
 

Differential geometry of the mixed Hodge metric

Citation for published version (APA):
Peters, C. A. M., & Pearlstein, G. (2017). Differential geometry of the mixed Hodge metric. Communications in
Analysis and Geometry, Article 1407.4082. https://arxiv.org/abs/1407.4082

Document license:
Unspecified

Document status and date:
Published: 01/01/2017

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://arxiv.org/abs/1407.4082
https://research.tue.nl/en/publications/1be2ad91-de82-4986-8e0d-3690ff6b900c


Differential Geometry of the Mixed Hodge Metric

Gregory Pearlstein
Chris Peters

NOV 1. 2014

Summary We investigate properties of the mixed Hodge metric of a mixed period domain.
In particular, we calculate its curvature and the curvature of the Hodge bundles. We also
consider when the pull back metric via a period map is Kähler. Several applications in cases
of geometric interest are given, such as for normal functions and biextension bundles.

1 Introduction

1.1 Overview

Let f : X → S be a smooth, proper morphism between complex algebraic varieties.
Then, by the work of Griffiths [Gr], the associated local system HQ = Rk f ∗QX

underlies a variation of pure Hodge structure of weight k, which can be described
by a period map

ϕ : S → Γ\D, (1)

where Γ is the monodromy group of the family. In the case where the morphism
X → S is no longer smooth and proper the resulting local system underlies a
variation of (graded-polarized) mixed Hodge structure over a Zariski open subset
of S [SZ]. As in the pure case considered by Griffiths, a variation of mixed Hodge
structure can be described in terms of a period map which is formally analogous
to (1) except that D is now a classifying space of graded polarized mixed Hodge
structure [P1, U].

As we shall explain below, there is a natural metric on such D, induced by
the mixed Hodge metric (5). Deligne’s second order calculations involving this
metric in the pure case [D1] can be extended to the mixed setting, as we show in
this article. For instance, we find criteria as to when the induced Hodge metric
on S is Kähler. We also compute the curvature tensor of this metric, with special
emphasis on cases of interest in the study of algebraic cycles, archimedean heights
and iterated integrals. The alternative approach [Ca-MS-P, Chap. 12] in the pure
case based on the Maurer-Cartan form does not seem to generalize as we encounter
incompatibilities between the metric and the complex structure as demonstrated in
§ 9.
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1.2 The Pure Case

Returning to the pure case, we recall that D parametrizes Hodge structures of
weight k on a reference fiber HQ of HQ with given Hodge numbers {hp,q} and
polarized by a non-degenerate bilinear form Q of parity (−1)k . The monodromy
group Γ is contained in the real Lie group GR ⊂ GL(HR) of automorphisms of the
polarization Q.

In terms of differential geometry, the first key fact is that GR acts transitively on
D with compact isotropy, and hence D carries a GR invariant metric. It is induced
by the polarizing form Q as follows. Any Hodge filtration F on HC then induces

hF (x, y) := Q(CF x, ȳ), x, y ∈ HC, (2)

where CF |H p,q = ip−q is the Weil-operator. This is a metric as a consequence
of the two Riemann bilinear relations: the first, Q(Fp ,Fk−p+1) = 0 states that the
Hodge decomposition is hF -orthogonal and the second states that hF is a metric
on each Hodge-component.

Next, by describing the Hodge structures parameterized by D in terms of the
corresponding flags

FpHC =
⊕
a≥p

Ha,k−a

we obtain an open embedding of D into the flag manifold Ď consisting of decreas-
ing filtrations F∗HC such that dim Fp =

∑
a≥p ha,k−a which satisfy only the first

Riemann bilinear relation. In particular, via this embedding, the set D inherits the
structure of a complex manifold upon which the group GR acts via biholomor-
phisms.

As a flag manifold, the tangent space at F to Ď can be identified with a subspace
of ⊕

p

Hom(Fp ,HC/Fp). (3)

Via this identification, we say that a tangent vector is (strictly) horizontal if it is
contained in the subspace ⊕

p

Hom(Fp ,Fp−1/Fp).

One of the basic results of [Gr] is that the period map associated to a smooth proper
morphism X → S as above is holomorphic, horizontal and locally liftable.

Combining the previous two paragraphs, the metric (2) on V induces a func-
torial metric on (3) and hence induces a hermitian metric h on the analytic open
subset D of the smooth variety Ď. In particular, since GR acts transitively on D via
biholomorphisms and

hg .F (x, y) = h(g−1x,g−1y)
for all g ∈ GR and F ∈ D, it follows that h is a GR-invariant metric on D.
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By [GS, Theorem 9.1] the holomorphic sectional curvature of D along hori-
zontal tangents is negative and bounded away from zero. In particular, as a conse-
quence of this curvature estimate, if S ⊂ S̄ is a smooth normal crossing compacti-
fication with unipotent monodromy near p ∈ S̄ − S, then by [Sc] the period map ϕ
has at worst logarithmic singularities near p.

1.3 Mixed Domains

In the mixed case, period maps of geometric origin are holomorphic and satisfy
the analogous horizontality condition ([U, SZ]). However, although there is a nat-
ural Lie group G (see § 2.1) which acts transitively on the classifying spaces of
graded-polarized mixed Hodge structure, the isotropy group is no longer compact,
and hence there is no G-invariant hermitian structure. In spite of this, A. Kaplan
observed in [Ka] that one could construct a natural hermitian metric on D in the
mixed case which was invariant under a pair of subgroups GR and exp(Λ) of G
which taken together act transitively on D. The subgroup exp(Λ) (see § 2.2) de-
pends upon a choice of base point in D and intersects the group GR non-trivially.
Nonetheless, as we said before, by emulating the computations of Deligne in [D1],
we are able to compute the curvature tensor of D in the mixed case (cf. §3).

Let us elaborate on this by defining the natural metric. A mixed Hodge struc-
ture (F,W ) on V induces a unique functorial bigrading [D2], the Deligne splitting

VC =
⊕
p,q

I p,q (4)

such that Fp =
⊕

a≥p Ia,b , Wk =
⊕

a+b≤k Ia,b and

Ī p,q = Iq,p mod
⊕

a<q,b<p

Ia,b .

In the pure case a polarization induces a hermitian inner product for which the
Hodge decomposition is orthogonal. In the mixed case we first declare the splitting
(4) to be h(F,W )–orthogonal and then define the metric on I p,q making use of the
graded polarization (Gr h)F as follows. The summand I p,q maps isomorphically
onto the subspace H p,q of GrWp+q . So on classes [z] of elements z ∈ I p,q ⊂ W p+q

modulo W p+q−1 the metric hF,W can be defined by setting:

h(F,W )(x, y) = (Gr h)F ([x], [y]), x, y ∈ I p,q . (5)

This is the mixed Hodge metric alluded to previously. By functoriality it induces
Hodge metrics on End(V ) (see (16)) and hence also on the Lie algebra of G. As
in the pure case this induces a natural metric on the mixed period domain (see
Definition 2.6). It is these metrics that form our principal subject of investigation
of this paper.
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Remark 1.1. A Mumford–Tate domain DM classifies pure Hodge structures with
extra Hodge tensors [GGK]. In analogy with the classifying spaces of pure Hodge
structures, DM is the orbit of a generic point F ∈ DM under the real points
Mumford–Tate group of F. The analog for mixed Hodge structures are mixed
Mumford–Tate domains, e.g. the mixed Shimura varieties of Pink and Milne. See
Remark 2.4. All of the Lie theoretic calculations done in section 2, and hence all of
the applications in the subsequent sections remain true for mixed Mumford–Tate
domains.

1.4 Examples

To get an idea of the nature of these metrics in the mixed situation we give a few
examples.

1. Consider the mixed Hodge structure on the cohomology of quasi-projective
curves. So, let X be a compact Riemann surface of genus g and S be a finite
set of points on X . Then, F1H1(X − S,C) consists of holomorphic 1-forms
Ω on X − S with at worst simple poles along S, and the mixed Hodge metric
is given by

||Ω||2 = 4π2
∑
p∈S

|Resp(Ω)|2 +

g∑
j=1

�����

∫
X

Ω ∧ ϕ̄ j

�����

2

, (6)

where {ϕ j} is unitary frame for H1,0(X) with respect to the standard Hodge
metric on H1(X,C).
To verify this, we recall that in terms of Green’s functions, the subspace
I1,1 can be described as follows: If H is the space of real-valued harmonic
functions on X − S with at worst logarithmic singularities near the points of
S, then

I1,1 ∩ H1(X − S,R) =
{√
−1 · ∂( f ) | f ∈ H

}
. (7)

Indeed, the elements of I1,1 will be meromorphic 1-forms with simple poles
along S. The elements

√
−1 · ∂( f ) are also real cohomology classes since

the imaginary part is exact.

Direct calculation using (7) and Stokes’ theorem shows that I1,1 consists of
the elements in F1 which pair to zero against H0,1. Therefore, the terms∫
X
Ω ∧ ϕ̄ j appearing in (6) only compute the Hodge inner product for the

component of Ω in I1,0.

2. Recall that the dilogarithm [Ha1, §1] is the double integral

ln2(x) =

∫ x

0
w1 · w2, w1 =

1
2πi
·

dz
1 − z

, w2 =
1

2πi
·

dz
z
.
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For the corresponding variation of mixed Hodge structure arising from the
mixed Hodge structure on π1(P1− {0,1,∞}, x), the pull back metric is given
by

‖∇d/dz ‖2 =

[
1
|z |2 +

1
|z − 1|2

]
. (8)

For a proof, we refer to § 6.

3. Consider mixed Hodge structures whose Hodge numbers are h0,0 = h−1,−1 =

1. The corresponding classifying space is isomorphic to C with the Eu-
clidean metric. In particular, the curvature is identically zero. Note that
the corresponding extensions are parametrized by Ext1MHS(Z(0),Z(1)) = C∗:
these are equivalence classes of mixed Hodge structures, but we are not con-
sidering these.

4. Let (X,ω) be a compact Kähler manifold of dimension n, and (F,W ) denote
the mixed Hodge structure on V =

⊕
p H p(X,C) defined by setting I p,q =

Hn−p,n−q(X). For any u ∈ H1,1(X) let N(u) denote the linear map on V
defined by

N(u)v = u ∧ v (9)

Then, N(u) is of type (−1,−1) with respect to (F,W ). By the Hard–Lefschetz
theorem, if u is a Kähler class the intersection pairing on X can be used
to construct a graded-polarization of (F,W ). In the language of [Sc, CKS]
(F,W ) is an example of a mixed Hodge structure polarized by N .

5. The period domain quotients Γ\D and their Mumford–Tate domain analogs
can be partially compactified by adjoining boundary components consisting
of nilpotent orbits [KU]. Via the theory of polarized mixed Hodge structures,
such boundary components acquire mixed Hodge metrics.

Some properties the Hodge metric has in the pure case are no longer valid in
the mixed situation. This is already clear from Example 3: we can not expect D
to have holomorphic sectional curvature which is negative and bounded away from
zero along horizontal directions. Nonetheless, period maps of variations of mixed
Hodge structure of geometric origin satisfy a system of admissibility conditions
which ensure that they have good asymptotic behavior. At the level of D-modules,
this is exemplified by Saito’s theory of mixed Hodge modules. At the level of
classifying spaces, one has the analogs of Schmid’s nilpotent orbit theorem [P2,
Hay-P] and the SL2-orbit theorem [KNU, P3].

1.5 Results

1. A mixed period domain D is an open subset of a homogeneous space for a
complex Lie group GC, and hence we can identify TF (D) with a choice (22)
of complement q to the stabilizer of F in Lie(GC). In analogy with Théorème
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(5.16) of [D1], the holomorphic sectional curvature in the direction u ∈ q '
T1,0
F (D) is given by (cf. Theorem (3.4)):

R∇(u, ū) = − [(ad ū∗+ )q, (ad ū+ )q] − ad [u, ū]0
− (ad ([u, ū]+ + [u, ū]∗+) )q

where the subscripts q, 0, + denote projections onto various subalgebras of
Lie(GC), and ∗ is adjoint with respect to the mixed Hodge metric; the adjoint
operation is meant to be preceded by the projection operator +.

2. In the pure case it is well known [Gr2, Prop. 7.7] that the “top” Hodge bun-
dle1 Fn is positive in the differential geometric sense while the “dual” bundle
F0/F1 is negative. In the mixed setting, the Chern form of the top Hodge
bundle is non-negative, and positive wherever the (−1,1)-component of the
derivative of the period map acts non-trivially on the top Hodge bundle. See
Corollary 5.4.

3. By [Lu], the pseudo-metric obtained by pulling back the Hodge metric along
a variation of pure Hodge structure is also Kähler, and so it is a natural ques-
tion to ask when there are more instances where the pullback of the mixed
Hodge metric along a mixed period map is Kähler. In §7, we answer this
question in terms of a system of partial differential equations; in particular
we prove:

Theorem (c.f. Theorem 7.5). Let Vbe a variation of mixed Hodge structure
with only two non-trivial weight graded-quotients GrWa and GrWb which are
adjacent, i.e. |a − b| = 1. Then, the pullback of the mixed Hodge metric
along the period map of V is pseudo-Kähler.

An example (cf. §6) of a variation of mixed Hodge structure of the type
described at the end of the previous paragraph arises in homotopy theory
as follows: Let X be a smooth complex projective variety and Jx be the
kernel of the natural ring homomorphism Zπ1(X, x) → Z. Then, the stalks
Jx/J3

x underlie a variation of mixed Hodge structure with weights 1 and 2
and constant graded Hodge structure [Ha1]. We show:

Proposition (c.f. Corollaries 6.7, 7.3). If the differential of the period map
of Jx/J3

x is injective for a smooth complex projective variety X then the pull
back metric is Kähler and its holomorphic sectional curvature of is non-
positive.

Concerning the injectivity hypothesis, which is directly related to mixed
Torelli theorems we note that these hold for compact curves [Ha1] as well as
once punctured curves [Kae].

1In standard notation; it differs from the notation employed in [Gr2].
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4. The curvature of a Hodge–Tate domain is identically zero:

Proposition (c.f. Lemma 3.3 and Corollary 7.3). Suppose hp,q = 0 unless
p = q. Then the curvature of the mixed Hodge metric is identically zero, and
pulls back to a Kähler pseudo-metric along any period map ϕ : S → Γ\D.

Consequently, a necessary condition for a period map ϕ : S → Γ\D of
Hodge-Tate type to have injective differential is that S support a Kähler met-
ric of holomorphic sectional curvature ≤ 0. Important examples of such
variations arise in the study of mixed Tate motives and polylogarithms [D3]
and mirror symmetry [D4].

5. Let X → ∆r be a holomorphic family of compact Kähler manifolds of di-
mension n equipped with a choice of Kähler class common to every member
of the family. Let (F(s),W ) be the corresponding variation of mixed Hodge
structure defined by setting I p,q = Hn−p,n−q(Xs) as in Subsection 1.4.4.
Suppose that λ1, . . . , λk ∈ H1,1(Xs ,R) for all s (e.g. a set of Kähler classes
common to all members of the family). Let LC be the complex linear span
of λ1, . . . , λr and let u : ∆r → LC be a holomorphic function. Then, with N
as in (9)

(eiN (u(s)) · F(s),W ), (10)

is a variation of mixed Hodge structure. The curvature of the correspond-
ing classifying space is semi-negative along directions tangent to (10), and
strictly negative wherever the period map of F(s) has non-zero derivative.
See Example (4.5). The resulting metric is also pseudo-Kähler, cf. Corollary
(7.3).

6. Turning now to algebraic cycles, recall that by [Sa], a normal function is
equivalent to an extension in the category of variations of mixed Hodge
structure2

0→ H→ V→ Z(0)→ 0. (11)

The classical example comes from the Abel-Jacobi map for degree zero di-
visors on a compact Riemann surface and its natural extension

AJ : CHk
hom(Y )→ Jk (Y ) (12)

to homologically trivial algebraic cycles on a smooth complex projective
variety Y [Gr]. Application of this construction pointwise to a family of al-
gebraic cycles Zs ⊂ Ys yields the prototypical example of a normal function

ν : S → J(H) (13)

where H is the variation of pure Hodge structure attached to the family Ys .

