Quantum Key Recycling with 8-state encoding (The Quantum One-Time Pad is more interesting than we thought)

Citation for published version (APA):

Skoric, B., \& de Vries, M. (2017). Quantum Key Recycling with 8-state encoding (The Quantum One-Time Pad is more interesting than we thought). International Journal of Quantum Information, 15(3), Article 1750016. https://doi.org/10.1142/S0219749917500162

Document license:

TAVERNE

DOI:

10.1142/S0219749917500162

Document status and date:

Published: 01/04/2017

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Quantum Key Recycling with 8-state encoding (The Quantum One-Time Pad is more interesting than we thought)

Boris Škorić* and Manon de Vries ${ }^{\dagger}$
Department of Mathematics and Computer Science, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
*b.skoric@tue.nl ${ }^{\dagger}$ m.d.vries@student.tue.nl

Received 5 January 2017
Accepted 6 February 2017
Published 5 May 2017

Abstract

Perfect encryption of quantum states using the Quantum One-Time Pad (QOTP) requires two classical key bits per qubit. Almost-perfect encryption, with information-theoretic security, requires only slightly more than 1 . We slightly improve lower bounds on the key length. We show that key length $n+2 \log \frac{1}{\varepsilon}$ suffices to encrypt n qubits in such a way that the cipherstate's L_{1}-distance from uniformity is upperbounded by ε. For a stricter security definition involving the ∞-norm, we prove sufficient key length $n+\log n+2 \log \frac{1}{\varepsilon}+1+\frac{1}{n} \log \frac{1}{\delta}+\log \frac{\ln 2}{1-\varepsilon}$, where δ is a small probability of failure. Our proof uses Pauli operators, whereas previous results on the ∞-norm needed Haar measure sampling. We show how to QOTP-encrypt classical plaintext in a nontrivial way: we encode a plaintext bit as the vector $\pm(1,1,1) / \sqrt{3}$ on the Bloch sphere. Applying the Pauli encryption operators results in eight possible cipherstates which are equally spread out on the Bloch sphere. This encoding, especially when combined with the half-keylength option of QOTP, has advantages over 4-state and 6 -state encoding in applications such as Quantum Key Recycling (QKR) and Unclonable Encryption (UE). We propose a key recycling scheme that is more efficient and can tolerate more noise than a recent scheme by Fehr and Salvail. For 8-state QOTP encryption with pseudorandom keys, we do a statistical analysis of the cipherstate eigenvalues. We present numerics up to nine qubits.

Keywords: Quantum cryptography; key recycling; quantum one-time pad.
PACS Nos.: 03.67.Dd, 03.67.Hk

1. Introduction

1.1. Quantum encryption and key recycling

Quantum physics is markedly different from classical physics regarding information processing. For instance, performing a measurement on an unknown quantum state

[^0]typically destroys state information. Furthermore, it is impossible to clone an unknown state by unitary evolution. ${ }^{1}$ These two properties are very interesting for security applications, since they provide a certain amount of inherent confidentiality, unclonability and tampering detection. Quantum physics also has entanglement of subsystems, which allows for feats like teleportation ${ }^{2,3}$ that have no classical analogue. The laws of quantum physics have been exploited in numerous security schemes, such as Quantum Key Distribution (QKD), ${ }^{4-6}$ quantum anti-counterfeiting, ${ }^{7}$ quantum Oblivious Transfer,,${ }^{8,9}$ authentication and encryption of quantum states, ${ }^{10-12}$ Unclonable Encryption, ${ }^{13}$ quantum authentication of PUFs, ${ }^{14,15}$ and quantum-secured imaging, ${ }^{16}$ to name a few. A recent overview of quantum-cryptographic schemes is given in Ref. 17.

In this paper, we focus on two features that distinguish quantum channels from classical channels: (i) The possibility of achieving almost-perfect encryption of quantum states, with information-theoretic security guarantees, using a key length that is slightly more than half of the length required for perfect encryption. Perfect encryption, e.g. using the Quantum One-Time Pad (QOTP), requires a key of length $2 n$ to encrypt n qubits. Dickinson and Nayak ${ }^{18}$ showed that key length $n+2 \log \frac{1}{\varepsilon}+4$ suffices if one only requires that the cipherstate is at most ε away from the fully mixed state, in terms of the L_{1}-norm. Aubrun ${ }^{19}$ showed that, for a more strict security notion based on the ∞-norm, key length $n+2 \log \frac{1}{\varepsilon}+\log 150$ suffices.
(ii) The possibility of re-using encryption keys when a quantum channel is used to transmit classical messages. In Gottesman's UE ${ }^{13}$ half of the key material can be reused if a transmission is successful. Damgård et al. ${ }^{20,21}$ introduced a scheme in which the entire key can be re-used. However, encryption and decryption require a quantum computer with circuit depth $\mathcal{O}\left(n^{2}\right) .{ }^{22}$ Fehr and Salvail ${ }^{23}$ recently proposed a scheme which re-uses the entire key and which does not need a quantum computer.

1.2. Contributions and outline

We present a number of new results regarding the use of the QOTP.

- We introduce a new way of encoding a classical bit as a qubit state. The ' 0 ' is encoded as the vector $(1,1,1)^{\mathrm{T}} / \sqrt{3}$ on the Bloch sphere, and the ' 1 ' as the opposite vector $(-1,-1,-1)^{\mathrm{T}} / \sqrt{3}$. By acting with the four QOTP encryption operators on our two plaintext states, we obtain eight cipherstates that are equally spread out on the Bloch sphere. We refer to this encoding as ' 8 -state encoding'.
- We propose a key recycling scheme inspired by, ${ }^{23}$ but using 8 -state encoding. Our scheme is more compact by virtue of the fact that 8 -state encoding is a proper encryption, while 4 -state and 6 -state encoding are leaky. Furthermore, our scheme tolerates more noise.
- We study the use of the QOTP with a pseudorandom key, for general states. We model the pseudorandomness as the output of a random function. For n qubits and
key length q, we construct a random table T of size $2^{q} \times n$, where the j th row is the key corresponding to seed j. The adversary knows T but not the row index j.
Using this model, we show that key length $n+2 \log \frac{1}{\varepsilon}$ suffices to encrypt n qubits in such a way that the cipherstate's L_{1}-distance from uniformity is upperbounded by ε. Our bound is slightly tighter than Dickinson and Nayak's result. ${ }^{18}$ For a more strict security property based on the ∞-norm, we prove sufficient key length $n+\log n+2 \log \frac{1}{\varepsilon}+1+\frac{1}{n} \log \frac{1}{\delta}+\log \frac{\ln 2}{1-\varepsilon}$, where δ is the failure probability. Similar expressions are known in the literature ${ }^{19,24}$ (even without the $\log n$ term). However, those results need the encryption operators to be drawn from the Haar measure.
- We study the pseudorandom-keyed QOTP in the case of 8 -state encoding of classical plaintexts. We derive bounds on the moments of the cipherstate eigenvalues; these bounds are sharper than for arbitrary states. We present numerics that show a 'phase transition' as the key length crosses over from $q<n$ to $q>n$.

The outline is as follows. In Sec. 2, we briefly review the QOTP and security definitions for quantum ciphers. In Sec. 3, we introduce 8-state encoding and examine its properties. A comparison is given with 4 -state and 6 -state encoding, regarding conditional entropies of plaintexts and keys. In Sec. 4, we present our key recycling scheme and discuss its security properties. In Sec. 5, we briefly mention two other possible applications of 8 -state encoding: UE with shorter keys, and the three-pass keyless protocol.

The pseudorandom-keyed QOTP results for general states are given in Sec. 6. In Sec. 7, we restrict the states to 8 -state encoding.

2. Preliminaries

2.1. Notation and terminology

Classical Random Variables (RVs) are denoted with capital letters, and their realizations with lowercase letters. The probability that a RV X takes value x is written as $\operatorname{Pr}[X=x]$. The expectation with respect to RV X is denoted as $\mathbb{E}_{x} f(x)=$ $\sum_{x \in \mathcal{X}} \operatorname{Pr}[X=x] f(x)$. Sets are denoted in calligraphic font. The notation "log" stands for the logarithm with base 2 . The min-entropy of $X \in \mathcal{X}$ is $\mathrm{H}_{\min }(X)=$ $-\log \max _{x \in \mathcal{X}} \operatorname{Pr}[X=x]$, and the conditional min-entropy is $\mathrm{H}_{\text {min }}(X \mid Y)=-\log \mathbb{E}_{y}$ $\max _{x \in \mathcal{X}} \operatorname{Pr}[X=x \mid Y=y]$. The notation h stands for the binary entropy function $h(p)=p \log \frac{1}{p}+(1-p) \log \frac{1}{1-p}$. Bitwise XOR of binary strings is written as " \oplus ". The Kronecker delta is denoted as $\delta_{a b}$. The inverse of a bit $b \in\{0,1\}$ is written as $\bar{b}=1-b$.

For quantum states, we use Dirac notation, with the standard qubit basis states $|0\rangle$ and $|1\rangle$ represented as $\binom{1}{0}$ and $\binom{0}{1}$, respectively. The Pauli matrices are denoted as $\sigma_{x}, \sigma_{y}, \sigma_{z}$, and we write $\boldsymbol{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$. The standard basis is the eigenbasis of σ_{z}, with $|0\rangle$ in the positive z-direction. We write $\mathbb{1}_{d}$ for the $d \times d$ identity matrix. The
fully mixed state in d-dimensional Hilbert space is denoted as $\tau_{d}=\frac{1}{d} \mathbb{1}_{d}$, or $\operatorname{simply} \tau$ if the dimension is clear from the context. The space of mixed state operators acting on Hilbert space \mathcal{H} is written as $\mathcal{S}(\mathcal{H})$. The 1-norm of an operator A with eigenvalues λ_{i} is defined as $|A|_{1}=\operatorname{tr}|L|=\sum_{i}\left|\lambda_{i}\right|$. The notation "tr" stands for trace. The statistical distance (trace distance) between two mixed states is defined as $D\left(\rho, \rho^{\prime}\right)=\frac{1}{2} \operatorname{tr}\left|\rho-\rho^{\prime}\right|$. The ∞-norm $|A|_{\infty}$ is $\max _{i}\left|\lambda_{i}\right|$.

We will use the Positive Operator Valued Measure (POVM) formalism. Consider a bipartite system "AB" where the "A" part is classical, i.e. the state is of the form $\rho^{\mathrm{AB}}=\mathbb{E}_{x \in \mathcal{X}}|x\rangle\langle x| \otimes \rho_{x}^{\mathrm{B}}$ with the $|x\rangle$ forming an orthonormal basis. The min-entropy of the classical RV X given part " B " of the system is ${ }^{25}$

$$
\begin{equation*}
\mathrm{H}_{\min }\left(X \mid \rho_{X}^{\mathrm{B}}\right)=-\log \max _{\mathcal{M}} \mathbb{E}_{x \in \mathcal{X}} \operatorname{tr} M_{x} \rho_{x}^{\mathrm{B}} . \tag{1}
\end{equation*}
$$

Here, \mathcal{M} denotes a POVM, i.e. $\mathcal{M}=\left(M_{x}\right)_{x \in \mathcal{X}}$ where the operators M_{x} are positive semidefinite and satisfy $\sum_{x \in \mathcal{X}} M_{x}=\mathbb{1}$. Let $\Lambda \stackrel{\text { def }}{=} \sum_{x} \rho_{x}^{\mathrm{B}} M_{x}$. The POVM which achieves the maximum in (1) satisfies the necessary and sufficient conditions $\Lambda^{\dagger}=\Lambda$ and $\forall_{x}: \Lambda-\rho_{x}^{\mathrm{B}} \geq 0$.

2.2. The Quantum One-Time Pad

An arbitrary unknown qubit state can be perfectly encrypted using a classical two-bit key. ${ }^{12,26,27}$ The simplest way of doing this is using the QOTP. Consider a pure state $|\psi\rangle$ and let the key be $(u, w) \in\{0,1\}^{2}$. The encrypted state is $\left|\psi_{u w}\right\rangle=E_{u w}|\psi\rangle$, with $E_{u w}$ the unitary encryption operator, $E_{u w}=|w\rangle\langle 0|+(-1)^{u}|1 \oplus w\rangle\langle 1|$. In terms of Pauli spin matrices: $E_{00}=\mathbb{1}, E_{01}=\sigma_{x}, E_{10}=\sigma_{z}, E_{11}=\sigma_{x} \sigma_{z}$.

$$
\begin{equation*}
E_{u w}=\sigma_{x}^{w} \sigma_{z}^{u} . \tag{2}
\end{equation*}
$$

For notational brevity, we will often write the key as $b=2 u+w, b \in\{0,1,2,3\}$ and accordingly encryption operator E_{b} and cipherstate $\left|\psi_{b}\right\rangle=E_{b}|\psi\rangle$. From the point of view of an attacker, Eve who does not know u, w, the qubit is in the fully mixed state: $\frac{1}{4} \sum_{b}\left|\psi_{b}\right\rangle\left\langle\psi_{b}\right|=\frac{1}{2} \mathbb{1}_{2}$. In other words, from Eve's point of view, the cipherstate carries no information at all about ψ. For a mixed qubit state ρ, the cipherstate is $E_{b} \rho E_{b}^{\dagger}$ and it holds that $\frac{1}{4} \sum_{b} E_{b} \rho E_{b}^{\dagger}=\frac{1}{2} \mathbb{1}_{2}$. Any Hilbert space \mathcal{H}_{d} of dimension $d=2^{n}$ can be interpreted as an n-qubit system. QOTP encryption on \mathcal{H}_{d} works by encrypting every qubit individually. The key is $\boldsymbol{b} \in\{0,1,2,3\}^{n}$. The encryption operator factorizes as $E_{\boldsymbol{b}}=\bigotimes_{i=1}^{n} E_{b_{i}}$. From Eve's point of view, the encryption of a state $\rho \in \mathcal{S}\left(\mathcal{H}_{d}\right)$ is fully mixed,

$$
\begin{equation*}
\forall_{\rho \in \mathcal{S}\left(\mathcal{H}_{2^{n}}\right)} \quad \frac{1}{4^{n}} \sum_{b \in\{0,1,2,3\}^{n}} E_{b} \rho E_{b}^{\dagger}=\left(\tau_{2}\right)^{\otimes n}=\tau_{2^{n}} . \tag{3}
\end{equation*}
$$

2.3. Security definitions for quantum ciphers

The performance of a quantum cipher can be quantified in several ways. We first consider encryption of generic mixed states.

