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Abstract

Grey-box modeling covers the domain where we want
to use a balanced amount of �rst principles and em-
piricism. The two generic grey-box models presented,
i.e., a Neural Network model and a Polytopic model are
capable of identifying friction characteristics that are left
unexplained by �rst principles modeling.

In an experimental case study, both grey-box models are
applied to identify a rotating arm subjected to friction. An
augmented state extended Kalman �lter is used iteratively
and o�-line for the estimation of unknown parameters.
For the studied example and de�ned black-box topologies,
little di�erence is observed between the two models.

1 Introduction

Friction is to some extent present in all mechanical
systems. When this phenomenon is partially neglected,
and left unexplained by �rst principles modeling, it can
limit the performance of industrial model-based control
systems due to increasing tracking errors and limit
cycles. Nevertheless, if detailed prior knowledge about
the system is available, and �rst principles modeling is
applicable, it might result in complex friction descriptions
not very suitable for the purpose of control. It is often
a time consuming job to construct these white-box
models. On the other hand, black-box models are easier
to construct, but purely rely on the data. If data is
sparse in some regions of the operating space one may
not expect to identify a reliable model. Furthermore,
a black-box model does not extrapolate well and the
identi�ed parameters in the chosen model structure do
not have a physical meaning. Moreover, engineering
knowledge is incompatible with most empirical model
representations and is therefore di�cult to exploit.

Since both white-box and black-box modeling approaches
have their merits as well as their drawbacks, there has in

recent years been an increasing interest in combining the
best of these two approaches. This approach to modeling
has been termed grey-box modeling.

Since we are interested in identifying a rotational me-
chanical system (that exhibits several distinct friction
phenomena) both for control purposes and qualitative
friction analysis we want to use a balanced amount of
�rst principles and empiricism.

Two promising grey-box model structures will be com-
pared on this benchmark system, i.e., a Neural Network
model and a Polytopic model. It appears that a priori

unknown friction characteristics can be modeled such as
proposed for instance by [11]. In comparison to the pre-
sented theoretical friction models in [2] black-box models
approximate any nonlinear function without restricting
to known system properties such as equilibrium points
and odd friction functions. Here, the grey-box model
structure is chosen in such a manner that these prior

known system characteristics, e.g., odd friction function
and equilibrium points of the autonomous system, are
met.

In literature, the inertia and friction characteristic are
often identi�ed seperately, e.g., in the work of Johnson
[8] and Held [4]. Here, the well known augmented state
Extended Kalman Filter (EKF) [3] is applied for the
simultaneous estimation of parameters in both the black-
and white-box part of the model. The identi�cation
is performed with position sensing and velocity recon-
struction, where compared to the work of, for instance,
Armstrong-H�elouvry [1] this is done with acceleration
sensing. The objective is to identify simulation models,
which might give rise to the question whether this is
the right objective for modeling for control. Here, the
primary goal is to obtain good simulation models.

In Section 2, we will give a description of the rotating arm.
The two grey-box models will be discussed in Section 3.
An EKF is prosposed to estimate the unknown parameters
of the models in Section 4. In Section 5 experimental
results are reported to illustrate the grey-box modeling
techniques. The paper will be concluded in Section 6.



2 Rotating Arm Characteristics

The system under consideration belongs to the class of
nonlinear mechanical systems [10]. The state space equa-
tions describing the rotating arm system as shown in Fig.
1 are

d

dt
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where

q Angular displacement
_q Angular velocity
M(q; �) E�ective inertia of the motor-trans-

mission-rotating arm combination
C( _q; �) Friction
cm Motor gain
u Motor input current
� Parameters

We assume that the friction torque C( _q; �) is a nonlinear

q

u

Figure 1: Rotating arm.

function of the angular velocity _q and of the model pa-
rameters �. Here, it is assumed that the friction can be
modeled by an odd continuous function

Ĉ( _q; �) = �Ĉ(� _q; �) _q 2 R

For angular velocity equal to zero the model friction
torque is zero, which results for the model in the same
set of equilibrium points as for the system. This fric-
tion model does not describe the not sliding or pre-sliding
displacement regime, which means in this case that the
friction torque is always equal to zero for zero angular ve-
locity. The choice for this simpli�ed friction model has
two reasons

� The not sliding regime will be approximated, if the
slope of the friction function near _q = 0 is very steep.
Then the model may still give acceptable simulation
results, i.e., angular displacement near _q = 0 is much
smaller than for high angular velocities.

