

Signing and security of Hue software

Citation for published version (APA):
Anastasov, I. (2017). Signing and security of Hue software. Technische Universiteit Eindhoven.

Document status and date:
Published: 28/09/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/f84c3c55-b021-4b7f-8a16-96b3a0917a7f

/ Department of
Mathematics and
Computer Science
/ PDEng Software
Technology

Where innovation starts

Signing and security of
Hue software

Igor Anastasov

Signing and security of Hue software

Eindhoven University of Technology

Stan Ackermans Institute / Software Technology

Partners

Philips Lighting Eindhoven University of Technology

Steering Group Luud Woltjer (Philips Lighting)

Leon Bouwmeester (Philips Lighting)

Walter Slegers (Philips Lighting)

Tanir Ozcelebi (TU/e)

Ad Aerts (TU/e)

Yanja Dajsuren (TU/e)

Date

Document Status

September 2017

Public

SAI report no. 2017/036

The design described in this report has been carried out in accordance with the TU/e Code of Scientific Conduct.

Contact

Address

Eindhoven University of Technology

Department of Mathematics and Computer Science

MF 5.080A, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

+31402474334

Published by Eindhoven University of Technology

Stan Ackermans Institute

Printed by Eindhoven University of Technology

UniversiteitsDrukkerij

SAI report no. 2017/036

Abstract Developing software for the Hue devices poses plenty of challenges among the engineers at

Philips Lighting. These challenges arise at each stage of the Software Development Life-

Cycle (SDLC). Improvement of it is of immense importance to the Philips Lighting. This

report describes a project which focus was to automate the SDLC, as well as to improve the

security in it. The end result solves many challenges. It delivers a complete release manage-

ment tool dedicated to the engineers at the Home Systems department. First, it visualizes

release workflows in a simple user interface. Second, the core activities of the SDLC, such

as the software signing, are fully automated. What is more important is that the signing is

executed in a highly secure environment. This is very important for Philips Lighting not only

because this automation saves a lot of time, but also because it reduces the risk of a human

error. The same benefits are gained through an automation of other activities, such as approv-

als, distribution of the software to the factories, and deploying the software to the device

cloud. Third, the system provides a traceability about each step executed in the process. Fi-

nally, the system is highly configurable, which makes it easy to be extended and adjusted to

support different device types with different release workflows.

Keywords

Software signing, security, SDLC, release management workflow, software deployment,

Philips Hue, Philips Lighting, TUE, Software technology, PDEng

Preferred

reference

Signing and security of Hue software., SAI Technical Report, September 2017. (2017/036)

Partnership This project was supported by Eindhoven University of Technology and Philips Lighting.

Disclaimer

Endorsement

Reference herein to any specific commercial products, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorse-

ment, recommendation, or favoring by the Eindhoven University of Technology or Philips

Lighting. The views and opinions of authors expressed herein do not necessarily state or re-

flect those of the Eindhoven University of Technology or Philips Lighting, and shall not be

used for advertising or product endorsement purposes.

Disclaimer

Liability

While every effort will be made to ensure that the information contained within this report is

accurate and up to date, Eindhoven University of Technology makes no warranty, represen-

tation or undertaking whether expressed or implied, nor does it assume any legal liability,

whether direct or indirect, or responsibility for the accuracy, completeness, or usefulness of

any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service marks of

their respective owners. We use these names without any particular endorsement or with the

intent to infringe the copyright of the respective owners.

Copyright Copyright © 2017. Eindhoven University of Technology. All rights reserved.

 No part of the material protected by this copyright notice may be reproduced, modified, or

redistributed in any form or by any means, electronic or mechanical, including photocopying,

recording, or by any information storage or retrieval system, without the prior written per-

mission of the Eindhoven University of Technology and Philips Lighting.

Foreword

Security is becoming more and more important in the IoT space. One of the most recent

examples is the hack of a casino through an internet-connected fish tank [1] that clearly

shows today’s creativity of hackers. Like quality, security is not a department, but an

attitude that should be embraced by the entire organization supported by integral pro-

cesses to always keep further improving.

This report describes the results of one such important improvement: it provides a link

between the software development projects on one hand versus the digital operation to

deploy the software artefacts towards end-users on the other hand. It includes a fully

automated release process in a highly secure environment that not only saves a lot of

time, but also eliminates the possibility of human error to a large extend. Given the

diversity and scale of products in combination with necessary speed of innovation, the

resulting tool is an absolute must to keep providing secure solutions. The first demon-

strations clearly showed the value of this tool.

Igor played a pivoting role in this project: he identified the (key) stakeholders in this

project and what their (non) functional requirements were. He also setup the initial

architecture and design which determined the foundation for the resulting implemen-

tation. During the entire development process Igor in particularly paid attention to the

integral security aspects of his solution by working with the various security engineers.

With this report, the project hasn’t stopped: Igor continues to work on this, but now as

an employee of Philips Lighting.

Ir. LHA Bouwmeester, Project Manager Hue system platform.

September 2017

iii

Preface

This report summarizes the “Signing and security of Hue software” project carried

out by Igor Anastasov as the final part of the Professional Doctorate in Engineering

(PDEng) program in Software Technology, provided by the Eindhoven University

of Technology, Stan Ackermans Institute. The project lasted for nine months and

was conducted at Philips Lighting, Eindhoven.

This document describes the successful realization of the project and elaborates the

software development and project management processes. Audience of this report

can be both technical as well as non-technical readers. However, it is primarily

intended for the engineers at Home Systems Department in Philips Lighting who

have the greatest interest of this project. Readers who are interested in the existing

software release management processes and challenges within the Home Systems

Department, can read Chapters 1, 2 and 3. Readers who are willing to learn more

details about the software development life-cycle and core challenges in Internet

of Things environment in general are invited to read Chapter 4. Readers who are

interested in the technical details, such as system requirements, system architecture,

system design, and system implementation will be interested in Chapters 6-11.

Readers mainly interested in the results or future continuation of the project can

read Chapter 12. Project managers are referred to Chapter 2, 5, 13, and 14. Readers

who are interested in the entire project, are welcome to read the entire report.

Igor Anastasov

September 2017

v

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisors from Philips

Lighting, Leon Bouwmeester, Luud Woltjer and Walter Slegers for providing me

the opportunity to do my project in Philips Lighting. I would like to thank all of

you for the continuous support, motivation and feedback. Your valuable guidance

as well as the knowledge and necessary information you provided, helped me to

reach the success of this project. I enjoyed working with you these nine months and

thank you for the vast experience I have been able to have with you. Furthermore,

I am excited and looking forward to continuing cooperating with you in future as

colleague in Philips Lighting.

This project would not have been a success without the support from my university

supervisor Dr. Tanir Ozcelebi. Thank you for guiding me throughout the project.

Your critical thinking, ideas, feedback and necessary information provided encour-

aged me to explore different angles and views on the project. Thank you for the

continuous support.

My gratitude goes to everybody involved in the PDEng program, especially Ad

Aerts, Yanja Dajsuren, and Desiree van Oorschot for giving me the opportunity to

be part of the PDEng program and their support and guidance during these past two

years.

I would also like to thank my colleagues from the PDEng program for the great

moments and experiences we shared together.

And last but not least, I would like to thank my family for their continuous support.

A special thank you goes to my girlfriend, Maja, for her support and patience. A

special thank you to my parents, Zoran and Keti, for everything they have done for

me, and to my sister, Natasha, for her support.

Igor Anastasov,

September 2017

vii

Executive Summary

The Internet of Things (IoT) is an inter-networking of physical devices embedded

with electronics, software, sensors, actuators, and network connectivity that enable

these devices to collect and exchange data. Developing software applications for

the IoT devices poses plenty of challenges that arise at each stage of the Software

Development Life-Cycle (SDLC). Enterprise customers expect their IoT systems

to perform for many years, during which they will require regular attention and

frequent upgrading to take advantage of advances in technology. This puts pressure

on engineers to deliver applications quickly, but without compromising security

and performance. That means that software engineers must anticipate what systems

will require in the future and plan for the whole life cycle of devices and applica-

tions at the design stage, from development, configuration, and deployment

through management, monitoring, and, ultimately, decommissioning.

Improvement of the complete SDLC is of immense importance to Home Systems

department at Philips Lighting too. Engineers there aim for continuous integration,

deployment, and delivery processes in each aspect of the SDLC. They tend to make

the SDLC as automated as possible, without compromising security aspects of the

systems. This project is part of this global movement and its successful delivery

makes a step further in reaching these high-level company objectives. The project

has two main goals. First goal is to optimize and automate the software release

management workflow, with main emphasis on the code signing process. Second

goal is to improve the security in these processes, such as storing and operating the

highly sensitive software signing keys.

The end result of this project solves a lot of challenges in the SDLC. It is a release

management tool dedicated for the engineers at the Home department at Philips

Lighting. First, it visualizes ongoing software release workflows in a simple and

easy to use web-based user interface. With a lot of searching and sorting possibili-

ties, users are able to quickly find out the specific details about a particular software

release process. Second, the core activities of the SDLC process are fully auto-

mated. The testing architects are now able to digitally sign software with just a few

clicks on the web-based user interface. What is more important is that this signing

is executed in a highly secure and protected environment. This is of huge im-

portance for Philips Lighting not only because this automation saves a lot of time,

but also because it reduces the risk of human error that was present before. The

same benefits are gained through an automation of other activities in the SDLC,

such as approving the steps, distributing the signed software to the manufacturing

factories or deploying the software on the device in the field. Third, the system

provides a traceability of each step executed in the process, for instance, who ap-

proved the software for signing or who uploaded the signed files to the Hue device

portal. Finally, the system is highly configurable, which makes it easy to be ex-

tended and adjusted to support different device types with different release work-

flows.

From the software architecture point of view, the designed system exhibits proper-

ties, such as modularity and maintainability, which makes it easily extendable. One

of the core non-functional requirements of this project was security. This was

achieved by applying advanced security mechanisms in every aspect of the system.

ix

Table of Contents

Foreword .. i

Preface .. iii

Acknowledgements ... v

Executive Summary .. vii

Table of Contents ... ix

List of Figures .. xiii

List of Tables ... xv

1. Introduction ... 1

1.1 Context ... 1

1.2 Internet of Things ... 1

1.3 Philips Lighting .. 2

1.4 Philips Hue System ... 2

1.5 Outline .. 3

2. Stakeholder Analysis ... 5

2.1 List of stakeholders .. 5

2.2 Stakeholders Analysis ... 5
2.2.1. Project Manager and Project Owner .. 5
2.2.2. Product Owner of the Hue platform .. 6
2.2.3. Test Architect in the Integration & Validation team 6
2.2.4. Security Officer in the Integration & Validation team 7
2.2.5. The Bridge Platform team ... 7
2.2.6. The Bridge Application team .. 7
2.2.7. The Integration & Validation team in China 8
2.2.8. Validation Engineer in Quality Assurance Department 8
2.2.9. Digital Operations Department .. 8
2.2.10. Eindhoven University of Technology (TU/e) 9
2.2.11. PDEng trainee .. 9

3. Problem Analysis ... 11

3.1 Context ... 11
3.1.1. Software signing .. 11
3.1.2. Software deployment in IoT world .. 11
3.1.3. Project goals .. 12

3.2 Business Roadmaps .. 12

3.3 Design Opportunities ... 12

4. Domain Analysis .. 13

x

4.1 Challenges in the SDLC in IoT world .. 13
4.1.1. Design and Development ... 13
4.1.2. Deployment ... 14
4.1.3. Solution .. 14

4.2 Software signing ... 14

5. Feasibility Analysis .. 17

5.1 Issues .. 17

5.2 Risks ... 17
5.2.1. Project risks ... 17

6. System Requirements .. 19

6.1 Introduction .. 19
6.1.1. Requirements gathering process .. 19
6.1.2. Scope ... 19
6.1.3. Intended audience and reading suggestions 19
6.1.4. Definitions, acronyms, and abbreviations 20

6.2 Overall Description .. 20
6.2.1. Product features and use cases ... 20
6.2.2. Operating environment .. 22
6.2.3. Design/Implementation constraints ... 23

6.3 Functional Requirements ... 23

6.4 Non-functional requirements .. 25
6.4.1. Security requirements .. 25
6.4.2. Software quality attributes ... 25

7. System Architecture .. 27

7.1 Architectural reasoning .. 27

7.2 Data layer ... 29

7.3 Business logic layer .. 29
7.3.1. Representational State Transfer (REST) 31
7.3.2. Hypertext Transfer Protocol .. 33
7.3.3. Business-logic layer architecture ... 34

7.4 Presentation tier ... 35
7.4.1. Model View Controller (MVC) ... 35
7.4.2. Architecture choice for presentation tier 36

7.5 Trade-offs between non-functional requirements 37

8. System Design .. 39

8.1 Introduction .. 39

8.2 Reference use case .. 40

8.3 Logical view ... 40
8.3.1. Release workflow system .. 41
8.3.2. Software signer system .. 43
8.3.3. Presentation layer .. 43

8.4 Process view ... 44

8.5 Development view... 45

xi

8.6 Deployment view .. 47

9. Implementation .. 49

9.1 Introduction .. 49

9.2 Presentation and business-logic layer: Release workflow

application .. 49

9.3 Software signer system ... 50

9.4 Data layer... 50

10. Verification and Validation ... 51

10.1 Validation ... 51

10.2 Verification ... 51

11. Deployment ... 53

11.1 Deployment view .. 53

11.2 Deployment options analysis .. 55
11.2.1. Deploying in the Lighting Data Center 55
11.2.2. Deploying in the existing IT environment in the Home

Systems department ... 55
11.2.3. Deploying in a cloud environment .. 55
11.2.4. Deployment decision ... 58

12. Conclusions ... 61

12.1 Results... 61

13. Project Management .. 63

13.1 Introduction .. 63

13.2 Work-Breakdown Structure (WBS) ... 63

13.3 Project Planning and Scheduling ... 65
13.3.1. Initial ... 65
13.3.2. Final ... 65

13.4 Project execution .. 66

14. Project Retrospective ... 67

14.1 Introduction .. 67

14.2 Design opportunities revisited .. 68

Glossary ... 69

Bibliography .. 70

About the Authors .. 73

xiii

List of Figures

Figure 1.1 Hue system overview ... 3
Figure 6.1 System level use-cases ..22
Figure 6.2 Envisioned deployment of the system ...23
Figure 7.1 Client-server architecture ..28
Figure 7.2 3-tier architecture deployment on separate physical servers29
Figure 7.3 Logic tier architecture ...34
Figure 7.4 MVC design pattern ..36
Figure 7.5 Presentation tier architecture ...37
Figure 8.1 Logic tier architecture ...42
Figure 8.2 Presentation tier design ...44
Figure 8.3 Handling signing request process. All layers are involved in this

communication. ..45
Figure 8.4 Development view of the Release workflow system46
Figure 8.5 Development view of the presentation layer47
Figure 8.6 Deployment view of the entire system. A more comprehensive view is

offered in the Deployment chapter ...48
Figure 11.1 Deployment view revisited. Concrete implementation specifics are

taken into consideration. ..54
Figure 13.1 Work-breakdown structure of the project ..64
Figure 13.2 Initial project plan ...65
Figure 13.3 Final project planning ..66

xv

List of Tables

Table 5.1 Project risks ..18
Table 6.1 Definitions, acronyms, and abbreviations ...20
Table 6.2 Main users and scenarios ..21
Table 6.3 Functional requirements ...25
Table 11.1 Deployment options comparison ..59

1

1.Introduction

This chapter introduces the project and its context. The scope of the project and its

goals are briefly mentioned. The outline section of this chapter gives a brief overview

of what is discussed in the following chapters.

1.1 Context
The ''Signing and security of Hue software'' project was conducted by Igor Anastasov,

as part of his Professional Doctorate in Engineering (PDEng) program. The PDEng

degree program in Software Technology is provided by the Department of Mathemat-

ics and Computer Science of Eindhoven University of Technology in the context of

the 4TU.School for Technological Design, Stan Ackermans Institute. [2]

This Professional Doctorate in Engineering program (PDEng) is an accredited and

challenging two-year, third-cycle (doctorate-level) engineering degree program during

which its trainees focus on strengthening their technical and non-technical competen-

cies related to the effective and efficient design and development of software for re-

source-constrained software-intensive systems, such as real-time embedded or distrib-

uted systems, in an industrial setting. PDEng focuses on large-scale project-based de-

sign and development of this kind of software. [3]

The various parts of the PDEng degree program aid in developing the capability of

individuals to work within a professional context. It advocates a scientific research-

based approach to solving problems, a systematic way of collecting evidence and a

critical, reflective, and independent mind for the analysis and interpretation of evi-

dence. The first fifteen months of the program consist of advanced training and educa-

tion, including four small, industry driven training projects. During the last nine

months, a major design project in a company takes place.

The current project was initiated by Philips Lighting, an organization that develops

connected lighting systems and services. By leveraging the Internet of Things, they are

transforming buildings, urban places and homes to increase energy efficiency and man-

age working environments in a more environmentally friendly way. The next section,

gives a brief introduction to the Internet of Things paradigm.