2Note: We have performed a Tate twist to make Hhave weight -1 here.
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Proposition. 1. The pullback of the mixed Hodge metric along a normal
function is a pseudo-Kähler (c.f. Example 7.6).
2. In the case where the underlying variation of pure Hodge structure is
constant (e.g. a family of cycles on a fixed smooth projective variety Y), the
holomorphic sectional curvature is semi-negative (Corollary 6.3).

Using the polarization of H, one can construct a natural biextension line
bundle B → S whose fibers parametrize mixed Hodge structures with graded
quotients

GrW0 � Z(0), GrW
−1 � Hs , GrW

−2 � Z(1)
and such that the extension between GrW0 and GrW

−1 is determined by ν(s)
and the extension from GrW

−1 and GrW
−2 is determined by the dual of ν(s).

As noted by Richard Hain, the biextension line bundle B carries a natural
hermitian metric h which is based on measuring how far the mixed Hodge
structure defined by b ∈ Bs is from being split over R. In [Hay-P], the first
author and T. Hayama prove that for B → ∆∗r arising from an admissible
normal function with unipotent monodromy, the resulting biextension metric
is of the form

h = e−ϕ (14)

with ϕ ∈ L1
loc(∆r ), i.e. it defines a singular hermitian metric in the sense

of [Dem] and hence can be used to compute the Chern current of the exten-
sion of B̄ obtained by declaring the admissible variations of mixed Hodge
structure to define the extending sections (cf. [Hay-P, BP2]). For this situa-
tion we show (§8):

Proposition. Let S be a curve and let B be a variation of biextension type
over S. Then the Chern form of the biextension metric (14) is the (1,1)–form

−
1

2πi
∂∂̄h(s) =

1
2
[γ−1,0, γ̄−1,0] ds ∧ ds,

where γ−1,0 is the Hodge component of type (−1,0) of ϕ∗(d/ds) viewed as
an element of gC. For self-dual variations this form is semi-negative.

Remark. This result was also obtained Richard Hain (§13, [Ha2]) by a dif-
ferent method.

We then deduce (see Cor. 8.3 for a precise statement):

Corollary. Let B be a self-dual biextension over S with associated normal
function ν. Then, the Chern form of the biextension metric vanishes along
every curve in the zero locus of ν.
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The asymptotic behavior of the biextension metric is related to the Hodge
conjecture: Let L be a very ample line bundle on a smooth complex projec-
tive variety X of dimension 2n and P̄ be the space of hyperplane sections
of X . Then, over the locus of smooth hyperplane sections P ⊂ P̄, we have
a natural variation of pure Hodge structure H of weight 2n − 1. Starting
from a primitive integral, non-torsion Hodge class ζ of type (n,n) on X , we
can then construct an associated normal function νζ by taking a lift of ζ to
Deligne cohomology. The Hodge conjecture is then equivalent [GG, BFNP]
to the existence of singularities of the normal function νζ (after passage to
sufficiently ample L). In [BP2], it will be shown that the existence of sin-
gularities of νζ is detected by the failure of the biextension metric to have a
smooth extension to P̄.

1.6 Structure

We start properly in §2 and summarize the basic properties of the classifying spaces
of graded-polarized mixed Hodge structures following [P1] and compute the de-
pendence of the bigrading (4) on F ∈ D up to second order. Using these results,
we then compute the curvature tensor and the holomorphic sectional curvature of
D in §3–4.

In §5 and §8 we compute the curvature of the Hodge bundles and the biexten-
sion metrics using similar techniques. Likewise, in §7 we use the computations of
§4 to determine when the pull back of the mixed Hodge metric along a period map
is Kähler. In §6 we show how these calculations apply to particular situations of
geometric interest.

In §9, we construct a classifying space D which is a reductive domain such that
its natural complex structure is not compatible with the usual complex structure
making the Hodge metric a hermitian equivariant metric. So the Chern connection
for the Hodge metric is not the same as the one coming from the Maurer-Cartan
form on GC. This makes the calculations in the mixed setting intrinsically more
involved than in the pure case, even in the case of a split mixed domain.

In Appendix A we compute the Levi-Civita connection for the Hodge met-
ric. In general it does not conserve the splitting of the complex tangent bundle
into the holomorphic and anti-holomorphic parts which makes the formulas more
complicated than the one for the Chern connection. Nevertheless in certain cases
it simplifies which has in favorable cases consequences for the curvature and for
geodesics (Cor. A.10).
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2 Classifying Spaces

2.1 Homogeneous Structure

We begin this section by reviewing some material on classifying spaces of graded-
polarized mixed Hodge structure [U] which appears in [P1, P2, P3]. Namely, in
analogy with the pure case, given a graded-polarized mixed Hodge structure (F,W )
with underlying real vector space VR, the associated classifying space D consists
of all decreasing filtrations of VC which pair with W to define a graded-polarized
mixed Hodge structure with the same graded Hodge numbers as (F,W ). The data
for D is therefore

(VR,W•,{Q•},h•,•)
where W• is the weight filtration, {Q•} are the graded-polarizations and h•,• are
the graded Hodge numbers.

To continue, we recall that given a point F ∈ D the associated bigrading (4)
gives a functorial isomorphism VC � GrW which sends I p,q to H p,q ⊆ GrWp+q via
the quotient map. The pullback of the standard Hodge metrics on GrW via this
isomorphism then defines a mixed Hodge metric on VC which makes the bigrading
(4) orthogonal and satisfies

hF (u,v) = ip−qQp+q([u], [v̄])
if u, v ∈ I p,q . By functoriality, the point F ∈ D induces a mixed Hodge structure
on End(V ) with bigrading

End(VC) =
⊕
r,s

End(V )r,s (15)

which is orthogonal with respect the associated metric

hF (α, β) = Tr(αβ∗) (16)

where β∗ is the adjoint of β with respect to h.
Let GL(VC)W ⊂ GL(VC) denote the Lie group of complex linear automor-

phisms of VC which preserve the weight filtration W . For g ∈ GL(VC)W we let
Gr(g) denote the induced linear map on GrW . Let GC be the subgroup consisting
of elements which induce complex automorphisms of the graded-polarizations of
W , and GR = GC ∩ GL(VR).

In the pure case, GR acts transitively on the classifying space and GC acts
transitively on the compact dual. The mixed case is slightly more intricate: Let G
denote the subgroup of elements of GC which act by real transformations on GrW .
Then,

GR ⊂ G ⊂ GC

and we have the following result:

10



Theorem 2.1 ([P1, §3]). The classifying space D is a complex manifold upon
which G acts transitively by biholomorphisms.

Remark. Hertling [He] defines a period domain of polarized mixed Hodge struc-
tures on a fixed real vector space V equipped with a polarization Q and weight
filtration induced by a nilpotent infinitesimal isometry N of (V,Q). The difference
with our approach is that the latter domain is homogeneous under the subgroup of
G consisting of elements commuting with N . So in a natural way it is a submani-
fold of our domain.

2.2 Hodge Metric on the Lie Algebra

Let gR = Lie(GR) and gC = Lie(GC). By functoriality, any point F ∈ D induces a
mixed Hodge structure on gC = gR ⊗ C with bigrading inherited from the one on
End(VC), i.e. gr,s = gC ∩ End(V )r,s . For future reference, we note that:

• gC ∩ End(V )r,s = 0 if r + s > 0;

• W−1 End(V ) ⊂ gC.

• The orthogonal decomposition

End(VC) = gC ⊕ g
⊥
C (17)

induces a decomposition

End(V )p,−p = g
p,−p
C

⊕ (g⊥C)p,−p (18)

• Let ∗ denote ajoint with respect to the metric hF . Then,

∗ : End(V )p,q → End(V )−p,−q ; (19)

• By Lemma (2.14) below α ∈ gp,−p =⇒ α∗ ∈ g−p,p .

Remark 2.2. In general, for a mixed Hodge structure which is not split over R, the
operations of taking adjoint with respect to the mixed Hodge metric and complex
conjugate do not commute.

Let Flag(D) denote the flag variety containing D, i.e. the set of all complex
flags of VC with the same rank sequence as the flags parametrized by D. Then,
since G ⊂ GC acts transitively on D, it follows that the orbit of any point F ∈ D
under GC gives a well defined “compact dual” Ď ⊂ Flag(D) upon which GC acts
transitively by homeomorphisms:

Ď = GC/GF
C . (20)
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Remark 2.3. As in the pure case, D is an open subset of Ď with respect to the
analytic topology. In the mixed case however, Ď is usually not compact: in Exam-
ple 1.4.3 one has G = GC and hence D = Ď = C ⊂ Flag(D) = P1. One could
consider the closure of Ď in the ambient flag variety to obtain a compact object,
but as the example shows, this need not be a homogeneous space for GC.

Remark 2.4. In analogy with the above, one defines the mixed Mumford–Tate do-
mains as follows: Let (F,W ) be a graded-polarized mixed Hodge structure with
MT group M and M split be the direct sum of the Mumford–Tate groups of the as-
sociated pure Hodge structures on GrW . Then, M is an extension of Msplit by a
unipotent group U . Let u denote the Lie algebra of U(C) viewed as a real Lie alge-
bra andmR denote the Lie algebra of M(R). Let GM denote the real Lie group with
Lie algebra u+mR viewed as a real subalgebra of Lie(M(C)). Then, the associated
mixed Mumford–Tate domain DM is the orbit of F under GM .

The proof that DM is a complex manifold is parallel to the proof for D: The
compact dual ĎM is the complex homogeneous space defined by the orbit of F
under M(C), and hence it is sufficient to check that there exists a neighborhood O
of 1 ∈ M(C) such that O · F ⊂ DM .

It follows that in subsequent calculations we may replace gC by Lie(M(C)).
By the defining properties of the bigrading (4), it follows that

g
F
C =

⊕
r ≥0

g
r,s (21)

is the Lie algebra of the stabilizer of F ∈ D with respect to the action of GC on Ď.
Accordingly,

qF =
⊕
r<0

g
r,s (22)

is a vector space complement to gF
C

in qC and hence:

Lemma 2.5. The map

u ∈ gC 7→ γ∗(d/dt)0, γ(t) = etu · F

determines an isomorphism between qF and Thol
F (D).

The preceding Lemma gives a way to induce a hermitian metric on the tangent
bundle T(D):
Definition 2.6. The isomorphism (22) provides D with a metric, the Hodge metric.

For F ∈ D let πq denote orthogonal projection End(VC) → gC. We note that
the restriction of πq to gC is just projection with respect to the decompostion

gC = g
F
C ⊕ qF . (23)

12



Lemma 2.7. Let f ∈ gF
C

. Then,

πq◦(ad f )n =
�
πq◦ ad f

�n (24)

as linear operators on gC.

Proof : Induct on n, with the base case n = 1 a tautology. Observe that

(ad f )nu = v + w. (25)

with v ∈ qF and w ∈ gF
C

. Therefore, (ad f )n+1u = [ f ,v] + [ f ,w] and hence

πq((ad f )n+1u) = πq[ f ,v]. (26)

By equation (25), v = πq((ad f )nu) which is equal to (πq◦ ad f )nu by induction.
Substituting this identity into (26) gives

πq((ad f )n+1u) = (πq◦ ad f )n+1u. �

Before stating the next result, we emphasize that unlike the pure case, the op-
eration of taking adjoint with respect to the mixed Hodge metric does not preserve
gC. Therefore, the statement and proof of the next result all occur in the Lie algebra
End(V ).
Corollary 2.8. Let f ∈ gF

C
and v, w ∈ q. Then,

hF (v,exp(πq◦ ad f )w) = hF (exp(πq◦ ad f ∗)v,w) (27)

Proof : It is sufficient to prove

hF (v, (πq◦ ad f )m w) = hF ((πq◦ ad f ∗)m v,w)
We induct on m. For m = 1 we have

hF (v, πq[ f ,w]) = hF (v, [ f ,w]) = hF ([ f ∗,v],w) = hF (πq[ f ∗,v],w)
since [ f ,w] = w′ + w′′ with w′ ∈ q and w′′ ∈ q⊥, which justifies

hF (v, πq[ f ,w]) = hF (v, [ f ,w]) = hF ([ f ∗,v],w)
Likewise, [ f ∗,v] = v′ + v′′ with v′ ∈ q and v′′ ∈ q⊥ and so

hF ([ f ∗,v],w) = hF (πq[ f ∗,v],w)
Since at each stage we project onto q, passage from m to m + 1 follows from the
formula for m = 1.

13



Define
Λ =

⊕
r,s<0

g
r,s (28)

and note that since the conjugation condition appearing in (4) can be recast as

ḡ
p,q ⊂ gq,p + [Λ,gq,p], (29)

it follows that Λ has a real form

ΛR = Λ ∩ gR. (30)

Lemma 2.9 ([P1, Lemma 4.11]). If g ∈ GR ∪ exp(Λ) then

g(I p,qF ) = I p,qg ·F .

Recall that a mixed Hodge structure (F,W ) is said to be split over R if

I p,q = Iq,p .

Those mixed Hodge structures make up a real analytic subvariety DR ⊂ D. To
any given mixed Hodge structure (F,W ), one associates a special split real mixed
Hodge structure F̂ = eF · F as follows.

Proposition 2.10 ([CKS, Prop. 2.20]). Given a mixed Hodge structure there is a
unique δ ∈ ΛR such that the spaces Î p,q = exp (−iδ)I p,q give the splitting of a
split real mixed Hodge structure F̂ = eF · F, the Deligne splitting.

A splitting operation is a particular type of fibration D → DR of D over the
locus of split mixed Hodge structures (cf. Theorem (2.15) [P3]). Our calculations
below use the following result due to Kaplan:

Theorem 2.11 ([Ka]). Given a choice of splitting operation and choice of base
point F ∈ D, for each element g ∈ G exists a distinguished decomposition

g = gR exp (λ) f , λ ∈ Λ, gR ∈ GR, f ∈ exp(W−1gl(VC)) ∩ GF .

Moreover, if the splitting operation is an analytic or C∞ map, the map (F,g) 7→
(gR,eλ , f ) is analytic, respectively C∞.

Using the identification of TF D with qF as given by Lemma 2.5, the mixed
Hodge metric (16) induces a hermitian structure on D. In analogy with Lemma
(2.9) and the fact that G acts by isometry on GrW it follows that

Lemma 2.12 ([Ka, P3]). For any g = gReλ , gR ∈ GR, λ ∈ Λ, the mixed Hodge
metric on gC changes equivariantly:

hg ·F (Ad (g) α,Ad g) β) = hF (α, β), ∀α, β ∈ g.
and hence g : TF (D)→ Tg ·F (D) is an isometry.
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Remark 2.13. (1) In [KNU, KNU2], the authors consider a different metric on D
which is obtained by replacing the bigrading (4) attached to (F,W ) by the bigrad-
ing attached to the canonical or sl2-splitting of (F,W ). They then twist this metric
by a distance to the boundary function (§4,[KNU2]). In particular, although the
resulting metric on D in invariant under GR, it is no longer true that g ∈ exp(Λ)
induces an isometry from TF (D) to Tg ·F (D). The metric of [KNU, KNU2] is not
quasi-isometric to the metric considered in this paper except when D is pure. See
[Hay-P] for details on the geometry of this metric.
(2) The previous Lemma implies that, understanding how the decomposition ap-
pearing in Theorem 2.11 depends on F ∈ D up to second order is sufficient to
compute the curvature of D (cf.[D1]).

For future use, we introduce the subalgebras

n+ :=
⊕

a≥0,b<0

g
a,b , n− :=

⊕
a<0,b≥0

g
a,b . (31)

Then, recalling the definition (28) of Λ, we have a splitting

gC = n+ ⊕ g
0,0 ⊕ n− ⊕ Λ

and we let
End(VC)→ n+, g

0,0,n−, Λ

u 7→ u+, u0, u−, uΛ
(32)

denote orthogonal projection from End(VC) to gC followed by projection onto the
corresponding factor above.

We conclude this section with a formula for the adjoint operator α 7→ α∗ with
respect to the mixed Hodge metric.

