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On rigidity of locally symmetric spaces

Chris Peters

September , 

Introduction

A classical result due to Calabi and Vesentini [Cal-V] states that a com-
pact locally symmetric space is rigid, provided all of its irreducible factors
have dimension at least . This implies that such varieties (known to be
algebraic) can be defined over a numberfield. This was first remarked by
Shimura in [Sh]. For a modern variant of the proof see [Pe].

Faltings [F] remarked that one can show that the Kodaira-Spencer class
for any ”spread family” of the given variety is zero which suffices for rigid-
ity. This is true without any restriction on the type of irreducible factors,
and even for non-compact locally symmetric spaces. The proof uses first of
all Mumford’s theory of toroidal compactifications [A-Mu-R-T] of locally
symmetric varieties together with the existence of ”good” extensions of
metric homogeneous vector bundles to these compactifications as shown
in [Mu]. The second ingredient is a careful analysis of the extension of
classical harmonic theory to a suitable L2 version.

I show in this note that the same techniques can be used to extend the
results of Calabi and Vesentini to the non-compact case. This is stated as
Theorem ..

Mumford’s ideas are sketched in Sect.  and in Sect.  I have explained
the basic L2–techniques used by Faltings. This is done in some detail since
the arguments in [F] are rather sketchy.

Thanks to Christopher Deninger for pointing out to the reference [F].





 Poincaré growth and good metrics

In this section I recall some concepts and results from [Mu]. Let X be a
smooth quasi-projective complex variety and let X be a ”good” compacti-
fication: X is non-singular, projective and ∂X := X −X a normal crossing
divisor. Hence, locally at a point of the boundary, coordinates (z1, . . . , zn)
can be chosen such that the boundary is given by the equation z1 · · ·zr = 0
and ∂X can be covered by a collection of polydisks ∆n on which X cuts out
(∆∗)r ×∆n−r . Let ‖‖P be the Poincaré norm on such a product. Any smooth
p form, say η on X is said to have Poincaré growth near the boundary, if
for all tangent vectors {t1, . . . , tp} at a point of ∆n ∩ X, one has the esti-
mate |η(t1, · · · , tp)|2 ≤ Const. ‖t1‖P · · · ‖tp‖P . This notion does not depend on
choices. By [Mu, Prop. .] such a form defines a current on X. Mumford
calls a smooth form ω on X a good form if ω as well as dω have Poincaré
growth near the boundary.

Let (E,h) be a hermitian holomorphic vector bundle on X. Recall the
following definition:

Definition .. The Chern connection for (E,h) is the unique metric con-
nection ∇E on E whose (0,1)-part is the operator ∂̄ : A0

X(E)→A
0,1
X (E) com-

ing from the complex structure on E.

Assume that E = E|X where E is a holomorphic vector bundle on X.

Definition .. The metric h is good relative to E, if locally near the bound-
ary for every frame of E the following holds:

. the matrix entries hij of h, respectively h−1
ij of h−1, with respect to the

frame grow at most logarithmically: in local coordinates z1, . . . , zn as
above, |hij |, |h−1

ij | ≤ Const. · (log |z1 · · ·zk |)N for some integer N .

. the entries of the connection matrix ωh = ∂h · h−1 for the Chern con-
nection are good forms.

By [Mu, Prop. .] there is at most one extension E of E such that h is
good relative to that extension. Note also that the dual E∗ carries a natural
metric and this metric is good relative (E)∗.

If h is a good metric on a vector bundle E relative to an extension E,
then, by definition any Chern form calculated from the Chern connection
is good and by [Mu, Thm. .], the class it represents, is the corresponding
Chern class of E.





 Relevant L2 harmonic theory

Let me continue with the set-up of the previous section. So (E,h) is a her-
mitian holomorphic vector bundle on X such that E is the restriction to X
of a holomorphic vector bundle E on X with the property that h is good
relative to E. In addition, make the following, admittedly strong assump-
tions:

Assumption .. . X carries a complete Kähler metric hX whose (1,1)-
form has Poincaré growth near ∂X (and hence its volume form has Poincaré
growth).
. Smooth sections of the bundle Ak

X
(E) of complex k–forms with values in

E are bounded in the metric induced from h and hX .