1.2 Internet of Things
From the first emails to Web 2.0 to the cloud and mobile access, the Internet has made

spectacular progress over the past decades. One of the things that the future has in store

is an ''Internet of things'': connected appliances and machines that dynamically and

intelligently adapt to users' needs and preferences. In these developments, light may

play a crucial part. [4]

The Internet of Things is the inter-networking of physical devices, vehicles, buildings,

and other items embedded with electronics, software, sensors, actuators, and network

connectivity that enable these objects to collect and exchange data. These devices are

also referred to as ''connected devices'' and ''smart devices''. In 2013 the Global Stand-

ards Initiative on Internet of Things (IoT-GSI) defined the IoT as "the infrastructure of

the information society." The IoT allows objects to be sensed and / or controlled re-

motely across existing network infrastructure, creating opportunities for more direct

integration of the physical world into computer-based systems and resulting in im-

proved efficiency, accuracy and economic benefit in addition to reduced human inter-

vention. When IoT is augmented with sensors and actuators, the technology becomes

an instance of the more general class of cyber-physical systems, which also encom-

passes technologies such as smart grids, smart homes, intelligent transportation and

2

smart cities. Each thing is uniquely identifiable through its embedded computing sys-

tem but is able to interoperate within the existing Internet infrastructure. Experts esti-

mate that the IoT will consist of almost 50 billion objects by 2020. [5]

As the possibilities for digital, connected lighting develop and expand, Philips Light-

ings' smart lighting infrastructure can become the glue that connects the physical world

to the digital realm, creating a true ''Internet of Lights''. In this brave new world of

connected intelligence, lighting can become an integral and responsive part of our eve-

ryday environments. [4]

1.3 Philips Lighting
“Philips Lighting is the leading provider of lighting solutions and applications for both

professional and consumer markets, pioneering in how lighting is used to enhance the

human experience in the places where people live and work. Whether being at home,

on the road, in the city, shopping, at work or at school, Philips Lighting is creating

lighting solutions that transform environments, create experiences, and help shape

identities. Philips Lighting serves its customers through a market segment approach,

which encompasses Homes, Office and Outdoor, Industry, Retail, Hospitality, Enter-

tainment, Healthcare and Automotive. The company employed approximately 33,600

people worldwide with sales of EUR 7.4 billion in 2015. In 2015, Philips Lighting

spanned a full-service lighting value chain-from lamps, luminaires, electronics, and

controls to connected and application-specific systems and services.” [6]

1.4 Philips Hue System
In 2012, Philips Lighting launched the Philips Hue System. The Hue is a completely

connected home lighting system of linked bulbs that can be controlled by smartphone

or tablet via a ZigBee1 bridge that connects to the home Wi-Fi network.

Philips Hue is an internet connected (wireless) lighting system designed to transform

how users experience light inside their homes. It is one of the leading and most installed

smart home / Internet of Things products in the world. Philips Hue transforms how

users can experience light by enabling color tunable lights to be controlled from

smartphones, web services or other control logic and devices running in the system.

Furthermore, it is an open system, which means that other suppliers can add third-party

components via standardized or published interfaces. [7]

The Hue system consists of various products: the Hue portal2, the mobile applications,

the bridges, various lamps and luminaires, sensors, and switches. Figure 1.1 shows a

high-level overview of the Hue system and its main components. Several of these de-

vices, such as lamps, luminaires, bridges, sensors, and switches contain software. It is

essential that the respective software is securely signed before it is deployed to the

production factories and installed on the device. Moreover, when there is an updated

version of the software available, all consumer devices in the field need to be updated

with the latest version of the software. This also requires the software to be securely

signed. Additionally, the distribution channels through which the software is being

distributed to the factories and to the consumer devices in the field, need to be highly

secured and to conform to the highest security standards.

Within the Philips Lighting projects software engineers are working towards continu-

ous integration and deployment. Once the Integration & Verification (I&V) team has

given their approval on release of specific software, the software running on, for ex-

ample, the bridge must be signed and uploaded to the Hue cloud for further distribution

towards all consumer devices in the field. The bridge software must also be signed and

securely sent to the factory as a running change on all devices that are being produced.

1 http://www.zigbee.org/
2 For the remainder of this report, the terms “Hue portal,” “Hue device cloud,” and “Hue

cloud” are used interchangeably and refer to the same system

3

Currently, all these steps beginning from the 'approval' from the I&V are manual steps

which are error prone. The aim of this project is to automate and optimize this process.

Figure 1.1 Hue system overview

1.5 Outline
The next chapter, Chapter 2, introduces the stakeholders of this project together with

their interests and goals. A problem analysis is described in Chapter 3 that elaborates

the problem that this project is focusing on and its current state in the ecosystem. Chap-

ter 4 talks about the domain of the problem and gives directions towards the problem's

solution. The issues and challenges encountered during the lifetime of the project as

well as the risks that might arise are elaborated in Chapter 5.

The following chapters focus on the design and implementation phases of the project.

Chapter 6 lists the user and functional requirements derived from the domain and prob-

lem analysis as well as from the many discussions we had with the stakeholders. The

requirements together with the domain and problem analysis give an input for the sys-

tem architecture that is elaborated in Chapter 7. After modeling the architecture, the

design of the system is created. The system design is presented in Chapter 8. Chapter

9 describes the implementation of the system. The process of validation and verifica-

tion of the system is discussed in Chapter 10. Explanation of the deployment of the

solution is described in the Chapter 11. Finally, the conclusions and future work are

addressed in Chapter 12.

The project management process during the lifetime of the project is described in

Chapter 13. Finally, Chapter 14 gives the retrospective and reflection on the project

from the author's perspective. ■

5

2.Stakeholder Analysis

This chapter gives an overview of the stakeholders involved in the project. The main

concerned parties are Philips Lighting (supervisors and the Department of Home Sys-

tems) and the Eindhoven University of Technology (supervisor and PDEng trainee).

For each concerned party, the representative stakeholders are listed together with their

role, responsibilities, concerns, acceptance criteria, and involvement.

2.1 List of stakeholders
The following stakeholders were identified:

• Project Manager

• Product Owner

• Test Architect in the Integration & Validation team

• Security Officer in the Integration & Validation team

• Product Owner of the Hue bridge platform

• The Bridge Application team

• The Bridge Platform team

• The ZigBee Platform team

• The ZigBee Products team

• The Mobile Applications team

• The Device cloud (HSDP) team

• The Digital Operations department

• Quality Assurance Department

• The Integration & Validation team in China

• Factory employee – responsible for receiving and deploying the updated

bridge firmware

• Eindhoven University of Technology (TU/e)

• PDEng trainee

2.2 Stakeholders Analysis
The following table gives an overview of each stakeholder’s role, concerns, acceptance

criteria, and their involvement during the project.

2.2.1. Project Manager and Project Owner

• ROLE

✓ The project owner is the person who defines the goals of the project,

funds it and looks for the business value

✓ The project manager is the person who organizes the project and has

to make sure that the project goals (defined by the owner) are met

one time and within budget

• REPRESENTATIVE

✓ Project owner: Luud Woltjer

✓ Project manager: Leon Bouwmeester

• RESPONSIBILITIES

✓ Monitor, evaluate, assess, and provide regular feedback on the pro-

ject progress and deliverables

✓ Provide relevant domain knowledge, references, and contacts

✓ Provide relevant information regarding the needs and requirements

of the project

✓ Evaluate whether the solution meets the requirements

✓ Review the final project report

• ACCEPTANCE CRITERIA

✓ Timely report of the project deliverables

6

• CONCERNS

✓ Project is delivered according to the defined timeline

✓ System is developed by using approved licenses. For instance, MIT,

BSD are preferred over GPL.

• INVOLVEMENT

✓ During the entire project by continuous communication via daily

meetings on ad–hoc basis, regular weekly progress update meetings,

and regular monthly project steering group meetings.

2.2.2. Product Owner of the Hue platform

• ROLE

✓ Software architect responsible for and owning the Hue platform.

• REPRESENTATIVE

✓ Walter Slegers

• RESPONSIBILITIES

✓ Monitor, evaluate, assess and provide regular feedback on the pro-

ject progress and deliverables

✓ Provide relevant domain knowledge, references, and contacts

✓ Provide relevant information regarding the needs and requirements

of the project

✓ Evaluate whether the solution meets the requirements

✓ Review the final project report

• ACCEPTANCE CRITERIA

✓ Timely report of the project deliverables

✓ Solution meets functional and non-functional requirements

• CONCERNS

✓ Deploying the software to the wrong luminaires/lamps/bridges (a

wrong bridge image deployed seemed to have happened in the early

days of Hue)

✓ Being able to stop a software deployment (has been necessary once

because the software contained a problem discovered after deploy-

ment started)

✓ Accidentally deploying to the wrong region / world or to the custom-

ers instead of alpha/beta groups.

✓ Being able to see the deployment status (For example. version X de-

tected on y% of connected bridges)

• INVOLVEMENT

✓ During the entire project by continuous communication via daily

meetings on ad–hoc basis, regular weekly progress update meetings,

and regular monthly project steering group meetings.

2.2.3. Test Architect in the Integration & Validation team

• ROLE

✓ Testing & Validation of the software

• REPRESENTATIVE

✓ Luud Woltjer

• RESPONSIBILITIES

✓ Provide relevant domain knowledge

✓ Provide relevant information regarding the needs and requirements

of the project

✓ Evaluate whether the solution meets the requirements

• ACCEPTANCE CRITERIA

✓ Solution meets functional and non–functional requirements

• CONCERNS

✓ Giving approval on a specific release is automated and is a simple

process

✓ It is visible and clear which version of the release is under validation

7

✓ There is a clear and simple communication channel with the respec-

tive development teams

• INVOLVEMENT

✓ During the entire project by continuous communication via daily

meetings on ad–hoc basis, regular weekly progress update meetings

2.2.4. Security Officer in the Integration & Validation team

• ROLE

✓ Digitally signing the production firmware version

✓ Upload signed firmware to the device cloud

✓ Approve deployment of the firmware on specific devices and/or fac-

tory

• REPRESENTATIVE

✓ Luud Woltjer

• RESPONSIBILITIES

✓ Provide relevant domain knowledge

✓ Provide relevant information regarding the needs and requirements

of the project

✓ Evaluate whether the solution meets the requirements

• ACCEPTANCE CRITERIA

✓ Solution meets functional and non–functional requirements

• CONCERNS

✓ Signing certificates for production firmware are securely stored un-

der highest possible security measures

✓ Software signing is an automated, simple and straightforward pro-

cess

✓ Uploading the firmware to the device cloud is automated and is a

simple process. It is visible which version is deployed on the test and

production device cloud.

✓ Approving deployment of the firmware on specific devices and /or

factory is an automated and simple process

✓ There is an archive of all production builds, i.e. it is clear and visible

which version is released

• INVOLVEMENT

✓ During the entire project by continuous communication via daily

meetings on ad–hoc basis, regular weekly progress update meetings

2.2.5. The Bridge Platform team

• ROLE

✓ Develop bridge firmware

• REPRESENTATIVE

✓ Erik Maas

• RESPONSIBILITIES

✓ Provide relevant domain knowledge

• ACCEPTANCE CRITERIA

✓ Solution meets functional and non–functional requirements

• CONCERNS

✓ Signing production firmware is done by using same development

scripts which are maintained by developers

✓ There is a clear procedure for signing and deployment with clear re-

sponsibilities about who is liable for the specific step

• INVOLVEMENT

✓ Meetings on an ad–hoc basis

2.2.6. The Bridge Application team

• ROLE

✓ Develop bridge application firmware

• REPRESENTATIVE

8

✓ Ino Dekker

• RESPONSIBILITIES

✓ Provide relevant domain knowledge

• ACCEPTANCE CRITERIA

✓ Solution meeting functional and non–functional requirements

• CONCERNS

✓ Signing production firmware is done by using the same development

scripts that are constantly maintained by the software developers

✓ The process of uploading firmware artifacts to the Hue portal is au-

tomated

• INVOLVEMENT

✓ Meetings on an ad–hoc basis

2.2.7. The Integration & Validation team in China

• ROLE

✓ Approve the release of the new firmware version for several devices

such as the bridges, various lamps, sensors and switches

• REPRESENTATIVE

✓ Paul Krekel

• RESPONSIBILITIES

✓ Provide relevant domain knowledge and technical information re-

garding the needs and requirements of the project

• ACCEPTANCE CRITERIA

✓ Solution meets functional and non–functional requirements

• CONCERNS

✓ Signing certificates for production firmware are securely stored un-

der highest possible security measures

✓ There is an archive of all production builds and it is clear and visible

which version is released on specific date

✓ Specific configuration files related to particular products such as

lambs and luminaires are archived and stored together with specific

build artifacts

• INVOLVEMENT

✓ Meetings on ad–hoc basis

2.2.8. Validation Engineer in Quality Assurance Department

• ROLE

✓ Quality Assurance in the Software Development process

• REPRESENTATIVE

✓ John Goor

• RESPONSIBILITIES

✓ Provide relevant domain knowledge and requirements regarding the

quality aspects of the delivered solution

• ACCEPTANCE CRITERIA

✓ Solution meets functional and non–functional requirements

• CONCERNS

✓ To have a clear explanation about the process for signing and de-

ployment of Hue software (responsibilities, workflow)

✓ Traceability in the process

• INVOLVEMENT

✓ Meetings on ad–hoc basis

2.2.9. Digital Operations Department

• ROLE

✓ Manages specific operations

• REPRESENTATIVE

✓ Carlos Sierra

9

• RESPONSIBILITIES

✓ Provide relevant domain knowledge and requirements related to the

Digital Operations (DO) department

• ACCEPTANCE CRITERIA

✓ Solution meeting functional and non–functional requirements

• CONCERNS

✓ To distribute the software at a high level of security

✓ To have traceability in the process

✓ To be included in the specific steps in the process

• INVOLVEMENT

✓ Meetings on ad–hoc basis

2.2.10. Eindhoven University of Technology (TU/e)

• ROLE

✓ The university guards the educational interests of the university and

the trainee

• REPRESENTATIVE

✓ PDEng Program Director: Ad Aerts

✓ TU/e supervisor: Tanir Ozcelebi

• RESPONSIBILITIES

✓ Monitor, evaluate, assess and provide regular feedback on the pro-

ject progress and deliverables

✓ Provide relevant domain knowledge, references and contacts

✓ Provide relevant information regarding the needs and requirements

of the project

✓ Monitor, evaluate, assess and provide feedback on the trainee’s de-

sign process and qualities of the design

✓ Review the final project report

• ACCEPTANCE CRITERIA

✓ Timely report of the project deliverables

✓ Design, implementation, project management and documentation

that meet the level of a PDEng project

• INVOLVEMENT

✓ During the entire project by continuous communication via meetings

on ad-hoc basis with the PDEng trainee and regular monthly project

steering group meetings.

2.2.11. PDEng trainee

• ROLE

✓ Software designer, project manager

• REPRESENTATIVE

✓ Igor Anastasov

• RESPONSIBILITIES

✓ Responsible for complete project implementation

• ACCEPTANCE CRITERIA

✓ Content of sufficient quality as to the level expected of a PDEng

trainee

■

11

3.Problem Analysis

The first two chapters give a brief overview of the project’s context and scope, and the

stakeholders’ interests and goals. This chapter focuses on the problem that the project

is trying to solve, by analyzing not only the use cases and challenges of the software

signing and deployment within Philips Lighting, but also the overall challenges of the

security and software deployment processes.

3.1 Context

3.1.1. Software signing

Software signing is a process of digitally signing executables and scripts to confirm

the software author and guarantee that the code has not been altered or corrupted since

it was signed. The most common use of code signing is to provide security when de-

ploying software. Almost every code signing implementation provides some sort of

digital signature mechanism to verify the identity of the author. [8]

The efficacy of code signing as an authentication mechanism for software depends on

the security of underpinning signing keys. As with other public key infrastructure

(PKI) technologies3, the integrity of the system relies on publishers or authors securing

their private keys against unauthorized access.

Within Philips Lighting, the Security Officer inside the Integration & Validation team

is responsible for storing the signing keys. Additionally, he is responsible for signing

the production version of the appropriate Hue software. Storing the signing keys safely

and securely is one of the main challenges and responsibilities of the Security Officer.

There should be highest possible security measures in place in order to prevent unau-

thorized access to these keys. Another challenge that the Security Officer is facing now

is the signing process itself. The current process includes many steps that are manual

and therefore error prone. There is a specific software script that, combined with the

secret keys, generates the signed production version of the Hue software. However,

this execution is done manually with a real possibility of mistakes. Moreover, there are

two versions of the production software that are generated and require diverse ways of

signing. One version is needed for distribution to the device factories, and one version

is uploaded to the Hue portal.

3.1.2. Software deployment in IoT world

The IoT combines smart devices and sensors with analytics and the cloud. This para-

digm shift presents new challenges involving software distribution, updates, and secu-

rity. The world is evolving into an "everything as a service" environment and the em-

bedded industry is no different. Internet of Things applications make heavy use of the

cloud and this new paradigm is essentially what differentiates IoT from traditional net-

worked embedded systems. Software updates are essential. Within the context of IoT

and cloud applications, the ability to soft-configure the system is critical and an essen-

tial part of the motivation for moving traditional networked embedded systems in this

new emerging direction. These kinds of capabilities offer the ability to quickly deploy

new features and capabilities at a fraction of the cost. New capabilities promise lower

cost and increased revenue. The ability to quickly, securely, and flexibly update any

cloud-based service is essential to take advantage of the benefits this environment pro-

vides. Further, within the cloud, adding new services can adversely affect the security

of the existing hosted services. For these reasons, new tools, capabilities, and tech-

niques are emerging to coordinate and synchronize software distribution. [9]

3 https://en.wikipedia.org/wiki/Public_key_infrastructure

12

The software distribution process involves software developers, integrators, testers and

software users. The developers create the software and utilize a variety of integrated

development environments (IDEs), code repositories, automated test, and continuous

integration tools. Once the production binaries are created and tested, these binaries

need to be controlled, stored, and managed throughout the release. Sometimes these

are called "binary artifacts." It is important for binary management solutions to inte-

grate with popular repositories, build tools, and continuous integration servers. The

other consideration is how developers store, publish, download, and distribute soft-

ware. The cloud environment adds significant complexity. In many IoT instances, end-

points may be a variety of platforms with end users that may or may not upgrade in a

timely manner. [9]

Within the Philips Lighting projects, the engineers are working toward continuous in-

tegration and deployment. Once the Integration & Verification (I&V) team has given

their approval on release of specific software, the software running on, for example,

the bridge, must be signed and uploaded to the Hue cloud for further distribution to-

ward all consumer devices in the field. The bridge software must also be signed and

securely sent to a factory as a running change on all devices that are being produced.