Lemma 2.14. Let z =
⊕

p g
−p,p and denote

πz : End(VC)→ z (33)

the corresponding orthogonal projection. Then (with CF the Weil operator of
GrW V) we have

α ∈ z =⇒ α∗ = −Ad (CF ) πz(ᾱ).
Proof : In the pure case, the statement is well known. Since both sides belong to
z, we only have to check that we get the correct formula on GrW0 (gC). �

2.3 Second Order Calculations

In this subsection, we compute the second order behavior of the decomposition of
g = exp(u) given in Theorem 2.11. The analogous results to first order appear in
[P1].
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Employing the notation3 from (22) and (31) consider the following splitting

gC = g
0,0 ⊕ n+︸    ︷︷    ︸
gF
C

⊕ n− ⊕ Λ︸  ︷︷  ︸
q

. (34)

Since q is a complement to gF
C

, the map

u ∈ q 7→ eu · F (35)

restricts to biholomorphism of a neighborhood U of 0 in q onto a neighborhood of
F in D. Relative to this choice of coordinates, the identification of q with TF (D)
coincides with the one considered above (cf. (22)).

We need to compare this with the real structure on gC = gR ⊗ C. As usual, we
write

α = Re(α) + i · Im(α), Re(α) =
1
2
(α + ᾱ), i · Im(α) =

1
2
(α − ᾱ).

Lemma ([P1, Theorem 4.6]). Set

=(g0,0) :=
{
ϕ ∈ g0,0 | ϕ̄(0,0) = −ϕ

}
.

Then
gC = gR ⊕ =(g0,0) ⊕ n+ ⊕ iΛR. (36)

Corollary 2.15 ([P1, Corollary 4.7]). There exists a neighborhood of 1 ∈ GC such
that every element g in this neighborhood can be written uniquely as

g = gR exp (λ) exp(ϕ), gR ∈ gR, λ ∈ iΛR, ϕ ∈ g0,0 ⊕ n+ ⊂ g
F
C ,

where ϕ0,0 is purely imaginary.

This implies that, possibly after shrinking U there are unique functions γ, λ,ϕ :
U → gR, iΛR,g

F
C

respectively such that

exp(u) = exp (γ(u))︸      ︷︷      ︸
in GR

· exp (λ(u)) · exp (ϕ(u))︸      ︷︷      ︸
in GF

C

. (37)

Now we introduce g(u) = exp(u) = gR(u) · exp(λ(u)) · exp (ϕ(u)) as functions on
U ∩ q.

As a prelude to the next result, we recall that by the Campbell–Baker–Hausdorff
formula we have

exey = ex+y+ 1
2 [x,y]+· · ·.

Alternatively, making the change of variables u = −y, v = x + y this can be written
as

eu+ve−u = eψ(t0, t1, ... ),

3We simplify notation by writing q instead of qF .
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where tm = (ad u )mv and ψ is a universal Lie polynomial. In a later computation
(see the proof of Lemma 6.1) we need more information, namely on the shape of
the part linear in v:

ψ1(u,v) =
∑
m

1
(m + 1)! tm =

ead u − 1
ad u

v. (38)

Proposition 2.16. Let F ∈ D and u = u− + uΛ ∈ n− ⊕ Λ = q. Then,

ϕ(u) = −ū+ +
1
2
[u, ū]0 + [u, ū]+ +

1
2
[ū, ūΛ]+ + O3(u, ū)

where the subscripts mean the orthogonal projections onto g0,0, Λ, n+ respectively.

Proof : For the linear approximation note that

u = Re[2(u−) − ūΛ] − i Im(ūΛ) − ū+ ∈ gR ⊕ iΛR ⊕ g
F
C

and that equation (37) yields the first degree approximation u = γ1(u)+λ1(u)+ϕ1(u)
so that the result follows by uniqueness.

The computation proceeds by expanding the left hand side of

exp (λ) exp (ϕ) exp (−u) = exp (−γ) ∈ GR

using the Campbell–Baker–Hausdorff formula, and then using the fact that the right
hand side is real. To first order the decomposition is

u = γ1(u) + λ1(u) + ϕ1(u)
where

γ1(u) = u + ū −
1
2
πΛ(ū) − 1

2
πΛ(ū)

λ1(u) = −
1
2
πΛ(ū) +

1
2
πΛ(ū)

ϕ1(u) = −ū + πΛ(ū)
where we have used πΛ to denote projection to Λ for clarity regarding the order of
complex conjugation, since these two operations do not commute.

The second degree approximation then yields that

λ2 + ϕ2 +
1
2
([λ1, ϕ1 − u] − [ϕ1,u]) is real.

The projection to n+ equals [ϕ2]+ + 1
2 ([λ1, ϕ1 − u]+ − [ϕ1,u]+). Since λ̄1 = −λ1,

the reality constraint implies that

(ϕ2)+ = −
1
2
{[λ1, ϕ1 + ϕ̄1 − u − ū]+ + [ϕ̄1, ū]+ − [ϕ1,u]+}

= −
1
2
{[ϕ̄1, ū]+ − [ϕ1,u]+ + [λ1, ϕ1 + ϕ̄1 − u − ū]+} .
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By the conjugation rules n̄± ⊂ n̄∓ + Λ, the fact that Λ, n+,n− are subalgebras, and
using [n±,Λ] ⊂ n± + Λ this simplifies to

(ϕ2)+ = −
1
2
{[λ1, ϕ1 − ū]+ + [ϕ̄1, ū]+ − [ϕ1,u]+} .

Now set ϕ1 = −ū + πΛ(ū) so that ϕ1 − ū = −2ū mod Λ. The first term thus reads
1
2 [2λ1, ū]+, and since ϕ1 = −π+ū, the second term becomes 1

2 [ū+, ū]+ while the last
simplifies to − 1

2 [ū,u]+ ; in total we get

(ϕ2)+ =
1
2
[2λ1 + π+ū, ū]+ +

1
2
[λ1, ū]+.

Putting 2λ1 = πΛū − πΛ(ū) so that 2λ1 + π+ū = u − πΛ(ū) shows

(ϕ2)+ =
1
2
{[u, ū]+ − [ūΛ, ū]+ − [ū,u]+} ,

which is indeed equal to the stated expression for (ϕ2)+. Similarly we find for the
g0,0-component

(ϕ2)0 =
1
2
[u, ū]0. �

Corollary 2.17. Let F ∈ D. Let

heu ·F (Leu∗α,Leu∗ β) = hF (exp H(u)α, β), α, β ∈ q

denote the local form of the mixed Hodge metric on T(D) relative to the choice of
coordinates (35). Then, up to second order in4 (u, ū)
H(u) = −(ad (ū)∗+) q︸        ︷︷        ︸

(1,0)-term

+−(ad (ū)+ )q︸        ︷︷        ︸
(0,1)-term

+
1
2
(ad [ū, ūΛ]+ + [ū, ūΛ]∗+ )q︸                            ︷︷                            ︸

(2,0)+(0,2)-term

+

(
1
2
[(ad (ū)∗+ )q, (ad (ū)+ )q] + (ad [u, ū]0 )q + ad [u, ū]+ + ad [u, ū]∗+

)
q︸                                                                                    ︷︷                                                                                    ︸

(1,1)-term

.

Here, by "A(x, y) is a (p,q)-term" we mean A(t x, ty) = tp t̄q A(x, y).
Proof : Let us first check the assertion about types. This follows directly from the
the facts that ad and πq are C-linear, while for any C-linear operator A, one has
(t A)∗ = t̄ A∗ and t A = t̄ Ā.

4We write xq instead of πq x for clarity and if no confusion is likely.
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Let us now start the calculations. By (37), we have

heu ·F (Leu∗α,Leu∗ β) = hF (Lexp(ϕ(u)∗α,Lexp(ϕ(u)∗ β))
= hF (πq Ad exp(ϕ(u)) α,πq Ad exp(ϕ(u)) β))
= hF (πq Ad exp(ϕ(u)) α,Ad exp(ϕ(u)) β))

(39)

since gF
C

and q are orthogonal with respect to the mixed Hodge metric at F. There-
fore,

heu ·F (Leu∗α,Leu∗ β) = hF (Ad exp(ϕ(u))∗ πq Ad exp(ϕ(u)) α, β))
= hF (exp(ad ϕ(u)∗ )πq exp(ad ϕ(u) )α, β))
= hF (exp(ad ϕ(u)∗ ) exp(πq ad ϕ(u) )α, β))

by equation (24). Likewise, although

exp(ad ϕ(u)∗ ) exp(πq ad ϕ(u) )α
is in general only an element of End(VC), since we are pairing it against an element
β ∈ q, it follows that

heu ·F (Leu∗α,Leu∗ β) = hF (πq exp(ad ϕ(u)∗ ) exp(πq ad ϕ(u) )α, β))
= hF (exp(πq ad ϕ(u)∗ ) exp(πq ad ϕ(u) )α, β)),

where the last equality follows from (27). By the Baker–Campbell–Hausdorff for-
mula, up to third order in (u, ū) the product of the exponents in the previous formula
can be replaced by

exp
(
πq ad ϕ(u)∗ + πq ad ϕ(u) +

1
2
[πq ad ϕ(u) ∗, πq ad ϕ(u) ]

)
.

So, we may assume that

H(u) = πq ad ϕ(u)∗ + πq ad ϕ(u) +
1
2
[πq ad ϕ(u) ∗, πq ad ϕ(u) ].

To obtain the stated formula for H(u), insert the formulas from Proposition 2.16
into the above equations and compute up to order 2 in u and ū. Use is made of the
equality [u, ū]∗0 = [u, ū]0 guaranteed by Lemma 2.14. �

3 Curvature of the Chern Connection

We begin this section by recalling that given a holomorphic vector bundle E equipped
with a hermitian metric h, there exists a unique Chern connection ∇ on E which
is compatible with both h and the complex structure ∂̄. With respect to any local
holomorphic framing of E, the connection form of ∇ is given by

θ = h−1∂h, (40)

where h is the transpose of the Gram–matrix of h with respect to the given frame.
The curvature tensor is then

R∇ = ∂̄ θ. (41)
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Theorem 3.1. The connection 1-form of the mixed Hodge metric with respect to
the trivialization of the tangent bundle given in Lemma 2.5 is

θ(α) = − (ad ( ᾱ)∗+)q
for α ∈ q � TF (D).
Proof : By Corollary (2.17), this is the first order holomorphic term of H(u). �

Lemma 3.2. Let (D,h) be a complex hermitian manifold and let U ⊂ D be a
coordinate neighborhood centered at F ∈ D and let α, β ∈ TF (U) ⊗ C be of
type (1,0). In a local holomorphic frame, write the transpose Gram-matrix hU =

(h(e j ,ei)) = exp H for some function H with with values in the hermitian matrices
and with H(0) = 0. Then at the origin one has

R∇(α, β̄) = −∂α∂β̄H +
1
2

[
∂β̄H, ∂αH

]
.

Proof : Since the curvature is a tensor, its value on vector fields at a given point
only depends on the fields at that point. Choose a complex surface u : V ↪→ U ,
V ⊂ C2 a neighborhood of 0 (with coordinates (z,w)) and u∗(d/dz)0 = (∂α)0,
u∗(d/dw)0 = (∂β)0. Replace h by h◦u and write it as

h = exp(H) = I + H +
1
2

H2 + O3(z, z̄).

Formulas (40),(41) tell us that the curvature at the origin equals

(∂̄h ∧ ∂h + ∂∂̄h)0.
This 2-form evaluates on the pair of tangent vectors (∂z , ∂w̄) as

R∇(α, β̄) = ∂w̄h◦∂zh − ∂z∂w̄h. (42)

Now use the Taylor expansion of h up to order 2 of which we give some relevant
terms5:

h(z, z̄,w, w̄)2 = I + (∂zH)0z + (∂w̄H)0w̄ + linear terms involving z̄,w

+ terms involving z2,w2, z̄2, w̄2+

+

(
∂z∂w̄ H +

1
2
(∂z H)(∂w̄ H) +

1
2
(∂w̄ H)(∂z H)

)
0

zw̄

+ terms involving zz̄,w z̄,ww̄.

Now substitute in (42). �
As a first consequence, we have:

5Remember H is a matrix so that ∂zH and ∂w̄H do not necessarily commute.
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Lemma 3.3. The submanifold exp(Λ) · F of D is a flat submanifold with respect to
the Hodge metric. In particular, the holomorphic sectional curvature in directions
tangent to this submanifold is identically zero.

Proof : If f is a unitary Hodge-frame for the mixed Hodge structure on V corre-
sponding to F, then for all g ∈ exp(Λ), (Lg)∗f is a unitary Hodge frame at g · F
and this gives a holomorphic unitary frame on the entire orbit. Hence the Chern
connection is identically zero. This also follows immediately from the formula for
the connection form given above. �

Theorem 3.4. Let D be a period domain for mixed Hodge graded-polarized struc-
tures. Let ∇ be the Chern connection for the Hodge metric on the holomorphic
tangent bundle T(D) at F. Then for all tangent vectors u ∈ T1,0

F (D) ' q we have

R∇(u, ū) = −[(ad ū∗+ )q, (ad ū+ )q]− ad [u, ū]0 − (ad ([u, ū]+ + [u, ū]∗+) )q .
We use the following convention: for all u ∈ g we write u∗0,u

∗
+,u
∗
− to mean: first

project onto g0,0, respectively n+, n− and then take the adjoint.

Proof : Apply the formula of Lemma (3.2). Proceeding as in the proof of that
Lemma, choose a complex curve u(z) tangent to u ∈ TF D and write H(u(z)) =

H(z, z̄). We view the curve u(z) as an element of q, i.e., in the preceding expression
we replace u by zu and ū by z̄ū. Then from Corollary 2.17 we have ∂zH(0) =

−(ad (ū)∗+ )q, ∂z̄H(0) = −(ad (ū)+ )q and

∂z∂z̄H(0) = 1
2 [(ad (ū)∗+ )q, (ad (ū)+ )q] + (ad [u, ū]0 )q

+ (ad [ū,u]+ + [ū,u]∗+ )q .

Since at the point F ∈ D we have R∇(u, ū) = −∂u∂ūH + 1
2 [∂ūH, ∂uH], the result

follows. �

Remark 3.5. (1) Note that in the pure case this gives back R∇(u, ū) = − ad [u, ū]0
as it should.
(2) By Remark 2.4, the formula for the curvature of a mixed Mumford–Tate domain
is the same as the one for the mixed period domain.
(3) Exactly the same proof shows that the full curvature tensor, evaluated on pairs
of tangent vectors {u,v} ∈ T1,0

F D is given by

R∇(u, v̄) = −([(ad ū∗+ )q, (ad v̄+ )q])
− 1

2 (ad [u, v̄]0 + ad [v, ū]0 )
+ (ad ([v̄,u]+ + [ū,v]∗+))q .

Alternatively, one may use (5.14.3) of [D1]. In that formula R(u,v) stands for the
curvature in any pair (u,v) of complex directions. So R(u,v) = R∇(u1,0,v0,1) −
R∇(v1,0,u0,1).
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4 Holomorphic Sectional Curvature in Horizontal Direc-
tions

Recall that the holomorphic sectional curvature is given by

R(u) := h(R∇(u, ū)u,u)/h(u,u)2. (43)

Our aim is to prove:

Theorem 4.1. Let u ∈ TF (D) be a horizontal vector of unit length. Then R(u) =

A1 + A2 + A3 + A4 where

A1 = −‖[ū+,u]q‖2,

A2 = ‖[ū∗+,u]q‖2,

A3 = −h([[u, ū]0,u],u)
A4 = −h([[u, ū]+,u]q,u) − h(u, [[u, ū]+,u]q).

Each of these terms is real.

Proof : We start by stating the following two self-evident basis principles which
can be used to simplify (43):

• Orthogonality: The decomposition g =
⊕

gp,q is orthogonal for the Hodge
metric;

• Jacobi identity: For all X,Y, Z ∈ End(V ) we have

[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X, Z]].
• Metric conversion: The relation

h([X,Y ], Z) = h(Y, [X∗, Z]) (44)

implies
− h(ad [X,X∗]Y,Y ) = ‖[X,Y ]‖2 − ‖[X∗,Y ]‖2 (45)

Theorem 3.4 and the previous rules imply:

h(R∇(u, ū)u,u) = −h([(ad (ū+)∗ )q, (ad (ū)+ )q]u,u) − h((ad [u, ū]0 )u,u)
− h((ad [u, ū]+ )u,u) − h((ad [u, ū]∗+ )qu,u)

= −‖[ū+,u]q‖2 + ‖[ū∗+,u]q‖2 − h([[u, ū]0,u],u)
− h([[u, ū]+,u]q,u) − h(u, [[u, ū]+,u]q).