Definition 1 (From Ref. 24). A completely positive, trace-preserving map R : $\mathcal{S}\left(\mathcal{H}_{d}\right) \rightarrow \mathcal{S}\left(\mathcal{H}_{d}\right)$ is called ε-randomizing if

$$
\begin{equation*}
\forall_{\varphi \in \mathcal{S}\left(\mathcal{H}_{d}\right)}: \quad\left|R(\varphi)-\tau_{d}\right|_{\infty} \leq \frac{\varepsilon}{d} \tag{4}
\end{equation*}
$$

Next, we consider quantum-encryption of classical data. Let $k \in \mathcal{K}$ be a key and $x \in \mathcal{X}$ a plaintext. Encryption of x using key k results in a (pure or mixed) state $\rho_{k, x}$ in a Hilbert space of dimension d. From Eve's point of view, the total system, including the plaintext and the key, is a tripartite system in the state $\mathbb{E}_{k \in \mathcal{K}} \mathbb{E}_{x \in \mathcal{X}}|k\rangle\langle k| \otimes|x\rangle\langle x| \otimes \rho_{k, x}$. Eve has access only to the third part, and her main interest is in the second part. Tracing out the first subsystem gives the bipartite state

$$
\begin{equation*}
\rho=\mathbb{E}_{x \in \mathcal{X}}|x\rangle\langle x| \otimes \rho_{x}, \quad \rho_{x}=\mathbb{E}_{k \in \mathcal{K}} \rho_{k, x} . \tag{5}
\end{equation*}
$$

We introduce the notation

$$
\begin{equation*}
\xi \stackrel{\text { def }}{=} \mathbb{E}_{x \in \mathcal{X}} \rho_{x} \tag{6}
\end{equation*}
$$

Typically, $\xi=\tau_{d}$. Eve's knowledge about the plaintext is related to the statistical distance between X and the uniform distribution, given the quantum state ρ_{X} for unknown X. This is written as

$$
\begin{equation*}
d\left(X \mid \rho_{X}\right) \stackrel{\text { def }}{=} D\left(\rho, \tau_{\mathcal{X}} \otimes \xi\right)=\mathbb{E}_{x \in \mathcal{X}} D\left(\rho_{x}, \xi\right) \tag{7}
\end{equation*}
$$

If the encryption depends on some public randomness $Y \in \mathcal{Y}$, then we write $\rho_{x}(y)$, and (7) generalizes to

$$
\begin{equation*}
d\left(X \mid Y, \rho_{X}(Y)\right)=\mathbb{E}_{x \in \mathcal{X}} \mathbb{E}_{y \in \mathcal{Y}} D\left(\rho_{x}(y), \xi\right) \tag{8}
\end{equation*}
$$

Definition 2. A symmetric quantum cipher is called "statistically ε-private" ${ }^{20}$ or "a scheme with error ε " ${ }^{13}$ if

$$
\begin{equation*}
\forall_{x, x^{\prime} \in \mathcal{X}}: \quad D\left(\rho_{x}, \rho_{x^{\prime}}\right)<\varepsilon . \tag{9}
\end{equation*}
$$

We introduce a security definition inspired by the conditional statistical distance (8).

Definition 3. Let $R_{y}: \mathcal{S}\left(\mathcal{H}_{d}\right) \rightarrow \mathcal{S}\left(\mathcal{H}_{d}\right)$ be a completely positive trace-preserving map, with $y \in \mathcal{Y}$ public. The map is called " ε-uniform" if it satisfies

$$
\begin{equation*}
\forall_{\varphi \in \mathcal{S}\left(\mathcal{H}_{d}\right)}: \quad \mathbb{E}_{y \in \mathcal{Y}} D\left(R_{y}(\varphi), \tau_{d}\right) \leq \varepsilon \tag{10}
\end{equation*}
$$

A symmetric quantum cipher for classical messages which makes use of public randomness $Y \in \mathcal{Y}$ is called " ε-uniform" if it satisfies

$$
\begin{equation*}
\forall_{x \in \mathcal{X}}: \quad \mathbb{E}_{y \in \mathcal{Y}} D\left(\rho_{x}(y), \xi\right) \leq \varepsilon \tag{11}
\end{equation*}
$$

We introduce Definition 3 because the properties (10), (11) appear in the literature (without the conditioning on Y) but receive either no name or a confusing name. We will use Definition 3 in Sec. 6.

Being ε-randomizing (Definition 1) implies being $\frac{\varepsilon}{2}$-uniform (Definition 3 with deterministic y). Similarly, a cipher satisfying Definition 2 also satisfies Definition 3. Note that (11) implies $d\left(X \mid \rho_{X}\right) \leq \varepsilon$.

When the key is chosen completely at random, the QOTP has parameter $\varepsilon=0$ in all the above definitions.

Below we list a number of results on almost-perfect quantum encryption that can be found in the literature. The cipherstate is denoted as $\rho \in \mathcal{S}\left(\mathcal{H}_{2^{n}}\right)$.

	Security property	Key length	
Theorem 2.2 of Ref. 24	$\|\rho-\tau\|_{\infty} \leq \frac{\varepsilon}{2 n}$	$n+\log n+2 \log \frac{1}{\varepsilon}+\log 134$	Haar
Theorem 1 of Ref. 19	$\|\rho-\tau\|_{\infty} \leq \frac{\varepsilon}{2 n}$,	$n+2 \log \frac{1}{\varepsilon}+\log 150$	Haar
	probability >0		
Theorem 4.3 of Ref. 24	$\|\rho-\tau\|_{1} \leq \varepsilon$	$n+\log n+2 \log \frac{1}{\varepsilon}$	Pauli
Theorem 1.2 of Ref. 18	$\|\rho-\tau\|_{1} \leq \varepsilon$	$n+2 \log \frac{1}{\varepsilon}+4$	Pauli

'Haar' indicates that the encryption operators are drawn according to the Haar measure (which is considered to be difficult). 'Pauli' means that Pauli operators are used.

Other security definitions exist, ${ }^{28-30}$ more in line with entropies and cryptographic treatment of indistinguishability. We will use the definitions detailed above because the related literature uses them, and they make it easy to reason about Universal Composability. ${ }^{31-34}$

3. 8-state Encoding

It has been remarked in the literature that applying the QOTP to classical data is not very exciting: Acting with any encryption operator $E_{u w}$ on $|0\rangle$ or $|1\rangle$ yields either $|0\rangle$ or $|1\rangle$, and hence the QOTP does the same as the classical OTP except it needs twice the key material. Furthermore, the quantum encryption yields no protection against copying of the cipherstates. This is the case only when the basis for representing a classical bit is chosen badly.

We propose a basis such that QOTP encryption of a classical bit is nontrivial, resulting in eight different cipherstates which are equally spread out over the Bloch
sphere. Although 8 -state encoding is very simple and has interesting properties, we are not aware that it has ever been used.

3.1. Equally separated cipherstates

We define $\cos \alpha \stackrel{\text { def }}{=} 1 / \sqrt{3}, \alpha \approx 0.96 .{ }^{\text {a }}$ We write $\sqrt{i}=e^{i \pi / 4}$. We encode the classical " 0 " and " 1 " as qubit states ψ_{0}, ψ_{1},

$$
\begin{equation*}
\left|\psi_{0}\right\rangle \stackrel{\text { def }}{=}\binom{\cos \frac{\alpha}{2}}{\sqrt{i} \sin \frac{\alpha}{2}} \quad\left|\psi_{1}\right\rangle \stackrel{\text { def }}{=}\binom{\sin \frac{\alpha}{2}}{-\sqrt{i} \cos \frac{\alpha}{2}} \quad\left\langle\psi_{1} \mid \psi_{0}\right\rangle=0, \tag{12}
\end{equation*}
$$

which on the Bloch sphere corresponds to the vectors $(1,1,1)^{\mathrm{T}} / \sqrt{3}$ and $(-1,-1,-1)^{\mathrm{T}} / \sqrt{3}$, respectively. In spherical coordinates (θ, φ) this corresponds to $(\theta, \varphi)=\left(\alpha, \frac{\pi}{4}\right)$ and $(\theta, \varphi)=\left(\pi-\alpha,-\frac{3}{4} \pi\right)$. Compactly written in terms of the standard basis $|0\rangle,|1\rangle$,

$$
\begin{equation*}
\left|\psi_{g}\right\rangle=(-\sqrt{i})^{g} \cos \frac{\alpha}{2}|g\rangle+(\sqrt{i})^{1-g} \sin \frac{\alpha}{2}|1-g\rangle \quad g \in\{0,1\} . \tag{13}
\end{equation*}
$$

We act on these two states with the four encryption operators $E_{u w}$ and obtain eight different cipherstates,

$$
\begin{equation*}
\left|\psi_{u w g}\right\rangle \stackrel{\text { def }}{=} E_{u w}\left|\psi_{g}\right\rangle=(-1)^{g u}\left[(-\sqrt{i})^{g} \cos \frac{\alpha}{2}|g \oplus w\rangle+(-1)^{u}(\sqrt{i})^{1-g} \sin \frac{\alpha}{2}|\overline{g \oplus w}\rangle\right] . \tag{14}
\end{equation*}
$$

Fig. 1. The eight cipherstates $\left|\psi_{u w g}\right\rangle=E_{u w}\left|\psi_{g}\right\rangle$ shown (left) on the Bloch sphere, forming the corner points $(\pm 1, \pm 1, \pm 1) / \sqrt{3}$ of a cube; and (right) as elliptic polarization states. " R " stands for right-handed, "L" for left-handed.
$\overline{\mathrm{a}_{\sin \alpha}=\sqrt{2 / 3} ; \tan \alpha=\sqrt{2} ; \cos \frac{\alpha}{2}=\sqrt{\frac{1}{2}+\frac{1}{2 \sqrt{3}}} ; \sin \frac{\alpha}{2}=\sqrt{\frac{1}{2}-\frac{1}{2 \sqrt{3}}} ; \tan \frac{\alpha}{2}=\frac{\sqrt{3}-1}{\sqrt{2}} ~ . ~}$

On the Bloch sphere, these correspond to unit-length vectors $\boldsymbol{n}_{\text {uwg }}$ as follows (see Fig. 1),

$$
\boldsymbol{n}_{u w g}=\frac{(-1)^{g}}{\sqrt{3}}\left(\begin{array}{c}
(-1)^{u} \tag{15}\\
(-1)^{u+w} \\
(-1)^{w}
\end{array}\right)
$$

The relation between the Bloch sphere angles θ, φ and the elliptic polarization parameters β (angle from the x-axis to the major axis) and $\tan \zeta$ (ratio minor/major, with $\zeta<0$ left rotating) is given by

$$
\begin{array}{ll}
\cos \theta=\cos 2 \zeta \cos 2 \beta & \sin \varphi=\sin 2 \zeta / \sqrt{1-(\cos 2 \zeta \cos 2 \beta)^{2}} \tag{16}\\
\tan 2 \beta=\cos \varphi \tan \theta & \sin 2 \zeta=\sin \theta \sin \varphi
\end{array}
$$

Our eight cipherstates have $\beta \in\left\{ \pm \frac{\pi}{8}, \pm \frac{3 \pi}{8}\right\}, \zeta= \pm\left(\frac{\pi}{4}-\frac{\alpha}{2}\right) \approx \pm 0.308$. We will often write $b=2 u+w, b \in\{0,1,2,3\}$ as a basis index, with corresponding notation $E_{b},\left|\psi_{b g}\right\rangle, \boldsymbol{n}_{b g}$.

u	w	g	x	y	z	θ	φ	β	ζ	Cipherstate $\left\|\psi_{\text {uug }}\right\rangle$
0	0	0	+	+	+	α	$\pi / 4$	$\pi / 8$	+	$\cos \frac{\alpha}{2}\|0\rangle+\sqrt{i} \sin \frac{\alpha}{2}\|1\rangle$
0	1	0	+	-	-	$\pi-\alpha$	$-\pi / 4$	$3 \pi / 8$	-	$\cos \frac{\alpha}{2}\|1\rangle+\sqrt{i} \sin \frac{\alpha}{2}\|0\rangle$
1	0	0	-	-	+	α	$-3 \pi / 4$	$-\pi / 8$	-	$\cos \frac{\alpha}{2}\|0\rangle-\sqrt{i} \sin \frac{\alpha}{2}\|1\rangle$
1	1	0	-	+	-	$\pi-\alpha$	$3 \pi / 4$	$-3 \pi / 8$	+	$\cos \frac{\alpha}{2}\|1\rangle-\sqrt{i} \sin \frac{\alpha}{2}\|0\rangle$
0	0	1	-	-	-	$\pi-\alpha$	$-3 \pi / 4$	$-3 \pi / 8$	-	$\sin \frac{\alpha}{2}\|0\rangle-\sqrt{i} \cos \frac{\alpha}{2}\|1\rangle$
0	1	1	-	+	+	α	$3 \pi / 4$	$-\pi / 8$	+	$\sin \frac{\alpha}{2}\|1\rangle-\sqrt{i} \cos \frac{\alpha}{2}\|0\rangle$
1	0	1	+	+	-	$\pi-\alpha$	$\pi / 4$	$3 \pi / 8$	+	$\sin \frac{\alpha}{2}\|0\rangle+\sqrt{i} \cos \frac{\alpha}{2}\|1\rangle$
1	1	1	+	-	+	α	$-\pi / 4$	$\pi / 8$	-	$\sin \frac{\alpha}{2}\|1\rangle+\sqrt{i} \cos \frac{\alpha}{2}\|0\rangle$

3.2. Some properties of 8 -state encoding

It holds that $\left\langle\psi_{b 0} \mid \psi_{b 1}\right\rangle=0$, i.e. opposite bit values encrypted with the same key lead to orthogonal cipherstates. This trivially follows from the unitarity of the encryption operators, $\left\langle\psi_{b 0} \mid \psi_{b 1}\right\rangle=\left\langle\psi_{0}\right| E_{b}^{\dagger} E_{b}\left|\psi_{1}\right\rangle=\left\langle\psi_{0} \mid \psi_{1}\right\rangle=0$.

More generally, we can readily compute the inner products between all the various cipherstates from the general rule $\left|\left\langle\psi_{b^{\prime} g^{\prime}} \mid \psi_{b g}\right\rangle\right|^{2}=\frac{1}{2}+\frac{1}{2} \boldsymbol{n}_{b^{\prime} g^{\prime}} \cdot \boldsymbol{n}_{b g}$,

$$
\begin{equation*}
\left|\left\langle\psi_{b^{\prime} g^{\prime}} \mid \psi_{b g}\right\rangle\right|^{2}=\delta_{b b^{\prime}} \cdot \delta_{g g^{\prime}}+\left(1-\delta_{b b^{\prime}}\right)\left[\delta_{g g^{\prime}} \frac{1}{3}+\left(1-\delta_{g g^{\prime}}\right) \frac{2}{3}\right] . \tag{17}
\end{equation*}
$$

In words: When g gets encrypted with two different keys, the two cipherstates have (squared) inner product $1 / 3$; any encryption of g and $g^{\prime}\left(g^{\prime} \neq g\right)$ with unequal keys yields cipherstates that have (squared) inner product $2 / 3$. The squared inner
product determines the probability that one cipherstate gets projected onto another when a projective measurement is performed. Equation (17) tells us that the nontrivial encryptions of $\left|\psi_{1-g}\right\rangle$ look more like $\left|\psi_{g}\right\rangle$ than the nontrivial encryptions of $\left|\psi_{g}\right\rangle$ itself.

The phases of the inner products $\left\langle\psi_{u^{\prime} w^{\prime} g^{\prime}} \mid \psi_{u w g}\right\rangle$ are given by

$$
\begin{align*}
\frac{\left\langle\psi_{u^{\prime} w^{\prime} g^{\prime}} \mid \psi_{u w g}\right\rangle}{i^{\left(u^{\prime}-u\right)\left(w^{\prime}+w\right)}(-1)^{\delta_{3, u^{\prime}+u+w^{\prime}+w}}}= & \delta_{g g^{\prime}} \delta_{u u^{\prime}} \delta_{w w^{\prime}}+\delta_{g g^{\prime}}\left(1-\delta_{u u^{\prime}} \delta_{w w^{\prime}}\right) \frac{(-1)^{g}}{\sqrt{3}}+\delta_{\bar{g} g^{\prime}} \sqrt{\frac{2}{3}} \\
& \times\left\{\delta_{w w^{\prime}} \delta_{\bar{u} u^{\prime}}-\delta_{\bar{w} w^{\prime}} \exp \left[\left(g-g^{\prime}\right)(-1)^{u+u^{\prime}} i \frac{\pi}{3}\right]\right\} \tag{18}
\end{align*}
$$

Table 1 gives a comparison of 4-, 6-, and 8-state encoding regarding the entropy of the classical variables G and B given that an attacker Eve holds the qubit ("E"). Table 2 contains the same information but lists entropy losses.