Let me recall how to introduces metrics on the spaces Ak(E) of global
complex k-forms with values in E. On a fibre AkX,x(E) at x ∈ X of the vector
bundle AkX(E), one has a fiberwise metric induced by the metrics h and hX :

hx(α ⊗ s,β ⊗ t) = hX(α,β)h(s, t), α,β ∈AkX,x, s, t ∈ Ex. ()

Assumption  means that for any two sections ωi ∈ Ak(E), i = 1,2 the
function {x 7→ hx(ω1,ω2)} is bounded on X. Since by assumption , the
volume form for hX has Poincaré growth near ∂X it follows that the global
inner product

〈ω1,ω2〉 =
∫
X
hx(ω1,ω2) · vol. form w.r. to hX , ω1,ω2 ∈ AkX̄(E)

exists; in other words, one has an inclusion

Ak(E) ↪→ L2(X,Ak(E)) = {square integrable E-valued k forms}

and one can do harmonic theory for certain differential operators on these
spaces. The particular operators here are those that are induced from the
Chern connection ∇ = ∇E (see Defn. .), namely

∇ : AkX(E)→Ak+1
X (E), ∇0,1 = ∂̄,

α ⊗ s 7→ dα ⊗ s+ (−1)kα ⊗∇s.





The operator ∂̄, extends in the distributional sense to an operator

∂̄ : L2(X,A0,q(E))→ L2(X,A0,q+1(E))

and since the metric on X is complete and ∂̄2 = 0, one can apply a result of
Van Neumann (cf. [De, Sect. ]) which says that there is a formal adjoint
operator ∂̄∗ : L2(X,A0,q+1(E))→ L2(X,A0,q(E)) in the sense of distributions.
Moreover, the formal adjoint of ∂̄∗ exists and equals ∂̄. These adjoints,
viewed as operators on the bundles A0,∗

X (E) coincide with the classical ones:

Lemma .. Let ∗E : Ap,qX (E)→ A
n−q,n−p
X (E) be the fiber wise defined operator

induced by the Hodge star-operator.
) The formal adjoint ∂̄∗ is induced by

− ∗E ∇1,0∗E : A0,q+1
X (E)→A

0,q
X (E).

) The formal adjoint of ∇1,0 equals (∇1,0)∗ = − ∗E ∂̄∗E .

Proof. Since ∂̄ = −(∗E∇1,0∗E)∗ = − ∗E (∇1,0)∗∗E , the second assertion follows
from the first. The meaning of the first assertion is that for ω1 ∈ A0,q(E)
and ω2 ∈ A0,q+1(E) one has

〈∂̄ω1,ω2〉 = −〈ω1, (∗E∇1,0∗E)ω2〉. ()

To show this, let me go through the classical calculation. First, using the
metric contraction

hE : Ak(E)⊗A`(E)→ Ak+`

(α ⊗ s,β ⊗ t) 7→ hE(s, t)α ∧ β̄

one observes the fundamental equaton

hE(ϕ1,∗Eϕ2) = hx(ϕ1,ϕ2) · vol. form dV , x ∈ X, ϕ1,ϕ2 ∈ Ak(E). ()

Next, the Chern connection being metric implies that for the forms re-
stricted to X (denoted by the same symbols) one has

hE(∇ω1,∗Eω2) + (−1)khE(ω1,∇(∗Eω2)) = dhE(ω1,∗Eω2),

and hence, using () and the relation ∗E · ∗E = (−1)k, one finds

∂̄hE(ω1,∗Eω2) =
[
hx(∂̄ω1,ω2) + hx(ω1, (∗E∇1,0∗E)ω2)

]
· dV . ()





I claim that ∂̄hE(ω1,∗Eω2) is bounded near ∂X and that it integrates over
X to zero. Assume this for a moment. Since the first term on the right is
bounded, the other is too. Hence after integration one obtains

