
studies graphs through their adjacency matrices.

A hypergraph is a generalisation of a graph, in which the edges can
be subsets of the vertices of any cardinality. If all edges have the same
cardinality u, then the hypergraph is called u-uniform; e.g. a graph
is just a 2-uniform hypergraph. As in ordinary graphs, the degree of a
vertex is the number of edges in which it is contained, and a hypergraph
is called d-regular if each of its vertices is contained in exactly d edges.

Probabilistic notation

We require only basic probability theory. Our notation generally fol-
lows [GW14], to which we refer for a more extensive treatment of the
notions mentioned here.

We write P for probability measures, and E for expected values, and
we use subscripts to stress dependence on some parameter. Random
variables are denoted by boldface symbols.

For any event A, we write A := Ω \A for the complementary event.

Events A and B are called independent if P(A ∩B) = P(A)P(B);
more generally, a finite collection of events {Ai : i ∈ [n]} is called
mutually independent if P(∩ni=1Ai) =

∏n
i=1 P(Ai). Similarly, a finite

collection of random variables, {Xi : i ∈ [n]} is mutually independent
if the corresponding events {Xi ∈ Si} are mutually independent, for all
choices of {Si : i ∈ [n]}.

If A and B are events such that P(B) > 0, then the conditional
probability of A given B is

P(A | B) :=
P(A ∩B)

P(B)
.

The law of total probability states that if {Bi} is a countable partition
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of the underlying probability space, then

P(A) =
∑
i

P(A ∩Bi) =
∑
i

P(A | Bi)P(Bi) .

The following formula is known as the chain rule for probabilities:

P

(
n⋂
i=1

Ai

)
=

n∏
i=1

P

(
Ai

∣∣∣∣∣⋂
i′<i

Ai′

)
.

If X and Y are random variables, then the conditional expectation
of X given Y is denoted by E[X | Y ]. The law of total expectation
states that

E[X] = E[E[X | Y ]] .

Linearity of expectation refers to the property that, for n ∈ Z>0,

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi] ,

provided all the expectations involved are finite.

Asymptotic notation

We use the Bachmann-Landau symbols o(·), O(·), Θ(·), and Ω(·) to
denote asymptotics:

• f(n) = o(g(n)) as n→∞ means that g(n) > 0 and lim
n→∞

f(n)
g(n) = 0;

• f(n)=O(g(n)) as n→∞means that g(n)>0 and lim sup
n→∞

f(n)
g(n) <∞;

• f(n) = Θ(g(n)) as n → ∞ means that both f(n) = O(g(n)) and
g(n) = O(f(n)); and

• f(n) = Ω(g(n)) as n→∞ means that lim inf
n→∞

f(n)
/
g(n) > 0.

We use f(n) ∼ g(n) and f(n) = (1 + o(1))g(n) (both as n → ∞)
interchangeably to mean lim

n→∞
f(n)

/
g(n) = 1.

Additional notation

log denotes the base-2 logarithm, and ln denotes the natural logarithm.
In order to avoid cluttering notation, we often write ln2 n to mean
(lnn)2, et cetera. We often use exp(x) := ex, where e is the base of
the natural logarithm, and exp2(x) := 2x, especially when x is a com-
plicated expression.
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2.2 Binomial coe�cients

Binomial coefficients appear throughout this thesis, and good bounds
on (sums of) binomial coefficients will be instrumental in many of its
results. Fortunately, a large body of standard bounds exists. We state
some of these results, and point to sources containing their proofs.

The first bounds, a proof of which can be found in [Juk01, Proposi-
tion 1.4], are valid for all 0 < r ≤ n:(

n

r

)
≥
(n
r

)r
, and

r∑
i=0

(
n

i

)
≤
(en

r

)r
.

For sums of binomial coefficients, we have

r∑
i=0

(
n

i

)
≤ 2H(r/n)n for all 0 ≤ r ≤ n/2,

as well [Juk01, Corollary 22.9]. Here H (·) is the binary entropy func-
tion, defined by

H (p) := −p log p− (1− p) log(1− p).

The following bound, which is valid for all 0 < p ≤ 1, is useful for
bounding H (p) for small values of p:

H (p) ≤ −p log
p

4
.

The binomial coefficient
(

n
bn/2c

)
is called the central binomial coeffi-

cient . In order to avoid cluttering notation, we ignore rounding down,
and write

(
n
n/2

)
:=
(

n
bn/2c

)
. Stirling’s approximation to the factorial (cf.

[SF14, Chapter 1]) can be used to obtain the following asymptotically
tight bounds: √

2/π
2n√
n

(
1− 1

n

)
≤
(
n

n/2

)
≤
√

2/π
2n√
n
. (2.1)

The bounds (2.1) allow us to compare different central binomial
coefficients. In particular, we need(

n−m⌊
n−m

2

⌋) ≤ n

n− 1

√
n

n−m
2−m

(
n

n/2

)
. (2.2)

While (2.1) gives precise asymptotics for central binomial coeffi-
cients, we also require good bounds on

(
n
r

)
for r close to n/2. Such

a bound is provided by the following lemma.
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Lemma 2.2.1 ([SF14, Equation (5.41)]). If k = o
(
n2/3

)
, then(

n

bn/2c+ k

)
= (1 + o(1))

(
n

n/2

)
e−2k2/n.

2.3 Matroids

In this section, we provide a selection of terminology and results that
are required in later chapters. For a more comprehensive introduction
to the field, the reader is referred to the monograph by Oxley [Oxl11].
With a few exceptions, our notation follows that of Oxley. Proofs of all
claims in this section can be found there as well.

Basic definitions

It was already observed by Whitney [Whi35] that matroids allow many
different axiomatisations. The one that is perhaps most natural in the
context of this thesis is the definition in terms of bases. In these terms,
a matroid is a set system M = (E,B) on a finite ground set E, such that
the nonempty collection of bases B ⊆P(E) satisfies the basis-exchange
axiom:

For all B,B′ ∈ B, and for all b ∈ B \B′,
there exists b′ ∈ B′ \B such that (B \ {b}) ∪ {b′} ∈ B.

We say that M is a matroid on E, and write E(M) and B(M) to
denote the ground set and collection of bases of M . (If there is no risk
of confusion, we simply write E and B.) We write |M | := |E(M)| for
the cardinality of the ground set of M .

A straightforward argument shows that all bases of M have the same
cardinality, which is called the rank of M , and denoted by rk(M). If
M is a matroid on E of rank r, then a subset of M of cardinality r is
called a nonbasis if it is not a bases, and we write K(M) :=

(
E
r

)
\B(M)

for the collection of all nonbases.

A subset A ⊆ E is called independent if there is a basis B ∈ B such
that A ⊆ B. The collection of independent sets of M is denoted

I(M) := B(M)↓ = {I : I ⊆ B for some B ∈ B(M)}.

Note that the bases of a matroid are precisely its inclusionwise-maximal
independent sets.
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Some examples

We consider a number of examples of matroids.

Uniform matroids Let E be a finite set, and let 0 ≤ r ≤ |E|. The
collection

(
E
r

)
is the set of bases of a matroid on E. Such a matroid is

called a uniform matroid of rank r. We write U(r, n) for the uniform
matroid of rank r on E = [n].2 The independent sets of U(r, n) are
precisely the subsets of [n] of cardinality at most r.

Graphic matroids Let G = (V,E) be a graph, and let I := {F ⊆ E :
(V, F ) is a forest}. The collection I is a collection of independent sets
of a matroid on E. A matroid that can be obtained from a graph G in
this way is called a graphic matroid , and written M(G).

Representable and algebraic matroids Conjecture 1.3.6 and Conjec-
ture 1.3.7 refer to representable and algebraic matroids. We already
encountered representable matroids in the introduction, as one of the
examples that led Whitney to his definition of a matroid.

A matroid M = (E,B) is representable if there exists a function
f : E → V from E to some vector space V with the property that
B ∈ B if and only if {f(e) : e ∈ B} is a basis of V . If F is a field, we
say that M is F-representable if we can choose V to be a vector space
over F. If M is representable, then we can assume that V has finite
rank, in which case V ∼= FdimV . It follows that the function f gives
us a representation of M as a matrix over F, the columns of which are
indexed by the elements from E.

Let F be a field. A matroid M = (E,B) is algebraic over F if there
is an extension field F+/F, and a function f : E → F+, such that I ⊆ E
is independent if and only if {f(e) : e ∈ I} is algebraically independent
over F.

Additional matroid theory preliminaries

Dependent sets, circuits, and cocircuits A subset of E is called de-
pendent if it is not independent. Inclusionwise-minimal dependent sets
are called circuits. The girth g(M) of M is the minimum cardinality of
a circuit of M , and g(M) =∞ if M does not have any circuits. Circuits
can be used to axiomatise matroids.

2Here, our notation deviates from that of Oxley [Oxl11], who uses Ur,n for the
uniform matroid.

19



c
h
a
p
t
e
r
2
p
r
e
l
im
in
a
r
ie
s

Proposition 2.3.1 ([Oxl11, Corollary 1.1.5]). Let E be a finite set. A
collection C ⊆ P(E) is the collection of circuits of a matroid on E if
and only if it satisfies each of the following properties:

(i) ∅ 6∈ C;

(ii) Antichain: C is an antichain in P(E); and

(iii) Circuit-elimination: If C1 and C2 are distinct members of C, and
e ∈ C1 ∩ C2, then there is a member C3 of C such that C3 ⊆
(C1 ∪ C2) \ {e}.

In addition, a codependent set is a set that meets every basis, and a
cocircuit is an inclusionwise-minimal such set.

Lemma 2.3.2. Let M be a matroid of rank r on E, and let X ∈
(
E
r

)
be a set of rank rkM (X) = r − 1. Then M contains a unique circuit C
that is contained in X, and a unique cocircuit D that is disjoint from
X.

Proof. First, we prove the existence and uniqueness of C and D. As
X is dependent, it contains a circuit. Let I be a basis for X. As
rkM (X) = r − 1, |I| = r − 1, and X = I ∪ {e} for some e. Every
circuit in X contains e. If there are at least two circuits, then by the
circuit-elimination axiom, Proposition 2.3.1(iii), there must also be a
circuit contained in X that avoids e; a contradiction.

For the cocircuit, let D′ := {f ∈ E \X : rkM (I ∪ {f}) = r}. As a
cocircuit meets every basis, clearly D′ ⊆ D for every cocircuit D of M
that is disjoint from X. We claim that D′ is codependent, which implies
that D = D′ is the unique cocircuit disjoint from X. Suppose that B
is a basis; we need to show that B meets D′. If this is not the case,
then B ⊆ E \D′ = clM (I), and thus B is contained in a hyperplane; a
contradiction.

Rank function A matroid comes with a rank function rkM : P(E)→
Z≥0,

rkM (A) := max
{
|I| : I ∈ I(M), I ⊆ A

}
.

We use the shorthand rk(M) = rkM (E) for the rank of M . Rank
functions can be used to axiomatise matroids.

Proposition 2.3.3 ([Oxl11, Corollary 1.3.4]). Let E be a finite set, and
let rk : P(E)→ Z≥0. The function rk is the rank function of a matroid
on E if and only if it satisfies each of the following properties:

(i) Boundedness: For all X ⊆ E, 0 ≤ rk(X) ≤ |X|;
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(ii) Monotonicity: For all X ⊆ Y ⊆ E, rk(X) ≤ rk(Y ); and

(iii) Submodularity: For all X,Y ⊆ E, rk(X ∪ Y ) + rk(X ∩ Y ) ≤
rk(X) + rk(Y ).

A subset X ⊆ E is a spanning set of M if rkM (X) = rk(M). This
happens if and only if X contains a basis. More generally, a subset
X ⊆ Y spans Y if rkM (X) = rkM (Y ).

Loops, coloops, and simple matroids An element e ∈ E is called a
loop if it is not contained in any basis (equivalently, if rkM ({e}) = 0),
and e is called a coloop if it is contained in every basis. The elements
e, f ∈ E are in parallel if neither element is a loop, and rkM ({e, f}) =
1. A matroid M is called simple if and only if it does not have any
loops or nontrivial parallel classes. Associated with every matroid is its
simplification, which is a simple matroid essentially obtained from M by
ignoring loops and viewing parallel classes as single elements. Formally,
this is the matroid whose ground set is formed by the parallel classes of
M , where the rank in si(M) is given by the rank of their union in M .

Isomorphism Two matroids, M1 = (E1,B1) and M2 = (E2,B2), are
called isomorphic (written M1

∼= M2) if there exists a bijection σ : E1 →
E2 such that B ∈ B1 if and only if σ(B) ∈ B2.

An automorphism of M is an isomorphism from M to itself. The au-
tomorphisms of M form a group under composition: the automorphism
group Aut(M). The identity function is always an automorphism of M ,
and it is called the trivial automorphism. If M has an automorphism
that is not the trivial automorphism, M is called symmetric, and it is
called asymmetric otherwise.

Connectivity Let k ≥ 1. A k-separation of M is a partition {A,B}
of E(M) such that |A|, |B| ≥ k, and rk(A) + rk(B) < rk(M) + k. The
(Tutte) connectivity of M is

λ(M) := min {k : M has a k-separation} ,

where we assume that the minimum over the empty set is ∞.

Flats In addition to terms that are borrowed from linear algebra and
graph theory, such as “independent set” and “circuit”, part of the ma-
troid terminology comes from geometry. The rank function allows us to
define the closure operator clM : P(E)→P(E) by

clM (X) := {e ∈ E : rkM (X ∪ {e}) = rkM (X)}.
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A subset F ⊆ E is called a flat (or closed set) if clM (F ) = F . The
collection of flats of a matroid, denoted by F(M), forms a lattice when
partially ordered by inclusion. Flats of rank 1, 2, and 3 are usually
called points, lines, and planes, respectively. A hyperplane is a flat of
rank rk(M)− 1. A line is called long if it contains at least three points.

A hyperplane that is also a circuit is called a circuit-hyperplane.
The collection of circuit-hyperplanes of M is denoted by W(M). Each
circuit-hyperplane is a nonbasis, but not every nonbasis is a circuit-
hyperplane. We write U(M) := K(M) \W(M).

If X is a circuit-hyperplane in M , then B′ := B(M) ∪ {X} is again
the collection of bases of a matroid. We say that the matroid (E(M),B′)
is obtained from M by relaxing the circuit-hyperplane X.

Geometric representations of small-rank matroids

The description of a matroid in terms of its flats provides a convenient
geometrical perspective. Let us make this perspective more explicit by
relating matroids to incidence structures.

An incidence structure is a tuple (P,L, I) consisting of (disjoint) col-
lections P and L, suggestively named points and lines, and an incidence
relation I ⊆ P × L. A partial linear space is an incidence structure
satisfying the following additional properties:

(i) Every pair of distinct points determines at most one line; and

(ii) every line contains at least two distinct points.

It is possible to draw a partial linear space as follows. First, draw
a dot for each point in the partial linear space. Second, for each line
in the partial linear space, draw a line passing through all of its points.
The order of points on this line does not matter. To avoid cluttering
the drawing, it is customary to draw only its long lines.

Let M be a matroid of rank at most 3. We can associate with M
a partial linear space (P,L, I), by choosing P and L to be the sets of
rank-1 flats and rank-2 flats of M , respectively. In this way, we can
obtain a drawing of M as well. If M is not simple, then we can add its
loops in a separate inset to the drawing, and draw non-trivial rank-1
flats as collections of touching points. See Figure 2.1.

The construction above can be extended to matroids of higher rank,
by using higher-dimensional incidence structures. In general, it is hard
to draw such matroids on a 2-dimensional sheet of paper, although for
rank-4 matroids it is often possible to obtain a 3-dimensional drawing.
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(a) U(2, 4) (labels suppressed).

4 6

3

5

7

1 2

8

(b) A rank-3 matroid with a nontrivial
parallel class, {1, 2}, and a loop, 8.

Figure 2.1: Geometric representations of two matroids.

Duality and minors

The dual matroid and a minor of a matroid are two ways of constructing
new matroids from a given matroid.

It can be shown that if M = (E,B) is a matroid, then the collection

B∗ := {E \B : B ∈ B}

is again the set of bases of a matroid on E [Oxl11, Theorem 2.1.1]. This
matroid is called the dual matroid of M , and is written M∗. It is easily
verified that taking the dual is an involution, i.e. (M∗)∗ = M . Note
that rk(M∗) = |E| − rk(M).

The element e is a coloop of M if and only if it is a loop in M∗. Sev-
eral other objects relating to the dual matroid can be similarly recog-
nised by the prefix “co-”; for example, the cocircuits, coindependent
sets, and the corank function of M are the circuits, independent sets,
and rank function of M∗.

If M = (E,B) is a matroid, and X ⊆ E, then the deletion of X in M ,
written M\X is the matroid on ground set E \X whose set of bases is
formed by the inclusionwise-maximal elements of {B \X : B ∈ B(M)}.
At times, we shall also write M |X := M\(E \X) for the restriction of
M to X.

The contraction of X in M is the matroid on E \X with set of bases

B(M/X) = {B′ ⊆ E \X : B′ ∪BX ∈ B(M)}.

Here, BX is any basis of the restriction M |X.

If C,D ⊆ E are disjoint sets, and N is a matroid that is obtained
from M by contracting the elements in C and deleting the elements in
D, then N is called a minor of M , and we write N = M/C\D. We say
that M has an N -minor if M has a minor that is isomorphic to N .
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It is customary to write, e.g. M/e1\e2, e3 for M/{e1}\{e2, e3}. If e
is not a coloop of M , then

B(M\e) = {B ∈ B(M) : e 6∈ B},

while if e is not a loop of M , then

B(M/e) = {B \ {e} : B ∈ B(M), e ∈ B}.

Minors and duality are related through

(M/C\D)∗ = M∗/D\C.

A class of matroids is called minor-closed if it is closed under taking
minors and isomorphism (contraction-closed and deletion-closed classes
are defined similarly).

It is natural to describe minor-closed classes by listing their excluded
minors, i.e. those matroids that are not in the class, but all of whose
proper minors are in the class. As minor-closed classes are closed under
isomorphism, it suffices to list non-isomorphic excluded minors. If N is
a collection of matroids, write

Ex(N ) := {M a matroid : for all N ∈ N , M has no N -minor}

for the minor-closed class obtained by excluding the matroids in N as
minors. If N = {N}, we shall write Ex(N) := Ex(N ). A well-known
example is that of matroids representable of the binary field, a class that
is characterised by the excluded minor U(2, 4) [Oxl11, Theorem 9.1.3].

2.4 Matroid classes

We shall be interested in particular in the matroids with ground set
E = [n], and we write M(n) for this class of matroids. In addition, we
write M(n, r) for those matroids in M(n) that have rank r.

Of particular importance are sparse paving matroids. These are
matroids in which every nonbasis is a circuit-hyperplane. We shall write
S(n) and S(n, r) for the sparse paving matroids in M(n) and M(n, r),
respectively.

We shall write

m(n) := |M(n)| m(n, r) := |M(n, r)|
s(n) := |S(n)| s(n, r) := |S(n, r)| (2.3)
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In addition, a matroid of rank r is paving if all its circuits have
cardinality in {r, r+ 1}, and M is sparse if M∗ is paving. Note that M
is sparse paving if it is both sparse and paving.

2.5 Asymptotic matroid theory

The definitions (2.3) allow us to state precisely what it means if a prop-
erty holds for “almost every” matroid. Let M be a class of matroids
(i.e. M⊆M, and M is closed under isomorphism), and define

mM(n) := |M(n) ∩M|, sM(n) = |S(n) ∩M|.

We say that almost every matroid is in M if and only if

lim
n→∞

mM(n)

m(n)
= 1.

In addition, we say that M is small if and only if

lim
n→∞

mM(n)

m(n)
= 0.

If M is a class of matroids, then so is M := M \M. Moreover, almost
every matroid is in M if and only if M is small. Similarly, we say that
almost every sparse paving matroid is in M if

lim
n→∞

sM(n)

s(n)
= 1, or lim

n→∞

sM(n)

s(n)
= 0.

The requirement that M be closed under isomorphism is essential,
as it implies that

|{M ∈M : E(M) = E}|
|{M : E(M) = E}|

=
mM(n)

m(n)

for every set E of cardinality n, and so the limiting value does not
depend on the particular choice of ground set.

Combining statements concerning almost every matroid with asymp-
totic notation is potentially confusing. Suppose that f(M) is some
statistic of a matroid M . We use ‘almost every matroid satisfies f(M) =
O
(
a|M |

)
as |M | → ∞’ with the following precise meaning: there exists a

constant C > 0 such that almost every matroid satisfies f(M) ≤ Ca|M |.
This definition coincides with the use of ‘O(an) whp’ in [Jan11, (D11)].
Similar definitions hold, mutatis mutandis, for other Landau notation,
and for sparse paving matroids.
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2.6 Johnson graphs

Definition

In this thesis, a central role is played by the so-called Johnson graphs.
The Johnson graph J(E, r) is the graph with vertex set

(
E
r

)
, in which

any pair of vertices are adjacent if and only if they intersect in r − 1
elements. Note that X and X ′ are adjacent if and only if there exist
x ∈ X \X ′ and x′ ∈ X ′ \X such that X ′ = (X \ {x}) ∪ {x′}. In this
case, we shall often write X ′ = X4{x, x′}.

We shall use J(n, r) := J([n], r) as a shortcut. It is easily verified
that for all sets E with |E| = n, we have J(E, r) ∼= J(n, r).

Johnson graphs J(n, r) and J(n, n− r) are isomorphic. An explicit
isomorphism is given by X 7→ [n] \X. For r = 0 and r = 1, the graphs
J(n, r) are rather dull: J(n, 0) is the trivial graph with a single vertex,
and J(n, 1) is isomorphic to the complete graph on n vertices.

Properties

We collect some useful properties of Johnson graphs. Johnson graphs
are highly regular objects that are well studied. A more in-depth dis-
cussion of these graphs, as well as proofs of the properties discussed
here, can be found in [BCN89, Section 9.1].

Every permutation π ∈ Sym(n), acting on
(

[n]
r

)
, gives rise to an

automorphism of J(n, r). These permutations form the complete au-
tomorphism group of J(n, r), except when n = 2r, in which case the
function that swaps an r-set for its complement in [n] is an automor-
phism as well.

Proposition 2.6.1. Aut(J(n, r)) ∼=


Sym(1) if r = 0 or r = n

Sym(n)⊕ Z2 if n = 2r ≥ 4

Sym(n) otherwise.

Proposition 2.6.2. The eigenvalues of J(n, r) are

(r − j)(n− r − j)− j, j = 0, 2, . . . , r,

with multiplicity
(
n
j

)
−
(
n
j−1

)
.

Neighbourhood structure

Whenever X ∈
(
E
r

)
, we shall write N(X) for its neighbourhood in the

Johnson graph J(E, r), i.e.

N(X) :=

{
X ′ ∈

(
E

r

)
: |X4X ′| = 2

}
,
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unless explicitly stated otherwise. Clearly, J(n, r) is regular of degree
r(n− r), and hence |N(X)| = r(n− r).

The subgraph of J(E, r) induced by N(X) is isomorphic to the
Cartesian graph product of Kr and K|E|−r. In particular, we can dis-
tinguish ‘rows’

RX(x) := {X4{x, y} : y ∈ E \X} , x ∈ X,

and ‘columns’

CX(y) := {X4{x, y} : x ∈ X} , y ∈ E \X.

For each X ∈
(
E
r

)
, these rows and columns induce cliques in the neigh-

bourhood of X, see Figure 2.2. The structure of neighbourhoods in
J(n, r) implies the following result on maximal cliques.

Lemma 2.6.3. Each maximal clique in J(n, r) is of the form {X−x+y :
x ∈ X} for some y ∈ [n] \ X, or {X − x + y : y ∈ [n] \ X} for some
x ∈ X.

The following lemma shows that the nonbases in the neighbourhood
of a rank-(r − 1)-set can be described by a circuit and a cocircuit.

Lemma 2.6.4. Let M be a matroid of rank r on E, and let X ∈
(
E
r

)
be a set of rank rkM (X) = r − 1. Then M contains a unique circuit C
that is contained in X, and a unique cocircuit D that is disjoint from
X. Moreover, the nonbases among N(X) are identified through

K(M) ∩N(X) =
{

(X \ {e}) ∪ {f} : e ∈ X \ C or f ∈ (E \X) \D
}
.

(2.4)

Proof. Existence and uniqueness of C and D is precisely the statement
of Lemma 2.3.2; it remains to prove (2.4). In fact, we will prove the
equivalent statement that Y = (X \ {e})∪{f} ∈ N(X) is a basis if and
only if e ∈ C and f ∈ D. If Y is a basis, then e ∈ C (otherwise C ⊆ Y )
and f ∈ D (otherwise D ∩ Y = ∅). To prove the reverse implication,
note that if e ∈ C, then rk(X \ {e}) = r − 1, and if f ∈ D, then
f 6∈ cl(X \ {e}). It follows that rk((X \ {e})∪ {f}) = r, and hence that
Y is a basis.
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· · ·

· · ·
· · ·

... ... ... ...

C
X (y)

C
X (y ′)

RX(x)

X

X4{x, y} X4{x, y′}

Figure 2.2: The neighbourhood of X in the Johnson graph.
The rows and columns, indexed by x ∈ X, resp. y ∈ E \X, form
cliques.

2.7 Johnson graphs, sparse paving matroids, and

partial Steiner systems

An important reason that Johnson graphs play a big role in asymptotic
matroid theory is that stable sets in J(n, r) correspond precisely to
sparse paving matroids. This connection was used implicitly by Piff and
Welsh [PW71] in an earlier lower bound on the number of matroids, and
more explicitly by Mayhew and Welsh [MW13] in an upper bound on
the number of sparse paving matroids.

Lemma 2.7.1. Let E be a finite set, and let 0 < r < |E|. The following
are equivalent:

(i) I ∈ Ind(J(E, r)); and

(ii) I is the set of non-bases of a sparse paving matroid of rank r on E.

Proof. First, we prove the implication (i)⇒(ii). Suppose that I is a
stable set in J(E, r), and let B :=

(
E
r

)
\ I. We show that B is the set of

bases of a sparse paving matroid on E.

We argue by contradiction, so suppose that B is not the set of bases
of a sparse paving matroid on E. First, note that B 6= ∅: if B is empty,
then I =

(
E
r

)
, which implies that J(E, r) has no edges. So the only way

that B could fail to be the set of bases of a matroid is by failing the
basis-exchange axiom, in which case there are B,B′ ∈ B and b ∈ B \B′
such that (B \ {b})∪{b′} ∈ I for every b′ ∈ B′ \B. If |B′ \B| = 1, then
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(B \ {b}) ∪ {b′} = B′ ∈ B, so we must have |B′ \ B| ≥ 2. Thus, there
exist distinct elements b′1, b

′
2 ∈ B′ \ B. Define Bi := (B \ {b}) ∪ {b′i},

i ∈ {1, 2}. By assumption, both B1 and B2 are in I. On the other hand
|B14B2| = |{b′1, b′2}| = 2, so B1 and B2 are adjacent in J(E, r), thus
contradicting that I is a stable set, and hence showing that B is a set
of bases of a matroid on E.

The resulting matroid is sparse paving; to prove this, we need to
show that each X ∈ I is a circuit-hyperplane. Fix such an X; by
construction it is a non-basis. Choose e ∈ E \ X and x ∈ X. As
(X \ {x}) ∪ {e} ∈ B, it follows that X ∪ {e} is spanning, and as e
was arbitrary, X must be a hyperplane. Similarly, X \ {x} must be
independent, as it is contained in the basis (X \ {x}) ∪ {e}, and as x is
arbitrary, it follows that X is a circuit.

Next, we prove the reverse implication, (ii)⇒(i), again arguing by
contradiction. Let M be a sparse paving matroid, and suppose that X
and Y are two nonbases that are adjacent in J(E, r). Submodularity of
the rank function shows that

rkM (X ∩ Y ) + rkM (X ∪ Y ) ≤ rkM (X) + rkM (Y ) < 2r − 1,

so that either rkM (X ∩ Y ) < r − 1 = |X ∩ Y |, or rkM (X ∪ Y ) < r. In
the former case, it follows that X ∩Y is a dependent set that is strictly
contained in X, so that X is not a circuit. In the latter case, X ∪ Y
is contained in a hyperplane, thus showing that X is not a hyperplane.
In both cases, it follows that X is not a circuit-hyperplane, and hence
that M is not sparse paving; a contradiction.

The implication (ii)⇒(i) admits the following generalisation.

Lemma 2.7.2. If M ∈M(n, r), then W(M) ∈ Ind(J(n, r)).

Consider the subgraph G of the Johnson graph J(E, r) induced by
the nonbases of a matroid M ∈M(E, r). Each component of G contains
either only circuit-hyperplanes of M (in which case it is a singleton
component), or only elements from U(M) (in which case the component
contains at least two elements). We call a component of the latter type
complex .

A different perspective on stable sets in Johnson graphs is given by
partial Steiner systems. A partial Steiner system Sp(t, k, n) is a set
system (E,X ), consisting of a set E of cardinality n, and a collection X
of k-subsets of E (called blocks) with the property that every t-subset
of E is contained in at most one block. If every t-subset is contained
in a unique block, then we speak of a Steiner system S(t, k, n). The
following lemma is easily verified.
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Lemma 2.7.3. Let E be a set of cardinality n, and let 0 < r < n. The
following are equivalent:

(i) I ∈ Ind(J(E, r)); and

(ii) I is a partial Steiner system Sp(r − 1, r, n).

In addition to their connection to matroid theory, Johnson graphs
are strongly tied to coding theory. The independence number of J(n, r)
is the cardinality of the largest binary constant-weight code with word
length n, weight r, and minimum distance 4. In the literature, this
quantity is generally known as A(n, 4, r); see e.g. [Ö10, Bro] and refer-
ences therein.

2.8 A lower bound

The best known lower bound on the number of matroids follows from
the construction of a large family of sparse paving matroids. Note that
Ind(G) is closed under taking subsets: if I is a stable set in G, then so
is every I ′ ⊆ I. Thus, the existence of a stable set of cardinality k in G
implies ind(G) ≥ 2k.

The following construction, due to Graham and Sloane [GS80], shows
that J(n, r) admits a stable set of cardinality at least 1

n

(
n
r

)
.

Lemma 2.8.1 ([GS80, Theorem 1]). For each 0 ≤ r ≤ n, the Johnson
graph J(n, r) contains a stable set of cardinality 1

n

(
n
r

)
.

Proof. Recall that V (J(n, r)) =
(

[n]
r

)
. The function c : V (J(n, r))→ Zn,

defined by

c : X 7→
∑
x∈X

x mod n,

is a proper vertex-colouring of J(n, r), for if X and X ′ are adjacent
vertices such that X ′ = (X \ {x}) ∪ {x′}, then

c(X)− c(X ′) = x− x′ 6= 0 mod n,

and so c(X) 6= c(X ′). As each colour class of a proper colouring is
a stable set, and there are n such colour classes, there is a stable set
containing at least a 1/n-fraction of all vertices.

As stable sets in J(n, r) are in one-to-one correspondence with sparse
paving matroids of corresponding rank and size, the lemma implies that

30



c
h
a
p
t
e
r
2
p
r
e
l
im
in
a
r
ie
s

log s(n, r) ≥ 1
n

(
n
r

)
. Maximising over r, we obtain the following bound

on log s(n).

Proposition 2.8.2. log s(n) ≥ 1
n

(
n
n/2

)
.

In the proof of Lemma 2.8.1, Graham and Sloane identify [n] with
Zn, the integers modulo n, which forms a group under addition, and
they use this identification to produce a proper n-colouring of J(n, r).
We can try to improve upon this result in two ways.

First, Graham and Sloane already commented that replacing the
average cardinality of a colour class by the cardinality of the maximum
colour class in this scheme sometimes yields a slightly stronger result.
It is then natural to ask whether this points to a structural imbalance
in the cardinalities of the colour classes. Second, perhaps replacing
the group Zn by a different Abelian group of order n results in better
bounds.

Kløve [Klø81] showed that neitheridea asymptotically improves upon
Proposition 2.8.2. Maximising over all Abelian groups of order n and
all colour classes, he obtained the following bound:

log s(n, r) ≥ 1

n

∑
d|gcd(n,r)
d square-free

(
n/d

r/d

) ∏
p|d

p prime
if r = 2 mod 4: p odd

(pep − 1). (2.5)

Here, the exponents ep are such that n =
∏
p p

ep is the prime de-
composition of n. Restricting the right-hand side of (2.5) to the term
corresponding to d = 1, Proposition 2.8.2 is retrieved. Separating this
term, (2.5) can be written as

log s(n, r) ≥ 1

n

(
n

r

)
+ f(n, r),

with f(n, r) ≥ 0. As each of the terms corresponding to some d 6= 1 is

at most
(bn/2c
br/2c

)
, it follows that

f(n, r) ≤ n
(
bn/2c
br/2

)
≤ n

(
bn/2c
bn/4c

)
= o

(
1

n

(
n

n/2

))
,

from which it follows that, asymptotically, Proposition 2.8.2 cannot be
improved upon in this way.
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chapter 3

Entropy

This chapter is based on the journal paper [BPvdP14], which is
joint work with Nikhil Bansal and Rudi Pendavingh, and on the
blog post [PvdP16b], which is joint work with Rudi Pendavingh.

3.1 In this chapter. . .

The entropy of a random variables essentially measures the amount of
information obtained in a realisation. Bounding the entropy of a random
variable often gives surprisingly strong bounds on the cardinality of its
support.

In this chapter, we use such information-theoretic results to bound
the cardinality ofM∩M(n) for classes of matroids that are closed under
contractions or deletions. The main technical result of this chapter is the
following inductive tool, which we call the Entropy Blow-Up Lemma.

Lemma 3.1.1 (Entropy Blow-Up Lemma). Let 0 ≤ t ≤ r ≤ n. If M
is contraction-closed, then

log(1 +mM(n, r))(
n
r

) ≤ log(1 +mM(n− t, r − t))(
n−t
r−t
)

The Entropy Blow-Up Lemma can be used to bound the number of
matroids in a contraction-closed class in terms of the number of ma-
troids of smaller size and rank in the class. Using the Entropy Blow-Up
Lemma, we obtain the following results:
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• logm(n) = O
(

logn
n

(
n
n/2

))
; and

• Ex(N) is small, whenever N is one of U(2, k) (for some k ≥ 2), or
U(3, 6), thus proving several special cases of Conjecture 1.3.5.

The remainder of this chapter is organised as follows. In Section 3.2–
3.3, we define the entropy of a random variable, and state some of
its properties, including Shearer’s Entropy Lemma. In Section 3.4, we
prove the Entropy Blow-Up Lemma. Subsequently, in Section 3.5–3.6,
we use the Entropy Blow-Up Lemma to bound the number of matroids,
and prove that Ex(N) is small for the special cases mentioned above.

3.2 Entropy

Let X be a random variable taking its value in a finite set X . For
x ∈ X , write p(x) := P(X = x) for the probability mass function of X.
The entropy of X is defined as

H (X) := −
∑
x∈X

p(x) log p(x). (3.1)

Here, we use the convention that 0 log 0 = 0. Note that entropy is
a function of the probability mass function of X, rather than of the
random variable itself.

Informally, the entropy of X can be interpreted as the expected sur-
prise upon learning the value of X. This is perhaps more clear from
the following variant of (3.1):

H (X) =
∑
x∈X

P(X = x) [− log p(x)] = E[− log p(X)] .

Here, − log p(x) measures the surprise upon seeing the event {X = x}.
Two properties make A 7→ − logP(A) a reasonable measure of sur-
prise. First, less probable events elicit larger surprise. Second, surprise
is additive for independent events (i.e. events for which P(A ∩B) =
P(A)P(B)). In fact, imposing in addition to these two properties only
a few regularisation properties uniquely determines the surprise function
(cf. [Gal14, Exercise 2.3]).

Alternatively, entropy is the “minimum descriptive complexity of a
random variable” [CT06]. This interpretation is perhaps closer in spirit
to the original application of entropy to data compression by Shan-
non [Sha48]. Shannon’s source coding theorem says that, in the limit as

34



c
h
a
p
t
e
r
3
e
n
t
r
o
p
y

n → ∞, while a sequence of n independent and identically distributed
random variables X1,X2, . . . ,Xn may be encoded faithfully using more
than nH (X1) bits, this cannot be done using fewer than nH (X1) bits.

We say that a random variable X has the uniform distribution on
X if p(x) = 1/|X | for all x ∈ X . As − log(·) is a convex function, it
follows from Jensen’s inequality that

H (X) ≤ log |X |,

and that equality holds if and only if X has the uniform distribution
on X .

It is precisely this property that makes entropy useful for enumera-
tion purposes. If we are interested in bounds on the cardinality of some
set X , then we might as well study the entropy of a random variable that
is uniformly distributed on X . Bounds on the entropy of this random
variable translate directly to bounds on |X |, and vice versa.

Information-theoretic arguments often result in surprisingly short
proofs of bounds on cardinalities, see e.g. Radhakrishnan’s survey pa-
per [Rad03] or the lecture notes by Galvin [Gal14].

3.3 Some properties of entropy

In this section we briefly review some of the properties of entropy. For
a more thorough introduction, and proofs of the results mentioned
here, we refer to [AS08, Section 15.7], or the book by Cover, and
Thomas [CT06].

Suppose that X = (X1,X2) is some random variable taking val-
ues in the finite set X1 × X2, according to some joint probability mass
function p(x1, x2) = P(X1 = x1,X2 = x2).

The conditional entropy of X1 given X2 is defined by

H (X1 |X2) := H (X1,X2)−H (X2) .

Conditional entropy can be interpreted as the expected additional sur-
prise in X1 after learning the value in X2. Note that

H (X1 |X2) = EX2
[EX1

[− log p(X1,X2) |X2]] .

The following properties all have intuitive interpretations in terms
of expected surprise.

Lemma 3.3.1. Let X = (X1,X2, . . . ,Xn) be a random vector taking
its values in the finite set X1 ×X2 × . . .×Xn.
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(i) H (X) ≤
n∑
i=1

H (Xi);

(ii) H (X1 |X2) ≤H (X1); and

(iii) H (X) =
n∑
i=1

H (Xi |Xj , j < i).

In our applications, we require a further result that is known as
Shearer’s Entropy Lemma. This result first appeared in a different
form in [CGFS86, Product Theorem]; its proof there actually implies
Lemma 3.3.2 below. See also [AS08, Theorem 15.7.4].

For the statement of Shearer’s Entropy Lemma, we require some
additional notation. Suppose that X = (Xi : i ∈ I) is a random
vector, taking its values in the finite set

∏
i∈I Xi. For A ⊆ I, write

XA := (Xi : i ∈ A) for the projection of X onto the coordinates
indexed by A. Clearly such a projection is again a random variable.

Lemma 3.3.2 (Shearer’s Entropy Lemma). Let X = (Xi : i ∈ I) be
a random vector indexed by I, and let A ⊆ P(I). If each i ∈ I is
contained in at least k members of A, then

H (X) ≤ 1

k

∑
A∈A

H (XA) .

Note that of Shearer’s Entropy Lemma generalises Lemma 3.3.1(i).

3.4 The Entropy Blow-Up Lemma

Let M be a class of matroids that is deletion-closed or contraction-
closed. In this section, we compare mM(n, r) to mM(n′, r′), where
n′ < n or r′ < r. The first lemma compares mM(n, r) to mM(n− 1, r)
and mM(n − 1, r − 1). The key element in its proof is that (formal)
deletions/contractions from r-sets correspond to projections in the sense
of Shearer’s Entropy Lemma, which will then imply the bounds stated
in the lemma.

Lemma 3.4.1. Let M be a class of matroids. If M is deletion-closed,
then

log(1 +mM(n, r))(
n
r

) ≤ log(1 +mM(n− 1, r))(
n−1
r

) . (3.2)
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If M is contraction-closed, then

log(1 +mM(n, r))(
n
r

) ≤ log(1 +mM(n− 1, r − 1))(
n−1
r−1

) . (3.3)

Proof. We start by proving (3.2).

Let E be a set of cardinality n. Encode M ∈ M ∩ M(E, r) by
the incidence vector of its bases. This is the vector χ :

(
E
r

)
→ {0, 1},

such that χ(B) = 1 if and only if B ∈ B(M). Let the space X ≡
X (E, r) consist of all incidence vectors corresponding to matroids inM∩
M(E, r), as well as the all-zero vector. Thus, |X | = 1 +mM(n, r), and
if the random variable χ is uniformly distributed on X , then H (χ) =
log(1 +mM(n, r)).

For M ∈ M ∩M(E, r) and e ∈ E, write B(M)\e := {B ∈ B(M) :
e 6∈ B}. If e is not a coloop of M , then B(M)\e = B(M\e). In this
case, M\e ∈ M∩M(E \ {e}, r), and (χ(B) : e 6∈ B) ∈ X (E \ {e}, r) is
the incidence vector of M\e. On the other hand, if e is a coloop of M ,
then B(M)\e = ∅, and (χ(B) : e 6∈ B) ∈ X (E \ {e}, r) is the all-zero
vector. These observations imply that, for each e,

H (χ(B) : e 6∈ B) ≤ log(1 +mM(n− 1, r)).

We apply Shearer’s Entropy Lemma with A =
{(

E\{e}
r

)
: e ∈ E

}
.

For this choice of A, its projections are precisely the formal deletions
(χ(B) : e 6∈ B) described above. In addition, every r-subset of E is
contained in exactly n− r members of A. We obtain

H (χ) ≤ 1

n− r
∑
e∈E

H (χ(B) : e 6∈ B) ≤ n

n− r
log(1 +mM(n− 1, r)).

The bound (3.2) follows, as n
n−r =

(
n
r

)
/
(
n−1
r

)
. The bound (3.3) follows

from (3.2) by duality.

The bounds in Lemma 3.4.1 can be applied inductively. Doing this
for (3.3) yields the Entropy Blow-Up Lemma.

Lemma 3.1.1 (Entropy Blow-Up Lemma). Let 0 ≤ t ≤ r ≤ n. If M
is contraction-closed, then

log(1 +mM(n, r))(
n
r

) ≤ log(1 +mM(n− t, r − t))(
n−t
r−t
)
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3.5 Bounding the size of contraction-closed classes

Applying the Entropy Blow-Up Lemma

We shall typically use the Entropy Blow-Up Lemma, Lemma 3.1.1, by
choosing t = r − s for some fixed small s. In this way, enumerating
matroids of general rank is reduced to enumerating matroids of fixed
rank s, as

log(1 +mM(n, r))(
n
r

) ≤ log(1 +mM(n− r + s, s)(
n−r+s

s

) .

Thus, the Entropy Blow-Up Lemma shows that bounds on matroids
of a certain fixed rank, s, in a contraction-closed class M propagate to
matroids of general rank in that class. We show that if the initial bound
on matroids of fixed rank s is sufficiently small, this implies that the
class M itself is small.

The following straightforward lemma shows that almost every ma-
troid satisfies rk(M) ≈ |M |/2. Let

Rn :=
{
r ∈ Z≥0 :

∣∣∣r − n

2

∣∣∣ < √n lnn
}
.

Lemma 3.5.1. Almost every matroid has rk(M) ∈ R|M |.

Proof. Let z(n) :=
∑
r∈[n]\Rn m(n, r). We show that limn→∞

z(n)
m(n) = 0,

which proves the claim. By duality m(n, r) = m(n, n− r), and so

z(n) = 2

bn/2−
√
n lnnc∑

r=0

m(n, r).

As a matroid is determined by its collection of bases, logm(n, r) is
at most

(
n
r

)
. Taking logarithms, we obtain

log z(n) ≤ log(2n) +
bn/2−

√
n lnnc

max
r=0

(
n

r

)
≤ (1 + o(1))

(
n⌊

n
2 −
√
n lnn

⌋)
= (1 + o(1))

1

n2

(
n

n/2

)
,
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where the second step follows from Lemma 2.2.1. Comparing to the
lower bound logm(n) ≥ 1

n

(
n
n/2

)
, we obtain

log
z(n)

m(n)
≤
(

1

n2
− 1

n

)(
n

n/2

)
→ −∞,

which concludes the proof.