The states in 4 -state encoding are the eigenstates of σ_{z} and σ_{x}. In 6 -state encoding, one uses the eigenstates of σ_{z}, σ_{x} and σ_{y}. Let the random variable M denote the outcome of a measurement (possibly POVM) on the qubit E. In the 4-state case, the measurement that minimizes $\mathrm{H}(G \mid M)$ and $\mathrm{H}_{\text {min }}(G \mid M)$ is the projective measurement $\sigma_{x}+\sigma_{z}$; the $\mathrm{H}(B \mid G M)$ and $\mathrm{H}_{\text {min }}(B \mid G M)$ are minimized by measuring $\sigma_{x}-\sigma_{z}$.

In the 6 -state case, $\mathrm{H}(G \mid M)$ and $\mathrm{H}_{\min }(G \mid M)$ are minimized by measuring $\sigma_{x}+\sigma_{y}+\sigma_{z} ;$ the $\mathrm{H}(B \mid G M)$ by the POVM $\left\{M_{b}^{(g)}\right\}_{b=1}^{3}, M_{b}=\frac{1}{3} \mathbb{1}+\frac{1}{3}(-1)^{g} \boldsymbol{n}_{b} \cdot \boldsymbol{\sigma}$, $\boldsymbol{n}_{1}=(-2,1,1)^{\mathrm{T}} / \sqrt{6}, \boldsymbol{n}_{2}=(1,-2,1)^{\mathrm{T}} / \sqrt{6}, \boldsymbol{n}_{3}=(1,1,-2)^{\mathrm{T}} / \sqrt{6}$, which results in $H\left(\frac{1-2 / \sqrt{6}}{3}, \frac{1+1 / \sqrt{6}}{3}, \frac{1+1 / \sqrt{6}}{3}\right) \approx 1.271$; the $\mathrm{H}_{\text {min }}(B \mid G M)$ is minimized by the POVM "opposite" to the one above, i.e. with $\boldsymbol{n}_{b} \rightarrow-\boldsymbol{n}_{b}$.

In the 8 -state case, the $\mathrm{H}(B \mid G M)$ is minimized by the POVM $M_{b}^{(g)}=\frac{1}{2}\left|\psi_{b \bar{g}}\right\rangle\left\langle\psi_{b \bar{g}}\right|$ and the $\mathrm{H}_{\min }(B \mid G M)$ by the "opposite" POVM $M_{b}^{(g)}=\frac{1}{2}\left|\psi_{b g}\right\rangle\left\langle\psi_{b g}\right|$.

Table 1. Conditional Shannon entropies and min-entropies.

	4-state	6 -state	8-state	
H	$B \mid E$	1	$\log 3 \approx 1.585$	2
	$G \mid E$	$h\left(\cos ^{2} \frac{\pi}{8}\right) \approx 0.601$	$h\left(\cos ^{2} \frac{\alpha}{2}\right) \approx 0.744$	1
	$B \mid G E$	$h\left(\cos ^{2} \frac{\pi}{8}\right) \approx 0.601$	$\approx 1.271^{*}$	$\log 3$
$G \mid B E$	0	0	0	
$B G \mid E$	$\frac{3}{2}$	$\log 3+\frac{2}{3} \approx 2.252$	$\frac{3}{2}+\frac{3}{4} \log 3 \approx 2.689$	
		1	$\log 3$	2
$\mathrm{H}_{\min }$	$B \mid E$	$G \mid E$	$-\log \cos ^{2} \frac{\pi}{8} \approx 0.228$	$-\log \cos ^{2} \frac{\alpha}{2} \approx 0.342$
	$B \mid G E$	$-\log \cos ^{2} \frac{\pi}{8} \approx 0.228$	$-\log \left(\frac{1}{3}+\frac{2}{3 \sqrt{6}}\right) \approx 0.724$	1
	$G \mid B E$	0	0	1
	$B G \mid E$	1	$\log 3$	0
			2	

Note: ${ }^{*} H\left(\frac{1-2 / \sqrt{6}}{3}, \frac{1+1 / \sqrt{6}}{3}, \frac{1+1 / \sqrt{6}}{3}\right)$.

Table 2. Entropy losses.

	4-state	6-state	8-state
$\mathrm{H}(G)-\mathrm{H}(G \mid E)$	0.399	0.256	0
$\mathrm{H}(B)-\mathrm{H}(B \mid G E)$	0.399	0.314	0.415
$\mathrm{H}(B G)-\mathrm{H}(B G \mid E)$	$\frac{1}{2}$	$\frac{1}{3}$	0.311
$\mathrm{H}_{\min }(G)-\mathrm{H}_{\min }(G \mid E)$	0.772	0.658	0
$\mathrm{H}_{\min }(B)-\mathrm{H}_{\min }(B \mid G E)$	0.772	0.861	1

In all encodings $(4,6,8)$ the $\mathrm{H}(B G \mid M)$ and $\mathrm{H}_{\text {min }}(B G \mid M)$ are minimized by the POVM $\left\{M_{b g}\right\}_{b g}$ with $M_{b g}=\frac{1}{\# b a s e s}\left|\varphi_{b g}\right\rangle\left\langle\varphi_{b g}\right|$, where $\left|\varphi_{b g}\right\rangle$ denotes the encoding of bit value g in basis b. In all encodings we find that $\mathrm{H}_{\min }(G \mid B E)=0 ; \mathrm{H}_{\min }(B \mid E)=$ $\mathrm{H}_{\text {min }}(B) ; \mathrm{H}_{\text {min }}(B G \mid E)=\mathrm{H}_{\text {min }}(B)$.

Another important property is the intercept-resend disturbance probability. Let Alice send $\left|\varphi_{b g}\right\rangle$ for random b, g. Eve does a projective measurement in any basis and forwards the outcome $|\chi\rangle$ to Bob. Bob measures $|\chi\rangle$ in basis b. Averaged over b and g, Bob's probability of getting the wrong outcome (\bar{g}) is $1 / 4$ in the case of 4 -state encoding and $1 / 3$ for 6 -state and 8 -state.

In Sec. 4, we will be interested in (i) hiding G and (ii) hiding B when the plaintext G is known. In Table 2, we see that 8 -state encoding does a better job of ensuring these two things simultaneously than 4 -state and 6 -state.

4. Key Recycling

When Alice and Bob have a (one-way) quantum channel at their disposal and an authenticated two-way classical channel, they can achieve unconditionally secure communication by using QKD and then applying a classical One Time Pad (OTP). This has been well known since the first work on quantum cryptography.

A less known advantage of quantum channels is the possibility of re-using key material ${ }^{35}$ when Alice and Bob detect no eavesdropping: the fact that Bob receives an "intact" message means that Eve has learned at most a negligible amount of information about the key(s). It is possible to construct Key Recycling schemes that have the same unconditional security as QKD+OTP but better efficiency, i.e. less data has to be communicated.

4.1. Requirements for Key Recycling; state of the art

Consider an ℓ-bit message encoded in n qubits (with $n>\ell$), using a key k. A Quantum Key Recycling (QKR) scheme typically needs to refresh n bits of key material if Bob detects tampering ("reject"), and a much smaller amount $t, t \ll n$, possibly $t=0$, if Bob does not detect tampering ("accept"). Loosely speaking, a QKR scheme has to satisfy the following requirements.

R1. If Eve steals the entire cipherstate, the message must remain secret.
R2. If Eve knows the entire plaintext and Bob accepts, Eve does not learn more than $t+\varepsilon$ bits of information about the key, where ε is negligible.

If Bob accepts, the key update mechanism computes a new key k^{\prime} from the old key k and t bits of fresh key material unknown to Eve. This makes sure that Eve has negligible knowledge about the new key k^{\prime}. If Bob rejects, the worst case assumption is that Eve has stolen the entire cipherstate and already knew the plaintext. Eve then could in principle learn up to n key bits. Hence, Alice and Bob have to introduce n fresh key bits in the next encryption.

Damgård et al. ${ }^{20,21}$ introduced a QKR scheme with $t=0$, for a noiseless quantum channel. A classical authentication tag is first attached to the message; this is then classically on-time-padded; finally quantum encryption is performed by selecting a basis from a set of 2^{n} Mutually Unbiased Bases (MUBs). The scheme is elegant but has the drawback that it needs a quantum computer with circuit depth ${ }^{22} \mathcal{O}\left(n^{2}\right)$ for the encryption and decryption.

Fehr and Salvail ${ }^{23}$ recently proposed a QKR scheme that works with individual BB84 qubits, without needing a quantum computer. It has $t=0$. However, it tolerates very little noise.

4.2. Proposed QKR scheme \#1

We first propose a QKR scheme which is essentially a copy of Ref. 23 but using QOTP encryption. ${ }^{\text {b }}$ The message is $\mu \in\{0,1\}^{\ell}$. The scheme makes use of an extractor Ext : $\{0,1\}^{n} \rightarrow\{0,1\}^{\ell}$ and a keyed hash function (MAC) M that produces an authentication tag of length λ. The security parameter is λ. The hash function must have the special property of being message-independent, i.e. the distribution of $M(K, \mu)$ does not depend on the message μ. Furthermore, the hash function must have key privacy, i.e. an attacker with limited information about μ learns almost nothing about the key. (These notions are explained in Ref. 23, and it turns out that implementation is straightforward.)

The scheme needs a second keyed hash SS which too is message-independent and key-private; it is used as a Secure Sketch. A Secure Sketch is a secure form of error correction. Given a sketch $\operatorname{SS}(k, x)$ of a message x, and a noisy version x^{\prime}, it is possible to recover x. Secure Sketches with message independence and key privacy were discussed in Ref. 36. Though constructions exist, they do not tolerate much noise.

The key material consists of three parts: K_{MAC} for MAC-ing; K_{SS} for the secure sketch; and $b \in\{0,1,2,3\}^{n}$ being QOTP bases.

Encryption. Generate random $x \in\{0,1\}^{n}$. Compute $s=\mathrm{SS}\left(K_{\mathrm{SS}}, x\right)$ and $z=\operatorname{Ext} x$. Compute the ciphertext $c=\mu \oplus z$ and authentication tag $T=M\left(K_{\mathrm{MAC}}, x\|c\| s\right)$. Prepare the quantum state $|\Psi\rangle=\bigotimes_{i=1}^{n}\left|\psi_{b_{i} x_{i}}\right\rangle$. Send $|\Psi\rangle, s, c, T$.

[^1]Decryption. (The recipient gets $\left|\Psi^{\prime}\right\rangle, s^{\prime}, c^{\prime}, T^{\prime}$.)
Measure $\left|\Psi^{\prime}\right\rangle$ in the b-basis. This yields $x^{\prime} \in\{0,1\}^{n}$. From $x^{\prime}, s, K_{\mathrm{SS}}$ recover \hat{x}, an estimator for x. Compute $\hat{z}=\operatorname{Ext} \hat{x}$ and $\hat{\mu}=c^{\prime} \oplus \hat{z}$. Accept the message $\hat{\mu}$ if the x-recovery succeeded and $T^{\prime}=M\left(K_{\mathrm{MAC}}, \hat{x}\left\|c^{\prime}\right\| s^{\prime}\right)$.

Key update. In case of Accept, re-use the entire key. In case of Reject, compute the updated key b^{\prime} as a function of b and n fresh secret bits.

4.3. Analysis of $Q K R$ scheme \#1

The modification with respect to the scheme of Fehr and Salvail is small but has a significant effect. In the original scheme, ${ }^{23}$ the 4 -state encoding causes leakage about x; this necessitates a large amount of compression ${ }^{\text {c }}$ by Ext in order to keep μ secure (Requirement R1). In the case of 8 -state encoding much less compression is needed. Compression is needed primarily because of the channel noise. It is prudent to assume that all noise is caused by Eve. Eve may steal whole qubits from $|\Psi\rangle$ or extract information into ancillas. This gives her $n f(\beta)+a$ bits of information about x, where $f(\beta)$ is an increasing function ${ }^{\mathrm{d}}$ of the bit error rate β, with $f(0)=0, f\left(\frac{1}{2}\right)=1$, and a is a constant independent of n. Eve's uncertainty about x given z is $n-\ell$ bits; this has to cover the $n f(\beta)+a$. Hence, we have to set $\ell \leq n[1-f(\beta)]-a$. Note that asymptotically $(n \rightarrow \infty)$ the constant a becomes negligible. In the case $\beta \ll 1$, we see that asymptotically the number of qubits n needed to send the ℓ-bit message is just slightly larger than ℓ.

4.4. Proposed QKR scheme \#2

Scheme \#1 has very limited noise tolerance due to the fact that it needs a special Secure Sketch with message independence and key privacy. We will now loosen this restriction and work with an ordinary Secure Sketch S, for instance a syndrome of an error-correcting code. The price to pay is that the sketch $S(x)$, if sent in plaintext, leaks about x. If the sketch is sent encrypted with key $K_{\text {SS }}$ and Eve knows μ, then the sketch leaks information about K_{SS}. We choose the second option and accept that K_{SS} has to be updated even if Bob accepts. We set the length of K_{SS} equal to the length of $S(x)$, which asymptotically approaches $n h(\beta)$.
Encryption. Generate random $x \in\{0,1\}^{n}$. Compute $s=K_{\mathrm{SS}} \oplus S(x)$ and $z=\operatorname{Ext} x$. Compute the ciphertext $c=\mu \oplus z$ and authentication $\operatorname{tag} T=M\left(K_{\mathrm{MAC}}, x\|c\| s\right)$. Prepare the quantum state $|\Psi\rangle=\bigotimes_{i=1}^{n}\left|\psi_{b_{i} x_{i}}\right\rangle$. Send $|\Psi\rangle, s, c, T$.
Decryption. (The recipient gets $\left|\Psi^{\prime}\right\rangle, s^{\prime}, c^{\prime}, T^{\prime}$.)
Measure $\left|\Psi^{\prime}\right\rangle$ in the b-basis. This yields $x^{\prime} \in\{0,1\}^{n}$. Recover \hat{x} from x^{\prime} and $K_{\mathrm{SS}} \oplus s^{\prime}$. Compute $\hat{z}=\operatorname{Ext} \hat{x}$ and $\hat{\mu}=c^{\prime} \oplus \hat{z}$. Accept the message $\hat{\mu}$ if the syndrome decoding succeeded and $T^{\prime}=M\left(K_{\mathrm{MAC}}, \hat{x}\left\|c^{\prime}\right\| s^{\prime}\right)$.

[^2]Key update. If Bob accepts, replace K_{SS}. If Bob rejects, replace K_{SS} and compute the updated key b^{\prime} as a function of b and n fresh secret bits.

4.5. Analysis of QKR scheme \#2

The security of scheme $\# 2$ is the same as for $\# 1$. The one-time-padded sketch reveals no information about x; this is the same situation as with the special function SS. We now have a primitive with the following asymptotics:

- It securely sends an ℓ-bit classical message while using up only $n h(\beta)=\ell \frac{h(\beta)}{1-f(\beta)}$ bits of key material.
- It works as long as $f(\beta)<1$.
- It uses up less key material than a classical OTP as long as $\frac{h(\beta)}{1-f(\beta)}<1$, i.e. $1-f(\beta)-h(\beta)>0$.

The condition $1-f(\beta)-h(\beta)>0$ is similar to the noise condition under which qubit-based QKD is possible. Whenever qubit-based QKD is possible, scheme \#2 works and is a better alternative than repeated use of QKD and classical OTP. For instance, BB84+OTP needs transmission of $2 n$ qubits over the quantum channel and more than $n+\ell$ bits over the classical channel (discussion about n basis choices, and the ℓ-bit ciphertext). On the other hand, if Bob accepts many times, then scheme \#2 essentially transmits only n qubits and $\ell+n h(\beta)+\lambda$ classical bits.