0 = 〈∂̄ω1,ω2〉+ 〈ω1, (∗E∇1,0∗E)ω2〉

and the result follows.
It remains to show the assertion about ∂̄hE(ω1,∗Eω2). LetUδ be a tubu-

lar neighborhood of ∂X with radius δ. By Stokes’ theorem,∫
X
∂̄hE(ω1,∗Eω2) = lim

δ→0

∫
∂Uδ

hE(ω1,∗Eω2) = 0. ()

The last equality follows since by () the integrand has Poincaré growth
near the boundary and hence the integral tends to zero (compare the proof
of [Mu, Prop .].

The Laplacian ∆E := ∂̄∂̄∗ + ∂̄∗∂̄ preserves L2(A0,q(X)) and the forms ω
with ∆Eω = 0 are by definition the harmonic forms. Reasoning as in the
classical situation (cf. [De, Sect. ]) one shows:

Corollary .. . For all ω ∈ A0,q
X̄

(E) one has

〈∆Eω,ω〉 = 〈∂̄ω, ∂̄ω〉+ 〈∂̄∗ω,∂̄∗ω〉.

Hence, in the distributional sense, one has ∆Eω = 0 ⇐⇒ ∂̄ω = 0 = ∂̄∗ω.
. There is an orthogonal decomposition

L2(X,A0,q
X (E)) = [∂̄A0,q−1

X (E)]cl ⊕ [∂̄∗A0,q+1
X (E)]cl ⊕H0,q

(2) (E), ()

where the symbol cl stands for ”topological closure” and the symbol H(2) stands
for the harmonic L2-forms, i.e. L2-forms ω with ∆Eω = 0 in the sense of distri-
butions.

To apply this, recall that by Dolbeault’s theorem the cohomology group
Hk(X,E) can be calculated as the k-th cohomology of the complex A

0,∗
X
E).

Proposition . ([F, Lemma ]). Assume that E is a holomorphic vector bun-
dle on X and that (E = E|X ,h) is a hermitian bundle on X such that h is good





relative E. If assumption . holds, then there is natural injective homomor-
phism

j∗L2 :Hk(X,E) =Hk(A0,∗
X

(E))→ H0,k
(2) (X,E),

with target the space of E-valued harmonic square integrable (0, k)–forms.

Proof. The map j∗
L2 is induced from orthogonal projection to Hk

L2(E). The

procedure is as follows. Pick α ∈ A0,k
X

(E) for which ∂̄α = 0 representing a

given cohomology class [α] ∈ Hk(X,E). By assumption ., β = α|X is an
E- valued L2-form whose orthogonal projection to the harmonic forms is
j∗
L2α. One needs to verify independence of choices: since ∂̄α = 0, one has
∂̄β = 0 in the sense of currents and so, another representative for α leads
to a form which differs from β by a current of the form ∂̄γ . Hence the
harmonic projection is independent of choices.

To see that it is injective, suppose that the harmonic part of β vanishes.
By () one has 〈β, ∂̄∗ϕ〉 = 〈∂̄β,ϕ〉 = 0 and hence β belongs to the first sum-
mand of () so that

β = lim
j→∞

∂̄γj , γj ∈A
0,k−1
X

(E).

To test that this gives the zero class in Hk(X,E), one uses the Serre duality
pairing:

Hk(X,E)⊗Hn−k(X,Ωn
X
⊗E∗)→Hn,n(X) = C

as induced by the pairing

A
0,k
X

(E)⊗A0,n−k
X

(Ωn
X
⊗E∗)→A

n,n
X
.