In Theorem 7.3.1, we prove a stronger result, which requires a more
powerful technique. Lemma 3.5.1 implies that

mM(n)

m(n)
= o(1) +

∑
r∈Rn mM(n, r)

m(n)
as n→∞,

so in order to show that M is asymptotically small, it suffices to show
that ∑

r∈Rn mM(n, r)

m(n)
= o(1) as n→∞. (3.4)

Lemma 3.5.2. Let M be contraction-closed. If there exist a constant
0 < c < 1/2, and natural numbers s and n0 such that

log(1 +mM(n, s)) ≤ c

n

(
n

s

)
for all n ≥ n0, (3.5)

then M is small.

Proof. We prove the lemma by establishing (3.4). First, bound

log
∑
r∈Rn

mM(n, r) ≤ log |Rn|+ max
r∈Rn

log(1 +mM(n, r)).

The first term satisfies log |Rn| = O(log n). By the Entropy Blow-Up
Lemma, applied with t = r − s, and (3.5), the second term is at most

max
r∈Rn

c

n− r + s

(
n

r

)
=

2c+ o(1)

n

(
n

n/2

)
≤ (2c+ o(1)) logm(n),

as logm(n) ≥ 1
n

(
n
n/2

)
. Thus∑

r∈Rn mM(n, r)

m(n)
= (m(n))2c−1+o(1).

As c < 1/2, this proves (3.4), and hence the lemma.
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Restricting to unlabelled matroids

Life can be made a little easier. In fact, the problem of bounding the
number of matroids of rank s ≥ 3 inM can be replaced by enumeration
of unlabelled simple matroids of rank s. To make this precise, we require
some terminology.

An ordered partition of a set E is a sequence (A1, A2, . . . , Ak) of pair-
wise disjoint sets, such that {A1, A2, . . . , Ak} is a partition of E. Thus,
an ordered partition is a partition in which the order of the blocks mat-

ters. Write
−→
Π(E) for the collection of ordered partitions of E, and

let
−→
B (n) :=

∣∣∣−→Π([n])
∣∣∣ be the corresponding ordered Bell numbers. A

straightforward argument shows that
−→
B (n) ≤ nn. Let M◦(n, r) de-

note the class of unlabelled simple rank-r matroids on a ground set of
cardinality n.

Lemma 3.5.3. Let E be a set of cardinality n. There exists an injective

function M(E, r)→M◦(≤ n, r)×
−→
Π(E).

An explicit injective function can be constructed as follows. If M is
a labelled matroid on E, write JMK for its unlabelling, which is obtained
by forgetting the labels of M .

A matroid canonisation is a canonical way of labelling the elements
of a matroid. It is a function fC : M → M with the property that
fC(M) ∼= M , and fC(M) ∼= fC(N) if and only if M ∼= N . Without loss
of generality, we may assume that E(fC(M)) = [|M |] for all M .

If fC is a matroid canonisation, then f(si(M)) is precisely a labelling
of the independent elements of M in which two elements obtain the same
label if and only if they are in the same parallel class. Such a labelling
is an ordered partition, and the lemma follows after possibly squeezing
in an extra class containing the loops of M .

As a matroid class is closed under isomorphism, for any class of
matroids M and any matroid M , the statement M ∈ M does not
depend on the labelling of M . Thus, the quantity m◦M(n, r), which
counts the number of unlabelled rank-r matroids on a ground set of
cardinality n in M, is well-defined.

Lemma 3.5.4. Let M be closed under simplification and contraction.
If there exist a constant c < 1/2, and integers n0 and s ≥ 3 such that

max
n′≤n

logm◦M(n′, s) ≤ c

n

(
n

s

)
for all n ≥ n0,

then M is small.
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Proof. AsM is closed under simplification, it follows from Lemma 3.5.3
that

logmM(n, s) ≤ log(n+ 1) + max
n′≤n

logm◦M(n′, s) + log
−→
B (n),

which, for all n ≥ n0, is at most

(n+ 1) log(n+ 1) +
c

n

(
n

s

)
=
c+ o(1)

n

(
n

s

)
.

It follows that log(1 +mM(n, s)) ≤ c+o(1)
n

(
n
s

)
, and henceM is small by

Lemma 3.5.2.

3.6 Applications

In this section we exhibit two applications of the Entropy Blow-Up
Lemma. In the first application, we bound the number of matroids on
ground set [n]. Clearly the class of all matroids is contraction-closed.
Taking M = M in an application of the Entropy Blow-Up Lemma, we
can lift bounds on m(n, 2) to bounds on m(n).

Theorem 3.6.1. logm(n) = O
(

logn
n

(
n
n/2

))
as n→∞.

By Proposition 2.8.2, logm(n) ≥ 1
n

(
n
n/2

)
. In Chapter 6, we will prove

the complementary upper bound logm(n) ≤ 2+o(1)
n

(
n
n/2

)
. The bound

obtained by an application of the Entropy Blow-Up Lemma is therefore
off only by a factor Θ(log n). In fact, up to the constant factor, this is
the best possible result using the Entropy Blow-Up Lemma. Although
one would hope that bootstrapping the Entropy Blow-Up Lemma with
a bound on logm(n, s) for some fixed s > 2 yields a stronger result, we
will show in Chapter 5 that logm(n, s) ∼ logn

n

(
n
s

)
for all fixed s > 2,

which implies that we will always obtain an excess O(log n)-factor.

In the second application, we bound mM(n) when M is one of
Ex(U(2, k)) (for some k ≥ 2) or M = Ex(U(3, 6)). This confirms a
few special cases of Conjecture 1.3.5.

Theorem 3.6.2. Let N = U(2, k) (for some k ≥ 2) or N = U(3, 6).
Then Ex(N) is small.
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An upper bound on the number of matroids

Clearly the class of all matroids is contraction-closed. If we takeM = M
in an application of the Entropy Blow-Up Lemma, we can lift bounds
on m(n, 2) to bounds on m(n).

There is a one-to-one correspondence between M(n, 2) and partitions
of [n+ 1] into at least three blocks, in which the block containing n+ 1
corresponds to the set of loops, and every other block corresponds to a
rank-1 flat. It follows that m(n, 2) < B(n+ 1), where B(n) is the n-th
Bell number. We require only the straightforward bound B(n) ≤ nn,
which implies

log(1 +m(n, 2)) ≤ (n+ 1) log(n+ 1). (3.6)

Proof of Theorem 3.6.1. From the Entropy Blow-Up Lemma and (3.6),
we obtain

log(1 +m(n, r)) ≤ (n− r + 3) log(n− r + 3)(
n−r+2

2

) (
n

r

)
for all r ≥ 2.

As m(n) =
∑
rm(n, r), and m(n, 0) +m(n, 1) ≤ m(n, 2) for sufficiently

large n, it follows that

logm(n) ≤ log n+ max
r≥2

(n− r + 3) log(n− r + 3)(
n−r+2

2

) (
n

r

)
= O

(
log n

n

(
n

n/2

))
.

Excluding a small uniform minor

Recall that m◦M(n, 3) counts the number of unlabelled simple rank-3
matroids on n points in the classM. We will bound m◦M(n, 3) for each
of the classes M = Ex(U(2, k)) and M = Ex(U(3, 6)). Theorem 3.6.2
then follows from an application of Lemma 3.5.4.

Lemma 3.6.3. For all k ≥ 2, there exists a constant Ck such that

m◦Ex(U(2,k))(n, 3) ≤ Ck.

Proof. Let M be a simple unlabelled rank-3 matroid without U(2, k)-
minor. We show that M has a bounded number of points; this, in turn,
implies that there can only be finitely many such matroids.

Fix a point p in M . Note that p is on at most k − 1 lines, for
otherwise si(M/p) would be a line with at least k points. Every point
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q is on a line with p, and every line through p contains at most k − 1
points. Thus M contains at most 1 + (k − 1)(k − 2) points.

Lemma 3.6.4. Let M be a simple rank-3 matroid on n ≥ 56 points. If
M does not have a U(3, 6)-restriction, then M has lines `, `′ such that
|E(M) \ (` ∪ `′)| ≤ 1.

Proof. Let ` and `′ be the two longest lines of M , such that |`| ≥ |`′|.
If |`| ≤ 7, then all lines of M contain at most 7 elements. Let k

be the largest integer such that M contains a U(3, k)-restriction. By
assumption, 3 ≤ k ≤ 5. Let X ⊆ E(M) be such that M |X ∼= U(3, k).
Every point in M lies on a line spanned by a pair of elements of X, and
there are

(
k
2

)
such lines. We obtain

n ≤ k +

(
k

2

)
(7− 2) ≤ 55;

a contradiction. Thus, we may assume that |`| > 7, and hence that
|` \ `′| ≥ 7.

If |`′| = 2, then M contains one long line, and the lemma follows. If
E(M) \ (` ∪ `′) contains at most one point, then the conclusion of the
lemma holds. Thus, we may assume that |`′| ≥ 3, and that E(M)\(`∪`′)
contains two distinct points p1 and p2. Let `′′ := cl({p1, p2}) be the line
spanned by p1 and p2.

If |`′ \ (`∪ `′′)| ≥ 2, then M contains a U(3, 6)-restriction, which can
be found as follows. Pick any two distinct points q1 and q2 in `′\(`∪`′′),
and let J be the collection of lines spanned by pairs in {p1, p2, q1, q2}.
The set ` \ (∪j∈J j) contains at least two points, s1 and s2, say. The
required restriction is found as M |{p1, p2, q1, q2, s1, s2} ∼= U(3, 6).

On the other hand, if |`′ \ (` ∪ `′′)| = 1 and |E(M) \ (` ∪ `′′)| ≥ 2,
then M has a U(3, 6)-restriction which can be found as follows. Let
`′ ∩ `′′ = {q1}, and let q2 be the unique point in `′ \ (` ∪ `′′). Pick
s ∈ E(M)\(`∪`′∪`′′), and pick i ∈ {1, 2} such that pi 6∈ cl(s, q2). Let J ′
be the set of lines spanned by pairs in {pi, q1, q2, s}. The set `\ (∪j∈J j)
contains at least two points, t1 and t2, say, and M |{pi, q1, q2, s, t1, t2} ∼=
U(3, 6).

The constant 56 in Lemma 3.6.4 is not the best possible, but it
suffices for our purposes.

Lemma 3.6.5. m◦Ex(U(3,6))(n, 3) = O(n2).

Proof. Let M be an unlabelled simple rank-3 matroid on n points,
where n is sufficiently large for the arguments in this proof to work.
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By Lemma 3.6.4, there are lines `, `′, and a point p such that E(M) =
` ∪ `′ ∪ {p}. If ` 6= `′ and p 6∈ ` ∪ `′, then M is determined by (i)
the length of the shortest of the lines ` and `′, (ii) whether or not they
intersect, and (iii) the number of long lines through p. It follows that
there are O(n2) such matroids.

In addition, there is one matroid for which ` = `′, and there are at
most n matroids for which p ∈ ` ∪ `′.

We are now ready to prove Theorem 3.6.2.

Proof of Theorem 3.6.2. Let N = U(2, k) (for some k ≥ 2), or N =
U(3, 6). By Lemma 3.6.3 (in the former case) and Lemma 3.6.5 (in the
latter case),

log
(

1 +m◦Ex(N)(n, 3)
)

= o(n2).

It follows that Ex(N) is small by Lemma 3.5.4.
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chapter 4

Cover complexity

This chapter is based on the journal paper [PvdP15a], which is
joint work with Rudi Pendavingh.

4.1 In this chapter. . .

In this chapter, we consider encodings of matroids in terms of flats.
In particular, we introduce flat covers. Roughly speaking, a collection
of flats and their ranks is called a flat cover if it faithfully describes
the matroid. We call the cardinality of a smallest such flat cover cover
complexity, and show that this notion satisfies several properties that
one would expect from a notion of structural complexity.

Intuitively, it is clear that there can only be a limited number of
matroids of small complexity, and hence that a bound on the cover
complexity of matroids in a class should imply a bound on the size of
that class. This idea generalises the method behind Piff’s [Pif73] upper

bound on the number of matroids, logm(n) = O
(

logn
n 2n

)
, which, in

the language of this chapter, is proved by obtaining a uniform bound
on the cover complexity of matroids in M(n).

The main technical result in this chapter is the Blow-Up Lemma for
cover complexity, which bounds the cover complexity of a matroid in
terms of the cover complexity of its minors of lower rank. The Blow-Up
Lemma thus reduces questions of enumeration to questions about flats
in fixed rank.

The remainder of this chapter is organised as follows. We define flat
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covers and cover complexity in Section 4.2, and in Section 4.3 we show
that cover complexity satisfies a number of properties that one would
expect from a measure of complexity. In Section 4.4, we introduce a
local version of cover complexity, and use it to construct flat covers of
small cardinality. In Section 4.5, we show how a uniform bound on the
cover complexity of the matroids in a certain class results in a bound on
the size of that class. The main technical result, the Blow-Up Lemma,
is proved in Section 4.6. In Section 4.7, we apply the Blow-Up Lemma
to obtain a bound on the number of matroids, and show that several
minor-closed classes are small. Finally, in Section 4.8, we consider two
classes of matroids with large cover complexity, and discuss the obstacles
to the application of cover complexity to showing that Ex

(
W 3
)

and
Ex(M(K4)) are small.

4.2 Flat covers and cover complexity

Let X be a dependent set in a matroid M , and let F be a flat of M .
If |X ∩ F | > rk(F ), then we say that the pair (F, rk(F )) covers X, in
which case (F, rk(F )) acts as a witness for the dependence of X. This
inspires the following definition.

Definition 4.2.1. Let M be a matroid. A collection Z ⊆ {(F, rk(F )) :
F ∈ F(M)} is a flat cover of M if each nonbasis of M is covered by
at least one pair (F, s) ∈ Z. The cover complexity of M , denoted by
κ(M), is the cardinality of a smallest flat cover of M .

Each flat cover of M is a subset of {(F, rk(F )) : F ∈ F(M)}. The
following lemma is straightforward.

Lemma 4.2.2. The flat covers of M form an upward-closed set in the
lattice of subsets of {(F, rk(F )) : F ∈ F(M)}.

The reason that we are interested in cover complexity is that flat
covers describe matroids. More precisely, if Z is a flat cover of M =
(E,B), then M can be reconstructed from E, rk(M), and Z, as

B =

{
X ∈

(
E

rk(M)

)
: |X ∩ F | ≤ s for all (F, s) ∈ Z

}
. (4.1)

Hence, cover complexity gives a bound on the amount of information
necessary to describe M , which explains the use of the term complexity.
The following result shows that the cardinality of a class can be bounded
in terms of cover complexity.
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Lemma 4.2.3. Let M be a class of matroids. If κ(M) ≤ K(n, r) for

all M ∈M∩M(n, r), then mM(n, r) ≤
∑bK(n,r)c
i=0

(
2nr
i

)
.

Proof. The function sending M to a flat cover of minimum size is an in-
jective functionM∩M(n, r)→

(P(E)×{0,1,...,r−1}
≤K(n,r)

)
, and hence mM(n, r)

is bounded by the cardinality of the codomain.

To close this section, we give two examples of flat covers: those cor-
responding to hyperplanes and those corresponding to circuit-closures.
A circuit-closure is a flat that is spanned by a circuit.

Lemma 4.2.4. Let M be a matroid.

(i) If H is the collection of hyperplanes of M , then {(H, rk(H)) :H∈H}
is a flat cover.

(ii) If C is the collection of circuits of M , then {(cl(C), rk(C)) : C ∈ C}
is a flat cover.

Proof. (i) If X is a nonbasis, then it is contained in at least one hyper-
plane. If H is such a hyperplane, then (H, rk(H)) covers X. (ii) If X is
a nonbasis, then it contains at least one circuit. If C is such a circuit,
then X is covered by (cl(C), rk(C)).

The second claim was essentially used by Piff [Pif73] in his upper
bound on the number of matroids. He showed that the number of
circuit-closures of a matroid on n elements is at most 2n+1

n+1 . Using

Lemma 4.2.3 with M = M and K(n, r) = 2n+1

n+1 , and summing over r,
Piff’s upper bound is retrieved.

Theorem 4.2.5 ([Pif73]). logm(n) = O
(

logn
n 2n

)
as n→∞.

Later in this chapter, we obtain a more refined bound on κ(M),
which leads to an improved upper bound on m(n) in Theorem 4.7.1.

4.3 Properties of cover complexity

In this section, we show that cover complexity satisfies some properties
one would expect of a complexity measure on matroids: The dual of a
matroid is as complex as the matroid itself; the minors of M are less
complex than M , so they should have lower cover complexity; M can be
reconstructed from M\e and M/e (see e.g. [Oxl11, Proposition 3.1.27]),
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so the sum of their complexities should should bound the complexity
of M . In addition, we show that cover complexity is particularly well-
behaved with respect to relaxation of circuit-hyperplanes.

Lemma 4.3.1. κ(M) = κ(M∗).

Proof. As (M∗)∗ = M , it suffices to show that κ(M∗) ≤ κ(M). Let
M be a matroid on E, and let Z be a flat cover of M of minimum
cardinality. Define

Z∗ :=
{(

cl∗(E \ F ), s+ |E \ F | − rk(M)
)

: (F, s) ∈ Z
}
.

If F is a flat of rank s in M , then the set cl∗(E \ F ) is a flat of rank
s+ |E \ F | − rk(M) in M∗. We show that Z∗ is a flat cover of M∗.
Consider a nonbasis X of M∗. The set E \ X is a nonbasis of M , so
that there exists (F, s) ∈ Z with the property that |(E \X) ∩ F | > s.
For such an F ,

(cl∗(E \ F ), s+ |E \ F | − rk(M)) ∈ Z∗.

We bound

|X ∩ cl∗(E \ F )| ≥ |X ∩ (E \ F )| = |E \ F | − |E \X|+ |F \X|.

Using that |E \ F | = rk∗(E \ F ) − s + rk(M), |E \ X| = rk(M), and
F \X = (E \X) ∩ F , we obtain

|X ∩ cl∗(E \ F )| > rk∗(cl∗(E \ F )).

It follows that Z∗ is a flat cover for M∗, and hence that κ(M∗) ≤ |Z∗| ≤
|Z| = κ(M).

Lemma 4.3.2. If N is a minor of M , then κ(N) ≤ κ(M).

Proof. We prove the lemma for single-element deletions, N = M\e.
Lemma 4.3.1 then implies that the lemma also holds for single-element
contractions, and the full lemma then follows from an straightforward
induction argument.

Let Z be a flat cover of M of minimum cardinality, and define

Z ′ :=
{(
F \ {e}, rkN (F \ {e})

)
: (F, s) ∈ Z

}
.

Note that if F is a flat of M , then F \ {e} is a flat of M\e. We claim
that Z ′ is a flat cover of N . As |Z ′| ≤ κ(M), this suffices to prove the
lemma. To prove the claim, we distinguish between two cases.
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If rk(N) = rk(M), then the nonbases of N are the M -dependent
r-sets avoiding e. This is a subset of the nonbases of M , and it follows
that Z ′ is a flat cover of N .

On the other hand, if rk(N) = rk(M) − 1, then the nonbases of N
are those (rk(M)− 1)-sets X such that X ∪ {e} is a nonbasis of M . If
F covers X ∪ {e} in M , then

|X ∩ (F \ {e})|

=


|(X ∪ {e}) ∩ F | − 1 ≥ rkM (F )

> rkM (F \ {e}) = rkN (F \ {e}) if e ∈ F

|(X ∪ {e}) ∩ F | > rkM (F ) = rkN (F \ {e}) if e 6∈ F .

It follows that F \ {e} covers X in N , and hence that Z ′ is a flat cover
of N .

Lemma 4.3.3. Let M be a matroid, and let e ∈ E(M). If e is neither
a loop nor a coloop of M , then κ(M) ≤ κ(M\e) + κ(M/e).

Proof. Let ZM\e and Z(M/e)∗ be flat covers of M\e and (M/e)∗ of
minimum cardinality. Assume that e is neither a loop nor a coloop. Let

Z ′ :=
{(

clM (F ), rkM (F )
)

: (F, s) ∈ ZM\e
}

and let

Z ′′ :=
{(

clM (E \ clM∗(F )), rkM (E \ clM∗(F )
)

: (F, s) ∈ Z(M/e)∗
}
.

We claim that Z ′ ∪ Z ′′ is a flat cover of M , which immediately implies
the lemma. To prove the claim, consider a nonbasis X of M .

If e ∈ X, then X is a nonbasis of M\e, so it is covered by some
(F, rkM\e(F )) ∈ ZM\e. It follows that (clM (F ), rkM (F )) ∈ Z ′ covers X
in M .

On the other hand, if e 6∈ X, then E \ X is a nonbasis in (M/e)∗,
so it is covered by some (F, rk(M/e)∗(F )) ∈ Z(M/e)∗ . It then follows
that (clM∗(F ), rkM∗(F )) covers E \X in M∗, and hence that the pair

(F̃ , rkM (F̃ ), with F̃ := clM (E \ clM∗(F )), covers X in M .

Cover complexity provides a different characterisation of uniform
matroids.

Lemma 4.3.4. M is a uniform matroid if and only if κ(M) = 0.

Proof. Let M be a matroid of rank r on E. M is uniform if and only
if B(M) =

(
E
r

)
. Thus, if M is a uniform matroid, then it does not have
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any nonbases, from which it follows that the empty set is a flat cover
for M . On the other hand, if the empty set is a flat cover for M , then it
follows from (4.1) that B(M) =

(
E
r

)
, and hence that M is uniform.

Relaxing circuit-hyperplanes decreases the cover complexity of a ma-
troid.

Lemma 4.3.5. If N can be obtained from M by relaxing a circuit-
hyperplane, then κ(M) = κ(N) + 1.

Proof. Suppose that N is obtained from M by relaxing the circuit-
hyperplane H. As H is the only flat that covers H, a collection Z is a
flat cover of N if and only if Z ∪ {H} is a flat cover of M . The claim
follows.

Recall that W(M) is the collection of circuit-hyperplanes of M . It
follows from the previous lemma that cover complexity is at least the
number of circuit-hyperplanes of a matroid.

Corollary 4.3.6. κ(M) ≥ |W(M)|. Moreover, equality holds if and
only if M is a sparse paving matroid.

Proof. Let N be the matroid that is obtained from M by relaxing all its
circuit-hyperplanes. Repeated application of Lemma 4.3.5 shows that
κ(M) = |W(M)|+κ(N). As κ(N) ≥ 0, it follows that κ(M) ≥ |W(M)|.

To prove the second claim, note that M is sparse paving if and only
if all its nonbases are circuit-hyperplanes, which is the case if and only
if N is a uniform matroid. Therefore, by Lemma 4.3.4, M is sparse
paving if and only if κ(N) = 0, which concludes the proof.

4.4 Bounding cover complexity

A notion related to flat covers is that of a local cover. A local cover
of a matroid M of rank r is a collection of flats (and their ranks) that
allows us to identify the nonbases in the neighbourhood of an r-set. In
this section, we prove two results on local covers. The first states that
small local covers exist: each r-set admits a local cover of cardinality at
most r. The second result is that local covers can be combined to form
flat covers. Combining these results results in an upper bound on cover
complexity.

Recall that N(X) denotes the neighbourhood of X ∈
(
E
r

)
in J(E, r).
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Definition 4.4.1. Let M be a matroid of rank r on E, and let X ∈
(
E
r

)
.

A collection ZX ⊆ {(F, rk(F )) : F ∈ F(M)} is a local cover of M at X,
if each nonbasis in {X} ∪N(X) is covered by an element from ZX .

Clearly any flat cover is a local cover at X, for every X ∈
(
E
r

)
.

However, we can be much more economical.

Lemma 4.4.2. Let M be a matroid of rank r on E. For every X ∈
(
E
r

)
,

there exists a local cover ZX at X such that |ZX | ≤ r.

Proof. Fix X ∈
(
E
r

)
, and define

ZX := {(cl(X \ {x}), rk(X \ {x})) : x ∈ X} .

Clearly, |ZX | ≤ r. To show that ZX is a local cover at X, consider a
nonbasis Y ∈ {X} ∪N(X).

If Y = X, then there exists x0 ∈ X such that Y ⊆ cl(X \ {x0}), in
which case

|Y ∩ cl(X \ {x0})| = r > rk(X \ {x0}),

and so Y is covered by (cl(X \ {x0}), rk(X \ {x0})).
The case Y ∈ N(X) remains. Suppose that Y = (X \ {x0}) ∪ {y0}.

If (cl(X \ {x0}), rk(X \ {x0})) covers Y , then we are done. Otherwise

r − 1 = |X \ {x0}| ≤ |Y ∩ cl(X \ {x0})| ≤ rk(X \ {x0}) ≤ r − 1,

so that equality holds throughout. This implies that y0 6∈ cl(X \ {x0}),
and hence that Y is a basis.

Knowing that X is dependent allows us to construct an even smaller
local cover.

Lemma 4.4.3. Let M be a matroid of rank r on E, and let X be a
nonbasis of M . There exists a local cover ZX at X such that |ZX | ≤ 2.

Proof. We distinguish between two cases, depending on the rank of X.

If rk(X) < r− 1, pick ZX = {(cl(X), rk(X))}. The set ZX is a local
cover at X, since for every Y ∈ {X} ∪N(X),

|Y ∩ cl(X)| ≥ r − 1 > rk(X).

If rk(X) = r − 1, then there is a unique circuit C contained in X.
Pick ZX = {(cl(X), rk(X)), (cl(C), rk(C))}. To show that ZX is a local
cover at X, first note that X is covered by (cl(X), rk(X)). It remains
to show that each nonbasis Y ∈ N(X) is covered by some some element
of ZX . Let Y = (X \{x0})∪{y0} be such a nonbasis. By Lemma 2.6.4,
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Y is a nonbasis if and only if x0 6∈ C, or y0 ∈ cl(X). In the former case,
Y is covered by (cl(C), rk(C)), while in the latter case it is covered by
((cl(X), rk(X)).

By combining such small local covers in a clever way, we can obtain
a small flat cover. First, we require an additional result.

A local cover at X identifies the nonbases in {X} ∪ N(X). By
combining local covers, we are able to identify the nonbases in a larger
area. Of particular interest is the situation in which we have a collection
of local covers at the members of a so-called dominating set: a subset
X ⊆ V (G) is called dominating if every vertex in V (G) \ X has a
neighbour in X . The cardinality of a minimum dominating set in G is
denoted γ(G). The following lemma is easily verified.

Lemma 4.4.4. Let M be a matroid of rank r on E. If X ⊆
(

[n]
r

)
,

and ZX is a local cover at X for each X ∈ X , then
⋃
X∈X ZX covers

each nonbasis in X ∪N(X ). In particular, if X is a dominating set in
J(E, r), then

⋃
X∈X ZX is a flat cover of M .

A probabilistic argument (see e.g. [AS08, Theorem 1.2.2]) shows that
if G is a graph on N vertices with minimum degree δ, then

γ(G) ≤ ln(δ + 1) + 1

δ + 1
N. (4.2)

Lemma 4.4.5. Let M be a matroid of rank r on a ground set E of
cardinality n. Then

κ(M) ≤ ln(r(n− r) + 1) + 1

r(n− r) + 1

(
n

r

)
min{r, n− r}.

Proof. As κ(M) = κ(M∗), we may assume that 2r ≤ n. Let X be
a dominating set of minimum cardinality in J(E, r). As the Johnson
graph has

(
n
r

)
vertices, and is regular of degree r(n − r), it follows

from (4.2) that |X | ≤ ln(r(n−r)+1)+1
r(n−r)+1

(
n
r

)
. By Lemma 4.4.2, to each

X ∈ X we may associate a local cover ZX of cardinality at most r. By
Lemma 4.4.4, the collection

⋃
X∈X ZX is a flat cover of cardinality at

most |X |r, which implies the lemma.
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4.5 Bounding the size of a class by cover

complexity

As a matroid of rank r on ground set E is determined by any of its
flat covers, bounding the cover complexity of a class should result in
a bound on the cardinality of that class. This is made precise in the
following lemma, which is related to Lemma 4.2.3.

Lemma 4.5.1. Let M be a class of matroids, and let g : Z≥0 → R be
a function such that 1/

(
n
n/2

)
≤ g(n) ≤ 1 and κ(M) ≤ g(n)

(
n
n/2

)
for all

M ∈M∩M(n), for sufficiently large n. Then

logmM(n) ≤ g(n)

(
n

n/2

)
log

√
8πn3/2(1 + o(1))

g(n)
.

Proof. Let h(n) = g(n)
(
n
n/2

)
. A functionM∩M(n, r)→

(P(E)×{0,1,...,n}
≤bh(n)c

)
sending M to a flat cover of M of minimum cardinality is injective . It
follows that

|M ∩M(n, r)| ≤
bh(n)c∑
i=0

(
2n(n+ 1)

i

)
≤ exp2

(
H

(
h(n)

2n(n+ 1)

)
2n(n+ 1)

)
.

Summing over r and taking logarithms, we obtain

logmM(n) ≤ log(n+ 1) + H

(
h(n)

2n(n+ 1)

)
2n(n+ 1)

≤ h(n) log
2n+2(n+ 1) + 1

h(n)
.

The result now follows as h(n) = g(n)
√

2
πn2n (1− o(1)).
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4.6 Fractional cover complexity and the Blow-Up

Lemma

Fractional cover complexity

Cover complexity can be obtained as the value of an integer linear pro-
gramme:

κ(M) = min
∑

F∈F(M)

z(F )

s.t.
∑

F : F covers X

z(F ) ≥ 1 for all X ∈ K(M)

z(F ) ∈ Z≥0 for all F ∈ F(M).

(4.3)

The linear relaxation of (4.3) is obtained by allowing the variables
to take non-integral values, i.e. by replacing the integrality constraint
“z(F ) ∈ Z≥0” with “z(F ) ≥ 0”. We call a feasible solution to the
relaxation a fractional cover of M . In addition, we write κ∗(M) for
the value of the relaxation, and refer to κ∗(M) as the fractional cover
complexity of M .

Clearly κ∗(M) ≤ κ(M). Using a standard randomised rounding
technique (cf. [You95]), we may also put an upper bound on κ(M) in
terms of κ∗(M).

Lemma 4.6.1. For all matroids M of rank r on a ground set of n
elements,

κ(M) ≤

⌈
κ∗(M)

(
1 + ln

(
n
r

)
κ∗(M)

)⌉
.

Proof. Let z be an fractional cover of M of value κ∗(M). Define a
function p : F(M)→ [0, 1] by p(F ) := z(F )/κ∗(M). As the entries of p
sum to 1, p is a probability mass function on F(M).

Let

m :=

⌈
κ∗(M) ln

((
n

r

)/
κ∗(M)

)⌉
,

and let Z0 be a random subset of F(M), obtained by drawing objects
(independently, with repetitions) according to p. The probability that
any fixed nonbasis X is not covered by Z0 is(

1−
∑

F : F covers X

z(F )

κ∗(M)

)m
≤
(

e−1/κ∗(M)
)m
≤ κ∗(M)(

n
r

) , (4.4)

where we used the inequality 1 − x ≤ e−x. Let E be the collection
of those nonbases that are not covered by Z0. By (4.4), the expected
number of elements in E is at most κ∗(M).
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The collection Z := Z0 ∪ {(cl(X), rk(X)) : X ∈ E} is a flat cover of
M , and it contains in expectation at most m+κ∗(M) elements. Hence,
there is a flat cover of at most this cardinality.

The Blow-Up Lemma

Our main use for fractional cover complexity is the following result,
the Blow-Up Lemma which states that bounds on fractional cover com-
plexity can be obtained from bounds on fractional cover complexity of
smaller matroids.

Lemma 4.6.2 (Blow-Up Lemma). Let M be a class of matroids that
is closed under contraction. For any t < r < n,

1(
n
r

) max
{
κ∗(M) : M ∈M∩M(n, r)

}
≤ 1(

n−t
r−t
) max

{
κ∗(M) : M ∈M∩M(n− t, r − t)

}
.

Proof. Let M ∈ M ∩ M(n, r). We construct a fractional cover z of
bounded cost from a collection of “local” fractional covers zS , one for
each t-subset S of [n]. Let S be such a set; the construction of zS

depends on whether or not S is dependent or independent in M :

• If S is dependent, then put zS(F ) = 1 if F = clM (S), and zS(F ) =
0 otherwise. Note that clM (S) covers each r-set which contains S.

• If S is independent, then let z′ be a fractional cover of the contrac-
tion M/S of value κ∗(M/S), and let zS(F ) = z′(F \ S) if S ⊆ F ,
and zS(F ) = 0 otherwise.

Define z : F(M)→ R≥0 by putting

z(F ) :=
1(
r
t

) ∑
S∈([n]

t )

zS(F ).

Clearly, z(F ) ≥ 0 for all F ∈ F(M). We claim that z is a fractional
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cover of M . To prove this, let X be any nonbasis, and note that∑
F : F covers X

z(F ) =
1(
r
t

) ∑
F : F covers X

∑
S∈([n]

t )

zS(F )

=
1(
r
t

) ∑
S∈([n]

t )

∑
F : F covers X

zS(F )

≥ 1(
r
t

) ∑
S∈(Xt )

∑
F : F covers X

zS(F ) ≥ 1.

Thus, z is a fractional cover, and it remains to bound
∑

F∈F(M)

z(F ).

If S is independent in M , then M/S is isomorphic to a matroid in
M∩M(n− t, r − t), so that for each such S,∑

F∈F(M)

zS(F ) ≤ max
{
κ∗(M) : M ∈M∩M(n− t, r − t)

}
. (4.5)

In fact, (4.5) holds for dependent S as well, as in that case the left-hand
side equals 1. We obtain

κ∗(M) ≤
∑

F∈F(M)

z(F ) =
1(
r
t

) ∑
S∈([n]

t )

∑
F∈F(M)

zS(F )

≤
(
n
t

)(
r
t

) max
{
κ∗(M) : M ∈M∩M(n− t, r − t)

}
,

where the final step follows from (4.5). The lemma now follows from
the identity

(
n
t

)(
n−t
r−t
)

=
(
n
r

)(
r
t

)
.

Bounding the size of a class using the Blow-Up Lemma

Combining the Blow-Up Lemma with the results in Section 4.5, we
obtain a bound on the size of a contraction-closed class in terms of the
cover complexity of the matroids in the class of a certain fixed rank.

Theorem 4.6.3. Let M be a contraction-closed class of matroids. If,
for some natural number s ≥ 1 and nonincreasing function f : Z≥0 → R,

max
{
κ(M) : M ∈M∩M(n, s)

}
≤ f(n)

n

(
n

s

)
,

then

logmM(n) = O

(
f(n) log2 n

n

(
n

n/2

))
.
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The theorem is proved in three steps: (i) use the Blow-Up Lemma
to obtain a bound κ∗(M) that is valid for all M ∈ M ∩M(n, r), s ≤
r ≤ n/2; (ii) use the rounding result to obtain a bound on κ(M) for all
M ∈M∩M(n); (iii) apply Lemma 4.5.1 to obtain the result.

Proof. We may assume that f(n) = Ω
(
n1−s).

Step (i): Let s ≤ r ≤ n/2. An application of the Blow-Up Lemma,
Lemma 4.6.2 (with t = r − s) yields

max {κ∗(M) : M ∈M∩M(n, r)}

≤
(
n
r

)(
n−r+s

s

) max {κ(M) : M ∈M∩M(n− r + s, s)}

≤ f(n− r + s)

n− r + s

(
n

r

)
.

Step (ii): Using the rounding result, Lemma 4.6.1, we obtain

max {κ(M) : M ∈M∩M(n, r)}

≤
⌈
f(n− r + s)

n− r + s

(
n

r

)(
1 + ln

n− r + s

f(n− r + s)

)⌉
≤ 2f(bn/2c)

n

(
n

n/2

)(
1 + ln

n

f(n)

)
+ 1

for all s ≤ r ≤ n/2. Since κ(M) ≤
(
n
s

)
for all M ∈ M(n, r), r < s, and

κ(M) = κ(M∗), it follows that

max {κ(M) : M ∈M∩M(n)} = O

(
f(n) log n

n

(
n

n/2

))
.

Step (iii): An application of Lemma 4.5.1, with g(n) = Cf(n) log n
for a sufficiently large constant C, concludes the proof.

Theorem 4.6.3 has the following corollary.

Corollary 4.6.4. Let M be a contraction-closed class of matroids. If,
for some natural number s ≥ 1,

max {κ(M) : M ∈M∩M(n, s)} = o

(
ns−1

log2 n

)
as n→∞,

then M is a small class.
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Proof. An application of Theorem 4.6.3 with f(n) = o(1/ log2 n), im-
plies

logmM(n) = o

(
1

n

(
n

n/2

))
.

Comparing to the lower bound logm(n) ≥ 1
n

(
n
n/2

)
, it follows that

log
mM(n)

m(n)
≤ −1− o(1)

n

(
n

n/2

)
→ −∞,

which proves the claim.

The dual programme

Consider the dual linear programme of the linear relaxation of (4.3):

µ(M) = max
∑

X∈K(M)

y(X)

s.t.
∑

X: F covers X

y(X) ≤ 1 for all F ∈ F(M),

y(X) ∈ Z≥0 for all X ∈ K(M),

(4.6)

and write µ∗(M) for the value of its relaxation. By linear programming
duality,

κ(M) ≤ κ∗(M) = µ∗(M) ≤ µ(M) .

The programme (4.6) asks for a maximum subset of the nonbases
such that each flat covers at most one of them. Thus, we obtain the
following generalisation of the first claim in Lemma 4.3.6.

Lemma 4.6.5. Let X ⊆ K(M) be such that each flat F ∈ F(M) covers
at most one of the nonbases in X . Then κ(M) ≥ |X |.

4.7 Applications

In this section, we prove the following results.

Theorem 4.7.1. logm(n) = O
(

log2 n
n

(
n
n/2

))
as n→∞.

Theorem 4.7.2. Let N be one of U(2, k) (for any k ≥ 2), U(3, 6), P6,
Q6, or R6. Almost every matroid has an N -minor.

Geometric representations of each of the named matroids P6, Q6

and R6 are displayed in Figure 4.1.
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(a) P6. (b) Q6. (c) R6.

Figure 4.1: The named matroids appearing in Theorem 4.7.2.

Bounding the number of matroids

We provide two alternative proofs of Theorem 4.7.1. The first proof uses
Theorem 4.6.3 to turn a bound on the cover complexity of matroids
of rank 1 into a bound on m(n). The second approach applies the
upper bound on κ(M) from Lemma 4.5.1 to obtain a bound that is
qualitatively the same.

Proof of Theorem 4.7.1. If M is matroid of rank 1, then Z := {clM (∅)}
is a flat cover of M , so κ(M) ≤ 1. Let M be the class of all matroids.
An application of Theorem 4.6.3 with s = 1, and f(n) ≡ 1 yields the
desired inequality.

Proof of Theorem 4.7.1 (alternative). Let

K(n, r) :=
ln (r(n− r) + 1) + 1

r(n− r) + 1

(
n

r

)
min{r, n− r}.

As K(n, n− r) = K(n, r) for all 0 ≤ r ≤ n, and K(n, r + 1) ≥ K(n, r)
for all 0 ≤ r ≤ bn/2c − 1, it follows that K(n, r) ≤ K(n, bn/2c) for
all 0 ≤ r ≤ n. An application of Lemma 4.5.1 with M = M, and
g(n) = K(n, bn/2c)

/(
n
n/2

)
shows that, for sufficiently large n,

logm(n) ≤ K(n, bn/2c) log
2n5/2

lnn
,

from which the claim follows.

Excluding a long line

First, we prove Theorem 4.7.2 for the special case N = U(2, k). This
case follows from the following lemma after an application of Corol-
lary 4.6.4 (with s = 2).

Lemma 4.7.3. If M ∈ Ex(U(2, k)) ∩M(n, 2), then κ(M) ≤ k.
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Proof. As M has rank 2, we can write E(M) = E0∪̇E1∪̇E2∪̇ . . . ∪̇Em,
such that

(i) Ei 6= ∅ for all i > 0, and

(ii) {a, b} is a basis of M if and only if there are distinct i, j > 0 such
that a ∈ Ei and b ∈ Ej .

If this is the case, then rk(E0) = 0, and rk(E0 ∪ Ei) = 1 for all i > 0.
It follows that

Z := {(E0, 0)} ∪ {(E0 ∪ Ei, 1) : i ∈ [m]}

is a flat cover of M , and so κ(M) ≤ m + 1. Picking ei ∈ Ei for all
i ∈ [m], we find that the restriction M |{e1, e2, . . . , em} ∼= U(2,m), so
m ≤ k − 1, and hence κ(M) ≤ k.

Excluding rank-3 minors

Four cases of Theorem 4.7.2 remain, each of which concerns a matroid
of rank 3. We prove these cases by an application of Corollary 4.6.4
with s = 3. In Lemma 4.7.5–Lemma 4.7.8 below, we prove for each of
these cases that the cover complexity of matroids in Ex(N) ∩M(n, 3)
is at most linear in n. The following lemma shows that it suffices to
consider the number of long lines in such matroids.

Lemma 4.7.4. Let M ∈ M(n, 3) have L long lines. Then κ(M) ≤
1 + n/2 + L.

Proof. Consider the collection of flats Z := Z0 ∪ Z1 ∪ Z2, where Z0 :=
{cl(∅)}, Z1 := {F ∈ F(M) : rk(F ) = 1, |F | > 1}, and

Z2 :=

{
F ∈ F(M) :

rk(F ) = 2

F contains at least three rank-1 flats

}
.

We claim that Z is a flat cover of M . If X is a nonbasis of M , then either
it contains a loop (in which case it is covered by Z0), or it contains a
pair of parallel elements (in which case it is covered by Z1), or it spans
a long line (in which case it is covered by Z2). We have |Z0| = 1,
|Z1| ≤ n/2, and |Z2| = L, and so κ(M) ≤ |Z| ≤ 1 + n/2 + L.

Excluding U(3, 6) The special case N = U(3, 6) of Theorem 4.7.2 was
already proved in Theorem 3.6.2. The working ingredient in that ar-
gument was a structural result for matroids of rank 3 without U(3, 6)-
restriction, Lemma 3.6.4, which states that the ground set of such a
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matroid is the union of two lines and a point, provided that the ma-
troid is sufficiently large. Here, we use the same structural result to
bound the cover complexity of such a matroid.

Lemma 4.7.5. Let M ∈M(n, 3). If M does not have a U(3, 6)-minor,
then κ(M) ≤ 496 + n.

Proof. Let M ∈ M(n, 3) be a matroid without a U(3, 6)-minor, and let
M ′ = si(M). We bound the number of long lines of M ′, after which the
lemma follows from Lemma 4.7.4.

If n ≤ 55, then M has at most
(

55
2

)
/3 = 495 long lines. If n ≥

56, then by Lemma 3.6.4 there are lines `, `′ and a point p such that
E(M) = ` ∪ `′ ∪ {p}. If either ` = `′, or p ∈ ` ∪ `′, then M contains at
most 2 long lines; otherwise, M contains at most b(n − 1)/2c + 2 long
lines.

Excluding P6, Q6, or R6 We start with bounding the cover complexity
of matroids without Q6-minor.

Lemma 4.7.6. Let M ∈M(n, 3). If M does not have a Q6-minor, then
κ(M) ≤ 41 + n.

Proof. Let M ′ := si(M). If M ′ does not have any intersecting pair
of long lines, then M ′ has at most n/3 long lines, and then κ(M) ≤
1 +n/2 +n/3 by Lemma 4.7.4. So suppose M ′ has two long lines ` and
`′ that intersect in point e. If E(M ′) = ` ∪ `′, then ` and `′ are the
only two long lines of M ′, and then κ(M) ≤ 1 + n/2 + 2. So consider
a point f ∈ E(M ′) \ (` ∪ `′). Each point p ∈ ` \ {e} determines a line
`p through p and f that intersects `′ in at most one point, so that if
|`′| > 4, we may obtain a Q6-restriction of M ′ on {e, f, p, q, p′, q′} by
arbitrarily taking p, q ∈ `\{e} and p′, q′ ∈ `′ \({e}∪`p∪`q). So |`′| ≤ 4,
and by symmetry |`| ≤ 4 as well.