4.6. Proposed QKR scheme \#3

We apply the above discussed primitive to itself: Instead of sending the OTP'ed sketch $s=K_{\mathrm{SS}} \oplus S(x)$ as an ordinary classical message, we send s as a payload using scheme \#2.

We denote quantities in the original primitive with label " 0 " and in the additional part with " 1 ". We have $\mu_{1}=s_{0}$. The additional keys and classical/quantum transmissions required for this action (asymptotically) are listed below.

- A basis key $b_{1} \in\{0,1,2,3\}^{n_{1}}$. A key $K_{\mathrm{SS}}^{(1)} \in\{0,1\}^{n_{1} h(\beta)}$.
- Transmission of a quantum state $\left|\Psi_{1}\right\rangle \in \mathcal{H}_{2^{n_{1}}}$, with $n_{1}(1-f(\beta))=\ell_{1}$. This $\left|\Psi_{1}\right\rangle$ is an encryption of x_{1} using bases b_{1}.
- Transmission of a classical ciphertext $c_{1}=\mu_{1} \oplus \operatorname{Ext}\left(x_{1}\right)$ of length $\ell_{1}=$ $\left|s_{0}\right|=n_{0} h(\beta)$.
- Transmission of a classical ciphertext $s_{1}=K_{\mathrm{SS}}^{(1)} \oplus S\left(x_{1}\right)$.
- Transmission of a tag $T_{\text {tot }}=M\left(K_{\mathrm{MAC}}, x_{0}\left\|c_{0}\right\| s_{0}\left\|x_{1}\right\| c_{1} \| s_{1}\right)$ instead of the original T.

If Bob accepts, only $K_{\mathrm{SS}}^{(1)}$ needs to be refreshed. This key has length $\left|K_{\mathrm{SS}}^{(1)}\right|=n_{1} h(\beta)=\ell_{1} \frac{h(\beta)}{1-f(\beta)}=\ell_{0}\left[\frac{h(\beta)}{1-f(\beta)}\right]^{2}$, which is shorter than the original key $K_{\mathrm{SS}}^{(0)}$ by a factor $\frac{h(\beta)}{1-f(\beta)}$.

Repetition. The insertion trick can be applied repeatedly. r "recursive" applications of scheme $\# 2$ result in a scheme that (asymptotically for $\ell_{0} \rightarrow \infty$) needs to refresh only $\ell_{0}\left[\frac{h(\beta)}{1-f(\beta)}\right]^{r}$ bits of key when Bob accepts. The total length of the keys and transmissions increases, but stays manageable.

- The number of qubits transmitted is $n_{\text {tot }} \stackrel{\text { def }}{=} n_{0}+n_{1}+\cdots+n_{r}<\frac{\ell_{0}}{1-f(\beta)-h(\beta)}$. Note that in the last expression the factor $1-f(\beta)-h(\beta)$ is similar to the efficiency factor in QKD due to the error correction and privacy amplification. Hence, $n_{\text {tot }}$ is not much different from the number of qubits needed to transmit a QKD secret of length ℓ_{0}.
- The number of transmitted classical bits is $n_{\text {tot }}(1-f(\beta))$, plus the size of the r 'th sketch, namely $n_{r} h(\beta)=\ell_{0}\left[\frac{h(\beta)}{1-f(\beta)}\right]^{r+1}$, plus the size of the tag (λ).

5. Other uses of 8-state Encoding

5.1. Unclonable encryption

The concept of UE was introduced by Gottesman. ${ }^{13}$ Alice sends a quantumencrypted classical message to Bob. If Bob accepts then the message remains confidential even if Eve learns the full encryption key afterward. UE can be useful for primitives like revocable time-release encryption, ${ }^{37}$ for communication-efficient QKD, and in attacker models where the storage of keys suffers particular vulnerabilities.

Gottesman identified the chain of implications: quantum authentication $\Rightarrow \mathrm{UE} \Rightarrow$ QKD. He constructed an UE scheme using BB84 states. Replacing those BB84 states by 8 -state encoding will improve the performance. However, we do not expect that the improvement will go far beyond what would be achieved with 6 -state encoding. The security analysis of UE is almost exactly the same as for QKD (which also has the basis key revealed after the quantum transmission). For qubit-based QKD, it is known ${ }^{38}$ that 6 -state encoding is essentially optimal; going to more bases does not improve noise tolerance.

An interesting option is to use 8 -state encoding with a pseudorandom key, achieving almost-perfect security while using slightly more than one bit of key material per qubit (see Secs. 6 and 7). This would result in a UE scheme using shorter keys than in the case of 6 -state encoding.

5.2. The three-pass "key-less" protocol

If a bidirectional authenticated channel is available, and a commuting encryption scheme, then a peculiar protocol becomes possible ${ }^{39,40}$ which does not require Alice and Bob to share an encryption key.

Let E_{K} denote the operation "encrypt with key K ". For a commuting encryption scheme, it holds that $E_{K} E_{Q} x=E_{Q} E_{K} x$ for all x. The three-pass protocol, also known as key-less protocol, works as follows.
(1) Alice has a plaintext message x. She chooses a random key A. She computes $c_{1}=E_{A} x$ and sends c_{1}.
(2) Bob chooses a random key B. He computes $c_{2}=E_{B} c_{1}$ and sends c_{2}.
(3) Alice computes $c_{3}=E_{A}^{-1} c_{2}$ and sends c_{3}. Bob computes $x=E_{B}^{-1} c_{3}$.

The protocol is called key-less because the keys A and B never have to be known at the other side.

It has been noted ${ }^{40}$ that QOTP encryption of general quantum states, which is (anti)commuting, is perfectly suited for this protocol. We observe that the special case of QOTP, 8 -state encoding of classical data, allows us to apply the three-pass protocol to classical data.

It remains to be seen how useful the three-pass protocol is compared to QKD+OTP or QKD+QKR. An obvious drawback is the amount of communication. Sending an n-bit message requires communicating n qubits three times, versus n qubits plus n bits for QKD+OTP, versus n qubits for QKD+QKR under optimal conditions (indefinite re-use of keys). These numbers are approximate and do not take into account the error-correction overhead. The three-pass protocol might become an interesting alternative in the case of very noisy quantum channels, where qubit-based QKD and QKR do not work and the error-correction overheads for QKD ${ }^{41}$ are large due to the increased dimension of the employed Hilbert space.

6. QOTP with a Pseudorandom Key; General States

The main results of this section are sufficient key lengths, specified in Theorems 2 (ε-uniformity), 3 (almost-certain ε-randomization) and 5 (ε-randomization).

6.1. Modeling the pseudorandom key

We model a pseudorandom key for QOTP of an n-qubit system as follows. The length of the seed is q bits. We introduce the notation $Q=2^{q}$. (The seed is the actual key that is used.) We define a uniformly random table B of size $Q \times n$, with $B_{j i} \in\{0,1,2,3\}$. All entries are independent RVs. The entry $b_{j i}$ is the encryption key for qubit i given the j th possible value of the seed. The table B is known to the adversary, but not j.

For given table $B=b$ and row index j, the encryption operator is given by

$$
\begin{equation*}
F_{b j}=\bigotimes_{i=1}^{n} E_{b_{j i}} . \tag{19}
\end{equation*}
$$

The encryption of a state ρ, as seen by the adversary, is

$$
\begin{equation*}
\rho^{\prime}(b) \stackrel{\text { def }}{=} \frac{1}{Q} \sum_{j=1}^{Q} F_{b j} \rho F_{b j}^{\dagger} . \tag{20}
\end{equation*}
$$

6.2. Results on ε-uniformity

Lemma 1. Let $d=2^{n}$. For any state $\rho \in \mathcal{S}\left(\mathcal{H}_{d}\right)$ it holds that

$$
\begin{equation*}
\mathbb{E}_{b} \operatorname{tr}\left[\rho^{\prime}(b)\right]^{2}=\frac{1}{Q}\left(\operatorname{tr} \rho^{2}-\frac{1}{d}\right)+\frac{1}{d} ; \quad \mathbb{E}_{b} \operatorname{tr}\left[\rho^{\prime}(b)-\tau\right]^{2}=\frac{1}{Q}\left(\operatorname{tr} \rho^{2}-\frac{1}{d}\right) . \tag{21}
\end{equation*}
$$

Proof. We write $\mathbb{E}_{b} \operatorname{tr}\left[\rho^{\prime}(b)\right]^{2}=\frac{1}{Q^{2}} \sum_{j, k=1}^{Q} \operatorname{tr} \mathbb{E}_{b} F_{b j} \rho F_{b j}^{\dagger} F_{b k} \rho F_{b k}^{\dagger}$. There are Q terms with $j=k$; here the F^{\dagger} and F cancel each other and the summand reduces to $\operatorname{tr} \rho^{2}$. In the other $Q^{2}-Q$ terms of the summation, we have $j \neq k$ and the summand factorizes to

$$
\operatorname{tr}\left[\mathbb{E}_{b_{j}} F_{b j} \rho F_{b j}^{\dagger}\right]\left[\mathbb{E}_{b_{k}} F_{b k} \rho F_{b k}^{\dagger}\right] .
$$

(Here b_{j} stands for the j th row of b). The rows are mutually independent; hence the $\mathbb{E}_{b_{j}}$ does not act on the expression containing k. Now we use $\mathbb{E}_{b_{j}} F_{b j} \rho F_{b j}^{\dagger}=\tau$ due to the general QOTP property (3), yielding $\operatorname{tr} \tau^{2}=\frac{1}{d}$. Adding the contributions gives $\frac{1}{Q^{2}}\left[Q \operatorname{tr} \rho^{2}+\left(Q^{2}-Q\right) \frac{1}{d}\right]$, which is the first part of (21). Next, we write $\operatorname{tr}\left(\rho^{\prime}-\tau\right)^{2}=\operatorname{tr}\left(\rho^{\prime}\right)^{2}+\operatorname{tr} \tau^{2}-2 \operatorname{tr} \tau \rho^{\prime}=\operatorname{tr}\left(\rho^{\prime}\right)^{2}-\frac{1}{d}$, where we have used $\tau=\frac{1}{d} \mathbb{1}$ and $\operatorname{tr} \rho^{\prime}=1$. The second part of (21) follows.

Theorem 1. Let $d=2^{n}$. For any state $\rho \in \mathcal{S}\left(\mathcal{H}_{d}\right)$ it holds that

$$
\begin{equation*}
\mathbb{E}_{b}\left|\rho^{\prime}(b)-\tau\right|_{1} \leq \sqrt{\frac{2^{n}}{Q}\left(\operatorname{tr} \rho^{2}-2^{-n}\right)} \tag{22}
\end{equation*}
$$

Proof. We denote the eigenvalues of $\rho^{\prime}(b)-\tau$ as $\left(\lambda_{a}\right)_{a=1}^{d}$. We have $\mathbb{E}_{b}\left|\rho^{\prime}(b)-\tau\right|_{1}=$ $\mathbb{E}_{b} \sum_{a}\left|\lambda_{a}\right|=d \cdot \mathbb{E}_{b} \frac{1}{d} \sum_{a} \sqrt{\lambda_{a}^{2}}$. Using Jensen's inequality, we get $\mathbb{E}_{b}\left|\rho^{\prime}(b)-\tau\right|_{1} \leq d \times$ $\sqrt{\mathbb{E}_{b} \frac{1}{d} \sum_{a} \lambda_{a}^{2}}=\sqrt{d \mathbb{E}_{b} \operatorname{tr}\left[\rho^{\prime}(b)-\tau\right]^{2}}$. Finally, we use Lemma 1.

Theorem 2. The QOTP operated with a pseudorandom key of length

$$
\begin{equation*}
q \geq n-2+2 \log \frac{1}{\varepsilon} \tag{23}
\end{equation*}
$$

is ε-uniform (see Definition 3).

Proof. Follows directly from Theorem 1, using $\operatorname{tr} \rho^{2} \leq 1$ and $q=\log Q$. The table B plays the role of the public randomness Y in Definition 3.

Our key length is a slight improvement on the literature. ${ }^{\text {e }}$

6.3. Results on ε-randomization

Lemma 2 (Matrix version of Bennett inequality ${ }^{42}$). Let $\left(X_{j}\right)_{j=1}^{Q}$ be a sequence of independent Hermitian random matrices with dimension d satisfying $\mathbb{E} X_{j}=0$ and $\lambda_{\max }\left(X_{j}\right) \leq R$ for all j. Let $\sigma^{2} \stackrel{\text { def }}{=} \lambda_{\max }\left(\sum_{j} \mathbb{E} X_{j}^{2}\right)$. Let $A(u) \stackrel{\text { def }}{=}(1+u) \ln (1+u)-u$. Then

$$
\begin{equation*}
\operatorname{Pr}\left[\lambda_{\max }\left(\sum_{j} X_{j}\right) \geq t\right] \leq d \cdot \exp \left[-\frac{\sigma^{2}}{R^{2}} A\left(\frac{R t}{\sigma^{2}}\right)\right] . \tag{24}
\end{equation*}
$$

Theorem 3. Let $|\psi\rangle \in \mathcal{H}_{2^{n}}$ be an arbitrary pure state, and let $\rho^{\prime}(b)$ be the QOTPencryption of $|\psi\rangle\langle\psi|$ using a pseudorandom key. Let $\varepsilon \in\left(2^{-n}, 1\right)$. For key length

$$
\begin{equation*}
q \geq n+\log n+2 \log \frac{1}{\varepsilon}+1+\frac{1}{n} \log \frac{1}{\delta}+\log \frac{\ln 2}{1-\varepsilon} \tag{25}
\end{equation*}
$$

the scheme is ε-randomizing (Definition 1) except with some small probability less than 28. Here, the probability is with respect to the random table B.

Proof. We write $d=2^{n}$. We define the projection operator $P_{j} \stackrel{\text { def }}{=} F_{b j}|\psi\rangle\langle\psi| F_{b j}^{\dagger}$. We want to reduce the probability mass in both tails to δ. We first study the right tail. We write $\rho^{\prime}=\sum_{j} X_{j}$ with $X_{j} \stackrel{\text { def }}{=} \frac{1}{Q}\left(P_{j}-\tau\right)$. We have $\mathbb{E}_{b} X_{j}=0, R=\lambda_{\max }\left(X_{j}\right)=\frac{1}{Q} \times$ $\left(1-\frac{1}{d}\right)$ and $\sigma^{2}=\lambda_{\max }\left(\sum_{j} \mathbb{E}_{b} X_{j}^{2}\right)=\frac{1}{Q d}\left(1-\frac{1}{d}\right)$. Substitution of X_{j}, R, σ^{2} into the Bennett inequality, with $t=\varepsilon / d$, gives $\operatorname{Pr}\left[\lambda_{\max }\left(\rho^{\prime}-\tau\right) \geq \varepsilon / d\right] \leq d \exp \left[-\frac{Q}{d-1} A(\varepsilon)\right]$ $<d \exp \left[-\frac{Q}{d} A(\varepsilon)\right]$. The latter expression is smaller than δ if $Q \geq \frac{d}{A(\varepsilon)} \ln \frac{d}{\delta}$. We use $A(\varepsilon) \geq \frac{\varepsilon^{2}}{2}(1-\varepsilon)$. With small loss of tightness, we make the condition on Q more strict: $Q>\frac{2 d}{\varepsilon^{2}(1-\varepsilon)} \ln \frac{d}{\delta}$.