To this end, consider for a closed β′ ∈ A
0,n−k
X

(Ωn
X
⊗ E∗). I claim that near

∂X it is bounded in norm. To see this let s ∈ Γ (X,Ωn
X

(E
∗
)), then, with f a

local equation for ∂X, the product f · s is a section in the unique extension
Ωn(X)(log∂X)⊗E∗ on X of the bundle Ωn

X ⊗E∗ on X for which h = hX ⊗hE∗
is good. That this is the case will be shown later (Examples ..). In
particular, since h(f · s, f · s) = |f |2h(s, s) has logarithmic growth near ∂X
it follows that h(s, s) and hence also h(β′,β′) must vanish near ∂X. Hence
β′ ∈ L2(A0,n−k

X (Ωn
X ⊗E∗)). The Serre pairing therefore is given by

(β,β′) := lim
j→∞

∫
X
∂̄γj ∧ β′ = lim

j→∞
lim
δ→0

∫
∂Uδ

γj ∧ β′,





whereUδ is a tubular neighborhood of ∂X whose radius is δ (the last equa-
tion follows from Stokes’ theorem). Since β′ tends to zero near ∂X, this in-
tegral vanishes. Consequently, the cohomology class of β is zero by Serre
duality.

I want to finish this section by showing that the Nakano inequality [Na]
still holds for E-values harmonic (0,q)-forms on X. To explain this, one
needs some more notation. The Lefschetz operator L - which is wedging
with the fundamental (1,1)–form for the metric hX - preserves L2–forms
since the fundamental form has Poincaré growth near ∂X. Moreover, since
L is real,

hx(Lα,β)dV = hE(Lα,β) = Lα ∧ ∗β = α ∧ ∗(∗−1L ∗ β)

and so Λ = ∗−1L∗ is the formal adjoint of L. Since ∗ is an isometry, one
concludes that also Λ preserves the L2–forms.

Lemma . (Nakano Inequality [Na]). Letω ∈ H0,k
(2) (X,E). With Fh the curva-

ture of the metric connection on (E,h) and Λ the formal adjoint of the Lefschetz
operator, one has the inequality

i〈ΛFhω,ω〉 ≥ 0.

Proof. For simplicity, write ∇1,0 = ∂E with adjoint ∂∗E . One has the Kähler
identity (see e.g. [De, Sect. ])

Λ∂̄− ∂̄Λ = −i∂∗E ,

which is derived in the L2-setting as in the classical setting. Using this
relation, ∂̄ω = 0 = ∂̄∗ω, as well as Fh(ω) = ∂̄∂ω, one calculates

0 ≤ 〈∂Eω,∂Eω〉 = 〈∂∗E∂Eω,ω〉 = i〈Λ∂̄∂Eω − ∂̄Λ∂Eω,ω〉
= i〈ΛFhω,ω〉 − i〈Λ∂E , ∂̄∗ω〉
= i〈ΛFhω,ω〉.

 The Calabi-Vesentini method in the L2–setting

In this section I shall indicate how the method used in [Cal-V, Sect. ,] to
show vanishing of the groups Hq(TX) for X compact can be adapted step
by step to the non-compact setting.





Let (X,h) be a Kähler manifold and let TX be the holomorphic tangent
bundle. Suppose that the assumptions . hold. The metric h induces
hermitian metrics on the bundles Ap,qX = ∧pT ∗X⊗∧qT̄

∗
X of forms on X of type

(p,q). The Chern connection on TX is the standard Levi-Civita connection
and its curvature is a global TX–valued (1,1)–form:

Fh ∈ A
1,1
X (End(TX)).

Using the metric one has an identification T̄ ∗X ' TX and hence Fh induces
an endomorphism of TX ⊗ TX :

Fh ∈ T ∗X ⊗ T̄
∗
X ⊗ T

∗
X ⊗ TX ' T

∗
X ⊗ T

∗
X ⊗ TX ⊗ TX ' End(TX ⊗ TX).