There are several actions that need to be undertaken until the software is released. All

these actions are consisted of manual steps.

3.1.3. Project goals

Improvement of the complete Software Development Life-Cycle (SDLC) is of im-

mense importance to Philips Lighting. Engineers there tend to make the SDLC as au-

tomated as possible, without compromising security aspects of the systems. This pro-

ject is part of this global movement and its successful delivery makes a step further in

reaching these high-level company objectives. The project has two main goals. First

goal is to optimize and automate the software release management workflow, with

main emphasis on the automation of the code signing process. Second goal is to im-

prove the security in these processes, such as storing and operating the highly sensitive

software signing keys. The following section explains in detail the current process of

Hue software deployment and pinpoints the possible issues that could happen with it.

3.2 Business Roadmaps
Improvement of the complete Software Development Life-Cycle (SDLC) is significant

to the Philips Lighting too. Engineers there aim for continuous integration, deploy-

ment, and delivery processes in each aspect of the SDLC. They tend to make the SDLC

as automated as possible, without compromising security aspects of the systems. This

project is part of this global movement and its successful delivery makes a step further

in reaching these high-level company objectives.

3.3 Design Opportunities
During the study of the Hue system domain and the problem analysis, the following

design opportunities were identified, namely security, usability and reliability. First,

the system shall have access to the keys used for signing the production Hue software.

These keys are sensitive and the system needs to provide the highest possible security

measures in order to prevent unauthorized access to them. Second, the system should

replace a complete process. Therefore, the system should satisfy the requirements of

the owner and the stakeholders of the project in a way that the system is made usable

and intuitive. Finally, the system should be reliable. The speed of execution is not crit-

ical, but the correctness of the processes is crucial. It is preferred that processes run

sequentially. Concurrency is not preferred since every action need to be atomic and

therefore system should know its state in every moment of time. ■

13

4.Domain Analysis

The problem analysis discussed in the previous chapter reveals the domain in which

the project resides, namely the Software Deployment Life-Cycle (SDLC) in the IoT

domain and the software signing with specific emphasis on the security perspective of

these processes. The objective of this chapter is to broaden the understanding of the

domains by analyzing the core challenges in them and identify the relevant parts that

provide insight for the solution to the problem.

4.1 Challenges in the SDLC in IoT world
Developing applications and devices for the Internet of Things (IoT) poses plenty of

challenges. Because IoT systems may be expected to perform for many years, devel-

opers must plan for their entire lifecycle, from design through end-of-life. Demand for

IoT solutions puts pressure on developers to deliver applications quickly without com-

promising security and performance. Enterprise customers expect their IoT systems to

perform for many years, during which they will require regular attention and frequent

upgrading to take advantage of advances in technology. That means developers must

anticipate what systems will require in the future and plan for the whole lifecycle of

devices and applications at the design stage, from development, configuration, and de-

ployment through provisioning, management, monitoring, and, ultimately, decommis-

sioning. [10]

Managing the IoT lifecycle presents a prominent level of complexity. IoT systems of-

ten entail connecting existing “brownfield” devices that were not designed for connec-

tivity. Developers must also ensure that the connection is secure, which requires im-

plementing protective measures at all levels – device, network, and cloud. Once de-

vices are securely connected, operators need a way to provision them, which today

often means literally going from device to device with a thumb drive and loading ap-

plications or performing upgrades manually. Finally, IoT systems face the challenge

of integrating with enterprise systems that can aggregate, analyze, and act upon the

data collected from devices, bridging operational technology (OT) and information

technology (IT) systems that have historically been separated by air gaps. [10]

To bring greater simplicity and efficiency to SDLC process, developers and system

operators need the means to configure, provision, and manage field devices remotely.

Many organizations today have, at most, the means to connect devices and collect data

via gateways, but lack the ability to “push” control instructions back to devices. With

hundreds or even thousands of devices on a single IoT network, the cost of lifecycle

management and the risk of failure can be extremely high. To better understand the

capabilities needed to address these challenges, it is instructive to walk through the

entire device lifecycle. [10]

4.1.1. Design and Development

The new challenges arising from IoT call for new, more flexible development methods

that enable developers to build applications efficiently and deploy them to multiple

devices. In the absence of a single standard of device connectivity, ease of integration

with a variety of platforms is a necessity. A pre-configured development platform, op-

timized for IoT, which does not require the use of actual devices, can dramatically

accelerate development and enhance efficiency, reducing the risk of errors and delays.

Increasingly, software development is distributed among teams, often working in sep-

arate locations. With a cloud-based development platform that allows anytime, any-

where access, distributed development teams can collaborate more effectively and fur-

ther speed the process. Security is a paramount concern in IoT development. An end-

to end security strategy must be factored in across the application lifecycle at the design

stage. Building in security functionality adds a layer of complexity that can be a drag

14

on development and interfere with the eventual performance of the application. Devel-

opers can mitigate this, however, by building on a platform using pre-configured, in-

tegrated software components in which many security issues have already been ad-

dressed. This reduces complexity, saves time, and lowers the risk of security gaps due

to misconfiguration. [10]

4.1.2. Deployment

Once an application has been tested, developers need the means to deploy it easily to

hundreds or thousands of devices in the field. A similar challenge is facing the Philips

Lighting. This can be accomplished with a platform that includes built-in capabilities

for the remote commissioning, provisioning, and customization of devices with new

applications.

4.1.3. Solution

To overcome the complexity of IoT development, it is important to think of the system

lifecycle not as a sequence of discrete steps, but in a holistic fashion. The key capabil-

ities for managing the system lifecycle, therefore, need to be integrated.

These capabilities would include tools for:

• Remote device management: Sending out engineers to maintain and upgrade

devices in the field is simply not viable in large-scale IoT deployments. Sys-

tem operators need to be able to manage devices from a central location in a

closed-loop system from provisioning to end-of-life.

• Virtualized application development: Developers need the ability to cus-

tomize and reconfigure deployed devices with new applications, using an ab-

stracted target hardware platform that does not require proximity to an actual

device.

• Modeling and testing: Development teams need to test applications thor-

oughly even during the debug phase, using simulation models capable of rep-

licating the entire system across its entire lifecycle.

Finally, to enable distributed development teams to collaborate efficiently and effec-

tively, it makes sense to house these tools in a secure cloud environment, whether on

an internal server or through an external provider that allows anywhere, anytime access

to authorized developers. [10]

This Section explores the challenges that arise at each stage of the lifecycle and how

to address them, and outlines the advantages of having an integrated development en-

vironment for building, testing, deploying, and managing IoT applications.

4.2 Software signing
Software signing4 is the method of using a certificate-based digital signature to sign

executables and scripts in order to verify the author’s identity and ensure that the code

has not been changed or corrupted since it was signed by the author. This helps users

and other software to determine whether the software can be trusted. [11]

Because of the potential damage that an executable or script can cause to a computer

system, it is important that users are able to trust the code published on the Internet.

There are two important ways that Code Signing increases trust, namely:

• Authentication. Verifying who the author of the software is.

• Integrity. Verifying that the software has not been tampered with since it was

signed.

For example, every time a developer publishes a software application, he signs it with

his own signing certificate. Before using the application, other users can clearly see

4 Sometimes is referred to as Code signing

15

that it is signed by a known developer and they will know that it has not been changed

by a hacker in the process of downloading it.

Another advantage that code signing provides is the ability to trust updates. If an update

to a software application is released and signed using the same key as the original

application, the update can be automatically trusted because it could not have come

from anywhere other than the original trusted software developer or organization.

Almost every code signing implementation will provide some sort of digital signature

mechanism to verify the identity of the author or build system, and a checksum to

verify that the object has not been modified. The efficacy of code signing as an authen-

tication mechanism for software depends on the security of underpinning signing keys.

As with other public key infrastructure (PKI) technologies, the integrity of the system

relies on publishers securing their private keys against unauthorized access. Keys

stored in software on general–purpose computers are susceptible to compromise.

Therefore, it is more secure, and best practice, to store keys in secured tamper–proof

devices. Software is written code, and code can be read and analyzed. Once it has been

analyzed, it can be modified to the requirements of an attacker. If a device is repro-

grammed with modified software, the authentication process and system integrity can

be broken. Another potential and severe weakness of software-based solutions is the

inappropriate storage of secret keys during various process and production steps. Typ-

ically, in software–based protection systems, attackers can easily identify secret keys

that are built into the software or otherwise stored in readable form. [8]

Setting up a secure storage for software signing keys is one of the challenges that the

Philips Lighting faces. Therefore, one of the most important goals of this project is to

find a more secure way of handling and storing these keys. ■

17

5.Feasibility Analysis

After elaborating the problem and domain analysis, a feasibility analysis is performed

to identify and analyze issues and risks that exist or might appear. This chapter dis-

cusses issues and risks identified together with their mitigation strategies.

5.1 Issues
This section describes issues and challenges that we came across during the lifetime of

the project.

i. Arranging meetings with all important stakeholders of this project is a challeng-

ing activity. The discussions with testing architects, security officers, different

development teams, the product security department, and distributed teams in

Bangalore are crucial input to the problem analysis and further definition of the

use cases and requirements of the project. Given their busy everyday schedule,

arranging discussions for exacting key requirements and evaluating the result is

a challenging task that requires stakeholder management and time management

skills.

ii. Having an appropriate deployment environment where the final results will be

installed is critical for delivering the end product of this project as it affects the

design, modeling, implementation, and validation steps of the project. Deploy-

ment of the end product introduces an extra level of complexity because of two

reasons. First, there are several possibilities for deployment, such as internal

Philips Lighting data center, existing IT infrastructure in the Home Department,

and cloud providers. Second, if cloud providers are chosen, there are a lot of legal

regulations that need to be satisfied in order to make a contract with some of these

providers. Having complete deployment environment is a risk identified and elab-

orated in the following section.

iii. Finally, integrating the existing Hue software into the system-under-development

means that several adjustments need to be implemented into the existing software

for code signing. Currently, there are several types of Hue software, such as

bridge and lamp. Some of these software files are signed with external signing

software that runs on a specific operating system. To integrate completely into

one system, some of the existing code signing scripts need to be migrated to a

different operating system. Properly communicating those changes and defining

who is liable for them now and in the future, adds additional complexity to the

project itself.

5.2 Risks

5.2.1. Project risks

During the project, a number of risks are identified. Table 4 lists risks together with

their impact on the project and corresponding mitigation strategy. A more proactive

risk management is applied during the initial months of the project due to the uncer-

tainties and not clearly defined milestones. Further through the lifetime of the project,

this list was updated as the scope and complexity became clearer.

Risk ID R01

Description Stakeholders’ unavailability

Impact Some stakeholders might not be available for (detailed)

discussions, so the input gathered might be limited.

18

Mitigation strategy Make plans for meetings in advance. Always try to have

a backup strategy in case important stakeholder is una-

vailable.

Risk ID R02

Description The Home department does not have dedicated servers

for deployment of the final product of this project. This

is understandable, since they are more oriented towards

embedded development. Therefore, the author needs to

properly communicate and choose a deployment option.

There is a risk that this decision and implementation will

take a longer time, having in mind all legal and security

regulations that Philips Lighting has.

Impact It will not be possible for the stakeholders to use the sys-

tem.

Mitigation strategy Plan deployment early. Specify acceptance criteria and

start analyzing deployment options. Set a fixed deadline

for the decision and implementation. Clearly communi-

cate this risk with the stakeholders and together define a

backup plan in case this process is not finished on time.

Risk ID R03

Description Not a feasible requirement. One requirement of the pro-

ject stays that the system shall implement an automated

process for software upload to device cloud. However,

the device cloud system is owned by the Royal Philips

and there is a chance that it is technically not possible to

integrate with this system as stakeholder’s desire.

Impact It will not be possible for the stakeholders to automati-

cally upload signed software artifacts to the device cloud.

Mitigation strategy Analyze if this requirement is technically feasible. If not,

then clearly communicate this to the stakeholders and to-

gether define a backup scenario.

Risk ID R04

Description Operating system incompatibility. As we briefly men-

tioned in the Section 5.1, there are diverse ways of soft-

ware signing for different types of Hue devices. Some of

them require Windows operating system and some of

them are fully Linux dependent. Since the goal of the pro-

ject is to integrate all signing processes into one auto-

mated system, some of those signing processes need to be

migrated into a different operating system. However, this

migration is a complete project and is not in the scope of

this one. Therefore, there is a risk that the system will not

be applicable for some of the device types.

Impact The final product will not support all possible device

types, such as Hue bridge and Hue lamps.

Mitigation strategy Discuss with stakeholders who is liable for this migration.

Define a proper timeline for the migration.

Table 5.1 Project risks

As addition to the risks listed in Table 5.1, a comprehensive Information Security Risk

assessment was performed during the architecture, design and implementation phases

on the project deliverable. The purpose of this assessment was to analyze how the sys-

tem is exposed to the security risks happening in its environment. The output of this

analysis was a risk register, that contains a list of information security threats that are

relevant to this project. Each threat was given with the following details: vulnerability,

threat source, threat explanation, likelihood of the threat, impact, mitigation strategy,

risk level, and risk level after mitigation. The mitigation strategies proposed here in-

fluenced and steered some further decisions that were made.

19

6.System Requirements

This chapter describes the system requirements from the project “Signing and security

of Hue software.” After analysis of the domain and its problems, a set of requirements

are extracted and formulated that must be satisfied for this project. This document pre-

sents these requirements, both functional and non-functional ones.

6.1 Introduction
Although this chapter is primarily intended for engineers, it does not specify each func-

tionality with technical details. It is assumed that the reader is familiar with the Hue

system, current project description, goals, domain and the problem statement.

6.1.1. Requirements gathering process

Both the problem and domain analysis reveal the core of the problem and its position

in the bigger ecosystem. Still, a simple problem statement is not enough to proceed

with solving the problem itself. What is necessary is a problem decomposition into

small and traceable sub-problems that address a specific issue. This decomposition

leads to the formalized requirements of the project.

The problem decomposition process is conducted by repeated discussions with rele-

vant stakeholders and thorough analysis of the problem and domain. These repeated

discussions reveal the fine details of the problem and its subcomponents, which further

help to differentiate specific requirements for the project.

Two sets of requirements are identified: functional requirements and non-functional

requirements. Each requirement has a priority assigned to it, which indicates the im-

portance of that requirement. The following three categories are defined for priority,

based on the descriptions defined by S. Brander [12]:

• MUST － absolute requirement of the specification.

• SHOULD － there may exist valid reasons in particular circumstances to ig-

nore a particular item, but the full implications must be understood and care-

fully weighed before choosing a different course.

• OPTIONAL － the requirement is truly optional.

6.1.2. Scope

The scope of the project includes the processes of signing and deployment of the Hue

software running on the following devices:

• Hue Bridges and

• Hue Lamps

The scope of the project starts after the moment the software is developed and the

development phase is finished. There is no differentiation among different versions of

the Hue devices. The project sees the software as a collection of files (artifacts) that

are a complete product that need to be signed and further distributed.

6.1.3. Intended audience and reading suggestions

This chapter is intended for any individual user, developer, tester, project manager, or

documentation writer who needs to understand the basic system specifications.

Here are the potential uses for each one of the reader types:

• Developer: The developer who wants to read, change, modify or add new

requirements into the existing program must firstly consult this chapter and

update the requirements in the appropriate manner so as not to destroy the

20

actual meaning of them and pass the information correctly to the next phases

of the development process.

• User: The user of this system reviews the diagrams and the specifications

presented in this chapter and determines if the software has all the suitable

requirements and if the software developer has implemented all of them.

• Tester: The tester needs this chapter to validate that the initial requirements

of this system correspond to the executable system correctly.

6.1.4. Definitions, acronyms, and abbreviations

Term Definition

The software In the current context, the term software is related to the

specific Hue software developed for a device such as the

bridge device and the Hue lamp. Sometimes it is referred

as “firmware,” “software version,” “software artifacts,”

and “release.”

Software signing In the current context, it refers to the activity of running

the signing script together with production keys to build a

production signed version of the software.

The Hue portal The cloud system where software artifacts are uploaded

for future deployment. Sometimes referred to as “device

cloud,” or “Hue device cloud”.

I&V The Integration and Verification team.

SO The Security Officer from the I&V team responsible for

signing the production software.

MAC A media access control address (MAC address) of a com-

puter is a unique identifier assigned to network interfaces

for communication at the data link layer of a network seg-

ment.

Software developer In current context, the software developer term can relate

to the developer working in the following teams: Bridge

Application, Bridge Platform, ZigBee Platform and

ZigBee Products.

Table 6.1 Definitions, acronyms, and abbreviations

6.2 Overall Description

6.2.1. Product features and use cases

Six major features are identified from the requirements gathering process, namely, cen-

tralized location for software released versions, automated software signing, automated

software distribution to the Hue portal, automated software deployment, automated

upload of the software to the production factories, and automated distribution of the

software for mobile application release.

i. The first feature, centralized location for firmware versions, serves as an archive

of all production releases. Moreover, the system shall provide information about

specific data related to a release. For instance, when the software is released, who

approved specific step in the process and which files are related to that release.

ii. The second feature, an automated process for software signing, deals with the

process of digitally signing software artifacts. The automation of this process

helps Security Officers to replace the current manual error prone procedure with

a fast, automated and reliable process.

iii. The third feature, an automated process for software distribution to the Hue por-

tal, focuses on the process of uploading the software files to the device cloud. The

current process is manual and therefore is error prone. Moreover, it requires a lot

of communication overhead between the Testing Architects and the employees

who are responsible for uploading the files.

21

iv. The fourth feature, an automated process for software deployment, deals with the

process of deploying the artifacts on specific devices. Devices can be specified

by their MAC addresses and/or their physical location. This process is also known

as regional deployment. At the moment, it is also a manual process.

v. The fifth feature, an automated process for uploading software to factories, will

allow the Security Officer to directly upload artifacts to the production factories.