This shows that h(R∇(u, ū)u,u) = A1 + A2 + A3 + A4 where the terms Aj are as
stated. In particular, the terms A1, A2, A4 are real. Metric conversion allows us to
show that A3 is real: since [u, ū]0 = [α,πzᾱ] = [α,α∗] we find that

A3 = −h([[α,α∗],u],u))
= ‖[α,u]‖2 − ‖[α∗,u]‖2 ∈ R.

(46)
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The next result gives the refinement of the curvature calculations with respect
to the decomposition of a horizontal vector into its Hodge components:

Theorem 4.2. For u =
∑

j≤1 u−1, j ∈ gC set 6

α = u−1,1, β = u−1,0, λ =
∑

j≥1
u−1,− j

ᾱ+ = α∗ + ε, α∗ = πzᾱ+ = ᾱ1,−1
+ , ε =

∑
j≥2

ᾱ
0,− j
+ .

Then,

A1 = −
(‖[ β̄+ + ε,α]‖2 + ‖[ β̄+ + ε, β]‖2 + ‖[ β̄+ + ε, λ]q‖2

)
,

A2 = ‖[α, β]‖2 + ‖[α, λ]‖2 + ‖[ β̄∗+, β]q‖2 + ‖[ β̄∗+ + ε∗, λ]‖2,

A3 = ‖[α, β]‖2 + ‖[α, λ]‖2 − ‖[α∗,α]‖2 − ‖[α∗, β]‖2 − ‖[α∗, λ]‖2,

A4 = −2‖[α∗, λ]‖2 − 2‖[α∗, β]‖2 + R(α, β, λ),
where

R(α, β, λ) = −2Re (h([[λ,α∗], λ], λ) + h([[α∗, β], λ], λ) + h([[α∗, λ], β], λ)) .
This last term vanishes if λ has pure type.
Moreover, in the R–split situation we have ᾱ+ = α∗ so that ε = 0.

Proof : The term A3. Inserting u = α + β + λ in (46) immediately gives the
A3-term.
The terms A1, A2. We start by noting that ū+ = ᾱ+ + β̄+ = α∗ + ε + β̄+ and so
(note the precedence of the operators!) ū∗+ = α + ε∗ + β̄∗+. Accordingly,

[ū+,u]q = [α∗ + β̄+ + ε,u]q, [ū∗+,u]q = [α + β̄∗+ + ε∗,u].
The first expression gives

A1 = − ‖[ β̄+ + ε,u]‖2

= − (‖[ β̄+ + ε,α]‖2 + ‖[ β̄+ + ε, β]‖2 + ‖[ β̄+ + ε, λ]‖2).
by orthogonality. The second expression expands as:

[ū∗+,u]q = [α,u] + [ β̄∗+ + ε∗,α]q + [ β̄∗+ + ε∗, β + λ]q
For weight reasons, [ β̄∗+,α]q = 0 and [ε∗,α]q = [ε∗, β]q = 0. Therefore, by orthog-
onality:

A2 = ‖[ū∗,u]q‖2 = ‖[α, β]‖2 + ‖[α, λ]‖2 + ‖[ β̄∗+, β]q‖2 + ‖[ β̄∗+, λ]q‖2 + ‖[ε∗, λ]q‖2.

The term A4. To calculate A4, we observe that

[u, ū]+ = [β, ᾱ+] + [λ, ᾱ+] = [β,α∗ + ε] + [λ,α∗ + ε].
6Recall the notation (33).
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So h([[u, ū]+,u],u) = h([[β,α∗+ε],u],u)+h([[λ,α∗+ε],u],u) and we consider each
term separately. For the first term, note that [[β, ε],u] as well as [[λ, ε],u] belong
to

⊕
j≥1 g

−2,− j and hence are both orthogonal to u and we can discard these terms.
Moreover, [β,α∗] ∈ g0,−1 and so, by orthogonality,

h([[β,α∗],u],u) = h([[β,α∗],α], β) + h([[β,α∗], β], λ) + h([[β,α∗], λ], λ).
Since −h([α, [β,α∗]], β) = −h([β,α∗], [α∗, β]) = ‖[α∗, β]‖2 we find for the first
term

h([[β,α∗],u],u) = ‖[α∗, β]‖2 + h([[β,α∗], β], λ) + h([[β,α∗], λ], λ).
Note that [λ,α∗] ∈⊕

j≥0 g
0,−2− j so that by orthogonality,

h([[λ,α∗],u],u) = h([[λ,α∗], λ], β) + h([[λ,α∗],α + λ], λ).
The second term thus simplifies to

h([[λ,α∗],α], λ) + h([[λ,α∗], λ], λ) = −h([α, [λ,α∗]], λ) + h([[λ,α∗], λ], λ)
= −h([λ,α∗], [α∗, λ]) + h([[λ,α∗], λ], λ)
= ‖[α∗, λ]‖2 + h([[λ,α∗], λ], λ).

It follows that

A4 = −2‖[α∗, λ]‖2 − 2‖[α∗, β]‖2

− Re (h([[λ,α∗], λ], λ) + h([[α∗, β], λ], λ) + h([[α∗, λ], β], λ)) . �
Remark 4.3. We claim that ε and the Deligne splitting δ of (F,W ) are related as
follows:

ε = [−2iδ, ᾱ]+.
To see this, apply the Deligne splitting:

α = Ad ( eiδ)α‡
where α‡ is type (−1,1) at the split mixed Hodge structure (F̂,W ) defined by
F̂ = e−iδF. At that point the complex conjugate and the adjoint of α‡ coincide.
Therefore,

α∗ = Ad ( eiδ)[α‡∗]F̂ = Ad ( eiδ)[α‡]F̂
ᾱ = Ad ( e−iδ)[α‡]F̂ = Ad ( eiδ)[Ad ( e−2iδ)α‡]F̂ .

Consequently,
ε = (α∗ − ᾱ)+

= Ad ( eiδ)((Ad ( e−2iδ) − 1)α‡)+, F̂
= Ad ( eiδ)[−2iδ, ᾱ‡]+, F̂
= [−2iδ,Ad ( eiδ)α‡]+
= [−2iδ,Ad ( e2iδ)ᾱ]+
= [−2iδ,Ad ( e2iδ)ᾱ]+
= [−2iδ, ᾱ]+.
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We shall now discuss particular cases.

Corollary 4.4. The holomorphic sectional curvature along a horizontal direction
u = α + λ with α of type (−1,1) and λ ∈ Λ equals

R(u) =
2‖[α, λ]‖2 + f (u, ε) − 3‖[α∗, λ]‖2 − ‖[α,α∗]‖2 − Re(h([[λ,α∗], λ], λ))

(‖α‖2 + ‖λ‖2)2 ,

where f (u, ε) = −
�‖[α,ε]‖2 + ‖[λ, ε]‖2�

+ ‖[λ, ε∗]‖2. In particular:

• R(u) ≤ 0 if [α, λ] = 0 = [λ, ε∗] and λ is of pure type (−1,−k) for some
k < 0 (since [[λ,α∗], λ] and λ have different types), and R(u) < 0 as soon
as α , 0.

• R(u) > 0 if [α∗, λ] = 0 = [u, ε] provided 2‖[α, λ]‖2 +‖[λ, ε∗]‖2 > ‖[α∗,α]‖2.

Example 4.5. Let us return to the setting of the variation of mixed Hodge structure
(10) arising from a variation of Kähler moduli along a family of compact Kähler
manifolds. The original variation F(s) of a direct sum of pure Hodge structures
that can be expressed locally as

F(s) = eΓ(s) · F(0)
where Γ : ∆r → q vanishes at 0 and takes values in g−1,1 ⊕ g−2,2 ⊕ · · · . The
requirement that each γ j be of type (−1,−1) for all F(s) implies that

Ad ( e−Γ(s))λ j = e− ad Γ (s)λ j

is horizontal at F(0) for all s. Via differentiation along a holomorphic arc through
s = 0, this fact implies that [Γ′(0), γ j ] = 0 since Γ′(0) ∈ g−1,1 and Γ(0) = 0.

The local normal form of the variation (10) is therefore

F̃(s) = eiN (u(s))eΓ(s) · F(0)
where u(s) takes values in the complex linear span LC of γ1, . . . , γk . Accordingly,
the derivative of (F̃(s),W ) at s = 0 is

ξ = ξ−1,−1 + ξ−1,1, ξ−1,−1 = iN(u′(0)), ξ−1,1 = Γ
′(0)

where [ξ−1,−1, ξ−1,1] = 0.
Recall the statement of Theorem 4.2 for the definition of ε . We show that

it vanishes in this situation. First observe that since the mixed Hodge structures
(F(s),W ) are all split over R, the element δ attached to (F̃(0),W ) is defined by the
equation

e−iN (u(0)) · Y(F(0),W ) = e−2iδeiN (u(0)) · Y(F(0),W ).

Since δ commutes with all (p,p)-morphisms of (F̃(0),W ), it follows from the pre-
vious equation that δ = N(Re(u(0))). Accordingly, δ is real and belongs to LC and
so

[Γ̄′(0), δ] = [Γ′(0), δ] = 0.
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By Remark (4.3), it follows that indeed ε = 0. Corollary 4.4 then implies:

R(ξ) ≤ 0 and < 0 if ξ , 0.

Corollary 4.6. The holomorphic sectional curvature along a horizontal direction
u = α + β with α type (−1,1) and β type (−1,0) is

R(u) =
−n(α, β) + p(α, β)
(‖α‖2 + ‖ β‖2)2 ,

n(α, β) := ‖[α∗ + ε,α]‖2 + ‖[ε, β]‖2 + 3‖[α∗, β]‖2 + ‖[α, β̄+]‖2 + ‖[ β̄+, β]‖2,

p(α, β) := ‖[α, β]‖2 + ‖[ β̄∗+, β]q‖2.

In particular, if α = 0, [β, β̄+] = 0 = [ε, β] (which is the case if W−1gC is abelian)
we have R(u) ≥ 0.

Next, we look at a unipotent variation of mixed Hodge structure in the sense of
Hain and Zucker [Ha-Z]. These are the variations where the pure Hodge structures
on the graded quotients are constant so that α = u−1,1 = 0 and hence ε = 0. This
situation occurs in two well known geometric examples:

• The VMHS on Jx/J3
x , x ∈ X where X is a smooth complex projective vari-

ety;

• The VMHS attached to a family of homologically trivial algebraic cycles
moving in a fixed variety X .

Corollary 4.7. For the curvature coming from a unipotent variation we have

R(u) =
−‖[ β̄+, β]‖2 − ‖[ β̄+, λ]‖2 + ‖[ β̄∗+, β]q‖2 + ‖[ β̄∗+, λ]q‖2

(‖ β‖2 + ‖λ‖2)2 .

5 Curvature of Hodge Bundles

5.1 Hodge Bundles over Mixed Period Domains

In this subsection, we compute the curvature of the Hodge bundles over the classi-
fying space D using the methods of § 2.3. Since the Hodge bundles of a variation
of mixed Hodge structure V→ S are obtained by pulling back the Hodge bundles
of D along local liftings of the period map, this furnishes a computation of the
curvature of the Hodge bundles of a variation of mixed Hodge structure.

Let F ∈ D and q be the associated nilpotent subalgebra (22) and U be a neigh-
borhood of zero in q such that the map u → eu · F is a biholomorphism onto a
neighborhood of F. Then, we obtain a local holomorphic framing for the bundle
Fp over U via the sections α(u) = euα for fixed α ∈ Fp . Let β(u) = eu β be
another such section of Fp over U , and Lg denote the linear action of g ∈ GL(VC)
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on VC. Let Π denote orthogonal projection from VC to Fp . Then, as in § 2.3 by
(37), the metric is

heu ·F (α(u), β(u)) = hF (Lexp(ϕ(u))α,Lexp(ϕ(u)) β)
= hF (Π◦Lexp(ϕ(u))α,Lexp(ϕ(u)) β)
= hF (Lexp(ϕ(u)∗)Π◦Lexp(ϕ(u))α, β)
= hF (Π◦Lexp(ϕ(u)∗)Π◦Lexp(ϕ(u))α, β).

In analogy with § 2.2, we have the identity

Π◦Lexp(ϕ(u)) = Lexp(Π◦ϕ(u)),

since ϕ(u) belongs to the subalgebra preserving Fp . The identity

Π◦Lexp(ϕ(u)∗) = Lexp(Π◦ϕ(u)∗)

is also straightforward because ϕ(u) is a sum of components of Hodge type (a,b)
with a ≥ 0. As such ϕ(u)∗ is a sum of components of Hodge type (−a,−b) with
−a ≤ 0, and hence there is no way for the action of ϕ(u)∗ to move a vector of
Hodge type (c,d) with c < p back into Fp .

Accordingly, by the universal nature of the Campbell–Baker–Hausdorff for-
mula, the only difference between the computation of the curvature of Fp and the
curvature of T(D) is that for the former we are use the linear action GL(VC) and
gl(VC) and project orthogonally to Fp whereas in the later we use the adjoint action
and project orthogonally to q. So, with Π the orthogonal projection from VC to Fp

for u,v ∈ Thol
F (D) we find

R∇(u, v̄) = −([Π◦(ū∗+),Π◦(v̄+)])
−

1
2
(Π◦([u, v̄]0) + Π◦([v, ū]0))

+ Π◦ ([v̄,u]+ + [ū,v]∗+) .
Taking account of the fact that the terms with subscript + (without an adjoint) and
subscript 0 always preserve Fp this simplifies and we get:

Corollary 5.1. Let Π denote orthogonal projection from VC to Fp . Then, the
curvature of the Hodge bundle Fp over D in the directions u,v ∈ Thol

F (D) is

R∇(u, v̄) = −([Π◦(ū∗+), v̄+])
−

1
2
([u, v̄]0 + [v, ū]0)

+ ([v̄,u]+ + Π◦[ū,v]∗+) .
The computation of the curvature of the quotient bundle Fp/Fp+1 proceeds

along the same lines as the computation of the curvature of Fp . However, in this
case the corresponding projection operator Π′ sends VC to

Fp/Fp+1 � U p :=
⊕
q

I
p,q

(F,W ).
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The identity
Π
′
◦Lexp(ϕ(u)) = Lexp(Π′◦ϕ(u))

results from the fact that elements of gF
C

have Hodge components of type (a,b)
with a ≥ 0 and such an element moves U p to U p+a . A similar argument works for
Π′◦ϕ(u)∗.
Corollary 5.2. Let Π′ denote orthogonal projection from VC to U p at F. Then, the
curvature of the Hodge bundle Fp/Fp+1 over D in the directions u, v ∈ Thol

F (D) is

R∇(u, v̄) = −([Π′◦(ū∗+),Π′◦(v̄+)])
− 1

2 (Π′◦([u, v̄]0) + Π′◦([v, ū]0))
+Π′◦ ([v̄,u]+ + [ū,v]∗+) .

Taking account of the fact that the terms with subscript 0 preserve U p it follows
that

R∇(u, v̄) = −([Π′◦(ū∗+),Π′◦(v̄+)])
− 1

2 ([u, v̄]0 + [v, ū]0)
+Π′◦ ([v̄,u]+ + [ū,v]∗+) .

5.2 First Chern Forms and Positivity

Let us calculate the first Chern form of the Hodge bundles Up over a disk ∆ : f →
D with local coordinate s. Set f (s) = Fs and u = f∗(d/ds)Fs . We also let

u(p) : Up → Up−1, up = α(p) + β(p) + λ(p)

be the restriction of u to Up and α(p), β(p) and λ(p) the decomposition into types
(−1,1), (−1,0), respectively

∑
k≥1(−1,−k). Then we have

Lemma 5.3. The first Chern form c1(Up) involves only the components α(p) of u
of type (−1,1) and locally can be written

c1(Up) =
1

2πi

(‖|α(p)‖|Fs − ‖|α(p+1)‖|Fs

)
ds ∧ ds̄.