If |`′| = 4, and there is some f ∈ E(M ′) \ (` ∪ `′) that is on at most
one line `′′ which intersects both `\{e} and `′\{e}, then we may choose
{e, f, p, q, p′, q′} spanning a Q6-minor as before. If that is the case, then
each point f is determined by two such lines, and hence there are no
more than 9 points in E(M ′) \ (`∪ `′). Then |M ′| ≤ 16, and M ′ has no
more than

(
16
2

)
/3 = 40 long lines, so that κ(M) ≤ 1 + n/2 + 40.

So |`′| = 3, and indeed every long line of M ′ that intersects another
has length 3. Moreover, each f ∈ E(M ′) \ (` ∪ `′) is on some line `′′

which intersects both ` \ {e} and `′ \ {e}, and each such line has length
3. There are no more than 4 such lines `′′, so that there are at most
4 points f ∈ E(M ′) \ (` ∪ `′). Then the number of points in M ′ is
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at most 9, and the number of long lines is at most
(

9
2

)
/3 = 12. Then

κ(M) ≤ 1 + n/2 + 12.

Next, we consider matroids without R6-minor.

Lemma 4.7.7. Let M ∈ M(n, 3). If M does not have an R6-minor,
then κ(M) ≤ 2n.

Proof. Let M ′ := si(M). As M ′ has no R6-minor, any two long lines of
M ′ must have a common point. If M ′ has a line ` with exactly three
points, then each long line of M ′ other than ` is determined by one point
of ` and one point in E(M ′)\`, and contains at least one further point of
E(M ′)\`. In that case, M ′ has at most 1+3(|M ′|−3)/2 ≤ (3/2)n−(7/2)
long lines, so that κ(M) ≤ 1+n/2+(3/2)n−(7/2) ≤ 2n by Lemma 4.7.4.
If on the other hand M ′ does not have any line ` with exactly three
points, then each long line will have at least 4 points and any two long
lines will contain R6 as a restriction. So then there is at most one long
line in M ′, and κ(M) ≤ 1 + n/2 + 1 ≤ 2n by Lemma 4.7.4 (and using
that n ≥ r(M) = 3).

Finally, we bound the cover complexity of matroids without P6-
minor.

Lemma 4.7.8. Let M ∈M(n, 3). If M does not have a P6-minor, then
κ(M) ≤ 3 + 19n.

Proof. If M ′ := si(M) does not have an R6-minor, then neither does
M , and then κ(M) ≤ 2n by the previous lemma. If M ′ does have
an R6-minor, fix one such minor with the two lines {e1, e2, e3} and
{f1, f2, f3}. There are 9 lines spanned by pairs {ei, fj}, and hence the
set U of intersection points between pairs of these lines contains at most(

9
2

)
= 36 points of M ′. Let ` := clM ′{e1, e2, e3}, `′ := clM ′{f1, f2, f3}

be the two long lines of M ′ spanned by the lines of the R6-minor. If
M ′ contains any element g not in `∪ `′∪U , then {e1, e2, e3, f1, f2, f3, g}
contains a P6-minor. So each long line of M ′ other than `, `′ intersects
U . It follows that M ′ has at most 2 + (36(n/2)) long lines, and hence
κ(M) ≤ 1 + n/2 + (2 + 18n) ≤ 3 + 19n by Lemma 4.7.4.

62



c
h
a
p
t
e
r
4
c
o
v
e
r
c
o
m
p
l
e
x
it
y

4.8 Barriers

Cover complexity and entropy

Comparing Blow-Up Lemmas The Blow-Up Lemma for cover com-
plexity, Lemma 4.6.2, bears a striking similarity to the Entropy Blow-
Up Lemma 3.1.1, both in form and purpose. The entropy bound may
sometimes succeed to prove that a class is small, where the cover com-
plexity does not. This is the case for contraction-closed classes in which
the number of matroids of fixed rank is small, while the maximum cover
complexity among such matroids is large.

Proving Theorem 4.6.3 using entropy Entropy provides an alterna-
tive route to bounding the size of a class based on a bound on the
cover complexity of matroids of fixed rank in the class. However, the
bound is not as strong as one might hope. If κ(M) ≤ K(n, s)

(
n
s

)
for

all M ∈ M ∩ M(n, s) for some fixed rank s, then an application of
Lemma 4.2.3 results in

logmM(n, s) ≤ K(n, s)

(
n

s

)
log

(
2n(n+ 1)

K(n, s)
(
n
s

)) .
As
(
n
s

)
is too small to compensate for the factor 2n, the logarithm gives

rise to an additional factor n in the upper bound. The additional factor
persists when the Entropy Blow-Up Lemma is used to obtain a bound
on logmM(n, r) for general rank r.

Small classes with large cover complexity

In the previous section, we showed that some classes of matroids admit
a small uniform bound on the cover complexity of its members in terms
of their size. We are not always so lucky: in this section, we provide
two examples of classes of matroids that have cover complexity that is
exponential in the number of elements: graphic matroids and spikes.

Graphic matroids Consider M(Kr+1), the graphic matroid associated
with the complete graph Kr+1. We show that the cover complexity of
M(Kr+1) is exponential in r.

Lemma 4.8.1. Let r > 3, and let M = M(Kr+1). The collection
of hyperplanes and their ranks form a flat cover of M , and κ(M) =
|H(M)| = 2r − 1.

Proof. It follows from Lemma 4.2.4(i) that the hyperplanes and their
ranks form a flat cover, and hence κ(M) ≤ |H(M)|. Hyperplanes in
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M(Kr+1) correspond to edge cuts in Kr+1, of which there are 2r+1−2
2 =

2r − 1.

To show that κ(M) ≥ 2r − 1 as well, we construct a collection of
2r − 1 nonbases, each of which is covered by a single flat, and apply
Lemma 4.6.5. For each bipartition {U,W} of V (Kr+1), let X{U,W} be
a nonbasis constructed as follows. Assume, without loss of generality,
that |U | ≥ |W |. Then |U | ≥ 3, and we can pick a circuit CU spanning
U as well as a tree TW spanning W . Put X{U,W} = CU ∪ TW .

The collection of X{U,W} is a collection of nonbases of the required
size, and it remains to show that each of them is covered by at most
one flat. Note that if F is a flat that covers X{U,W}, then F must
contain CU , and be disjoint from ∇(U, V (Kr+1) \ U). Suppose that
some flat F covers both X{U1,W1} and X{U2,W2}. As each Ui contains
at least half of the vertices in V (Kr+1), it follows that |U1| + |U2| ≥
|V (Kr+1)|. Since U1 6= W2, it follows that U1 ∩ U2 6= ∅. Since F
is disjoint from ∇(U1, V (Kr+1) \ U1), and CU2 ⊆ F , it follows that
U2 ⊆ U1. By symmetry, U1 ⊆ U2, and hence U1 = U2. So, F cannot
cover two distinct X{U,W}, which is what had to be shown.

Spikes Let S = (G,D) be a set system on a ground set of cardinality
n := |G|, and assume that S has the property that no two elements in
D differ in exactly one element. Let {ai : i ∈ G} and {bj : j ∈ G}
be two disjoint sets. There is a unique matroid Λ(S) on ground set
{ai : i ∈ G} ∪ {bj : j ∈ G} such that

(i) for distinct i, j ∈ G, the set {ai, bi, aj , bj} is both a circuit and a
cocircuit; and

(ii) for each X ⊆ G, the set {ai : i ∈ X}∪{bj : j ∈ G\X} is dependent
if and only if X ∈ D.

Any matroid that is isomorphic to a matroid constructed in this way is
called a (tipless) spike; it is a rank-n matroid on 2n elements. The sets
{ai, bi} are called the legs of the spike, and {ai : i ∈ D}∪{bi : j ∈ G\D},
with D ∈ D, is a dependent transversal of the legs. Our definition of a
spike is taken from [Gee08].

There are many spikes, so in view of Lemma 4.2.3, there must be
spikes with large cover complexity. We exhibit such a spike.

Lemma 4.8.2. Let S = (G,D) be the set system with G = [n] and

D =
(

[n]
bn/2c

)
. Then κ(Λ(S)) ≥

(
n
n/2

)
.
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Proof. As each dependent transversal is a circuit-hyperplane in Λ(S),
the number of circuit-hyperplanes in Λ(S) is at least

(
n
n/2

)
. The claim

now follows from Corollary 4.3.6.

Excluding M(K4) and W 3

Using cover complexity, we have been able to show that almost every
matroid contains an N -minor, whenever N is one of U(3, 6), P6, Q6 or
R6; all of these cases were shown using an application of Corollary 4.6.4
with s = 3. The list above covers all sparse paving matroids of rank 3
on six elements, except the whirl W 3 and the wheel M(K4) (see Fig-
ure 4.2). It turns out that these matroids are closely related to several
hard problems in discrete mathematics.

Excluding M(K4) In the theory of Steiner triple systems, M(K4) is
referred to as the Pasch configuration or quadrilateral. The following
result shows that Ex(M(K4)) cannot be shown to be small using The-
orem 4.6.3 with s = 3.

Proposition 4.8.3 ([GrGrWh00]). For each n ≥ 15 such that n = 1
mod 6 or n = 3 mod 6, there exists a Steiner triple system that does
not contain a Pasch-configuration.

Later in this section, we construct a large family of sparse paving ma-
troids without M(K4)-minor. The construction suggests that showing
that Ex(M(K4)) is a small class requires a much more subtle argument
than the arguments relying on entropy or cover complexity techniques.

Excluding W 3 A cap-set is a subset S of the affine geometry AG(3, n)
that does not contain a long line. Let C(n) be the cardinality of a
maximum cap-set in AG(3, n). Clearly C(n) ≤ 3n. Recently, Ellenberg
and Gijswijt [EG17] proved that C(n) ≤ 2.76n. In the other direction,

(a) W 3. (b) M(K4).

Figure 4.2: Two sparse paving matroids on six elements.
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since {0, 1}n is a cap-set, we have C(n) ≥ 2n. A better lower bound
was obtained by Edel [Ede04], who showed that C(n) ≥ 2.21n.

The following construction, due to Blokhuis (private communica-
tion), shows that large cap-sets give rise to large rank-3 sparse paving
matroids without W 3-minor. Combined with Edel’s lower bound on
C(n), it proves the existence of rank-3 sparse paving matroids without
W 3-minor that have cover complexity at least nγ , where γ ≈ 1.72.

Lemma 4.8.4 (Blokhuis). There exists a sparse paving matroid M ∈
Ex
(
W 3
)

of rank 3 on 3n+1 elements that contains C(n)3n+1 long lines.

Proof. Let S ⊆ AG(3, n) be a cap-set of cardinality C(n). By the
natural inclusion AG(3, n) ⊆ PG(3, n), the set S may be viewed as a
subset of PG(3, n) such that no line of PG(3, n) contains more than two
elements from S.

In turn, the projective geometry PG(3, n+ 1) can be written as the
disjoint union of AG(3, n+1) and PG(3, n). For a line ` of AG(3, n+1),
write ˙̀ for the unique element in PG(3,m) so that ` ∪ { ˙̀} is a line of
PG(3,m+1). Let U be the set of all lines ` in AG(3,m+1) having ˙̀ ∈ S,
and note that |U | = |S|3n = C(n)3n. The set U does not contain three
lines `1, `2, `3 that form a W 3, for if this were the case, then ˙̀

1, ˙̀
2, ˙̀

3

would lie on the same line in PG(3, n).

Let M be the matroid on ground set E = AG(3, n + 1) and set
of bases

(
E
3

)
\ U . Note that |E| = 3m+1, and that M has rank 3 by

construction. As distinct pairs of elements in U intersect in at most one
point, M is sparse paving. Note that U is exactly the set of long lines
in M . As no three of these long lines form a W 3, M does not have W 3

as a restriction, and hence as a minor.

Excluding M(K4) and W 3 One might hope that excluding both M(K4)
and W 3 as a minor would give more traction on the problem, but the
following discussion suggests that it is in fact of little help.

The circuit-hyperplanes of a sparse paving matroid of rank 3 in
Ex
(
M(K4),W 3

)
form a hypergraph with the property that any set of

three edges spans at least seven vertices, or alternatively, that any set
of at most six vertices spans at most two edges. Write g(n) for the
maximum number of edges in a 3-uniform hypergraph on n vertices
such that any six vertices span at most two edges. We also construct a
graph G from the circuit-hyperplanes, by adding a triangle to the graph
for each circuit-hyperplane. As circuit-hyperplanes intersect in at most
one element, the resulting triangles are edge-disjoint, or equivalently the
resulting graph is diamond-free (i.e. it has no subgraph isomorphic to
K4\e), or equivalently all its triangles are edge-disjoint. Write f(n) for
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the maximum number of edges in a diamond-free graph. We have the
following relation:

max
M∈Ex(M(K4),W 3)∩S(n,3)

κ(M) = f(n) ≤ g(n).

The Rusza-Szemerédi (6,3)-theorem [RS78] uses an early version of the

celebrated Szemerédi regularity lemma to prove that g(n) ≤ n2

RS(n) for

some slowly growing function RS. A better upper bound was proved by

Fox [Fox11], but the best upper bound remains of the form O
(

n2

ln∗ n

)
.1

Three distinct elements a1 < a2 < a3 in [n] are called a 3-term arith-
metic progression if a3 − a2 = a2 − a1. Write r3(n) for the cardinality
of the largest subset of [n] that does not contain such an arithmetic
progression. Behrend constructed a large such set.

Proposition 4.8.5 ([Beh46]). There is a constant c > 0 such that

r3(n) ≥ ne−c
√

logn.

The function f(n) is related to r3(n); in fact, we have f(n) =
Ω(nr3(n)), see [RS78]. Thus, combining Behrend’s construction, Propo-
sition 4.8.5, with the upper bound on g(n), we have

n2

ec
√

logn
≤ max
M∈Ex(M(K4),W 3)

κ(M) ≤ O
(

n2

log∗ n

)
.

The upper bound is too weak to apply Theorem 4.6.3 with s = 3
to prove that Ex

(
M(K4),W 3

)
is a small class; on the other hand, the

lower bound is too small to preclude the possibility that the upper bound
may be improved so much that an application of Theorem 4.6.3 becomes
possible. It is likely that a successful application of Theorem 4.6.3 with
s = 3 to prove that Ex

(
M(K4),W 3

)
is small results in an improved

upper bound on the functions f(n) and g(n).

Two classes with large cover complexity

In the final section of this chapter, we exhibit two classes of matroids
that contain matroids of large cover complexity.

1Here, ln∗ denotes the iterated logarithm, which is defined recursively as

ln∗(n) :=

{
0 if n ≤ 1

1 + ln∗(ln(n)) otherwise.
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Theorem 4.8.6. If n is an odd integer, then Ex(M(K4)) ∩M(n) con-
tains a matroid with cover complexity at least 1

n

(
n
n/2

)
. Moreover,

lim sup
n→∞

logmEx(M(K4))(n)
1
n

(
n
n/2

) ≥ 1

Theorem 4.8.7. If n is an odd integer, then Ex(V8) ∩M(n) contains
a matroid with cover complexity at least 1

n

(
n
n/2

)
.

Recall that the Graham-Sloane bound on the number of matroids is
obtained by identifying the elements of [n] with elements of the additive
group Zn, and then colouring each vertex of J(n, r) by the sum of its
elements. Let us write S(n, r, γ) for the sparse paving matroid whose
circuit-hyperplanes are those vertices that receive colour γ ∈ Zn.

We will prove Theorem 4.8.6 and Theorem 4.8.7 by showing that a
suitably chosen sequence of S(n, r, γ) does not have the matroids under
consideration as a minor. We set up a framework that is more general
then strictly necessary for proving the theorems.

For a matroid N and increasing sequence (nk), let Π(N, (nk)) be the
property that for all k, all 0 ≤ r ≤ nk, and all γ ∈ Znk , the matroid
S(nk, r, γ) does not have an N -minor.

Lemma 4.8.8. Let N be a matroid, and let (nk) be an increasing se-
quence such that Π(N, (nk)) holds. For all k, there exists a matroid
M ∈ Ex(N) ∩M(nk) such that κ(M) ≥ 1

nk

(
nk
nk/2

)
. Moreover, if Ex(N)

is closed under the relaxation of circuit-hyperplanes, then

lim sup
n→∞

logmEx(N)(n)
1
n

(
n
n/2

) ≥ 1, (4.7)

and if, in addition, the sequence (nk) has bounded differences, then there
exists c > 0 such that

lim inf
n→∞

logEx(N)(n)
1
n

(
n
n/2

) ≥ c. (4.8)

Proof. Let Mk(γ) = S(nk, bnk/2c, γ). As in the Graham-Sloane ar-
gument, the circuit-hyperplanes of the Mk(γ) partition the vertex set
of J(nk, bnk/2c), so for at least one choice of γ, Mk(γ) has at least
1
nk

(
nk
nk/2

)
circuit-hyperplanes. Let γk be such a value of γ, then by Corol-

lary 4.3.6, κ(Mk(γk)) ≥ 1
nk

(
nk
nk/2

)
. By the assumption that Π(N, (nk))

holds, Mk(γ) does not have an N -minor, which proves the first claim.
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To prove the second claim, assume that Ex(N) is closed under re-
laxation of circuit-hyperplanes. Then relaxing any subset of circuit-
hyperplanes inMk(γk) yields a matroid in Ex(N)∩M(nk, bnk/2c), which
proves (4.7).

The lower bound (4.8) follows by a similar argument. For a given
n, let nk be the largest member of the sequence (nk) that is smaller
than n. A large family of matroids in Ex(N)∩M(n) can be constructed
by adding n − nk loops to relaxations of Mk(γk). In this way, at least
1
nk

(
nk
nk/2

)
are constructed. Equation (4.8) now follows by comparing

central binomial coefficients, and using the assumption that n − nk is
bounded.

The next two lemmas show that M(K4) and V8 satisfy the property
Π for a suitably chosen sequence (nk).

Lemma 4.8.9. If n is an odd integer, 0 ≤ r ≤ n, and γ ∈ Zn, then
S(n, r, γ) does not have an M(K4)-minor.

Proof. Clearly S(n, r, γ) does not have a V8-minor if n < 6 or r < 3, so
we may assume that n ≥ 7 and r ≥ 3. Suppose, for the sake of contra-
diction, that S(n, r, γ) has an M(K4)-minor, so that S(n, r, γ)/A\B ∼=
M(K4) for some disjoint sets A and B. Without loss of generality, we
may assume that A is independent in S(n, r, γ), and hence that S(n, r, γ)
has circuit-hyperplanes A ∪ {a, b, c}, A ∪ {a, d, e}, A ∪ {b, e, f}, and
A∪{c, d, f}, with a, b, c, d, e, and f all distinct. Letting γ′ = γ−

∑
x∈A x

mod n, it follows that

a+ b+ c = a+ d+ e = b+ e+ f = c+ d+ f = γ′ mod n,

We obtain

0 = (a+ b+ c) + (a+ d+ e)− (b+ e+ f)− (c+ d+ f) = 2(a− f).

By assumption, n is odd, and hence 2 has a multiplicative inverse in
Zn. It follows that a = f : a contradiction.

Lemma 4.8.10. If n is an odd integer, 0 ≤ r ≤ n, and γ ∈ Zn, then
S(n, r, γ) does not have a V8-minor.

Proof. Clearly S(n, r, γ) does not have a V8-minor if n < 8 or r < 4, so
we may assume that n ≥ 9 and r ≥ 4. For the sake of contradiction,
assume that S(n, r, γ) has a V8-minor, so that S(n, r, γ)/A\B ∼= V8

for some disjoint sets A and B. Without loss of generality, we may
assume that A is independent in S(n, r, γ), in which case M has circuit-
hyperplanes of the form A ∪X, with X any of the following sets:

{a, a′, b, b′}, {a, a′, c, c′}, {a, a′, d, d′}, {b, b′, c, c′}, {b, b′, d, d′},
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where all elements a, a′, b, b′, c, c′, d, and d′ are distinct and not
contained in A. Writing γ′ = γ−

∑
x∈A x mod n, we have in particular

that

a+ a′ + b+ b′ = a+ a′ + c+ c′ = b+ b′ + c+ c′ = γ′ mod n,

from which it follows that 2(a+ a′) = 2(b+ b′) = 2(c+ c′) = γ′ mod n.
Similarly, it follows from

a+ a′ + b+ b′ = a+ a′ + d+ d′ = b+ b′ + d+ d′ = γ′ mod n

that 2(d + d′) = γ′ mod n. As 2 has a multiplicative inverse in Zn, it
follows that c+c′+d+d′ = γ′ mod n, and hence that A∪{c+c′+d+d′}
is a circuit-hyperplane in S(n, r, γ): a contradiction.

Theorem 4.8.6 follows from Lemma 4.8.9 and Lemma 4.8.8, com-
bined with the observation that Ex(M(K4)) is closed under the relax-
ation of circuit-hyperplanes. Similarly, Theorem 4.8.7 follows follows
upon combining Lemma 4.8.10 with Lemma 4.8.8.

70



chapter 5

Enumeration of matroids of

�xed rank

This chapter is partly based on the journal paper [PvdP17], which
is joint work with Rudi Pendavingh, and on joint work with
Remco van der Hofstad and Rudi Pendavingh.

5.1 In this chapter. . .

This chapter focusses on the enumeration of matroids of fixed rank. The
results in this section imply in particular that for each fixed r ≥ 3,

log s(n, r) ∼ logm(n, r) ∼ log n

n

(
n

r

)
as n→∞.(5.1)

Although (5.1) succinctly represents the main asymptotic results of
this chapter, most of the work in this chapter is in proving detailed non-
asymptotic results that have (5.1) as a consequence. The upper bound
in (5.1) follows from the following bound on m(n, r).

Theorem 5.1.1. For all r ≥ 3 and all n ≥ r + 12,

logm(n, r) ≤ 1

n− r + 1

(
n

r

)
log (e(n− r + 1)) .

By summing over r, Theorem 5.1.1 in particular provides an alterna-

tive proof of Theorem 3.6.1, which states that logm(n) = O
(

logn
n

(
n
n/2

))
as n→∞.
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Our proof of Theorem 5.1.1 relies heavily on the theory of trunca-
tions and erections of matroids, which was developed by Crapo [Cra70]
and Knuth [Knu75]. The truncation of a matroid is obtained by remov-
ing its hyperplanes from the lattice of flats, and erection is essentially
the inverse operation. Every matroid can be described as its trunca-
tion augmented by some extra information to describe its hyperplanes.
We show that the information required to reconstruct the hyperplanes
encodes a paving matroid. Inductively, this allows us to describe ev-
ery matroid as a finite sequence of paving matroids of increasing rank.
Careful analysis of this sequence results in a proof of Theorem 5.1.1.

After proving Theorem 5.1.1, we focus on sparse paving matroids.
Keevash [Kee15] recently obtained good estimates of the number of
designs. As sparse paving matroids of fixed rank are closely related to
designs, his results strongly suggest that similar results should hold for
sparse paving matroids. Here, we adapt his techniques to sparse paving
matroids to obtain the following result.

Theorem 5.1.2. For all fixed r ≥ 3,

log s(n, r) =
1

n− r + 1

(
n

r

)
log
(
e1−rn+ o(n)

)
as n→∞.

Theorem 5.1.1 and Theorem 5.1.2 suffice to prove (5.1). The gap
between the upper bound of Theorem 5.1.1 and the lower bound of
Theorem 5.1.2 is dominated by the different coefficients of n inside the
logarithm. In the final section of this chapter, an attempt is made
towards shrinking this gap, by improving the upper bound on p(n, 3),
the number of paving matroids of rank 3.

Theorem 5.1.3.

log p(n, 3) ≤ 1

n− 2

(
n

3

)
log
(
e0.35n+ o(n)

)
.

Matroids of rank 0, 1, and 2 are in correspondence with well-known
combinatorial objects. For the sake of completeness, these results are
contained in Section 5.2. In Section 5.3, we review some of the theory
of truncations and erections that we will need in later chapters. Here,
essential flats are defined as well. In Section 5.4, the essential flats are
compared to the flat covers of the previous chapter. In Section 5.5, we
consider paving matroids. Paving matroids are easier to analyse than
general matroids, and the results in this section serve as a motivating
example for the more general results in Section 5.6. In Section 5.7,
we use the structural description of matroids obtained in the previous
chapters to obtain an upper bound on m(n, r). Sections 5.8–5.9 focus
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on (sparse) paving matroids. The extra structure in these classes allows
us to prove the bounds of Theorem 5.1.2 on sparse paving matroids in
Section 5.8, and the improved upper bound for rank-3 paving matroids
of Theorem 5.1.3 in Section 5.9.

5.2 Matroids of rank at most 2

We start by considering matroids of rank at most 2. Such matroids
correspond to well-known objects in discrete mathematics, more pre-
cisely set partitions with various additional properties. In this section,
all matroids have ground set [n].

There is only one matroid of rank 0: the uniform matroid U(0, n).
This matroid is sparse paving, and hence s(n, 0) = p(n, 0) = m(n, 0) =
1. Each rank-1 matroid is determined by its rank-0 flat, which is a
proper subset of [n]. Each of these matroids is paving, so p(n, 0) =
m(n, 0) = 2n − 1. Such a matroid is sparse paving if it has at most one
loop, so s(n, 1) = n+ 1 (provided n ≥ 2).

The situation is more interesting for matroids of rank 2. Each rank-2
matroid on ground set [n] is determined by its rank-1 flats: the loops
of such a matroid are those elements that appear in every rank-1 flat.
Thus, each matroid gives rise to a partition of [n] with at least three
blocks, one of which (corresponding with the set of loops) is distin-
guished from the others, and allowed to be non-empty. Such partitions
can be encoded as a partition of [n + 1], where the block containing
n+ 1 corresponds with the set of loops. Thus, m(n, 2) = B(n+ 1)− 2n,
where B(n) is the n-th Bell number. An asymptotic formula for Bell
numbers is obtained by Moser and Wyman [MW55], from whose work
it follows that logB(n) ∼ n log n.

A rank-2 matroid is paving if and only if it does not contain any
loops, so such matroids are partitions of [n] into at least two sets, so
p(n, 2) = B(n) − 1. A rank-2 matroid is sparse paving if, in addition
to having no loops, all blocks contain at most two elements. Such ma-
troids are in correspondence with involutions, which are counted by the
telephone (or triangular) numbers T (n). Thus, s(n, 2) = T (n). Asymp-
totics for telephone numbers can be found in [Knu98, p. 64], from which
we obtain the estimate log T (n) ∼ 1

2n log n.

Theorem 5.2.1. As n→∞,

2 log s(n, 2) ∼ log p(n, 2) ∼ logm(n, 2) ∼ n log n.
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In addition, as the classes of matroids and sparse paving matroids are
closed under duality, log s(n, n− 2) = log s(n, 2) and logm(n, n− 2) =
logm(n, 2).

The formulas obtained above can also be used to the asymptotic
fraction of (sparse) paving matroids among matroids of rank 2.

Theorem 5.2.2. lim
n→∞

s(n,2)
p(n,2) = lim

n→∞
p(n,2)
m(n,2) = 0.

5.3 Truncation and erection

In the remainder of this chapter, we consider matroids of fixed rank
r ≥ 3. Our analysis of such matroids relies heavily on the operations of
truncation and erection of matroids. These operations were studied ex-
tensively by Crapo [Cra70] and Knuth [Knu75], in particular in relation
to the reconstruction of erections using extra information.

In this section, we define truncation and erection. We describe some
of the results of Crapo and Knuth, and reprove these results in a com-
mon framework, that of complete sets.

Truncation and erection

Let M be a matroid of rank r, and let F(M) be its lattice of flats. For
k ≤ r, the rank-k truncation of M is obtained by removing from F(M)
the flats of rank k, k + 1, . . . , r − 1, while preserving the partial order.
The resulting partial order is again the lattice of flats of a matroid,
which we denote by M (k). There are several alternative definitions of
M (k); for example, its independent sets are given by

I
(
M (k)

)
=
{
I ∈ I(M) : |I| ≤ k

}
. (5.2)

We are particularly interested in the rank-(r− 1) truncation of M , and
write T (M) := M (r−1). If no particular truncation is specified, the
truncation of M refers to T (M).

Following Crapo [Cra70], we call N an erection of M if M = T (N),
or N = M . In the latter case, we say that N is the trivial erection of
M . If N is an erection of M , then rk(N) = rk(M) + 1, unless N is the
trivial erection. While the truncation of a matroid is unique, it may
have many erections. For example, the truncation of a paving matroid
is always a uniform matroid. This follows, for example, from (5.2).
Matroid erections were first studied by Crapo [Cra70], who recognised
the lattice structure of erections under the weak order (if M and N are
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matroids on the same ground set, then M is said to be at most N in
the weak order if every independent set in N is also independent in M).

Remark 5.3.1. Duke [Duk87] showed that the lattice of erections is
isomorphic to the interval [M0,Mc] in the lattice of modular cuts of M∗,
ordered by the superset-relation. Here, M0 is the set of all flats of M∗,
and Mc is the modular cut generated by the cyclic flats of M∗. If M
and L are matroids on the same ground set, then L is called a lift
of M if there is a matroid M ′ such that M = M ′/e and L = M ′\e.
As (M ′/e)∗ = (M ′)∗\e, the lifts of M are in one-to-one correspondence
with single-element extensions of M∗. Erections are special lifts, and
Duke’s result asserts that those lifts that are erections correspond pre-
cisely with modular cuts in [M0,Mc].

Crapo’s characterisation of erections

A set X ⊆ E is k-closed in M if clM (Y ) ⊆ X for all Y ⊆ X such that
|Y | ≤ k. Alternatively, X is k-closed if and only if X ∩ F is closed for
all rank-k flats F in M [Cra70, Theorem 1].

The k-closure of a set X is

clk(X) :=
⋂
{Y ⊆ E : Y is k-closed, Y ⊇ X} .

The intersection of k-closed sets is again k-closed, so clk(X) is in fact
the smallest k-closed set containing X.

Crapo obtained the following characterisation of erections in terms
of their rank-r flats. Note that if M is a matroid of rank r, then the
rank-r flats of its erection are hyperplanes, unless the erection is trivial.

Theorem 5.3.2 ([Cra70, Theorem 2]). Let M be a matroid on E of
rank r, and let H ⊆ P(E). H is the set of rank-r flats of an erection
of M if and only if

(i) each H ∈ H has rank r in M ;

(ii) each H ∈ H is (r − 1)-closed; and

(iii) each basis of M is contained in a unique element of H.

Knuth’s construction of erections

Independently of Crapo, Knuth [Knu75] describes a procedure which,
given a matroid M on E of rank r and a collection U of subsets of E,
generates the largest possible set H of the rank-r flats of an erection of
M with the additional property that each U ∈ U is contained in some
element of H.
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Input: Matroid M of rank r
Collection of sets U

Output: H

H ← U ∪ {F + e : F a hyperplane of M, e 6∈ F} (Initialise)
while ∃H,H ′ ∈ H such that H 6= H ′, rM (H ∩H ′) = r do
H ← (H \ {H,H ′}) ∪ {H ∪H ′} (Update)

Figure 5.1: Knuth’s procedure

Knuth’s procedure is described in Figure 5.1. As H decreases by 1 in
each iteration of Update, the procedure terminates after a finite number
of steps on any input U ⊆P(E). It is not obvious that the output of the
procedure is independent of the choice of H and H ′ in each application
of Update, but Knuth shows that this is the case.

Theorem 5.3.3 ([Knu75, Section 5–6]). The output H of the procedure
depends only on the input M and U . Moreover, for any matroid M of
rank r on E, and any set H ⊆P(E), the following are equivalent:

(i) H is the output of the procedure on some input U ⊆P(E); and

(ii) H is the set of rank-r flats of an erection of M .

The second part of Theorem 5.3.3 shows that Knuth’s procedure
can be used to construct all possible erections. In the remainder of this
chapter, we writeH(M,U) for the output of Knuth’s procedure on input
U , and M ↑U for the erection of M of which H(M,U) is the collection
of rank-r flats.

Complete sets

Let M be a matroid on E of rank r. A collection X ⊆ P(E) is called
complete (with respect to M) if the following properties hold:

(i) if X ∈ X , and Y ⊆ X then Y ∈ X ;

(ii) each basis of M is in X ;

(iii) clr−1(X) ∈ X whenever X ⊆ X ; and

(iv) X ∪ Y ∈ X for all X,Y ∈ X such that rkM (X ∩ Y ) = r.

Complete sets are in one-to-one correspondence with erections of M ;
the following lemma describes this correspondence.
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Lemma 5.3.4. Let X ⊆P(E). Then X is complete with respect to M
if and only if X = {X ⊆ E : rkN (X) ≤ r} for some erection N of M .

Proof. It is straightforward to prove sufficiency, so here we only prove
necessity. Assume that X is complete with respect to M , and let
rk′ : P(E)→ Z≥0 be defined by

rk′(X) :=

{
rkM (X) if X ∈ X
r + 1 otherwise,

so that X = {X ⊆ E : rk′(X) ≤ r}. If rk′ is the rank function of
a matroid N , then N is an erection of M . So, in order to prove the
lemma, it suffices to verify that rk′ satisfies the rank axioms.

Clearly, rk′(X) ≥ 0 for all X ∈ E. That rk′(Y ) ≤ rk′(X) for
all Y ⊆ X follows from the fact that X is closed under taking subsets.
It remains to show that rk′ is submodular, i.e.

rk′(X) + rk′(Y ) ≥ rk′(X ∪ Y ) + rk′(X ∩ Y ). (5.3)

Suppose that rk′ is not submodular. Pick X,Y ⊆ E violating (5.3) with
|X|+ |Y | as large as possible. If X 6∈ X , then X ∪ Y 6∈ X so that

rk′(X) + rk′(Y ) = (r + 1) + rk′(Y ) ≥ (r + 1) + rk′(X ∩ Y )

≥ rk′(X ∪ Y ) + rk′(X ∩ Y ),

so {X,Y } does not violate (5.3). It follows that X ∈ X , and by a
similar argument Y ∈ X . As X is closed under taking subsets, we
have X ∩ Y ∈ X as well, and

rk′(X ∪ Y ) > rk′(X) + rk′(Y )− rk′(X ∩ Y )

= rkM (X) + rkM (Y )− rkM (X ∩ Y ) ≥ rkM (X ∪ Y ).

Hence X ∪Y 6∈ X , and therefore rk′(X ∪Y ) = r+ 1 = rkM (X ∪Y ) + 1.
If rkM (X ∩ Y ) = r, then X ∪ Y ∈ X as X is complete, a contradiction.
It follows that rkM (X ∩ Y ) < r. Hence

rkM (X) + rkM (Y ) = rkM (X ∩ Y ) + rkM (X ∪ Y ) ≤ (r − 1) + r,

so that rkM (X) < r or rkM (Y ) < r. Without loss of generality
rM (X) < r. Let I be a basis of X, so that cl(I) = clr−1(I) ⊇ X.
As rkM (X ∪ Y ) = r > rkM (X), we can extend I by elements of Y to
a basis B of M . Let X ′ := clr−1(B). As B ∈ X , we have X ′ ∈ X as
well. As I is strictly contained in B, X is strictly contained in X ′; in
particular, |X ′| > |X|. The pair X ′, Y violates (5.3), thus contradicting
maximality of |X|+ |Y |.
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Item (i) in the definition of complete sets states that complete sets
are downward-closed. If H is the set of inclusionwise-maximal elements
of X , then X can be obtained from H by

H↓ := {X : X ⊆ H for some H ∈ H}.

The inclusionwise-maximal elements of X form an antichain in P(E),
and every antichain arises in this way from a downward-closed set, thus
showing that downward-closed sets are in one-to-one correspondence
with antichains.

The proof of the following lemma is straightforward.

Lemma 5.3.5. Let X ⊆P(E) be a downward-closed collection, and let
H be the set of the inclusionwise-maximal elements of X . X is complete
if and only if H satisfies conditions (i)–(iii) of Theorem 5.3.2.

Lemma 5.3.5 suffices to prove Crapo’s characterisation.

Proof of Theorem 5.3.2. By Lemma 5.3.4, erections are in one-to-one
correspondence with complete sets, which in turn, by Lemma 5.3.5, are
in one-to-one correspondence with collections satisfying the conditions
in Theorem 5.3.2.

The intersection of complete sets is again complete. It follows that
the completion,

comp(Z) :=
⋂{
X : X is complete with respect to M , Z ⊆ X

}
,

(5.4)
is the smallest complete set containing Z. Note that comp(Z) depends
on the matroid M ; if we want to emphasise this dependence, we shall
write compM . The properties of complete sets immediately imply the
following properties of completions.

Lemma 5.3.6. Let M be a matroid on E, and let U ⊆P(E). Then

(i) comp(U) = comp(U ∪ B(M));

(ii) comp(U) = comp({clr−1(U) : U ∈ U});

(iii) comp(U) = comp(U ∪ {F + e : F ∈ H(M), e 6∈ F}).

The following lemma shows that Knuth’s procedure essentially de-
termines completions.

Lemma 5.3.7. Let M be a matroid on E. If U ⊆P(E), then H(M,U)
is the collection of inclusionwise-maximal elements of compM (U).
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Proof. Suppose that X is complete, and U ⊆ X . Then H(M,U) ⊆ X ,

and so H(M,U) ⊆ comp(U). Next, consider
(
H(M,U)

)↓
. This is a

complete set, and U ⊆
(
H(M,U)

)↓
. Combining these two observations,

we obtain

H(M,U) ⊆ comp(U) ⊆
(
H(M,U)

)↓
.

It follows that comp(U) = H(M,U)↓, and as H(M,U) is the set of
inclusionwise-maximal elements of H(M,U)↓, this implies the lemma.

Knuth’s theorem follows from Lemma 5.3.7.

Proof of Theorem 5.3.3. As comp(U) depends only onM and U , so does
H(M,U). That H(M,U) is the collection of rank-r flats in an erection
of M follows from an application of Lemma 5.3.4; this shows that (i)
implies (ii). Note that if N is an erection of M , then H(M,H(N)) is
the set of rank-r flats of N , so (ii) implies (i) as well.

Remark 5.3.8. Recall the interval [M0,Mc] in the lattice of modular
cuts of M∗. The collection of modular cuts of M∗, and hence of the
interval [M0,Mc], is closed under taking arbitrary intersections, so every
set of flats of M∗ generates a minimal modular cut containing the set.
The completion operator (5.4) is a specialisation of this closure operator
for modular cuts.

Complete sets and modular cuts in [M0,Mc] can be linked directly
through the function M 7→ {A ⊆ E(M) : cl∗(E \A) ∈M } and its in-
verse X 7→ {cl∗(E \A) : A ∈ X}; where cl∗(X) denotes the coclosure of
X.

Reconstructing a matroid from its truncation

The goal of the next section is to obtain a method of describing a ma-
troid M in terms of its truncation T (M) augmented with extra informa-
tion in an economic way. To make this more precise, we are interested
in finding U such that M = T (M)↑U , while U is as ‘small’ as possible.
Recall that M = T (M) ↑H(M) for any matroid M . It turns out that
we can be more economical.

Crapo notes that certain flats F in M are ‘predictable’, in the sense
that the restriction M |F has no nontrivial erection. If this happens,
then the occurrence of F as a flat inM is unavoidable given the structure
of M |F . If the hyperplane H is predictable, then its structure M |H
follows already from T (M).
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Flats that are not predictable are called essential . Hence, we may
restrict U = H(M) to essential hyperplanes. No ‘intrinsic’ character-
isation of the essential flats of a matroid is known1, but the follow-
ing lemma, which in particular implies that independent flats are pre-
dictable, provides a necessary condition.

Lemma 5.3.9 ([Cra70, Theorem 12]). Let M be a matroid on E, and
let F be a rank-k flat in M . If there exists I ∈ I(M) such that F =
clk−1(I), then F is not essential.

5.4 Describing a matroid by a collection of ats

So far, we have encountered several subcollections of flats that deter-
mine a matroid. In Chapter 4, we defined flat covers: collections of flats
that suffice to reconstruct a matroid in a particular way. Cover com-
plexity, the size of a smallest such flat cover, provided a useful notion of
structural complexity of matroids, and led, among other things, to an
upper bound on the number of matroids. Essential flats, introduced at
the end of the previous chapter, provide another collection of flats that
can be used to unambiguously determine a matroid. Higgs (in [Cra70])
suggested that essential flats provide a very concise description of ma-
troids. The aim of this section is to compare flat covers, essential flats,
and other subcollections of flats. It is not crucial to the arguments in
this chapter, but it may shed some light on its result.

Recall that a flat is essential if the restriction M |F has at least one
nontrivial erection. Let us call a flat F of rank k pseudo-essential if
there is no independent set I such that F = clk−1(I). By Lemma 5.3.9,
every essential flat is pseudo-essential. The following lemma shows that
every pseudo-essential flat is a circuit-closure.

Lemma 5.4.1. Let F be a flat of rank k. If there is no independent set
I such that F = clk−1(I), then F = cl(C) for some circuit C.

Proof. Suppose that F is not a circuit-closure. We will show that F =
clk−1(I) whenever I is a basis of F . So let I be a basis of F . If
x ∈ F \ I, then I ∪{x} contains a circuit C ′, which necessarily contains
x. By assumption, C ′ is properly contained in I ∪ {x}. It follows that
C ′ ∩ I has cardinality at most k− 1, and hence that x ∈ clk−1(I). As x
was arbitrary, the lemma follows.

1Finding an ‘intrinsic’ characterisation is posed as an open problem in [Cra70].
To the best of our knowledge, it has not been solved yet.
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Greene [Gre91] calls a collection of flats F ′ ⊆ F(M) descriptively
sufficient if

I(M) = {X ∈P(E(M)) : |X ∩ F | ≤ rk(F ) for all F ∈ F ′} . (5.5)

He provides several equivalent definitions of descriptive sufficiency, and
proves in particular that a collection of flats is descriptively sufficient
if and only if it contains all circuit-closures [Gre91, Proposition 3.2].
Equation (5.5) is reminiscent of the defining property of flat covers. In
fact, since the circuit-closures of a matroid form a flat cover, it follows
that every descriptively sufficient set forms a flat cover as well.

Lemma 5.4.2. If F ′ ⊆ F(M) is a descriptively sufficient collection of
flats, then {(F, rk(F )) : F ∈ F ′} is a flat cover.

The reverse implication if false in general; in fact, the cover com-
plexity can be much smaller than the number of circuit-closures. We en-
countered one example for which this is true in Section 4.8: the graphic
matroids M(Kr+1).

Two well-known examples of descriptively sufficient collections of
flats are the cyclic flats (flats that are unions of circuits), and dependent
nondecomposable flats (flats of the form F ′ ∪ cl(∅) such that |F ′| ≥ 2
and M |F ′ is connected).

The results in this section can be summarised as the following se-
quence of inclusions:

essential flats

⊆ pseudo-essential flats

⊆ circuit-closures

⊆ dependent nondecomposable flats

⊆ cyclic flats


flat cover;
desc. sufficient

Each of these inclusions can be strict. The first inclusion is strict for
the 9-point matroid on the hexagram that is displayed in Figure 5.2(a);
this example is given by Crapo [Cra70, Theorem 12]. The second in-
clusion is strict for the whirl W 3 (Figure 5.2(b)). The third inclusion
is strict for the rank-4 graphic matroid M(K2,3) in Figure 5.2(c), and
the fourth inclusion is strict for the matroid depicted in Figure 5.2(d),
which is obtained from the previous example by relaxing one of the
circuit-hyperplanes.