At the moment, this is also a manual step and requires a lot of unnecessary E-

mail communication.

vi. The sixth feature, an automated process for distributing software for mobile ap-

plication release, will allow the Security Officer to directly send artifacts to the

mobile application development team. This is needed for further creation of the

mobile application version release. This last step is not in the scope of this project.

vii. It is important to understand that all features from second to the sixth, are part of

a larger workflow that deals with the entire process of distribution and deploy-

ment of the software release. Therefore, another feature of the system is to man-

age this workflow. There should be clear explanation of the process and respon-

sibilities inside it. Each action in the process will be traceable.

The refinement of the requirements revealed also the main actors or users of the prod-

uct. Table 6.2 lists the identified users and their main scenarios / steps within the sys-

tem. The presented scenarios in the table are expressed from an abstract point of view.

After refinement of the main requirements and use cases, the list of functional require-

ments was identified. The functional requirements are discussed in Section 6.3.

User Main scenario

Admin • Configure and manage the workflows, user,

roles and permissions

Security officer • Approve a step in the release workflow

• Sign software files

• Upload signed files to the production factories

• View release workflow details

Software developer • Approve a step in the release workflow

• Start a new release workflow

• View release workflow details

Test architect • Approve a step in the release workflow

• Send files to the mobile app development team

• Deploy software on end devices

• Upload the software files to the device cloud

• View release workflow details

Table 6.2 Main users and scenarios

Figure 6.1 shows the system level use cases, which are based on the identified major

features and actors within the product. Actors are linked to different use cases they can

perform within the system. The use cases marked orange represent the main use cases

of the system.

22

Figure 6.1 System level use-cases

6.2.2. Operating environment

One of the concerns and requirements that users of the system have is that it should be

easily accessible via web browser from everywhere inside the Philips Lighting net-

work. In this way, authorized users can sign software, approve specific step in the

workflow, upload the software to the Hue portal or factory or send the artifacts to the

mobile application team. Figure 6.2 depicts the envisioned deployment of the system.

uc main_use_cases

System

User

Software developer

Test architect

Security officer

Bridge Platform Bridge App ZigBee Platform ZigBee Products

Admin View release
workflow details.

Approve a step in
the release workflow

Sign software files

Upload the
software files to
the device cloud

Start a new
release workflow

Deploy software on
end devices

Upload signed files
to the production

factories

Send files to the
mobile app

development team

Configure and manage
the workflows, user,
roles and permissions

23

Figure 6.2 Envisioned deployment of the system

6.2.3. Design/Implementation constraints

The following technical constraints need to be taken into consideration during the de-

sign and implementation phases. First, a Linux5 based operating system is preferred

option for the system where the software signing processes will run, because the soft-

ware signing applications are specifically developed for Linux operating system.

Changing or adjusting these signing applications is not in the scope of this project.

The signing applications that are used to sign Hue software are coded in Python. There-

fore, the application server where the system will run need to have the appropriate

version of Python installed.

Regarding the licenses for the software libraries used in the implementation phase,

open-source based licenses are preferred, specifically the MIT6 and BSD7 type of li-

censes.

6.3 Functional Requirements
This section includes the requirements that specify all the fundamental actions of the

system. Each requirement has a brief description and an assigned priority.

ID Description Depends

on

Priority

FR01 The system shall implement a process man-

agement tool (workflow) for managing re-

leases of Hue software. This means approval /

execution of all steps connected to the release

process (signing, uploading, and distribution).

The process should be clear about who is liable

for specific step.

 MUST

FR02 The system shall provide an interface to spec-

ify and customize the workflow. This means

that authenticated and authorized users can de-

fine the workflow and who is liable for each

step in it.

FR01 SHOULD

FR03 The system shall implement an authentication

and authorization mechanisms for accessing

FR01 MUST

5 https://en.wikipedia.org/wiki/Linux
6 https://en.wikipedia.org/wiki/MIT_License
7 https://en.wikipedia.org/wiki/BSD_licenses

24

and for execution of specific step in the release

process (user roles).

FR04 The system shall implement an information

overview regarding the status of each release

process (what is the current state in the pro-

cess)

FR01 MUST

FR05 The system shall provide traceability about

each step executed in the process. For in-

stance, who approved the Hue software for

signing, who uploaded to the Hue portal, and

/or who distributed to the mobile application

team.

FR01

FR03

MUST

FR06 The system shall implement an interface that

allows uploading the development software

artifacts to it.

FR01

FR03

MUST

FR07 The system shall provide a historical overview

of all signed production releases of the Hue

software (archive). This includes: version

number, type of device, release date, workflow

overview (who did specific step of the release

process), links to the software artifacts (files,

configurations) and the I&V report.

FR01

FR03

FR05

FR15

SHOULD

FR08 The system shall implement an automated pro-

cess for signing of Hue software production

releases.

FR01

FR03

MUST

FR09 The system shall implement an automated pro-

cess for software upload to the production Hue

portal.

FR01

FR03

SHOULD

FR10 The system shall implement an automated pro-

cess for software upload to the test Hue portal.

FR01

FR03

SHOULD

FR11 The system shall implement an automated pro-

cess of deploying the artifacts on devices,

specified by their MAC addresses.

FR01

FR03

SHOULD

FR12 The system shall implement an automated pro-

cess of deploying the artifacts on specific re-

gion (regional deployment). This means that

devices can be specified by their physical lo-

cation.

FR01

FR03

OPTIONAL

FR13 The system shall implement an automated pro-

cess for sending the software artifacts to facto-

ries.

FR01

FR03

MUST

FR14 The system shall implement an automated pro-

cess for distributing software artifacts to the

mobile application team.

FR01

FR03

SHOULD

FR15 The system shall implement an interface that

allows uploading the I&V report to the spe-

cific Hue software that is to be signed.

FR01

FR03

SHOULD

FR16 The script for signing the production Hue soft-

ware shall be same as the development signing

script that is maintained by software develop-

ers.

 MUST

FR17 The system shall provide notifications for spe-

cific actions or steps executed in the process.

It should be configurable who receives notifi-

cation regarding specific action.

 SHOULD

FR18 The system shall provide an information over-

view of the deployment status. For instance,

version X of the bridge software is detected on

y% of connected bridges.

 OPTIONAL

25

FR19 The system shall be able to stop a deployment.

For instance, if the software is deployed in a

wrong region, for wrong customers, or on

wrong devices.

 OPTIONAL

FR20 The system shall be integrated with the prod-

uct database application. Integration will mean

that each software has a link to the appropriate

product database record and it is constantly

maintained.

 OPTIONAL

FR21 The system shall implement an interface for

adding new signing production keys, by au-

thorized and authenticated users.

 MUST

FR22 The system shall implement an interface for

revoking existing signing production keys.

 MUST

FR23 The system shall maintain an audit trail (log)

for each activity performed.

 MUST

FR24 The system shall implement an automatic test

process. This means that the system automati-

cally checks that signed production software

can be installed on a Hue bridge and a Hue

bridge can be updated with the newest soft-

ware release.

 SHOULD

FR25 The system shall implement automatic notifi-

cation actions for external systems for infor-

mation purposes. For instance, interface to the

Datadoc API that provides release information

in Dashboards.

 OPTIONAL

Table 6.3 Functional requirements

6.4 Non-functional requirements
Besides the functional requirements, several non-functional requirements are identi-

fied from the requirements gathering process.

6.4.1. Security requirements

The system shall have access to the production keys used for signing the production

Hue software. These keys are sensitive and the system need to provide highest possible

security measures to prevent unauthorized access to them.

6.4.2. Software quality attributes

Several software quality attributes are identified that the system should satisfy.

Usability
The system should satisfy the requirements of the owner and the stakeholders of the

project in a way that the system is made usable and intuitive.

Maintainability
The system should be easily maintainable, meaning that the system can undergo

changes with a degree of ease.

Extensibility
The system should be extendable. This means that it should be easy to add or modify

features, for instance, adding new types of Hue software.

26

Reliability / Dependability
The system should be reliable. The speed of execution is not critical, but the correct-

ness of the processes is crucial. It is preferred that processes run sequentially. Concur-

rency is not preferred since every action need to be atomic and therefore the system

should know its state in every moment of time.

Minimum system that satisfies the requirements is defined as the system that imple-

ments all functional requirements marked with MUST and supports all non-functional

requirements. ■

27

7.System Architecture

The previous chapter (Chapter 6) describes the functional and non-functional require-

ments of the system. This chapter explains the architectural reasoning and design de-

cisions that are made and which resulted in a design of the system, based on the iden-

tified requirements. The purpose of designing an architecture for a system is solving a

problem statement formalized with system requirements.

7.1 Architectural reasoning
The architecture of a system is a set of early key decisions that gives direction to the

design, implementation and evolution of the system in its environment. The purpose

of having a system architecture is to have one appropriate consistent system with bal-

anced design decisions in line with the requirements of the stakeholders.

In agile processes, it is generally accepted that an early stage of the development pro-

cess should be concerned with establishing an overall system architecture. Incremental

development of architectures is not usually successful. While refactoring components

in response to changes is usually relatively easy, refactoring a system architecture is

likely to be expensive. [13]

A good starting point when designing an architecture is choosing a suitable architec-

tural style or pattern. An architectural pattern is a set of principles that provides an

abstract framework for solving frequently recurring problems. Formally, an architec-

tural pattern is a description of element and relation types together with a set of con-

straints on how they may be used. [14]

An architectural pattern gives the backbone of the design. The pattern is typically cho-

sen based on the non-functional requirements. Every pattern exhibits certain quality

attributes, but not all can fit the non-functional requirements of a project or are not

needed. For the purposes of this project, several key drivers steer the decision for an

architectural pattern and later design of the system (ordered by importance):

1. High-level requirements

2. Non-functional requirements

3. Functional requirements.

One of the main requirements of the product (see Section 6.2.2) is for it to be a web

application available to end users, such as security officers, test architects and software

developers. Typically, web applications follow an n-tiered architecture pattern, where

n is the number of tiers8. The simplest form of the n-tiered architecture is the 2-tiered

web architecture or the client-server architectural style. Typically, when users browse

the Internet, they use Web Browser software such as Internet Explorer, Google Chrome

or Mozilla Firefox. The computer where the browser runs is called a client, whilst the

machine which provides a Web page is called a server. [15]

When specific page is requested from the Web Browser, the user’s computer forms a

network connection to a Web server. In this situation, the computer is in effect a client,

which is linked to a Web server. The web server, as the name suggests, serves the

requesting browser with Web pages, such as HTML, ASPX, JSP and PHP pages. This

simple scenario, where the Web server is connected to one or more clients, is known

as a 2-tier architecture model. Figure 7.1 demonstrates how Web pages are accessed

via a browser, using this 2-tier architecture.

8 In the following text, terms tier and layer are used interchangeably

28

Figure 7.1 Client-server architecture

Generally computing applications consist of three different and distinct types of func-

tionalities, namely presentation, logic, and data management. The difference with the

client-server architecture is the addition of a specific layer that handles all business

logic and computing. Every application includes some data processing and this may

also involve database interactivity. For example, the user authentication module re-

quires the logic unit to read user - role combinations from a database and check if the

current user has permission to access a specific page. Starting from a client-server ar-

chitecture, this addition of a new tier moves towards a 3-tier architecture, namely

presentation, logic, and data tier. The 3-tier architecture is very common in today’s

systems, due to the qualities it exhibits, such as maintainability, scalability, flexibility,

and availability. The basic idea behind this architecture is to separate the functionality

into segments or tiers that can be deployed (not necessarily) on different physical com-

puting platforms.

Since the nature of the project is that the system performs many actions in an automated

way, naturally there is a need for a specific layer that handles all business logic, such

as automation of software signing, approval of workflow steps and / or access rights

management. Although it is not an explicit requirement for this project, there is a pos-

sibility to integrate this system with one existing system / service from Royal Philips.

This system is used for release management of the software components that are not

part of the Hue system software stack. This integration could possibly mean that this

system will need to have access to the specific data from the database. Having a sepa-

rate layer that only handles database related topics, will make this integration easier.

If we reflect on the non-functional requirements in Section 6.4, the 3-tier architecture

suggests a good fit, because one of the non-functional requirements was maintainabil-

ity. Moreover, it adds qualities not envisioned initially, such as testability. Because

components belong to specific layers in the architecture, other layers can be mocked

or stubbed, making this pattern is relatively easy to test. A developer can mock a

presentation component or screen to isolate testing within a business component, as

well as mock the business layer to test certain screen functionality. This is comple-

mented with the functional requirements where unique features are identified, each

with its own distinctive purpose. Since security is one of the most important non-func-

tional requirements, another vertical layer that is spread over all three tiers is intro-

duced, namely the security slice. The purpose of the security layer is to provide guide-

lines for the architectural decisions in order to provide high security standards in all

tiers from the 3-tier architecture. Figure 7.2 depicts the proposed architecture of the

system.

One of the core principles behind the client-server model (the predecessor of the 3-tier

model) is separation of concerns. Each layer of the architecture has a specific role and

responsibility within the application. For example, a presentation layer would be re-

sponsible for handling all user interface and browser communication logic, whereas a

business layer would be responsible for executing business rules associated with the

request. Each layer forms an abstraction around the work that needs to be done to sat-

isfy a business request. For example, the presentation layer does not need to know or

worry about how to get customer data; it only needs to display that information on a

screen in a particular format. Similarly, the business layer only needs to get the data

from the persistence layer, perform business logic against the data, and pass that infor-

mation up to the presentation layer. This separation of concerns allows any tier to be

changed, replaced, or tested without affecting the rest of the system if the communica-

tion interface remains the same. [16]

29

The deployment of a typical 3-tier web architecture consists of a presentation tier

(front-end web server that hosts the web application), business logic tier (application

server that hosts the business logic of the system), and data tier (database server that

hosts the data itself).

Figure 7.2 3-tier architecture deployment on separate physical servers

The following sections focus on the logical segments of each tier and the reasoning

behind the architectural style selected for each of them. The order is bottom-up, starting

from the data tier, to the logic and presentation tier.

7.2 Data layer
The data layer is responsible for data storage and manipulation. The manipulation in-

volves serving the upper tier by executing its requests. The requests involve retrieving,

storing, modifying or deleting data. Sometimes complex processing is also done on

this tier in the form of stored procedures for optimization. The data tier typically con-

sists of a physical computer (usually called server) that runs database management

systems, which allow access to the data itself. These servers are high-end processing

machines that can support many requests at the same time and heavy processing. Nat-

urally, here a specific workflow details are stored, such as, status of the workflow, step

execution details, responsible persons and user role management. [17]

7.3 Business logic layer
The logic layer is responsible for coordinating the application, processing of com-

mands, and enforcing logical decisions related to business rules for the application in

question. The responsibility extends to moving and processing data between its two

surrounding layers. [18]

Since the system under development is in very initial stages, many modifications are

expected in the future. Moreover, possible integration is expected with one existing

system from Royal Philips, as we mentioned earlier in this chapter. With this in mind,

30

a structured and well-defined way must be easily extendable, both vertically and hori-

zontally. Vertical extensibility means that new features can be easily added, and hori-

zontal extensibility means existing ones can be easily extended.

Besides extensibility, ease of modification and the rest of the identified non-functional

requirements steer the architecture choice into a component-based style. The main idea

behind a component-based architecture is decomposition of the design into individual

functional components that expose well-defined communication interfaces. The bene-

fit of using components is that they are reusable, replaceable, easily extendable, and

independent. [19]

Having a separate and independent logic-tier, means that there should be appropriate

communication protocol established with the front-end part of the application (the

presentation tier), as well as with other parts of the system. Typically, in web systems

there are two ways of offering functionalities to another system, namely:

1. Through web services

2. Through shared libraries

On the one hand, a service-oriented approach will allow numerous services to be hosted

and maintained separately. This will make probable future integration with different

systems easier to implement. On the other hand, a complete shared library can serve as

an interface between the presentation and the logic-tier. This way, we can be sure that

code is executed sequentially and locally inside the main program. With this approach,

the performances of the application will be increased since the code runs together with

the native application code. Applying this approach will mean that the library will be

deployed on the same machine together with the web application. Moreover, an API

library is very useful when we want to interact with things with as little overhead as

possible. The consequence is that there is a higher coupling between the API and the

applications using it.

Since this system is completely developed from scratch, and the services it provides

will be only accessible from the web application (presentation layer), a shared library

is a good fit. Also, this is preferable because this way we can minimize the need for

applying different security measures for the presentation and business layer. Since both

presentation and the business logic tiers will be deployed on same machine, the tasks

for maintenance and configuration of deploying machines will be simplified. Because

of this reasoning, a shared library is chosen as a communication channel between the

presentation and business logic tiers. Still, the design of the business logic tier should

be such that it is easily maintainable if changes are required in future. We explain in

more detail how this is achieved in the next chapter 8 - System Design.

If we reflect again on the non-functional requirements listed in Section 6.3, we can

remember that security is the main consideration of this system. The most critical data

that will be operated by this system are the production software signing keys and the

software files. There will be only a few people who will be authorized to access and

operate with the production signing keys. However, since the automation of activities

is one of the core ideas of this system, it means that these critical keys will be accessible

from the server that runs the business layer. This situation introduces additional risk,

because all users who can have access to the business layer (for instance, developers

and system administrators), can potentially access the signing keys. This leads to the

decision that the business layer should be split into different security zones, that can

be potentially deployed in different physical servers with different security measures

applied. First server will run the main web application and will interact with the presen-

tation layer. Moreover, this layer will communicate with the database layer and operate

with all workflow related data. The data that is stored in the database is mainly meta-

data for the release process, such as software version, friendly name, start and modifi-

cation dates and status. These entries do not contain highly critical data. The second

server will store the software signing keys and will run the signing applications. Since

this is security critical task, this server will be securely isolated from the rest part of

31

the application. The second server will not be accessible from the presentation layer.