Proof : We have to calculate Tr R∇(u, ū) using Cor. 5.2. Let us write u = α + β + λ

as before. Since Π′◦(ū+) = β̄+, we find
�
Π
′
◦(ū∗+),Π′◦(ū+)� = [ β̄∗+, β̄+] (47)

[u, ū]0 = [α,α∗] (48)

Π
′
◦[ū,u]+ = [α∗, β + λ]. (49)

The first two terms preserve the bi-degree but this is not the case for (49). So,
computing traces, we can discard it. The vanishing of the trace of [ β̄∗+, β̄+] follows
from the standard calculation

Tr([A∗, A]) = Tr(A∗A) − Tr(AA∗) = Tr(AA∗) − Tr(AA∗) = 0
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with A = β̄+ ∈ End(Up). On the other hand, since α maps Up to Up−1 this
argument does not apply (48), and so

Tr R∇(u, ū) = −Tr[ β̄∗+, β] |Up − Tr[α,α∗] |Up

= ‖|α(p)‖|Fs − ‖|α(p+1)‖|Fs . �

Corollary 5.4. The "top" Hodge bundle, say Un ' Fn (which is a holomorphic
sub bundle of the total bundle) has a non-negative Chern form:

c1(Un) =
i

2π

(‖|α(n)‖|Fs

)
ds ∧ ds̄ ≥ 0.

As in [Gr2, Prop. 7.15] one deduces form Lemma 5.3 also:

Corollary 5.5. Let Ep := Fp/Fp+1 and put

K(F•) :=
⊗
p

(det(Ep))⊗p .

Then the first Chern form of K(F•) is non-negative and is zero precisely in the
horizontal directions (−1, k) with k ≤ 0.

Let us now consider the curvature form itself.

Example 5.6. Consider the case with two adjacent weights 0 ⊂ W0 ⊂ W1 = V .
Split the top Hodge bundle as Fn = In,−n ⊕In,−n+1 and decompose the curvature
matrix accordingly

R(u, ū) =

(
α∗◦α + β̄◦ β̄∗ α∗◦β

−β∗◦α α∗◦α − β̄∗◦ β̄

)
, u = α + β.

We see that for v ∈ VC, ‖R(v)(u, ū)‖F = Tv̄R(u, ū)v ≥ 0 if u = α, but ‖R(v)(β, β̄)‖F =

‖ β̄∗(v(−n))‖F − ‖ β̄(v(−n+1))‖F which need not be ≥ 0.

From the preceding example it follows that we can expect positive curvature at
most in the α-direction. In fact, this is true:

Proposition 5.7. The "top" Hodge bundle, say Un ' Fn has a positive curvature
in the α-directions and has identically zero curvature in the λ-directions.

Proof : We note the diagonal terms in the curvature form involve α(q)
◦(α(q))∗ act-

ing on In,q . Let r be the minimal q with In,q , 0 and consider the splitting
Un = In,r ⊕In,r+1 ⊕In,>r+1. Assume β = 0. The matrix of the curvature form
splits accordingly:

R(u, ū) =
*..
,

α∗◦α 0 α∗◦λ

0 α∗◦α 0
−λ∗◦α 0 α∗◦α

+//
-
, u = α + λ.

So with v ∈ Un one finds for u = α + λ:

R(v)(u, ū) = ‖α(v)‖2
F ≥ 0

with equality if α(v) = 0. �
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Here is an example of a variation where β = 0:

Example 5.8. Consider higher normal functions associated to motivic cohomology
H p

M
(q), see [BPS]. Indeed, these give extension of Rp−1π∗Z(q) with p−2q−1 < 0

where π : X → S is a smooth projective family.
Assume moreover that the cohomology H p−1(Xt ) of the fibres Xt is such that the
non-zero Hodge numbers are hp−1−q,q , · · · hq,p−1,q (i.e. the Hodge structure has
level = p − 1 − 2q). With n = 2q + 1 − p the non-zero Hodge numbers of the
mixed variation are, besides h0,0 indeed precisely h−n,0, . . . ,h0,−n . Here β = 0
while λ , 0.

5.3 Variations of Mixed Hodge Structure

We want to stress that, although the above calculations are done on the period do-
main, they apply also for variations of mixed Hodge structure: the Hodge bundles
simply pull back and so does the Hodge metric. What remains to be done is to
identify the actions of u,v when these are tangent to period maps.

To do this and also as a check on the preceding calculations, we shall now com-
pute the curvature of the Hodge bundles of a variation of mixed Hodge structure
starting from Griffiths computation for a variation of pure Hodge structure H. To
this end, we recall that the Gauss–Manin connection ∇ of Hdecomposes as

∇ = θ̄0 + ∂̄0 + ∂0︸  ︷︷  ︸
D

+θ0,

where ∂̄0 and ∂0 are conjugate differential operators of type (0,1) and (1,0) re-
spectively which preserve the Hodge bundles Hp,q , while θ0 is an endomorphism
valued 1-form which sends Hp,q to Hp−1,q+1 ⊗ E1,0 and θ̄0 is the complex con-
jugate of θ0. The connection D = ∂̄0 + ∂0 is hermitian with respect to the Hodge
metric:

dh(u,v) = h((∂̄0 + ∂0)u,v) + h(u, (∂̄0 + ∂0)v).
In particular, since ∂̄0 coincides with the induced action of the (0,1)-part of the
Gauss–Manin connection acting on

Hp,q � Fp/Fp+1,

it follows that D is the Chern connection, i.e., the hermitian holomorphic connec-
tion of the system of Hodge bundles attached to H. Expanding out

(θ̄0 + ∂̄0 + ∂0 + θ0)2 = 0

and decomposing with respect to Hodge types shows that

RD = −(θ0 ∧ θ̄0 + θ̄0 ∧ θ0).
If d/ds is a holomorphic vector field on S, the value u of θ0( f∗(d/ds)) at zero
belongs to g−1,1 and RD(u, ū) = −[u, ū] which checks with the previous calculation.
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To compute the curvature of the Hodge bundles Fp/Fp+1 of a variation of
mixed Hodge structure, V→ S we consider the C∞-subbundles Up obtained by
pulling back Up → D along the variation, i.e.

Ip,q(s) = I p,q(F(s),W), Up =
⊕
q

Ip,q .

By [P1], the Gauss–Manin connection of Vdecomposes as

∇ = τ0 + ∂̄ + ∂ + θ

where ∂̄ and ∂ are differential operators of type (0,1) and (1,0) which preserve Up

whereas θ : Up → Up−1 ⊗ E1,0 and τ0 : Up → Up+1 ⊗ E0,1. One has

Ip,q
τ0
−−→ (Ip+1,q−1 ⊗ E

0,1
S

),
Ip,q

θ=(θ0,θ−)
−−−−−−−−→ (Ip−1,q+1 ⊗ E

1,0
S

) ⊕ (⊕k≥2I
p−1,q+k ⊗ E

1,0
S

).
Similarly

Ip,q ∂
−−→ Ip,q ⊗ E

1,0
S
,

Ip,q
∂̄=(∂̄0,τ−)
−−−−−−−−→ (Ip,q ⊗ E

0,1
S

) ⊕ (⊕k≥1I
p,q−k ⊗ E

0,1
S

).
To unify notation, we also write ∂ = ∂0. Then, we have

∇ = τ0 + τ− + ∂̄0 + ∂0 + θ− + θ0

In particular, relative to the C∞ isomorphism of GrWk with

Ek :=
⊕
p+q=k

Ip,q

the induced action of ∇ on GrWk coincides with the action of

D0 = τ0 + ∂̄0 + ∂0 + θ0

on Ek . Given that the mixed Hodge metric is just the pullback of the Hodge metric
on GrWk via the isomorphism with Ek , it follows that ∂̄0 + ∂0 is a hermitian connec-
tion on Up . In particular, since the induced holomorphic structure on Up is given
by ∂̄ and by the adjoint property, it follows that

D = τ− + ∂̄0︸  ︷︷  ︸
∂̄

+∂0 − τ
∗
− (50)

is the Chern connection of Up relative to the mixed Hodge metric. Thus,

RD = R(∂̄+∂0)−τ∗− = R(∂̄+∂0) − (∂̄ + ∂0)τ∗− + τ∗− ∧ τ
∗
−.
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To simplify this, observe that τ∗− is a differential form of type (1,0), so we must
have

−∂τ∗− + τ∗− ∧ τ
∗
− = 0

in order to get a differential form of type (1,1). Therefore,

RD = R(∂̄+∂0) − ∂̄τ
∗
−.

Expanding out
∇2 = (τ0 + ∂̄ + ∂0 + θ)2 = 0,

it follows that
R(∂̄+∂0) = −(θ ∧ τ0 + τ0 ∧ θ) (51)

and hence
RD = −(θ ∧ τ0 + τ0 ∧ θ) − ∂̄τ∗−.

To continue, we note that

∂̄τ∗− = (∂̄0 + τ−)τ∗− = ∂̄0τ
∗
− + τ− ∧ τ

∗
− + τ∗− ∧ τ−

and so
RD = −(θ ∧ τ0 + τ0 ∧ θ) − (τ− ∧ τ∗− + τ∗− ∧ τ−) − ∂̄0τ

∗
−. (52)

To finish the calculation, we differentiate the identity

h(τ−(σ1),σ2) = h(σ1, τ
∗
−(σ2))

and take the (1,1) part to obtain

h((∂0τ−)(σ1) + τ−(∂0σ1),σ2) + h(τ−(σ1), ∂̄0σ2)
= h(∂0σ1, τ

∗
−(σ2)) + h(σ1, (∂̄0τ

∗
−)(σ2) + τ∗−(∂̄0σ2)).

Using the properties of the adjoint, this simplifies to

∂̄0τ
∗
− = (∂0τ−)∗.

It remains to compute ∂0τ− = ∂τ−. To do this, first observe that

R∂̄+∂ = R∂̄0+∂0+τ−
= R∂̄0+∂0

+ (∂̄0 + ∂)τ− + τ− ∧ τ−.

Now note that equation (51) implies that R∂̄+∂ is of type (1,1), and hence

R∂̄+∂0
= R∂̄0+∂0

+ ∂τ−,

since R∂̄0+∂0
is also of type (1,1) as the curvature of hermitian holomorphic con-

nection for h and ∂̄0. Moreover, since ∂̄0 + ∂0 preserves the bigrading by Ip,q

whereas ∂τ− lowers weights, it follows from (51) that

∂τ− = −(θ− ∧ τ0 + τ0 ∧ θ−).
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Corollary 5.9. The curvature of the Hodge bundles of a variation of mixed Hodge
structure V→ S is

RD = −(θ ∧ τ0 + τ0 ∧ θ) − (θ− ∧ τ0 + τ0 ∧ θ−)∗ − (τ− ∧ τ∗− + τ∗− ∧ τ−).
Let us compare the above results with the ones obtained on the period domain.

Proposition 5.10. Let θ(ξ) = u. then the action of RD(ξ, ξ̄) on Up agrees with the
action of R∇(u, ū) on U p from Corollary (5.2). More precisely, the four terms in
the expression for R∇(u, ū) compare as follows

[Π′◦(ū∗+),Π′◦(ū+)] = (θ ∧ τ0 + τ0 ∧ θ)(ξ, ξ̄)
−[u, ū]0 = −(θ0 ∧ τ0 + τ0 ∧ θ0)(ξ, ξ̄)

−Π′◦[u, ū]+ = −(θ− ∧ τ0 + τ0 ∧ θ−)(ξ, ξ̄),
−Π′◦[u, ū]∗+ = −(θ− ∧ τ0 + τ0 ∧ θ−)∗(ξ, ξ̄).

Proof : Recall that for vector valued A of type (1,0) and B of type (0,1) we have

(A ∧ B + B ∧ A)(ξ, ξ̄) = [A(ξ),B(ξ̄)].
A check of Hodge types shows that τ−(ξ) = Π′ ◦ (ū)+ and hence

−(τ− ∧ τ∗− + τ∗− ∧ τ−)(ξ, ξ̄) = −[Π′ ◦ (ū)∗+,Π′ ◦ (ū)+]
which is the first term of R∇(u, ū). The partial term

−(θ0 ∧ τ0 + τ0 ∧ θ0)(ξ, ξ̄) = −[u, ū]0
is extracted from −(θ ∧ τ0 + τ0 ∧ θ). What remains of this term,

−(θ− ∧ τ0 + τ0 ∧ θ−),
computes −Π′ ◦ [u, ū]+. �

6 Special Case: W−1gC is Abelian

Negative Curvature

Consider a period map
F : ∆→ D, s 7→ F(s).

One lets πF(s)
q denote projection onto qF(s) via the decomposition

gC = g
F(s)
C
⊕ qF(s).

The following expression for the pushforward vector field d/ds on ∆ is needed
below:
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Lemma 6.1. We have

F∗

(
d
ds

)
= π

F(s)
q ψ1

(
Γ(s),

(
dΓ
ds

))
, (53)

where we recall (38) that ψ1(u,v) =
ead u − 1
ad u − 1

v.

Proof : By Lemma 2.5 we have F(s) = eΓ(s) · F(0) and thus

F(s) = eΓ(s)e−Γ(p)F(p)
= eΓ(p)+[Γ(s)−Γ(p)]e−Γ(p)F(p).

The Campbell-Baker-Hausdorff formalism (38) shows that

eΓ(p)+[Γ(s)−Γ(p)]e−Γ(p) = eψ1(Γ(p),Γ(s)−Γ(p)).

Since Γ(s) − Γ(p) = (s − p) dΓds (p) + O((s − p)2), we have

eψ1(Γ(p),Γ(s)−Γ(p) = eψ1(Γ(p), dΓds (p))(s−p)+O((s−p)2).

So, for a given test function ζ at F(p), we have

F∗

(
d
ds

)
p

ζ =

(
d
ds

)
p

ζ(eΓ(s) · F(0))

=

(
d
ds

)
p

ζ(e(s−p)ψ1(Γ(p), dΓds (p)) · F(p)).

The result then follows applying again Lemma 2.5 but now for the identification of
TF(p)D and qF(p) (in loc. cit. take t = s − p and u = dΓ

ds (p)). �

Proposition 6.2. Let
F : ∆→ D, s 7→ F(s),

be the period map of a unipotent variation of mixed Hodge structure (i.e. the in-
duced variations on GrW are constant) and suppose further that W−1gC is abelian.
Then the holomorphic sectional curvature of the pull back metric is ≤ 0.

Proof : We have seen in Corollary 4.6 that the holomorphic sectional curvature of
the Hodge metric on D at F(0) is semi-positive. However, when we pull back a
metric, the curvature gets an extra term which is ≤ 0. We shall show that due to
the fact that W−1gC is abelian, the pull back metric gains sufficient negativity to
compensate positivity.

By the choice of coordinates (35), we can write the period map in the local
normal form

F(s) = eΓ(s) · F(0),
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where Γ(s) is a holomorphic function taking values in the intersection of W−1gC
and q = qF(0), i.e. Γ(s) ∈ g−1,0. Then Γ(s) ∈ g0,−1 +Λ and Kaplan’s decomposition
(Theorem 2.11) in this situation simplifies to

eΓ(s) = eΓ(s)+Γ̄(s)︸    ︷︷    ︸
gR(s)

· e−πΛ(Γ̄(s))︸    ︷︷    ︸
eλ(s)

· e−π+(Γ̄(s))︸    ︷︷    ︸
f (s)

(54)

thanks to the fact that W−1gC is abelian.
The relation (53) becomes

F∗

(
d
ds

)
= π

F(s)
q

(
dΓ
ds

)
, (55)

since ψ1(Γ(p), dΓds (p)) = dΓ
ds (p): indeed, in our case Γ(p) and dΓ

ds (p) commute.
Next we need to replace πF(s)

q by an expression involving πq = π
F(0)
q since we

want to calculate the Hodge metric at F(0). Now note that Ad gR(s) · eλ(s) maps
End(V )i, j

F(0) to End(V )i, j
F(s) and since πF(s)

q is defined in terms of projections onto
such components,

π
F(s)
q = Ad gR(s) · Ad eλ(s) ◦πq◦Ad e−λ(s) · Ad g−1

R (s)
= Ad gR(s) · Ad eλ(s) ◦πq◦Ad eϕ(s) · Ad e−Γ(s) .

Remark that (54) shows that ϕ(s) = −π+(Γ̄(s)) ∈ g0,−1. Using all of this, again by
commutativity, (55) becomes

F∗

(
d
ds

)
= Ad gR(s) · Ad eλ(s)

(
dΓ
ds

)
. (56)

Note that Ad gR(s) · Ad eλ(s) acts by isometries and so

h(s) :=

(F∗

(
d
ds

)F(s)

=


(
dΓ
ds

)F(0)
.