Next, we study the left tail. We have $\lambda_{\min }\left(\rho^{\prime}-\tau\right)=\lambda_{\max }\left(\tau-\rho^{\prime}\right)$. We write $\tau-\rho^{\prime}=\sum_{j} X_{j}^{\prime}$ with $X_{j}^{\prime} \stackrel{\text { def }}{=} \frac{1}{Q}\left(\tau-P_{j}\right)$. We have $\mathbb{E}_{b} X_{j}^{\prime}=0, \quad R^{\prime}=\lambda_{\max }\left(X_{j}^{\prime}\right)=\frac{1}{Q d}$ and $\sigma^{2}=\frac{1}{Q d}\left(1-\frac{1}{d}\right)$. Substitution of $X_{j}^{\prime}, R^{\prime}$ and σ^{2} into Bennett's inequality, with $t=\varepsilon / d$, gives $\operatorname{Pr}\left[\lambda_{\min }\left(\rho^{\prime}-\tau\right) \leq-\frac{\varepsilon}{d}\right] \leq d \exp \left[-Q(d-1) A\left(\frac{\varepsilon}{d-1}\right)\right]<d \exp [-Q(d-1) \times$ $\left.A\left(\frac{\varepsilon}{d}\right)\right]$. The latter expression is smaller than δ if $Q \geq \frac{1}{(d-1) A(\varepsilon / d)} \ln \frac{d}{\delta}$. We use

[^3]$A(\varepsilon / d) \geq \frac{1}{2}\left(\frac{\varepsilon}{d}\right)^{2}\left(1-\frac{\varepsilon}{d}\right)$. With small loss of tightness, we make the condition on Q more strict:
$$
Q>\frac{2 d}{\varepsilon^{2}\left(1-\frac{1}{d}\right)\left(1-\frac{\varepsilon}{d}\right)} \ln \frac{d}{\delta}
$$

As $\varepsilon>1 / d$, the condition on the right tail is slightly more difficult to satisfy. It is readily seen that $Q=2^{q}$ with q as specified in (25) satisfies the condition $Q>\frac{2 d}{\varepsilon^{2}(1-\varepsilon)} \ln \frac{d}{\delta}$.

Theorem 3 is a probabilistic statement about the ε-randomizing property. We can get rid of the nonzero probability δ by employing another proof technique, based on high moments of ρ^{\prime}. Below we show how to bound the expectation (over random B) of the maximum eigenvalue of $\rho^{\prime}-\tau$. This approach does not provide a full proof about $\left|\rho^{\prime}-\tau\right|_{\infty}$, since nothing is proven about the left tail. However, in the approach with the Bennett inequality, we have seen that the left tail is slightly "better behaved" than the right tail. This gives us confidence that the result below (Theorem 5) is "almost" a proper proof for $\left|\rho^{\prime}-\tau\right|_{\infty}$.

We introduce the following notation. Let $\left\{\begin{array}{l}t \\ k\end{array}\right\}$ be the Stirling number of the second kind, which counts in how many ways we can partition a set of t elements into k nonempty subsets. By convention $\left\{\begin{array}{l}t \\ 0\end{array}\right\}=0$ for $t \geq 1$ and $\left\{\begin{array}{l}0 \\ 0\end{array}\right\}=1$. The notation $(Q)_{k}$ stands for the falling factorial $\frac{Q!}{(Q-k)!}$.

Theorem 4. Let $t \in \mathbb{N}$. For any pure state $\rho \in \mathcal{S}\left(\mathcal{H}_{2^{n}}\right)$ it holds that

$$
\mathbb{E}_{b} \operatorname{tr}\left[\rho^{\prime}(b)\right]^{t} \leq \frac{1}{Q^{t}} \sum_{k=0}^{t}\left\{\begin{array}{l}
t \tag{26}\\
k
\end{array}\right\}(Q)_{k}\left(\frac{1}{2}\right)^{(k-1) n}
$$

For $t=0,1,2,3$ the equality holds.
Proof. See Appendix A.
Corollary 1. For any pure state $\rho \in \mathcal{S}\left(\mathcal{H}_{2^{n}}\right)$, it holds that

$$
\begin{gather*}
\mathbb{E}_{b} \operatorname{tr}\left[\rho^{\prime}(b)-\tau\right]^{3}=\frac{1}{Q^{2}}\left(1-\frac{1}{2^{n}}\right)\left(1-\frac{2}{2^{n}}\right) \tag{27}\\
\mathbb{E}_{b} \operatorname{tr}\left[\rho^{\prime}(b)-\tau\right]^{4}<\frac{1}{Q^{3}}\left[1+\frac{3 Q}{2^{n}}\right] . \tag{28}
\end{gather*}
$$

Proof. $\operatorname{tr}\left(\rho^{\prime}-\tau\right)^{3}=\operatorname{tr}\left(\rho^{\prime}\right)^{3}-3 \operatorname{tr} \tau\left(\rho^{\prime}\right)^{2}+3 \operatorname{tr} \tau^{2} \rho^{\prime}-\operatorname{tr} \tau^{3}=\operatorname{tr}\left(\rho^{\prime}\right)^{3}-3\left(\frac{1}{2}\right)^{n} \operatorname{tr}\left(\rho^{\prime}\right)^{2}+$ $3\left(\frac{1}{2}\right)^{2 n}-\left(\frac{1}{2}\right)^{2 n}$. Using (21) and (26), we get (27).

Similarly, $\operatorname{tr}\left(\rho^{\prime}-\tau\right)^{4}=\operatorname{tr}\left(\rho^{\prime}\right)^{4}-4 \operatorname{tr} \tau\left(\rho^{\prime}\right)^{3}+6 \operatorname{tr} \tau^{2}\left(\rho^{\prime}\right)^{2}-4 \operatorname{tr} \tau^{3} \rho^{\prime}+\operatorname{tr} \tau^{4}=\operatorname{tr}$ $\left(\rho^{\prime}\right)^{4}-4\left(\frac{1}{2}\right)^{n} \operatorname{tr}\left(\rho^{\prime}\right)^{3}+6\left(\frac{1}{2}\right)^{2 n} \operatorname{tr}\left(\rho^{\prime}\right)^{2}-4\left(\frac{1}{2}\right)^{3 n}+\left(\frac{1}{2}\right)^{3 n}$. Using (21) and (26) gives $\mathbb{E}_{b} \operatorname{tr}\left(\rho^{\prime}-\tau\right)^{4} \leq \frac{1}{Q^{3}}\left[1+\frac{3 Q}{2^{n}}\right]-\frac{1}{2^{n} Q^{3}}\left[7+3 \frac{Q-2}{2^{n}}\left(2-2^{-n}\right)\right]$.

Theorem 5. Let $\varepsilon \in(0,1)$. Let $\rho^{\prime}(b)$ the the pseudorandom-keyed QOTP encryption of any pure state in $\mathcal{H}_{2^{n}}$. Then the following key length,

$$
\begin{equation*}
q \geq n+\log n+2 \log \frac{1}{\varepsilon}+4 \tag{29}
\end{equation*}
$$

suffices to ensure that $\mathbb{E}_{b} \lambda_{\max }\left(\rho^{\prime}(b)-\tau\right)<\frac{\varepsilon}{2^{n}}$.
Proof. Let Λ be the maximum eigenvalue of $\rho^{\prime}(b)$. We have $\mathbb{E}_{b} \Lambda=\mathbb{E}_{b}\left(\Lambda^{t}\right)^{1 / t} \leq$ $\mathbb{E}_{b}\left[\operatorname{tr}\left(\rho^{\prime}\right)^{t}\right]^{1 / t}$. We use Jensen's inequality to write $\mathbb{E}_{b} \Lambda \leq\left[\mathbb{E}_{b} \operatorname{tr}\left(\rho^{\prime}\right)^{t}\right]^{1 / t}$. We apply Theorem 4 to bound the expectation value, and we make use of $(Q)_{k} \leq Q^{k}$. We switch from summation variable k to $a \stackrel{\text { def }}{=} t-k$. This allows us to write $\mathbb{E}_{b} \Lambda \leq\left[\left(\frac{1}{2}\right)^{n t} 2^{n} \sum_{a=0}^{t}\left\{\begin{array}{c}t \\ t-a\end{array}\right\}\left(2^{n} / Q\right)^{a}\right]^{1 / t}$. Next we use $\left\{\begin{array}{c}t \\ t-a\end{array}\right\}<\frac{t 2 a}{2 a!}$ for $a \geq 1$.This yields $\mathbb{E}_{b} \Lambda<\frac{2^{n / t}}{2^{n}}\left[1+\frac{1}{2} \sum_{a=1}^{t} \frac{1}{a!}\left(t^{2} 2^{n} / Q\right)^{a}\right]^{1 / t}<\frac{2^{n / t}}{2^{n}}\left[\exp \left(t^{2} 2^{n} / Q\right)\right]^{1 / t}=$ $\frac{2^{n / t}}{2^{n}} \exp \left(t 2^{n} / Q\right)$. We set $t=n \frac{2 \ln 2}{\ln (1+\varepsilon)}$. We have $Q=2^{q}=2^{n} n \frac{1}{\varepsilon^{2}} 16>2^{n} n \frac{4 \ln 2}{[\ln (1+\varepsilon)]^{2}}$. (The inequality holds for $\varepsilon<1$.) Substitution of this t and this bound on Q gives $\frac{2^{n / t}}{2^{n}} \exp \left(t 2^{n} / Q\right)<(1+\varepsilon) / 2^{n}$. It follows that $\mathbb{E}_{b} \lambda_{\max }\left(\rho^{\prime}-\tau\right)<\varepsilon / 2^{n}$.

7. Pseudorandom-Keyed QOTP Encryption of Classical Data

From Sec. 6, we already have general results on ε-uniformity and ε-randomization, which apply to 8 -state encoding as a special case. What else do we want?

- In Sec. 7.2, we briefly discuss the min-entropy of the plaintext conditioned on the fact that Eve has possession of the cipherstate.
- In Theorem 8 below, we will show that the moments of $\rho^{\prime}-\tau$ are smaller than those in Theorem 4. This gives an indication that it might be possible to prove tighter bounds for 8 -state encoding than for general quantum states.
- The results in Sec. 6 are bounds, the tightness of which we do not know. In Secs. 7.4-7.6, we numerically study the eigenvalues of the cipherstates.
- Definition 2 defines ε-privacy as a security property in terms of $\rho_{x}-\rho_{x^{\prime}}$ instead of $\rho^{\prime}-\tau$. In Sec. 7.7, we discuss ε-privacy.

7.1. The cipherstate

We use the method described in Sec. 6 to model a pseudorandom QOTP key for encrypting an n-qubit state. The adversary knows the table B.

We consider a quantum system consisting of three parts: the classical random variable $J \in\{1, \ldots, Q\}$ in the Hilbert space labeled "K" ("key"), the classical random variable $G \in\{0,1\}^{n}$ in space "D" ("data"), and Eve's quantum state in space "E". A cipherstate is prepared by choosing a message G at random and encrypting it
with the J th row of B, for random J. For given $B=b$, we have

$$
\begin{gather*}
\rho^{\mathrm{KDE}}(b)=\frac{1}{Q} \sum_{j=1}^{Q} \frac{1}{2^{n}} \sum_{g \in\{0,1\}^{n}}|j\rangle\langle j| \otimes|g\rangle\langle g| \otimes \rho_{j g}^{\mathrm{E}}(b) \tag{30}\\
\rho_{j g}^{\mathrm{E}}(b)=\bigotimes_{i=1}^{n}\left|\psi_{b_{j i} g_{i}}\right\rangle\left\langle\psi_{b_{j i} g_{i}}\right| . \tag{31}
\end{gather*}
$$

We want to study Eve's knowledge about the data G given subsystem E. To this end, we need only the D and E subspaces. Tracing out the K subspace gives

$$
\begin{equation*}
\rho^{\mathrm{DE}}(b)=\frac{1}{2^{n}} \sum_{g \in\{0,1\}^{n}}|g\rangle\langle g| \otimes \rho_{g}^{\mathrm{E}}(b) \quad \text { with } \rho_{g}^{\mathrm{E}}(b)=\frac{1}{Q} \sum_{j=1}^{Q} \bigotimes_{i=1}^{n}\left|\psi_{b_{j i} g_{i}}\right\rangle\left\langle\psi_{b_{j i} g_{i}}\right| . \tag{32}
\end{equation*}
$$

Eve's object of study is $\rho_{g}^{\mathrm{E}}(b)$; from this state she wants to learn g.

7.2. Min-entropy of the plaintext given the cipherstate and the table B

Below we give simple bounds on the min-entropy of the message given the cipherstate.

Theorem 6. Eve's knowledge about a single data bit $g_{i}, i \in\{1, \ldots, n\}$, can be bounded as

$$
\begin{equation*}
\mathrm{H}_{\min }\left(G_{i} \mid B, \rho_{G_{i}}^{\mathrm{E}}\right) \geq 1-\log \left(1+\frac{1}{\sqrt{Q}}\right)>1-\frac{\log e}{\sqrt{Q}} . \tag{33}
\end{equation*}
$$

Proof. See Appendix B.
Theorem 7. If the encryption is ε-randomizing then Eve's knowledge about the whole plaintext $g \in\{0,1\}^{n}$ can be bounded as

$$
\begin{equation*}
\mathrm{H}_{\min }\left(G \mid B, \rho_{G}^{\mathrm{E}}\right) \geq n-\varepsilon \log e \tag{34}
\end{equation*}
$$

Proof. We have $\mathrm{H}_{\text {min }}\left(G \mid B, \rho_{G}^{\mathrm{E}}\right)=-\log \mathbb{E}_{b} \max _{\mathcal{M}} \mathbb{E}_{g} \operatorname{tr} \rho_{g} M_{g}$ (see Sec. 2.1). For each g separately, we can bound $\operatorname{tr} \rho_{g} M_{g} \leq \operatorname{tr} \lambda_{\max } M_{g}$, with $\lambda_{\max } \leq 2^{-n}(1+\varepsilon)$. This yields $\mathrm{H}_{\text {min }}\left(G \mid B, \rho_{G}^{\mathrm{E}}\right) \geq-\log \left[2^{-n}(1+\varepsilon) \mathbb{E}_{b} \max _{\mathcal{M}} \operatorname{tr} \mathbb{E}_{g} M_{g}\right]$. Next, we use $\sum_{g} M_{g}=\mathbb{1}$; this gives $\operatorname{tr} \mathbb{E}_{g} M_{g}=1$. Finally, we use $\ln (1+\varepsilon) \leq \varepsilon$.

Note that there is a big gap between (33) and (34). For $Q=\mathcal{O}\left(2^{n} n / \varepsilon^{2}\right)$, such that the encryption is ε-randomizing, (33) yields a min-entropy loss $\propto \varepsilon / \sqrt{2^{n} n}$ which is exponentially smaller than the $\mathcal{O}(\varepsilon / n)$ that one may naively expect from (34).

7.3. Sharper bounds on the moments

Theorem 8. The moments of $\rho_{g}^{\mathrm{E}}(b)$ and $\rho_{g}^{\mathrm{E}}(b)-\tau$, averaged over b, are as given in Tables 3 and 4, respectively.