Specific actions on this machine can only be initiated through pre-defined messages

coming from the first server only. Based on the specific purposes they serve, these

servers (and therefore applications they run) are named Release workflow and Soft-

ware signer system respectively.

The split of the business logic layer into two different servers, implies that appropriate

communication mechanism need to be in place in order to connect both servers in the

business layer. In the world of distributed network systems, a typical way of offering

functionalities usable by multiple systems is through services, specifically web ser-

vices. A web service is a method of communication between two devices over a net-

work. For simplicity, consider a service as a functionality that can be reused for differ-

ent purposes. One of its purposes is to serve the needs of the system under design.

The idea of the services to be usable by other systems rather than only the system under

design imposes additional requirements. Such requirements are:

• Services should be independent of the clients that use them;

• Services should not have any knowledge of the clients that use them;

• Services should provide a uniform interface.

Due to the variety of technologies nowadays, systems are built using different pro-

gramming languages and different technologies. For the services to be independent and

unaware of their clients, they need to exchange data in such a manner that is indifferent

to the programming language used to build the client systems.

Such a way is achieved through exposing an Application Programming Interface

(API), or in case of the system under design, a web API. A web API is a programmatic

interface to a defined request-response message system, typically expressed with lan-

guages such as JavaScript Object Notation (JSON) or Extensible Markup Language

(XML). These APIs are exposed via the web by using the Hyper Text Transfer Proto-

col, or HTTP (see section 7.3.2).

From a functional point of view, the first server will request functionalities offered by

the services or APIs (second server), which in turn will process the request and return

appropriate response, if needed.

There is an architectural style that encourages development of scalable web services

(APIs), uses well-known protocol for communication (HTTP), and promotes inde-

pendence from clients that use them: the Representational State Transfer architectural

style, or REST.

The following sections present the architectural styles and protocols that play a role in

the architecture, and finally, section 7.3.3 presents the architecture of the logic tier.

7.3.1. Representational State Transfer (REST)

Representational state transfer (REST) or RESTful web services is a way of providing

interoperability between computer systems on the Internet. REST-compliant Web ser-

vices allow requesting systems to access and manipulate textual representations of

Web resources using a uniform and predefined set of operations. Other forms of Web

service exist, which expose their own arbitrary sets of operations such as WSDL and

SOAP.

"Web resources" were first defined on the World Wide Web as documents or files

identified by their URLs, but today they have a much more generic and abstract defi-

nition encompassing every thing or entity that can be identified, named, addressed or

handled, in any way whatsoever, on the Web. In a RESTful Web service, requests

made to a resource's URI will elicit a response that may be in XML, HTML, JSON or

some other defined format. The response may confirm that some alteration has been

32

made to the stored resource, and it may provide hypertext links to other related re-

sources or collections of resources. Using HTTP, as is most common, the kind of op-

erations available include those predefined by the HTTP verbs GET, POST, PUT, DE-

LETE and so on.

By making use of a stateless protocol and standard operations, REST systems aim for

fast performance, reliability, and the ability to grow, by re-using components that can

be managed and updated without affecting the system, even while it is running.

The architectural properties affected by the constraints of the REST architectural style

are:

• Performance — component interactions can be the dominant factor in net-

work efficiency;

• Scalability to support large numbers of components and interactions among

components;

• Simplicity of a uniform interface;

• Modifiability of components to meet changing needs; and

• Portability of components.

There are six guiding constraints that define a RESTful system. These constraints re-

strict the ways that the server may process and respond to client requests so that, by

operating within these constraints, the service gains desirable non-functional proper-

ties, such as performance, scalability, simplicity, modifiability, visibility, portability,

and reliability. If a service violates any of the required constraints, it cannot be consid-

ered RESTful.

The formal REST constraints are as follows:

• Client-server — Separation of concerns is the principle behind the client-

server constraints. By separating the user interface concerns from the data

storage concerns, we improve the portability of the user interface across mul-

tiple platforms and improve scalability by simplifying the server components.

Perhaps most significant to the Web, however, is that the separation allows

the components to evolve independently, thus supporting the Internet-scale

requirement of multiple organizational domains.

• Stateless — The client–server communication is constrained by no client

context being stored on the server between requests. Each request from any

client contains all the information necessary to service the request, and ses-

sion state is held in the client. The session state can be transferred by the

server to another service such as a database to maintain a persistent state for

a period and allow authentication. The client begins sending requests when it

is ready to make the transition to a new state. While one or more requests are

outstanding, the client is considered to be in transition. The representation of

each application state contains links that may be used the next time the client

chooses to initiate a new state-transition.

• Cache — As on the World Wide Web, clients and intermediaries can cache

responses. Responses must therefore, implicitly or explicitly, define them-

selves as cacheable or not to prevent clients from reusing stale or inappropri-

ate data in response to further requests. Well-managed caching partially or

completely eliminates some client–server interactions, further improving

scalability and performance.

• Layered system — A client cannot ordinarily tell whether it is connected di-

rectly to the end server, or to an intermediary along the way. Intermediary

servers may improve system scalability by enabling load balancing and by

providing shared caches. They may also enforce security policies.

• Code on demand REST allows client functionality to be extended by down-

loading and executing code in the form of applets or scripts. This improves

system extensibility but reduces visibility.

33

• Uniform interface — a distinguishable central feature of REST is a uniform

interface between components. Implementations are decoupled from the ser-

vices they provide. The trade-off is efficiency, uniform interfaces degrade ef-

ficiency, since information is transferred in a standardized form rather than

format specific to an application’s needs. REST defines four interface con-

straints: identification of resources, manipulation of resources through repre-

sentation, self-descriptive messages, and hypermedia as the engine of the ap-

plication state.

Web service APIs that adhere to the REST architectural constraints are called RESTful

APIs. HTTP-based RESTful APIs are defined with the following aspects:

• Base URL, such as http://api.example.com/resources/;

• An internet media type that defines state transition data elements (e.g. XML,

and images);

• Standard HTTP methods (e.g., OPTIONS, GET, PUT, POST, and DELETE)

[20]

7.3.2. Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed,

collaborative, and hypermedia information systems. HTTP is the foundation of data

communication for the World Wide Web. Hypertext is structured text that uses logical

links (hyperlinks) between nodes containing text. HTTP is the protocol to exchange or

transfer hypertext.

HTTP functions as a request–response protocol in the client–server computing model.

A web browser, for example, may be the client and an application running on a com-

puter hosting a website may be the server. The client submits an HTTP request message

to the server. The server, which provides resources such as HTML files and other con-

tent, or performs other functions on behalf of the client, returns a response message to

the client. The response contains completion status information about the request and

may also contain requested content in its message body.

A web browser is an example of a user agent (UA). Other types of user agent include

the indexing software used by search providers (web crawlers), voice browsers, mobile

apps, and other software that accesses, consumes, or displays web content.

HTTP is designed to permit intermediate network elements to improve or enable com-

munications between clients and servers. High-traffic websites often benefit from web

cache servers that deliver content on behalf of upstream servers to improve response

time. Web browsers cache previously accessed web resources and reuse them when

possible to reduce network traffic. HTTP proxy servers at private network boundaries

can facilitate communication for clients without a globally routable address, by relay-

ing messages with external servers.

HTTP is an application layer protocol designed within the framework of the Internet

protocol suite. Its definition presumes an underlying and reliable transport layer proto-

col, and Transmission Control Protocol (TCP) is commonly used. However, HTTP can

be adapted to use unreliable protocols such as the User Datagram Protocol (UDP), for

example in HTTPU and Simple Service Discovery Protocol (SSDP).

HTTP resources are identified and located on the network by Uniform Resource Loca-

tors (URLs), using the Uniform Resource Identifiers (URI's) schemes http and https.

URIs and hyperlinks in HTML documents form inter-linked hypertext documents.

HTTP/1.1 is a revision of the original HTTP (HTTP/1.0). In HTTP/1.0 a separate con-

nection to the same server is made for every resource request. HTTP/1.1 can reuse a

connection multiple times to download resources, after the page has been delivered.

HTTP/1.1 communications therefore experience less latency as the establishment of

TCP connections presents considerable overhead. [21]

http://api.example.com/resources/

34

7.3.3. Business-logic layer architecture

The system design is a combination of two architectural styles, namely the component-

based style and the REST style. The component-based design allows features to be

independent, while REST allows distribution to security risky services to different,

isolated servers. In the system-under-design this is the Software signer system, men-

tioned early.

Figure 7.3 shows the business-logic layer architecture. The functionalities of the “Re-

lease workflow system” are exposed through shared library, which uses the compo-

nents of the system to process the requests. The functionalities of the “Software signer

system” are exposed through REST services, which in same way uses the components

of the system to process the requests.

Figure 7.3 Logic tier architecture

The goal of this modular design is to separate the concerns of each component. The

“Release workflow system” components handle the specific processing they are in-

tended to perform. The WorkflowStepManagement component is responsible for exe-

cution of specific step in the release workflow. This step can be from different type

such as approval, software signing or software upload to the cloud. More details for

the design of this component are given in the Chapter 8 - System Design.

UserRolemanagement component is responsible for managing users, roles and role

permissions for specific parts of the system. The role of the ReleaseCreation compo-

nent is to allow creation and manipulation with release and release candidates entries

in the system. The DeviceTypeManagement component is responsible for configura-

tion of the system specific settings and operations, such as workflow definition per

different device types. Moreover, this component is used to create a new device type

in the system. The role of the EmailManagement component offers services related to

E-mail receivers data, such as modifying, adding or deleting factory E-mail recipients.

Finally, the role of the ReleaseCandidate component is to provide relevant information

about particular workflow, such as: status, device type, software version, build number,

last modification date and number of steps.

As one can observe from the diagram, all the components use the Data Access Object

(DAO) component. The DAO component is responsible for database access and data

manipulation, mainly to retrieve, or issue commands to insert, modify, or delete data.

Depending on the database technology used, most of the database management sys-

tems support execution of procedures in the database for optimization in processing

large datasets.

deployment Business_logic-layer

«device»
Release workflow system

SigningService
WorkflowStepManagementWorkflowStepService

SigningService

UserRoleManagement

UserService

RoleService

ReleaseCreationReleaseCreationService

DeviceTypeManagement
DeviceTypeService

EmailManagementEmailManagementService

DataAccessComponent

DataAccessObject
«device»

Database server

Database

«device»
Software signer system

SoftwareSigner
SigningService

KeyManagement

ReleaseCandidateReleaseCandidateService

«HTTP»

«use»

35

The role of the SoftwareSigner component of the “Software signer” system offers ser-

vice related to software file signing processes. These services include initiation of soft-

ware signing process, retrieving signed files and distributing the signed artifacts to dif-

ferent systems. KeyManagement component is responsible for the features related to

generation and replacement of new production signing keys. Please note that this fea-

ture / interface is not directly exposed on the front-end application, from security rea-

sons. There will be simple command line interface only exposed from the Signing sub-

system that will allow replacement of the production signing keys. Generation of the

keys will be one-directional always. No one should be able to read / retrieve the signing

keys.

The signing “SoftwareSigner” system does not depend on “Release workflow system”,

meaning this RESTful API can be reused in different applications with different tech-

nologies.

Chapter 8 dives into more detail for the API and the components.

7.4 Presentation tier
The presentation tier is responsible for presenting data to the user and usually allows

data manipulation and entry. The two main types of user interface for this layer are

traditional applications and Web-based applications. If we reflect on the functional

requirements for this project, the envisioned interface is a web-based application.

Over the years, the World Wide Web has evolved dramatically. Traditional web appli-

cations involved transitioning from page to page, where each page is generated dynam-

ically on a remote server and sent to the browser where it is rendered. The beginning

of the 21st century spawned the term Web 2.0. The term describes World Wide Web

sites that emphasize user-generated content, usability, and interoperability. Parallel to

the World Wide Web, a lot of progress has been made in modern web development. A

shift has been made towards thin client-side Web-based applications that contain only

the user interface (UI) and the data to be displayed. All the data processing is done in

the logic tier. Page rendering is transferred on the client-side as the browsers became

more and more powerful. [17]

Utilizing the advances made in modern web development, the choice of the architec-

ture for the presentation tier should maximize the usability. The other requirements

should not be excluded as well. Maintainability and scalability must be taken into con-

sideration. Additionally, the coupling between the presentation layer and the business-

logic layer should be as minimum as possible, so that it will support any changes or

replacement of the layers in future if required. [17]

Over the years, user interface development has gone through many changes. One of

the biggest change that happened in the recent years, is the use of MVC pattern for

developing a web based user interfaces. The Model–View–Controller shortly known

as MVC is a software architectural design for implementing web based user interfaces.

The MVC pattern is a three-tier architecture that is independent of the programming

language used for the system development. In the next Section 7.4.1 we present the

core principles of the MCV pattern and the reasoning why it is chosen for the devel-

opment of the presentation layer in this system.

7.4.1. Model View Controller (MVC)

Model–view–controller (MVC) is a software architectural pattern for implementing

user interfaces on computers. It divides a given application into three interconnected

parts in order to separate internal representations of information from the ways that

information is presented to and accepted from the user. The MVC design pattern de-

couples these major components allowing for efficient code reuse and parallel devel-

opment.

36

Traditionally used for desktop graphical user interfaces (GUIs), this architecture has

become popular for designing web applications and even mobile, desktop and other

clients. Modern programming languages like Java, C#, Ruby, PHP and others have

popular MVC frameworks that are currently being used in web application develop-

ment straight out of the box.

The core components of the MVC pattern are:

• Model means data, which is required to display in the view. It can sometimes

be the exact data entities that are retrieved from the business layer or a varia-

tion of it. Model encapsulates business tier.

• A view can be any output representation of information, such as a chart or a

diagram. Multiple views of the same information are possible, such as a bar

chart for management and a tabular view for accountants. In MVC pattern

view should be simple and free of business logic implementation. View in-

vokes methods on Controller depending on user actions. In MVC pattern

View monitors the model for any state change and displays updated model.

Model and View interact with each other using the Observer pattern.

• The third part, the controller, accepts input and converts it to commands for

the model or view. Controller is invoked by view, it interacts with the model

and performs actions that updates the model.

The main advantages of applying the MVC pattern are:

• Simultaneous development — Multiple developers can work simultaneously

on the model, controller and views.

• High cohesion — MVC enables logical grouping of related actions on a con-

troller together. The views for a specific model are also grouped together.

• Low coupling — The very nature of the MVC framework is such that there

is low coupling among models, views or controllers

• Ease of modification — Because of the separation of responsibilities, future

development or modification is easier

• Multiple views for a model — Models can have multiple views [22]

The following Figure 7.4 depicts the structure of MVC pattern.

Figure 7.4 MVC design pattern

7.4.2. Architecture choice for presentation tier

The reasoning behind the architecture is based on the user interface point of view. As

we mentioned in the previous chapters, the system should replace the existing pro-

cesses for software signing and deployment. Therefore, the usability of the application

is a crucial factor for future usage. Usability by itself is defined with several other non-

37

functional requirements, such as understandability, learnability, and attractiveness.

Maximization of the usability means that the product is easy to learn and use, and is

also attractive to the user. Another core reason is that many changes are expected in

this system in the future, in both presentation and business-logic layer. By knowing

this, we would like to have as low coupling as possible between these two layers.

Based on the facts above, the MVC architecture is chosen for the presentation layer.

The main reason is the low coupling between the Controller, the View and the Model

concepts. With this decoupling, it should be relatively easy to replace the complete

presentation layer and integrate the system with another user interface if it is required

in the future. This is in line with one of the potential future integration with one existing

system from Royal Philips.

Figure 7.5 shows the high-level architecture of the presentation tier. Again, the com-

ponent-based or modular style is followed to model the separate features. The archi-

tecture consists of five different components that cover the desired functionalities of

the system under design and several other components for various purposes, such as

visualization libraries to support the visualization or JavaScript and AJAX libraries to

implement asynchronous communication. Each of these five components interacts

with the interfaces provided from the business-logic layer, more precisely the provided

interfaces from the “Release workflow system,” explained in the Section 7.3.3.

Figure 7.5 Presentation tier architecture

The five application-specific components follow the MVC pattern, with each module

having a separate view, model, and controller.

7.5 Trade-offs between non-functional requirements
Previous Sections in this chapter explain the reasoning and set up the basic system

architecture. Here, we would like to emphasize the trade-offs that were made between

the non-functional requirements(NFR) of the system, listed in the Section 6.4. The

most sensitive part of the system architecture is the security. Therefore, several trade-

offs were made that increases the satisfaction level for this NFR, but on the other hand

decrease the satisfaction level for the other NFR. Here, we list two most interesting

examples.

deployment Presentation layer

«device»
Presentation layer

«device»
Business-logic layer

WorkflowStepManagement

UserRoleManagement

ReleaseCreation

DeviceTypeManagement

EmailManagement

Front-end
libraries

ReleaseWorkflowSystem
WorkflowStepService

UserService

ReleaseCreationService

DeviceTypeService

EmailManagementService

RoleService

ReleaseCandidateService
ReleaseCandidate

ReleaseCandidateService

«use»

«use»

«use»

«use»

«use»

«use»

38

1. Security vs Usability: According to the NFR, Security is the most important

aspect of the system. Because of it, several security measures are imple-

mented. One of them is the encryption of the signing keys and therefore hav-

ing the need for the user to type in the decryption password every time there

is a need for production software signing. This, however, limits the usability

of the system by introducing another obligatory step in the code signing pro-

cess. Usability, on the other hand, is another important NFR.

2. Security vs Maintainability: Another important NFR is the maintainability.

The system should be easily maintainable and can undergo changes with a

degree of ease. However, because of security reasons, we have decided to

split the business logic layer and add additional layer that handles code sign-

ing processes. This decision is explained in detail in Section 7.3. This split

adds more complexity to the system from maintenance point of view, because

two different applications and two different servers need to be maintained.