The function ξ(s) =
dΓ
ds

is a holomorphic function and so
∂ξ(s)
∂ s̄

= 0. Put

ξ̇ =
dξ(s)

ds
and ho = hF(0). Then, the curvature of the pullback metric is:

K = −
1
h

∂2

∂s∂ s̄
log h = −

1
ho(ξ, ξ)

∂2

∂s∂ s̄
log ho(ξ, ξ)

= −
1

ho(ξ, ξ)
∂

∂s

(
ho(ξ, ξ̇)
ho(ξ, ξ)

)
= −

1
ho(ξ, ξ)

ho(ξ̇, ξ̇)ho(ξ, ξ) − ho(ξ̇, ξ)ho(ξ, ξ̇)
ho(ξ, ξ)2

=
|ho(ξ̇, ξ)|2 − ho(ξ̇, ξ̇)ho(ξ, ξ)

h3(ξ, ξ) ≤ 0,
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where the last step follows from the Cauchy-Schwarz inequality for ho(ξ̇, ξ). �

Remark. The proof shows that the Gaussian curvature of the pullback is negative
wherever ξ and ξ̇ are linearly independent.

In particular, Proposition (6.2) yields:

Corollary 6.3. Let ∆ → D be a period map associated to a normal function with
fixed underlying Hodge structure. Then the holomorphic sectional curvature of the
pull back of the Hodge metric is semi-negative.

Remark 6.4. Via isomorphism Ext1MHS(A,B) � Ext1(Z(0),B⊗A∨), the observation
of the previous paragraph also applies to families of cycles on a fixed variety X and
the VMHS on Jx/J3

x of a smooth projective variety.

Another Application: Mixed Hodge Structures and Fundamental Groups

We treat this in some detail with an eye towards a reader less acquainted with this
material.

Let X be a smooth complex algebraic variety, and Zπ1(X, x) be the group ring
consisting of all finite, formal Z-linear combinations of elements of π1(X, x). The
augmentation ideal Jx is defined to be the kernel of the ring homomorphism

ε : Zπ1(X, x)→ Z

which maps each element g ∈ π1(X, x) to 1 ∈ Z. By the work of Morgan [M], the
quotients Jx/Jk

x carry functorial mixed Hodge structures constructed from the min-
imal model of the de Rham algebra of X . We follow Hain’s alternative approach
[Ha1]; the mixed Hodge structure on Jx/Jk

x can be described using so called iter-
ated integrals as follows: The iterated integral on θ1, . . . , θr ∈ E1(X),∫

θ1 · · · θr

assigns to each smooth path γ : [0,1] → X the integral of θ1 · · · θr over the stan-
dard simplex in Rr , i.e.∫

γ
θ1 · · · θr =

∫
0≤t1≤···≤tr ≤1

θ1(γ∗(d/dt1)) · · · θr (γ∗(d/dtr ))dt1 · · · dtr .

Such an iterated integral is said to have length r . The spaces HomZ(Jx/Js+1
x ,C)

can be described as spaces of certain linear combinations of iterated integrals of
lengths ≤ s, the so called homotopy functionals. We only need their description for
s = 2:

Theorem 6.5 ( [Ha1, Prop. 3.1.]). The iterated integral∫
θ +

∑
j,k

a jk

∫
θ jθk (57)
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is a homotopy functional if and only if θ1, . . . , θr are closed and

dθ +
∑
jk

a jkθ j ∧ θk = 0. (58)

The mixed Hodge structure (F,W ) on HomZ(Jx/Js+1
x ,C) is described on the

level of iterated integrals as follows. Such a sum belongs Fp if and only if each in-
tegrand θ1 · · · θk contains at least p terms θ j ∈ Ω1(X). As for the weight filtration,
α belongs to Wk if and only if α is representable by a sum of iterated integrals of
length ≤ k plus the number of logarithmic terms dz j/z j in the integrand.

Suppose next that H1(X) has pure weight ` = 1 or ` = 2. The first happens
for X projective, the second for instance when the compactification of X is P1.
In these situations, following [Ha1, §6], the dual of Jx/J3

x is an extension of pure
Hodge structures. To explain the result, note that the cup-product pairing H1(X) ⊗
H1(X)→ H2(X) is a morphism of pure Hodge structures. It follows that

K := ker
[
H1(X) ⊗ H1(X)→ H2(X)]

carries a pure Hodge structure of weight 2`. Theorem 6.5 now implies:

Theorem 6.6. The mixed Hodge structure on HomZ(J/J3,C) is the extension of
pure Hodge structures of weight ` and 2` given by

0→ H1(X)→ HomZ(J/J3,C) p
−−→ K → 0.

Explicitly, the iterated integral
∫
θ+

∑
j,k a jk

∫
θ jθk is mapped by p to

∑
a jk [θ j ]⊗

[θk ] which, by construction, belongs to K. The kernel of p can be identified with
the the length one homotopy integrals

∫
θ , i.e. those with dθ = 0. Hence

ker p ' H1(X). It follows that the graded pieces have a natural polarization com-
ing from the one on H1(X) and which is given by these identifications.

In particular, the above implies that if X is smooth projective, the graded po-
larized mixed Hodge structure on HomZ(J/J3,C) has two adjacent weights and so
if we now leave X fixed but vary the base point, we get a family of mixed Hodge
structures over X for which W−1gC is abelian and by Proposition 6.2 we conclude:

Corollary 6.7. Let X be a smooth complex projective variety, and suppose that the
differential of the period map of Jx/J3

x is injective. Then the holomorphic sectional
curvature of X is ≤ 0.

Complements: Flat Structure and the Hodge Metric

1. The flat structure given by the local system attached to J/J3 may be described
as follows: Fix a point xo ∈ X and let U be a simply connected open subset
containing xo . Given a point x ∈ U let γ : [0,1]→ U be a smooth path connecting
xo to x. Then, conjugation

α 7→ γαγ−1 (59)
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defines an isomorphism π1(X, x)→ π1(X, x0) which is independent of γ since U is
simply connected. Trivializing (J/J3)∗ using (59), we then obtain the period map
via the change of base point formula (see [Ha1, Remark 6.6]):∫

γαγ−1
θ1θ2 =

∫
α
θ1θ2 +

(∫
γ
θ1

) (∫
α
θ2

)
−

(∫
γ
θ2

) (∫
α
θ1

)
(60)

one then obtains the following result via differentiation:

Lemma 6.8. The flat connection ∇ of (J/J3)∗ operates on iterated integrals via the
following rules:

∇ξ

(∫
θ1θ2

)
= θ1(ξ)

(∫
θ2

)
− θ2(ξ)

(∫
θ1

)
and ∇ξ(

∫
θ) = 0.

As a check of the formula for ∇ given in Lemma 6.8, note that by Theorem 6.5
that the iterated integral (57) appears in (J/J3)∗ only if θ j and θk is closed for all
j, k an equation (58) holds. Therefore,

∇2 *.
,

∫
θ +

∑
j,k

a jk

∫
θ jθk

+/
-

=
∑

ai j

(
dθ j

∫
θk − dθ j

∫
θk

)
= 0

because dθ j = 0. Likewise, direct calculation using Lemma (6.8) shows that the
Hodge filtration Fof (J/J3)∗ is holomorphic and horizontal with respect to ∇, and
the weight filtration W is flat.
2. By way of illustration we shall prove the correctness of the expression (8) for
the mixed Hodge metric as announced in the introduction. First of all (for X =

P1 − {0,1,∞})

∇

∫
dz
z
·

dz
1 − z

=
dz
z

∫
dz

z − 1
−

dz
z − 1

∫
dz
z
,

and, secondly, from the above discussion it follows that



∫
dz

z − 1



2

= h([ dz
z − 1

], [ dz
z − 1

]) = (4π)2.

where h is the Hodge metric on H1(X) (and similarly for ‖ ∫ dz
z ‖2).

3. As a further illustration, let us calculate the mixed Hodge metric when we
specialize the preceding to a compact Riemann surface X of genus g > 1. Let
θ1, . . . , θg be an unitary basis of H1,0(X) with respect to the Hodge metric. Then,
up to a scalar, the metric on X obtained by pulling back the mixed Hodge metric
via the period map of (J/J3)∗ is given by

‖d/dz‖2 =

g∑
j=1

‖θ j (d/dz)‖2.

This follows directly from Lemma (6.8) and the discussion on the mixed Hodge
structure on (J/J3)∗ we just gave.
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Remark. The above description of the mixed Hodge metric can be generalized in a
straightforward manner to any smooth complex projective variety.

7 The Kähler Condition

We recall some facts about Kähler metrics. Let h be a hermitian metric on a com-
plex manifold M . Given any system of local holomorphic coordinates (z1, . . . , zm)
on M , the associated fundamental 2-form Ω is given by the formula

Ω = −

√
−1
2

∑
j,k

h jkdz j ∧ dz̄k , h jk = h
(
∂

∂z j
,
∂

∂zk

)
. (61)

This form is a globally defined (1,1)-form and by definition h is Kähler if and only
if dΩ = 0.

An equivalent condition can be given in terms of the torsion tensor for the
associated Chern connection ∇h on the holomorphic tangent bundle. Recall that
the torsion tensor for any linear connection ∇ on the tangent bundle is defined by
the formula

T∇(X,Y ) := ∇XY − ∇Y X − [X,Y ],
where X and Y a local smooth vector fields. The Kähler condition is equivalent to
T∇h = 0. see [Ko, Prop. I.7.19].

Proposition 7.1. A hermitian metric h as above with Chern connection ∇ = ∇h is
Kähler if and only if for local holomorphic vector fields X,Y on M one has

∇XY − ∇Y X − [X,Y ] = 0.

Proof : The torsion is a tensor, i.e. bilinear over C∞(M) and since all local vector
fields are C∞(M)-linear combinations of the holomorphic coordinate vector fields
and their complex conjugates, it suffices to test whether T(X,Y ) = 0 with X and Y
locally holomorphic or anti-holomorphic. If X and Y have different types one has
[X,Y ] = 0 7 and hence the torsion vanishes on such pairs (X,Y ). Since T(X̄ ,Ȳ ) =

T(X,Y ), to show that the torsion vanishes, one therefore may restrict to pairs (X,Y )
of local holomorphic vector fields. So T = 0 precisely if T vanishes on pairs of
vector fields belonging to a holomorphic local frame for the holomorphic tangent
bundle. �

Let ∆m a polydisk at 0 ∈ Cm with coordinates (s1, . . . , sm) and let F : ∆m → D
be a holomorphic, horizontal map. Let q be the subalgebra (22) attached to F(0).
Recalling the local biholomorphism (35) mapping a neighborhood of 0 ∈ q to a
neighborhood of F(0) in D, locally we can write as in [P1]

F(s) = eΓ(s) · F(0)
7 Clearly, if X , Y are local holomorphic coordinate vector fields [X,Ȳ ] = 0 and an easy calculation

shows that [ f X, ḡȲ ] = 0 whenever f ,g are local holomorphic functions and X,Y holomorphic fields
with [X,Ȳ ] = 0.
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for a unique q-valued holomorphic function Γ which vanishes at 0.

Theorem 7.2. Let h = F∗(hD) denote the pullback of the mixed Hodge metric hD

to S. Set ξ j = ∂Γ
∂s j

(0). Then h is Kähler if and only if for all j, k, ` one has

h(ξ j , πq[π+(ξ̄`), ξk ]) − h(ξ`, πq[π+(ξ̄ j ), ξk ]) = 0. (62)

Proof : First, remark that by Theorem 3.1 one has

∇ξ j ξ` = −πq[π+(ξ j )∗, ξ`].
Since

h(πq[π+(ξ j )∗, ξ`], ξk ) = h([π+(ξ j )∗, ξ`], ξk )
= h(ξ`, [π+(ξ j ), ξk ])
= h(ξ`, πq[π+(ξ j ), ξk ]),

formula (62) for all j, k, ` is equivalent to

∇ξ j ξ` − ∇ξ` ξ j = 0 for all `, j

and hence, by the second condition from Prop. 7.1 we only have to show that the
bracket [ξ j , ξ`] vanishes.

To see this, recall that period maps are horizontal, i.e. all tangents to the image
F(s) of a period map belong to U−1

F(s) =
⊕

q I−1,q
F(s) . Working this out means

e− ad Γ(s) ∂

∂s j
ead Γ(s) ∈ U−1

F(0)

and as in the proof of [P1, Theorem 6.9] this is equivalent to the commutativity
relation

[ξ j , ξ`] =

[
∂Γ

∂s j
(0), ∂Γ

∂s`
(0)

]
= 0. �

Corollary 7.3. The pullback of the mixed Hodge metric along an immersion is
Kähler in the following cases:

(a) Variations of pure Hodge structure (Lu’s result [Lu]);

(b) Hodge–Tate variations;

(c) The variations of mixed Hodge structure attached to Jx/J3
x for a smooth

complex projective variety;

(d) The variations from § 1.4. Example 4 arising from the commuting deforma-
tions of the complex and Kähler structure of a compact Kähler manifold.
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Proof : In case (a), the derivatives of Γ at zero are of type (−1,1) and so for all
`, j

[π+(ξ`), ξ j ] = [π+(dΓ/ds`(0)),dΓ/ds j (0)] (63)

is type (0,0) which is annihilated by πq.
In case (b), π+(dΓ) = 0.
In case (c) the bracket (63) is of type (−1,−1) which is zero due to the short length
of the weight filtration.
In case (d), the bracket (63) has terms of type (0,0) and (0,−2), both of which are
annihilated by πq.

Remark 7.4. In case (d) one can also show that the the holomorphic sectional cur-
vature will be ≤ 0.

Theorem 7.5. Let V be a variation of mixed Hodge structure with only two non-
trivial weight graded-quotients GrWa and GrWb which are adjacent, i.e. |a − b| = 1.
Then, the pullback of the mixed Hodge metric along the period map of Vis pseudo-
Kähler.

Proof : We shall prove the symmetry relation (62) which in our situation due to
the short nature of the weight filtration reduces to

h(ξ j , [ξ̄`, ξk ]) − h(ξ`, [ξ̄ j , ξk ]) = 0. (64)

Without loss of generality, we can assume that ξ j , ξk , ξ` are of pure Hodge type.
Inspection of the possibilities shows that the only non-trivial case is when X = ξ j
and Y = ξ` are type (−1,0) and Z = ξk is type (−1,1). Since by Lemma 2.14 we
have Z∗ = −Z̄ in this case, the formula (44) and the fact that h is hermitian gives

h(X, [Ȳ , Z]) = h([X, Z̄],Ȳ ))
= h(Y, [X̄ , Z]),

which is (64). �

Example 7.6. In particular, Theorem 7.5 applies to the tautological variations of
Hodge structure over the moduli spaces Mg,n and more generally, to families of
pairs (Xs ,Ys) of a smooth projective variety Xs and a smooth hypersurface Ys ⊂ Xs

as well as a family of normal functions (11) over a curve S with Hfixed and whose
period map is an immersion.

8 The Biextension Line Bundle

Recall from the introduction that in this special case for the graded Hodge numbers
we have h−1,−1 = 1 and all other hp,q = 0 unless p + q = −1; the mixed Hodge
structure is described as a biextension

0→GrW
−1 → W0/W−2 → GrW0 = Z(0)→ 0

0→GrW
−2 = Z(1)→ W−1 → GrW

−1 → 0.
(65)
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As explained below, a family of such mixed Hodge structures over a parameter
space S comes with a biextension metric hbiext(s). Its Chern form will be shown
to be semi-positive along any curve, provided the biextension is self-dual: see
Theorem. 8.2.

The point in this section is that the mixed Hodge structure is in general not
split and that the metric hbiext can be found by comparing the given mixed Hodge
structure (F,W ) on the real vector space W0 to its Deligne splitting (e−iδF,W F,W )
where we recall from [CKS, Prop. 2.20] that

δF,W =
1
2

ImYF,W =
1
4i
(YF,W − ȲF,W ) ∈ ΛF,W ∩ gR. (66)

Here YF,W ∈ End(VC) equals multiplication by p + q on Deligne’s I p,q(V ).
Since GrW

−2 ' R and similarly for GrW0 , fixing bases, the map δF,W can then
be viewed as a real number δ, depending on (F,W ). By [Hay-P, §5], there ex-
ists a further real number λ depending only on W such that the positive number
h(F,W ) = e−2πδ/λ depends only on the equivalence class of the extension.