One can show, using the Bianchi identity, that the resulting endomor-
phism vanishes on skew-symmetric tensors and hence induces

Q : S2TX → S2TX , R = 2Tr(Q), ()

where the function R is the scalar curvature of the metric. The operator
Q is self-adjoint and hence at each x ∈ X it has real eigenvalues. Let λx be
the smallest eigenvalue at x and suppose that

−∞ < λ :=
∫
x∈X

λx < 0, λx smallest eigenvalue of Qx. ()

The operator Q together with the metric h induces a Hermitian form hQ
on the bundles A0,q(TX), q > 0 as follows:

hQ : (∧qT̄ ∗X ⊗ TX)⊗ (∧qT̄ ∗X ⊗ TX) ' TX ⊗ TX ⊗ (∧qT̄ ∗X ⊗∧
qT̄ ∗X)

Q
−−→ TX ⊗ TX ⊗ (∧qT̄ ∗X ⊗∧

qT̄ ∗X)→ C,

where the last map is induced from the hermitian metric h. If h is Kähler-
Einstein, one has [Cal-V, Sect. ]:

ihx(ΛFω,ω) =
R
2n
‖ω‖2 − hQ(ω,ω) ()

On the other hand, by [Cal-V, Lemma ] one has the inequality

hQ(ω,ω) ≥ 1
2

(q+ 1)λx{ω‖2. ()





In (loc. cit.) it is shown that first of all R < 0 implies λ < 0, and hence,
combining () and () that

ihx(ΛFω,ω) ≤
( R
2n
− 1

2
(q+ 1)λx

)
‖ω‖2. ()

The above function is ≤ 0 whenever R
2n −

1
2(q + 1)λ < 0 and it is identi-

cally zero if and only if ω = 0. Now contrast this with the version .
of Nakano’s Lemma which holds under the assumptions of Sect. . The
conclusion is:

Proposition .. Suppose that the assumptions . hold for a quasi projective
Kähler-Einstein manifold (X,h) and its holomorphic tangent bundle (TX ,h).
Suppose also that R < 0, where R is the scalar curvature.

Then for all integers q for which q < R
nλ − 1, one has H0,q

(2) (X,TX) = 0.

Remark .. The above proof has to be modified slightly for q = 0. In that
case the term hQ(ω,ω) in () vanishes and since R < 0 the above argument
directly shows that H0

(2)(X,TX) = 0. This implies that X̄ admits no vector-
fields tangent to ∂X.

 Application to locally symmetric varieties of
hermitian type

LetG be a reductive Q–algebraic group of hermitian type, i.e. forK ⊂ G(R)
maximal compact, D = G(R)/K is a bounded symmetric domain. Fix some
neat arithmetic subgroup Γ ⊂ G(Q) and let X = Γ \D be the corresponding
locally symmetric manifold. It is quasi-projective and by [A-Mu-R-T] ad-
mits a smooth toroidal compactification X with boundary a normal cross-
ing divisor ∂X.

Let ρ : G→ GL(E) be a finite dimensional complex algebraic represen-
tation with Ẽρ the corresponding holomorphic vector bundle on D and Eρ
the bundle it defines on X. Fix also a G–equivariant hermitian metric h̃
on Ẽρ (which exists since the isotropy group of the G(R)–action on D is
the compact group K) and write h for the induced metric on Eρ. By [Mu,
Thm. ..], there is a unique extension of Eρ to an algebraic vectorbundle
Eρ on X with the property that the metric h is a called good metric for the
bundle Eρ relative to Eρ.





For what follows it is important to observe:

Lemma .. The metric (1,1)-form ωhX of a Kähler-Einstein metric hX has
Poincaré growth near ∂X.

Proof. The Kähler-Einstein condition means that

ωhX = −k · i∂∂̄ log(dethX),

for some positive real constant k. Up to some positive constant, the right
hand side can be identified with the first Chern form for the canonical line
bundle Ωn

X with respect to the metric induced by hX . Since this metric is
G(R)-equivariant, it is good in Mumford’s sense and so ωhX is also good.

Clearly, if this is to be useful in applications, given a bundle (with some
G(R)–equivariant hermitian metric), one needs to get hold of the extension
making the metric good.