Chapter 8 (“System Design”) elaborates on the specifics of the component design

whereas Chapter 9 (“Implementation”) dives even deeper with concrete frameworks

used and implementation specific details.

■

39

8.System Design

The previous chapter, “System architecture,” shows the high-level view on the system

and its major components. The business-logic and presentation layers have different

responsibilities and therefore distinctive designs are created. This chapter describes the

two designs and the transition from high-level architecture to component design.

8.1 Introduction
In the previous chapters, we have identified stakeholders, set principles and guidelines,

found the architectural constraints and in general the functional and non-functional

requirements of the system. However, before we move into the next designing phase,

it is worthwhile to analyze which models we want to create and what kind of view we

want to use to communicate them.

IEEE 1471 defines an architectural view as a representation of an entire system from

the perspective of a set of concerns, where the concerns are the key interests of the

different stakeholders. A view is consisted of parts of one or more models to demon-

strate how the concerns are covered. A view is an instantiation of the pattern defined

in a viewpoint. [23]

For example, if we are concerned about concurrency and timing issues we are inter-

ested in threads and process models. Therefore, we can use views such as process dia-

grams and timing diagrams.

IEEE 1471 suggests that a viewpoint would hold the following information:

• Viewpoint name

• The stakeholders addressed by the viewpoint

• The stakeholder concerns to be addressed by the viewpoint

• The viewpoint language, modeling techniques, or analytical methods used

• The source, if any, of the viewpoint (e.g., author, literature citation)

A viewpoint may also include:

• Any consistency check associated with the underlying method to be applied

to models within the view

• Any evaluation or analysis techniques to be applied to models within the view

• Any heuristics, patterns, or other guidelines that aid in the synthesis of an

associated view or its models

In [24] Philippe Kruchten suggests 4 + 1 set of viewpoints, namely: Logical, Process,

Development, Physical and Scenarios. Other examples are DODAF [25] (3 main view-

points with 26 sub-viewpoints), RM-ODP [26] (5 viewpoints), CAFCR [27] (5 view-

points) and Zachman Framework [28] (with 36 viewpoints).

For the system under development, the following viewpoints are identified:

• Logical view. The reasoning is that the system under development is devel-

oped by applying the object-oriented paradigm. Therefore, this view elabo-

rates on the object model and the behavior of the design and gives direction

for the further implementation phase.

• Process view: Although performance, scalability and throughput are not crit-

ical non-functional requirements of the system, it is important to understand

how specific actions are performed in the system and how objects communi-

cate between them. Therefore, activity or communication diagrams can be

useful for modeling these interactions. Moreover, this view gives information

40

about which components are used / active during a specific process, like soft-

ware signing. Additionally, the purpose of this view is to give information

about which processes can run in parallel and / or sequentially.

• Development view: This view focuses on the static organization of the soft-

ware in its development environment.

• Deployment view: With this view, we show how the software components

are mapped into hardware devices.

Next sections elaborate the views defined in this introduction.

8.2 Reference use case
Chapter 6 - “System Requirements” discusses the key features and use cases of the

product. In that chapter, several main use cases and a few auxiliary ones are described.

The use cases represent the user stories in the system, or what the system is supposed

to do in the interaction with the user.

As mentioned earlier, several scenarios are identified, such as signing a software image

and sending signed software to factory. These scenarios involve participation of the

end user. Furthermore, similarities between them exist. For example, most of the sce-

narios involve selecting a workflow and workflow step. Next, an action is triggered

from the user to process a specific step. The request is processed, data is generated and

returned to the end user in the form of visual information or feedback. With this, we

can identify common steps for all these scenarios. The notation used to describe the

common use case is:

• User – represents the end user, such as test architect or security officer

• Web application in browser – represents the presentation tier

• Release workflow system – represents the first level of the business-logic

layer

• Software signer system - represents the second level of the business-logic

layer

The steps are as follows:

1. The user requests to execute a feature;

2. The web application checks if the user has permission to execute requested

feature;

a. If user has permission, the web application shows the interface;

b. If user does not have permission, interface is not shown and scenario

finishes;

3. The user enters the required information and initiates action;

4. The web application verifies the information

a. If the entered information is incorrect, the user is notified. No action

is taken;

b. If the entered information is correct, the scenario continues;

5. The web application sends a request to the “Release workflow system” to

perform the requested action;

6. The “Release workflow system” accepts and processes the request;

a. If the step requires communication with the Software signer system,

an appropriate request is sent to the “Software signer system” and

the returned response is processed.

7. The “Release workflow system” generates the requested information and

sends it back to the web application;

8. The web application receives the information and displays it to the user.

8.3 Logical view
Both designs of the logic and presentation tier follow the component-based approach.

Each component in the design has distinctive responsibilities, which makes it easier to

41

be replaced or modified. If we refer to the architecture decisions in Section 7.3, we can

remember that we have decided to split the logic tier into two distinct parts that will be

deployed on different servers, namely the Release management workflow and the soft-

ware signer applications.

The architecture of the system includes a combination of two architectural styles,

namely REST and component-based. The REST style is used to design the software

signer application part and the component-based style to design the business or appli-

cation logic of the release management workflow application. The following sub-sec-

tions describes the logical design with more details.

8.3.1. Release workflow system

The architecture of the release management application consists of several compo-

nents. To be more understandable and simple, the designs shown in the following fig-

ures concern one chosen component, namely WorkflowStepManagement. This com-

ponent is responsible for processing a specific step from the release workflow. If the

name Workflow step is replaced with the name of the other components, such as

UserRoleManagement, ReleaseCreation, or DeviceTypeManagement, the design of

the other components can be obtained. Figure 8.1 depicts the architecture of the release

management workflow application, starting from the web application controllers at the

top and moving towards concrete implementations of the components at the bottom.

42

Figure 8.1 Logic tier architecture

class ReleaseProcessWorkflow

Application

«abstract»
Controller

WorkflowStepController

tags
RequestMapping = /workflow-steps

WorkflowStepServiceImpl

DataAccessFactoryImpl«interface»
ReleaseCandidateDao

«interface»
RoleDao

ReleaseCandiadateDaoImpl RoleDaoImpl

«interface»
WorkflowStepService

+controlles 0..*

<<instantiate>><<instantiate>>

43

The presentation layer is a web based application that consists of several controllers

that handle requests coming from the web browsers. Each controller is responsible for

handling requests for a specific component. For instance, the WorkflowStep controller

is responsible for workflow step related requests, such as executing the step and getting

step data from the database.

Each controller is identified by a segment of the URI it can handle. These URIs are

uniquely identifiable access points or endpoints for each service offered by the web

application. In Figure 8.1, this is shown through the Request Mapping section of the

concrete controller WorkflowStepController and its RequestMapping value of “/work-

flow-steps.” Every request with a URI that has a segment equal to “/workflow-steps”

is handled by the WorkflowStepController. Furthermore, each controller exposes con-

crete endpoints that clients can use to request their service.

8.3.2. Software signer system

The design of the Software signer application uses a similar approach to the design of

the release workflow application. The core difference is the main point of interaction.

On the first one is the REST endpoints, while on the latter is a web browser. Since the

functionality that this application does is limited, the design is simpler than the one of

the release management application. Here, we have identified only one component,

namely the SoftwareSigner component.

The REST-based API consists of only one controller, the SigningController. This con-

troller is identified by a segment of the URI it can handle. Every request with a URI

that has a segment equal to “/api” is handled by the SigningController.

Since we are following the same approach as the previous application, this controller

also requires exactly one service interface. This level of abstraction helps to further

separate the responsibilities of the REST service and the application logic, if one

wishes to replace one of the two (with different implementations, for example).

8.3.3. Presentation layer

The architecture of the presentation tier is based upon the MVC design pattern. The

pattern is very common in user interface development because of its separation of con-

cerns, and ability to independently develop parts of the system, for example, views and

controllers.

Figure 8.2 shows the design of the presentation tier and its connection with the logic

tier. Again, the design shown, namely for the Workflow step, represents a design of a

single module. The rest of the modules follow the same approach, if the name is re-

placed with the other modules’ names, such as UserRoleManagement, ReleaseCrea-

tion, or DeviceTypeManagement. As one can observe, a module consists of a view, a

controller, and a model. The view is responsible for the user interface, displaying data

to the user, and user interaction. The controller is responsible for handling the interac-

tion between the user and the view, hence the connection between them. Both the view

and controller have references to the model. This is, of course, the nature of the MVC

pattern itself. In this case, the model represents module-dependent information, specif-

ically workflow step related information, such as, type of step and status. The design

of the controller, in this case the Workflow step controller, is already shown in Figure

8.1.

44

Figure 8.2 Presentation tier design

8.4 Process view
The process view is concerned with aspects regarding non-functional requirements,

such as performance and availability. It mainly focuses on the run-time behavior of the

system. Typically, the process view is explained using activity diagrams. As we al-

ready mentioned, the performance, scalability and throughput are not critical non-func-

tional requirements of the system. Still, it is important to understand how specific ac-

tions are performed in the system and how objects communicate between them.

Figure 8.3 depicts the process view of the system, showing a request-response se-

quence, initiated from a User that wants to execute specific action in the system. Since

the software signing process activates both systems of the business-logic layer (Release

workflow and software signer), we assume that the User initiated a software signing

process. In this scenario, all layers from the architecture are involved in the communi-

cation. There are simpler scenarios where the Software signer system is not involved

in the communication. For instance, execution of an approval step from the workflow

process.

class Presentation tier

WorkflowStepView WorkflowStepController

Model

View «abstract»
Controller

45

Figure 8.3 Handling signing request process. All layers are involved in this com-

munication.

8.5 Development view
The development view focuses on the actual module organization within the software.

This organization is expressed through packages or libraries organized in a way that

they provide interfaces between them.

Figure 8.4 depicts the development view of the Release workflow system. The organ-

ization of the view is layered, so that each layer communicates with the layers next to

it. The Business layer is on the top of the diagram composed of three sub-packages:

for the interfaces, implementation and the workflow specific classes. The interface

package defines interfaces that are the contract between the business-logic layer and

the presentation layer. Their concrete implementation is contained within the imple-

mentation package. Finally, the workflow package contains the core implementation of

the workflow execution functionalities.

act Signing_activ ity

Web application in

browser

Software signer systemDatabaseRelease workflow systemUser

Interact with user

interface and inv oke

action

Process request

Connect to DB

Receive

connection

request

Retriev e data

Perform action

Send HTTP

request

Receive

HTTP

request

Send

response

Receive

response

Process data

Connected?

Prepare REST

message

Send

REST

message

Receive

REST

message
Process

request

Send

response

Receive

REST

response

Connect

to DB

Receive

connection

request

Update data

Connected ?

Process response

No

Yes

Yes

No

46

Figure 8.4 Development view of the Release workflow system

The layer below the Business Logic Layer package is represented by the Data Access

Layer package. As the name suggests, this package includes the data access related

interfaces and their implementation. The package is composed of four packages. First,

the model package, contains the classes that represent the domain specific concepts

such as ReleaseCandidate, Step and DeviceType. These concepts are further used in

the second package, called dao which contains components whose main goal is to map

the database raw entries into these concepts. Next, the impl contains the core imple-

mentation of the database related operations, such as retrieve and update data. The

behavior of these components is defined as interfaces in the fourth package called in-

terfaces. This organization allows concrete implementations or even complete pack-

ages to be replaced, which makes it easily maintainable.

The development view of the presentation layer is much simpler than the one of the

logic layer. Figure 8.5 depicts this view. The tier is split into four distinct packages:

cmp Dev elopment_v ew_public

DataAccessLayer

dao

impl

interfaces

model

BusinessLogicLayer

implementation

interfaces

workflow

implementation

«use»

«use»

«use»

«use»

implementation

«use»

«use»

47

resources, which contains the user interface specifics such as views, HTML files, and

JavaScript libraries; controllers, which contains user interaction handling; admin,

which contains user interaction handling in the admin pages of the web application;

and webapp, which contains configuration and settings components, such as the global

exception handling controller.

Figure 8.5 Development view of the presentation layer

8.6 Deployment view
The deployment view concerns the structure of the product after implementation re-

garding software to hardware mappings and distribution aspects. The Deployment

view focuses on aspects of the system that are important after the system has been

tested and is ready to go into live operation. This view defines the physical environ-

ment in which the system is intended to run, including the hardware environment that

the system needs (e.g., processing nodes and network interconnections), the technical

environment requirements for each node (or node type) in the system, and the mapping

of the software elements to the run-time environment that executes them. [29]

Figure 8.6 depicts the designed deployment view of the system. The client, which is

the web application executed on the end user’s personal computer, makes requests via

HTTP(s) to the Release workflow system, which runs on a remote server accessible

via the internal Philips Lighting network. This web application communicates with the

database server, which hosts the database that contains all data, and with the Software

signer server which runs on another remote server accessible also via the Philips Light-

ing internal network. In order to elaborate the specifics for the deployment view with

more details, the deployment view is revisited in Chapter 11.

pkg Dev _v iew_presentation_public

ReleaseWorkflowWebApp

reosurces

controllers

admin

webapp

static

jscss

imagesfonts

v iew_templates

48

Figure 8.6 Deployment view of the entire system. A more comprehensive view is offered in the Deployment chapter

deployment Dev elopment v iew basic

«device»
User PC

«executionEnvironment»
Web Browser

«device»
App server 1: Relese workflow system

«executionEnvironment»
Operating system

ReleaseWorkflowApp

«device»
App server 2: Software signer system

«executionEnvironment»
Operating system

REST API SoftwareSignerApp

«device»
Database server

«executionEnvironment»
Database management

system

Database

HTTPS

«flow»

«flow»

HTTPS

«flow»

49

9.Implementation

The previous two chapters discussed the system architecture and design. This chapter

explains the realization of the design, specifically the technologies chosen for its de-

velopment.

9.1 Introduction
An implementation is provided as part of the project. The implementation is based on

the architecture and design, elaborated in the corresponding chapters, and satisfies the

functional requirements defined in the “System requirements” chapter. The implemen-

tation provided a demonstration of the feasibility of the project. For implementing the

design, choices are made on which technologies to use. Since the product is comprised

of several layers, several choices are made, one for each layer, in the architecture.

As we mentioned in Section 6.2.3, Design and implementation constraints, there were

several technical and operational restrictions that influenced the decisions made in each

layer of the architecture. First, the Linux9 based operating system is preferred option

for the application server that hosts the Software signer system, since most of the soft-

ware signing software applications are specifically developed for Linux operating sys-

tem. Next, open-source licensees were preferred for complete development, specifi-

cally the MIT10 and BSD11.

9.2 Presentation and business-logic layer: Release

workflow application
The type of user interface for this system was decided when the requirements were

gathered for this project. The stakeholders explicitly requested a Web application. This

meant that one decision had already been made. Additionally, in the System Architec-

ture we decided to bind the web application with the business-logic layer using a shared

library. The next choices were the operating system, the framework, and programming

language that was used for the development of these two layers.

As we briefly mentioned in the previous section, a Linux operating system was re-

quired for running the Software signer system. Because of this, we decided to use the

same operating system for hosting the web application too. The main reasoning was to

have unified operating systems for all layers. This way we could apply the same con-

figuration and the same security measures are in place. Also, from the maintenance

point of view, having same type of Operating System is a preferred option.

With the evolution of modern software development, many recent technologies and

frameworks for both web and business-logic layer development have emerged that

support both the architecture and the implementation constraints listed in Section 6.2.3.

One requirement that needs to be supported by the technology chosen is the ability to

connect to a database and manipulate data. Almost all modern programming languages

support the architecture of the back-end part of the application. Based on the candi-

date’s preference, Java12 was selected as a language for the development of the release

workflow application.

There are many frameworks in Java that supports web development. Therefore, choos-

ing the right one is not an easy task. The main aspects that were considered are that

this framework needs to support the MVC architecture pattern proposed in the System

Architecture chapter. Also, the selection of the framework was based on the popularity,

9 https://en.wikipedia.org/wiki/Linux
10 https://en.wikipedia.org/wiki/MIT_License
11 https://en.wikipedia.org/wiki/BSD_licenses
12 https://www.java.com

50

online support, and again the personal preference of the candidate. For these reasons,

Spring Web MVC13 framework was selected as a framework for the development of

the web application. The Spring Web MVC framework provides Model-View-Con-

troller (MVC) architecture and ready components that can be used to develop flexible

and loosely coupled web applications. Therefore, if we compare with our reasoning in

the System Architecture chapter, we can conclude that the Spring MVC framework is

a good fit for this architecture. [30]

Spring MVC supports many types of views for different presentation technologies,

such as JSP14, Hyper Text Markup language (HTML)15, and Thymeleaf16 templates.

Again, based on the candidate preference, the Thymeleaf templates were chosen for

the design of the user interface. The Thymeleaf completely relies on the standard Web

development technologies such as HTML, JavaScript 17and Cascading Style Sheets

(CSS)18. Since usability was one of the non-functional requirements of this project,

special attention was put on the user interface design. Users can use devices, such as

personal computers, laptops, or tablet, to access it. In order to provide a consistent

design, a specific approach is taken, namely responsive web design. One of the most

famous and often used frameworks for developing responsive sites is Bootstrap19. Sec-

tion 9.5 elaborates the user interface with more details.

9.3 Software signer system
The Software signer system consists of a REST API and the application logic modules.

Again, there are multiple technologies and frameworks that support development of

RESTful APIs and can be hosted on a Linux based operating system. Based on the

candidate’s preference, once more Java was selected as a language for the development

of the Software signer system. The Spring Framework was used for the development,

since it fully supports building the RESTfull services elaborated in the System design

chapter.

9.4 Data layer
The main aspects when choosing the Database Management System (DBMS) were that

it is fully supported in Java, can be hosted in Linux based operating system, and has

open-source license. Therefore, the decision was made for the MySQL20 database en-

gine. MySQL is an open-source, free-to-use database management system, and it is

widely used, especially in web systems.