The collection of essential flats of a matroid can be much smaller
than its cover complexity. The rank-4 matroid in Figure 5.3 provides a
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(a) Star of David; example
taken from [Cra70].

(b) W 3.

(c) M(K2,3). (d) Circuit-hyperplane relax-
ation of M(K2,3).

Figure 5.2: Some examples to show that each of the inclusions
can be strict.

counter-example to the tempting conjectures that (i) (pseudo-)essential
flats and their ranks necessarily form a flat cover, and (ii) the essential
flats are contained in every flat cover. The matroid in the figure has
four essential flats: the two long lines, and the two highlighted 4-element
hyperplanes. None of these four flats cover the selected nonbasis, thus
disproving (i). To disprove (ii), consider the flat cover formed by the
hyperplanes, and note that the two long lines are flats of lower rank.

5.5 An upper bound on the number of paving

matroids

In this section, we shall obtain an upper bound on the number of paving
matroids of rank r ≥ 3. The reason for considering paving matroids be-
fore general matroids is two-fold: not only does the additional structure
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Figure 5.3: The essential flats do not form a flat cover. This ex-
ample was used in [Cra70] to illustrate the “remarkable economy
afforded by essential flats”.

of paving matroids result in a more transparent exposition of the tech-
nique, it will actually be used as an inductive step in the analysis of
general matroids.

The graded lexicographic order

In this section and the next, we will need a particular order on subsets
that favours sets of small cardinality. Such an order is provided by the
graded lexicographic order . Fix the ground set E = [n], and the rank
r ≥ 3. The ground set comes with a natural order, which induces the
graded lexicographic order on P(E). For X,Y ⊆ E, we say that X
precedes Y in the graded lexicographic order (and write X ≺ Y ) if

• |X| < |Y |; or

• |X| = |Y | and min(X4Y ) ∈ X.

Describing a paving matroid by its hyperplanes

Recall that the hyperplanes of a matroid M of rank r on E are its rank-
(r − 1) flats. We shall write H(M) for the collection of hyperplanes of
M . Any matroid M on E of rank r is determined by H(M).

If M is a paving matroid, then its hyperplanes have a particularly
nice structure: if M has rank at least 2, then its hyperplanes form
a set system known as an (r − 1)-partition (see e.g. [Oxl11, Proposi-
tion 2.1.24]): this is a collection of at least two subsets H ⊆P(E) such
that

• each H ∈ H contains at least r − 1 elements; and
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• each (r − 1)-set in E is contained in exactly one H ∈ H.

Note that 1-partitions are precisely ordinary set partitions into at least
two parts. For the remainder of this section, we shall assume that r ≥ 3.

Write H+(M) := {H ∈ H(M) : |H| ≥ r} for the dependent hyper-
planes of M . If M is a paving matroid, then H(M) (and hence M) is
determined by H+(M) as well: since in this case the hyperplanes of M
form an (r − 1)-partition, it is necessarily the case that

H(M) = H+(M) ∪
{
X ∈

(
E

r − 1

)
: X 6⊆ H for all H ∈ H+(M)

}
.

If M is a paving matroid, and all dependent hyperplanes in M con-
tain exactly r elements, then each dependent hyperplane is a circuit-
hyperplane, and M is a sparse paving matroid. If this is the case, then
H+(M) is a partial Steiner system, and it follows that

|H+(M)| ≤ 1

r

(
n

r − 1

)
=

1

n− r + 1

(
n

r

)
. (5.6)

This observation immediately puts an upper bound on the number of
sparse paving matroids, a result that was originally proved by Mayhew,
and Welsh [MW13].

Theorem 5.5.1. For all 0 < r < n,

log s(n, r) ≤ 1

n− r + 1

(
n

r

)
log (e(n− r + 1)) .

Proof. If M is a sparse paving matroid of rank r on [n], then M is
determined by H+(M). As H+(M) is a collection of r-subsets of M , by
the bound (5.6) on the cardinality of H+(M) it follows that

s(n, r) ≤

1
n−r+1 (nr)∑
i=0

((n
r

)
i

)
≤ (e(n− r + 1))

1
n−r+1 (nr) ,

and the result follows upon taking logarithms.

The antichain V(M)

Write p(n, r) for the number of paving matroids of rank r on [n].

The aim of this section is to prove the following generalisation of
Theorem 5.5.1.
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• |H(M)| = 6

• |H+(M)| = 1

• |V⊆(M)| = 10

• |V(M)| = 3

• 1
n−r+1

(
n
r

)
= 5

Figure 5.4: V⊆(M) contains too many r-sets.

Theorem 5.5.2. For all n ≥ r ≥ 3,

log p(n, r) ≤ 1

n− r + 1

(
n

r

)
log (e(n− r + 1)) .

Unfortunately, the proof of Theorem 5.5.1 does not carry over to the
case of paving matroids. Although (5.6) still holds for paving matroids,
H+(M) possibly contains sets of cardinality larger than r. The aim of
this section therefore is to construct a collection V(M) of r-sets such
that H+(M) can be reconstructed from V(M), and |V(M)| ≤ 1

n−r+1

(
n
r

)
.

More precisely, V(M) will be constructed in such a way that M =
U(r − 1, E)↑V(M).

As a first attempt, one might construct V⊆(M) :=
⋃
H∈H+(M)

(
H
r

)
.

Note that V⊆(M) contains only r-sets, and M = U(r − 1, E)↑V⊆(M).
However, |V⊆| can be much larger than the required bound, as illus-
trated in Figure 5.4.

We provide a related, but more economical, construction. Define,
for H ∈ H(M),

V(H) :=

{
V ∈

(
H

r

)
: V is consecutive in H

}
,

where V is a consecutive subset of H if and only if H does not contain
any ordered triple h1 < h2 < h3 such that h1, h3 ∈ V , and h2 ∈ H \ V
(see Figure 5.5a for an example). Clearly

|V(H)| = |H| − r + 1 for all H ∈ H(M). (5.7)

Define
V(M) :=

⋃
H∈H(M)

V(H).

We show that H(M), and hence M , can be reconstructed from
V(M), for which we require the following elementary observation.
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11
22

33
44

55
66

(a) Three consecutive subsets in a 6-
point plane.

(b) A rank-3 paving matroid, and its
antichain V(M).

Figure 5.5: Consecutive sets and V(M).

Lemma 5.5.3. Let M be a paving matroid of rank r. If X and X ′ are
dependent r-sets in M with the property that |X ∩ X ′| = r − 1, then
clM (X) = clM (X ′).

This observation can be used to recombine members in V(M) to
hyperplanes. More precisely, define a relation ∼ on V(M) by declaring
V ∼ V ′ if and only if there exists a sequence V = V0, V1, . . . , Vk = V ′

in V(M) such that |Vi ∩ Vi−1| = r− 1 for all i ∈ [k]. It is easily verified
that ∼ is an equivalence relation, and that its equivalence classes are
precisely of the form V(H), H ∈ H+(M). We thus obtain the following
result.

Lemma 5.5.4. M 7→ V(M) is an injective function on paving matroids
in M(n, r).

Lemma 5.5.5. If M ∈ M(n, r) is a paving matroid, then |V(M)| ≤
1

n−r+1

(
n
r

)
.

Proof. By (5.7), if H is a hyperplane of cardinality k, then |V(H)| =
k− r+ 1, so if we write hk for the number of hyperplanes of cardinality
k in M , then |V(M)| =

∑n−1
k=r−1 hk(k − r + 1).

As M is paving, each (r − 1)-subset of E is contained in a unique

hyperplane. It follows that the hk satisfy
∑n−1
k=r−1 hk

(
k
r−1

)
=
(
n
r−1

)
.
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Maximising over the possible values of hk, we obtain that

|V(M)| ≤ max


n−1∑
k=r−1

hk(k − r + 1) :

n−1∑
k=r−1

hk
(
k
r−1

)
=
(
n
r−1

)
hk ≥ 0

for all k = r − 1, r, . . . , n− 1


= min

{
y

(
n

r − 1

)
:
y
(
k
r−1

)
≥ k − r + 1

for all k = r − 1, r, . . . , n− 1

}

=
1

r

(
n

r − 1

)
.

Here, the first equality follows from linear programming duality, and
the solution to the dual programme follows from the fact that k−r+1

( k
r−1)

is

maximised for k = r. The lemma follows from the identity 1
r

(
n
r−1

)
=

1
n−r+1

(
n
r

)
.

Theorem 5.5.2 now follows by counting the number of possible col-
lections of r-sets of cardinality at most 1

n−r+1

(
n
r

)
.

5.6 The antichain V(M) for general matroids

In this section, we generalise the results from Section 5.5 from paving
matroid to general matroids.

This generalisation involves the truncation and its inverse opera-
tion erection from Section 5.3. In Section 5.5, each paving matroid was
described as the erection of a uniform matroid; the extra information
required to construct the erection was recorded in the antichain V(M).
Here, we generalise this construction. The nature of general matroids
require them to be built ‘from the ground up’, i.e. the truncations of M
are constructed subsequently, starting from the unique rank-0 matroid.
The information required to construct this sequence of truncations can
again be stored in an antichain V(M), which for paving matroids coin-
cides with the previous definition.

(r − 2)-closures

Recall that we are interested in finding a set U such that M = T (M)↑U .
For sparse paving matroids, it suffices to take U = H+(M), which for
paving matroids was generalised to U = V(M) in Section 5.5. In this
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section, we further generalise te construction of V(M) to matroids that
are not necessarily sparse paving, but before we do so, we make an
additional improvement.

Each of the k-closures clk(·), 0 ≤ k ≤ r − 2, in M depends only on
the information in T (M). It follows that if M = T (M)↑U , and there is
U ∈ U such that U = clr−2(U ′) for some U ′ ⊆ U , then M = T (M)↑U ′,
where U ′ := U4{U,U ′}.

The following lemma combines the observations on essential flats
and (r − 2)-closures.

Lemma 5.6.1. Let M be a matroid of rank r on E, and let H be the
set of hyperplanes of M . Suppose that for each H ∈ H, UH is such that
clr−2(UH) = H. If U := {UH : H ∈ H, |UH | ≥ r}, then M = T (M)↑U .

Proof. For each H ∈ H(M), either UH ∈ U , or UH is a basis of T (M).
It follows that

W := {clr−2(X) : X ∈ B(T (M)) ∪ U}

contains all hyperplanes of M , and in addition some sets clr−2(X) ⊆
clM (X), where clM (X) is a hyperplane of M . Thus H(M) are the
inclusionwise-maximal elements of W, and it follows that T (M)↑W =
M . By Lemma 5.3.6, compT (M)(W) = compT (M)(U), and so T (M) ↑
U = T (M)↑W. The lemma follows.

Having restricted U to (r − 2)-spanning subsets of essential hyper-
planes, there is still some freedom in the particular choice of U . If it
is our objective to describe the reconstruction of M from T (M) as eco-
nomically as possible, a sensible first optimisation is to choose each of
the elements of U as small as possible. Thus, we define

U∗H := ≺-min{U : clr−2(U) = H} for all H ∈ H(M),

and

U∗r−1 := {U∗H : H ∈ H(M), |UH | ≥ r}. (5.8)

Note that U∗r−1 satisfies the premisses of Lemma 5.6.1, and hence M =
T (M)↑U∗r−1.

Properties of U∗
r−1

Recall that the girth g(M) of the matroid M is the cardinality of a
smallest circuit in M . More generally, we can define the girth function
of M by g(X) ≡ gM (X) := g(M |X).
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Lemma 5.6.2. Let X ⊆ E be a (k − 1)-closed set. Any inclusionwise-
minimal U ⊆ X such that clk−1(U) = X has g(U) > k.

Proof. If U contains a circuit C of cardinality at most k, and e ∈ C,
then clk−1(U \ {e}) = X; this contradicts minimality of U .

By construction, we immediately obtain the following.

Lemma 5.6.3. For all U ∈ U∗r−1,

• U is dependent;

• rk(U) = r − 1;

• g(U) = r; and

• clr−1(U) = cl(U).

The following lemma shows that U∗r−1 encodes a paving matroid.

Lemma 5.6.4. U∗r−1 is the set of dependent hyperplanes of a paving
matroid of rank r on E.

Proof. By construction, each U ∈ U∗r−1 contains at least r−1 elements,
so it suffices to show that each (r − 1)-subset of E is contained in at
most one element of U∗r−1. If this is not the case, then there would be
two distinct hyperplanes H,H ′ ∈ H(M) such that |U∗H ∩ U∗H′ | ≥ r − 1.
By Lemma 5.6.3, g(U∗H), g(U∗H′) = r, and hence g(U∗H ∩ U∗H′) ≥ r. On
the other hand, rk(U∗H ∩ U∗H′) ≤ rk(H ∩ H ′) ≤ r − 2, so U∗H ∩ U∗H′ is
dependent and hence g(U∗H ∩ U∗H′) ≤ r − 1: a contradiction.

Write
Pr−1(M) = U (r − 1, E(M)))↑U∗r−1

for the paving matroid whose dependent hyperplanes are U∗r−1.

Lemma 5.6.5. The map M 7→ (T (M), Pr−1(M)) is an injective func-
tion M(n, r)→M(n, r − 1)× P(n, r).

It is easily verified that the inverse map is given by (N,P ) 7→ N ↑
H+(P ).

As a consequence of Lemma 5.6.4, we find that any matroid on n
elements of rank r has at most p(n, r+ 1) erections, where p(n, r+ 1) is
the number of paving matroids on the same ground set and rank r+ 1.
This maximum number of erections is attained by the uniform matroid,
as it has all paving matroids as erections.

Theorem 5.6.6. The uniform matroid has the largest number of erec-
tions among all matroids of the same rank on the same ground set.

89



c
h
a
p
t
e
r
5
e
n
u
m
e
r
a
t
io
n
o
f
m
a
t
r
o
id
s
o
f
f
ix
e
d
r
a
n
k

Constructing matroids from the ground up

Let M be a matroid of rank r on E. In (5.8), we have constructed a
collection U∗r−1 such that M = T (M)↑U∗r−1. There is nothing that stops
us from giving the truncation T (M) the same treatment, and writing
T (M) = T (T (M)) ↑ U∗r−2, and so on. Continuing in this fashion, we
obtain a sequence (U∗k : k = 0, 1, . . . , r − 1) such that

M = (. . . (M0 ↑U∗0 )↑ . . .)↑U∗r−1.

where M0 is the unique matroid of rank 0 on E.

For any k < s ≤ r, we have U∗k (M) = U∗k
(
M (s)

)
. This implies that

U∗k can be defined directly in terms of the flats of rank k in M .

Lemma 5.6.7. For a rank-k flat F , write U∗F := ≺-min{U : clk−1(U) =
F}. Then U∗k = {U∗F : F ∈ F(M), rk(F ) = k, |U∗F | > k}.

For a matroid M of rank r, define

U∗(M) :=

r−1⋃
k=0

U∗k .

Lemma 5.6.8. U∗(M) is an antichain.

Proof. Suppose that U,U ′ ∈ U∗(M) are such that U ⊆ U ′. The prop-
erties laid out in Lemma 5.6.3 imply that

rk(U) + 1 = g(U) ≥ g(U ′) = rk(U ′) + 1 ≥ rk(U) + 1,

so in particular rk(U) = rk(U ′). It follows that cl(U) = cl(U ′), and
hence equality holds throughout in

cl(U) = clr−1(U) ⊆ clr−1(U ′) = cl(U ′).

So, with F = cl(U), we have U = U ′ = U∗F .

Lemma 5.6.9. Let F, F ′ be flats of M of rank k, k′, respectively, such
that k′ > k. Let X ∈

(
U∗F
k

)
. If X ⊆ U∗F ′ , then X = ≺-min

(
UF
k

)
.

Proof. We argue by contradiction. Suppose that X ⊆ U∗F ′ , but X 6=
≺-min

(
UF
k

)
. Let X∗ = ≺-min

(
UF
k

)
, and define U ′ = (U∗F ′ \ X) ∪ X∗.

By Lemma 5.6.3, any k-subset of U∗F spans F , so cl(X∗) = F = cl(X).
As k′ > k, this implies clk′−1(X∗) = clk′−1(X), and hence clk′−1(U ′) =
clk′−1(U∗F ′). Moreover, we have U ′ ≺ U∗F ′ , thus contradicting minimal-
ity of U∗F ′ .
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Encoding a matroid as a sequence of paving matroids

Let Pk(M) be the paving matroid of rank k+ 1 whose set of dependent
hyperplanes is U∗k . The map

M 7→ (P0(M), P1(M), . . . , Pr−1(M))

is an injective function. The function encodes a given matroid as a
sequence of paving matroids of increasing rank.

It follows in particular that m(n, r) ≤
∏r−1
i=0 p(n, i). Substituting the

upper bound on p(n, i), we obtain, at least for r = o(n),

logm(n, r) ≤
r−1∑
i=0

1

n− i

(
n

i+ 1

)
log (e(n− i))

= o

(
1

n− r

(
n

r + 1

)
log (e(n− r))

)
.

In Section 5.7, we improve this bound to logm(n, r) ∼ log p(n, r) as n→
∞, provided r ≥ 3 remains fixed. In order to do this, it is necessary to
consider the sequence (P0(M), P1(M), . . . , Pr−1(M)) of paving matroids
associated with M simultaneously, rather than separatel. This can be
done by generalising the antichain V(M), which was defined for paving
matroids in Section 5.5, to general matroids.

For k = 0, 1, . . . , r − 1, define

Vk(M) = V(Pk(M)), (5.9)

where V is the function defined in Section 5.5. In addition, define
V(M) :=

⋃r−1
k=0 Vk(M). If M is a paving matroid, we now have two

definitions of V(M). Fortunately, the following lemma implies that for
paving matroids, the new definition coincides with the definition from
Section 5.5.

Lemma 5.6.10. If M is a paving matroid of rank r, then Pr−1(M) =
M , and Pk(M) ∼= U(k, n) for all k < r − 1.

Proof. The lemma follows immediately from the observation that for
paving matroids U∗(M) = H+(M).

The following lemma shows that, although it may be the case that
some of the Pi(M) are the same for different matroids, the sequence
(Vk(M))r−1

k=0 determines M , thus generalising Lemma 5.5.4.

Lemma 5.6.11. The map M 7→ V(M) is injective.
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Properties of V(M)

We conclude this section by listing some of the structural properties of
the antichain V(M). To start with, each set in V(M) is a circuit of M .

Lemma 5.6.12. V(M) ⊆ C(M).

Proof. Suppose that V ∈ V(M) has cardinality k+1. Then V ∈ Vk(M).

By Lemma 5.6.7, there exists a flat of rank k in M such that V ∈
(
U∗F
k+1

)
.

It follows that rk(V ) ≤ rk(F ) = k, so V is dependent. On the other
hand, by Lemma 5.6.3, g(V ) ≥ g(U∗F ) = k + 1. It follows that V is a
circuit.

Lemma 5.6.12 immediately implies the following result.

Lemma 5.6.13. V(M) is an antichain.

Recall that if M is a paving matroid, then distinct r-sets in V(M)
do not intersect in r − 1 elements, unless they are consecutive subsets
of the same hyperplane. The following lemma generalises the structural
implications.

Lemma 5.6.14. Let V, V ′ ∈ V(M) with |V | = k+ 1, |V ′| = k′+ 1, and
|V ∩ V ′| = k.

(i) If k′ > k, then V ∩ V ′ = ≺-min
(
V
k

)
. If in addition V ∈

(
U∗F
k+1

)
,

then V = ≺-min
(
U∗F
k+1

)
.

(ii) If k′ = k and V ≺ V ′, then V ∩ V ′ = ≺-max
(
V
k

)
= ≺-min

(
V ′

k

)
.

Proof. Suppose that F and F ′ are flats of rank k and k′, respectively,
so that V ∈ V(U∗F ) and V ′ ∈ V(U∗F ′). The set V ∩ V ′ is a k-subset
of both U∗F and U∗F ′ . (i) If k′ > k, we have by Lemma 5.6.9 that

V ∩ V ′ = ≺-min
(
U∗F
k

)
. It follows that there is only one consecutive

(k + 1)-set in U∗F containing V ∩ V ′, and this is ≺-min
(
U∗F
k+1

)
. (ii) If

k = k′ and V ≺ V ′, then F = cl(V ∩ V ′) = F ′, and the claim follows
from the fact that V and V ′ must be consecutive sets.

5.7 An upper bound on the number of matroids

In Section 5.5, the antichain V(M) was introduced as a concise de-
scription of paving matroids. Noting that each element of V(M) has
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cardinality r, an upper bound on p(n, r) was obtained by bounding
|V(M)|.

In Section 5.6, the definition of V(M) was extended to general ma-
troids. In Theorem 5.7.1 below, the bound on |V(M)| of Lemma 5.5.5
is extended to general matroids. As a result, we obtain a bound on
the number m(n, r) of matroids, as well as a bound on the number of
essential flats that a matroid can have.

Analysis of V(M)

We prove the following generalisation of Lemma 5.5.5.

Theorem 5.7.1. Suppose that r ≥ 3 and n ≥ 2r. For all M ∈M(n, r),
|V(M)| ≤ 1

n−r+1

(
n
r

)
.

A central result in the theory of antichains is the well-known LYM-
inequality, a proof of which can be found in [Juk01, Theorem 8.6].

Lemma 5.7.2. Let E be a set of cardinality n, and let A be an antichain
in P(E). Then

∑
A∈A

1

( n
|A|)
≤ 1.

As V(M) is an antichain, we would like to apply the LYM-inequality
to it to obtain a bound on its cardinality. However, a direct application
of the LYM-inequality shows only that |V(M)| ≤

(
n
r

)
. Instead, we prove

a bound on a related antichain, A(M), which is defined as follows. For
all U ∈ U∗k , put

A(U) :=


(
U
r−1

)
if k = r − 1(

U
k

)−
if 0 < k < r − 1(

U
1

)
if k = 0

where
(
U
k

)−
:=
(
U
k

)
\
{
≺-min

(
U
k

)}
, and let

A(M) =
⋃

U∈U∗(M)

A(U).

Lemma 5.7.3. A(M) is an antichain, and A(U) ∩ A(U ′) = ∅ for
distinct U,U ′ ∈ U∗(M).

Proof. The first claim follows from Lemma 5.6.9. To prove the second
claim, let U ∈ U∗i and U ′ ∈ U∗j be obtained from flats F and F ′; without
loss of generality, assume that i ≤ j. Suppose that A(U) ∩ A(U ′) 6= ∅,
and let X ∈ A(U) ∩ A(U ′). Suppose that |X| = k.
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If i < j, then it must be the case that i = 0 and j = k = 1. If
this is the case, then the single element in X must be a loop as well
as a nonloop, which cannot happen. If i = j = 0, then we must have
U = U ′, since |U∗0 | = 1. If i = j > 0, then k = i. As g(X) ≥ g(U) = k,
X is independent. It follows that F = cl(X) = F ′, and so U = U ′.

Having settled that A(M) is an antichain, we can apply the LYM-
inequality to it to obtain

r−1∑
k=1

∑
U∈U∗k

|A(U)|(
n
k

) +
∑
U∈U∗0

|A(U)(
n
1

) ≤ 1. (5.10)

The following lemma bounds the cardinality of V(M) by relating
V(M) to A(M).

Lemma 5.7.4. Suppose that r ≥ 3 and n ≥ 2r. For all matroids
M ∈M(n, r),

r−1∑
k=0

|Vk|ck ≤ 1 where ck :=


r

( n
r−1)

if k = r − 1

k

(nk)
if 0 < k < r − 1

1
n if k = 0.

(5.11)

Proof. We prove (5.11) by relating V(M) to A(M), and then apply-

ing (5.10). For all U ∈ U∗r−1, we have |A(U)| =
( |U |
r−1

)
, while |V(M)| =

|U | − r + 1. Consequently, it follows that |A(U)| ≥ r|V(U)|. Simi-

larly, if 0 < k < r − 1, and U ∈ U∗k , then |A(U)| =
(|U |
k

)
− 1, while

|V(U)| = |U |−k; hence |A(U)| ≥ k|V(U)|. Finally, for U ∈ U∗0 , we have
V(U) = A(U), and so |V(U)| = |A(U)|. Substituting these relations
into (5.10), and observing that |Vk| =

∑
U∈U∗k

|V(U)|, we obtain the

desired bound (5.11).

Lemma 5.7.4 implies Therem 5.7.1.

Proof of Theorem 5.7.1. First, consider the case n = 2r = 6. Let M ∈
M(6, 3). Suppose that M has ` loops, so that |V0| = `. Write P for its
set of parallel classes. Each parallel class P ∈ P gives rise to |P | − 1
elements in V1, so |V1| ≤

∑
P∈P(|P | − 1). In addition, the number of

3-circuits in M is at most |P| − 2; thus

|V(M)| ≤ `+
∑
P∈P

(|P | − 1) + |P| − 2 = 4,

which is strictly smaller than the required bound, which is 5.
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Having settled the case n = 2r = 6, we may assume that n ≥
max{2r, 7}. For 0 < k < r − 2, we have

ck+1

ck
=

(k + 1)2

k(n− k)
≤ 1, while

cr−1

cr−2
=

r(r − 1)

(r − 2)(n− r + 2)
≤ 1.

In particular, ck ≥ cr−1 for all k > 0, and as c0 = c1, also c0 ≥ cr−1. It
follows from Lemma 5.7.4 that

|V(M)| =
r−1∑
i=0

|Vk| ≤
1

cr−1

r−1∑
i=0

ck|Vk| ≤
1

r

(
n

r − 1

)
=

1

n− r + 1

(
n

r

)
,

which concludes the proof.

An upper bound on the number of matroids of fixed rank

By now we have established that for all M ∈M(n, r), V(M) is a collec-
tion of at most 1

n−r+1

(
n
r

)
subsets of [n], each of cardinality at most r.

Bounding the number of such collections immediately gives the bound

logm(n, r) ≤ 1

n− r + 1

(
n

r

)
log (en+ o(n)) ,

for each fixed r ≥ 3. A slightly more careful analysis results in a proof of
the more precise Theorem 5.1.1, which we repeat here for convenience.

Theorem 5.1.1. For all r ≥ 3 and all n ≥ r + 12,

logm(n, r) ≤ 1

n− r + 1

(
n

r

)
log (e(n− r + 1)) .

Lemma 5.7.5. For all n ≥ 15, m(n, 3) ≤ (e(n− 2))
1

n−2 (n3) − 1.

Proof. A matroid of rank 3 on ground set [n] is determined by the

triple (V0,V1,V2), where Vk ⊆
(

[n]
k+1

)
. Writing vk = |Vk|, it follows from

Lemma 5.7.4 that v0
1
n + v1

1
n + v2

3

(n2)
≤ 1, and hence

m(n, 3) ≤
∑((n

1

)
v0

)((n
2

)
v1

)((n
3

)
v2

)
,

where the sum is over all triples (v0, v1, v2) ∈ Z3
≥0 such that v0

1
n +v1

1
n +

v2
3

(n2)
≤ 1. We split the sum over all possible values of v := v0 + v1.

Note that
∑((n

1

)
v0

)((n
2

)
v1

)
=
((n+1

2 )
v

)
, where the sum is over all pairs
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(v0, v1) such that v0 + v1 = v. We obtain

m(n, 3) ≤
n∑
v=0

((n+1
2

)
v

) (n−v)(n−1)
6∑

v2=0

((n
3

)
v2

)
=

n(n−1)
6∑

v2=0

((n
3

)
v2

)
Tn(v2),

with

Tn(v2) =

bn−v2 6
n−1c∑

v=0

((n+1
2

)
v

)
.

Note that Tn(v2) = 1 whenever n− v2
6

n−1 < 1, while otherwise we have

Tn(v2) ≤

 e
(
n+1

2

)⌊
n− v2

6
n−1

⌋
bn−v2 6

n−1c

≤
(

e

(
n+ 1

2

)) 6
n−1 (n(n−1)

6 −v2)
.

It follows that Tn(v2) ≤ (n − 2)
n(n−1)

6 −v2 as soon as n ≥ 15, and a
slightly more careful analysis shows that in that case even Tn(0) ≤
(n− 2)

n(n−1)
6 − 1. By the binomial theorem, we obtain

m(n, 3) ≤

n(n−1)
6∑

v2=0

((n
3

)
v2

)
(n− 2)

n(n−1)
6 −v2 − 1

≤ (n− 2)
n(n−1)

6

(
1 +

1

n− 2

)(n3)
− 1,

and the lemma follows from the bound 1 + x ≤ ex.

Proof of Theorem 5.1.1. By Lemma 5.7.5, combined with the Entropy
Blow-Up Lemma, we obtain

log(m(n, r) + 1) ≤
(
n
r

)(
n−r+3

3

) log(m(n− r + 3, 3) + 1)

≤ 1

n− r + 1

(
n

r

)
log (e(n− r + 1)) ,

if only n− r + 3 ≥ 15.

As a by-product we obtain the following result, which lends credence
to Higgs’s suggestion that essential flats offer a concise description of
matroids.

Theorem 5.7.6. Suppose that r ≥ 3 and n ≥ 2r. A matroid of rank r
on n elements has at most 1

n−r+1

(
n
r

)
essential flats.
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Proof. By Lemma 5.3.9, every essential flat is pseudo-essential. The
number of pseudo-essential flats is |U∗(M)|. As |U∗(M)| ≤ |V(M)|, and
|V(M)| ≤ 1

n−r+1

(
n
r

)
, the desired result follows.

5.8 The number of sparse paving matroids of �xed

rank

This section focusses on sparse paving matroids. In particular, the
following result is proved.

Theorem 5.1.2. For all fixed r ≥ 3,

log s(n, r) =
1

n− r + 1

(
n

r

)
log
(
e1−rn+ o(n)

)
as n→∞.

The lower bound is based on Keevash’s proof of a corresponding
lower bound on the number of designs [Kee15], which in turn is based on
the analysis by Bennett and Bohman of the random greedy hypergraph
matching process [BB12]. Here, the presentation of Keevash’s proof is
adapted to our setting. The upper bound relies on the entropy method.
It is an extension to partial Steiner systems of Keevash’s [Kee15] gener-
alisation to designs of a result by Linial and Luria [LL13] on the number
of Steiner triple systems.

Lower bound

Steiner systems and Keevash’s counting result Let us writeD(n, r, q)
for the number of Steiner systems S(n, r, q). Designs do not always exist,
and D(n, r, q) = 0 for many values of n, r, and q. In particular, designs
can only exist if the parameters satisfy certain divisibility conditions.
Keevash shows that these conditions are also sufficient for suffiently
large n; moreover, he provides the following lower bound.

Theorem 5.8.1 ([Kee15, Theorem 6.1]). For all r > q ≥ 2, there exists
n0 such that if n > n0 and

(
r−i
q−i
)
|
(
n−i
q−i
)

for all 0 ≤ i ≤ q − 1, then

D(n, r, q) ≥
(
e1−QN + o(N)

)Q−1(nq) ,

where N =
(
n−q
r−q
)

and Q =
(
r
q

)
.

As each Steiner system S(n, r, r − 1) is the set of dependent hy-
perplanes of a sparse paving matroid of rank r, we have s(n, r) ≥
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D(n, r, r − 1), and it follows that

log s(n, r) ≥ 1

n− r + 1

(
n

r

)
log
(
e1−rn+ o(n)

)
, (5.12)

for fixed r as n→∞, provided

(r − i)|
(

n− i
r − i− 1

)
for all 0 ≤ i ≤ r − 2. (5.13)

Unfortunately, (5.13) is not satisfied for all possible values of n and
r, so in many cases, the bound s(n, r) ≥ D(n, r, r − 1) reduces to the
trivial bound s(n, r) ≥ 0. In this section, we show that (5.12) holds,
even if (5.13) fails, thus proving the lower bound of Theorem 5.1.2.

The random greedy hypergraph matching process Keevash’s proof of
Theorem 5.8.1 is phrased in terms of hypergraph matchings; a matching
in a hypergraph G is a collection of vertex-disjoint edges in G. Write
maxmatch (G) for the cardinality of a maximum-size matching in G, and
match (G) for the number of matchings in G.

Let G(n, r) be the hypergraph with vertex set
(

[n]
r−1

)
and edge set{(

X
r−1

)
: X ∈

(
[n]
r

)}
. Matchings in G(n, r) are in one-to-one correspon-

dence with partial Steiner systems Sp(n, r, r−1), and hence with sparse
paving matroids in S(n, r). Thus,

s(n, r) = match (G(n, r)) .

Keevash’s proof of Theorem 5.8.1 is based on the randomised construc-
tion of a large collection of matchings in G(n, r). We might expect that
it extends to a lower bound on match (G(n, r)) for general n and r for
the following reason.

Let Z be any matching in G(n, r). Each vertex in G(n, r) is contained
in at most one edge in Z, and each edge in Z contains exactly r vertices.
It follows that

maxmatch (G(n, r)) ≤ 1

r

(
n

r − 1

)
=

1

n− r + 1

(
n

r

)
. (5.14)

Whenever a Steiner system exists, the upper bound in (5.14) is achieved.
The Erdős-Hanani conjecture [EH63] (first proved by Rödl [Röd85] using
a semi-random technique that is now known as the Rödl nibble) states
that

maxmatch (G(n, r)) ≥ (1− o(1))
1

n− r + 1

(
n

r

)
,
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for fixed r as n → ∞. Thus, partial Steiner systems can be roughly as
large as the bound in (5.14), even when the parameters are such that no
full Steiner system exists. It does then not require a lot of imagination
to speculate that a similar result might hold for the related quantity
match (G(n, r)) as well. Theorem 5.5.1 states that this is indeed the
case.

The random greedy hypergraph matching process constructs a ran-
dom maximal matching in G by making a series of random choices. The
edges of the maximal matching are selected in order, and in each step an
available edge is selected uniformly at random from among all available
edges. After selecting an edge, it, and all edges that intersect it, become
unavailable. The process stops when there are no available edges left.

A refined analysis of the random greedy hypergraph matching pro-
cess for u-uniform, d-regular hypergraphs is provided by Bennett and
Bohman [BB12]. Writing E(i) for the set of available edges in the i-th
iteration of the process and Q(i) := |E(i)|, they show that with high
probability, when the process terminates, all but a small fraction of the
vertices are saturated by the constructed matching. Moreover, they
show that (again with high probability) until the process reaches the
end, Q(i) remains close to its expected value.

Bennett and Bohman provide the following heuristic derivation of
the expected value of Q(i). Each edge that is chosen into the matching
makes u vertices unavailable. Thus, it is reasonable that G(i) := G|E(i)
should be close to a random subhypergraph of G in which each vertex is
included with probability pi := 1−iu/N . Thus, any given edge e ∈ E(G)
should be included in G(i) with probability pui , and so we should hope
that

Q(i) ≈ |G|pui =
Nd

u
pui .

Theorem 5.8.2 ([BB12]). Let G be a u-uniform, d-regular hypergraph
on N vertices. Assume that u is fixed, and that d → ∞ as N → ∞.
Let L be the maximum over all pairs of distinct vertices of the number
of edges containing that pair, and suppose that L = o

(
d/ log5N

)
as

N →∞. Let T be the smallest index i for which Q(i) 6∈ Nd
u p

u
i (1± εi),

where

εi :=
15uLp2−2u

i logN(1− u log pi)
2

d
.

With high probability,

T ≥

(
1−O

((
L

d
log5N

) 1
2(u−1)

))
N

u
.
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Proof of the lower bound The hypergraph G(n, r) has N :=
(
n
r−1

)
vertices, is r-uniform, and is regular of degree n− r+ 1. Moreover, two
distinct vertices are contained in at most one edge, so L = 1.

We prove the lower bound of Theorem 5.1.2 by running the random
greedy hypergraph matching process for many steps. This is possible
by Theorem 5.8.2, which moreover gives an estimate of the number of
possible choices in each step. In this way, it is shown that the random
greedy matching process gives a large number of possible outputs. After
compensating for double counting, this results in a large number of
sparse paving matroids, thus proving the lower bound. We make the
argument precise.

Proof of Theorem 5.1.2 (lower bound). We construct a large family of
random matchings in G(n, r), or equivalently sparse paving matroids
in S(n, r), by running the random greedy hypergraph matching process

until T := N
r

[
1− d−

1
3(r−1)

]
edges are selected.

Note that for all i ≤ T ,

εi ≤ εT =
15rp2−2r

T logN(1− r log pT )2

d
≤ d−1/4.

The natural logarithm of the number of different ordered matchings that
can be created in this way is at least

m∑
i=1

ln

(
Nd

r
pri

(
1− d− 1

4

))
≥ m

(
ln
Nd

r
− 2d−

1
4

)
+ r

m∑
i=1

ln

(
1− ir

N

)
≥ m

(
ln
Nd

r
− r − 2d−

1
4

)
.

Of course, the order in which the edges are chosen does not matter,
so we must subtract

lnT ! = T

(
lnT − 1 +O

(
lnT

T

))
to obtain the number of unordered matchings obtained in this way. It
follows that ln s(n, r) is at least

T

(
ln d− r + 1− 2d−1/4 −O

(
lnT

T

))
=

1

r

(
n

r − 1

)(
1− d−

1
3(r−1)

) (
ln(e1−rd− o(d))

)
,

which concludes the proof, as 1
r

(
n
r−1

)
= 1

n−r+1

(
n
r

)
and d = n−r+1.
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Sparse paving matroids with few circuit-hyperplanes

Write s(n, r,≤ t) for the number of sparse paving matroids on [n] of
rank r that have at most t circuit-hyperplanes. The following result
implies that for fixed r, almost every sparse paving matroid of rank r

has 1−o(1)
n−r+1

(
n
r

)
circuit-hyperplanes.

Corollary 5.8.3. For all r ≥ 3, and all 0 ≤ c ≤ 1,

log s
(
n, r,≤ c

n−r+1

(
n
r

))
log s(n, r)

≤ c+O

(
1

log n

)
as n→∞.

Proof. As s(n, r, 0) = 1, the claim holds for c = 0. For the remainder of
the proof, assume that c > 0, and let t := c

n−r+1

(
n
r

)
. A sparse paving

matroid is determined by its circuit-hyperplanes, so

s(n, r,≤ t) ≤
t∑
i=0

((n
r

)
i

)
≤

(
e
(
n
r

)
t

)t
.

Combining the upper bound with the lower bound on s(n, r) from The-
orem 5.1.2, it follows that

log s(n, r,≤ t)
log s(n, r)

≤ c log(en/c)

log(e1−rn+ o(n))
= c

(
1 +O

(
1

log n

))
.

Upper bound

We now turn to proving the upper bound of Theorem 5.1.2. Our proof is
a generalisation to sparse paving matroids of an upper bound on Steiner
triple systems by Linial and Luria [LL13]; initially, the proof follows
theirs, and we indicate where our version deviates from the original.

Outline Fix 3 ≤ r ≤ n, and let X ∈ S(n, r) be chosen uniformly at
random. Then log s(n, r) = H (X), where H (X) is the entropy of X.

Let S :=
(

[n]
r

)
∪ {*}. Associated with X is a collection of S-valued

random variables
(
XA : A ∈

(
[n]
r−1

))
, where

XA :=

{
H if H ⊇ A is a circuit-hyperplane in X

* otherwise.

As each (r − 1)-set is contained in at most one circuit-hyperplane,
these random variables are well-defined. Suppose that / is a linear
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order on
(

[n]
r−1

)
. The sequence

(
XA : A ∈

(
[n]
r−1

))
determines X, so by

Lemma 3.3.1(iii)

H (X) =
∑

A∈( [n]
r−1)

H (XA | (XA′ : A′ / A)) . (5.15)

Computing the right-hand side of (5.15) is difficult, since each of the
terms depends on those (r−1)-sets that come earlier in the order /. This
may be resolved by randomising the order /. Such a random order can
be constructed from a random function λ :

(
[n]
r−1

)
→ [0, 1] by choosing

each of the entries of λ independently and uniformly at random, and
defining2

A /A′ if and only if λ(A) > λ(A′).

The random variables (X,λ) live in the space Ω := S(n, r)× [0, 1](
[n]
r−1),

equipped with the (uniform) product probability measure.

Bounding s(n, r) by an integral The aim of this subsection is to prove
that for all δ > 0, there is an integer n(δ) such that for all n ≥ n(δ)

log s(n, r)

≤
(

n

r − 1

) 1∫
0

λr−1 log
[(

1 + λr(r−1)(n− r)
)(

1 + δ(r − 1)λ1−r
)]

dλ.

(5.16)

Let (X,λ) be a random sparse paving matroid and order. For any
(r−1)-set A, one of three things may happen: either A is not contained
in any circuit-hyperplanes (i.e. XA = *); or A is contained in a circuit-
hyperplane of X, in which case either A is the first (with respect to /)
among

(
XA

r−1

)
, or it is not. Let E*

A, E+
A , and E−A be the corresponding

events; more precisely

E*
A := {(X,λ) ∈ Ω : XA = *} ;

E−A :=

{
(X,λ) ∈ Ω : XA 6= *, A / A

′ for all A′ ∈
(
XA

r − 1

)
\ {A}

}
;

E+
A :=

{
(X,λ) ∈ Ω :

XA 6= *,
there exists a′ ∈ A such that XA \ {a′} / A

}
.

For each A, the three events are disjoint. In addition, these events
essentially partition the probability space Ω.

2With probability 1, no two (r − 1)-sets get the same λ-value. Therefore, we
may assume that all λ-values are different.

102



c
h
a
p
t
e
r
5
e
n
u
m
e
r
a
t
io
n
o
f
m
a
t
r
o
id
s
o
f
f
ix
e
d
r
a
n
k

Lemma 5.8.4. For each A, P
(
E*
A ∪ E

+
A ∪ E

−
A

)
= 1.

Proof. The complement of E*
A∪E

+
A ∪E

−
A is contained in the event that

there exist distinct (r−1)-sets A and A′ such that λ(A) = λ(A′), which
is an event of measure 0.

The inclusion of the event E*
A is new compared to the work by

Linial and Luria [LL13], as in a Steiner triple system (or more generally
a design) every (r−1)-set is contained in an r-set and so XA 6= * for all
A. Arguing that inclusion of this event only has a negligible influence
on the eventual estimate of log s(n, r) will take most of the remainder
of this section.

Suppose that XA 6= *. Note that XA ∈
{
H ′ ∈

(
[n]
r

)
: A ⊆ H ′

}
. An

element H ∈
{
H ′ ∈

(
[n]
r

)
: A ⊆ H ′

}
\XA is unavailable (for A) if

• there exists a ∈ A such that H \ {a} / A; or

• there exists a ∈ A such that XH\{a} 6= *, and there exists a′ ∈
H \ {a} such that XH\{a} \ {a′} / A.

Occurrence of either of these events rules out the possibility that
XA = H, given the history (XA′ : A′ / A). Call H available if it not
unavailable. Define the random variables NA, indexed by (r − 1)-sets,
by

NA :=

{
1 +

∣∣∣{H ∈ ([n]
r

)
\XA : H available for XA

}∣∣∣ if (X,λ) ∈ E−A
1 otherwise.

Let us use subscript λ (resp.X) to indicate conditioning onX (resp.
λ), i.e.

Pλ( · ) := P( · |X) , and PX( · ) := P( · | λ) ,

and similarly Eλ[ · ] and EX [ · ].
The following lemma describes the importance of the random vari-

ables
(
NA : A ∈

(
[n]
r−1

))
.

Lemma 5.8.5. H (X) ≤
∑

A∈( [n]
r−1)

Eλ(A)[EX [Eλ[logNA | λ(A)]]].

Proof. Equation (5.15) implies that

H (X) ≤
∑

A∈( [n]
r−1)

Eλ[H (XA | (XA′ : λ(A′) > λ(A)))] .
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Relative to the random order /, after revealing (XA′ : A′ /A), all un-
available vertices have been ruled out as possible values for XA, and it
follows that

H (XA | (XA′ : A′ /A)) ≤ logNA.

The lemma now follows by further taking the expected value with re-
spect to X, and then conditioning on λ(A).