Examples .. . Let E = Ω
p
X . Then E = Ω

p

X
(log∂X), the bundle of p-

forms with at most log-poles along ∂X. This is not trivial. See [Mu, Prop.
..] where this is shown for p = 1. Since Ω

p

X
(log∂X) =

∧pΩ1
X

(log∂X)
this implies the result for all p. In particular, smooth sections of Ω1 are
bounded near ∂X. Indeed, if f = 0 is a local equation for ∂X and ω a
smooth section of Ω1

X , then f ·ω is a smooth section of Ω1
X(log∂X). Then

‖f ·ω‖2 = ‖f ‖2‖ω‖2 and since ‖ω‖2 ≤ C(log‖f ‖)N , ‖f ·ω‖2 is bounded. A
similar argument holds for smooth sections of Ωp

X and hence for sections
of Ap,qX .
. One has T X = TX(− log∂X), the bundle of holomorphic vector fields on
X which are tangent to the boundary ∂X, since this is the dual of the bun-
dle Ω1

X
(log∂X). Any smooth section of this bundle is bounded near the

boundary: its normal component tends to zero and the Poincaré growth
of the metric implies (by compactness of ∂X) that tangential component
remains bounded.
. These two remarks show that the holomorphic tangent bundle TX sat-
isfies assumption . .

I can finally state the main result:





Theorem .. Let (X,∂X) as before, e.g. X = Γ \D, D = G(R)/K hermitian
symmetric, Γ a neat arithmetic subgroup of G(Q) and X a good toroidal com-
pactification with boundary ∂D. Let R be the scalar curvature of the G(R)–
equivariant (Kähler-Einstein) metric and let λ be as before (cf. ()). Set
γ(D) := R/nλ. This is a positive integer and

H0,q
(2) (X,TX) = 0, for all q for which q < γ(D)− 1.

If no irreducible factor of D has dimension 1, one has γ(D) ≥ 3. In particular,
the resulting pairs (X,∂X) are infinitesimally rigid.

Proof. Since X admits a Kähler-Einstein metic hX , by Lemma . its fun-
damental (1,1)-form has Poincaré growth near the boundary. So the first
assumption of . is fulfilled. By example .. the second condition is
also fulfilled.

In order to apply Prop. ., one observes that the Kähler manifold X is
homogeneous and that therefore λ = λx, x ∈ X, a constant. Since the scalar
curvature of D is known to be negative, this proves the result, except that
γ(D) is an integer ≥ 2. The calculation of γ(D) is local and has been done
in [Bo, Cal-V] and it implies that it is an integer ≥ 2. Also, it is shown there
that γ(D) ≥ 3 whenever D has no irreducible factor of dimension 1. For
details, see [Cal-V, Sect. ] and [Bo, Sect. ]. See also Remark . below.

I apply this to infinitesimal deformations of (X,∂X) as follows. As is
well known, these correspond bijectively to elements ofH1(X,TX(− log∂X)).
See e.g. [Sern, Prop. ..].

Now assume that α ∈A0,1
X

(TX(− log∂X)) represents a given cohomology

class [α] ∈ H1(X,TX(− log∂X)). By Prop. ., the class β = α|X is an L2-
harmonic form and it suffices to show that β = 0 which follows from the
vanishing of H0,1

(2) (X,TX).

Remark .. For irreducible D there is a table for the values of γ(D) in
[Cal-V] and [Bo]. I copy their result:

type Ip,q IIm,m ≥ 2 IIIm,m ≥ 1 IVm,m ≥ 3 V V I
γ(D) p+ q 2(m− 1) m+ 1 m 12 18

dimCD pq 1
2m(m− 1) 1

2m(m+ 1) m 16 27





If D = D1 × · · · ×DN is the decomposition into irreducible factors, one has
γ(D) = minj γ(Dj). One sees from this that γ(D) ≥ 2 with equality pre-
cisely when D contains a factor of type I1,1 ' II2 ' III1. One also sees that
the best vanishing result is for the unit ball Ip,1 where all groups vanish.

Corollary .. Under the assumptions of Theorem ., the pair (X,∂X) has a
unique model over a number field.

Proof. This follows using spreads. For details see [Pe, Sh].
Remark. The above theorem is false for Shimura curves (one dimensional
locally homogeneous algebraic manifolds). However, the corollary is true
since all Shimura curves have models over Q. A proof which is a variant
of the above method was given in [F] which motivated in fact this note.
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