Let us apply this in our setting of a family (F,W ) of biextensions over a com-
plex curve S. Then

hbiext(s) := h(Fs ,W ) = e
−2πδFs ,W

λ (67)

turns out to be a hermitian metric on S.
As before we write

F(s) = eΓ(s) · F, (68)

where F = F(0) and Γ(s) is a holomorphic function on a coordinate patch in S with
values in q. This is the main result we are after:

Theorem 8.1. Let S be a curve and let Fbe a variation of biextension type over S
with local normal form (68). Let γ−1,0 be the Hodge component of type (−1,0) of
Γ′(0).

The Chern form of the biextension metric (67) is the (1,1)–form

−
1

2πi
∂∂̄ hbiext(s) =i

∂2 δ(s)
∂s∂ s̄

ds ∧ ds

=
1
2
[γ−1,0, γ̄−1,0] ds ∧ ds.

(69)

Proof : Let
eΓ(s) = gR(s)eλ(s) f (s) (70)

as usual. Then, by Lemma 2.9 we have Y (s) = gR(s)eλ(s)Y , where Y = Y(F,W ). If
we set f (s) = eϕ(s), using (66), we get

∂2

∂ s̄∂s
δ(s) =

1
2

Im
∂2

∂s∂ s̄
eΓ(s)e−ϕ(s)︸      ︷︷      ︸

d(s)
·Y. (71)
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Since Γ(s) is holomorphic, we have

∂

∂ s̄
d(s) · Y = Ad ( eΓ(s))

(
∂

∂ s̄
e− adϕ(s) · Y

)
and so

∂2

∂s∂ s̄
d(s) · Y =

(
∂

∂s
ead Γ (s)

) (
∂

∂ s̄
e− adϕ (s)Y

)
+ Ad e Γ(s)

(
∂2e− adϕ (s)

∂s∂ s̄
Y
)
.

(72)

We now consider the Taylor expansion (note that ϕ(0) = 0)

ϕ(s) = ϕ01s + ϕ10 s̄ +
∑
j,k

ϕ jk s j s̄k + O3(s, s̄).

By Lemma 2.16, we also know

ϕ10 = 0, (73)

ϕ01 = −(Γ′(0))+, (74)

ϕ11 = [γ, γ̄]0 + [γ, γ̄]+
= [γ−1,1, γ̄−1,1]0 + [γ−1,1, γ̄−1,0]. (75)

Formula (73) shows that the term with ss̄ in the Taylor expansion of

∂2

∂s∂ s̄
e− adϕ (s)Y

is just −[ϕ11,Y ]. Together with equation (72) it follows that

∂2

∂s∂ s̄
d(s) · Y

�����0
= −[Γ′(0), [ϕ01,Y ]] − [ϕ11,Y ] (76)

Eqn. (74) states that ϕ0,1 = −Γ′(0)+. Let γ = Γ′(0). By horizontality and the short
length of the weight filtration,

γ = γ−1,1 + γ−1,0 + γ−1,−1.

Moreover, since (F,W ) is a biextension

γ̄−1,1 ∈ g1,−1, γ̄−1,0 ∈ g0,−1, γ̄−1,−1 ∈ g−1,−1

Therefore,
−ϕ01 = (Γ′(0))+ = γ̄−1,1 + γ̄−1,0.

In particular, since adY acts as multiplication by a + b on ga,b it follows that

−[Γ′(0), [ϕ01,Y ]] = [γ, [γ̄−1,1 + γ̄−1,0,Y ]] = [γ, γ̄−1,0]
= [γ−1,1, γ̄−1,0] + [γ−1,0, γ̄−1,0]. (77)
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Finally, using (75),

ϕ11 = [γ, γ̄]0 + [γ, γ̄]+
= [γ−1,1, γ̄−1,1]0 + [γ−1,1, γ̄−1,0],

so that
[ϕ11,Y ] = −[γ−1,1, γ̄−1,0]. (78)

Combining Eqns. (76)–(78), we have:

∂2

∂s∂ s̄
d(s) · Y

�����0
= [γ−1,1, γ̄−1,0] + [γ−1,0, γ̄−1,0] + [γ̄−1,1, γ−1,0]. (79)

The result then follows from (71). �
So far, we have not assumed anything special about the biextension variation F.

Of special interest in connection with the Hodge conjecture is the case where the
two normal functions appearing in (65) are self-dual with respect to the polarization
Q on H := GrW

−1.

Theorem 8.2. Let h be the Hodge metric on GrW
−1 and let F be a self-dual biex-

tension over a curve S with local normal form at a disk (∆, s) at s0 ∈ S given by
F(s) = eΓ(s). Choose a lift e(0) ∈ I0,0

F of 1 ∈ Z(0) and let

γ = Γ
′(0) ∈ End(W0)C, t := γ−1,0(e(0)) ∈ I−1,0

F ,

where γ−1,0 is the Hodge component of type (−1,0) of Γ′(0). Let ν ∈ Ext1VMHS(Z(0),GrW
−1 F)

and its dual be the two normal functions associated to the biextension and let δ(s)
be the Deligne δ-splitting of Fs . Then

1. the value of the infinitesimal invariant ∂ν for the normal function ν at s0 can
be identified with t.

2.
∂2

∂s∂ s̄
δ(s)

�����0
(e(0)) = h(t, t) ∈ R≥0, t = γ−1,0(e(0)). (80)

3. The Chern form of the Hodge metric is semi-negative.

Proof : 1. The point here is that γ1,0 ∈ Hom(I0,0
F , I−1,0

F ) is the derivative at s0 of the
period map for the normal function ν which, from the set-up gets identified with t.
3. Follows from Theorem 8.1 and 2.
2. Recall (69). We have

1
2i
[γ−1,0, γ̄−1,0]e(0) = −

1
2i

(
γ−1,0(γ̄−1,0(e(0))) − γ̄−1,0(γ−1,0(e(0))))

= −
1
2i

(
γ−1,0(t̄) − γ−1,0(t)

)
= − Im(γ−1,0(t̄)).
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Next, we express self-duality. Observe that the derivative of the period map of
the dual extension ν∗ can be expressed as a functional on W−1: it is zero on W−2
and self-duality means precisely that on H∗ = Hom(H,Z(1)) it restricts to the
functional8

β = Q(s,−) ∈ H∗ 7→ −Q(s, t) ∈ C.
This formula implies that, tracing through the identifications, one has γ−1,0(t̄) =

−Q(t̄, γ−1,0e(0)) = −Q(t̄, t) = Q(t, t̄) and hence:

1
2i
[γ−1,0, γ̄−1,0]e(0) = − Im(Q(t, t̄)).

Since h(t, t) = Q(−it, t̄) = −iQ(t, t̄) is real, we get indeed 1
2i [γ−1,0, γ̄−1,0]e(0) =

h(t, t) ∈ R. �

Corollary 8.3. If V is a variation of biextension type over a curve S with self-
dual extension data, then δ(s) is a subharmonic function which vanishes exactly
at the points s ∈ S for which the infinitesimal invariants of the associated normal
functions vanish.

9 Reductive Domains And Complex Structures

In this section we consider special classifying domains: the reductive ones. Recall
that a homogeneous space D = G/H with G a real Lie-group acting from the left
on D is reductive if the Lie algebra h = Lie(H) has a vector space complement n
which is ad H -invariant:

g = h ⊕ n, [h,n] ⊂ n. (81)

Note that this implies that n is the tangent space at the canonical base point of
D = G/H; moreover, the tangent bundle is the G-equivariant bundle associated to
the adjoint representation of H on n.

9.1 Domains for Pure Hodge Structures

These are reductive: in this situation nC := n+ ⊕ n− (see (31)) is the complexifica-
tion of n := nC ∩ g and this is the desired complement.

Let us recall from [Ca-MS-P, Chap. 12] how the connection form for the metric
connection (the one for the Hodge metric) can be obtained. Start with the Maurer-
Cartan form ωG on G. It is a g-valued 1-form on G. Decompose ωG according to
the reductive splitting. Then ω = ωh, the h–valued part, is a connection form for
the principal bundle p : G → G/H = D. Let ρ : H → GL(E) be a (differentiable)
representation and let [E] = G ×ρ E be the associated vector bundle. It has an
induced connection which can be described as follows. Locally over any open

8For simplicity we have discarded the Tate twist.
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U ⊂ D over which p has a section s : U → G, the bundle [E] gets trivialized and
the corresponding connection form then is s∗( ρ̇◦ω), where ρ̇ : h → End E is the
derivative of ρ.

In the special case where E = TF D this leads to a canonical connection ∇D

on the holomorphic tangent bundle of D. If D is a period domain this canonical
connection is the Chern connection for the Hodge metric.

From this description the curvature can then directly be calculated:

Theorem ([Ca-MS-P, Cor. 11.3.16] ). Let D be a period domain for pure polarized
Hodge structures and let α, β ∈ n = TF D . Then RD ∈ A1,1

D (End n), the curvature
form of the canonical connection ∇D on the holomorphic tangent bundle of D
evaluates at F as:

RD(α, β̄) = − ad [α, β̄] h.
Remark 9.1. The above proof for the pure case makes crucial use of the compat-
ibility of the complex structure of D and reductive structure: First, one needs the
complex structure coming from the inclusion D = G/GF ⊂ Ď = GC/GF

C
to see

that the Maurer-Cartan form is the real part of a holomorphic form, the Maurer-
Cartan form on GC and hence ω is the real part of a holomorphic form. Next, one
uses that the complex structure J on n is such that n± ⊂ nC is the eigenspace for J
with eigenvalue ±i and one makes the identification

TF D = (n, J) ' n−.
In the mixed case there are situations where the domain is reductive, but the com-
plex structure then does not behave as in the pure case, as we now show.

9.2 Differential Geometry of Reductive Domains

Let D = G/V be a reductive homogeneous space and a choice g = h ⊕ n of a
reductive splitting. Let us recall some major results from [No]. The G-invariant
connections on T(D) are in one two one correspondence to bilinear ad H –invariant
functions

α : n × n → n.

A given such connection ∇ corresponds to

α(X,Y ) := ∇XỸ ,

where Ỹ is the vector field on D obtained from Y ∈ To(D) by left G-translation
(o ∈ D is the coset of 1 ∈ G). The Maurer-Cartan induced connection ∇D on T(D)
is the one for which α is identically zero. In loc. cit. it is called the canonical affine
connection of the second kind.

Suppose that we have a V–invariant metric g on n. This gives G–equivariant
metric on D, likewise denoted g. By [No, Theorem 13.1] a G-invariant connection
∇ on T(D) is metric with respect to g if and only if

∇XỸ =
1
2
[X,Y ]n + U(X,Y ), (82)
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where U : n × n → n is the R–bilinear form which is determined by the formula

2g(U(X,Y ), Z) = g([Z,X]n ,Y ) + g(X, [Y, Z]n). (83)

Moreover, the connection is free of torsion if and only if U is a symmetric form.
For the Maurer-Cartan induced connection the left hand side of (82) vanishes and
so it is metric, precisely when

U(X,Y ) = −
1
2
[X,Y ]n . (84)

So this can only be without torsion if [X,Y ]n = 0. In fact, By [No, Theorem 10.3]
its torsion is given by

T(X,Y ) = −[X,Y ]n . (85)

So, the canonical connection in general differs from the Levi-Civita connection.

Remark 9.2. 1) We extend the above connections to the complex tangent bundle
TC(D). The same considerations then hold provided g and U are replaced by their
C–bilinear extensions.
2) Note that in general only the thus extended canonical connection preserves the
decomposition TC(D) = T1,0D⊕T0,1D into the holomorphic and anti-holomorphic
tangent bundles. For the Levi-Civita connection this holds if the metric is Kähler.

9.3 Split Domains

Mixed domains are seldom reductive, and, even if they are, we shall see that the
complex structure does not satisfy the compatibility required by Remark 9.1.

Examples 9.3. 1. Suppose Λ = 0. Then equation (34) implies that n = nC ∩ gR

is the desired complement. Note that in the pure case this equals also nC ∩ g.
This difference will influence the curvature calculations. Domains with Λ = 0 are
called split domains because they parametrize split mixed Hodge structures. We
investigate these below in more detail.
2. We consider the general mixed situation. Let Dsplit be the subdomain of D
parametrizing split mixed Hodge structures9. This domain can be identified with
GR/GF

R
, where F is a fixed split mixed Hodge structure. Note that nC ⊕ Λ has a

real structure which makes Dsplit a reductive domain for the splitting

gR = g
0,0 ∩ gR︸    ︷︷    ︸
Lie(GF

R
)
⊕(nC ⊕ Λ)R.

In general Dsplit only has the structure of a differentiable manifold.
3. In general the group GR does not act transitively on D. But there is another

9This has been called DR in § 2.
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natural subgroup of G which does act transitively. To explain this, introduce (for
r < 0):

GW
r := {g ∈ G | for all k the restriction g|(Wk/Wk+r ) is real.}

Note that GW
−2 contains exp(Λ) as well as GR and hence it acts transitively on D.

Under the minimal condition

Lie(GW
−2) = gR ⊕ iΛ

we clearly get a reductive splitting

Lie(GW
−2) = g

0,0 ∩ gR ⊕ [(nC ⊕ Λ)R ⊕ iΛR] .
Domains which satisfy this condition are called close to splitting. An example is
provided by the so-called type II domains from [P3].

Note that in general (nC ⊕ Λ)R does not admit a complex structure: dimΛ can
be odd!

9.4 Two Step Filtrations

This case has been treated in detail in [U, § 2]. The domains in question are exam-
ples of split domains, and hence they are reductive. The mixed Hodge structures
they parametrize indeed split over R since the associated weight filtration has only
two consecutive steps, say 0 = W0 ⊂ W1 ⊂ W2 = H .

Assume that we are given two polarizations on W1 and GrW2 , both denoted Q.
One can choose an adapted (real) basis for H which

• restricts to a Q–symplectic basis (a1, . . . ,ag ,b1, . . . ,bg) for W1;

• the remainder of the basis (c1, . . . ,ck ,c′1, . . . ,c
′
k
,d1, . . . ,d`) projects to a ba-

sis for GrW2 diagonalizing Q, i.e. Q =diag(−12k ,1`).
Then

G =

{(
A B
0 C

)
| A ∈ Sp(g;R), C ∈ O(2k, `), B ∈ C2g×(2k+`)

}
,

reflecting the Levi-decomposition. More invariantly, the two matrices A and C on
the diagonal give the semi-simple part Gss while the matrices B give the unipotent
radical

Gun ' HomC(GrW2 ,W1).
Here, the isomorphism (via the exponential map) in fact identifies Gun with its
Lie-algebra:

g
un = HomC(GrW2 ,W1), (86)

the endomorphisms in g which lower the weight by one step.
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The real group GR consists of the group given by similar matrices, except that
now the matrices B are taken to be real. In particular

g
un
R = g

un ∩ gR = HomR(GrW2 ,W1). (87)

Next, fix the Hodge flag F =
�
F2 ⊂ F1 ⊂ F0 = HC

	
which has the following

adapted unitary basis

( f1, . . . , fk︸      ︷︷      ︸
F2

,d1, . . . ,d`, f ′1, . . . , f ′g︸                                    ︷︷                                    ︸
F1

, f̄ ′1, . . . , f̄ ′g , f̄1, . . . , f̄k ),

fk : =
1
√

2
[ck − ic′k ], f ′k =

1
√

2
[ak − ibk ].




(88)

The group GF consists of the subgroup of G with A =

(
U −V
V U

)
, U + iV ∈ U(g),

C ∈ O(2k) × O(`) and the matrices B are of the form{(
B′

−iB′

)
| B′ ∈ Cg×(2k+`)

}
.

Note that Gss/GF∩Gss = D1×D2, the product of the domain D1 ' Hg , parametriz-
ing weight 1 Hodge polarized structures with h1,0 = g and D2 parametrizing weight
2 polarized Hodge structures with h2,0 = k,h1,1 = `. The natural projection

G/GF → Gss/GF ∩ Gss = D1 × D2 (89)

is a holomorphic bundle with fiber associated to the adjoint representation of Gss∩GF

on gun/gun ∩ gF . Explicitly, this action is

g · [B] = [ABC−1], g =

(
A 0
0 C

)
.