In order to prove (5.16), we shall bound the right-hand side of the
expression in Lemma 5.8.5. We have

Eλ[logNA | λ(A)] = Eλ
[

logNA

(
1{

E*A

} + 1{E−A} + 1{E+
A}

)∣∣∣∣λ(A)

]
= Eλ

[
logNA1{E−A}

∣∣∣λ(A)
]

= Pλ
(
E−A | λ(A)

)
Eλ
[
logNA | E−A ,λ(A)

]
Conditional on λ(A), the event E−A occurs precisely when both

XA 6= * and λ(A′) < λ(A) for each A′ ∈
(
XA

r−1

)
. By independence,

it follows that

Pλ
(
E−A | λ(A)

)
= (λ(A))

r−1
1{XA 6=*}, (5.17)

and hence

PX
(
Eλ[logNA | λ(A)] = Eλ

[
logNA | E−A ,λ(A)

])
= 1. (5.18)

By Jensen’s inequality,

Eλ
[
logNA | E−A ,λ(A)

]
≤ logEλ

[
NA | E−A ,λ(A)

]
. (5.19)

Introducing P(A)
λ ( · ) as a shorthand for Pλ

(
· | E−A ,λ(A)

)
and E(A)

λ [ · ]
for the corresponding expectation, upon combining (5.17)–(5.19), we
obtain

Eλ[logNA | λ(A)] ≤ 1{XA 6=*} (λ(A))
r−1

logE(A)
λ [NA] .

Next, we bound E(A)
λ [NA]. For A ∈

(
[n]
r−1

)
, a ∈ A, and f ∈ [n] \ A,

define

If,aA := 1{XA4{a,f}=*}.

The following lemma expresses E(A)
λ [NA] in terms of the indicator func-

tions If,aA .
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Lemma 5.8.6. On {XA 6= *},

E(A)
λ [NA] = 1 + (λ(A))r(r−1)

∑
f∈[n]\XA

∏
a∈A

(
1− If,aA +

If,aA
(λ(A))r−1

)
.

Proof. By linearity of expectation,

E(A)
λ [NA] = 1 +

∑
f∈[n]\XA

P(A)
λ (f is available for A) . (5.20)

For f ∈ [n] \A, and a ∈ A, define the events

F fA :=
{

(X,λ) ∈ Ω : λ(A) > λ(A4{a, f}) for all a ∈ A
}
,

and

Gf,aA :=
{

(X,λ) ∈ Ω : XA4{a,f} = *
}

∪

(X,λ) ∈ Ω :

XA4{a,f} 6= *,

λ
(
XA4{a,f} \ {a′}

)
< λ(A)

for all a′ ∈ A4{a, f}

 .

Note that f 6∈ XA is available for A precisely on the event F fA ∩⋂
a∈AG

f,a
A . By the chain rule for probabilities,

P(A)
λ (f is available for A)

= P(A)
λ

(
F fA

)
×
∏
a∈A

P(A)
λ

Gf,aA
∣∣∣∣∣∣∣∣F

f
A,
⋂
a′∈A
a′<a

Gf,a
′

A

 . (5.21)

We compute each of the factors separately. On the event {XA 6= *},
F fA is independent of E−A , and so

P(A)
λ

(
F fA

)
= (λ(A))

r−1
. (5.22)

For each of the remaining factors, we condition further on whether

XA4{a,f} = * or not. Let a ∈ A. Since the measure P(A)
λ ( · ) con-

ditions on X, we have

P(A)
λ

(
XA4{a,f} = *

)
= If,aA . (5.23)
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Since
{
XA4{a,f} = *

}
⊆ Gf,aA ,

P(A)
λ

Gf,aA
∣∣∣∣∣∣∣∣F

f
A,
⋂
a′∈A
a′<a

Gf,a
′

A ,XA4{a,f} = *

 = 1, (5.24)

Similarly, conditional on XA4{a,f} 6= *, the event Gf,aA happens pre-

cisely when λ
(
XA4{a,f} \ {a′}

)
< λ(A) for all a′ ∈ A4{a, f}, so

P(A)
λ

Gf,aA
∣∣∣∣∣∣∣∣F

f
A,
⋂
a′∈A
a′<a

Gf,a
′

A ,XA4{a,f} 6= *

 = (λ(A))
r−1

. (5.25)

It follows from (5.23)–(5.25) that for each a ∈ A

P(A)
λ

Gf,aA
∣∣∣∣∣∣∣∣F

f
A,
⋂
a′∈A
a′<a

Gf,a
′

A

 = If,aA +
(

1− If,aA
)

(λ(A))
r−1

. (5.26)

The lemma follows from substituting (5.22) and (5.26) into (5.21).

If instead of a random sparse paving matroid, X would have been a
random Steiner system, then Ia,fA = 0 for all A, f , and a. This would
greatly simplify the right-hand side in Lemma 5.8.6, as the sum would
simply reduce to n− r, e.g. for r = 3, [LL13, Lemma 3.1] is recovered.

For general matroids, however, If,aA = 1 may hold for some values of

its parameters. Fortunately, the following lemma shows that If,aA = 0
most of the time.

Lemma 5.8.7. For all δ > 0, there exists n(δ) such that for all n ≥
n(δ), and any A ∈

(
[n]
r−1

)
,

P(XA = *) ≤ δ.

Proof. By Corollary 5.8.3, all but a δ/2-fraction of matroids in S(n, r)

have at least 1−δ/2
n−r+1

(
n
r

)
circuit-hyperplanes, provided n is sufficiently

large. Hence XA 6= * for at least (1 − δ/2)
(
n
r−1

)
(r − 1)-sets A. It

follows that PX(XA) ≤ δ/2 + δ/2 = δ.

For A ∈
(

[n]
r−1

)
and f 6∈ A, define ZfA :=

∑
a∈A I

f,a
A . Fix δ > 0, and

let n be so large that the conclusion of Lemma 5.8.7 holds. It follows
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that EX
[
ZfA

]
≤ |A|δ = (r − 1)δ. As

∏
a∈A

(
1− If,aA +

If,aA
(λ(A))r−1

)
≤ 1 + (λ(A))1−rZfA,

it follows from Lemma 5.8.6 that

EX
[
E(A)
λ [NA]

]
≤ 1+(λ(A))r(r−1)

∑
f∈[n]\XA

(
1 + (λ(A))1−rEX

[
ZfA

])
≤ 1 + (λ(A))r(r−1)(n− r)

(
1 + (λ(A))1−rδ(r − 1)

)
≤
(

1 + (λ(A))r(r−1)(n− r)
) (

1 + (λ(A))1−rδ(r − 1)
)
.

Substituting this bound into Lemma 5.8.5, we obtain (5.16).

Bounding the integral Changing the base of the logarithm from 2 to e,
(5.16) can be written as

ln s(n, r) ≤
(

n

r − 1

)
(I1 + I2) , (5.27)

where

I1 :=

∫ 1

0

λr−1 ln
[
1 + λr(r−1)(n− r)

]
dλ,

and

I2 :=

∫ 1

0

λr−1 ln
[
1 + λ1−rδ(r − 1)

]
dλ.

The first of these integrals can be computed by a change of variables
u = λr, which yields

I1 =
1

r

∫ 1

0

ln
[
1 + ur−1(n− r)

]
du

=
1

r

[
ln(n− r) + 1− r + o(1)

]
as n→∞. (5.28)

For the second integral, using that ln(1 + x) ≤
√
x (which is valid

for all x ≥ 0) to bound the integrand, we obtain

I2 ≤
√
δ(r − 1)

∫ 1

0

λ(r−1)/2 dλ =
√
δ(r − 1)

2

r + 1
<

2
√
δ√
r
. (5.29)
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Using (5.28)–(5.29) to bound (5.27), we obtain

log s(n, r) ≤ 1

n− r + 1

(
n

r

)[
ln
(
e1−r(n− r)

)
+ o(1) +

2
√
δ√
r

]
.

As δ is arbitrarily small, this proves the upper bound in Theorem 5.1.2.

5.9 A re�ned upper bound on the number of

rank-3 paving matroids

Combining the upper bound on log p(n, r) for fixed r ≥ 3 from The-
orem 5.5.2 with the lower bound obtained in Theorem 5.1.2, we find
that

1

n− r + 1

(
n

r

)
log
(
e1−rn− o(n)

)
≤ log p(n, r)

≤ 1

n− r + 1

(
n

r

)
log (e(n− r + 1)) . (5.30)

Thus, we have established the behaviour of log p(n, r) up to the constant
factor inside the logarithm. The upper bound for sparse paving matroids
of fixed rank is stronger. In that case, we even know that the constant
is e1−r.

The method for obtaining the upper bound on log p(n, r) in (5.30)
seems wasteful. It uses the bound |V(M)| ≤ 1

n−r+1

(
n
r

)
, but ignores

the additional structural properties of V(M) such as those provided in
Lemma 5.6.14. An improved analysis of the number of possible V(M)
may yield a bound on log p(n, r) that is as strong as the bound on sparse
paving matroids. In this section, we focus on paving matroids of rank 3,
for which we obtain the following improved upper bound.

Theorem 5.1.3.

log p(n, 3) ≤ 1

n− 2

(
n

3

)
log
(
e0.35n+ o(n)

)
.

Probabilistic setup

Theorem 5.1.3 is proved by analysing the probability that a random
collection of triples conforms to the structure of V(M). We show that
if the number of triples is close to the maximum possible, then this
probability is exponentially small in n2.

108



c
h
a
p
t
e
r
5
e
n
u
m
e
r
a
t
io
n
o
f
m
a
t
r
o
id
s
o
f
f
ix
e
d
r
a
n
k

Specialising Lemma 5.6.14 to paving matroids of rank 3, we obtain
that V(M) satisfies

∀ V, V ′ ∈ V(M) :[
|V ∩ V ′|=2 =⇒ V4V ′=

{
≺-minV ∪V ′,≺-maxV ∪V ′

}]
. (5.31)

Let T be a set of t triples in [n], chosen uniformly at random from
among all sets of t triples, and let Pn(t) for the probability that T
satisfies (5.31). Write T := 1

n−2

(
n
3

)
. It was shown in Lemma 5.5.5 that

|V(M)| ≤ T for paving matroids of rank 3, so that Pn(t) = 0 whenever
t > T . Note that

p(n, 3) ≤
T∑
t=0

((n
3

)
t

)
Pn(t). (5.32)

The following lemma shows that, in order to prove Theorem 5.1.3, it
suffices to consider Pn(t) for values of t close to T .

Lemma 5.9.1. If β ≥ 0 is such that

max
(1− 4

lnn )T≤t≤T
Pn(t) ≤ e−βT+o(T ) as n→∞, (5.33)

then

log p(n, 3) ≤ T ln
(
e1−βn+ o(n)

)
.

Proof. Our starting point is (5.32). Using (5.33) to bound Pn(t) for
values of t close to T , and the trivial bound Pn(t) ≤ 1 for smaller values
of t, we obtain

p(n, 3) ≤
b(1− 4

lnn )Tc∑
t=0

((n
3

)
t

)
+ e−βT+o(T )

T∑
t=b(1− 4

lnn )Tc+1

((n
3

)
t

)

≤
(

e(n− 2)

1− 4
lnn

)(1− 4
lnn )T

+ e−βT+o(T ) (e(n− 2))
T
.

The right-hand side is dominated by its second term, and the lemma
follows upon taking logarithms.

Aggregate statistics

We study the collection T of t random triples through a collection of
derived statistics that are defined in this section. Write Wi,j , 2 ≤ i ≤
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j ≤ n− 1 for the number of triples of the form {α < i < j+ 1} that are
in T . In addition, define the following aggregate statistics:

Zi :=
∣∣{{α < β < γ} ∈ T : β = i}

}∣∣ =
∑
k≥i

Wi,k,

Qj :=
∣∣{{α < β < γ} ∈ T : γ = j + 1

}∣∣ =
∑
k≤j

Wk,j ,

Sj :=
∣∣{{α < β < γ} ∈ T : β < j, γ > j

}∣∣ =
∑
i<j

∑
k≥j

Wi,k;

and write

Z := (Z2,Z3, . . . ,Zn−1), Q := (Q2,Q3, . . .Qn−1), and

S := (S2,S3, . . . ,Sn−1).

We collect some easy facts about the sequences Z, Q and S. Observe
that each triple in T is counted in exactly one of theWi,j , which implies
the following lemma.

Lemma 5.9.2.

n−1∑
j=2

Zj = t, and

n−1∑
j=2

Qj = t.

The following lemma shows that S can be computed from the pair
(Z,Q). For given sequences z and q, in what follows we shall write
sj(z, q) for the corresponding value of sj .

Lemma 5.9.3. S2 = 0, while Sj+1 − Sj = Zj −Qj for all j ≥ 2.

Proof. That S2 = 0 follows from the fact that there are no triples whose
central element is 1. The second claim follows from a manipulation of
sums:

Sj+1 +Qj =
∑
i≤j

∑
k≥j

Wi,k = Sj +Zj .

Bounding Pn(t) in terms of the statistics

For two sequences z = (z2, . . . , zn−1) and q = (q2, . . . , qn−1), write

Pn(z, q) := P(Z = z,Q = q) ,

and

Pn(t | z, q) := P(T satisfies (5.31) | Z = z,Q = q) .
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By the law of total probability,

Pn(t) =
∑

(z,q)∈Ω(n,t)

Pn(t | z, q)Pn(z, q), (5.34)

where Ω(n, t) denotes the support of Pn(z, q). The following lemma
implies that the asymptotics of 1

T lnPn(t) are determined by the largest
term in (5.34).

Lemma 5.9.4. If n ≥ 4 and t ≤ T , then log |Ω(n, t)| ≤ 2n log n.

Proof. If the pair (z, q) is in the support of Pn(z, q), then
∑n−1
i=2 zi =∑n−1

i=2 qi = t by Lemma 5.9.2. It follows that there are at most
(
t+n−3
n−3

)
possible sequences of (zi)

n−1
i=2 and (qi)

n−1
i=2 each, and hence that

|Ω(n, t)| ≤
(
t+ n− 3

n− 3

)2

≤
(

e(t+ n− 3)

n− 3

)2(n−3)

.

The lemma follows.

An optimisation problem

In view of Lemma 5.9.4, maximising Pn(t | z, q)Pn(z, q) over all pairs
(z, q) ∈ Ω(n, t) suffices to obtain the asymptotics of 1

T lnPn(t). In this
section, we formulate an optimisation problem that yields an upper
bound. The optimisation problem is obtained by bounding each of the
factors Pn(t | z, q) and Pn(z, q) and relaxing the condition that (z, q) ∈
Ω(n, t).

Relaxing the constraints Clearly, if (z, q) ∈ Ω(n, t), then zi ≥ 0 and
qi ≥ 0 for all i. The following lemma shows that zi and qi are both at
most min{i− 1, n− i}.

Lemma 5.9.5. Let z ≡ (zi)
n−1
i=2 and q ≡ (qi)

n−1
i=2 be two sequences. If

there exists i ∈ {2, 3, . . . , n − 1} for which zi > min{i − 1, n − i} or
qi > min{i− 1, n− i}, then P (t | z, q) = 0.

Proof. Suppose that zi > min{i − 1, n − i}. Conditional on Zi = zi,
there exists j ≥ i such that Wi,j ≥ 2; thus T contains two triples
that intersect in {i, j + 1}. If that is the case, then T certainly does
not satisfy (5.31). The case that qi > min{i − 1, n − i} is analysed
similarly.
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Bounding the factors We use the trivial bound Pn(z, q) ≤ 1. The
following lemma bounds the factor Pn(t | z, q).

Lemma 5.9.6.

Pn(t|z, q) ≤
n−1∏
i=2

zi−1∏
k=0

(i− 1− k)(n− i− k)− si(z, q)
(i− 1)(n− i)

.

Proof. Property (5.31) implies that the collection V(M) satisfies, for
each i ∈ {2, 3, . . . , n− 1}, the following properties:

(i) No two triples whose central element is i have the same minimum
element;

(ii) For all triples whose central element is i, all j < i, and all T ′ whose
central element is j, T \ {i} 6= T ′ \ {j}.

Let T be a random collection of t triples, and write Ai for the event
that T satisfies the properties (i) and (ii) for index i. Using the chain
rule for probabilities,

Pn(t|z, q) ≤ P

n−1⋂
i=2

Ai

∣∣∣∣∣∣ Z = z,Q = q


=

n−1∏
i=2

P

Ai
∣∣∣∣∣∣
⋂
j<i

Aj ,Z = z,Q = q

 .

(5.35)

We analyse each of the factors separately. For the i-th factor, we must
choose zi triples whose central element is i, such that the resulting index
satisfies (i)–(ii). Note that there are (i−1)(n− i) possible triples. How-
ever, the previous choices for lower indices eliminate si(z, q) of these
choices. In addition, each choice of a triple excludes one possible posi-
tion to the left and one position to the right of i for inclusion in further
triples, thus showing that, for i = 2, 3, . . . , n− 1,

P

Ai
∣∣∣∣∣∣
⋂
i<j

Aj ,Z = z,Q = q


=

zi−1∏
k=0

(i− 1− k)(n− i− k)− si(z, q)
(i− 1)(n− i)

. (5.36)

The lemma follows by substituting (5.36) into (5.35).
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The optimisation problem We are now ready to formulate the optimi-
sation problem. Define βn(t) as the value of the following maximisation
problem over the variables z2, z3, . . . , zn−1.

βn(t) := max

n−1∑
i=2

[
−2zi − (i− 1)f

(
1− zi

i− 1

)
− (n− i)f

(
1− zi

n− i

)]

s.t.

n−1∑
i=2

zi = t (5.37a)

0 ≤ zi ≤ min{i− 1, n− i}
for all i = 2, 3, . . . , n− 1.(5.37b)

The next lemma shows that βn(t) provides an upper bound on Pn(t).

Lemma 5.9.7. lnPn(t) ≤ βn(t) + 6n lnn.

Proof. From Lemma 5.9.6 and the bound sj(z, q) ≥ 0, it follows that

lnPn(t | z, q) ≤
n−1∑
i=2

zi−1∑
k=0

[
ln

(
1− k

i− 1

)
+ ln

(
1− k

n− i

)]
. (5.38)

We approximate the inner sum by an integral. Define

εi(k) :=


1
2

[
ln
(

1− k
i−1

)
− ln

(
1− k+1

i−1

)]
if 0 ≤ k ≤ i− 2,

1
2 ln

(
1− i−2

i−1

)
− ln

(
1− i−3/2

i−1

)
if k = i− 1.

We obtain

zi−1∑
k=0

ln

(
1− k

i− 1

)
=

zi−1∑
k=0

∫ k+1

k

ln

(
1− bxc

i− 1

)
dx

≤
zi−1∑
k=0

[∫ k+1

k

ln

(
1− x

i− 1

)
dx+ εi(k)

]
.

Due to the telescoping nature of the sums of εi(k), it follows that

zi−1∑
k=0

ln

(
1− k

i− 1

)

≤

zi
∫ 1

0
ln
(

1− xzi
i−1

)
dx− ln(1− zi

i−1 )
2 if zi < i− 1,

zi
∫ 1

0
ln
(

1− xzi
i−1

)
dx− ln

(
1− i−3/2

i−1

)
if zi = i− 1,
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which in particular implies that

zi−1∑
k=0

ln

(
1− k

i− 1

)
≤ zi

∫ 1

0

ln

(
1− xzi

i− 1

)
dx+ ln(2(i− 1)). (5.39)

Similarly,

zi−1∑
k=0

ln

(
1− k

n− i

)
≤ zi

∫ 1

0

ln

(
1− xzi

n− i

)
dx+ ln(2(n− i)). (5.40)

Note that∫ 1

0

ln (1− αx) dx = −1−
(

1− 1

α

)
ln(1− α)

for all 0 < α ≤ 1. Substituting (5.39) and (5.40) into (5.38) yields

lnPn(t | z, q) ≤
n−1∑
i=2

[
− 2zi − (i− 1)f

(
1− zi

i− 1

)
− (n− i)f

(
1− zi

n− i

)]
+

n−1∑
i=2

[
ln(2(i− 1)) + ln(2(n− i))

]
.

(5.41)

Note that
∑n−1
i=2

[
ln(2(i−1))+ ln(2(n− i))

]
≤ 4n lnn. By Lemma 5.9.4

and (5.41),

lnPn(t) ≤ 2n lnn+ max
(z,q)∈Ω(n,t)

lnPn(t | z, q)

≤ 6n lnn+ max
(z,q)∈Ω(n,t)

n−1∑
i=2

[
−2zi− (i− 1)f

(
1− zi

i− 1

)
− (n− i)f

(
1− zi

n− i

)]
.

Note that, in the right-hand side, the function that is maximised does
not depend on q. By Lemma 5.9.5, the bound remains true when in-
stead the maximum is taken over all sequences z = (z2, z3, . . . , zn−1)
satisfying (5.37a)–(5.37b). The lemma follows.

Solving the optimisation problem

Finally, we solve the optimisation problem (5.37).
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Lemma 5.9.8. The optimal solution to (5.37) is of the form

z∗i =
n− 1

2

(
1−

√
1− cn,t

(n− i)(i− 1)

(n− 1)2

)
.

The (cn,t) tend uniformly to a constant c ∈ (0, 4), in the sense that

lim
n→∞

min
(1− 4

lnn )T≤t≤T
cn,t = lim

n→∞
max

(1− 4
lnn )T≤t≤T

cn,t = c.

Moreover, there exists β > 0.65 such that

max
(1− 4

lnn )T≤t≤T
lim
n→∞

1

T
βn(t) ≤ −β + o(1). (5.42)

Proof. Consider the relaxed problem

β′n(t) := max

n−1∑
i=2

[
−2zi − (i− 1)f

(
1− zi

i− 1

)

−(n− i)f
(

1− zi
n− i

)]
s.t.

n−1∑
i=2

zi = t,

(5.43)

which is obtained from (5.37) by relaxing the bounds on zi. We use
the method of Lagrange multipliers to solve the relaxed problem (5.43).
Introduce a multiplier λ ≡ λn,t for the constraint. Any maximiser
(z2, z3, . . . , zn−1) should satisfy

ln

(
1− zi

i− 1

)
+ ln

(
1− zi

n− i

)
= λ,

i = 2, 3, . . . , n− 1

n−1∑
i=2

zi = t.

(5.44a)

(5.44b)

The system has the unique solution (z∗2 , z
∗
3 , . . . , z

∗
n−1), with cn,t :=

4
(
1− eλ

)
. Since the z∗i must sum to a positive quantity, at least one

of them must be positive, and it follows that cn,t ≥ 0. The quantity
inside the square root must be nonnegative, from which in particular it
follows that cn,t ≤ 4.

Next, we prove the claimed limiting behaviour of the cn,t. Introduce

Gn(x) :=
1

n

n−1∑
i=2

√
1− x (i− 1)(n− i)

(n− 1)2
,
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and

G(x) :=

∫ 1

0

√
1− xu(1− u) du.

Both functions are continuous on [0, 4], and Gn → G pointwise. The

constraint (5.44b) implies that Gn(cn,t)→ 2
3 as n→∞ and t ∼ T ∼ n2

6 .
The function G is strictly decreasing, G(0) = 1 and G(4) = 1/2; whence
it has a unique solution G(c) = 2/3, c ≈ 3.164. By continuity, cn,t → c
whenever t ∼ T and n→∞.

As cn,t ≤ 4, we have

z∗i ≤
n− 1

2
− 1

2

√
(n− 1)2 − 4(i− 1)(n− i)

=
n− 1

2
− 1

2

√
(n− 2i+ 1)2

= min{i− 1, n− i}.

Thus, the sequence (z∗2 , z
∗
3 , . . . , z

∗
n−1) satisfies (5.37b), which shows that

it not only the optimal solution to the relaxed programme (5.43), but
of the original programme (5.37) as well.

Define ζ(u) := 1−
√

1− cu(1− u), and note that z∗i ≈ nζ(i/n). Let

β := 2 + 6

∫ 1

0

[
uf

(
1− ζ(u)

2u

)
+ (1− u)f

(
1− ζ(u)

2(1− u)

)]
du.

Numerical evaluation gives β ≈ 0.654 . . .. If t ∼ T , then 1
tβn(t) ∼ −β,

thus proving (5.42) and hence concluding the proof of the lemma.

We are now ready to prove Theorem 5.1.3.

Proof of Theorem 5.1.3. Lemma 5.9.7, followed by an application of
Lemma 5.9.8, yields

max
(1− 4

lnn )T≤t≤T
Pn(t) ≤ max

(1− 4
lnn )T≤t≤T

exp (βn(t) + 6n log n)

≤ exp (βT + o(T )) as n→∞.

The theorem now follows from an application of Lemma 5.9.1.

p(n, 3) is larger than s(n, 3)

To close this section, we prove a lower bound on p(n, 3) that shows that
p(n, 3) is asymptotically larger than s(n, 3).

Theorem 5.9.9. lim inf
n→∞

p(n,3)
s(n,3) > 1.
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Proof. Let M be a sparse paving matroid of rank 3 on at least five
elements and let H be its collection of circuit-hyperplanes. Assume
that M is not a uniform matroid, so H 6= ∅.

Pick a circuit-hyperplane H ∈ H, and an element e 6∈ H, and set
H ′ = H ∪ {e}. Consider the set system

H′ := (H ∪ {H ′}) \ {X ∈ H : |X ∩H ′| ≥ 2} .

A moment’s reflection reveals that H′ is the collection of dependent
hyperplanes of a paving matroid that is not sparse. Each sparse paving
matroid with k circuit-hyperplanes gives rise to k(n−3) paving matroids
in this way. On the other hand, each paving matroid that is obtained
in this way can arise from at most 4n3 distinct sparse paving matroids,
corresponding to the choice of e in the unique hyperplane of size 4, and
at most one circuit-hyperplane for each of the three pairs {e, x} in that
hyperplane.

We claim that for some positive constant c, all but a vanishing frac-
tion of sparse paving matroids of rank 3 on [n] have k ≥ cn2. This is
an immediate consequence of the observation that the number of sparse
paving matroids with at most cn2 circuit-hyperplanes is at most

cn2∑
i=0

((n
3

)
i

)
≤
( e

6c
n
)cn2

= o(s(n, 3)),

provided c is sufficiently small. This proves the lemma, as

p(n, 3)

s(n, 3)
≥ 1 + (1− o(1))

cn2(n− 3)

4n3
→ 1 +

c

4
> 1 as n→∞.

Unfortunately, the argument does not generalise to arbitrary rank:
in general it can be shown that an (1−o(1))-fraction of sparse paving ma-
troids gives rise to Ω (nr) paving matroids, while the number of sparse

paving matroids giving rise to the same paving matroid is O
(
n(r2)

)
,

and these bounds do not compare for r ≥ 4. However, restricting our
attention to sparse paving matroids with more underlying structure,
we are able to obtain a more interesting comparison. In particular, if
we restrict ourselves to Steiner systems, we obtain the following result
(recall that D(n, r, r − 1) denotes the number of S(r − 1, r, n)):

p(n, r) ≥
(

1 +
(n
r
− 1
)( n

r − 1

))
D(n, r, r − 1).

This is proved by showing that each S(n, r, r − 1) gives rise to 1 +(
n
r − 1

) (
n
r−1

)
paving matroids: one of them is sparse, and the others

are not. See [PvdP17, Section 6] for details.
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chapter 6

Enumeration of matroids

This chapter is based on the journal papers [BPvdP15],
which is joint work with Nikhil Bansal and Rudi Pendavingh,
and [PvdP15b, PvdP16c], which is joint work with Rudi Pen-
davingh.

6.1 In this chapter. . .

This chapter is concerned with the enumeration of matroids, in par-
ticular with obtaining bounds on the number m(n) of matroids, and
the number s(n) of sparse paving matroids. Combining several results
in this chapter, the following bounds on the number of matroids are
obtained.

Theorem 6.1.1.

1

n

(
n

n/2

)
≤ log s(n) ∼ logm(n) ≤ 2 + o(1)

n

(
n

n/2

)
as n→∞.

The lower bound follows from the construction by Graham and
Sloane, Lemma 2.8.1, and is included for comparison.

A central role in this chapter is played by the container method,
which is a technique that can be used to bound the number of stable
sets in a graph from above. As sparse paving matroids correspond
with stable sets in the Johnson graph, careful analysis of the container
method in that special case results in the upper bound on log s(n) in
Theorem 6.1.1.
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The situation is more involved for general matroids. Where the non-
bases of sparse paving matroids are precisely stable sets in the Johnson
graph, nonbases of general matroids are much less restricted. Fortu-
nately, the collection of nonbases of general matroids still has structure.
This structure allows us to adapt the container method to general ma-
troids, which leads to the main technical result of this chapter, Theo-
rem 6.6.2.

The theorem itself is too involved to state here, but one of its corol-
laries is that every matroid (without loops or coloops) can be encoded as
a sparse paving matroid and a small amount of additional information.
This, in turn, proves the asymptotic equivalence in Theorem 6.1.1.

The results in this chapter are not sufficiently strong to prove that
almost every matroid is sparse paving. However, the technical result
Theorem 6.6.2 allows us to construct a class of matroids that contains
almost every matroid. Essentially generalising the sparse paving ma-
troids, the class is referred to as a ‘proxy’ for sparse paving matroids,
and its structure provides sufficient traction to resolve several of the
conjectures mentioned in Chapter 1.

In Section 6.2 and Section 6.3, the container method is introduced,
and several constructions of containers are formulated in a general set-
ting. In Section 6.4, these results are specialised to the Johnson graph,
which is then used to bound the number of sparse paving matroids
in Section 6.5. In Section 6.6, the container method is generalised to
matroids, which eventually leads to the proof of Theorem 6.1.1 in Sec-
tion 6.7. As another consequence of the container method for matroids,
in Section 6.8, we construct a proxy for sparse paving matroids, which
will be the starting point for the results in the next chapter.

6.2 The container method

The container method is a powerful tool for enumerating discrete struc-
tures that are essentially stable sets in graphs. The method was con-
ceived by Kleitman and Winston, who used it to enumerate lattices
and C4-free graphs [KW80, KW82]. Throughout the years, similar
ideas were used by various authors. Especially in recent years, the
container method has developed into a popular tool; see the survey by
Samotij [Sam15] for an overview of the method, and a number of his-
torical applications in combinatorics and number theory. Recently, the
container method was generalised to hypergraphs by Balogh, Morris,
and Samotij [BMS15], and by Saxton and Thomason [ST15].
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In this section, we briefly discuss the philosophy behind the container
method, before applying the technique in our setting.

Let G be a graph, and suppose that we are interested in ind(G), the
number of stable sets in G. Recall that α(G) is the stability ratio of the
graph G, and write a := α(G)|V (G)|. As stable sets are closed under
taking subsets, we know that

2a ≤ ind(G) ≤
a∑
i=0

(
|V (G)|
i

)
. (6.1)

The upper bound is fairly naive, and in many situations the lower bound
is in fact close to the truth (cf. [Sam15]). Intuitively, the problem is that
the upper bound does not take into account that inclusion of v in the
stable set rules out d(v) other vertices for inclusion. Therefore, if v is
in the stable set, the rest of the stable set can be described as a stable
set in a smaller graph, thus improving the upper bound in (6.1). More
generally, knowing that a subset S ⊆ V (G) is included in the stable set
rules out a large part of the graph, particularly so if the vertices in S
share few neighbours. Therefore, if we can associate to each stable set I
a set S ⊆ I with the property that |N(S)|/|S| is large, while |S| is small,
this should improve the naive upper bound. This line of reasoning is
formalised by the container method.

To state a general version of the container method, consider the
following asymptotic setting: (Gn) is a sequence of graphs, and we
are interested in the asymptotic behaviour of ind(Gn). Let an :=
α(Gn)|V (Gn)|, and suppose that an upper bound bn ≥ an is known.
The prototypical container result states that, for each n, there is a fam-
ily Cn ⊆P(V (Gn)) of containers with the following properties:

(i) |Cn| ≤ 2o(bn);

(ii) each stable set of Gn is contained in at least one container C ∈ Cn;

(iii) max
C∈Cn

|C| ≤ (1 + o(1))bn.

It is easily seen that (i)–(iii) imply log ind(Gn) ≤ (1 + o(1))bn as
n → ∞. If bn = an, then this bound matches the lower bound in (6.1)
up to the o(an)-term in the exponent.

A typical application of the container method requires two ingredi-
ents:

(i) An upper bound on the cardinality of a stable set, say |I| ≤ αN
for all stable sets I, and
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(ii) A supersaturation result, i.e. a lower bound on the number of edges
spanned by any vertex set that is larger than the upper bound αN .

Given the upper bound and supersaturation result, obtaining the
container result is mostly a mechanical endeavour, although the com-
putations can be very involved.

6.3 Constructing containers

In this section, we describe two iterative constructions of containers. In
the first construction, we construct containers of the form S ∪A, where
A = V (G) \ (S ∪ N(S)).1 For all stable sets I, a set S is constructed
iteratively, by successively selecting high-degree vertices from I into
S. In each step, the degree is controlled by the supersaturation result.
The second construction takes the first construction a bit further, by
continuing the process until the induced subgraph G[A] has low degree.

The results in this section are formulated in terms of sets K of
vertices that are not necessarily stable sets. In Section 6.4, we specialise
these results to stable sets, while the more general formulation of the
results in this section will be useful in extending the container method
to matroids in Section 6.6.

Let G be a graph, and let v be a linear order on V (G). For A ⊆
V (G), from among the vertices of G[A] of maximum degree, pick v∗A to
be the one that is smallest with respect to v. With respect to the graph
G and the linear ordering v, define the functions

Iterα(S,A,K) =



(
S, A

)
if |A| ≤ αN,(

S, A \ {v∗A}
)

if |A| > αN and v∗A 6∈ K,(
S ∪ {v∗A}, A \ ({v∗A} ∪N(v∗A))

)
if |A| > αN and v∗A ∈ K;

1This notation is borrowed from Alon, Balogh, Morris, and Samotij [ABMS14],
who call the vertices in S (resp. A) “selected” (resp. “available”).
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and, using ∆(G) for the maximum degree of the graph G,

Iter∆(S,A,K) =



(
S, A

)
if ∆(G[A]) < ∆,(

S, A \ {v∗A}
)

if ∆(G[A]) ≥ ∆ and v∗A 6∈ K,(
S ∪ {v∗A}, A \ ({v∗A} ∪N(v∗A))

)
if ∆(G[A]) ≥ ∆ and v∗A ∈ K.

These functions will be used to construct containers iteratively, but
first we establish some of their elementary properties.

Let Iter = Iterα or Iter = Iter∆, and let K ⊆ V (G). Choose a stable
set S0 ⊆ K and A0 ⊇ K \(S0∪N(S0)), such that (S0∪N(S0))∩A0 = ∅.
Define recursively

(Si+1, Ai+1) = Iter(Si, Ai,K) for all i ≥ 0. (6.2)

The pairs (Si, Ai) will be used to construct containers. The following
lemma shows that they approximate the set K.

Lemma 6.3.1. Let the sequence (Si, Ai)
∞
i=0 be defined as in (6.2). The

sequence (Si)
∞
i=0 is monotone increasing, while (Ai)

∞
i=0 is monotone de-

creasing. For each i ≥ 0,

(i) Si is a stable set in G; and

(ii) Si ⊆ K ⊆ Si ∪N(Si) ∪Ai;

(iii) (Si ∪N(Si)) ∩Ai = ∅.

Moreover, there exists i0 such that

(iv) (Si, Ai) = (Si0 , Ai0) for all i ≥ i0.

(v) Si0 =
⋃∞
i=0 Si and Ai0 =

⋂∞
i=0Ai.

Proof. By definition of Iter, we have Si+1 ⊇ Si and Ai+1 ⊆ Ai for
all i ≥ 0. This proves the monotonicity claims. As G has finitely
many vertices, monotonicity of (Ai)

∞
i=0 in its turn implies that there

exists i0 ≥ 0 such that Ai0+1 = Ai0 , and for such i0 it is necessarily
the case that Si0+1 = Si0 as well. This immediately implies (iv), and
combining (iv) with monotonicity implies (v).

Claims (i)–(iii) hold for i = 0 by assumption. We use induction to
show that the claims hold for i > 0 as well.

So suppose that (i)–(iii) hold for some i ≥ 0, and consider the pair
(Si+1, Ai+1). If (Si+1, Ai+1) = (Si, Ai), then there is nothing to prove.
So assume that (Si+1, Ai+1) 6= (Si, Ai), and let v∗ := v∗Ai .
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If v∗ 6∈ K, it is straightforwardly verified that (i)–(iii) hold for i+1 as
well. If v∗ ∈ K, then it follows from (iii) that v∗ has no neighbours in Si,
and hence that Si+1 = Si ∪ {v∗} is a stable set. It is straightforward to
verify that (ii) and (iii) hold for i+ 1 as well.

Define

S∞ :=

∞⋃
i=0

Si, and A∞ :=

∞⋃
i=0

Ai.

Lemma 6.3.1(iv) combined with monotonicity imply that the conclu-
sions of Lemma 6.3.1 still hold for the limit point (S∞, A∞). The rele-
vance of the introduction of S∞ and A∞ lies in the eventual construction
of containers as sets of the form S∞ ∪A∞.

In the analysis of the sequence (Si, Ai)
∞
i=0, we need a method of

analysing the structure of the set A. The following lemma, which is
taken from [ABMS14, Lemma 3.4], does precisely that for the case that
Iter = Iterα. In Corollary 6.3.3 below, it gives a lower bound on the
number e(A) of edges spanned by A ⊆ V (G), based only on the car-
dinality of A and properties of G. This is the supersaturation result
referred to in Section 6.2.

Lemma 6.3.2. Let G be a d-regular graph with N vertices and mini-
mum eigenvalue −λ. For all A ⊆ V (G),

2e(A) ≥ |A|
(
d

N
|A| − λN − |A|

N

)
.

Proof. Let B be the adjacency matrix of G, and write λ1 ≥ λ2 ≥
. . . ≥ λN for its eigenvalues. Let b1, b2, . . . , bN be the corresponding
eigenvectors, scaled to unit norm. As the matrix B is symmetric, the bi
form an orthonormal basis of RV (G). As G is d-regular, we know that
λ1 = d and b1 = 1√

N
1. By assumption, λN = −λ.

Let a be the incidence vector of A, i.e. for all v ∈ V , av = 1 if
v ∈ A, and av = 0 otherwise. The number of edges spanned by A can
be expressed in terms of a as 2e(A) = aT Ba. Write αi = aT bi, so that

a = α1b1 + α2b2 + . . . + αNbN . Note that α2
1 = 1

N (aT 1)2 = |A|2
N , while∑N

i=1 α
2
i = aT a = |A|. As Bbi = λibi, we obtain

2e(A) = aᵀBa = aᵀ (α1λ1b1 + α2λ2b2 + . . .+ αNλNbN )

= α2
1λ1 + α2

2λ2 + . . .+ α2
NλN

≥ dα2
1 + λN

N∑
i=2

α2
i

=
d|A|2

N
− λ

(
|A| − |A|

2

N

)
,
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which proves the lemma.

Corollary 6.3.3. Let G be a d-regular graph ()d > 0) with N vertices
and minimum eigenvalue −λ. Let α := λ

d+λ . For any ε > 0, if A ⊆
V (G) with |A| ≥ (α+ ε)N , then ∆(G[A]) ≥ ε(d+ λ).

Proof. Let A ⊆ V (G) be a set of cardinality (α + ε′)N , so that ε′ ≥ ε.

The average degree in G[A] is 2e(A)
|A| , which, by Lemma 6.3.2, is at least

d+ λ

N
|A| − λ = ε′(d+ λ) ≥ ε(d+ λ).

In particular, G[A] contains a vertex of degree at least ε(d + λ), and
so ∆G[A] ≥ ε(d+ λ).

Remark 6.3.4. The lower bound in Lemma 6.3.2 is a one-sided version
of a result that appeared in [AC88, Lemma 2.3], and earlier in [Hae79,
Theorem 2.1.4(i)]. The two-sided result states that if G is a d-regular
graph with N vertices such that each eigenvalue that is not equal to d
is bounded in absolute value by µ, then∣∣∣∣e(A)− d|A|2

2N

∣∣∣∣ ≤ 1

2
µ
|A|(N − |A|)

N
. (6.3)

The expected number of edges spanned by the set A in a random d-

regular graph is roughly d|A|2
2N . The result shows that µ controls the

concentration of e(A) as A ranges over all subsets of given cardinality.

The bounds in (6.3) are a specialisation of the Expander Mixing
Lemma, which gives a similar bound on the number of edges between
any pair of vertex sets A,A′ ⊆ V (G).

The bound in Corollary 6.3.3 implies that every set of vertices of
cardinality strictly larger than αN spans at least one edge, and so
α(G) ≤ λ

d+λ . This result is known as the Hoffman bound [Hof70].

The following lemma contains the main technical analysis of the pair
(S∞, A∞) if the sequence (Si, Ai)

∞
i=0 is defined using Iter = Iterα.

Lemma 6.3.5. Let G be a d-regular graph, d > 0, with smallest eigen-

value −λ. Define α := λ
d+λ and σ := ln(d+1)

d+λ . Let the sequence (Si, Ai)
∞
i=0

be defined as in (6.2) with Iter = Iterα. Then |A∞| ≤ αN , and
|S∞ \ S0| ≤ dσNe. Moreover, if A∞ = A0, then S∞ = S0. Oth-
erwise, if i∗ is the largest index i such that Ai 6= A∞, and v∗Ai∗ has
degree at least D in G[Ai∗ ], then |S∞ \ S0| ≤ dσ(D)Ne, where σ(D) :=

1
d+λ

(
D−1
D+1 + ln d+1

D+1

)
.
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Proof. Let us first prove the bound on |A∞|. By Lemma 6.3.1(iv), there
is i0 ≥ 0 such that (Si0 , Ai0) = (Si0+1, Ai0+1), and A∞ = Ai0 . It follows
that (Si0 , Ai0) = Iterα(Si0 , Ai0 ,K), which implies that |A∞| = |Ai0 | ≤
αN .

If i0 = 0, then S∞ = S0 as well, and we are done. For the remainder
of the proof we may assume that i0 > 0.

The bound on |S∞ \ S0| requires a little more work. We partition
the index set {i : i ≥ 1} into phases, and estimate the growth of Si in
each phase separately. Say that the index i is in phase j ∈ [d] if

|Ai|
N
∈
(
α+

j − 1

d+ λ
, α+

j

d+ λ

]
,

and that i is in phase 0 if |Ai|N ≤ α. It is easily verified that the phase of
each i is well-defined, and that the phase is decreasing in i. Define s(j)
as the number of phase-j indices i for which Si+1 ) Si. By definition,

s(0) = 0, and |S∞ \ S0| =
∑d
j=1 s(j).

Let v∗i := v∗Ai . By construction, if Si+1 = Si ∪ {v∗i }, then Ai+1 =
Ai \ ({v∗i } ∪N(v∗i )). If index i is in phase j, then |Ai|/N = α + ε
for some ε > j−1

d+λ . In that case it follows from Corollary 6.3.3 that
∆(G[Ai]) > j − 1, and hence |Ai ∩ ({v∗i } ∪N(v∗i )) | ≥ j + 1. Thus, each
time Si increases during phase j, at least j + 1 vertices are removed

from the set Ai. It follows that s(j) ≤
⌈

1
(d+λ)(j+1)N

⌉
, and hence

d∑
j=1

s(j) ≤ 1

d+ λ
N

d∑
j=1

1

j + 1
+ d ≤ ln(d+ 1)

d+ λ
N + d.

The upper bound can be sharpened slightly by a more refined anal-

ysis. For each phase j, let i(j) be smallest index i such that |Ai|N ≤
α + j

d+λ ; let uj satisfy |Ai(j)| =
(
α+ j

d+λ

)
N − uj ; and define D(j) =

∆(G[Ai(j−1)−1]) for all j ∈ [d]. Note that ud = 0, 0 ≤ uj < D(j+1)+1,
D(j) ≥ j, and D(j) ≥ D(j − 1).