Table 3. Moments of $\rho_{g}^{\mathrm{E}}(b)$.

t	$Q^{t} \cdot \mathbb{E}_{b} \operatorname{tr}\left(\rho_{g}^{\mathrm{E}}(b)\right)^{t}$
2	$Q+\frac{(Q)_{2}}{2^{n}}$
3	$Q+3 \frac{(Q)_{2}}{2^{n}}+\frac{(Q)_{3}}{2^{2 n}}$
4	$Q+6 \frac{(Q)_{2}}{2^{n}}+\frac{(Q)_{2}}{3^{n}}+6 \frac{(Q)_{3}}{2^{2 n}}+\frac{(Q)_{4}}{2^{3 n}}$
5	$Q+10 \frac{(Q)_{2}}{2^{n}}+5 \frac{(Q)_{2} 3^{n}}{3^{n}}+20 \frac{(Q)_{3}}{2^{n}}+5 \frac{(Q)_{3}}{2^{n} 3^{n}}+10 \frac{(Q)_{4}}{2^{3 n}}+\frac{(Q)_{5}}{2^{4 n}}$
6	$Q+(Q)_{2}\left\{\frac{15}{2^{n}}+\left(\frac{5}{18}\right)^{n}+\frac{15}{3^{n} 2^{n}}\right\}$
	$+(Q)_{3}\left\{\frac{50}{2^{2 n}}+\frac{36}{3^{n 2 n}}+3\left(\frac{5}{36}\right)^{n}+\frac{1}{9^{n}}\right\}+(Q)_{4}\left\{\frac{50}{2^{3 n}}+\frac{15}{3^{n} 2^{2 n}}\right\}$
	$+15 \frac{(Q)_{5}}{2^{4 n}}+\frac{(Q)_{6}}{2^{5 n}}$

Table 4. Moments of $\rho_{g}^{\mathrm{E}}(b)-\tau$.

t	$Q^{t-1} \cdot \mathbb{E}_{b} \operatorname{tr}\left(\rho_{g}^{\mathrm{E}}(b)-\tau\right)^{t}$
2	$1-\frac{1}{2^{n}}$
3	$\left(1-\frac{1}{2^{n}}\right)\left(1-\frac{2}{2^{n}}\right)$
4	$1+2 \frac{Q}{2^{n}}+\frac{Q-1}{3^{n}}-\left\{\frac{6}{2^{n}}+\frac{3(Q-2)}{2^{2 n}}\left(2-\frac{1}{2^{n}}\right)\right\}$
5	$1+5 \frac{Q}{2^{n}}+\frac{5(Q-1)}{3^{n}}-\left\{\frac{10}{2^{n}}+\frac{30 Q-40}{2^{2 n}}-\frac{50 Q-60}{2^{3 n}}+\frac{10(Q-1)}{2^{n 3 n}}+\frac{20 Q-24}{2^{4 n}}\right\}$
6	$1+9 \frac{Q}{2^{n}}+5 \frac{Q^{2}}{2^{2 n}}+\frac{3(Q-1)(2 Q-19)}{2^{n} 3^{n}}+\frac{Q-1}{(18 / 5)^{n}}+\frac{3(Q-1)(Q-2)}{(36 / 5)^{n}}$
	$\quad-\left\{\frac{15}{2^{n}}+\frac{18 Q-4}{2^{2 n}}+10 \frac{3 Q^{2}-31 Q+3}{2^{3 n}}-15 \frac{3 Q^{2}-26 Q+2}{2^{4 n}}\right.$
	$\left.+5 \frac{3 Q^{2}-26 Q+2}{2^{5 n}}-\frac{(Q-1)(Q-2)}{9^{n}}+\frac{15(Q-1)(Q-6)}{3^{2 n} 2^{2 n}}\right\}$

Proof. See Appendix C.
In Table 4, the contributions $\{\cdots\}$ are negligible (at large n and $Q \ll 3^{n}$) with respect to the preceding terms; hence the expressions can be simplified substantially if one wants to know upper bounds only. Furthermore, for $Q=\mathcal{O}\left(2^{n}\right)$ the terms of order $Q / 3^{n}, Q /\left(\frac{18}{5}\right)^{n}$ and $Q^{2} /\left(\frac{36}{5}\right)^{n}$ are negligible as well.

It is interesting to look at the quantity $c_{t} \stackrel{\text { def }}{=} \frac{1}{2^{n}} \mathbb{E}_{b} \operatorname{tr}\left(\rho_{g}^{\mathrm{E}}-\tau\right)^{t}$. In some sense, it represents the t th moment of the eigenvalues of $\rho_{g}^{\mathrm{E}}-\tau$. If one imagines that there is a probability density μ on $\left[-\frac{1}{2^{n}}, 1-\frac{1}{2^{n}}\right]$ governing the value of the i th eigenvalue for random i, b, g, then c_{t} is the t th moment of μ. At $Q \approx 2^{n}$, we have

$$
\begin{equation*}
c_{1}=0, \quad c_{2} \approx\left(\frac{1}{2^{n}}\right)^{2} \stackrel{\text { def }}{=} \sigma^{2}, \quad c_{3} \approx \sigma^{3}, \quad c_{4} \approx 3 \sigma^{4}, \quad c_{5} \approx 6 \sigma^{5}, \quad c_{6} \approx 15 \sigma^{6} \tag{35}
\end{equation*}
$$

Note that c_{4} and c_{6} are exactly as in a Gaussian distribution. The odd central moments are positive because the interval $\left[-\frac{1}{2^{n}}, 1-\frac{1}{2^{n}}\right]$ extends only a little distance into the negative side.

We note that, at $Q \approx 2^{n} n, n \ll 2^{n}$, the parameters in Table 3 are smaller than the Stirling numbers in Theorem 4. This hints to the possibility to prove tighter bounds
for 8 -state encoding than for general states when the moments based approach is used as in the proof of Theorem 5 .

This question is left for future work.

7.4. The L_{1}-norm of $\rho_{g}^{\mathrm{E}}-\tau$

Figure 2 shows the numerics for $\mathbb{E}_{b} \operatorname{tr}\left|\rho_{g}^{\mathrm{E}}-\tau\right|$ as a function of Q, for $n=9$, and the upper bound $\sqrt{2^{n} / Q}$. In Fig. 3, we have plotted results for $n=7,8,9$ together. In spite of the small number of qubits, we tentatively identify some trends.

With increasing n, the slope of $\mathbb{E}_{b} D\left(\rho_{g}^{\mathrm{E}}, \tau\right)$ for $Q>2^{n}$ increases. This could indicate that for large n and $Q>2^{n}$ the trace distance decreases faster than the bound $\propto 1 / \sqrt{Q}$. Furthermore, at $Q=2^{n}$ there seems to be a constant factor ≈ 0.83 between the bound and the empirical value. More work is needed to see if these trends persist at large n.

7.5. Eigenvalues of ρ_{g}^{E}

Figure 4 shows eigenvalue histograms. We see a qualitative change as Q increases. At small Q, there are distinct bunches of large and small eigenvalues. At $Q=2^{n}$, we see something resembling an exponential or power law distribution. At $Q \gg 2^{n}$, the distribution becomes more peaked around $\lambda=2^{-n}$.

Fig. 2. Numerical results for $\mathbb{E}_{b} \operatorname{tr}\left|\rho_{g}^{\mathrm{E}}-\tau\right|$, at $n=9$ qubits, for various values of Q. The \mathbb{E}_{b} was approximated by taking 100 random tables B.

Fig. 3. Numerical results for $\mathbb{E}_{b} D\left(\rho_{g}^{\mathrm{E}}, \tau\right)$, at $n=7,8,9$ qubits, for various values of Q. For larger n fewer random tables B were taken to estimate the \mathbb{E}_{b}.

Fig. 4. Histogram of the eigenvalues of $\rho_{g}^{\mathrm{E}}(b)$, plotted for various values of Q. The eigenvalues from 100 runs are combined. The horizontal axis is scaled by a factor 2^{n} so that " 1 " corresponds to the eigenvalues of the fully mixed state τ.

7.6. Maximum absolute eigenvalue of $\boldsymbol{\rho}_{g}^{\mathrm{E}}-\tau$

Figure 5 shows empirical data on $\max _{i}\left|\lambda_{i}\left(\rho_{g}^{\mathrm{E}}-\tau\right)\right|=\left|\rho_{g}^{\mathrm{E}}-\tau\right|_{\infty}$. The plots are rather noisy due to the limited number of runs. We observe that the empirical $\left|\rho_{g}^{\mathrm{E}}-\tau\right|_{\infty}$ is orders of magnitude smaller than the Bennett bound, for the values of n that we studied.

Fig. 5. Histogram of the maximum absolute eigenvalue of $\rho_{g}^{\mathrm{E}}(b)-\tau$, plotted for various values of Q. The horizontal axis is scaled by a factor 2^{n}.

7.7. Statistical properties of $\rho_{g}^{\mathrm{E}}-\rho_{g^{\prime}}^{\mathrm{E}}$

For completeness, we also present theoretical and empirical results on $\rho_{g}^{\mathrm{E}}-\rho_{g^{\prime}}^{\mathrm{E}}$. This is motivated by Definition 2.

Theorem 9. For any $g, g^{\prime} \in\{0,1\}^{n}$ with $g^{\prime} \neq g$ it holds that

$$
\begin{gather*}
\mathbb{E}_{b} \operatorname{tr}\left(\rho_{g}^{\mathrm{E}}(b)-\rho_{g^{\prime}}^{\mathrm{E}}(b)\right)^{2}=\frac{2}{Q} \tag{36}\\
\mathbb{E}_{b} \operatorname{tr}\left(\rho_{g}^{\mathrm{E}}(b)-\rho_{g^{\prime}}^{\mathrm{E}}(b)\right)^{3}=0 \tag{37}\\
Q^{3} \mathbb{E}_{b} \operatorname{tr}\left(\rho_{g}^{\mathrm{E}}(b)-\rho_{g^{\prime}}^{\mathrm{E}}(b)\right)^{4} \\
=2+8 \frac{Q}{2^{n}}+\frac{4 Q}{3^{n}}+\frac{4(Q-1)}{3^{n}}\left(-\frac{1}{2}\right)^{\left|g \oplus g^{\prime}\right|}-\left\{\frac{8}{2^{n}}+\frac{4}{3^{n}}\right\} . \tag{38}
\end{gather*}
$$

Here, $\left|g \oplus g^{\prime}\right|$ stands for the Hamming weight of $g \oplus g^{\prime}$.
Proof. See Appendix D.
Furthermore, we have $\forall_{b}: \mathbb{E}_{g g^{\prime}} \operatorname{tr}\left(\rho_{g}^{\mathrm{E}}(b)-\rho_{g^{\prime}}^{\mathrm{E}}(b)\right)^{t}=0$ for odd t due to symmetry.
Corollary 2. Pseudorandom-keyed QOTP encryption of classical data using the 8state encoding is on average (with respect to b) statistically ε-private (Definition 2) with $\varepsilon=\sqrt{2^{n-1} / Q}$.

Proof. We follow the same steps as in the proof of Theorem 1. Let $d=2^{n}$ and let $\left\{\lambda_{a}\right\}_{a=1}^{d}$ be eigenvalues of $\rho_{g}^{\mathrm{E}}-\rho_{g^{\prime}}^{\mathrm{E}}$. We have $\mathbb{E}_{b} D\left(\rho_{g}^{\mathrm{E}}, \rho_{g^{\prime}}^{\mathrm{E}}\right)=\frac{1}{2} d \mathbb{E}_{b} \frac{1}{d} \sum_{a} \sqrt{\lambda_{a}^{2}} \leq$ $\frac{1}{2} d \sqrt{\frac{1}{d} \mathbb{E}_{b} \operatorname{tr}\left(\rho_{g}^{\mathrm{E}}-\rho_{g^{\prime}}^{\mathrm{E}}\right)^{2}}$. In the last step, we used Jensen's inequality. Substituting (36) gives $\mathbb{E}_{b} D\left(\rho_{g}^{\mathrm{E}}, \rho_{g^{\prime}}^{\mathrm{E}}\right) \leq \sqrt{\frac{d}{2 Q}}$.

Again we investigate the moments of the eigenvalues in the case $Q \approx 2^{n}$. Theorem 9 gives $s^{2} \stackrel{\text { def }}{=} \frac{1}{2^{n}} \mathbb{E}_{b} \operatorname{tr}\left(\rho_{g}^{\mathrm{E}}-\rho_{g^{\prime}}^{\mathrm{E}}\right)^{2} \approx\left(\frac{\sqrt{2}}{2^{n}}\right)^{2} \quad$ and $\quad \frac{1}{2^{n}} \mathbb{E}_{b} \operatorname{tr}\left(\rho_{g}^{\mathrm{E}}-\rho_{g^{\prime}}^{\mathrm{E}}\right)^{4} \approx$ $10 \cdot 2^{-4 n} \approx \frac{5}{2} s^{4}$. Note that the number $\frac{5}{2}$ is smaller than the " 3 " that would hold in the case of a Gaussian distribution.

Figure 6 shows eigenvalues of $\rho_{g}^{\mathrm{E}}-\rho_{g^{\prime}}^{\mathrm{E}}$. As a function of Q, the same trends are visible as in Fig. 4, but now with symmetry around zero. Figure 7 shows empirical values of $\left|\rho_{g}^{\mathrm{E}}-\rho_{g^{\prime}}^{\mathrm{E}}\right|_{\infty}$. Again there is a large gap between the actual numbers and the bound obtained from the matrix Bennett inequality (see below).

Fig. 6. Histogram of the eigenvalues of $\rho_{g}^{\mathrm{E}}-\rho_{g^{\prime}}^{\mathrm{E}}$, plotted for various values of Q. The horizontal axis is scaled by a factor 2^{n}.

Fig. 7. Histogram of the maximum absolute eigenvalue of $\rho_{g}^{\mathrm{E}}-\rho_{g^{\prime}}^{\mathrm{E}}$, plotted for various values of Q. The horizontal axis is scaled by a factor 2^{n}.

Theorem 10. For any $g, g^{\prime} \in\{0,1\}^{n}$ the mixed states $\rho_{g}^{\mathrm{E}}, \rho_{g^{\prime}}^{\mathrm{E}}$ satisfy

$$
\begin{equation*}
\operatorname{Pr}\left[\lambda_{\max }\left(\rho_{g}^{\mathrm{E}}-\rho_{g^{\prime}}^{\mathrm{E}}\right) \geq \frac{\varepsilon}{2^{n}}\right] \leq 2^{n} \exp \left[-\frac{2 Q}{2^{n}} A\left(\frac{\varepsilon}{2}\right)\right] . \tag{39}
\end{equation*}
$$

Proof. We proceed as in the proof of Theorem 3, but now with $X_{j}=\frac{1}{Q}\left(P_{j}-P_{j}^{\prime}\right)$, where $P_{j}^{\prime}=\bigotimes_{i=1}^{n}\left|\psi_{b_{j i} g_{i}^{\prime}}\right\rangle\left\langle\psi_{b_{j i} g_{i}^{\prime}}\right|$. We have $\mathbb{E}_{b} X_{j}=0$ and $\sum_{j} X_{j}=\rho_{g}^{\mathrm{E}}-\rho_{g^{\prime}}^{\mathrm{E}}$. Furthermore $R=\lambda_{\max }\left(X_{j}\right)=1 / Q$ and $\sigma^{2}=\lambda_{\max }\left(\sum_{j} \mathbb{E}_{b} X_{j}^{2}\right)=\lambda_{\max }\left(\frac{2}{Q} \tau\right)=\frac{2}{Q d}$. Here, we have used Theorem 9. Substituting into (24) and setting $t=\varepsilon / d$ in the Bennett inequality yields the result.

From (39), we can derive an expression like Theorem 3 for the sufficient key length to obtain a ∞-norm version of ε-privacy; only the constant terms are different.

8. Summary and Discussion

The most important results of this paper are: the introduction of the basis states $\left|\psi_{000}\right\rangle,\left|\psi_{001}\right\rangle$ to represent a classical bit, leading to 8 -state encoding when the QOTP is applied; the key recycling scheme ' $\# 3$ ' presented in Sec. 4.6, which has improved noise tolerance and efficiency compared to previous proposals; bounds on the sufficient key length for pseudorandom-keyed QOTP encryption of arbitrary quantum states (Theorems 2, 3 and 5); statistical analysis of the cipherstate eigenvalues (for classical plaintext) up to sixth order.