The fiber of (89) over F is the affine space consisting of the extension data of
(W1,F) by (GrW2 ,F) on which Gun acts transitively as the group of translations.
The group Gss acts on this fiber bundle by holomorphic transformations from the
left: g ∈ Gss sends the fiber over F biholomorphically to the fiber over g · F.

To obtain a reductive decomposition gR = h ⊕ n, set

h := g
0,0 ∩ g, n = n

ss ⊕ gun
R , n

ss =
�
⊕p,0g

p,−p
�
∩ g. (90)

Let us study the metric properties of the Hodge metric h and its Chern connection
∇h . It is invariant under the Hodge metric and so is determined by Eqn. (82).

Lemma 9.4. The canonical connection ∇D on the complex tangent bundle TC(D)
of D = G/GF given by the reductive decomposition (90) is distinct from the (ex-
tended) Chern connection ∇h on TC(D).
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Proof : Both connections are metric for the Hodge metric and so they are both
given by the formula (82). In particular, for X,Y ∈ gC we have

∇D
X Ỹ = U(X,Y ).

Let us calculate U(X,X), X ∈ g−1,0 with the aid of (83) where (cf. Remark 9.2) g
is the complex bilinear extension of the real part of the Hodge metric on gC. We
then see that for Z ∈ g−1,1 ⊕ g1,−1, we get

2g(U(X,X), Z) = g([Z,X],X) + g(X, [X̄ , Z])
= h([Z,X], X̄) + h([X̄ , Z], X̄)
= −h(Z, [X∗, X̄]) + h(Z, [X̄∗,X])
= g(Z, [X, X̄∗] − [X̄ ,X∗])

where the third line follows from (44). Hence U(X,X) = 1
2 ([X, X̄∗]−[X̄ ,X∗]) which

does not always vanish. Indeed in the basis (88) the tangent vector X corresponds
to a matrix with A = C = 0 and B arbitrary, while X̄∗ is the transpose conjugate

so that U(X,X) =

(
Im BTB 0

0 −Im TBB

)
. Now compare this with what happens for

∇h . Eqn. (84) tells us that we must have U(∇h)(X,X) = − 1
2 [X,X] = 0. Indeed, the

canonical connection has ∇D
X Ỹ = α(X,Y ) = 0. This shows that ∇D , ∇h . �

As to the complex structure we have:

Lemma 9.5. The complex structure compatible with the reductive structure is not
the one coming from the embedding G/GF ⊂ GC/GF

C
.

Proof : Write
g

un = g
0,−1
F ⊕ g

1,−2
F︸         ︷︷         ︸

gun
F,+

⊕ g
−1,0
F ⊕ g

−2,1
F︸         ︷︷         ︸

gun
F,−

n
ss = [g−2,2 ⊕ g−1,1︸         ︷︷         ︸

nss
F,−

⊕ g1,−1 ⊕ g2,−2︸         ︷︷         ︸
nss
F,+

] ∩ g.

Since gun
F,+ = gF ∩ gun

F , the tangent space at F to

Dun := Gun/GF ∩ Gun

gets identified with
TF Dun = g

un/gun
F,+

= g
un
F,−,

a space of complex dimension g(2k + `). The complex structure comes from the
standard complex structure J on gun, since TF Dun is a quotient thereof.10 Next,
note that

g
F
R ∩ g

un = 0

10I.e., J is multiplication by i.
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and so
Gun

R /G
F ∩ Gun

R = g
un
R = HomR(GrW2 ,W1)

and this space gets a complex structure thanks to the weight 1 Hodge structure in-
duced by F on W1. It is induced by a complex structure JF

1 whose complexification
on gun has eigenvalues as in the following table:

I2,0
F I1,1

F I0,2
F

I1,0
F i i i

I0,1
F −i −i −i

One deduces that the complex structure (gun
R
, JF

1 ) is not isomorphic to the complex
structure (gun

R
, JF )

The complex structure JF coming from G/GF ⊂ GC/GF
C

identifies the holo-
morphic tangent space at F as follows:

TF D = g/gF = n
ss
F,− ⊕ g

un
F,− ' (nss, JF ) ⊕ (gun

R , J
F ).

The natural complex structure JF on nss comes from the one inducing the complex
structure on the base D1 × D2 of the fiber bundle (89).

Taking the same complex structure on nss but the other on gun
R

leads to a differ-
ent holomorphic tangent space

(TF D, JF
1 ) = (nss, JF ) ⊕ (gun

R , J
F
1 );

it is a complex structure on n whose ±i–eigenspaces inside n ⊗ C are given by

nF,+ = n
ss
+,F ⊕ HomC(GrW2 ⊗C, I

0,1
F )

respectively
nF,− = n

ss
−,F ⊕ HomC(GrW2 ⊗C, I

1,0
F ).

Finally, note that the isomorphism

(TF D, JF
1 ) = (n, JF

1 ) ' nF,−.
gives TF D the complex structure which is required in the standard curvature calcu-
lations for reductive domains, as explained above. However, as we have seen, this
structure is not the one which comes from the embedding D = G/GF ↪→ GC/GF

C
.
�

Remark. 1. Clearly, JF
1 and JF commute.

2. Consider the surjective morphism

GR/GF
R → Gss/GF

R ∩ Gss = D1 × D2.

It is a real-analytic complex vector bundle associated to the Gss∩GF–representation
space gun

R
. This is also a holomorphic fiber bundle: if U ∈ U(g) and V ∈ [O(2k) ×

O(`)], the action on ϕ ∈ HomR(GrW2 ,W1) is given by ϕ 7→ U◦ϕ◦V−1 and hence is
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JF
1 -complex. However, the action of Gss on this bundle is no longer holomorphic:
g = (U,V ) ∈ Sp(g) × O(2k, `) sends ϕ in the fiber over F to U◦ϕ in the fiber over
g · F and since U and JF

1 only commute when U ∈ U(g) this is not a JF
1 -complex-

linear isomorphism. Since in our situation G/GF ' GR/GF
R

, this also confirms
that the two complex structures are distinct.
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A The Levi-Civita Connection

Suppose that M is a complex manifold and X1,0
M and X0,1

M denote the sheaves of
complex vector fields of type (1,0) and (0,1) respectively. Then, the conjugation
action u 7→ uc defined by

uc · f = u · f

defines an isomorphism of sheavesX1,0
M

∼
−−→ X

0,1
M as modules over the sheaf C∞(M,R)

of real valued smooth functions on M . It restricts to a conjugate linear morphism
between the sheaves of holomorphic and anti-holomorphic vector fields on M .

Lemma A.1. Let XM denote the sheaf of C∞ real vector fields on M. Then,

X
1,0
M → XM

u 7→ ur := u + uc

defines a linear isomorphism over C∞(M,R). Moreover, if x and y are holomorphic
vector fields, then

[xr , yr ] = [x, y]r . (91)

Proof : If z j = x j +
√
−1y j is a system of holomorphic coordinates on an open

subset U of M then (
∂

∂z j

)
r

=
∂

∂x j
,

(
√
−1

∂

∂z j

)
r

=
∂

∂y j

and hence the stated morphism induces an isomorphism over any holomorphic
coordinate chart. Using partitions of unity, it then follows that it is a global iso-
morphism, X1,0

M

�
−−→ XM . Since holomorphic and anti-holomorphic vector fields

commute, (91) follows. �
Let g be a Riemannian metric on the underlying C∞-manifold of M . Then, the

associated Levi-Civita connection ∇LC is determined by the Koszul formula:

2g(∇LC
X Y, Z) = Xg(Y, Z) + Yg(X, Z) − Zg(X,Y )

+ g([X,Y ], Z) − g([X, Z],Y ) − g([Y, Z],X) (92)

In particular, if h is a hermitian metric on M given as a pairing of sections of X1,0
M

we obtain an associated Riemannian pairing on sections of XM by the rule

g(ur ,vr ) = Re h(u,v) (93)

By the above remarks, in order determine the Levi-Civita connection of the
metric (93) it is sufficient to evaluate the expression (92) on vector fields X = xr ,
Y = yr and Z = zr with x, y and z holomorphic vector fields on M . Unraveling
the above, for holomorphic vector fields u, v and w we have:

wr · g(ur ,vr ) = w · Re h(u,v) + wc · Re h(u,v)
= (1/2)w · (h(u,v) + h(v,u)) + (1/2)w · (h(u,v) + h(v,u))
= Re (w · (h(u,v) + h(v,u))).




(94)
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Lemma A.2. The Levi-Civita connection ∇LC of the Riemannian metric (93) un-
derlying a hermitian metric h on a complex manifold M is determined by the for-
mula:

2g(∇LC
xr

yr , zr ) = Re (x · (h(y, z) + h(z, y)) + y · (h(x, z) + h(z, x))
−z · (h(x, y) + h(y, x)) + h([x, y], z) − h([x, z], y) − h([y, z], x)) ,

where xr , yr and zr arise from underlying holomorphic vector fields x, y and z.

Proof : The right hand side of the Koszul formula (92) for the Levi–Civita con-
nection is the sum of the terms

xr · g(yr , zr ) + yr · g(xr , zr ) − zr · g(xr , yr )
= Re (x · (h(y, z) + h(z, y)) + y · (h(x, z) + h(z, x)) − z · (h(x, y) + h(y, x)))

and
g([xr , yr ], zr ) − g([xr , zr ], yr ) − g([yr , zr ], xr )

= Re (h([x, y], z) − h([x, z], y) − h([y, z], x)) . �
We want to apply this formula in the case of the mixed Hodge metric and

holomorphic vector fields of the form

α̃(eu · F) = Leu∗α

where α ∈ q acts as the derivation

α · f =
d
dz

f (ezα · F)
�����z=0

on germs of functions at F and u 7→ eu · F gives a biholomorphism from a neigh-
borhood of 0 in q to a neighborhood of F in D.

Lemma A.3. Let α, β,γ ∈ q. Then11,

α̃ · h( β̃, γ̃)�
F

= −hF (β, [π+(ᾱ), γ]).
Proof : We have

α̃ · h( β̃, γ̃)�
F

=
d
dz

hezα ·F ( β̃, γ̃)
�����z=0

=
d
dz

hF (L f (z)∗ β,L f (z)∗γ)
�����z=0

,

where f (z) = exp(−z̄π+(ᾱ) + O2(z, z̄)). Therefore,

α̃ · h( β̃, γ̃)�
F

= −hF (β, [π+(ᾱ), γ]). �
11compare with Cor. 2.17
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Theorem A.4. For xr , yr and zr arising from x̃, ỹ, z̃ we have

2g(∇LC
xr

yr , zr ) = − Re(hF (y, [π+(x̄), z]) + hF (z, [π+(x̄), y]))
− Re(hF (x, [π+(ȳ), z]) + hF (z, [π+(ȳ), x]))
+ Re(hF (x, [π+(z̄), y]) + hF (y, [π+(z̄), x]))
+ Re(hF ([x, y] − [x∗, y] − [y∗, x], z)).

Corollary A.5. If x̃ and ỹ arise from x, y ∈ g−p,−q(F,W ) , p,q > 0 by left translation,
then for the corresponding vector fields xr , yr we have

∇LC
xr

yr =
1
2
[x, y]r .

Proof : Let zr arise from z̃ as above. The first two lines in the formula of Theo-
rem A.4 vanish since π+(x̄) = π+(ȳ) = 0 because x, y ∈ ΛF . As for the third line
of the formula for ∇, we note that π+(z̄) can never have a component of type (0,0)
and hence [π+(z̄), x] is orthogonal to y and [π+(z̄), y] is orthogonal to x. So, only
the last line of the formula of Theorem A.4 survives which gives

2∇LC
xr

yr = [x, y]r − πq([x∗, y] + [y∗, x])r .
The last term then vanishes since [x∗, y] + [y∗, x] has type (0,0). �

Lemma A.6. Let x, y, z ∈ qF . Put t := [y∗, x] + [x∗, y]. Then

Re hF (t, π+(z̄)) = Re hF (π+(t)∗ ∗, z).
If (F,W ) is split over R then

π+(t)∗ ∗ = π−(t̄) = π−([ȳ∗, x̄] + [x̄∗, ȳ]).
Proof : Since hF (u,v) = hF (v,u) we have

Re hF (t, π+(z̄))) = Re hF (π+(z̄), t)
= Re hF (z̄, π+(t))
= Re Tr(z̄◦(π+(t))∗)
= Re Tr(z◦π+(t))∗)
= Re hF (z, π+(t))∗ ∗)
= Re hF (π+(t))∗ ∗, z).

In the split case, ∗ and complex conjugation commute and hence π+(t)∗ ∗ = π+t =

π−(t) and the second assertion follows. �

Theorem A.7. If (F,W ) is split over R then 2∇LC
xr

yr at F is the real derivation
defined by

− πq([π+(x̄)∗, y] + [π+(x̄), y] + [π+(ȳ)∗, x] + [π+(ȳ), x])
+ π−([ȳ∗, x̄] + [x̄∗, ȳ]) + πq([x, y] − [x∗, y] − [y∗, x]).
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Proof : Applying Lemma A.6 to Theorem A.4 we have

2g(∇LC
xr

yr , zr ) = − Re(hF (y, [π+(x̄), z]) + hF (z, [π+(x̄), y]))
− Re(hF (x, [π+(ȳ), z]) + hF (z, [π+(ȳ), x]))
+ Re(hF (π−([ȳ∗, x̄]), z) + hF (π−([x̄∗, ȳ]), z))
+ Re(hF ([x, y], z) − hF ([x, z], y) − hF ([y, z], x))

which becomes

2g(∇LC
xr

yr , zr ) = − Re(hF ([π+(x̄)∗, y] + [π+(x̄), y], z)
− Re(hF ([π+(ȳ)∗, x] + [π+(ȳ), x], z)
+ Re(hF (π−([ȳ∗, x̄]) + π−([x̄∗, ȳ]), z)
+ Re(hF ([x, y] − [x∗, y] − [y∗, x], z)). �

Corollary A.8. Assume (F,W ) is split over R. Let xr and yr be vector fields
arising from x̃, ỹ with x and y of type (−1,1). Then,

∇LC
xr
yr =

1
2
[x, y]r .

Proof : In this case, by Lemma 2.14 x∗ = x̄, y∗ = ȳ and so π+(x̄)∗ = x and
π+(ȳ)∗ = y. We also note that [x̄, y] and [ȳ, x] project to zero in q = n− ⊕ Λ.
Therefore, the formula of Theorem A.7 reduces to the stated form. �

Corollary A.9. Assume that W has only two weight graded quotients which are
adjacent and let xr and yr arise from x̃ and ỹ with x and y of type (−1,0). Then,

2∇LC
xr

yr = −[x̄∗, y]r − [ȳ∗, x]r
Proof : For u and v of type (−1,0) in this setting we have π+(ū) = ū and [u,v] =

[ū,v] = 0. Likewise, [v∗,u] and [v̄∗, ū] are type (0,0) while [v̄∗,u] is type (−1,1).
Consequently, the formula of Theorem A.7 reduces to the stated form. �

Let us apply this to flow curves

γx : t 7−→ exp(t x) · F, x ∈ qF

and set

x(t0) :=
dγx
dt

�����t0
∈ q.

Corollary A.10. (1) For x, y ∈ ΛF of the same type we have

∇LC
x(t)r y(t)r =

1
2
[x(t), y(t)]r .

(2) The flow curve γx is a geodesic. This is in particular the case when γx is the
image under a period map.
(3) Suppose that x, y, z ∈ ΛF have the same type and commute. Then the Riemann
curvature

R(xr , yr )zr = ∇LC
x ∇

LC
yr

zr − ∇LC
yr
∇LC
xr

zr − ∇LC
[xr ,yr ]zr

vanishes.
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Proof : Under the flow the type need not be preserved. However, an application of
Lemma 2.9 shows that the types are preserves when we start with x ∈ g−p,−qF with
p,q > 0. Then (1) follows from Cor. A.5. In particular, this vanishes for x = y. By
definition the curve γx then is a geodesic. The formula for the Riemann curvature
implies (3). �
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