If index i is in phase j, then(
α+

j − 1

d+ λ

)
N − uj−1 < |Ai| ≤

(
α+

j

d+ λ

)
N − uj ,

from which we obtain the refined bound

s(j) ≤ 1

(d+ λ)(D(j) + 1)
N +

uj−1 − uj
D(j) + 1

.
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Thus,

d∑
j=1

s(j) ≤ 1

d+ λ
N

d∑
j=1

1

D(j) + 1
+

d∑
j=1

uj−1 − uj
D(j) + 1

≤ 1

d+ λ
N

d∑
j=1

1

j + 1
+

u0

D(1) + 1
<

ln(d+ 1)

d+ λ
N + 1, (6.4)

and hence |S∞ \ S0| ≤ dσNe. Moreover, writing i∗ = i(0) − 1, if v∗Ai∗
has degree at least D in G[Ai∗ ], then D(1) ≥ D, and hence D(j) ≥ D
for all j ≥ 1. Thus, (6.4) can be replaced by the stronger bound

d∑
j=1

s(j) ≤ 1

d+ λ
N

d∑
j=1

1

max{D, j}+ 1
+

u0

D(1) + 1

<
1

d+ λ
N

D − 1

D + 1
+

d∑
j=D

1

j + 1

+ 1

≤ 1

d+ λ
N

(
D − 1

D + 1
+ ln

d+ 1

D + 1

)
+ 1,

which proves the final claim.

We are now ready to formulate the first container result of this sec-
tion.

Theorem 6.3.6. Let G be a d-regular graph, d > 0, on N vertices, with

minimum eigenvalue −λ. Let α := λ
d+λ , and σ := ln(d+1)

d+λ . Let S :=

Ind(G,≤dσNe) and A :=
(
V (G)
≤αN

)
. There exist functions ϕ : P(V (G))→S

and ψ : S→ A such that

ϕ(K) ⊆ K ⊆ ϕ(K) ∪N(ϕ(K)) ∪ ψ(ϕ(K)) (6.5)

for all K ⊆ V (G).

Proof. Fix a linear order on V (G). For given K ⊆ V (G), define the
sequence (Si, Ai)

∞
i=0 by S0 = ∅, A0 = V (G), and then iteratively

(Si+1, Ai+1) = Iterα(Si, Ai,K) for all i ≥ 0.

Define ϕ(K) := S∞(K) and ψ(ϕ(K)) := A∞(K).2 By Lemma 6.3.5,
ϕ(K) has cardinality at most dσNe, while ψ(ϕ(K)) ∈ A; in addition,
Lemma 6.3.1(i) implies that ϕ(K) is a stable set, and hence ϕ(K) ∈ S.

2Strictly speaking, this only constructs a partial function ψ, but this partial
function can be arbitrarily extended to a function.
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Finally, by Lemma 6.3.1(ii), Si ⊆ K ⊆ Si∪N(Si)∪Ai for all K and
all i, and by Lemma 6.3.1(iv), the same holds in the limit i =∞. This
proves (6.5), and hence concludes the proof of the theorem.

Next, we consider the second construction, which uses Iter∆ in addi-
tion to Iterα. The second construction is used to control the maximum
degree in G[A∞].

Lemma 6.3.7. Let the sequence (Si, Ai)
∞
i=0 be defined as in (6.2) with

Iter = Iter∆. Then ∆(G[A∞]) < ∆, and |S∞ \ S0| ≤ |A0|
∆ .

Proof. Let us first prove the bound on ∆(G[A∞]). By Lemma 6.3.1(iv),
there is i0 ≥ 0 such that (Si0 , Ai0) = (Si0+1, Ai0+1), and A∞ = Ai0 .
It follows that (Si0 , Ai0) = Iter∆(Si0 , Ai0 ,K), which in turn implies
that ∆(G[A∞]) = ∆(G[Ai0 ]) < ∆. To prove the bound on |S∞ \ S0|,
note that if Si+1 = Si ∪

{
v∗Ai
}

, then v∗Ai has degree ∆G[Ai] ≥ ∆ in

G[Ai], so Ai+1 = Ai \
(
{v∗Ai} ∪N(v∗Ai)

)
is obtained by removing at

least ∆ + 1 elements from Ai. This can happen for at most |A0|/∆
indices i before Ai = ∅.

Lemma 6.3.7 allows us to prove a variant of Theorem 6.3.6 in which
A is restricted to those A for which ∆(G[A]) is small, at the expense of
increasing S.

Theorem 6.3.8. Let G be a d-regular graph, d > 0, on N vertices, with

smallest eigenvalue −λ, and let ∆ > 0. Let α := λ
d+λ , and σ := ln(d+1)

d+λ +

α
∆ . Let S := Ind(G,≤ dσNe) and A :=

{
A ∈

(
V (G)
≤αN

)
: ∆(G[A]) < ∆

}
.

There exist functions ϕ : P(V (G))→ S and ψ : S→ A such that

ϕ(K) ⊆ K ⊆ ϕ(K) ∪N(ϕ(K)) ∪ ψ(ϕ(K)) (6.6)

for all K ⊆ V (G).

Proof. Let functions ϕ′ and ψ′ be as in the statement of Theorem 6.3.6.
Fix a linear order on V (G). Given K ⊆ V (G), define the sequence
(Si, Ai)

∞
i=0 by putting S0 = ϕ′(K), A0 = ψ′(ϕ′(K)), and then iteratively

(Si+1, Ai+1) = Iter∆(Si, Ai,K) for all i ≥ 0.

Define ϕ(K) = ϕ′(K) ∪ S∞(K) and ψ(ϕ(K)) := A∞(K).3 By
Lemma 6.3.7, ∆G[A∞] < ∆, while |S∞ \ S0| ≤ αN

∆ . From the latter

observation, it follows that |S∞| = |S0|+|S∞\S0| < ln(d+1)
d+λ N+1+ α

∆N .

3As in the proof of Theorem 6.3.6, this only constructs a partial function ψ, but
as before it can be arbitrarily extended to a function.

128



c
h
a
p
t
e
r
6
e
n
u
m
e
r
a
t
io
n
o
f
m
a
t
r
o
id
s

Lemma 6.3.1 shows that S∞ is a stable set in G, and that (6.6) holds.
These observations imply the theorem.

The value of σ in Theorem 6.3.8 is obtained by combining the worst-
case bounds from Lemma 6.3.5 and Lemma 6.3.7. A slightly better
bound can be obtained by a more careful analysis.

Theorem 6.3.9. Let G be a d-regular graph, d > 0, on N vertices,
with smallest eigenvalue −λ, and let ∆ > 0. Let α := λ

d+λ , and σ :=
max
D∈[d]

σ(D), where

σ(D) :=


D−1
D+1 +ln( d+2

D+1 )
d+λ + α

∆ if D ≥ ∆,
D−1
D+1 +ln( d+2

D+1 )
d+λ otherwise.

Let S := Ind(G,≤ dσNe) and A :=
{
A ∈

(
V (G)
≤αN

)
: ∆G[A] < ∆

}
. There

exist functions ϕ : P(V (G))→ S and ψ : S→ A such that

ϕ(K) ⊆ K ⊆ ϕ(K) ∪N(ϕ(K)) ∪ ψ(ϕ(K)) (6.7)

and
(ϕ(K) ∪N(ϕ(K))) ∩ ψ(ϕ(K)) = ∅ (6.8)

for all K ⊆ V (G).

Proof. Fix a linear order on V (G). Pick a set K ⊆ V (G). Define the
sequence (Si, Ai)

∞
i=0 by S0 = ∅, A0 = V (G), and then iteratively

(Si+1, Ai+1) = Iterα(Si, Ai,K) for all i ≥ 0.

In addition, define the sequence (S′i, A
′
i)
∞
i=0 by S′0 = S∞, A′0 = A∞, and

then iteratively

(S′i+1, A
′
i+1) = Iter∆(S′i, A

′
i,K) for all i ≥ 0.

Define ϕ(K) := S′∞, and ψ(ϕ(K)) := A′∞. Properties (6.7)–(6.8)
hold by Lemma 6.3.1.

Let i∗ be the largest index i such that Ai 6= A∞. If no such i exists,
put D = d, otherwise put D = ∆G[Ai∗ ]. By Lemma 6.3.5,

|S∞| <
1

d+ λ

(
D − 1

D + 1
+ ln

d+ 1

D + 1

)
N + 1. (6.9)

In addition, by Lemma 6.3.7,

|S′∞ \ S′0| ≤

{
0 if D < ∆
α
∆N if D ≥ ∆.

(6.10)
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If follows from (6.9)–(6.10) that

|ϕ(K)| = |S′∞| = |S′∞ \ S∞|+ |S∞| ≤ dσ(D)Ne , (6.11)

and the bound on |ϕ(K)| is obtained by maximising the right-hand side
of (6.11) with respect to D. Moreover, by Lemma 6.3.1, S∞ and S′∞
are stable sets in G, while Lemma 6.3.5 and Lemma 6.3.7 imply that
A′∞ ∈ A.

6.4 Enumeration of stable sets

In this section, Theorem 6.3.6, which was formulated in terms of general
vertex sets K, is specialised to stable sets. This specialisation results in
a bound on the number of stable sets in regular graphs.

Theorem 6.4.1. Let G be a d-regular graph on N vertices, with small-

est eigenvalue −λ. Let α := λ
d+λ and σ := ln(d+1)

d+λ , and write S :=

Ind(G,≤ dσNe) and A :=
(
V (G)
≤αN

)
. There exist functions ϕ : Ind(G)→S

and ψ : S→ A such that

ϕ(I) ⊆ I ⊆ ϕ(I) ∪ ψ(ϕ(I))

for all I ∈ Ind(G).

Proof. Obtain ϕ′ and ψ by applying Theorem 6.3.6, and define ϕ as the
restriction of ϕ′ to Ind(G). We have

ϕ(I) ⊆ I ⊆ ϕ(I) ∪N(ϕ(I)) ∪ ψ(ϕ(I)),

and as I is a stable set containing ϕ(I), it follows that I ∩ N(ϕ(I)) =
∅.

Recall that ind(G) denotes the number of stable sets in G. In ad-
dition, write ind(G,≤ k) for the number of stable sets of cardinality at
most k in G.

Corollary 6.4.2. Let G be a d-regular graph on N vertices, with small-

est eigenvalue −λ. Let α := λ
d+λ and σ := ln(d+1)

d+λ . For all k ∈ Zn, the
number of stable sets satisfies

ind(G,≤ k) ≤
dσNe∑
i=0

(
N

i

)
×

k∑
j=0

(
bαNc
j

)
,
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while

ind(G) ≤
dσNe∑
i=0

(
N

i

)
× 2αN .

Proof. We start by proving the first inequality. Suppose that I is a
stable set of cardinality at most k.

Let ϕ and ψ be functions as in Theorem 6.4.1. Each independent
set I is determined by the pair (ϕ(I), I ∩ ψ(ϕ(I))). As |ϕ(I)| ≤ dσNe,
ϕ(I) can be chosen in at most

∑dσNe
i=0

(
N
i

)
ways.

After choosing ϕ(I), we need to specify I ∩ ψ(ϕ(I)) as a subset
of ψ(ϕ(I)). As |I ∩ ψ(ϕ(I))| ≤ k, and ψ(ϕ(I)) is a set of cardinality at

most αN , there are at most
∑k
j=0

(bαNc
j

)
possibilities for I ∩ ψ(ϕ(I)).

This proves the first inequality. The second inequality follows since
ind(G) = ind(G,≤ bαNc), and

∑n
j=0

(
n
j

)
= 2n.

6.5 Enumeration of sparse paving matroids

Recall from Lemma 2.7.1 that whenever 0 < r < n, sparse paving
matroids of rank r on ground set [n] are in one-to-one correspondence
with stable sets in the Johnson graph J(n, r). In particular, this implies

s(n, r) = ind(J(n, r)) for all 0 < r < n. (6.12)

As J(n, r) is regular of degree r(n − r) > 0, we may use Corol-
lary 6.4.2 to obtain an upper bound on s(n, r). It follows from Proposi-
tion 2.6.2 that the smallest eigenvalue of J(n, r) is −λn,r, with λn,r :=
min{r, n− r}. Let us write

σn,r :=
ln(r(n− r) + 1)

r(n− r) + min{r, n− r}
and αn,r :=

min{r, n− r}
r(n− r) + min{r, n− r}

.

Thus, if σ and α are the two constants that arise in the application of
Corollary 6.4.2 to J(n, r), then

σ = σn,r, α = αn,r,

and moreover, if σ is the constant that arises in the application of The-
orem 6.3.9 with ∆ = λn,r, then σ = σ(1) ≤ σn,r as well.

Note that αn,r = αn,n−r, and σn,r = σn,n−r; and if r ≤ n/2, then

αn,r = 1
n−r+1 , and σn,r = ln(r(n−r)+1)

r(n−r+1) . Specialising Corollary 6.4.2 to
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J(n, r), it follows from (6.12) that

s(n, r) ≤ exp2

(
αn,r

(
n

r

))
×
dσn,r(nr)e∑

i=0

((n
r

)
i

)
. (6.13)

The following lemma provides useful bounds on σn,r and αn,r.

Lemma 6.5.1. For all 0 < r < n,

(i)
⌈
σn,r

(
n
r

)⌉
≤ 9 lnn

n2

(
n
n/2

)
; and

(ii) αn,r
(
n
r

)
≤ 2

n

(
n
n/2

)
.

Proof. Define

f(n, r) :=
2 lnn

r(n− r)

(
n

r

)
.

Note that f(n, n−r) = f(n, r), and σn,r
(
n
r

)
+1 ≤ f(n, r). A calculation

reveals that f(n, r − 1) ≤ f(n, r) whenever 1 < r ≤ bn/2c. Hence⌈
σn,r

(
n

r

)⌉
≤ f(n, r) ≤ f(n, bn/2c) ≤ 9 ln(n)

n2

(
n

n/2

)
whenever 0 < r < n, as required. The bound αn,r ≤ 2/n is trivial,
and (ii) follows from the inequality

(
n
r

)
≤
(
n
n/2

)
.

The lemma provides the necessary ingredient to analyse (6.13), and
we obtain the following bound on the number of sparse paving matroids.

Theorem 6.5.2. log s(n) ≤ 2+o(1)
n

(
n
n/2

)
as n→∞.

Proof. We use that s(n) =
n∑
r=0

s(n, r), and hence

s(n) ≤ (n+ 1) max
0≤r≤n

s(n, r).

Note that s(n, 0) = s(n, n) = 1. The remainder of the proof is devoted
to bounding s(n, r) for 0 < r < n, the starting point for which is the
inequality (6.13).

We bound the two factors on the right-hand side of (6.13) separately.
First, a direct application of Lemma 6.5.1(ii) shows that

exp2

(
αn,r

(
n

r

))
≤ exp2

(
2

n

(
n

n/2

))
. (6.14)
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Second, as
(
n
r

)
≤
(
n
n/2

)
, and m 7→

(
m
i

)
is nondecreasing, we can write

dσn,r(nr)e∑
i=0

((n
r

)
i

)
≤
dσn,r(nr)e∑

i=0

(( n
n/2

)
i

)
≤

9 ln(n)

n2 ( n
n/2)∑

i=0

(( n
n/2

)
i

)
, (6.15)

where the second inequality follows from Lemma 6.5.1(i). Assume that
n is so large that 9 lnn

n2 ≤ 1
2 . The right-hand side of (6.15) does not

depend on r, and bounding the sum of binomial coefficients yields

b 9 ln(n)

n2 ( n
n/2)c∑

i=0

(( n
n/2

)
i

)
≤
(

en2

9 lnn

) 9 lnn
n2 ( n

n/2)

= exp2

(
O

(
ln2 n

n2

(
n

n/2

)))
. (6.16)

Using (6.14) and (6.16) to bound the right-hand side of (6.13), we
obtain

max
1≤r≤n−1

s(n, r) ≤ exp2

(
2

n

(
n

n/2

)
+O

(
ln2 n

n2

(
n

n/2

)))
,

and therefore

log s(n) ≤ log(n+ 1) +
2

n

(
n

n/2

)
+O

(
ln2 n

n2

(
n

n/2

))
,

which concludes the proof.

Using a similar argument, a bound on the number of sparse paving
matroids with few circuit-hyperplanes (or equivalently, the number of
small stable sets in J(n, r)) can be obtained. We record the following
result for later use.

Lemma 6.5.3. For every 0 ≤ λ ≤ 1,

max
0≤r≤n

log ind

(
J(n, r),≤ λ

n

(
n

r

))
≤
(

2H

(
λ

2

)
+ o(1)

)
log s(n),

and for every 0 ≤ λ ≤ 1/2

max
0≤r≤n

log ind(J(n, r),≤ λ log s(n)) ≤ (2H (λ) + o(1)) log s(n).

Proof. We prove the first claim; the second claim can be proved using
a similar argument. Fix n and r, and let N :=

(
n
r

)
. Without loss of
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generality, we may assume that r ≤ n/2. By Corollary 6.4.2,

log ind

(
J(n, r),≤ λ

n
N

)

≤ log

dσn,rNe∑
i=0

(
N

i

)
+ log

b λnNc∑
i=0

(
bαn,rNc

i

)
. (6.17)

The first term on the right-hand side is increasing in N and σn,rN .
Using Lemma 6.5.1(i) to bound σn,rN , we obtain

log

dσn,rNe∑
i=0

(
N

i

)
≤ 9 lnn

n2
log

(
en2

9 lnn

)(
n

n/2

)
. (6.18)

The second term on the right-hand side of (6.17) is increasing in N and
αn,rN . Using Lemma 6.5.1(ii) to bound αn,rN , we obtain

log

b λnNc∑
i=0

(
bαn,rNc

i

)
≤H

(
λ

2

)
2

n

(
n

n/2

)
. (6.19)

Substituting (6.18)–(6.19) into (6.17), we obtain

max
0≤r≤n

log ind

(
J(n, r),≤ λ

n

(
n

r

))
≤

2H
(
λ
2

)
+ o(1)

n

(
n

n/2

)
.

The desired result follows since log s(n) ≥ 1
n

(
n
n/2

)
.

6.6 Adapting the container method to matroids

Suppose that ϕ and ψ arise from an application of the container method
to J(n, r) and K is the collection of nonbases of a matroid M ∈M(n, r).
By Theorem 6.3.6,

ϕ(K) ⊆ K ⊆ ϕ(K) ∪N(ϕ(K)) ∪ ψ(ϕ(K)).

If M is sparse paving, then K ∩ N(ϕ(K)) = ∅. This observation con-
denses the description of K, and eventually leads to the upper bound
on log s(n) in Theorem 6.5.2. On the other hand, if M is a general
matroid, then K∩N(ϕ(K)) is not necessarily empty. As N(ϕ(K)) is po-
tentially huge, describing the nonbases among the sets in N(ϕ(K)) will
inflate the bound on logm(n) dramatically. This problem is addressed

134



c
h
a
p
t
e
r
6
e
n
u
m
e
r
a
t
io
n
o
f
m
a
t
r
o
id
s

in Theorem 6.6.2 below, which is obtained by extending the container
argument from the previous sections in two ways.

First, it employs the local covers from Chapter 4 to describe the
nonbases among N(ϕ(K)). Each r-set that is selected into ϕ(K) is a
nonbasis, and hence admits a small local cover. This allows for a concise
description of the nonbases among N(ϕ(K)).

The second extension also uses that the nonbases of a matroid are
a highly structured set. In particular, if X is a dependent set, then the
nonbases among N(X) can be recovered from only a partial enumeration
of these nonbases. We use two elementary properties of matroids.

The first is Lemma 2.6.4, which states that if X ∈
(
E
r

)
is a set of rank

r − 1, then it contains a unique circuit C, it avoids a unique cocircuit
D, and the dependent neighbours of X are identified by

K(M) ∩N(X)

=

{
(X \ {e}) ∪ {f} : e ∈ X \ C or f ∈ (E \X) \D

}
. (6.20)

We apply (6.20) iteratively. Suppose that for a large fraction of the
vertices Y in J(n, r), it is known whether Y is dependent or independent.
Now we add the information that X is dependent. Using (6.20), we may
sometimes infer that some of the neighbours of X (whose status thus
far was not known) are dependent as well. This may start a cascade
effect, as subsequently we may infer that some of their neighbours are
dependent as well, and so on.

Recall that the neighbourhood of X is partitioned into ‘rows’,

RX(e) := {X4{e, f} : f ∈ E \X} , e ∈ X,

and also into ‘columns’,

CX(f) := {X4{e, f} : e ∈ X} , f ∈ E \X.

The second property is the following.

Lemma 6.6.1. Let M be a matroid of rank r on ground set E that does
not have any loops and coloops. Let X ∈

(
E
r

)
. If

• there exists e ∈ X such that RX(e) ⊆ K(M); or

• there exists f ∈ E \X such that CX(f) ⊆ K(M),

then X ∈ K(M).
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ϕ(M)

ξ(M)

P (M)

T ∈T (M)

QM (X)

ω(M)

ψ(ϕ(M))

Figure 6.1: Schematic depiction of the sets mentioned in Theo-
rem 6.6.2.

Proof. Let e ∈ X and f ∈ E \X be as in the statement of the lemma,
and suppose to the contrary that X is a basis of M . As RX(e) ⊆ K(M),
f ′ ∈ cl(X \ {e}) for all f ′ ∈ E \X. It follows that e is in every basis,
and hence that e is a coloop: a contradiction. From CX(f) ⊆ K(M) it
follows similarly that f is a loop.

Let

M̃(n, r) := {M ∈M(n, r) : M has no loops or coloops} .

If X is a collection of non-empty sets, then a choice function on X
is a function ch: X →

⋃
X , such that ch(X) ∈ X for all X ∈ X .

We are now ready to prove the main technical result of this chap-
ter. The theorem below shows that matroids without loops and coloops
either have a compact description, or a large number of alternative de-
scriptions.

Its rather technical formulation consists of two parts, that are per-
haps easier to grasp separately. Items (i)–(iv) incorporate local cov-
ers into the standard container method, thus generalising the container
method for sparse paving matroids to general matroids. Next, items
(v)–(viii) make the second extension explicit. This breakdown into two
parts reflects the historical development of the theorem: items (i)–(iv)
appeared in [BPvdP15], while the extension (v)–(viii) appeared in the
later paper [PvdP15b].

The various sets that appear in the statement of Theorem 6.6.2 and
its proof are depicted schematically in Figure 6.1.
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Theorem 6.6.2. Let 0 < r < n, and write G := J(n, r). Define

S := Ind

(
G,≤

⌈
σn,r

(
n

r

)⌉)
and

A :=

{
A ∈

(
V (G)

≤ αn,r
(
n
r

)) : ∆G[A] < min{r, n− r}
}
.

There exist functions ϕ : M(n, r) → S, ψ : S → A, and ξ : M(n, r) →
P([n])× {0, 1, . . . , n− 1} such that, for all M ∈M(n, r),

(i) ϕ(M) ⊆ K(M) ⊆ ϕ(M) ∪N(ϕ(M)) ∪ ψ(ϕ(M));

(ii) ϕ(M) ∪N(ϕ(M)) is disjoint from ψ(ϕ(M)); and

(iii) |ξ(M)| ≤ 2|ϕ(M)|; while

(iv) M 7→ (ϕ(M), ξ(M),K(M) ∩ ψ(ϕ(M))) is injective on M(n, r).

In addition, there exist functions t : M̃(n, r) → Z≥0, T : M̃(n, r) →
P(Ind(G)), and ω : M̃(n, r)→ Ind(G), such that

(v) for all T ∈ T (ψ(ϕ(M))): |T | = t(M); T , ω(M) and ϕ(M) are
mutually disjoint; and T ∪ ω(M) ∪ ϕ(M) ∈ Ind(G);

(vi) ω(M) ⊆ W(M) for all M ∈ M̃(n, r);

(vii) for any choice function ch, the function mapping

M 7→ (ϕ(M) ∪ ch(T (M)) ∪ ω(M), ξ(M))

is injective on M̃(n, r);

(viii) for any choice function ch, U(M) 7→ (ϕ(M) ∪ ch(T (M)), ξ(M)) is

injective on {U(M) : M ∈ M̃(n, r)}.

Proof. Construction of ϕ and ψ. Let the functions ϕ′ and ψ be as in
Theorem 6.3.9. For M ∈ M(n, r), define ϕ(M) := ϕ′(K(M)). Items (i)
and (ii) are inherited from Theorem 6.3.9.

Construction of ξ. Let M ∈ M(n, r). For each X ∈ ϕ(M), let
ZX(M) be a local cover at X of cardinality at most 2; as X is dependent
in M , such a local cover exists by Lemma 4.4.3. Define

ξ(M) :=
⋃

X∈ϕ(M)

ZX(M).
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Note that |ξ(M)| ≤ 2|ϕ(M)|, so (iii) holds.

Proof of (iv). If M ∈ M(n, r) is a matroid, then by (i) and (ii) its
nonbases can be partitioned as

K(M) =
[
K(M) ∩ (ϕ(M) ∪N(ϕ(M)))

]
∪
[
K(M) ∩ ψ(ϕ(M))

]
.

By Lemma 4.4.4, the nonbases among ϕ(M) ∪N(ϕ(M)) can be recon-
structed from (ϕ(M), ξ(M)), thus proving (iv).

Construction of t, T , and ω. Using Lemma 6.6.1, we can exploit our
knowledge of K(M) \ ψ(ϕ(M)) to draw conclusions about the depen-
dence of some elements in ψ(ϕ(M)). This can be formalised as follows.

Let P(M) be the collection of all P ⊆ ψ(ϕ(M)) such that if X ∈
ψ(ϕ(M)) and

• there exists e ∈ X such that RX(e) ⊆ P ∪ (K(M) \ ψ(ϕ(M))), or

• there exists f ∈ E \X such that CX(f) ⊆ P ∪ (K(M)\ψ(ϕ(M))),

then X ∈ P .

It is easily verified that K(M) ∩ ψ(ϕ(M)) ∈ P(M), and that P(M)
is closed under taking unions and intersections. In particular, P(M)
contains a unique minimal element P (M), and since P(M) is closed
under taking intersections, it is necessarily the case that P (M) ⊆ K(M).
Moreover, P(M), and hence P (M), depends on M only through the pair
(ϕ(M), ξ(M)).

Define Ψ(M) := ψ(ϕ(M)) \ P (M). It remains to identify the non-
bases among the elements of Ψ(M). We consider singleton components
and larger components of G[K(M) ∩Ψ(M)] separately. Set

ω(M) :=
{
X ∈ Ψ(M) : {X} is a component of G[K(M) ∩Ψ(M)]

}
.

Let C1, C2, . . . , Ct be an enumeration of the non-singleton components
of G[K(M) ∩Ψ(M)]. Set t(M) := t, and

T (M) :=

{
T ⊆

t⋃
i=1

Ci : |T ∩ Ci| = 1 for i = 1, 2, . . . , t

}
.

Proof of (v). As |Ci| ≥ 2 for each i = 1, 2, . . . , t, there are at least
2t choices for T , so |T (M)| ≥ 2t(M).

Let T ∈ T (M). It is immediate that |T | = t(M). By construction,
T and ω(M) are disjoint. The set T ∪ω(M) contains exactly one vertex
from each of the components of G[K(M)∩Ψ(M)], and hence is a stable
set in G. In addition, ϕ(M) is a stable set in G. As Ψ ⊆ ψ(ϕ(M))
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and ψ(ϕ(M)) is disjoint from ϕ(M) ∪ N(ϕ(M)), it follows that ϕ(M)
is disjoint from T and ω(M), and that T ∪ω(M)∪ϕ(M) is a stable set
in G.

Proof of (vi). Each X ∈ ω(M) is a circuit-hyperplane, for if X ∈
ω(M) is a not a circuit-hyperplane, then there exists e ∈ X so that
RX(e) ⊆ K(M), or there exists f ∈ E \X such that CX(f) ⊆ K(M). In
the former case, since X is an isolated vertex of G[K(M) ∩ Ψ(M)], we
have RX(e)∩Ψ(M) = ∅, and hence RX(e) ⊆ (K(M)\ψ(ϕ(M)))∪P (M).
It follows, by definition of P (M), that X ∈ P (M). The analogous
argument settles the latter case.

Proof of (vii). As Ψ(M) ⊆ ψ(ϕ(M)), we have

∆(G[Ψ(M)]) ≤ ∆(G[ψ(ϕ(M))]) < min{r, n− r}.

It follows that for each X ∈ Ψ(M), there exists an e ∈ X such that
RX(e) ∩ Ψ(M) = ∅, and there exists f ∈ E \ X such that CX(f) ∩
Ψ(M) = ∅.

Fix some X ∈ Ψ(M). Let e∗ ≡ e∗(X) be the minimal e ∈ X such
that RX(e) ∩Ψ(M) = ∅, and put

D(X) := {y ∈ E \X : X4{e∗, y} ∈ RX(e∗) \ K(M)} ;

similarly, let f∗ ≡ f∗(X) be the minimal f ∈ E \X such that CX(f) ∩
Ψ(M) = ∅, and put

C(X) := {x ∈ X : X4{x, y∗} ∈ CX(f∗) \ K(M)} .

As RX(e∗) \ K(M) = RX(e∗) \ (K(M) \Ψ(M)) and CX(f∗) \ K(M) =
CX(f∗) \ (K(M) \Ψ(M)), it follows that C(X) and D(X) depend only
on M through (φ(M), ξ(M)).

Let X ∈ Ψ(M), and suppose that X ∈ K(M). If D(X) = ∅, then
RX(e∗) ⊆ K(M). This would imply X ∈ P (M), contradicting X ∈
Ψ(M). Thus D(X) 6= ∅. Similarly, C(X) 6= ∅. It follows that there
exists x̂ ∈ C(X) such that X4{x̂, f∗(X)} 6∈ K(M), and thus that
rk(X) ≥ r − 1. As C(X) is non-empty, it must be the unique circuit
contained in X, and similarly D(X) is the unique cocircuit disjoint from
X, and hence, by Lemma 6.6.1,

K(M) ∩N(X) = {X4{x, y} : x ∈ X \ C(X) or y ∈ (E \X) \D(X)} .

For X ∈ Ψ(M), let QM (X) be the collection of all Q ⊆ Ψ(M) such
that

• X ∈ Q; and
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• if X ′ ∈ Q, Y ∈ Ψ(M) are such that Y = (X ′ \ {e}) ∪ {f}, and
e 6∈ C(X ′) or f 6∈ D(X ′), then Y ∈ Q.

It is easily verified that QM (X) is closed under taking unions and inter-
sections. By Lemma 6.6.1, if X ∈ K(M)∩Ψ(M), then K(M)∩Ψ(M) ∈
QM (X).

In particular, it follows that if X ∈ K(M) ∩ Ψ(M), then there is a
unique minimal element of QM (X), which we denote by QM (X). Note
that, for any X ∈ Ψ(M), QM (X), and hence QM (X), depends on M
only through (ϕ(M), ξ(M)).

Let C be a component of G[K(M) ∩ Ψ(M)], and let X ∈ C. It is
easily verified that C ∈ QM (X), and hence that QM (X) ⊆ C. In fact,
we have QM (X) = C, since QM (X) contains N(Y ) ∩ K(M) ∩ Ψ(M)
whenever Y ∈ QM (X).

It follows that for any matroid M ∈M(n, r),

K(M) = ϕ(M) ∪ (K(M) ∩N(ϕ(M))) ∪ P (M) ∪
⋃

X∈T∪ω(M)

QM (X).

Proof of (viii). By (vi), ω(M) ⊆ W(M). It follows that U(M) ⊆ Ũ ,
where

Ũ := ϕ(M) ∪ (K(M) ∩N(ϕ(M))) ∪ P (M) ∪
⋃
X∈T

QM (X).

Note that Ũ depends on M only through (φ(M), ξ(M), T ). U(M) can be

obtained from Ũ by removing from it those elements that form singleton
components in G[Ũ ].

Theorem 6.6.2 allows the encoding of matroids (without loops or
coloops) as a quadruple (ϕ(M), ξ(M), T (M), ω(M)). The following
corollary shows that this implies that every such matroid can be de-
scribed as a sparse paving matroid and a little extra information.

Corollary 6.6.3. Let 0 < r < n. There is an injective function

M̃(n, r)→ S(n, r)×
(

P([n])× {0, 1, . . . , n− 1}
≤ 2

⌈
σn,r

(
n
r

)⌉ )
.

Proof. Let ϕ, ξ, T and ω be as in Theorem 6.6.2, and let ch be a
choice function on P(Ind(J(n, r))). For M ∈ M̃(n, r), define K′(M) :=
ϕ(M) ∪ ch(T (M)) ∪ ω(M). By Theorem 6.6.2(iv), K′(M) is a stable
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set in the Johnson graph J(n, r), and so
(

[n],
(

[n]
r

)
\ K′(M)

)
is a sparse

paving matroid. By Theorem 6.6.2(vi), the map

M 7→
((

[n],

(
[n]

r

)
\ K′(M)

)
, ξ(M)

)
is injective, thus proving the corollary.

6.7 Enumeration of matroids

In this section, we prove Theorem 6.1.1, which we restate here for con-
venience.

Theorem 6.1.1.

1

n

(
n

n/2

)
≤ log s(n) ∼ logm(n) ≤ 2 + o(1)

n

(
n

n/2

)
as n→∞.

The lower bound in the theorem follows from the construction by
Graham and Sloane, Lemma 2.8.1. Two parts of the theorem remain to
be proved: the upper bound, and the asymptotic equivalence of logm(n)
and log s(n). We prove these separately.

Define

Z (n, r) :=

(S,Z) :

S ⊆
(

[n]
r

)
,

|S| ≤
⌈
σn,r

(
n
r

)⌉
,

Z ⊆P([n])× {0, 1, . . . , n− 1},
|Z| ≤ 2|S|

 ,

and let z(n, r) := |Z (n, r)|. Let

ζ(n) := 57
log2 n

n2

(
n

n/2

)
. (6.21)

Lemma 6.7.1. log z(n, r) ≤ ζ(n) for sufficiently large n.

Proof. Ignoring the dependence between S and Z in the definition of
Z (n, r), we find that z(n, r) is at most the number of subsets S of size
at most

⌈
σn,r

(
n
r

)⌉
from a set of size at most

(
n
n/2

)
, multiplied by the

number of subsets Z of size at most 2
⌈
σn,r

(
n
r

)⌉
from a set of size n2n;
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so

z(n, r) ≤

(
N∑
i=0

(( n
n/2

)
i

))( 2N∑
i=0

(
n2n

i

))
≤

(
e
(
n
n/2

)
N

)N (
en2n

2N

)2N

(6.22)
whenever N ≥

⌈
σn,r

(
n
r

)⌉
. The right-hand side of (6.22) increases as a

function of N while N ≤
(
n
n/2

)
/2.

Take N := 9 ln(n)
n2

(
n
n/2

)
. By Lemma 6.5.1, we have N ≥

⌈
σn,r

(
n
r

)⌉
for all 0 < r < n. For this choice of N , we obtain e

(
n
n/2

)
/N ≤ n2 and

en2n/(2N) ≤ n7/2, provided that n is sufficiently large, and hence

log z(n, r) ≤ N log(n2) + 2N log(n7/2) ≤ 81
ln(n) log(n)

n2

(
n

n/2

)
≤ ζ(n),

as required.

Our interest in the quantity z(n, r) is explained by its appearance
in the following lemma.

Lemma 6.7.2. For all 0 ≤ r ≤ n, logm(n, r) ≤ z(n, r) exp2

(
αn,r

(
n
r

))
.

Proof. Note that m(n, 0) = 1, while z(n, 0) ≥ 0 and αn,0
(
n
0

)
≥ 0. Thus,

the lemma holds for r = 0, and similarly for r = n.

For the remainder of the proof, assume that 0 < r < n. Obtain
functions ϕ, ψ, and ξ as in Theorem 6.6.2. The function M(n, r) →
Z (n, r)×P([n]) given by

M 7→ (ϕ(M), ξ(M),K(M) ∩ ψ(ϕ(M)))

is injective by Theorem 6.6.2(iv). As |ψ(ϕ(M))| ≤ αn,r
(
n
r

)
, the lemma

follows.

We are now ready to prove the upper bound in Theorem 6.1.1.

Theorem 6.7.3. logm(n) ≤ 2
n

(
n
n/2

)
+ ζ(n) + log(n+ 1). In particular,

logm(n) ≤ 2+o(1)
n

(
n
n/2

)
as n→∞.

Proof. Let n be so large that the conclusion of Lemma 6.7.1 holds, and
let 0 ≤ r ≤ n. Our starting point is Lemma 6.7.2. Using Lemma 6.7.1
to bound z(n, r) and Lemma 6.5.1 to bound αn,r

(
n
r

)
, we find

m(n, r) ≤ z(n, r) exp2

(
αn,r

(
n

r

))
≤ exp2

(
ζ(n) +

2

n

(
n

n/2

))
.
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Summing over r and taking logarithms, we obtain

logm(n) ≤ log(n+ 1) + ζ(n) +
2

n

(
n

n/2

)
.

This proves the first part. Since log(n + 1) + ζ(n) = o
(

1
n

(
n
n/2

))
as

n→∞, the second part follows.

It remains to prove the asymptotic equivalence of logm(n) and
log s(n), for which we require the following result.

Proposition 6.7.4 ([MNWW11, Theorem 2.3]). Almost every matroid
has no loops or coloops.

Theorem 6.7.5. logm(n) ∼ log s(n) as n→∞.

Proof. Clearly logm(n) ≥ log s(n), so it remains to prove a corre-
sponding upper bound. In fact, we will show that log m̃(n) ≤ (1 +
o(1)) log s(n), which, by Proposition 6.7.4, suffices to prove the theo-
rem.

By Corollary 6.6.3, and Lemma 6.7.1,

m̃(n, r) ≤ s(n, r)z(n, r) ≤ s(n, r)2ζ(n).

This proves the theorem, since ζ(n) = o(log s(n)), and so

log m̃(n) ≤ log s(n) + ζ(n) = (1 + o(1)) log s(n).

Theorem 6.7.5, combined with the upper bound on log s(n) obtained
in Theorem 6.5.2, provides an alternative proof of the second claim in
Theorem 6.7.3.

6.8 A proxy for sparse paving matroids

The techniques described in this chapter are not sufficient for proving
the conjecture that almost every matroid is sparse paving. In this sec-
tion, we construct a class of matroids that is slightly larger than the
class of sparse paving matroids, for which we can prove that almost
every matroid is in the class.

Recall the definition of ζ(n) in (6.21), and define

Υ(n) := 5ζ(n) log n. (6.23)
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As ζ(n) = O
(

log2 n
n2

(
n
n/2

))
, it follows that Υ(n) = O

(
log3 n
n2

(
n
n/2

))
.

The following theorem is the main result of this section.

Theorem 6.8.1. There exists a class Ŝ of matroids with the property
that almost every matroid is in Ŝ, and, for sufficiently large n,

log
∣∣∣{U(M) : M ∈ Ŝ ∩M(n)

}∣∣∣ ≤ Υ(n).

If almost every matroid is sparse paving, then a much stronger ver-
sion of Theorem 6.8.1 holds. In that case, taking Ŝ = S, we even have{
U(M) : M ∈ Ŝ ∩ M(n)

}
= {∅} for all n. Unfortunately, the pre-

dominance of sparse paving matroids remains conjectured rather than
proved. In this section, Theorem 6.8.1 is proved by constructing a class
of matroids Ŝ that relaxes the constraint on the number of possible
U(M) that occur in matroids in the class.

Construction and properties of Ŝ

The construction of the class Ŝ depends heavily on the container theorem
for matroids, Theorem 6.6.2.

For all 0 < r < n, fix a function tn,r : M̃(n, r) → Zn as in Theo-
rem 6.6.2. We will use this collection of functions to define a function
t on M̃ that is invariant under isomorphism. Recall that a matroid
canonisation is a function fC : M → M, such that fC(M) ∼= M for all
M , and fC(M) = fC(M ′) if and only if M ∼= M ′. We may assume that
E(fC(M)) = [|M |] for all M . For the remainder of this section, fix a
matroid canonisation fC . With respect to fC , define

t : M̃→ Z≥0

M 7→ t|M |,rk(M)(fC(M))

The function t allows us to construct the class Ŝ:

Ŝ :=
{
M ∈ M̃ : t(M) ≤ 2ζ(|M |)

}
.

Note that t is invariant under isomorphism, so Ŝ is a class of matroids.

Theorem 6.8.1 follows by combining Lemma 6.8.2 and Lemma 6.8.3
below.

The value t(M) is related to the number of complex components
spanned by the nonbases of M . The intuition behind the definition of
Ŝ is that if t(M) is small, then U(M) has a concise description, while if
t(M) is large, then there are many different encodings (in the sense of
Theorem 6.6.2).
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Lemma 6.8.2. |M(n) \ Ŝ| = o(s(n)) as n → ∞. In particular, almost

every matroid is in Ŝ.

Proof. DefineM :=
{
M ∈ M̃ : t(M) > 2ζ(|M |)

}
, so that every matroid

is either in Ŝ, or inM, or has a loop or coloop. As almost every matroid
has no loops and coloops (Proposition 6.7.4), proving that M is small
is tantamount to proving the lemma.

Fix 0 < r < n; without loss of generality, we may assume that n is so
large that the conclusion of Lemma 6.7.1 holds. We bound mM(n, r).
By Theorem 6.6.2(vii), for each M ∈M∩M(n, r), there is an injective
one-to-many relation mapping fC(M) to at least 22ζ(n) triples (S,Z, S′),
where S and S′ are stable sets in J(n, r), and (S,Z) ∈ Z (n, r). It
follows that∣∣{fC(M) : M ∈M∩M(n, r)

}∣∣ ≤ z(n, r)s(n, r)2−2ζ(n)

≤ s(n, r)2−ζ(n). (6.24)

On the other hand,

mM(n, r) ≤ n!
∣∣{fC(M) : M ∈M∩M(n, r)

}∣∣ . (6.25)

Combining (6.24) with (6.25), summing over r yields

mM(n) ≤ n!2−ζ(n)s(n) = o(s(n)).

Lemma 6.8.3. log
∣∣∣{U(M) : M ∈ Ŝ ∩M(n, r)

}∣∣∣ ≤ Υ(n) for all 0 ≤
r ≤ n and n sufficiently large.

Proof. By Theorem 6.6.2(viii), there is an injective function{
U(fC(M)) : Ŝ ∩M(n, r)

}
→ Z (n, r)× Ind(J(n, r)) ,

mapping U(M) to a triple (S,Z, T ) which, by Theorem 6.6.2(v), satisfies
|T | = t(M) ≤ 2ζ(n). Using a crude bound on the number of such T , we
obtain

∣∣∣{U(fC(M)) : Ŝ ∩M(n, r)
}∣∣∣ ≤ z(n, r) b2ζ(n)c∑

i=0

((n
r

)
i

)

≤ exp2

(
ζ(n) + H

(
2ζ(n)(
n
n/2

) )( n

n/2

))
. (6.26)
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In addition,∣∣∣{U(M) : Ŝ ∩M(n, r)
}∣∣∣ ≤ n!

∣∣∣{U(fC(M)) : Ŝ ∩M(n, r)
}∣∣∣ . (6.27)

Combining (6.26) with (6.27) yields the desired result, as n! ≤ nn, and

H

(
2ζ(n)(
n
n/2

) )( n

n/2

)
≤ (4 + o(1))ζ(n) log n.

The following lemma shows that Ŝ essentially contains the sparse
paving matroids.

Lemma 6.8.4. S ∩ M̃ ⊆ Ŝ.

Proof. If M is a sparse paving matroid without loops or coloops, then
t(fC(M)) = 0, while ζ(|M |) > 0. It follows that M ∈ Ŝ.

There are many different collections of circuit-hyperplanes

We conclude this section by proving the following generic tool for show-
ing that a class of matroids is small. As each matroid on a given ground
set is determined by the pair (U(M),W(M)), combining a bound on
the number of possible collections W(M) that appear in the class with
the bound in Lemma 6.8.3 bounds the class itself.