� A continuous friction function will facilitate the nu-
merical solution of the 2nd order di�erential equation
(1).

3 Grey-box Modeling

Grey-box modeling covers the region, where we want to
use a balanced amount of �rst principles and empiricism.
In this case, the mechanical model structure is known
but the friction component is left unexplained and also
the inertia (M(�)) has to be estimated (M̂). Despite
of their �xed topology, the grey-box models have to be
compatible with prior knowledge and observed data. Two
di�erent grey-box models will be demonstrated to model
the rotating arm, i.e., (i) the Neural Network model (NN)
[9] and (ii) the Polytopic model.

The NN model uses a decomposition of the system in
principal functional components. These functional com-
ponents can be white-box parts or unknown black-box
parts. The white-box part of the model consists of the
known functional components de�ned by (1). The NN
modeling approach utilizes a neural network to approxi-
mate the friction function C( _q; �) globally. Since a neural
network is a universal approximator [5], it increases the
accuracy of the grey-box model.

In the case of the Polytopic modeling, the operating
space is decomposed into operating regions. For every
operating region a model is de�ned together with a model
validity function. The locally valid models are combined
in the operating space to obtain one globally valid non-
linear model. The model structure satis�es the universal
approximation property [7], [13]. Since the system is
de�ned by a convex combination of a�ne models one can
associate with this model a polytope in the model space.
Therefore, this model type will be called a Polytopic
model. The Polytopic model generalizes various model
types, e.g., Fuzzy Models [12] and Local Model Networks
[6], which all have an equivalent mathematical structure.

3.1 Neural Network

The neural network consists of two layers, i.e., one hidden
layer and one output layer. The neural network represents
a nonlinear mapping from the network input Rr into the
network output Rs . Here, this mapping is from angular
velocity _q (R) to friction model torque Ĉ( _q; �) (R). De�n-
ing the weight matrices for the �rst and second layers as
W1 and W2, one can write the neural network output as

Ĉ( _q; �) =W T
2 �(W1 _q + b1) + b2

where bi represents the bias value for the neurons in
the i-th layer and �(:) is a nonlinear operator with
�(z) = [�(z1); : : : ; �(zv)]

T , �(:) a di�erentiable, nonlin-
ear, monotonic increasing function and v is the number
of hidden neurons.

To assure the system properties described in Section 2 to
hold, the following restrictions are posed on the neural



network topology

� Choose an odd function for �(:) which is equal to zero
if its argument is zero.

�(zi) = 1�
2

e2zi + 1

� The �rst choice together with the set of equilibrium
points for the system implies that the bias terms
should be zero. Here, the assumption is made that
there is no bias in the reconstructed angular velocity
_q.

These two restrictions result for the neural network fric-
tion approximator in

Ĉ( _q; �) =W T
2 �(W1 _q)

The linear part of the system dynamics, i.e., the viscous
damper characteristic and the input term are described by
two other principal functional components. In state space
description the grey-box model becomes
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where b is the viscous damper constant of the system. For
the model parameters this results in

� = [W T
1 W2 b M̂ ]T

3.2 Polytopic Model

The polytopic model is composed of several locally valid
models. The structure of each model is chosen equal to the
topology of an mechanical system, i.e., _x = Aix+Ci+Biu

with x = [q _q]T . With each local model a model validity
function �i : R

p ! [0; 1] is associated which, by de�nition,
is close to 1 for those regions in the input and state space
where the corresponding local linear model is valid. Here,
the partitioning only depends on the angular velocity _q
due to the choice of the nonlinear friction torque as a
function of _q. A typical choice for the validity function �i
is the Gaussian function