We briefly comment on the physical implementation of 8 -state encoding. The eight photon polarization states as depicted in Fig. 1 are not necessarily the most practical implementation. Most single-photon sources produce linearly polarized states; hence elliptic polarization may be more difficult to handle than linear. We note that it is possible to rotate the cube in Fig. 1 in such a way that four of the eight cipherstates lie in the $x z$-plane, ${ }^{43}$ corresponding to linear polarization.

Another physical implementation of qubits is to use pulse trains as in Differential Phase Shift QKD, ${ }^{41}$ but with different amplitudes and phases.

As topics for future work, we mention (i) detailed security proofs for the proposed key recycling scheme; (ii) obtain sharp bounds on high moments of the ρ_{g}^{E} eigenvalues, in order to derive tighter bounds on the sufficient key length; (iii) establish how far the actual distances $\left|\rho_{g}-\tau\right|_{1},\left|\rho_{g}-\tau\right|_{\infty}$ lie below the provable bounds.

Acknowledgments

We thank Christian Schaffner, Serge Fehr and Andreas Hülsing for useful discussions.

Appendix A. Proof of Theorem 4

We write $\rho=|\psi\rangle\langle\psi|$. We introduce short notation $P_{j}=F_{b j}|\psi\rangle\langle\psi| F_{b j}^{\dagger}$. The P_{j} is a projection operator satisfying $\mathbb{E}_{b_{j}} P_{j}=\tau$. We have

$$
\begin{equation*}
\mathbb{E}_{b} \operatorname{tr}\left[\rho^{\prime}(b)\right]^{t}=\frac{1}{Q^{t}} \sum_{j_{1}=1}^{Q} \cdots \sum_{j_{t}=1}^{Q} \operatorname{tr} \mathbb{E}_{b} P_{j_{1}} \cdots P_{j_{t}} \tag{A.1}
\end{equation*}
$$

If for some $a \in\{1, \ldots, Q\}$ a projection P_{a} occurs only once in the product $P_{j_{1}} \ldots$ $P_{j_{t}}$ then the \mathbb{E}_{b} reduces it to τ. However, in the t-fold summation many different collisions can occur between the summation variables $j_{1}, j_{2}, \ldots, j_{t}$. In any of the Q^{t} terms, we denote the number of distinct values as k, with $k \in\{1, \ldots, t\}$. There are $\left\{\begin{array}{l}t \\ k\end{array}\right\}(Q)_{k}$ terms with a given value of k. At given k, there are k distinct projectors in the product $P_{j_{1}} \cdots P_{j_{t}}$; they occur multiple times spread out over the product. If the identical projections are direct neighbors then we can immediately use the reduction $P_{a}^{m}=P_{a}(m \geq 1)$. For $t \leq 3$, there are only direct neighbors. (This follows from the circular property of the trace, $\operatorname{tr} A B C=\operatorname{tr} C A B)$. Then, the expression $\operatorname{tr} \mathbb{E}_{b} P_{j_{1}} \cdots$ $P_{j_{t}}$ reduces to $\operatorname{tr} \tau^{k}=\left(\frac{1}{2^{n}}\right)^{k-1}$, which immediately yields (26). For $t \geq 4$, however, there are sub-expressions like $P_{\alpha} P_{\beta} P_{\alpha} P_{\beta}, P_{\alpha} P_{\beta} P_{\gamma} P_{\beta} P_{\alpha} P_{\gamma}$, etc.

We define an inner product on the space of $2^{n} \times 2^{n}$ complex matrices as $\langle M, N\rangle=$ $\mathbb{E}_{b} \operatorname{tr} M^{\dagger}(b) N(b)$. We now use Cauchy-Schwarz, $|\langle M, N\rangle|^{2} \leq\langle M, M\rangle\langle N, N\rangle$ to bound our product expressions for $t \geq 4$. For example, at $t=4, k=2$, we have \mathbb{E}_{b} tr $P_{\alpha} P_{\beta} P_{\alpha} P_{\beta}=\left|\mathbb{E}_{b} \operatorname{tr} P_{\alpha} P_{\beta} P_{\alpha} P_{\beta}\right|=\left|\left\langle P_{\beta} P_{\alpha}, P_{\alpha} P_{\beta}\right\rangle\right| \leq \sqrt{\left\langle P_{\beta} P_{\alpha}, P_{\beta} P_{\alpha}\right\rangle\left\langle P_{\alpha} P_{\beta}, P_{\alpha} P_{\beta}\right\rangle}=$ $\sqrt{\left(\mathbb{E}_{b} \operatorname{tr} P_{\alpha} P_{\beta}\right)\left(\mathbb{E}_{b} \operatorname{tr} P_{\beta} P_{\alpha}\right)}=\operatorname{tr} \tau^{2}$. At $t=6, k=2$, we have $\mathbb{E}_{b} \operatorname{tr}\left(P_{\alpha} P_{\beta}\right)^{3}=$ $\left|\left\langle P_{\alpha} P_{\beta} P_{\alpha}, P_{\beta} P_{\alpha} P_{\beta}\right\rangle\right| \leq \sqrt{\left[\mathbb{E}_{b} \operatorname{tr}\left(P_{\alpha} P_{\beta}\right)^{2}\right]\left[\mathbb{E}_{b} \operatorname{tr}\left(P_{\beta} P_{\alpha}\right)^{2}\right]}=\operatorname{tr} \tau^{2}$. At $t=6, k=3$, we have $\mathbb{E}_{b} \operatorname{tr}\left(P_{\alpha} P_{\beta} P_{\gamma}\right)^{2}=\left|\left\langle P_{\gamma} P_{\beta} P_{\alpha}, P_{\alpha} P_{\beta} P_{\gamma}\right\rangle\right| \leq \sqrt{\left\langle P_{\gamma} P_{\beta} P_{\alpha}, P_{\gamma} P_{\beta} P_{\alpha}\right\rangle\left\langle P_{\alpha} P_{\beta} P_{\gamma}, P_{\alpha} P_{\beta} P_{\gamma}\right\rangle}=$ $\sqrt{\left[\mathbb{E}_{b} \operatorname{tr} P_{\alpha} P_{\beta} P_{\gamma} P_{\beta}\right]\left[\mathbb{E}_{b} \operatorname{tr} P_{\gamma} P_{\beta} P_{\alpha} P_{\beta}\right]}=\operatorname{tr} \tau^{3}$. With every use of Cauchy-Schwarz, we remove duplications of projectors, until only single occurrences remain.

Appendix B. Proof of Theorem 6

The D subsystem consists of n qubit systems D_{1}, \ldots, D_{n}. We take $i=n$ without loss of generality. Since we concentrate on g_{n}, only the subsystem D_{n} is of interest. Tracing out D_{1}, \ldots, D_{n-1} gives

$$
\begin{gather*}
\rho^{D_{n} \mathrm{E}}(b)=\frac{1}{2} \sum_{g_{n}=0}^{1}\left|g_{n}\right\rangle\left\langle g_{n}\right| \otimes \rho_{G_{n}=g_{n}}^{\mathrm{E}}(b) \tag{B.1}\\
\rho_{G_{n}=g_{n}}^{\mathrm{E}}(b)=\tau_{2}^{\otimes(n-1)} \otimes \frac{1}{Q} \sum_{j=1}^{Q}\left|\psi_{b_{j n} g_{n}}\right\rangle\left\langle\psi_{b_{j n} g_{n}}\right| . \tag{B.2}
\end{gather*}
$$

Eve's first $n-1$ qubits give no information about g_{i}. We compute the min-entropy of G_{n} given Eve's subsystem E_{n} using (1).

$$
\begin{equation*}
\mathrm{H}_{\min }\left(G_{n} \mid B, \rho_{G_{n}}^{\mathrm{E}_{n}}(B)\right)=-\log \mathbb{E}_{b} \max _{M_{0}, M_{1}} \mathbb{E}_{g_{n} \in\{0,1\}} \operatorname{tr} M_{g_{n}} \rho_{G_{n}=g_{n}}^{\mathrm{E}_{n}}(b) \tag{B.3}
\end{equation*}
$$

Here, we have inserted the \mathbb{E}_{b} in the logarithm because of the conditioning on the classical variable B. As the POVM has to satisfy $M_{0}+M_{1}=\mathbb{1}$, we eliminate M_{1} as a degree of freedom and are left with

$$
\begin{align*}
\mathrm{H}_{\min }\left(G_{n} \mid B, \rho_{G_{n}}^{\mathrm{E}_{n}}(B)\right) & =1-\log \left[1+\mathbb{E}_{b} \max _{M_{0}} \operatorname{tr} M_{0}\left(\rho_{G_{n}=0}^{\mathrm{E}_{n}}-\rho_{G_{n}=1}^{\mathrm{E}_{n}}\right)\right] \\
& =1-\log \left[1+\mathbb{E}_{b} \lambda_{\max }\left(\rho_{G_{n}=0}^{\mathrm{E}_{n}}-\rho_{G_{n}=1}^{\mathrm{E}_{n}}\right)\right] . \tag{B.4}
\end{align*}
$$

Here, we have used that the optimal M_{0} is a projection operator in the direction of the positive eigenvector of $\rho_{G_{n}=0}^{\mathrm{E}_{n}}-\rho_{G_{n}=1}^{\mathrm{E}_{n}}$. The notation $\lambda_{\text {max }}(A)$ stands for the maximum eigenvalue of A. We introduce tallies $Q_{\beta}, \beta \in\{0,1,2,3\}$, which count how many times key β occurs in the nth column of b. The tallies are multinomialdistributed with parameters Q and $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$. We have

$$
\begin{align*}
\rho_{G_{n}=0}^{\mathrm{E}_{n}}-\rho_{G_{n}=1}^{\mathrm{E}_{n}} & =\frac{1}{Q} \sum_{j=1}^{Q}\left(\left|\psi_{b_{j n} 0}\right\rangle\left\langle\psi_{b_{j n} 0}\right|-\left|\psi_{b_{j n} 1}\right\rangle\left\langle\psi_{b_{j n} 1}\right|\right) \\
& =\frac{1}{Q} \sum_{\beta=0}^{3} Q_{\beta}\left(\left|\psi_{\beta 0}\right\rangle\left\langle\psi_{\beta 0}\right|-\left|\psi_{\beta 1}\right\rangle\left\langle\psi_{\beta 1}\right|\right) . \tag{B.5}
\end{align*}
$$

We define $v_{x}=Q_{0}+Q_{1}-Q_{2}-Q_{3}, v_{y}=Q_{0}-Q_{1}-Q_{2}+Q_{3}, v_{z}=Q_{0}-Q_{1}+$ $Q_{2}-Q_{3}$. Using $\left|\psi_{\beta 0}\right\rangle\left\langle\psi_{\beta 0}\right|-\left|\psi_{\beta 1}\right\rangle\left\langle\psi_{\beta 1}\right|=\boldsymbol{n}_{\beta 0} \cdot \boldsymbol{\sigma}$ we find, after some algebra,

$$
\begin{equation*}
\rho_{G_{n}=0}^{\mathrm{E}_{n}}-\rho_{G_{n}=1}^{\mathrm{E}_{n}}=\frac{v_{x} \sigma_{x}+v_{y} \sigma_{y}+v_{z} \sigma_{z}}{Q \sqrt{3}} . \tag{B.6}
\end{equation*}
$$

This expression can be written as a spin operator in some direction times a scalar factor which is exactly $\lambda_{\max }$. We have

$$
\begin{equation*}
v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}=3\left(Q_{0}^{2}+Q_{1}^{2}+Q_{2}^{2}+Q_{3}^{2}\right)-2 \sum_{\beta \neq \beta^{\prime}} Q_{\beta} Q_{\beta^{\prime}} \tag{B.7}
\end{equation*}
$$

Using the multinomial property $\mathbb{E}_{b} Q_{\beta}^{2}=\left(\frac{Q}{4}\right)^{2}+Q \cdot \frac{1}{4} \cdot \frac{3}{4}$ for the four square terms and $\mathbb{E}_{b} Q_{\beta} Q_{\beta^{\prime}}=\left(\frac{Q}{4}\right)^{2}-Q \cdot \frac{1}{4} \cdot \frac{1}{4}$ for the six crossterms we finally get $\mathbb{E}_{b} v^{2}=3 Q$ and

$$
\begin{equation*}
\mathbb{E}_{b} \lambda_{\max }=\frac{\mathbb{E}_{b} \sqrt{v^{2}}}{Q \sqrt{3}} \leq \frac{\sqrt{\mathbb{E}_{b} v^{2}}}{Q \sqrt{3}}=\frac{1}{\sqrt{Q}} \tag{B.8}
\end{equation*}
$$

Appendix C. Proof of Theorem 8

The results for $t=2$ follow from Theorem 4. The results for $t=3$ are copied from Theorem 4 and Corollary 1.

For $t=4$, we closely follow the proof of Corollary 1 . The only difference lies in one type of summation term in the computation of $\mathbb{E}_{b} \operatorname{tr}\left(\rho^{\prime}\right)^{4}$, namely $\operatorname{tr} \mathbb{E}_{b} P_{j} P_{\ell} P_{j} P_{\ell}$ with $j, \ell \in\{1, \ldots, Q\}, \ell \neq j$. In Corollary 1 , this was upperbounded as $\operatorname{tr} \mathbb{E}_{b} P_{j} P_{\ell} P_{j} P_{\ell} \leq$ $\operatorname{tr} \mathbb{E}_{b} P_{j} P_{\ell}=\operatorname{tr} \tau^{2}=2^{-n}$. For states restricted to the 8 -state system, we can do the computation exactly. We have $P_{j}=\rho_{j g}^{\mathrm{E}}(b)$ as defined in (31) for some arbitrary $g \in\{0,1\}^{n}$, which gives

$$
\begin{equation*}
\operatorname{tr} \mathbb{E}_{b} P_{j} P_{\ell} P_{j} P_{\ell}=\prod_{i=1}^{n} \mathbb{E}_{b_{j i}} \mathbb{E}_{b_{\ell i}}\left|\left\langle\psi_{b_{j i} g_{i}} \mid \psi_{b_{\ell i} g_{i}}\right\rangle\right|^{4}=\prod_{i=1}^{n} \frac{1}{3}=\left(\frac{1}{3}\right)^{n} \tag{C.1}
\end{equation*}
$$

Here, we have used that $b_{j i} \neq b_{\ell i}$ occurs with probability $3 / 4$ (and yields $|\cdots|^{4}=\left(\frac{1}{3}\right)^{2}$) while $b_{j i}=b_{\ell i}$ occurs with probability $1 / 4$ (and yields $|\cdots|^{4}=1$). The upshot is that a contribution $\frac{1}{Q^{4}} \frac{Q(Q-1)}{2^{n}}$ in the proof of Corollary 1 has to be replaced by $\frac{1}{Q^{4}} \frac{Q(Q-1)}{3^{n}}$.

For $t=5$, we follow the same procedure. At $k=2$, there are five terms of the form $P_{j} P_{\ell} P_{j} P_{\ell} P_{j}$ (or rotations thereof), which each yield a contribution (C.1).

For $t=6$, the procedure is the same but with more complicated combinations. At $k=2$, there is one term of the form $\left(P_{j} P_{\ell}\right)^{3}$ which yields ${ }^{\mathrm{f}}\left(\frac{5}{18}\right)^{n}$, and 15 terms that reduce to $\left(P_{j} P_{\ell}\right)^{2}$ by idempotency, yielding (C.1). At $k=3$, there is one term $\left(P_{j} P_{\ell} P_{m}\right)^{2}$ yielding $\left(\frac{1}{9}\right)^{n}$, three terms of the form $P_{j} P_{\ell} P_{j} P_{m} P_{\ell} P_{m}$ yielding $\left(\frac{5}{36}\right)^{n}$, and 36 terms that reduce to $\tau\left(P_{j} P_{\ell}\right)^{2}$ yielding $\frac{1}{2^{n} 3^{n}}$. Careful bookkeeping results in the expressions listed in Table 3.