Theorem 6.8.5. There exists a constant c > 0 such that if M⊆M is
a class of matroids satisfying

log |{W(M) : M ∈M∩M(n, r)}| ≤
(

1− c log3 n

n

)
log s(n), (6.28)

for all 0 ≤ r ≤ n and sufficiently large n, then mM(n) = o(s(n)). In
particular, M is small.

Proof. Let M be a class of matroids for which (6.28) holds. We show
that mM∩Ŝ(n) = o(s(n)), which, in view of Lemma 6.8.2, suffices to
prove the theorem.

Let Û(n, r) :=
{
U(M) : M ∈ Ŝ ∩M(n, r)

}
. For all 0 ≤ r ≤ n, the

map M 7→ (U(M),W(M)) is an injective function

M∩ Ŝ ∩M(n, r)→ Û(n, r)× {W (M) : M ∈M∩M(n, r)} ,

and hence

mM∩Ŝ(n, r) ≤
∣∣∣Û(n, r)

∣∣∣× |{W (M) : M ∈M∩M(n, r)}| .
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By Theorem 6.8.1, log
∣∣∣Û(n, r)

∣∣∣ ≤ Υ(n). The second factor is bounded

by (6.28), so it follows that

mM∩Ŝ(n, r) ≤ s(n) exp2

(
Υ(n)− c log3 n

n
log s(n)

)
.

Summing over r, it follows that

mM∩Ŝ(n) ≤ s(n) exp2

(
log(n+ 1) + Υ(n)− c log3 n

n
log s(n)

)
,

which is o(s(n)), provided that c is sufficiently large.
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chapter 7

Typical properties

This chapter is based on the journal papers [PvdP16c, PvdP16a],
which is joint work with Rudi Pendavingh.

7.1 In this chapter. . .

This chapter continues where the previous chapter ended. The class Ŝ
of matroids, introduced in Section 6.8, contains almost every matroid.
Therefore, in order to prove that a matroid property is typical, it suffices
to consider the fraction of matroids in Ŝ that satisfy the property. The
class Ŝ is more structured than the class of all matroids, and in this
chapter we explore the extra traction this additional structure provides
when proving statements about properties that hold for almost every
matroid. The results in this chapter prove some of the conjectures
posed in the introduction, and make progress on some of the remaining
conjectures.

In Section 7.2, we start this chapter with an analysis of the typical
number of bases in a matroid. The results obtained in that section are
then used to show that almost every matroid

• has rk(M) = |M |/2 ± O
(√
|M |

)
and girth Ω (log |M |) (Sec-

tion 7.3);

• has no nontrivial erections (Section 7.4);
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• has Tutte connectivity, vertical connectivity, and branch-width

Ω
(√

log |M |
)

(Section 7.5); and

• contains a U(k, 2k)-minor whenever k ≤ O (log |M |) (Section 7.6).

In Section 7.7, we consider symmetry. In particular, it is shown there
that almost every sparse paving matroid is asymmetric, while almost
every matroid is, in a precise sense, close to asymmetric.

7.2 The number of bases of almost every matroid

Recall that the nonbases K(M) of a matroid are partitioned into two
classes: the circuit-hyperplanesW(M), and U(M) := K(M)\W(M). In
this chapter, we write b(M) for the basis-density , i.e. if M is a matroid
of rank r on a ground set on n elements, then b(M) = |B(M)|/

(
n
r

)
.

The nonbasis-density d(M), and circuit-hyperplane-density w(M) are
defined similarly, and u(M) = d(M)− w(M). In this section, we prove
the following result on the nonbasis-density of almost every matroid.

Theorem 7.2.1. Almost every matroid M satisfies

Ω

(
1

|M |

)
≤ d(M) ≤ O

(
log3 |M |
|M |

)
.

The lower bound and upper bound are proved in Lemma 7.2.2 and
Lemma 7.2.8, respectively.

Almost every matroid has a few nonbases

In Lemma 6.5.3 we proved that the Johnson graph J(n, r) contains
many stable sets of the order 1

n

(
n
r

)
, provided r ≈ n/2. The following

lemma, which implies the lower bound in Theorem 7.2.1, uses this obser-
vation to show that almost every matroid has a large number of circuit-
hyperplanes. Let λ0 ≈ 0.22 be the unique solution to H (λ0/2) = 1/2
in (0, 1/2).

Lemma 7.2.2. Let 0 < λ < λ0. Almost every matroid satisfies w(M) ≥
λ
|M | .

Proof. Let M be the class of matroids with w(M) < λ
|M | . For all

0 ≤ r ≤ n,∣∣{W (M) : M ∈M∩M(n, r)
}∣∣ = ind

(
J(n, r), <

λ

n

(
n

r

))
.
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By Lemma 6.5.3, since λ < λ0 there exists ε > 0 such that

ind

(
J(n, r),≤ λ

n

(
n

r

))
≤ (1− ε) log s(n) ≤ (1− ε) logm(n)

for all sufficiently large n. The lemma now follows from Theorem 6.8.5.

Almost every matroid has few nonbases

As d(M) = u(M) + w(M), bounding each of the terms separately suf-
fices to bound d(M). The following lemma shows that the difficulty in
proving the upper bound lies in bounding u(M).

Lemma 7.2.3. For any matroid M , w(M) ≤ 2
|M | .

Proof. Let r = rk(M). As W(M) is a stable set in the Johnson graph,
it follows that w(M) ≤ α(J(n, r)), where α(G) is the stability ra-
tio of G. By the Hoffman bound (see Remark 6.3.4), α(J(n, r)) ≤

1
max{n−r+1,r+1} ≤

2
n , which proves the lemma.

It remains to bound u(M), for which we require a few preliminary
results.

A graph is called vertex-transitive if, for any pair of vertices v, w,
it has an automorphism mapping v to w. We will apply the following
lemma to the Johnson graph J(n, r), which is a vertex-transitive graph.
Its proof relies on entropy, in particular on Shearer’s Entropy Lemma,
which was discussed in Chapter 3.

Lemma 7.2.4. Let G be a vertex-transitive graph, and let U ⊆ V (G).
Then

log ind(G)

|V (G)|
≤ log ind(G[U ])

|U |
.

Proof. Let Γ = Aut(G). For any group element g ∈ Γ, write g(U) :=
{g(u) : u ∈ U} for the image of U under g, and consider the collection
Γ(U) := (g(U) : g ∈ Γ). As Γ acts transitively on V (G), we have

|{g ∈ Γ : v ∈ g(U)} = |Γ| |U ||V (G)| for each v ∈ V (G), and so each vertex

is contained in precisely |Γ| |U ||V (G)| elements of Γ(U).

Let X be an element of Ind(G), chosen uniformly at random, so
H (X) = log ind(G). For A ⊆ V (G), X ∩A ∈ Ind(G[A]); such sets are
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projections in the sense of Shearer’s Entropy Lemma. We thus obtain

log ind(G) = H (X) ≤ |V (G)|
|U ||Γ|

∑
g∈Γ

H (X ∩ g(U))

≤ |V (G)|
|U ||Γ|

∑
g∈Γ

log ind(G[g(U)]) .

The lemma now follows since G[g(U)] ∼= G[U ] for all g ∈ Γ.

For disjoint vertex sets U,U ′ in G, write ∇(U,U ′) for the set of edges
with one end point in U and U ′ each.

Lemma 7.2.5. Let G be a graph, and let U,U ′ ⊆ V (G) be such that
∇(U,U ′) = ∅. Then

log ind(G[U ]) + log ind(G[U ′]) ≤ log ind(G) .

Proof. If S is a stable set in G[U ], and S′ is a stable set in G[U ′], then
S ∪ S′ is a stable set in G, since ∇(S, S′) = ∅. As (S, S′) 7→ S ∪ S′ is
injective, the claim follows.

The following lemma shows that few matroids satisfy U(M) = U ,
when |U | is large.

Lemma 7.2.6. For all 0 ≤ r ≤ n and all 0 ≤ u ≤ 1, if U ⊆
(

[n]
r

)
is

such that |U |/
(
n
r

)
≥ u, then

log
∣∣{M ∈M(n, r) : U(M) = U

}∣∣ ≤ (1− u) log s(n, r).

Proof. Fix a collection U such that |U |/
(
n
r

)
≥ u. A matroid M ∈

M(n, r) such that U(M) = U is determined by its collection W(M) of
circuit-hyperplanes. Write G := J(n, r), and let U ′ := V (G) \ (U ∪
N(U)). The collection W(M) is a stable set in G[U ′]; in the other
direction, any stable set in G[U ′] appears as the collection of circuit-
hyperplanes of a matroid M ∈M(n, r) such that U(M) = U . It follows
that

log
∣∣{M ∈M(n, r) : U(M) = U

}∣∣ = log ind(G[U ′]) , (7.1)

which by Lemma 7.2.5 is at most

log ind(G)− log ind(G[U ]) . (7.2)

By Lemma 7.2.4,

log ind(G[U ]) ≥ u log ind(G) , (7.3)

and the lemma now follows upon combining (7.1)–(7.3) with the obser-
vation that ind(G) = s(n, r).
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We are now ready to prove an upper bound on u(M) that holds for
almost every matroid. Recall the definition of Υ(n) in (6.23), and define

υ(n) :=
Υ(n) + 2 log(n+ 1)

log s(n)
.

As Υ(n) = O
(

log3 n
n2

(
n
n/2

))
, and log s(n) ≥ 1

n

(
n
n/2

)
, it follows that

υ(n) = O
(

log3 n
n

)
.

Lemma 7.2.7. Almost every matroid satisfies u(M) ≤ υ(|M |).

Proof. Let M be the class of matroids with u(M) > υ(|M |). We will

show thatM is small. Let Ŝ be the class of matroids in Theorem 6.8.1.
As almost every matroid is in Ŝ, it suffices to show thatM∩ Ŝ is small.

Let U(n, r) := {U(M) : M ∈ Ŝ ∩ M(n, r)}. Partitioning the set

M∩ Ŝ ∩M(n, r) by the value of U(M), it follows that

|M ∩ Ŝ ∩M(n, r)| ≤
∑

U∈U(n,r):

|U |>υ(n)(nr)

∣∣{M ∈M(n, r) : U(M) = U
}∣∣ . (7.4)

By Theorem 6.8.1, log |U(n, r)| ≤ Υ(n). This bounds the number of
terms in the right-hand side of (7.4), while Lemma 7.2.6 bounds each
of the terms, as

log
∣∣{M ∈M(n, r) : U(M) = U

}∣∣ ≤ (1− υ(n)) log s(n, r)

for each U ∈ U(n, r) such that |U | > υ(n)
(
n
r

)
. Combining these bounds

with (7.4), we obtain

log |M ∩ Ŝ ∩M(n, r)| ≤ Υ(n) + (1− υ(n)) log s(n, r)

≤ log s(n)− 2 log(n+ 1),

and hence |M∩ Ŝ∩M(n, r)| ≤ s(n)
(n+1)2 . Summing over r, and using that

m(n) ≥ s(n), we find that

|M ∩ Ŝ ∩M(n, r)|
m(n)

≤ 1

n+ 1
→ 0,

thus proving that M is small.

We are now ready to prove the upper bound of Theorem 7.2.1.

Lemma 7.2.8. Almost every matroid satisfies d(M) = O
(

log3 |M |
|M |

)
.
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Proof. By Lemma 7.2.3, w(M) ≤ 2/|M | for all matroids M , while by
Lemma 7.2.7, almost every matroid satisfies u(M) ≤ υ(|M |). Combin-
ing the two observations, we obtain that almost every matroid satisfies

d(M) = u(M) + w(M) ≤ υ(|M |) +
2

|M |
.

The lemma follows as υ(n) = O
(

log3 n
n

)
as n→∞.

7.3 Rank, girth, and cogirth

In this section, we show that almost every matroid has rank asymptotic
to |M |/2, and girth and cogirth at least Ω (log |M |).

Theorem 7.3.1. For all β >
√

ln 2
2 ≈ 0.589 . . ., almost every matroid

satisfies
|M |

2
− β

√
|M | ≤ rk(M) ≤ |M |

2
+ β

√
|M |.

Proof. Fix β >
√

ln 2
2 , and let r0 =

⌊
n
2 − β

√
n
⌋
. We will show that

lim
n→∞

1

m(n)

∑
r≤r0

m(n, r) = 0, (7.5)

which, by duality, implies the theorem. By Lemma 6.7.2, logm(n, r) ≤
z(n, r) + 1

n−r+1

(
n
r

)
, which by Lemma 6.7.1 is at most ζ(n) + 1

n−r+1

(
n
r

)
for sufficiently large n. This implies

log
∑
r≤r0

m(n, r) ≤ log(r0 + 1) + ζ(n) + max
r≤r0

1

n− r + 1

(
n

r

)

≤ log(n) + ζ(n) +
1

n− r0 + 1

(
n

r0

)
=

2 + o(1)

n

(
n

n/2

)
exp

(
−2β2

)
,

(7.6)

where the last step uses Lemma 2.2.1 to bound
(
n
r0

)
. Combining (7.6)

with the bound logm(n) ≥ 1
n

(
n
n/2

)
, we obtain

log

∑
r≤r0 m(n, r)

m(n)
≤
(

(2 + o(1))e−2β2

− 1
) 1

n

(
n

n/2

)
→ −∞,

which implies (7.5) and hence proves the theorem.
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Recall that the girth g(M) of the matroid M is the cardinality of a
smallest circuit in M (and g(M) =∞ if M does not have any circuits).
Small circuits yield large complex components, i.e. large sets of nonbases
that induce connected subgraphs of J(n, r). The resulting lower bound
on u(M), and hence on the nonbasis-density d(M), is made precise in
the following lemma.

Lemma 7.3.2. Let M ∈ M(n, r). If M has a circuit of cardinality

k < r, then u(M) ≥
(
r−k
n

)k
.

Proof. If C is a circuit of M , then each X ∈
(

[n]
r

)
that contains C is

dependent. Such dependent sets induce a connected subgraph of J(n, r),

and so
{
X ∈

(
[n]
r

)
: C ⊆ X

}
⊆ U(M). If C has cardinality k, then

u(M) ≥
(
n− k
r − k

)/(
n

r

)
≥
(
r − k
n

)k
.

In the following result, we write g∗(M) := g(M∗) for the cogirth of
the matroid M .

Theorem 7.3.3. For all c < 1, almost every matroid satisfies g(M) ≥
c log |M | and g∗(M) ≥ c log |M |.

Proof. We will show that almost all matroids satisfy g(M) ≥ c log |M |.
The claim about cogirth then follows by duality. Let M be defined as

M :=

{
M ∈M :

∣∣∣∣rk(M)− |M |
2

∣∣∣∣ ≤√|M |, u(M) ≤ υ(|M |)
}
.

By Lemma 7.2.7, almost every matroid satisfies u(M) ≤ υ(|M |),
and by Theorem 7.3.1 almost every matroid satisfies | rk(M)−|M |/2| ≤√
|M |. It follows that almost every matroid is in M.

We show that matroids in M∩M(n) cannot have small girth, pro-
vided n is sufficiently large, which implies the theorem. For the sake of
contradiction, suppose that some matroid M ∈ M ∩M(n) contains a
circuit of cardinality k < c log n. By Lemma 7.3.2,

u(M) ≥
(

rk(M)− k
n

)k
≥ 2−k−1

for sufficiently large n. It follows that

2−k−1 ≤ υ(n) = O

(
log3 n

n

)
,

which fails for large n: a contradiction.
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The following result was shown before by Lowrance, Oxley, Semple,
and Welsh [LOSW13, Corollary 3.3] and generalises [MNWW11, The-
orem 2.3]. It follows from Theorem 7.3.3 since a matroid is simple and
cosimple precisely when both its girth and cogirth are at least 3.

Corollary 7.3.4. Almost every matroid is simple and cosimple.

7.4 Nontrivial erections

Recall that T (N) denotes the truncation of the matroid N , and in the
other direction, that N is an erection of M if M = N or M = T (N).
In the former case, we say that N is a trivial erection; otherwise it is
nontrivial. Matroid erections play a central role in Chapter 5.

Theorem 7.4.1. Almost every matroid has only the trivial erection.

Proof. Let M be the class of matroids that have a nontrivial erection.
We will show that M is small.

Note thatM∩M(n) = {T (M) : M ∈M(n)}. If M ′ is obtained from
M by relaxing a circuit-hyperplane, then T (M ′) = T (M). It follows
that M∩M(n) = {T (M) : M ∈M(n),W(M) = ∅}, and therefore that

|M ∩M(n)| ≤ |{M ∈M(n) :W(M) = ∅}|.

By Lemma 7.2.2, the right-hand side is o(m(n)), which concludes the
proof.

7.5 Connectivity and branch-width

In ths section, we address Conjecture 1.3.8, which states that almost
every matroid is arbitrarily highly connected. We prove the following
strong version of the conjecture.

Theorem 7.5.1. There exists a constant c > 0 such that almost every
matroid has connectivity at least c

√
log |M |.

Two notions that are related to connectivity are vertical connectivity
and branch-width, defined below. As a corollary to Theorem 7.5.1, we
obtain that almost every matroid has vertical connectivity and branch-

width at least Ω
(√

log |M |
)

as well.
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Connectivity

We require the following easy property of connectivity.

Lemma 7.5.2. If {A,B} is a k-separation of M , then A is dependent
or codependent.

Proof. We argue by contradiction. Suppose that A is both independent
and coindependent. Then rk(A) = |A|, and rk(B) = r. It follows that

k ≥ λ(M) = rk(A) + rk(B)− r + 1 = |A|+ 1 ≥ k + 1,

which cannot be. So A must be dependent or codependent.

The main technical work required for proving Theorem 7.5.1 is con-
tained in the following lemma, which essentially states that low-order
separations give rise to large collections of nonbases, provided that the
matroid has large girth and cogirth.

Lemma 7.5.3. Let G : Z≥0 → R≥0 be a function. There exists c > 0
such that for sufficiently large n, and all r satisfying n/2 −

√
n ≤ r ≤

n/2 +
√
n: if M ∈ M(n, r) has girth and cogirth at least G(n), and M

has a k-separation {A,B}, then u(M) ≥ 1− ck
√

n
G(n)(n−G(n)) .

Proof. Let M ∈ M(n, r) be a matroid with girth and cogirth at least
G(n), and let {A,B} be a k-separation of M . We exhibit a large subset
of U(M), which proves the lemma.

In order to build this large subset, define

US :=

{
X ∈

(
[n]

r

)
: |X ∩ S| > rk(S)

}
, S ∈ {A,B}.

If X ∈ UA ∪UB , then X is a nonbasis. Thus, d(M) ≥ 1− q/
(
n
r

)
, where

q is the number of r-sets outside UA ∪ UB . Writing a := |A|, we obtain

q =
∑

s:s≤rk(A)

r−s≤rk(B)

(
a

s

)(
n− a
r − s

)
(7.7)

As k ≥ λ(A) = rk(A) + rk(B) − r + 1, it follows that the sum in (7.7)
has at most k terms, so

q ≤ kmax
s

(
a

s

)(
n− a
r − s

)
≤ k

(
a

a/2

)(
n− a

(n− a)/2

)
.
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Bounding the central binomial coefficients on the right-hand side, we
obtain

q ≤ k 2

π

(
2a√
a

)(
2b√
b

)
≤ 2k

√
2

π

√
n

ab

(
n

n/2

)
.

By 2.2.1, there is a constant c′ > 0 such that
(
n
n/2

)
≤ c′

(
n
r

)
for all r

satisfying |r − n/2| ≤
√
n. Hence

d(M) = 1− q(
n
r

) ≥ 1− 2c′k
√

2π

√
n

ab
. (7.8)

By Lemma 7.5.2, both sides of a separation contain a circuit or a
cocircuit, so by the assumption on girth and cogirth, it follows that
a, b ≥ G(n). As a + b = n, it follows that ab ≥ G(n) (n−G(n)),
which, together with (7.8), implies the conclusion of the lemma with
c := 2c′

√
2π.

We are now ready to prove Theorem 7.5.1.

Proof of Theorem 7.5.1. For c > 0, define

Mc :=
{
M ∈M : M has a k-separation {A,B} with k ≤ c

√
log |M |

}
.

We shall show that there exists c such that Mc is small. By The-
orem 7.3.1, almost every matroid satisfies |rk(M)− |M |/2| ≤

√
|M |,

and by Theorem 7.3.3, there exists c′ > 0 such that almost every ma-
troid M has girth and cogirth at least c′ log |M |. Thus, it suffices to
show that M′c is small, where

M′c :=

{
M ∈Mc :

g(M), g∗(M) ≥ c′ log |M |
|rk(M)− |M |/2| ≤

√
|M |

}

By Lemma 7.5.3, there exists a constant c′′ > 0 such that

u(M) ≥ 1− c′′k√
log n

≥ 1− c′′c

for all M ∈ M′c ∩M(n), provided that n is sufficiently large. Picking
any c < 1/c′′, it follows that 1− c′′c > 0 for all M ∈M′c ∩M(n) and n
sufficiently large. It follows from Theorem 7.2.1 that M′c is small, and
this concludes the proof.
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Vertical connectivity

Vertical connectivity is a variant notion of connectivity that is some-
times more convenient to use than Tutte connectivity. Let k ≥ 1. A
vertical k-separation of M is a partition {A,B} of E(M) such that
rk(A), rk(B) ≥ k, and rk(A) + rk(B) < rk(M) +k. The vertical connec-
tivity of M is1

λv(M) := min {k : M has a vertical k-separation} .

The only way in which a vertical k-separation is different from a
k-separation is the requirement that rk(A), rk(B) ≥ k, which replaces
the requirement that |A|, |B| ≥ k. It follows that λv(M) ≥ λ(M). The
following result gives a stronger connection between the two quantities.

Proposition 7.5.4 ([Oxl11, Theorem 8.6.4]). Let M be a matroid, and
suppose that M is not isomorphic to any uniform matroid U(r, n) with
n ≥ 2r − 1. Then

λ(M) = min {λv(M) , g(M)} .

Combining Proposition 7.5.4 with the results that almost every ma-
troid has high Tutte connectivity (Theorem 7.5.1) and high girth (The-
orem 7.3.3) shows that almost every matroid has high vertical connec-
tivity.

Corollary 7.5.5. There exists c > 0 such that almost every matroid
satisfies λv(M) ≥ c

√
log |M |.

Branch-width

The branch-width bw(M) of a matroid M measures, roughly, how tree-
like it is; see [Oxl11, Section 14.2] for a definition. The following result
links branch-width and connectivity.

Proposition 7.5.6 ([Dha96, Lemma 4.3]). Let k ≥ 3, and suppose that
λ(M) ≥ k. Then bw(M) ≥ k if and only if |M | ≥ 3k − 5.

Combining the proposition with Theorem 7.5.1 immediately implies
that almost every matroid has high branch-width.

Corollary 7.5.7. There exists c > 0 such that almost every matroid
has branch-width at least c

√
log |M |.

1Our notation deviates from that of Oxley [Oxl11]. There, κ(M) is used for
vertical connectivity, which in this thesis is already used for cover complexity.
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7.6 Large uniform minors

Recall Conjecture 1.3.5, which we restate here for convenience.

Conjecture 1.3.5 ([MNWW11, Conjecture 1.7]). Let N be a sparse
paving matroid. Almost every matroid has an N -minor.

In this section, we address the special case of Conjecture 1.3.5, in
which N is a uniform matroid. In Chapter 3 and Chapter 4, we already
proved that almost all matroids contain an arbitrarily long line, as well
as U(3, 6), as minors. Here, we vastly improve upon these results. In
particular, we prove the following theorem.

Theorem 7.6.1. Let c > 5/2. Almost every matroid has a U(k, 2k)-
minor, whenever k ≤ 1

2 (log |M | − c log log |M |).

Note that, if N is any fixed uniform minor, Theorem 7.6.1 shows
that almost every matroid contains N as a minor, thus proving Conjec-
ture 1.3.5 for this special case.

Theorem 7.6.1 follows as a special case of the more general Theo-
rem 7.6.3 below. The crux of the argument is that if a matroid M does
not have U(a, b) as a minor, then the rk(M)-subsets of E(M) cannot
contain a large connected area consisting solely of bases, as such an
area gives rise to a U(a, b)-minor. When a and b are not too large, this
results in a fraction of nonbases that is much larger than the fraction of
nonbases of a typical matroid, thus showing that only a small fraction
of matroids have no U(a, b)-minor. This is made precise in the following
lemma.

Lemma 7.6.2. Let 0 ≤ a ≤ b and 0 ≤ r ≤ n be integers satisfying
a ≤ r and b− a ≤ n− r. If M ∈M(n, r) is a matroid such that U(a, b)
is not a minor of M , then d(M) ≥ 1/

(
b
a

)
.

Proof. Let C,D ⊆ E(M) be such that |C| = r−a, |D| = (n−r)−(b−a),
and C ∩D = ∅. Define

[C;D] :=

{
X ∈

(
E(M)

r

)
: C ⊆ X,D ∩X = ∅

}
.

If C is dependent, then clearly all X ∈ [C;D] are dependent; similarly,
if D is codependent, then all X ∈ [C;D] are dependent. If C is inde-
pendent and D is coindependent, then M/C\D is a minor of rank a on
the set E \ (C ∪D) of cardinality b. By assumption, this minor cannot
be uniform, and so at least one set Y ⊆ E \ (C ∪D) with |Y | = a is a
nonbasis of M/C\D. For such a set Y , it follows that Y ∪C ∈ [C;D] is
dependent. Summarising, at least one of the

(
b
a

)
elements of [C;D] is a
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nonbasis of M . Summing over all pairs (C,D), we obtain that at least

a 1/
(
b
a

)
-fraction of the elements in

(
E(M)
r

)
are nonbases.

The following theorem uses Lemma 7.6.2 to show that, under certain
conditions on a and b, almost every matroid has a U(a, b)-minor.

Theorem 7.6.3. There is a constant c > 0 for which the following
holds: If a ≡ a(n) and b ≡ b(n) are integer functions satisfying 0 ≤ a ≤
b, and

(
b
a

)
≤ c n

log3 n
for all n ≥ n0, then almost every matroid has a

U(a(|M |), b(|M |))-minor.

Proof. Let M be the class of matroids with d(M) ≤ υ(|M |) + 2/|M |.
By Lemma 7.2.7 and Lemma 7.2.3, almost every matroid is inM, so to
prove the theorem, it suffices to show that matroids in M∩M(n) have
a U(a, b)-minor, whenever n is sufficiently large.

As υ(n) + 2/n = O
(

log3 n
n

)
, there exist c′ > 0 and n1 such that

υ(n) + 2/n < log3 n
c′n for all n ≥ n1. Let n ≥ max{n0, n1}, and let

M ∈ M ∩M(n). For the sake of contradiction, suppose that M does
not have a U(a, b)-minor. By Lemma 7.6.2, we have

log3 n

cn
≤ 1/

(
b

a

)
≤ d(M) ≤ υ(M) + 2/n ≤ log3 n

c′n
,

which fails if we choose c < c′. In that case, M must have a U(a, b)-
minor.

Theorem 7.6.1 follows as a special case of Theorem 7.6.3. It also
follows as a special case that almost every matroid contains a very long
line as a minor.

Corollary 7.6.4. There exists a constant c > 0 such that, asymptoti-
cally, almost every matroid on n elements has a U(2, k)-minor, where

k = c
√
n

log3/2 n
.

7.7 Symmetry

In this section, we describe progress on Conjecture 1.3.4, which we re-
peat here for convenience.

Conjecture 1.3.4 ([MNWW11, Conjecture 1.2]). Almost every
matroid is asymmetric.
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We present two partial resolutions to this conjecture. The first re-
sult states that almost every matroid is, in a precise sense, close to
being asymmetric. A transposition is a permutation that exchanges
two elements of the ground set.

Theorem 7.7.1. Almost every matroid has an automorphism group
that is either trivial or generated by a transposition.

Our methods are not sufficiently strong to preclude the possibility
of automorphisms generated by transpositions in general matroids. The
class of sparse paving matroids offers considerably more traction, and
we are able to prove Conjecture 1.3.4 for this class of matroids.

Theorem 7.7.2. Almost every sparse paving matroid is asymmetric.

Theorem 7.7.1 stops just short of proving Conjecture 1.3.4. At the
end of this section, we investigate how close to proving the full conjec-
ture we are. In particular, we prove the following connection between
Conjecture 1.3.4 and the problem of enumerating matroids.

Theorem 7.7.3. If lim inf
n→∞

logm(n)
1
n ( n

n/2)
> 1 or lim sup

n→∞

logm(n)
1
n ( n

n/2)
< 2, then

almost every matroids is asymmetric.

Notation and terminology

Before proving Theorem 7.7.1 and Theorem 7.7.2, we establish some
additional notation that is required in this section.

We write Sym(n) for the symmetric group on [n], and id for the iden-
tity element in this group. Elements of Sym(n) are called permutations;
throughout this section, π will always be a permutation.

The order of π, denoted Ord(π), is defined as the smallest positive
integer k such that πk = id. We write Supp(π) := {e ∈ [n] : π(e) 6= e}
for the support of π.

A permutation π is a cycle if there exists a subset {e1, e2, . . . , ek} ⊆
[n] such that π(ei) = ei+1 for i = 1, 2, . . . , k − 1, and π(ek) = e1,
while π fixes every other element. If this is the case, then we write π =
(e1, e2, . . . , ek). It is clear that Supp(π) = {e1, e2, . . . , ek} in this case.
A cycle π = (e1, e2), whose support contains precisely two elements, is
called a transposition.

Every permutation π admits a representation as a product of disjoint
cycles, i.e. π = γ1γ2 . . . γM , with γi a cycle for each i, and Supp(γi) ∩
Supp(γj) = ∅ whenever i 6= j. This is called the disjoint cycle decom-
position of π. A cycle of length 1 is simply a fixed point of π; we will
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always suppress such cycles in the disjoint cycle decomposition. The
disjoint cycle decomposition is unique up to the order of the factors.

The group Sym(n) acts pointwise on
(

[n]
r

)
; if X ∈

(
[n]
r

)
, then we

write π(X) := {π(x) : x ∈ X}. For π ∈ Sym(n) and X ∈
(

[n]
r

)
, we

write Orbπ(X) := {X,π(X), π2(X), . . .}; we suppress the subscript π
if the permutation if clear from the context. Clearly, the cardinality of
Orbπ(X) is at most the order of π, and in fact |Orbπ(X)| always divides
Ord(π). Note that Orbπ(X) is a singleton if and only if π(X) = X.

A subset X ⊆
(

[n]
r

)
is called π-invariant if π(X) ∈ X for all X ∈ X .

This is the case precisely when X is the union of π-orbits.

It follows from Proposition 2.6.1 that every π ∈ Sym(n) is an auto-
morphism of the Johnson graph J(n, r). The image of a stable set under
π is again a stable set, and we write ind(J(n, r);π) for the number of
π-invariant stable sets in J(n, r).

Outline of the proof

We write M(n, r;π) for the rank-r matroids on [n] that have π as an
automorphism, i.e.

M(n, r;π) := {M ∈M(n, r) : π ∈ Aut(M)},

and M(n;π) :=
⋃n
r=0 M(n, r;π). Moreover, for any subset Σ ⊆ Sym(n),

we define M(n, r; Σ) =
⋃
π∈Σ M(n, r;π), and M(n; Σ) :=

⋃
π∈Σ M(n;π).

Lowercase letters are used to denote cardinalities, e.g. m(n, r;π) :=
|M(n, r;π)|, and so on.

Analogously, we write S(n, r;π) for the sparse paving matroids in
S(n, r) that have π as an automorphism, s(n, r;π) for its cardinality,
and so on.

Two sets of permutations play a prominent role; these are

Σ≥3 := {π ∈ Sym(n) : |Supp(π)| ≥ 3} , and

Σ2 := {π ∈ Sym(n) : |Supp(π)| = 2} .

Note that Σ2 is precisely the set of transpositions in Sym(n). We prove
the following lemmas.

Lemma 7.7.4. m (n; Σ≥3) = o(s(n)) as n→∞.

Lemma 7.7.5. s (n; Σ2) = o(s(n)) as n→∞.

It is easily seen that Lemma 7.7.4 and Lemma 7.7.5 together imply
Theorem 7.7.1 and Theorem 7.7.2.
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Interestingly, Lemma 7.7.4 and Lemma 7.7.5 are proved using dif-
ferent approaches. A central role in the proof of Lemma 7.7.4 will
be played by the circuit-hyperplanes of matroids whose automorphism
groups contain a given permutation π. Such circuit-hyperplanes form a
π-invariant stable set in J(n, r), and we show that there are few such
stable sets. On the other hand, Lemma 7.7.5 is proved by showing that
if π ∈ Σ2, then each π-invariant sparse paving matroid gives rise to a
large number of sparse paving matroids that are not π-invariant and
from which the original matroid can be reconstructed.

Permutations that move at least three elements

Let M ∈M(n, r), and π ∈ Sn. Observe that if π ∈ Aut(M), thenW(M)
is a π-invariant stable set in J(n, r). In the other direction, every π-
invariant stable set in J(n, r) corresponds to a sparse paving matroid
that has π as an automorphism, so∣∣{W(M) : M ∈M(n, r;π)

}∣∣ = ind(J(n, r);π) .

We show that if π ∈ Σ≥3, then the number of π-invariant stable sets
in J(n, r) is small—so small in fact, that even after summing over
all π ∈ Σ≥3, the resulting bound on |{W(M) : M ∈ M(n, r; Σ≥3)}|
is sufficiently small for an application of Theorem 6.8.5, which then
implies Lemma 7.7.4.

For a permutation π ∈ Sn, write

F (π) :=

{
X ∈

(
[n]

r

)
: π(X) = X

}
for the collection of r-sets that are fixed under π. Recall that we use
Ind(J(n, r);π) for the collection of all π-invariant stable sets in J(n, r);
we identify two special subsets of Ind(J(n, r);π), namely

Ind0(J(n, r);π) := {I ∈ Ind(J(n, r);π) : I ⊆ F (π)} ,

and

Ind+(J(n, r);π) := {I ∈ Ind(J(n, r);π) : I ∩ F (π) = ∅} .

Each I ∈ Ind(J(n, r);π) is partitioned as I = I0 ∪ I+, where I0 :=
I ∩ F (π) ∈ Ind0(J(n, r);π), and I+ := I \ F (π) ∈ Ind+(J(n, r);π). We
use lower case letters to denote cardinality, so

ind0(J(n, r);π) := | Ind0(J(n, r);π) |,

and

ind+(J(n, r);π) := | Ind+(J(n, r);π) |.
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It follows that

ind(J(n, r);π) = ind0(J(n, r);π) × ind+(J(n, r);π) .

Hence, in order to bound ind(J(n, r);π), it suffices to bound the two
factors on the right-hand side separately.

The following lemma bounds ind0(J(n, r);π) in terms of stable sets
in smaller Johnson graphs.

Lemma 7.7.6. For all 0 ≤ r ≤ n, if π ∈ Sn has a disjoint cycle
decomposition π = γ1γ2 . . . γM , in which γj has length `j = |Supp(γj)|,
then

log ind0(J(n, r);π) ≤ 2M log s(n−m),

where m = |Supp(π)|.

Proof. If X ∈ F (π), then for each j ∈ [M ] either Supp(γj) ∩X = ∅, or
Supp(γj) ⊆ X. Let

PJ :=

X ∈
(

[n]

r

)
: X ∩ Supp(π) =

⋃
j∈J

Supp(γj)

 .

The subgraph of J(n, r) induced by PJ is isomorphic to J(n −m, r′),
where r′ = r −

∑
j∈J `j .

If X ∈ F (π), then there exists a unique J ⊆ [M ] such that X ∈ PJ .
It follows that if I ∈ Ind0(J(n, r);π), then {I∩PJ : J ⊆ [M ]} partitions
I. As each I ∩ PJ is a stable set in J(n, r)[PJ ], it follows that,

log ind0(J(n, r);π) ≤
∑
J⊆[M ]

log ind

J
n−m, r −∑

j∈J
`j

 .

The lemma now follows since ind(J(n−m, r′)) ≤ s(n−m) for all r′.

Lemma 7.7.7. max
π∈Σ≥3

0≤r≤n

log ind0(J(n, r);π) ≤
(

1
2 +o(1)

)
log s(n) as n→∞.

Proof. By Lemma 7.7.6, log ind0(J(n, r);π) ≤ 2M log s(n −m), where
m = |Supp(π)| and M is the number of cycles in the disjoint cycle
representation of π, for all π ∈ Sn and all 0 ≤ r ≤ n. As M ≤ bm/2c,
it follows that

max
π∈S≥3

0≤r≤n

log ind0(J(n, r);π) ≤ max
3≤m≤n

2bm/2c log s(n−m). (7.9)
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It remains to bound the right-hand side of (7.9). First, we focus on the
case that m is large, i.e. m ≥

⌈
2n
3

⌉
. We have

max
d 2n

3 e≤m≤n
2bm/2c log s(n−m)

≤ 2bn/2c log s(bn/3c)

≤ 2bn/2c
6 + o(1)

n

(
bn/3c
bn/6c

)
by Theorem 6.5.2

≤ 6
√

3 + o(1)

n

(
n

bn/2c

)
2−n/6 by (2.1)

= o(log s(n)),

(7.10)

where the final step follows since log s(n) ≥ 1
n

(
n
n/2

)
.

Next, consider the case that m is small, i.e. 3 ≤ m ≤
⌊

2n
3

⌋
. As n−

m→∞, an application of Theorem 6.5.2 shows that

2bm/2cs(n−m) ≤ 2bm/2c
2 + o(1)

n−m

(
n−m⌊
n−m

2

⌋),
which, by (2.1), is at most

2bm/2c
2 + o(1)

n−m

√
n

n−m
2−m

(
n

bn/2c

)
≤ 2−dm/2e(2 + o(1))

(
n

n−m

)3/2

log s(n),

so that

max
3≤m≤b 2n

3 c
2bm/2cs(n−m) ≤ (1/2 + o(1)) log s(n). (7.11)

Combining (7.10) and (7.11) with (7.9) proves the lemma.

Observe that if I is a π-invariant stable set, and I ′ ⊆ I contains at
least one vertex from each π-orbit that is contained in I, then I can be
reconstructed by closing I ′ under π-images. This observation is used to
prove the following lemma.

Lemma 7.7.8. There exists ε > 0 such that for sufficiently large n and
all 0 ≤ r ≤ n, if π ∈ Σ≥3, then log ind(J(n, r);π) ≤ (1− ε) log s(n).

Proof. For a π-invariant stable set I in J(n, r), let us write λ(I) for
the number of “large” orbits that it contains (i.e. orbits consisting of at
least two vertices).
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Let Λ := 1
13 log s(n). Call I “complex” if λ(I) > Λ. Either the

majority of π-invariant stable sets is complex, or the majority is non-
complex. We show that ind(J(n, r);π) is small either way.

Case I: Most π-invariant stable sets are complex. Each complex set
gives rise to at least 3λ(I) ≥ 3Λ stable sets, since we can take any non-
empty subset from each large orbit. By the previous paragraph, I can
be reconstructed from each such subset. Hence, if at least half of the
π-invariant stable sets are complex, then

ind(J(n, r);π) ≤ 2 ind(J(n, r)) 3−
1
13 log s(n) ≤ 2s(n)1− log 3

13 ,

and the lemma follows.

Case II: Most π-invariant stable sets are non-complex. Suppose that
at least half of the π-invariant stable sets are non-complex, i.e. λ(I) ≤ Λ.
Recall that each π-invariant stable set I can be written as the disjoint
union of I0 ∈ ind0(J(n, r);π) and I+ ∈ ind+(J(n, r);π). We bound
separately the number of I0 and I+ associated with non-complex I in
this way.

Note that I+ can be reconstructed from a stable set of size λ(I+) =
λ(I) ≤ Λ: such a set can be constructed by restricting I+ to a set con-
taining a single vertex from each of its orbits, and I+ can be obtained
from this subset by closing it under π-images. Thus, the number of pos-
sible I+ is at most ind(J(n, r),≤ Λ), which is bounded by Lemma 6.5.3.
We obtain that, for sufficiently large n, the logarithm of the number of
possible I+ is at most

log ind(J(n, r),≤ Λ) ≤ 0.48 log s(n). (7.12)

An application of Lemma 7.7.7 shows that, for sufficiently large n,

log ind0(J(n, r);π) ≤ 0.51 log s(n). (7.13)

Combining (7.12) and (7.13) shows that

log ind(J(n, r);π) ≤ 1 + 0.48 log s(n) + 0.51 log s(n),

which proves the lemma.

We are now ready to prove Lemma 7.7.4.

Proof of Lemma 7.7.4. By (7.7),

|{W(M) : M ∈M(n, r; Σ≥3)}| ≤
∑

π∈Σ≥3

ind(J(n, r);π) .
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The number of terms in the last summation is at most |Σ≥3| ≤ n! ≤
nn, while (at least for large n) each term separately is bounded by
Lemma 7.7.8. Thus, there exists ε > 0 such that, for sufficiently large n,

log |{W(M) : M ∈M(n, r; Σ≥3)}|
≤ n log n+ (1− ε) log s(n) ≤ (1− ε/2) log s(n),

for all 0 ≤ r ≤ n. The lemma now follows from an application of
Theorem 6.8.5.

Transpositions

Let π = (e, f) ∈ Σ2 be a transposition. Recall that (π-invariant) sparse
paving matroids of rank r on ground set [n] are in one-to-one corre-
spondence with (π-invariant) stable sets in J(n, r). The main step in
the proof of Lemma 7.7.5 is showing that we can associate to any π-
invariant stable set in J(n, r) a large family of stable sets that are not
π-invariant.

The transposition π partitions the vertex set of J(n, r) into four
classes, based on the intersection with the set {e, f}. Let us write V∅,
Ve, Vf , and Ve,f for the vertices in J(n, r) whose intersection with {e, f}
is indicated by the subscript, and write J(n, r)ξ := J(n, r)[Vξ] for the
corresponding induced subgraph. Each of these graphs is isomorphic to
a Johnson graph with smaller parameters, to wit

J(n, r)∅ ∼= J(n− 2, r),

J(n, r)e ∼= J(n, r)f ∼= J(n− 2, r − 1), and

J(n, r)e,f ∼= J(n− 2, r − 2).

Moreover, there is precisely a matching between the vertices in Ve and
those in Vf . It follows that J(n, r)[Ve ∪ Vf ] ∼= J(n − 2, r − 1)�K2, the
Cartesian product of J(n− 2, r − 1) and K2.

Each π-invariant stable set is contained in V∅∪Ve,f ; for if X ∈ Ve∪Vf
is in the stable set, then so is π(X) = X4{e, f}. However, X is adjacent
to X4{e, f}, thus contradicting stability. In fact, not only is every π-
invariant stable set contained in V∅ ∪ Ve,f , but every π-invariant stable
set in J(n, r) can be constructed by combining a stable set in V∅ and a
stable set in Ve,f . In particular, this means that

ind(J(n, r);π) = ind(J(n− 2, r − 2))× ind(J(n− 2, r)) .

Clearly ind(J(n, r);π) ≤ ind(J(n, r)). The following lemma gives a
family of related bounds.
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Lemma 7.7.9. For all k ≥ 0,

ind(J(n, r);π)× ind(J(n− 2, r − 1)�K2, k) ≤ (r(n− r))k ind(J(n, r)) .

Proof. We prove the lemma by counting in two ways the number of
pairs (I, A), where I is a π-invariant stable set in J(n, r), and A is a
stable set of cardinality k in J(n, r)[Ve ∪ Vf ].

On the one hand, the number of such pairs is exactly ind(J(n, r);π)×
ind(J(n− 2, r − 1)�K2, k). On the other hand, we show that the num-
ber of such pairs is at most ind(J(n, r))× (r(n− r))k. Together, these
two observations prove the lemma.