■

13 https://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
14 http://www.oracle.com/technetwork/java/javaee/jsp/index.html
15 http://www.w3schools.com/html/html_intro.asp
16 http://www.thymeleaf.org/
17 https://www.w3schools.com/js/
18 https://www.w3schools.com/css/css_intro.asp
19 http://getbootstrap.com/
20 https://www.mysql.com/

51

10. Verification and Validation

The previous chapter described the implementation of the project. To ensure that the

system is being correctly created, the process of verification and validation should be

put in place. This chapter describes the process together with the techniques used.

10.1 Validation
Validation of a software product is the process of checking whether the product built

satisfies the stakeholder’s requirements. Two aspects need to be taken into considera-

tion in the validation process. First, does the product built satisfies the functional re-

quirements; does it do what it says in the functional requirements? Second, does the

product satisfy the non-functional requirements? For the functional requirement, the

validation should address whether the product offers the features defined. For the non-

functional requirements, the validation should address how they are achieved and sat-

isfied.

Following an iterative development approach (see chapter 13), the results were contin-

uously validated by the stakeholders. Once per week, a meeting was scheduled with

the main stakeholders that included a progress report and a demo of the current version

of the product. During the demo, feedback was provided on the completeness and cor-

rectness of the product under development.

Additionally, the candidate was in the same department with the main future users of

the system. With this setting, the users of the system were always up-to-date with the

system implementation, so that they could validate it during the complete development

process.

Regarding the non-functional requirements, the security was identified as the most im-

portant one. For this reason, a dedicated internal team of security experts was created,

which main purpose was to evaluate the system architecture from security perspective

and approve it for further implementation. Additionally, the candidate proposed per-

forming a formal penetration test from authorized experts that will validate the security

of the developed product. This activity is planned to be executed before the system

goes live. At the moment of writing this report this is not performed yet, and therefore

this is listed as future work (see Section 12.2).

10.2 Verification
Verification of a software product is the process of evaluating whether the system is

engineered properly. This means that verification should check how well the product

is developed, tested, and documented. To ensure the quality of the product, verification

is performed by software testing and code quality measurements.

Since the product is split into two parts, namely web application - presentation layer

and business logic layer, different testing is applied to them. In the web application,

the user interface needs to be tested, as well as the code, and in the business logic layer

the code needs to be tested.

On the user interface, manual testing was conducted. The user interface was tested with

following browsers: Google Chrome21 (version 60.0.3112.90), Mozilla Firefox22 (ver-

sion 54.0.1), and Internet Explorer23 11. This testing revealed several bugs as well as

proposed several improvements. For instance, it was detected that page refresh was not

21 https://www.google.com/chrome/
22 https://www.mozilla.org/en-US/firefox/
23 https://www.microsoft.com/en-us/download/internet-explorer.aspx

52

very convenient when user initiated specific action, such as software signing. Because

of this, an AJAX24 based interaction between user interface (the web browser) and the

back-end part of the system was implemented, which prevented refreshing of the page

when user was interacting with it.

The code in the business-logic layer was mainly tested manually, by running specific

scenarios, as well as by performing unit tests on specific functions in the code. The

testing environment where the system ran was the consisted of one server running all

layers of the system. The Operating System for this server was Linux Ubuntu 16.04

LTS 25. Unit tests were written in the JUnit26 testing framework. JUnit is a unit testing

framework for the Java programming language. JUnit has been important in the devel-

opment of test-driven development, and is one of a family of unit testing frameworks

which is collectively known as xUnit. [33]

Finally, manual tests were performed on the system outputs. Since one of the key fea-

tures of the system is the automated software signing, the output of the signing process

was manually tested and verified. This included binary comparisons of the signed soft-

ware files produced with the developed system and the files that are produced with

existing manual process for software signing. This comparison proved that the system

only automates the current process, without interfering and modifying it. ■

24 https://www.w3schools.com/xml/ajax_intro.asp
25 https://www.ubuntu.com/download/desktop
26 http://junit.org/junit4/

53

11. Deployment

Based on the architecture and design of the system, a prototype is implemented that

satisfies the stakeholders’ requirements. This chapter elaborates on the specifics of the

deployment considering the implementation choices regarding infrastructure, technol-

ogies and programming languages.

11.1 Deployment view
Based on the decisions for the system implementation (elaborated in the chapter 9), the

development view defined in the Section 8.6 is revisited to take these choices into

consideration and provide a clearer picture of the entire system. Figure 11.1 depicts the

revisited deployment view of the system.

The main interface to the system is the web application that is delivered to the users on

their PCs web browsers. The “Application server 1” host the web application, called

“Release Workflow System”. To run this application an environment that hosts a Java

Virtual Machine is required.

The “Application server 2” hosts the RESTful API and the “Software signer system”.

The “Release Workflow System” sends HTTP requests and the “Software signer”

server responds with HTTP response. To run the API and the services behind it, an

environment that hosts a Java Virtual Machine is required. Moreover, to run the “Soft-

ware Signer” scripts, a Linux operating system is required, with specific configuration.

Last, a database server that hosts the database is required for the deployment of the

system. A management service is needed to handle connections to the database as well

as management of the database itself. The ЈDBC acronym stands for Java Database

Connector. MySQL is chosen as the database engine.

Section 11.2 explains the deployment options that were analyzed and steer the decision

for the chosen option.

54

Figure 11.1 Deployment view revisited. Concrete implementation specifics are taken into consideration.

deployment Dev elopment v iew

«device»
User PC

«executionEnvironment»
Web Browser

«device»
App server 1: Relese workflow system

«executionEnvironment»
Java Virtual Machine

ReleaseWorkflowApp

«device»
App server 2: Software signer system

«executionEnvironment»
Java Virtual Machine

REST API SoftwareSignerApp

«device»
Database server

«executionEnvironment»
Database management

system

Database

JDBC

«flow»

HTTPS

«flow»

HTTPS

«flow»

55

11.2 Deployment options analysis
Based on the deployment view presented in the previous Section 11.1 we have identi-

fied the following deployment options for hosting the complete architecture:

1. Deploying in the internal Lighting Data Center

2. Deploying in the existing IT environment in the Home Systems department

3. Deploying in the cloud computing environment. For this, the following op-

tions are considered:

a. Amazon Web Services27

b. Google Cloud28

The following sub-sections summarize the advantages and disadvantages of each op-

tion and steer the decision for the chosen one. If we reflect on the System requirements

described in chapter 6, we can see that Security is one of the most important non-

functional requirements of the system. The system shall have access to the production

keys used for signing the production Hue software. These keys are sensitive and the

system needs to protect them from unauthorized access. Therefore, when we analyze

the advantages and disadvantages of each option, we considered the security require-

ments as the most influencing point.

11.2.1. Deploying in the Lighting Data Center

Philips Lighting has its own IT infrastructure (so called Lighting Data Center) where

many internal applications are hosted and running. Therefore, considering deployment

here was a natural option.

Lighting Data Center has available servers with Linux Red Hat distribution, which the

system-under-development supports. These servers can be easily set up and scaled and

adjusted according to the system needs. The Lighting IT department will be responsible

for server maintenance and support for all server and hardware related issues. The

Home Systems Department will be responsible for all application related issues, as

well as the database related operations, such as maintenance, backup, and restore.

Since these servers are owned by the Philips Lighting Data Center (PLDC), the com-

plete physical and logical security is a responsibility of the PLDC.

11.2.2. Deploying in the existing IT environment in the Home

Systems department

Another option is to host the complete system in the existing IT infrastructure inside

the Home department, where the main users of the system will be located.

However, there are many security risks if this option is considered. First, proper phys-

ical security measures must be in place for all PCs where the system components will

be installed. Second, custom logical security measures must be implemented for the

machines, so that the risk of unauthorized users getting remote ownership is prevented.

Additionally, complete maintenance of all servers will be responsibility of the Home

department. This maintenance will include, but not be limited to: server updates, back-

ups, restore and database maintenance.

11.2.3. Deploying in a cloud environment

Cloud computing and storage provide users with capabilities to store and process their

data in third-party data centers. This allows organizations to better focus on doing what

they are known for, and allow many of the technicalities be taken care of by an infra-

structure that already exists and is constantly being upgraded. There are many cloud

27 https://aws.amazon.com/
28 https://cloud.google.com/

56

service providers. Because of the sensitivity of the data that could be stored and oper-

ated on these servers, only the following well-known providers were considered: Am-

azon Web Services and Google Cloud Platform. An additional reason is that there are

already several services from Philips Lighting that are hosted on both Google Cloud

and Amazon Web Services. When analyzing the cloud options, the following criteria

must be satisfied:

• The solution should offer the possibility to define Virtual Private Networks

so that all resources can be accessed only from the internal Philips Lighting

network.

• The system architecture should not be dependent on the cloud environment.

This means that the cloud solution should fully support the system architec-

ture. At minimum, the following services are needed to support and host the

system architecture:

✓ Application servers for both the ReleaseWorkflowApp and the

 SoftwareSignerApp

✓ File system with high level of security

✓ Database server that supports MySQL engine

 The following sub-sections analyzes cloud hosting options in more details.

Amazon Web Services (AWS)
The following services that are suitable for the system architecture are available from

the AWS:

• Application server: Amazon EC2 is a web service that provides flexible

compute capacity. New servers (instances) can be added within minutes,

which are suited to scaling upwards or downwards at any time. Both applica-

tion servers can be configured to run on the Amazon EC2 service. [31]

• Database server: Amazon RDS is a scalable and highly available relational

database in the cloud which fully supports the MySQL database engine. Am-

azon RDS makes it easy to set up, operate, and scale MySQL deployments in

the cloud. Amazon RDS allows the developers to fully focus on application

development by managing time-consuming database administration tasks in-

cluding backups, software patching, monitoring, scaling and replication. Our

database server can run in the Amazon RDS. [32]

• File storage: Amazon offers two types of file systems, the Amazon Elastic

File System (EFS) and the Amazon Elastic Block Store (EBS). EFS provides

scalable file storage for use with Amazon EC2 instances in the AWS Cloud.

Amazon EFS offers a simple interface that allows quick creation and config-

uration of the file systems. With Amazon EFS, storage capacity is elastic,

growing and shrinking automatically as new files are added or existing ones

are removed, so the applications have the storage they need, when they need

it. All software artifacts and all generated files during the signing process can

be stored on the Amazon EFS. [33]

Amazon EBS allows creating storage volumes and attaching them to Amazon

EC2 instances. Once attached these volumes can be used as standard block

storage, for example, file system can be created or database can be run on top

of them. Amazon EBS volumes are placed in a specific Availability Zone,

where they are automatically replicated to protect users from the failure of a

single component. All EBS volume types offer durable snapshot capabilities

and are designed for 99.999% availability. Amazon EBS encryption offers

seamless encryption of EBS data volumes, boot volumes and snapshots, elim-

inating the need to build and manage a secure key management infrastructure.

EBS encryption enables data at rest security by encrypting data volumes, boot

volumes and snapshots using Amazon-managed keys or keys that can be cre-

ated and managed using the AWS Key Management Service (KMS). In addi-

tion, the encryption occurs on the servers that host EC2 instances, providing

57

encryption of data as it moves between EC2 instances and EBS data and boot

volumes. [34]

• VPN: Amazon VPC enables organizations to have a private, isolated envi-

ronment in the cloud. This is important feature, since it will enable private

environment that can only be accessed from the internal Philips Lighting net-

work. Additionally, a Hardware Virtual Private Network (VPN) connection

can be created between the corporate data center and the VPC and leverage

the AWS cloud as an extension of corporate data center. Amazon VPC pro-

vides advanced security features such as security groups and network access

control lists to enable inbound and outbound filtering at the instance level and

subnet level. Optionally, users can choose to launch dedicated instances

which run on hardware dedicated to a single customer for additional isolation.

[35]

Google Cloud Platform (GCP)
The following services that are suitable for the system architecture are available from

the GCP:

• Application server: Google Compute Engine delivers virtual machines run-

ning in Google's data centers and worldwide fiber network. Compute Engine's

tooling and workflow support enable scaling from single instances to global,

load-balanced cloud computing. Compute Engine's VMs are designed to boot

quickly, come with persistent disk storage, and are available in many config-

urations including predefined sizes or the option to create Custom Machine

Types optimized for specific needs. Both application servers can be config-

ured to run on the Amazon EC2 service. [36]

• Database server: Cloud SQL is a fully-managed database service that makes

it easy to set up, maintain, manage, and administer relational PostgreSQL and

MySQL databases in the cloud. Cloud SQL offers high performance, scala-

bility, and convenience. Hosted on Google Cloud Platform, Cloud SQL pro-

vides a database infrastructure for applications running anywhere. Our data-

base server can run in the Amazon RDS. However, Google Cloud SQL needs

a specific way and syntax for accessing and manipulating data. This will re-

quire additional changes in the application source code which will make the

system Google Platform dependent. [37]

• File storage: Google Persistent Disk is durable and high-performance block

storage for the Google Cloud Platform. Persistent Disk provides SSD and

HDD storage which can be attached to instances running in either Google

Compute Engine or Google Container Engine. Storage volumes can be trans-

parently resized, quickly backed up, and offer the ability to support simulta-

neous readers. Persistent Disks are automatically encrypted to protect your

data. You can supply your own key or Google will automatically generate one

for you. [38]

• VPN: With Google Cloud Platform (GCP) VPC, you can provision your GCP

resources, connect them to each other, and isolate them from one another in a

Virtual Private Cloud (VPC). You can also define fine-grained networking

policies within GCP, and between GCP and on-premise or other public

clouds. VPC is a comprehensive set of Google-managed networking capabil-

ities, including granular IP address range selection, routes, firewalls, Virtual

Private Network (VPN), and Cloud Router. [39]

Cloud options comparison and conclusion
Based on the comparison between Google Cloud Platform and Amazon Web Services

cloud providers, we can conclude that both GCP and AWS support the architecture and

the main requirements listed above. However, AWS has a slight advantage because of

its database engine.

Google Cloud Platform offers two ways of hosting the MySQL database. The first

requires stand-alone installation of MySQL server on the virtual servers. This option

58

will mean that all responsibility for maintenance and administration of the database

will be on Philips Lighting, in same way as hosting in the internal premises.

The second option is to completely use Google Cloud SQL. However, Google Cloud

SQL needs a specific way and syntax for accessing and manipulating data. This will

require additional changes in the application source code which will make the system

Google Platform dependent.

On the other hand, hosting the MySQL database in Amazon RDS instance means that

the database is fully managed by Amazon and is accessible with the same existing

source code.

11.2.4. Deployment decision

Table 11.1 summarizes the analysis made in the Section 11.2. Based on the analysis,

an appropriate decision was made for the deployment of the developed system.

59

Deployment

option

Security Architecture support Responsibilities

Lighting data

center

- Additional custom logical security

measures need to be implemented (For

instance: Two - factor authentication

and disk encryption).

- Fully supports the proposed architecture.

- Environment can be scaled according to the sys-

tem needs.

- Lighting DC is responsible for server and hardware

related topics.

- Home Systems department is responsible for all ap-

plication related issues and all database maintenance

tasks, such as backups and index rebuild.

IT environ-

ment at Home

Systems

- Additional physical security measures

need to be implemented.

- Additional custom logical security

measures need to be implemented (ex.

Two - factor authentication, disk en-

cryption).

- Freedom to customize the servers according to

the system needs, so that they fully support the

architecture.

- If need for scaling, additional hardware need to

be purchased.

- Home Systems department is responsible for com-

plete hardware and software maintenance tasks.

Google Cloud

Platform

- Virtual Private Cloud is supported.

Connection to the resources is only

available through VPN from Philips

Lighting network.

- File system encryption is possible.

- Fully supports the proposed architecture.

- Environment can be scaled according to the sys-

tem needs.

- Application needs some adjustments in the

source code for database connection, since

Google Database Service has specific Google

API for accessing.

- Google service provider is responsible for all hard-

ware/server related issues and all database mainte-

nance tasks, such as backups and index rebuild.

- Home department is only responsible for application

functionality.

Amazon Web

Services

- Virtual Private Cloud is supported.

Connection to the resources is only

available through VPN from Philips

Lighting network.

- File system encryption is possible.

- Fully supports the proposed architecture.

- Environment can be scaled according to the sys-

tem needs.

- Amazon service provider is responsible for all hard-

ware/server related issues and all database mainte-

nance tasks, such as backups and index rebuild.

- Home department is only responsible for application

functionality.

Table 11.1 Deployment options comparison

61

12. Conclusions

This chapter analyses the results achieved by this project as well as the added value to

the stakeholders.

12.1 Results
Developing software applications for the Hue devices poses unique challenges among

the engineers at Philips Lighting. These challenges arise at each stage of the Software

Development Life-Cycle (SDLC). Improvement of the complete SDLC is of immense

importance to the Philips Lighting. This was the focus of this project, to make the

process as automated as possible, without compromising security aspects of the sys-

tems.

The end result of this project solves a lot of challenges in the SDLC. It is a complete

release management tool dedicated to the engineers at the Home department at Philips

Lighting. First, it visualizes ongoing software release workflows in a simple and easy

to use user interface. With a lot of searching and sorting possibilities, users are able to

quickly find out the specific details about a particular software release process. Second,

the core activities of the SDLC process are fully automated. The testing architects are

now able to digitally sign software with just a few clicks on the web-based user inter-

face. What is more important is that this signing is executed in a highly secure and

protected environment. This is of a huge importance for Philips Lighting not only be-

cause this automation saves a lot of time, but also because it reduces the risk of a human

error that was present before. The same benefits are gained through an automation of

other activities in the SDLC, such as approval of steps, distributing the signed software

to the Hue production factories, and deploying the signed software to the Hue device

cloud. Third, the system provides a traceability about each step executed in the process.