Table 4 follows by applying the binomial expansion $\mathbb{E}_{b} \operatorname{tr}(\rho-\tau)^{t}=\sum_{a=0}^{t}\binom{t}{a} \mathbb{E}_{b}$ $\operatorname{tr} \rho^{a}(-\tau)^{t-a}=\sum_{a=0}^{t}\binom{t}{a}\left(-\frac{1}{2^{n}}\right)^{t-a} \mathbb{E}_{b} \operatorname{tr} \rho^{a}$ and then using Table 3.

Appendix D. Proof of Theorem 9

Second power. Since $\mathbb{E}_{b} \operatorname{tr} \rho_{g}^{2}$ does not depend on g, we can write $\mathbb{E}_{b} \operatorname{tr}\left(\rho_{g}-\rho_{g^{\prime}}\right)^{2}=2 \mathbb{E}_{b} \operatorname{tr} \rho_{g}^{2}-2 \mathbb{E}_{b} \operatorname{tr} \rho_{g} \rho_{g^{\prime}}$. The first term follows from Lemma 1 using $\operatorname{tr} \rho^{2}=1$ (the plaintext is a pure state). We define P_{j} as in the proof of Theorem 4, and $R_{\ell}=\bigotimes_{i=1}^{n}\left|\psi_{b_{f i} g_{i}^{\prime}}\right\rangle\left\langle\psi_{b_{k i} g_{i}^{\prime}}\right|$, and $\rho_{g^{\prime}}=\frac{1}{Q} \sum_{\ell=1}^{Q} R_{\ell}$. It holds that $\mathbb{E}_{b} R_{\ell}=\tau$ and $P_{j} R_{j}=0$. We write $\mathbb{E}_{b} \operatorname{tr} \rho_{g} \rho_{g^{\prime}}=\frac{1}{Q^{2}} \sum_{j=1}^{Q} \sum_{\ell: \ell \neq j} \operatorname{tr} \mathbb{E}_{b} P_{j} R_{\ell}=\frac{Q^{2}-Q}{Q^{2}} \operatorname{tr} \tau^{2}$.

[^4]Fourth power. We note that $\mathbb{E}_{b} \operatorname{tr} \rho_{g}^{3} \rho_{g^{\prime}}$ does not depend on g and g^{\prime} as long as $g^{\prime} \neq g$. This allows us to write $\mathbb{E}_{b} \operatorname{tr}\left(\rho_{g}-\rho_{g^{\prime}}\right)^{4}=2 \mathbb{E}_{b} \operatorname{tr} \rho_{g}^{4}-8 \mathbb{E}_{b} \operatorname{tr} \rho_{g}^{3} \rho_{g^{\prime}}+$ $2 \mathbb{E}_{b} \operatorname{tr}\left(\rho_{g} \rho_{g^{\prime}}\right)^{2}+4 \mathbb{E}_{b} \operatorname{tr} \rho_{g}^{2} \rho_{g^{\prime}}^{2}$. The first term is given in Table 3. We write $Q^{4} \mathbb{E}_{b} \operatorname{tr} \rho_{g}^{3} \rho_{g^{\prime}}=\sum_{j \ell m} \sum_{s: s \neq j \ell m} \operatorname{tr} \mathbb{E}_{b} P_{j} P_{\ell} P_{m} R_{s}$. The R_{s} reduces to τ and we get $Q^{4} \mathbb{E}_{b} \operatorname{tr} \rho_{g}^{3} \rho_{g^{\prime}}=\sum_{j \ell m}\left(\sum_{s: s \neq j \ell m}\right) \operatorname{tr} \mathbb{E}_{b} P_{j} P_{\ell} P_{m} \tau=(Q)_{2} \operatorname{tr} \tau^{2}+3(Q)_{3} \operatorname{tr} \tau^{3}+(Q)_{4} \operatorname{tr} \tau^{4}$.

Next we have $Q^{4} \mathbb{E}_{b} \operatorname{tr}\left(\rho_{g} \rho_{g^{\prime}}\right)^{2}=\sum_{j s} \sum_{\ell: \ell \neq j s} \sum_{m: m \neq j s} \operatorname{tr} \mathbb{E}_{b} P_{j} R_{\ell} P_{s} R_{m}$. As earlier we use the notation k for the number of different table rows present in a summation term. At $k=1$, we get zero contribution since a P and R projector must collide. At $k=2$, we have to set $j=s, \ell=m$ yielding a contribution $(Q)_{2}\left(\frac{1}{3}\right)^{n}$. At $k=3$, we have the combinations $P_{j} R_{\ell} P_{j} R_{m}$ and $P_{j} R_{\ell} P_{m} R_{\ell}$ which both yield $(Q)_{3} \operatorname{tr} \tau^{3}$. At $k=4$, there is the unsurprising contribution $(Q)_{4} \operatorname{tr} \tau^{4}$. Together this yields $Q^{4} \mathbb{E}_{b} \operatorname{tr}\left(\rho_{g} \rho_{g^{\prime}}\right)^{2}=\frac{(Q)_{2}}{3^{n}}+2 \frac{(Q)_{3}}{2^{2 n}}+\frac{(Q)_{4}}{2^{3 n}}$.

Finally, we have $Q^{4} \mathbb{E}_{b} \operatorname{tr} \rho_{g}^{2} \rho_{g^{\prime}}^{2}=\sum_{j \ell} \sum_{m: m \neq j} \sum_{s: s \neq \ell} \operatorname{tr} \mathbb{E}_{b} P_{j} P_{\ell} R_{s} R_{m}$. At $k=1$ there is again zero contribution because of the collisions between P and R. At $k=4$, we have the usual $(Q)_{4} \operatorname{tr} \tau^{4}$. At $k=3$, the only nonzero contributions come from the combinations $P_{j}^{2} R_{s} R_{m}$ and $P_{j} P_{\ell} R_{m}^{2}$, which both yield $(Q)_{3} \operatorname{tr} \tau^{3}$. The case $k=2$ is the most complicated. The combination $P_{j}^{2} R_{m}^{2}$ yields $(Q)_{2} \operatorname{tr} \tau^{2}$. For the combination $P_{j} P_{\ell} R_{j} R_{\ell}$, we get a factorized expression $\prod_{i=1}^{n} \mathbb{E}_{b} \operatorname{tr} P_{j i} P_{\ell i} R_{j i} R_{\ell i}$, where \mathbb{E}_{b} refers to the i th column of b. It turns out that $\mathbb{E}_{b} \operatorname{tr} P_{j i} P_{\ell i} R_{j i} R_{\ell i}$ depends on $g_{i} \oplus g_{i}^{\prime}$. For $g_{i}^{\prime}=g_{i}$, we get $\frac{1}{3}$, while for $g_{i}^{\prime} \neq g_{i}$ the outcome is $-\frac{1}{6}=\frac{1}{3} \cdot\left(-\frac{1}{2}\right)$. The product over i yields $\left(\frac{1}{3}\right)^{n}\left(-\frac{1}{2}\right)^{\left|g \oplus g^{\prime}\right|}$. Adding up the pieces gives $Q^{4} \mathbb{E}_{b} \operatorname{tr} \rho_{g}^{2} \rho_{g^{\prime}}^{2}=\frac{(Q)_{2}}{2^{n}}+\frac{(Q)_{2}}{3^{n}}\left(-\frac{1}{2}\right)^{\left|g \oplus g^{\prime}\right|}+$ $2 \frac{(Q)_{3}}{2^{2 n}}+\frac{(Q)_{4}}{2^{3 n}}$.

Taking $\quad \mathbb{E}_{b} \operatorname{tr}\left(\rho_{g}-\rho_{g^{\prime}}\right)^{4}=2 \mathbb{E}_{b} \operatorname{tr} \rho_{g}^{4}-8 \mathbb{E}_{b} \operatorname{tr} \rho_{g}^{3} \rho_{g^{\prime}}+2 \mathbb{E}_{b} \operatorname{tr}\left(\rho_{g} \rho_{g^{\prime}}\right)^{2}+4 \mathbb{E}_{b} \operatorname{tr} \rho_{g}^{2} \rho_{g^{\prime}}^{2}$ yields the final result.

References

1. W. K. Wootters and W. H. Zurek, Nature 299 (1982) 802.
2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters, Phys. Rev. Lett. 70 (1993) 1895.
3. D. N. Matsukevich and A. Kuzmich, Science $\mathbf{3 0 6}(5696)$ (2004) 663.
4. C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, IEEE Int. Conf. Computers, Systems and Signal Processing (1984), pp. 175-179.
5. A. K. Ekert, Phys. Rev. Lett. 67 (1991) 661.
6. D. Gottesman and J. Preskill, Secure quantum key exchange using squeezed states, Quantum Information with Continuous Variables (Springer, 2003), pp. 317-356, arXiv: quant-ph/0008046v2.
7. C. H. Bennett, G. Brassard, S. Breidbard and S. Wiesner, Quantum cryptography, or unforgeable subway tokens, in CRYPTO (1982), pp. 267-275.
8. I. B. Damgård, S. Fehr, L. Salvail and C. Schaffner, Cryptography in the bounded quantum-storage model, in IEEE Symp. Foundations of Computer Science (2005), p. 449.
9. C. Schaffner, Phys. Rev. A 82 (2010) 032308.
10. H. Barnum, C. Crépeau, D. Gottesman, A. Smith and A. Tapp, Authentication of quantum messages, in IEEE Symp. Foundations of Computer Science (2002), pp. 449458. http://arxiv.org/abs/quant-ph/0205128.
11. P. O. Boykin and V. Roychowdhury, Phys. Rev. A 67 (2003) 042317.
12. A. Ambainis, M. Mosca, A. Tapp and R. de Wolf, Private quantum channels, in Annual Symp. Foundations of Computer Science (2000), pp. 547-553.
13. D. Gottesman, Quantum Inform. Comput. 3(6) (2003) 581.
14. B. Škorić, Int. J. Quantum Inform. 10(1) (2012) 1250001.
15. S. A. Goorden, M. Horstmann, A. P. Mosk, B. Škorić and P. W. H. Pinkse, Optica 1(6) (2014) 421.
16. M. Malik, O. S. Magaña-Loaiza and R. W. Boyd, Appl. Phys. Lett. 101 (2012) 241103.
17. A. Broadbent and C. Schaffner, Des. Codes Cryptogr. 78 (2016) 351.
18. P. A. Dickinson and A. Nayak, Approximate randomization of quantum states with fewer bits of key, in Quantum Computing: Back Action, Vol. 864, AIP (2006), pp. 18-36.
19. G. Aubrun, On almost randomizing channels with a short Kraus decomposition, Commun. Math. Phys. 288 (2009) 1103.
20. I. B. Damgård, T. B. Pedersen and L. Salvail, A quantum cipher with near optimal key-recycling, in CRYPTO (2005), pp. 494-510.
21. I. B. Damgård, T. B. Pedersen and L. Salvail, A quantum cipher with near optimal key-recycling, Technical Report rs RS-05-17, BRICS, Department of Computer Science, University of Aarhus (2005).
22. I. B. Damgård, T. B. Pedersen and L. Salvail, On the key-uncertainty of quantum ciphers and the computational security of one-way quantum transmission, in EUROCRYPT 2004, Vol. 3027 of $L N C S$ (2004), pp. 91-108.
23. S. Fehr and L. Salvail, Quantum authentication and encryption with key recycling (2016), https://arxiv.org/abs/1610.05614v1.
24. P. Hayden, D. Leung, P. W. Shor and A. Winter, Commun. Math. Phys. 250 (2004) 371.
25. R. König, R. Renner and C. Schaffner, IEEE Trans. Inf. Theory 55(9) (2009) 4337.
26. D. W. Leung, Quantum Inform. Comput. 2(1) (2002) 14.
27. P. O. Boykin and V. Roychowdhury, Phys. Rev. A 67(4) (2003) 042317.
28. G. Alagic, A. Broadbent, B. Fefferman, T. Gagliardoni, C. Schaffner and M. St. Jules, Computational security of quantum encryption (2016), https://arxiv.org/abs/ 1602.01441 v 1 .
29. J. Oppenheim and M. Horodecki, Phys. Rev. A $72(4)$ (2005) 042309.
30. S. P. Desrosiers, Quantum Inform. Process. 8(4) (2009) 331.
31. R. Canetti, Universally composable security: A new paradigm for cryptographic protocols, in Symp. Foundations of Computer Science (IEEE, 2001), pp. 136-145.
32. M. Ben-Or, M. Horodecki, D. W. Leung, D. Mayers and J. Oppenheim, The universal composable security of quantum key distribution, in Theory of Cryptography, Vol. 3378 of LNCS (2005), pp. 386-406.
33. R. Renner and R. König, Universally composable privacy amplification against quantum adversaries, in Theory of Cryptography, Vol. 3378 of LNCS (2005), pp. 407-425.
34. D. Unruh, Universally composable quantum multi-party computation, in Eurocrypt 2010, Vol. 6110 of $L N C S$ (Springer, 2010), pp. 486-505.
35. C. H. Bennett, G. Brassard and S. Breidbart, Nat. Comput. 13 (2014) 453, Original manuscript (1982).
36. Y. Dodis and A. Smith, Correcting errors without leaking partial information, in ACM STOC (2005), pp. 654-663.
37. D. Unruh, Revocable quantum time-release encryption, in Eurocrypt, Vol. 8441 of LNCS (2014), pp. 129-146.
38. D. Bruß. Phys. Rev. Lett. 81(14) (1998) 3018.
39. J. L. Massey and J. K. Omura, Method and apparatus for maintaining the privacy of digital messages conveyed by public transmission, US patent 4567600 (1982).
40. Y. Kanamori and S.-M. Yoo, Int. J. Netw. Secur. Appl. 1(2) (2009) 64.
41. T. Sasaki, Y. Yamamoto and M. Koashi, Nature 509 (2014) 475.
42. J. A. Tropp, Found. Comput. Math. 12(4) (2012) 389.
43. M. de Vries, Master's thesis, Eindhoven University of Technology, the Netherlands, in preparation (2017).

[^0]: * Corresponding author.

[^1]: ${ }^{\mathrm{b}}$ To keep things simple, we omit the optimization of the key refreshment procedure in case Bob rejects.

[^2]:
 ${ }^{\mathrm{d}}$ If Eve steals and stores 2β qubits from $|\Psi\rangle$, she causes bit error rate β. By repeatedly stealing qubits which have been encrypted with the same key b_{i}, Eve would essentially learn the plaintext values x_{i}. From the existence of this simple attack, we obtain a bound $f(\beta) \geq 2 \beta$. More sophisticated attacks exist.

[^3]: e The term " -2 " appears because the statistical distance D is half the L_{1}-norm. The difference between our result and ${ }^{18}$ is a constant term " 4 ".

[^4]: $\overline{{ }^{\mathrm{f}} \text { With probability } \frac{3}{4} \text {, it occurs that } b_{j i} \neq b_{\ell i}}$, yielding $\left|\left\langle\psi_{b_{j i} g_{i}} \mid \psi_{b_{i i} g_{i}}\right\rangle\right|^{6}=\left(\frac{1}{3}\right)^{3}$. With probability $\frac{1}{4}$, it occurs that $b_{j i}=b_{\ell i}$, yielding 1 . The expectation is $\frac{3}{4} \cdot\left(\frac{1}{3}\right)^{3}+\frac{1}{4}=\frac{5}{18}$.