To prove the second observation, consider the function F which maps
pairs (I, A) to I ∪ A \N(A). Clearly, for each pair (I,A), F (I, A) is a
stable set in J(n, r). We claim that at most (r(n−r))k of the pairs give
rise to the same image under F .

Starting from F (I, A), note that A is determined by A = F (I, A) ∩
(Ve ∪ Vf ); here we use that I ⊆ V∅ ∪ Ve,f , while A ⊆ Ve ∪ Vf . It
remains to reconstruct I ∩ N(A). A vertex X ∈ Ve ∪ Vf has exactly
n− r − 1 neighbours among the vertices in V∅ (and these vertices form
a clique), and it has r − 1 neighbours among the vertices in Ve,f (and
these form a clique as well). Thus, for each X∈A, I∩N(X) can take at
most r(n− r) different values. The claim follows by taking the product
over all X ∈ A.

We are now ready to prove Lemma 7.7.5.

Proof of Lemma 7.7.5. Let Rn =
{
r ∈ Z≥0 :

∣∣r − n
2

∣∣ ≤ √n}. By Theo-
rem 7.3.1, almost every matroid has rk(M) ∈ R|M |, in view of which it
suffices to show that∑

r∈Rn

s(n, r; Σ2) = o(s(n)) as n→∞. (7.14)

By Lemma 2.2.1, there is a constant c > 0 such that, for sufficiently

large n,
(
n−2
r−1

)
= r(n−r)

n(n−1)

(
n
r

)
≥ c 2n√

n
, uniformly over r ∈ Rn. Fix any

transposition π ∈ Σ2. By Lemma 7.7.9, applied here with k = 1,

s(n, r;π) = ind(J(n, r);π) ≤ r(n− r)
2
(
n−2
r−1

) ind(J(n, r)) ≤ n2
√
n

8c2n
s(n)

for sufficiently large n. As |Rn| ≤ 2
√
n+1 and |Σ2|=

(
n
2

)
, it follows that∑

r∈Rn

s(n, r; Σ2) ≤
∑
r∈Rn

∑
π∈Σ2

s(n, r;π) ≤ (1 + o(1))
n5

8c2n
s(n).

which proves (7.14) and hence Lemma 7.7.5.

169



c
h
a
p
t
e
r
7
t
y
p
ic
a
l
p
r
o
p
e
r
t
ie
s

Towards a proof of Conjecture 1.3.4

The method used to prove Lemma 7.7.4 does not give sufficient traction
on matroids whose automorphism groups are generated by a transposi-
tion to extend to a proof of the full Conjecture 1.3.4. In this section,
we investigate such matroids a little closer, and prove Theorem 7.7.3.

For a transposition π = (e, f), write

T(n;π) := {M ∈M(n) : Aut(M) = 〈π〉}

for the collection of matroids on [n] whose automorphism group is gener-
ated by π, and write t(n;π) := |T(n;π)| for its cardinality. In addition,
let T(n) :=

⋃
π∈Σ2

T(n;π), and t(n) := |T(n)|. In view of Theorem 7.7.1,
the following conjecture is tantamount to proving Conjecture 1.3.4.

Conjecture 7.7.10. lim
n→∞

t(n)
m(n) = 0.

One might hope that the proof of Lemma 7.7.5 for sparse paving
matroids generalises to matroids that are not necessarily sparse paving.
The proof of Lemma 7.7.5 is based on the construction of a large number
of sparse paving matroids associated with a given π-invariant sparse
paving matroid. The construction works by forcing an element from the
set Ve ∪ Vf into the nonbases of a π-invariant sparse paving matroid.

In the case of sparse paving matroids such a construction works for
two reasons. First, all elements of Ve ∪ Vf are bases of π-invariant
sparse paving matroids, so forcing such an element to be a nonbasis will
result in a sparse paving matroid that is not π-invariant. Second, each
such element has few neighbours among the nonbases in the original
matroid. Both ideas are more complicated for matroids that are not
necessarily sparse paving: in such matroids, it may happen that Ve∪Vf
contains nonbases, and the collection of nonbases in the neighbourhood
of any such set has a much more complicated structure. Avoiding both
complications may result in a proof of Conjecture 7.7.10.

Alternatively, we may consider what happens if Conjecture 1.3.4
fails.

Lemma 7.7.11. Let π=(e,f) be a transposition, and let M ∈M(n, r;π).
M is uniquely determined by M\e, f and M/e, f .

Proof. Note that r−2 ≤ rk(M/e, f) ≤ rk(M\e, f) ≤ r. If rk(M/e, f) =
r, then e and f are both loops in M , and M is obtained from M\e, f by
adjoining two loops. Similarly, if rk(M/e, f) = rk(M\e, f) = r−2, then
e and f are both coloops, and M is obtained from M\e, f by adjoining
two coloops. If rk(M/e, f) = rk(M\e, f) = r − 1, then {e, f} is both a
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circuit and a cocircuit, and M is obtained from M\e, f by first adjoining
a coloop e, and then adding f in parallel to e.

If rk(M/e, f) = r − 1 and rk(M\e, f) = r, then e and f are in
parallel. In this case, every basis of M is either disjoint from {e, f} (in
which case it is a basis of M\e, f)), or intersects {e, f} in precisely one
element (in which case B \ {e, f} is a basis of M/e, f). The collection
of bases of M can be obtained from M/e, f and M\e, f through

B(M) = B(M\e, f) ∪ {B ∪ {e} : B ∈ B(M/e, f)}
∪ {B ∪ {f} : B ∈ B(M/e, f)}.

Similarly, if rk(M/e, f) = r − 2 and rk(M\e, f) = r − 1, then

B(M) = {B ∪ {e, f} : B ∈ B(M/e, f)} ∪ {B ∪ {e} : B ∈ B(M\e, f)}
∪ {B ∪ {f} : B ∈ B(M\e, f)} .

The case rk(M/e, f) = r − 2 and rk(M\e, f) = r remains. In
this case, a basis of M can have any of the four possible intersec-
tions with {e, f}. The bases that do not intersect {e, f} are precisely
B(M\e, f), while the bases that contain both e and f are given by
{B ∪ {e, f} : B ∈ B(M/e, f)}. Let X be an r-set that contains e but
not f . In M , the set X is a nonbasis if and only if X \ {e} contains
a circuit or X ∪ {f} is contained in a hyperplane. The former hap-
pens precisely when every r-subset that contains X \ {e} and avoids f
is a nonbasis in M\e, f , while the latter happens precisely when every
(r − 2)-subset that is contained in X ∪ {f} is a nonbasis of M/e, f . It
follows that the collection K of nonbases of M that contain e but not f
is given by

K =

X ∈
(

[n]

r

)
:

e ∈ X, f 6∈ X,
(X \ {e}) ∪ {g} 6∈ B(M\e, f)

for all g ∈ E \ (X ∪ {f})


∪

X ∈
(

[n]

r

)
:

e ∈ X, f 6∈ X,
X \ {e, h} 6∈ B(M/e, f)

for all h ∈ X \ {e}

 ,

which depends only on M/e, f and M\e, f . As π is an automorphism of
M , the bases of M that contain exactly one of e and f are precisely the
complement of K ∪ {K4{e, f} : K ∈ K} in the collection of all r-sets
that contain exactly one of e and f .

Let M be a matroid of rank r, and let π = (e, f) be a transposition
that swaps two elements of the ground set of M . It follows from the
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lemma and the fact that r − 2 ≤ rk(M/e, f) ≤ rk(M\e, f) ≤ r that

m(n, r;π) ≤
[
m(n− 2, r − 2) +m(n− 2, r − 1) +m(n− 2, r)

]2
≤ m(n− 2)

[
m(n− 2, r − 2) +m(n− 2, r − 1) +m(n− 2, r)

]
.

Summing over r results in t(n;π) ≤ 3(m(n− 2))2, and hence

log t(n;π) ≤ 2 logm(n− 2) + log 3. (7.15)

The lower bound on log s(n) in Lemma 2.8.1 and the upper bound
on logm(n) in Theorem 6.7.3 imply that

lim inf
n→∞

logm(n)
1
n

(
n
n/2

) ≥ 1 and lim sup
n→∞

logm(n)
1
n

(
n
n/2

) ≤ 2. (7.16)

We show that if the limit in Conjecture 7.7.10 exists, then it must
be equal to 0.

Lemma 7.7.12. lim inf
n→∞

t(n)
m(n) = 0.

Proof. We argue by contradiction. If the lemma fails, there exists ε > 0
such that t(n) ≥ εm(n), for all n sufficiently large. Fix a transposition
π ∈ Sym(n). By symmetry, t(n) =

(
n
2

)
t(n;π). It follows that logm(n) =

(1 + o(1)) log t(n;π) as n → ∞. Combining this with (7.15) shows
that logm(n) ≤ (2 + o(1)) logm(n − 2). Comparing this observation
with (7.16), we obtain

1+o(1)

n

(
n

n/2

)
≤ logm(n)≤(2+o(1)) logm(n−2)≤ 4+o(1)

n− 2

(
n− 2

(n− 2)/2

)
as n→∞. As

(
n−2

(n−2)/2

)
= (1/4 + o(1))

(
n
n/2

)
, it follows that

lim
n→∞

logm(n)
1
n

(
n
n/2

) = 1, while lim
n→∞

logm(n− 2)
1

n−2

(
n−2

(n−2)/2

) = 2.

These two statements cannot hold simultaneously, and the lemma fol-
lows.

The following lemma, whose proof follows the structure of that of
Lemma 7.7.12, implies that if Conjecture 1.3.4 fails, then the inequalities
of (7.16) hold with equality.

Lemma 7.7.13. If lim sup
n→∞

t(n)
m(n) > 0, then lim inf

n→∞
logm(n)
1
n ( n
bn/2c)

= 1 and

lim sup
n→∞

logm(n)
1
n ( n
bn/2c)

= 2.

172



c
h
a
p
t
e
r
7
t
y
p
ic
a
l
p
r
o
p
e
r
t
ie
s

Theorem 7.7.3 follows, as it is simply the contrapositive statement
of Lemma 7.7.13.

Finally, we relate Conjecture 1.3.4 to Conjecture 1.3.3, which states
that almost every matroid has rank in the set {b|M |/2c , d|M |/2e}.
Write

m′(n) :=
∑

r<bn/2c

m(n, r) +
∑

r>dn/2e

m(n, r).

Recall the function ζ(n) = 57 log2 n
n2

(
n
n/2

)
from (6.21).

Lemma 7.7.14. If m′(n) ≤ m(n)2−2ζ(n), then Conjecture 7.7.10 holds.

Proof. Write m̃(n, r;π) for the number of matroids in M(n, r;π) that
are both simple and cosimple and define

f(n) :=


∑
π∈Σ2

m̃(n, n/2;π) if n is even,

2
∑
π∈Σ2

m̃(n, (n− 1)/2;π) if n is odd.

Let π = (e, f) be a transposition. If the matroid M of rank r is simple
and cosimple, then rk(M/e, f) = r − 2 and rk(M\e, f) = r. It follows
from Lemma 7.7.11 that m̃(n, r;π) ≤ m(n − 2, r − 2)m(n − 2, r) and
hence m̃(n, bn/2c;π) ≤ (m′(n− 2))2. By the assumption,

log f(n) ≤ 1 + log

(
n

2

)
+ 2 logm′(n− 2)

≤ 1 + log

(
n

2

)
+ 2 logm(n− 2)− 4ζ(n− 2).

Using the detailed bound from Theorem 6.7.3 to bound logm(n − 2),
and the lower bound logm(n) ≥ 1

n

(
n
n/2

)
, we obtain

log f(n) ≤ logm(n)−
(

1

2
− o(1)

)
ζ(n),

and hence f(n) = o(m(n)) as n → ∞. As almost every matroid is
both simple and cosimple (by Corollary 7.3.4) and has rank in the set
{b|M |/2c , d|M |/2e} (by assumption), this implies that t(n) = o(m(n)),
and hence that Conjecture 7.7.10 holds.
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chapter 8

Discussion and future work

8.1 In this chapter. . .

We revisit the conjectures stated in Chapter 1, indicating the progress
made in this thesis. As in the introduction, the conjectures are sub-
divided roughly into three themes: enumeration, minor-closed classes,
and connectivity.

In the final section, we sum up the main results of this thesis, and
identify the most pregnant open questions in the area of asymptotic
matroid theory.

8.2 Theme I: Enumeration

The first question introduced in Chapter 1 is the following.

Question 1.3.1. What is the asymptotic behaviour of m(n)?

We obtained several bounds on the number of matroids, in particu-
lar, Theorem 6.1.1 states that

1

n

(
n

n/2

)
≤ log s(n) ∼ logm(n) ≤ 2 + o(1)

n

(
n

n/2

)
. (8.1)

Here, the first bound is the lower bound due to Graham and Sloane, and
Kløve, see Section 2.8. The upper bound was proved in Theorem 6.7.3,
while in Theorem 6.7.5 it was proved that logm(n) ∼ log s(n).

In Chapter 5, we obtained bounds on the quantity m(n, r), using a
number of different techniques. For comparison, several of these bounds
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Lemma 6.7.2

Theorem 5.1.1

Theorem 5.5.1

Figure 8.1: Sketch of some bounds on the function r 7→ m(n,r)
1
n (nr)

.

are sketched in Figure 8.1. These bounds are on the rescaled function

r 7→ logm(n, r)
1
n

(
n
r

) , r ≤ n/2 (8.2)

for large values of n. The shaded areas in this figure identify two re-
gions in which the asymptotic behaviour of (8.2) is not conclusively
determined. These regions correspond to (i) r →∞, but r = o(n), and
(ii) r = Θ(n). These areas identify two obvious questions for future
research:

• Area (i) is related to extending the results of Chapter 5 to bounds
on the number of matroids when the rank grows sublinearly with
n;

• Area (ii) is of particular interest in the determination of the correct
asymptotic behaviour of logm(n) in (8.1).

Sparse paving matroids

Sparse paving matroids play a pivotal role in matroid enumeration re-
sults. Not only is the best known lower bound obtained by the con-
struction of a large family of sparse paving matroids, the method used
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to obtain the strongest upper bound in this thesis considers general ma-
troids as small deviations from sparse paving matroids. This observation
lends some credibility to the following conjecture.

Conjecture 1.3.2. Almost every matroid is sparse paving.

In Theorem 6.7.5, we have shown that logm(n) ∼ log s(n) as n→∞.
Although this result may be seen as pointing in the direction of Con-
jecture 1.3.2, it is in fact a much weaker statement, owing to the slow
growth of the logarithm. Indeed, as log s(n) ≥ 1

n

(
n
n/2

)
, the asymptotic

equivalence logm(n) ∼ log s(n) does not preclude the possibility that

m(n) = s(n) exp
(

2n

n
√
nω(1)

)
, where ω(1) denotes a function that grows

to infinitiy arbitrarily slowly with n; hence, the gap between s(n) and
m(n) is potentially huge.

The proof of Theorem 6.7.5 relies on a careful application of the
container method, in which it is shown that every matroid M that
does not have any loops or coloops can be described by a sparse paving
matroid (whose collection of circuit-hyperplanes contains the circuit-
hyperplanes of M), and a relatively small amount of extra information.
The extra information serves to reconstruct the collection U(M). It
is likely that better bounds can be obtained by carefully weighing the
extra information against the amount of information already present in
the circuit-hyperplanes, although it is not clear how this can be imple-
mented.

The right constant The upper and lower bound in (8.1) imply

lim inf
n→∞

log s(n)
1
n

(
n
n/2

) ≥ 1, (8.3)

while

lim sup
n→∞

log s(n)
1
n

(
n
n/2

) ≤ 2. (8.4)

Both statements remain true if m(n) is replaced by m(n). It is not
known whether the inequalities (8.3)–(8.4) are strict, or indeed whether

the limit lim
n→∞

log s(n)
1
n ( n

n/2)
exists. In view of the central position of the enu-

meration results, it will be highly interesting to improve upon (8.3)–
(8.4).

Existence of Steiner systems A positive answer to the following ques-
tion would imply that (8.4) holds with equality.
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Question 8.2.1. Do there exist sequences of integers (nk) and (rk) such
that for each k (i) an S(rk − 1, rk, nk) exists, while (ii) 0 ≤ nk

2 − rk =
o(
√
nk)?

Recall that, in order for a Steiner system to exist, its parameters
should satisfy certain divisibility conditions. The following lemma shows
that these divisibility conditions for Steiner systems S(r − 1, r, 2r + k)
are equivalent to primality of r + k + 1.

Lemma 8.2.2. The following are equivalent:

(i) r + k + 1 is prime; and

(ii) r − i divides
(

2r+k−i
r−1−i

)
for all i ∈ {0, 1, . . . , r − 2}.

Proof. Note that

1

r − i

(
2r + k − i
r − 1− i

)
=

1

r + k + 1

(
2r + k − i
r − i

)
=

(2r + k − i)(2r + k − i− 1) . . . (r + k + 1)

(r + k + 1)(r − i)!
, (8.5)

so that (ii) holds if and only if r + k + 1 divides
(

2r+k−i
r−i

)
for all i ∈

{0, 1, . . . , r−2}. The denominator of the right-hand side of (8.5) divides
the numerator for all i ∈ {0, 1, . . . , r − 2}.

If r + k + 1 is prime, then the numerator of the right-hand side
of (8.5) contains only one factor equal to r + k + 1, thus showing that(

2r+k−i
r−i

)
is divisible by r + 1, which implies (ii).

To show the reverse implication, suppose that r+k+1 is composite.
Let p be one of its prime factors, and suppose that r+ k+ 1 is divisible
by pe, but not by pe+1. Moreover, define q through r+ k+ 1 = pq. Let
i = 2r+k−p(q+1)+1, so that 2r+k−i = p(q+1)−1 and r−i = p. For
this choice of i, the numerator of the right-hand side of (8.5) is divisible
by pe but not by pe+1, while the denominator contains is divisible by
pe+1. It follows that r+ k+ 1 does not divide

(
2r+k−i
r−i

)
, and hence that

(ii) does not hold.

Lemma 8.2.2 implies that primality of r + k + 1 is necessary for
existence of Steiner systems S(r−1, r, 2r+k). In Table 8.1, we indicate
existence and nonexistence of the smallest such Steiner systems, for
k ≤ 4.

Based on the limited amount of information in the table, it is tempt-
ing to conjecture that Steiner systems S(r − 1, r, 2r + k) are not likely
to exist except for sporadic small systems. However, such tables can be
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Table 8.1: Existence of small Steiner systems S(r−1, r, 2r+k).
Source: [CM07] + updates. †All Steiner systems in this table are
unique up to isomorphim.

k Existence† Remark

0 S(1, 2, 4) Yes Partition
S(3, 4, 8) Yes Steiner quadruple system
S(5, 6, 12) Yes Aut = Mathieu group M12

S(9, 10, 20) No Since S(8, 9, 19) does not exist

S(11, 12, 24) No [ÖP08]

1 S(2, 3, 7) Yes Fano plane
S(4, 5, 11) Yes Steiner quintuple system;

Aut = Mathieu group M11

S(8, 9, 19) No

S(10, 11, 23) No [ÖP08]

2 S(1, 2, 6) Yes Partition
S(3, 4, 10) Yes Steiner quadruple system
S(7, 8, 18) No

S(9, 10, 22) No [ÖP08]

3 S(2, 3, 9) Yes Steiner triple system
S(6, 7, 17) No

S(8, 9, 21) No [ÖP08]

4 S(1, 2, 8) Yes Partition
S(5, 6, 16) No

S(7, 8, 20) No [ÖP08]

deceiving; for example, no S(6, 7, n) are known, yet Keevash’s [Kee14]
recent breakthrough shows that such Steiner systems exist for suffi-
ciently large n.

Results about Steiner systems S(r − 1, r, 2r + k) for large values of
r appear to be scarce. The following result shows that if large S(r −
1, r, 2r) exist, then they are pretty wild. A flag in a Steiner system is a
pair (v,X) consisting of an element v of the ground set, and a block X,
such that v ∈ X.

Proposition 8.2.3 ([AH74]). Suppose that r > 6. If a Steiner system
S(r − 1, r, 2r) exists, then its automorphism group does not act transi-
tively on its flags.
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Matroids that are not sparse paving Another result that is related
to Conjecture 1.3.2 is Theorem 6.8.1, which asserts the existence of a
class Ŝ of matroids that contains almost all matroids with the additional
property that

Y (n) := max
0≤r≤n

log
∣∣∣{U(M) : M ∈M(n, r) ∩ Ŝ

}∣∣∣ = O

(
log3 n

n2

(
n

n/2

))
.

Conjecture 1.3.2 takes the extreme position that U(M) = ∅ for almost
all matroids, and hence that Y (n) = 0 for sufficiently large n. Thus,
Theorem 6.8.1 allows for gradual progress towards resolution of Conjec-
ture 1.3.2. For example, a more careful analysis of the proof of Theo-

rem 6.8.1 may reveal that in fact Y (n) = o
(

log3

n2

(
n
n/2

))
, which is much

weaker than Conjecture 1.3.2 but may be easier to prove.

In the analysis of matroids that are not sparse paving, complex com-
ponents of nonbases play a crucial role. This raises the question what
such complex components look like.

Question 8.2.4. Let U ⊆ V (J(n, r)) be a set of vertices such that
J(n, r)[U ] is a connected graph. What are necessary and sufficient con-
ditions on U to form the set of non-bases of a matroid of rank r on
[n]?

The following lemma provides a necessary condition.

Lemma 8.2.5. Let U be the set of non-bases of a matroid of rank r
on [n], such that J(n, r)[U ] is a connected graph. If u1, u2 are adjacent
vertices in U , then there exists a maximal clique C of J(n, r) such that
C ⊆ U .

Proof. The lemma obviously holds for singleton components. So sup-
pose that |U | ≥ 2, and let X,X ′ ∈ U be two adjacent vertices. Let rk
be the rank function of the matroid whose nonbases are U . By submod-
ularity,

rk(X ∪X ′) + rk(X ∩X ′) ≤ rk(X) + rk(X ′) ≤ 2(r − 1),

from which it follows that rk(X ∪X ′) ≤ r − 1, or rk(X ∩X ′) ≤ r − 2.

In the first case, each r-subset of X ∪X ′ is dependent, so
(
X∪X′
r

)
⊆ U .

Moreover,
(
X∪X′
r

)
is a maximal clique in J(n, r), so the lemma holds.

In the second case, each r-set containing X ∩ X ′ is dependent, and

it follows that
{
Y ∈

(
[n]
r

)
: Y ⊃ X ∩X ′

}
⊆ U is a maximal clique in

J(n, r), which again proves the lemma.
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It is easily verified that maximal cliques in J(n, r) are in fact the
simplest non-singleton connected components that appear as the set of
nonbases of a matroid. The following conjecture, a proof of which may
be easy, could be a stepping stone towards full resolution of Conjec-
ture 1.3.2. Let m′(n, r) denote the number of matroids of rank r on
ground set [n] with the property that U(M) precisely spans a maximal
clique in J(n, r), and let m′(n) =

∑n
r=0m

′(n, r).

Conjecture 8.2.6. m′(n) = o(m(n)).

Structure of stable sets in J(n, r)

Consider the regime in which n → ∞ and |r − n/2| = o(
√
n), so that(

n
r

)
∼
(
n
n/2

)
. We know that a sparse paving matroid in S(n, r) has at

most 2
n

(
n
n/2

)
circuit-hyperplanes. However, only few sets of this cardi-

nality occur as the set of circuit-hyperplanes of a sparse paving matroid.

There are roughly (en/c)
c
n ( n

n/2) possible collections of r-sets of cardi-
nality c

n

(
n
n/2

)
, which is much more than the number of sparse paving

matroids with that number of circuit-hyperplanes (cf. 5.8.3), whenever
c = Ω(1/ log n). Thus, an extremely small fraction of the vertex sets
of this cardinality occurs as the set of circuit-hyperplanes. This points
towards structure.

The container method makes this structure more explicit. There is
a relatively small number of containers, each of size at most slightly
larger than a maximum stable set (in fact, the Hoffman bound), such
that each stable set is contained in one of these containers. We wonder
how much such a result can be tightened. What we have in mind here
is something along the following lines. In what follows, we will write
Ind∗(G) for the collection of maximum stable sets in the graph G.

Conjecture 8.2.7. Suppose that |r − n/2| = o(
√
n). Let I be drawn

uniformly at random from Ind(J(n, r)). With high probability, there
exists I∗ ∈ Ind∗(J(n, r)) such that

(i)
∣∣|I ∩ I∗| − 1

2 |I
∗|
∣∣ = o

(
1
n

(
n
n/2

))
; and

(ii) max
J∈Ind∗(J(n,r))\{I∗}

|I ∩ J | = o
(

1
n

(
n
n/2

))
.

Intuitively, the conjecture states that a random stable set in J(n, r)
looks like a random subset of one of its maximum stable sets. I have
no good intuition as to whether the conjecture is true or false. Its
formulation is based on hope as much as on circumstantial evidence.
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Kahn [Kah01] showed that a version of Conjecture 8.2.7 holds for
the hypercube graph Qd, even if the uniform distribution is replaced by
the more general hard-core distribution. He also showed that (i) holds
in the more general setting of regular bipartite graphs. In such graphs,
the structure of maximum stable sets is easily obtained: if the graph is
connected, they are precisely the two colour classes of the bipartition.
By contrast, it is not known what the maximum stable sets in the
Johnson graph are. Identification of the maximum stable sets in J(n, r)
should be a useful first step towards proving results in the spirit of
Conjecture 8.2.7.

Question 8.2.8. What are the maximal stable sets in J(n, r)?

Matroids of fixed rank

In Chapter 5, we proved that log s(n, r) ∼ logm(n, r) ∼ logn
n

(
n
n/2

)
as

n→∞, for all r ≥ 3. More precisely, it is shown in that chapter that

1

n− r + 1

(
n

r

)
log
(
e1−rn− o(n)

)
≤ log s(n, r)

≤ logm(n, r) ≤ 1

n− r + 1

(
n

r

)
log (e(n− r + 1)) .

As indicated in Section 5.9, the upper bound is likely to be wasteful. In
that section, we were able to improve the factor e inside the logarithm
to e0.35, for rank-3 paving matroids. We believe that this is still not the
best possible, and that in fact the lower bound is closer to the truth.

Conjecture 8.2.9. For all fixed r ≥ 3,

logm(n, r) =
1

n− r + 1

(
n

r

)
log
(
e1−rn+ o(n)

)
as n→∞.

Theorem 5.1.2 shows that the conjecture holds for sparse paving
matroids. This implies in particular that the lower bound is correct,
and may provide circumstantial evidence for the conjecture.

The construction provided at the end of Section 5.9 shows that
p(n, 3) is much larger than s(n, 3). A more general construction may
prove the following conjecture.

Conjecture 8.2.10. For all fixed r ≥ 3, lim
n→∞

s(n,r)
p(n,r) = 0.

We believe that, in addition, p(n,r)
m(n,r) → 1 as n → ∞, for all fixed

r ≥ 3. The following observation points in that direction. The uniform
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matroid has the largest number of erections among all matroids with
the same rank and groundset. Writing η(n, r) for the average number
of nontrivial erections over all non-uniform matroids on [n] of rank r,
we obtain

m(n, r) = p(n, r) + (m(n, r − 1)− 1)η(n, r − 1).

Theorem 7.4.1 suggests that almost every matroid has only one erection
(the trivial one). If this is also true for matroids of fixed rank, then
η(n, r − 1) is close to 1, which would prove the conjecture.

Rank

Concerning rank, Mayhew, Newman, Welsh, and Whittle made the fol-
lowing conjecture.

Conjecture 1.3.3 ([MNWW11, Conjecture 1.10]). Almost ev-

ery matroid satisfies rk(M) ∈
{⌊
|M |

2

⌋
,
⌈
|M |

2

⌉}
.

We have made some progress towards resolution of this conjecture
by showing that almost every matroid has its rank within O(

√
|M |) of

|M |/2; see Theorem 7.3.1.

Symmetry

Recall that a matroid is asymmetric if its automorphism group is trivial.

Conjecture 1.3.4 ([MNWW11, Conjecture 1.2]). Almost every
matroid is asymmetric.

Although we have not been able to prove the full conjecture, we have
been able to prove that the conjecture holds for sparse paving matroids,
and that a weaker form of the conjecture, which states that almost every
matroid is ‘almost’ asymmetric in the sense that their automorphism
group is either trivial, or generated by a single transposition. Thus,
proving the following conjecture now suffices to prove Conjecture 1.3.4.

Conjecture 8.2.11. The automorphism group of almost every matroid
is not generated by a single transposition.

Conjecture 8.2.11 is strongly tied to the problem of estimating m(n).
In particular, it is shown in Theorem 7.7.3 that if Conjecture 8.2.11
fails, then both the upper and lower bound of (8.1) are sharp up to
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(1 + o(1))-factors. Thus, any result that improves either the upper
bound or the lower bound on logm(n) by a constant factor, immediately
implies Conjecture 1.3.4.

Our attempt at proving Conjecure 1.3.4 is thwarted by the matroids
whose automorphism group is generated by a single transposition. Even
in the special case of sparse paving matroids, for which we have been
able to prove the conjecture, the bound on the number of matroids
whose automorphism group is generated by a transposition is much
weaker than the corresponding bound on the number of matroids with
a different nontrivial automorphism group. The apparent difficulty that
tranpositions pose leads us to the following conjecture.

Conjecture 8.2.12. Almost every symmetric matroid has an automor-
phism group that is generated by a transposition.

A positive answer to Conjecture 8.2.12 would reflect the situation
for graphs. It was shown by Erdős, and Rényi [ER63] that almost every
graph is asymmetric. It follows from their proof that the number of
symmetric graphs is dominated by the number of graphs with automor-
phism group generated by a single transposition.

8.3 Theme II: Minor-closed classes

The second theme concerns minor-closed classes. An important conjec-
ture within that theme is the following.

Conjecture 1.3.5 ([MNWW11, Conjecture 1.7]). Let N be a
sparse paving matroid. Almost every matroid has an N -minor.

A considerable portion of this thesis is devoted to proving Conjec-
ture 1.3.5 for uniform minors (Theorem 7.6.3), as well as the small
sparse paving matroids P6, Q6, and R6 (Theorem 4.7.2), but a general
solution still seems far away. Earlier in this chapter we considered the
conjecture that almost every matroid is sparse paving. If that conjec-
ture indeed turns out to be true, then Conjecture 1.3.5 reduces to the
following conjecture.

Conjecture 8.3.1. Let N be a sparse paving matroid. Almost every
sparse paving matroid has an N -minor.

Although this conjecture has the advantage that sparse paving ma-
troids are more benign than general matroids, it is still likely to be hard.
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Note that, with minor adaptations, the proof of each of the special cases
in which we were able to prove Conjecture 1.3.5 carries over to a proof
of Conjecture 8.3.1. Thus, Conjecture 8.3.1 holds for uniform N , as well
as N = P6, N = Q6, and N = R6.

Uniform minors

The following observation provides a high-level overview of the argu-
ment for proving Conjecture 1.3.5 for uniform matroids. We describe
matroids M on ground set E of rank r by indicating, for each vertex
of J(E, r), whether it is a basis or a nonbasis of M . Let N be a uni-
form matroid. If M does not have N as a minor (and |E| and r are
so large that this does not follows from size considerations alone), then
J(E, r) has many subgraphs (corresponding to minors) that each con-
tain at least one nonbasis. This, in turn, leads to a lower bound on the
nonbasis-density of M .

Such an argument does not work as well when N is not uniform: in
that case, each of the subgraphs may have a number of nonbases that
is higher than, lower than, or exactly equal to the number of nonbases
in N . In the latter case, it is only required that the nonbases in the
subgraph avoid a certain configuration. Thus, for excluding general
matroids a much more careful argument is necessary.

This perspective suggests that the difficulty of an argument should
increase with complexity of the excluded minor, and perhaps Conjec-
ture 1.3.5 is relatively easy to prove for sparse paving matroids with a
single circuit-hyperplane. This certainly seems to be the case for the
special matroids for which Conjecture 1.3.5 is proved: The conjecture
holds for all sparse paving matroids of rank 3 on six elements, except for
the two most “complex” among them: W 3 and M(K4). The construc-
tion in Section 4.8 of a large class of matroids without M(K4)-minors
or V8-minors works more generally for matroids with sufficiently many
intersecting circuit-hyperplanes.

Algebraic and representable matroids

The following two conjectures are implied by a special case (N = V8) of
Conjecture 1.3.5.

Conjecture 1.3.7. Almost every matroid is not algebraic over
any field.

This conjecture remains open.

Note that the Vámos matroid V8 is not algebraic, so proving the case
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N = V8 of Conjecture 1.3.5 immediately implies Conjecture 1.3.7. It
may be easier to prove Conjecture 1.3.5 for matroids of rank 3, in which
case the 10-point non-Desargues matroid is an alternative [Lin85]. In
addition, Conjecture 1.3.7 may be proved by combining special cases of
Conjecture 1.3.5. For example, the Fano matroid F7 ≡ PG(2, 2) is alge-
braic only over fields of characteristic 2, while PG(2, 3) is algebraic only
over fields of characteristic 3 [Gor88]. Thus, proving Conjecture 1.3.5
for both N = F7 and N = PG(2, 3) would imply Conjecture 1.3.7.

Theorem
Conjecture 1.3.6 ([MNWW11, Conjecture 1.9]). Almost every
matroid is not representable over any field.

This conjecture was recently proved by Nelson [Nel16], using a differ-
ent technique than proposed by Mayhew, Newman, Welsh, and Whittle.
Nelson obtains a strong explicit bound on the number of representable
matroids as a function of the cardinality of the ground set.

If a matroid is representable over a certain field, then it is algebraic
over the same field; hence, a proof of Conjecture 1.3.7 would imply Con-
jecture 1.3.6. In particular, each of the special cases of Conjecture 1.3.5
mentioned after Conjecture 1.3.7 leads to a proof of Conjecture 1.3.6
as well. There are sparse paving matroids that are algebraic, but not
representable over any field. One such example is the non-Pappus ma-
troid [Oxl11, Proposition 6.1.10]. Finally, similar to the situation for
algebraic matroids, there are combinations of minors that preclude rep-
resentability; for example, the Fano matroid is representable only over
fields of characteristic 2, while the non-Fano matroid is representable
only over fields of characteristic other than 2 [Oxl11, Proposition 6.4.8].

It is conceivable that Conjecture 1.3.6 can alternatively be proved us-
ing an argument based on Theorem 6.8.5, although the resulting bound
is likely to be much weaker than that obtained by Nelson. Relaxing
a circuit-hyperplane in a linear matroid often results in a non-linear
matroid. Geelen, Gerards, and Whittle [GGW14] note that

“while the operation of relaxing a circuit-hyperplane does
not behave well with respect to representation in general, it
behaves particularly poorly with respect to representation
over finite fields”.

This poor behaviour may very well limit the set of all possible collections
of hyperplanes, after which Conjecture 1.3.6 follows from an application
of Theorem 6.8.5.
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8.4 Theme III: Connectivity

The final theme concerns connectivity.

Theorem
Conjecture 1.3.8 ([MNWW11, Conjecture 1.5]). Let k > 1.
Almost every matroid is k-connected.

The cases k ≤ 3 were proved by Lowrance, Oxley, Semple, and
Welsh [LOSW13, Theorem 4.2], and the full conjecture was settled in
Theorem 7.5.1.

In addition, we have proved that almost every matroid is arbitrarily
highly vertically connected (Corollary 7.5.5) and has arbitrarily high
branch-width (Corollary 7.5.7).

8.5 Conclusion

In this thesis we considered two intimately related problems: asymp-
totic enumeration of matroids and typical properties of matroids. As
problems of the latter type are essentially questions about the enumer-
ation in subclasses of matroids, enumeration of matroids really is the
central theme of this thesis.

Enumeration is closely tied to finding concise but faithful descrip-
tions of the objects to be counted: the number of possible such de-
scriptions translates immediately to an upper bound on the number of
objects under consideration. By providing such concise encodings of
matroids, we made substantial progress on the problem of matroid enu-
meration in two separate settings: that of matroids of fixed rank, and
that of general matroids.

For matroids of fixed rank, an upper bound on the number of ma-
troids is obtained by providing a concise description of the essential
flats of such a matroid in terms of a certain antichain. As the essen-
tial flats faithfully represent the matroid, this provides an upper bound.
We obtained a complementary lower bound, which matches the upper
bound on the logarithmic scale. Incidentally, this proves that essential
flats provide a concise description of matroids, at least for fixed rank,
which was already suspected by Higgs in the 1960’s. Close analysis of
the structure of the antichain should result in improved bounds on the
number of matroids of fixed rank, and perhaps yield an extension to
matroids whose rank is allowed to grow slowly with |M |. As matroids
of fixed rank are closely related to Steiner systems with fixed block size,
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extending the techniques for matroids is likely to imply similar results
for Steiner systems.

In the second setting, that of matroids of general rank, our bounds
are dominated by the bounds on matroids of rank close to |M |/2. In
that regime, our best upper bound is obtained by an extension of the
container method from stable sets in graphs to matroids. The method
allows us to encode a general matroid as a sparse paving matroid, aug-
mented with a relatively small amount of additional information. This
encoding in particular implies that log s(n) ∼ logm(n), thus lending
credibility to the conjecture that almost every matroid is sparse paving.

In addition, the container method results in an upper bound on
logm(n) that is within a factor 2 +o(1) of the best known lower bound.
Both the upper bound and the lower bound are closely linked with statis-
tics of stable sets in the Johnson graph. The best known lower bound
is obtained by the construction of a stable set of cardinality 1

n

(
n
n/2

)
in

J(n, bn/2c). As each stable set in the Johnson graph corresponds with
a sparse paving matroid, this shows that logm(n) ≥ 1

n

(
n
n/2

)
. It follows

from the encoding of matroids as sparse paving matroids plus extra
information that logm(n) is essentially determined by the number of
stable sets in the J(n, bn/2c).

The main obstacle towards further improvement of these results
is the lack of understanding of the stable sets of the Johnson graph.
In particular, a better understanding of the maximum stable sets of
J(n, bn/2c) is likely to lead to a better understanding of the behaviour
of logm(n). If it can be shown that a maximum stable set in J(n, bn/2c)
is close to 2

n

(
n
n/2

)
, then this immediately improves the lower bound on

logm(n). On the other hand, any technique that shows that a maximum
stable set in J(n, bn/2c) has cardinality close to 1

n

(
n
n/2

)
is potentially

useful for improving the upper bound on logm(n) as well.

The container method provides good bounds on the typical number
of bases of a matroid. As many structural properties are strongly tied
to the number of bases in a matroid, this insight allowed us to prove,
among other things, that almost every matroid is highly connected, has
arbitrarily large uniform minors, and is close to being asymmetric.

188



About the author

Jorn van der Pol (1989) obtained both his bachelor’s (2011) and master’s
(2013) degrees in Industrial and Applied Mathematics from Eindhoven
University of Technology, The Netherlands. His master’s thesis, Count-
ing matroids, was supervised by Nikhil Bansal, Remco van der Hofstad,
and Rudi Pendavingh.

He was awarded the 2008 Stieltjes Institute Young Talent Encour-
agement Award (highest average grade among first-year mathematics
students at Eindhoven University of Technology), and the 2014 TU/e
Academic Award (best Master’s thesis at Eindhoven University of Tech-
nology).

During his studies, Jorn was actively involved in teaching, research,
and the organisation of the International Mathematical Olympiad 2011.
In addition, he served two years as elected member in the Department
Council.

After obtaining his master’s degree in 2013, Jorn continued working
on the topic of his Master’s thesis as a doctoral candidate at Eindhoven
University of Technology, under supervision of Remco van der Hofstad
and Rudi Pendavingh. His work during this period is presented in this
thesis, which he will defend on September 20, 2017.

189





References

[ABF94] Y. Azar, A.Z. Broder, and A.M. Frieze. On the prob-
lem of approximating the number of bases of a matroid.
Information Processing Letters, 50(1):9–11, 1994.
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[Röd85] Vojtěch Rödl. On a packing and covering problem. Eu-
ropean Journal of Combinatorics, 6:69–78, 1985.

[RS78] I.Z. Rusza and E. Szemerédi. Triple systems with no six
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H (p) Binary entropy, page 17

H(M,U) Output of Knuth’s proce-
dure, page 76

H+ Dependent hyperplanes,
page 84

I Independent sets of M ,
page 18

J(n, r) Johnson graph, page 26

κ∗(M) Fractional cover complex-
ity, page 54

κ Cover complexity, page 46

λ(M) (Tutte) connectivity of M ,
page 21

M(n), M(n, r) Matroids on E = [n]
(of rank r), page 24

m◦M Number of unlabelled ma-
troids in M, page 40

M∗ Dual matroid, page 23

M (k) Rank-k truncation of M ,
page 74
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M(G) Graphic matroid, page 19

[n] {1, 2, . . . , n}, page 13

N(X), N(v) Neighbourhood,
page 14

P Probability measure,
page 15

P(E) Power set, page 14

p(n, r) Number of paving ma-
troids, page 84

rkM (X), rk(M) Rank of X in M ,
rank of M , page 20

Σ2,Σ≥3 Permuations that move 2,
resp. at least 3, elements,
page 163

S(n), S(n, r) Sparse paving matroids
on E = [n] (of rank r),
page 24

Ŝ Proxy for sparse paving
matroids, page 180

T (M) Rank-(rk(M) − 1) trunca-
tion of M , page 74

U(M) K(M) \W(M), page 22

V(M) Antichain describing M ,
page 85

W(M) Circuit-hyperplanes of M ,
page 22

ζ(n) 57 log2 n
n2

(
n

n/2

)
, page 141

Z≥0, Z>0 Nonnegative, positive inte-
gers, page 13
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adjacency matrix, 15
almost every, 25
almost every matroid, 25
antichain, 14

basis-exchange axiom, 18
binomial coefficient, 17

central -, 17
Blow-Up Lemma

cover complexity -, 55, 63
Entropy -, 37, 63

branch-width, 156

canonisation, 40, 144
chain rule, 16
circuit, 19
circuit-closure, 47, 81
circuit-hyperplane, 22, 50

- relaxation, 68
relaxing a -, 22

class, 25
minor-closed -, 24

k-closed, 75
closure, 21
cocircuit, 20
coloop, 21
complete, 76
component

complex -, 29
concise, 10
connectivity

Tutte -, 21, 156
vertical -, 156

consecutive, 85
container method, 120, 181
contraction, 23
cover

fractional -, 54
local -, 51

cover complexity, 46
fractional -, 54

deletion, 23
density

basis-, 150
circuit-hyperplane-, 150
nonbasis-, 150

dependent, 19
descriptively sufficient, 81

eigenvalue, 15
entropy, 34, 101

conditional -, 35
Entropy Blow-Up Lemma,

37
Shearer’s Entropy Lemma,

36, 151
erection, 74, 156, 183

trivial -, 74

flat, 22
essential -, 80
pseudo-essential -, 80

flat cover, 46, 81

girth, 19
graded lexicographic order, 83
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graph
Johnson -, 26
regular -, 14

ground set, 18

hypergraph, 15
hyperplane, 22
hyperplanes, 47

independent, 18
invariant, 163

Knuth’s procedure, 76

long line, 22
loop, 21

matching, 98
matroid, 18

algebraic -, 19
dual -, 23
graphic -, 19, 63
paving -, 25
representable -, 19
sparse -, 25
sparse paving -, 24, 162, 180
uniform -, 19, 160
unlabelled -, 40

minor, 23
excluded -, 24

nonbasis, 18

parallel, 21
partition, 84
k-partition, 83
paving matroid, 82
permutation, 162
probability

conditional -, 15
law of total -, 15

rank, 18
- function, 20

restriction, 23

k-separation, 21, 157
simple, 21
simplification, 21
small, 25
spanning, 21
stability ratio, 15, 151
stable set, 14

maximal -, 15
Steiner system, 177
subgraph

induced -, 14
symmetry, 162

truncation, 74, 156

uniquely determined, 10
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