For instance, who approved the software for signing or who uploaded the signed files

to the Hue device portal. Finally, the system is highly configurable, which makes it

easy to be extended and adjusted to support different device types with different release

workflows.

From the software architecture point of view, the designed system exhibits properties,

such as modularity and maintainability, which makes it easily extendable. One of the

core non-functional requirements of this project was security. This is achieved by ap-

plying advanced security mechanisms in every aspect of the system.

■

63

13. Project Management

This chapter elaborates on the management conducted throughout the project’s life-

time.

13.1 Introduction
The management of the project was conducted under the agile methodology by using

the Kanban approach. Kanban is a popular framework used by software teams practic-

ing agile software development. Kanban gives teams flexible planning options, faster

output, clearer focus, and transparency throughout the development cycle. This meth-

odology is applicable in different domains, but it was initially forged for software de-

velopment as an alternative to the traditional waterfall approach.

The project consisted of two parts. The first part of the project was focused mainly on

Hue domain study and analysis, system environment analysis and requirements engi-

neering. The second part of the project focused on design and implementation of the

system based on the outcome of the first part.

The following sections dive into the details of the project, such as the work-breakdown

structure, project plan and execution.

13.2 Work-Breakdown Structure (WBS)
The work-breakdown structure for the project is presented in Figure 13.1. Two top-

level packages are identified to match the two parts discussed earlier. Each package is

further decomposed into smaller packages. These packages are later referenced in the

project plan and execution section.

64

Figure 13.1 Work-breakdown structure of the project

The Hue domain study and analysis part consists of three packages:

• Domain study: Research and investigations — research and study about the

Hue system, the current software signing process and the current software

distribution procedure;

• System Environment Analysis — research and study about the software and

hardware components that are composed into the current Hue system; and

• Requirements Engineering — formalization of the project requirements.

The Design and implementation part consists of seven packages, each with its own set

of sub-packages. It includes:

• Centralize release management — design and develop a workflow based sys-

tem that will be used for the release process of Hue software;

• Automate software signing — automate the current software signing process;

• Automate upload to the device cloud — automate the current process of up-

loading software images to the device portal;

• Automate software deployment to the end devices in the field;

• Automate upload to the factories — automate the current process of sending

software images to the Hue production factories;

• Automate upload to mobile apps — automate the current process of uploading

software images to the mobile application development team; and

• Centralized location for software images — design and develop a web based

system that will serve as a centralized location of the Hue software images.

65

13.3 Project Planning and Scheduling

Based on the breakdown structure defined in the previous section, a project plan was

formulated. As expected, the initial project planning defined in the beginning did not

match the actual project execution due to the incremental approach. Several adjust-

ments were introduced along the way, as the knowledge and understanding deepened.

The next two sections show the initial and last version of the project plan in forms of

a Gantt charts.

13.3.1. Initial

The initial version of the planning involved four major parts: the preparation and setup,

for which the initial two weeks were reserved; the Hue domain study and problem

analysis, for which the first two months were reserved; the design and implementation,

for which six months were reserved; and project finalization phase, one month. The

reporting on the project is considered an ongoing task for the entire lifespan of the

project. Figure 13.2 shows a Gantt chart for the initial planning for the project.

Figure 13.2 Initial project plan

13.3.2. Final

During the project, several adjustments were introduced. New tasks were added and

several were modified or deleted. This was a reflection on the understanding of the

project and refining of the stakeholders’ requirements. Additionally, these adjustments

were reflection to the corrections of the initial estimations. This is reasonable, since at

the beginning of the project the level of domain knowledge and problem understanding

was not sufficient to make highly accurate estimations.

66

Figure 13.3 Final project planning

13.4 Project execution
The execution of the project followed a structured path based on the project planning.

The first three months comprised of meetings with stakeholders and reading domain

literature. They also included understanding the high-level requirements of the stake-

holders and refining them.

Following the agile approach of iterative software development, a Project Steering

Group (PSG) meeting was held on regular basis where the progress of the project was

presented by the trainee and the direction of the project was redefined. Additionally,

regular weekly meeting was held with the Philips Lighting supervisors, where the pro-

ject progress was discussed with more deep level of details. During these meetings, the

trainee presented the status as well as parts of the final deliverable. The stakeholders

gave feedback and to some extent validation of the deliverable. If it was deemed nec-

essary, additional meetings were scheduled by the trainee to obtain extra information

regarding specific domain knowledge. For each meeting, notes were taken by the

trainee (meeting minutes), which were later put in documents and occasionally sent

back to the stakeholders for review and comments.

By following the project plan, stakeholders could transparently observe how the pro-

ject is progressing, and if the status satisfied their standards and requirements. Since

the product includes several features, an ordered approach was followed in their devel-

opment, one at a time.

As mentioned in section 5.2, several risks were identified throughout the project which

caused slight changes in the direction of development. These changes were clearly

presented to the stakeholders coupled with a proposed mitigation strategy from the

candidate. ■

67

14. Project Retrospective

This chapter finalizes the document by providing a reflection on the project based on

the author’s perspective. It also depicts the revision of the design opportunities, defined

in the begging of the project.

14.1 Introduction
During these nine months, the project demonstrated several familiar aspects and nu-

merous challenging ones. On the familiar side, there was already sufficient knowledge

in software development. Although it was a first time for me to use Java programming

language in a professional environment, I had enough experience with similar object-

oriented languages so the transition to Java went smooth. Additionally, there was ad-

equate knowledge of software architectures, modeling and designing a software as well

some insights on project management. Having a working experience as Information

Security Office in a bank, as well as having a Master diploma in the field of information

security was of a huge importance for this project, since the security was a core topic

for all aspects of the system.

The challenging parts include getting to know the domain and understanding the cur-

rent software release processes. As with every project, a sufficient level of understand-

ing of the domain is required to be able to translate requirements into a result. Besides

the insights from the stakeholders, time of the project was devoted on domain under-

standing and problem analysis in order to gain sufficient knowledge for the current

software development life cycle, especially in the beginning of these nine months.

Luckily, the stakeholders from the Philips Lighting were more than helpful and pro-

vided needed information and feedback whenever it was requested. This is important

because it gives a two-way feedback, for the candidate to understand them, and for

them to understand whether the candidate understands the domain.

Additional challenge was to discover all project stakeholders. Many departments con-

tribute to the development of the Hue system. Some of them are even geographically

distributed to different countries, such as India and China. Therefore, a sufficient time

was spent on the stakeholder’s analysis. Again, the project owners and project super-

visors team were very helpful in defining the initial list of stakeholders, that were fur-

thermore interviewed during the project.

One of the most challenging technical aspects was the deployment for the final product.

As I have already mentioned in the Deployment chapter, there are a lot of Philips in-

ternal services that are running on a cloud based environment. Although, I was already

introduced to the cloud computing and solutions, I have never had practical experience

with them. This was a challenge for me at the beginning, especially in understanding

the terminology used and possibilities that these solutions have. Therefore, time of the

project was devoted on studying the popular cloud service providers and what they

could offer that is relevant to the current project.

Overall, the project was a vast experience and a chance to develop and improve a range

of skills, both technical and non-technical. Cooperating with people and managing ex-

pectations is crucial and this was repeatedly exercised along the project. Managing and

executing the project, while at the same time defining and shaping it, was a great lesson

that broadened my skills and knowledge. On top of that, several innovative technolo-

gies were used that broadened the technical knowledge and opened new horizons for

the future.

68

14.2 Design opportunities revisited
During the study of the Hue system domain and the problem analysis, the following

design opportunities were identified, namely security, usability and reliability. Security

is achieved by applying advanced security mechanisms in every aspect of the system.

First, system is integrated with existing user membership services, used inside Philips

Lighting. Next, the system utilizes advanced encryption methods in several features,

such as distributing signed files to different endpoints or storing production software

signing keys at the signing machine. Furthermore, the complete system is deployed in

a highly secured and isolated environment, utilizing a proven and trusted cloud envi-

ronment. Finally, a dedicated internal team of security experts was created, which main

purpose was to evaluate the system architecture from security perspective and sign it

off for further implementation.

Since the system should have replaced complete process, it needed to be made usable

and intuitive. This was achieved by designing simple and easy to user interface, which

can convey the information and provide feedback to the user as clearly as possible. At

the moment of writing this report, the system was still not used in the production en-

vironment. Valuable feedback is expected from the users regarding the usability once

the system is used more extensively and therefore possible changes of the user interface

are expected in the future. Usability test is also good option to evaluate how easy-to-

use the system is.

The reliability in the current aspect meant the following. The speed of execution is not

critical, but the correctness of the processes is crucial. It was preferred that processes

are running sequentially because every action need to be atomic and system should

know its state in every moment of time. This was achieved by synchronizing activities

in the system and making all process execution activities running sequentially, both at

the application and operating system level. ■

69

Glossary

This section presents the terminologies used throughout this report along with their

explanations.

Term Explanation

PDEng Professional Doctorate in Engineering

TU/e Eindhoven University of Technology

SAI Stan Ackermans Institute

Cloud General term for anything that involves delivering hosted

services over the Internet

API Application Programming Interface

Server A computing platform whose purpose is to serve other

computing platforms

Web server Same as server, available over the Internet

Database server Same as server, used to host a database

XML eXtensible Markup Language

HTTP HyperText Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure (HTTPS) is the se-

cure version of HTTP. The 'S' at the end of HTTPS stands

for 'Secure'.

REST Representational State Transfer (architectural style)

RESTful APIs Interfaces that adhere to the REST style

URL Uniform Resource Locator

URI Uniform Resource Identifier

HTML Hyper Text Markup Language is a markup language for

describ-ing web documents (web pages)

MVC Model View Controller (architectural style)

CSS Cascading Style Sheets

JDBC Java database connectivity technology that defines how

a client may access a database

SDLC Software Development Life Cycle

IoT Internet of Things

IoT-GSI Global Standards Initiative on Internet of Things

HSDP HealthSuite Digital Platform

SSL SSL (Secure Sockets Layer) is the standard security tech-

nology for establishing an encrypted link between a web

server and a browser.

ASPX ASPX files are generated by a web server and contain

scripts and source codes that help communicate to a

browser how a web page should be opened and displayed

JSP Java Server Pages (JSP) is a technology that helps soft-

ware developers create dynamically generated web pages

based on HTML, XML, or other document types

PHP PHP (recursive acronym for PHP: Hypertext Preproces-

sor) is a widely-used open source general-purpose script-

ing language that is especially suited for web develop-

ment and can be embedded into HTML

PGP Pretty Good Privacy (PGP) encryption program provides

cryptographic privacy and authentication for data com-

munication.

PKI Public key infrastructure

HSM Hardware Security Module

LDAP Lightweight Directory Access Protocol

Bibliography

[1] The Washington Post, [Online]. Available:

https://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-

fish-tank-helped-hack-a-casino/?utm_term=.5264a938d065. [Accessed 15

September 2017].

[2] Stan Ackermans Institute, "4TU Federation," [Online]. Available:

https://www.4tu.nl/sai/en/. [Accessed 12 September 2017].

[3] Eindhoven University of Technology, "PDEng Software Technology," [Online].

Available: https://www.tue.nl/en/university/departments/mathematics-and-

computer-science/education/graduate-programs/pdeng-programs/software-

technology/. [Accessed 12 September 2017].

[4] Philips Lighting, "Bringing light to the internet of things," [Online]. Available:

http://www.lighting.philips.com/main/education/lighting-university/lighting-

university-browser/webinar/webinar-semantic-lighting.html. [Accessed 21

April 2017].

[5] Wikipedia, "Internet of Things," [Online]. Available:

https://en.wikipedia.org/wiki/Internet_of_things. [Accessed 1 June 2017].

[6] Philips Lighting, "Philips Lighting," [Online]. Available:

http://www.lighting.philips.nl/bedrijf/over.html. [Accessed 1 April 2017].

[7] Philips Lighting, "Philips Hue System," [Online]. Available:

http://www2.meethue.com/en-us/. [Accessed 1 April 2017].

[8] Wikipedia, "Software signing," [Online]. Available:

https://en.wikipedia.org/wiki/Code_signing. [Accessed 15 May 2017].

[9] C. Schwaderer, "The distribution of things: IoT, M2M, and software

distribution," [Online]. Available: http://embedded-computing.com/articles/the-

iot-m2m-software-distribution/. [Accessed 10 March 2017].

[10] Wind River Systems, Inc, "Managing the IoT Lifecycle from design through

End-of-Life".

[11] SSL Shopper, "What is code signing," [Online]. Available:

https://www.sslshopper.com/what-is-code-signing.html. [Accessed 12

September 2017].

[12] S. Brander, "Key words for use in RFCs to Indicate Requirement Levels,"

Harvard University, Network Working Group, 1997.

[13] I. Sommerville, Software Engineering (9th edition), Addison Wesley, 2011.

[14] L. Bass, P. Clements and R. Kazman, Software Architecture in Practice,

Addison Wesley, 2003.

[15] Sheffield Hallam University, "Architecture of Web-based systems," [Online].

Available:

http://teaching.shu.ac.uk/aces/rh1/de/web_based_systems_architectures_1_tuto

rial.htm. [Accessed 12 September 2017].

[16] M. Richards, "Software Architecture Patterns," [Online]. Available:

https://www.safaribooksonline.com/library/view/software-architecture-

patterns/9781491971437/ch01.html. [Accessed 12 September 2017].

[17] T.Masinov, "Web-based visualization of guidelines and drug use in epilepsy : a

project contributing to smart drug," Technische Universiteit Eindhoven (TU/e).

Stan Ackermans Instituut, Eindhoven, 2015.

[18] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee and R. Stafford, Patterns

of Enterprise Application Architecture, Addison Wesley, 2002.

[19] Microsoft, Microsoft Application Architecture Guide, 2nd Edition, Microsoft

Press, 2009.

71

[20] Wikipedia, "Representational State Transfer (REST)," [Online]. Available:

https://en.wikipedia.org/wiki/Representational_state_transfer. [Accessed 12

September 2017].

[21] Wikipedia, "Hypertext Transfer Protocol," [Online]. Available:

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol. [Accessed 12

September 2017].

[22] Wikipedia, "Model View Controller (MVC)," [Online]. Available:

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

. [Accessed 12 September 2017].

[23] IEEE, "IEEE Recommended Practice for Architectural Description for

Software-Intensive Systems," 2000. [Online]. Available:

https://standards.ieee.org/findstds/standard/1471-2000.html. [Accessed 12

September 2017].

[24] P. Kruchten, "Architectural Blueprints—The “4+1” View Model of Software

Architecture," IEEE Software 12, pp. 42-55, November 1995.

[25] U.S Department of Defence, "The DoDAF Architecture Framework," 2010.

[26] K. Raymond, Reference Model of Open Distributed Processing (RM-ODP),

Boston: Springer, 1995.

[27] G. Muller, "CAFCR: A Multi-view Method for Embedded Systems

Architecting. Balancing Genericity and Specificity," in Systems Architecting: A

Business Perspective, CRC Press, 2011.

[28] J. A. Zachman, "The Zachman Framework," 2008.

[29] N. Rozanski and E. Woods, "The deployment viewpoint," [Online]. Available:

https://www.viewpoints-and-perspectives.info/home/viewpoints/deployment/.

[Accessed 12 September 2017].

[30] Tutorials Point, "Spring - MVC Framework," [Online]. Available:

https://www.tutorialspoint.com/spring/spring_web_mvc_framework.htm.

[Accessed 12 September 2017].

[31] Amazon, "Amazon EC2," [Online]. Available: https://aws.amazon.com/ec2/.

[Accessed 12 September 2017].

[32] Amazon, "Amazon Relational Database Service," [Online]. Available:

https://aws.amazon.com/rds. [Accessed 12 September 2017].

[33] Amazon, "Amazon Elastic File System," [Online]. Available:

https://aws.amazon.com/efs/. [Accessed 12 September 2017].

[34] Amazon, "Amazon Elastic Block Store," [Online]. Available:

https://aws.amazon.com/ebs/. [Accessed 12 September 2017].

[35] Amazon, "Amazon Virtual Private Cloud (VPC)," [Online]. Available:

https://aws.amazon.com/vpc/. [Accessed 12 September 2017].

[36] Google, "Google Cloud Compute Engine," [Online]. Available:

https://cloud.google.com/compute/. [Accessed 12 September 2017].

[37] Google, "Google Cloud SQL," [Online]. Available:

https://cloud.google.com/sql/. [Accessed 12 September 2017].

[38] Google, "Google Persistent Disk," [Online]. Available:

https://cloud.google.com/persistent-disk/. [Accessed 12 September 2017].

[39] Google, "Google Virtual Private Cloud (VPN)," [Online]. Available:

https://cloud.google.com/vpc/. [Accessed 12 September 2017].

72

About the Authors

Igor Anastasov received his Bachelor of Electrical Engi-

neering and Information Technologies from the Faculty of

Electrical Engineering and Information Technology

(Skopje, Macedonia), in 2011, specializing in Informatics

and Computer Engineering. He received his MSc degree in

Software Engineering of the Faculty of Computer Science

and Engineering (Skopje, Macedonia) in 2014.

In his Master Thesis called “SIEM implementation for

global and distributed environments” he proposes a new

model and architecture for SIEM system that is using mul-

tiple hierarchically connected SIEM systems. Part of the

investigations in this thesis resulted in a research paper

published at the International Conference on Computer In-

formation Systems (ICCIS) WCCAIS 2014 in Tunisia.

After his graduation in 2011 he worked in several IT com-

panies in Macedonia, developing software applications

mainly in .NET and SQL Server RDBMS. Between 2012

and 2014 he worked in ProCredit bank, Macedonia as In-

formation Security Officer. His responsibilities include de-

velopment and execution of a clear and effective strategy

concerning Information Security throughout the organiza-

tion. From September 2015 until September 2017, he

worked at the Eindhoven University of Technology, as

PDEng trainee in the Software Technology program from

the 4TU.Stan Ackermans Institute.

Where innovation starts