�i( _q; �) = e
�

1
2

( _q�ci)
2

�i

where ci is the center and �i is the variance of the Gaussian
function. Now a set of normalized validation functions
wi : R ! [0; 1] can be de�ned

wi( _q; �) =
�i( _q; �)PN

j=1 �j( _q; �)

where N is the number of local models used to com-
pose one global model. This de�nition implies thatPN

i=1 wi( _q; �) = 1 8 _q. The polytopic friction model be-
comes

Ĉ( _q; �) =
NX
i=1

wi( _q; �)(ai( _q � ci) + bi)

where ai( _q � ci) + bi is the a�ne model of the friction
locally valid around ci. For the identi�cation of the
Polytopic model, the centers ci, slopes ai and o�sets bi
of the linear models and the variance �i of the Gaussian
validity functions have to be estimated.

One way to construct an odd function with the polytopic
model is to

� Choose an odd number of local models, where one
polytopic has no o�set b1 = 0 and the corresponding
center c1 = 0. Again, the assumption of an unbiased
reconstruction of the angular velocity _q is adopted
here.

� The other N � 1 models are divided in pairs of
two, where the centers are opposite c2i = �c2i+1,
the variances are equal �2i = �2i+1 as well as the
slopes a2i = a2i+1 and the o�sets are again opposite
b2i = �b2i+1 with i = 1; : : : ; N�1

2
. An advantage of

this construction is the reduction of parameters by a
factor 2.

These conditions assure an odd function which gives zero
if _q is zero in order to guarantee the equilibrium property.
The state space representation of the polytopic model be-
comes
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where the �rst term on the right-hand side are the nor-
malized validity functions and the second term between
the brackets the locally valid linear mechanical models.
For the polytopic grey-box model, the model parameters
become

� = [a1 a2i b2i c2i �1 �2i M̂ ]T i = 1; : : : ;
N � 1

2

So, the modeling problem is reduced to dividing the oper-
ating space of the system into a set of operating regimes
and identi�ying with every operating regime a locally valid
mechanical model together with a corresponding valida-
tion function.



4 Estimation of the model param-

eters

The rotating arm will be identi�ed with the objective to
obtain simulation models that yield accurate long-term
prediction. The model parameters are estimated with an
algorithm that minimizes an output error criterion. Due
to the smoothness of the proposed nonlinear grey-box
models the Extended Kalman Filter (EKF) seems a
suitable technique for estimating the model parameters
[3]. The �lter is able to reconstruct the state of the
continuous-time system with discrete-time measurements
of the system outputs. This technique, which is based on
the assumption that all errors are stochastic, minimizes
the variance of the reconstruction error, i.e., the di�erence
between the actual state xr and the estimated state x̂.

The nonlinear parameter estimation procedure for
continuous-time mechanical models (1) with discrete
measurements will be outlined shortly. First the state
x = [q _q]T is augmented with the unknown parameters,
� 2 R

k such that the new state x� = [x �]T . The
parameter estimation problem is converted into a state
(x�) reconstruction problem. Consequently, (1) has to
be augmented with k trivial di�erential equations _� = 0,
which marks the parameters as constants.

Model errors are w for the state equations and v for
the measurement equations. Here, the model errors
are considered to be zero mean gaussian noise having
intensity matrices Q(t) for the state errors w and R(t) for
the measurement errors v. Furthermore, the state errors
and measurement errors are assumed to be uncorrelated.
The uncertainty in the initial state estimate x̂�(0) can
be expressed by the diagonally choosen initial covariance
matrix P (t0).

To avoid numerical real-time problems due to limited
computational time and inaccurate integration schemes,
the EKF was implemented o�-line. First, an experiment
must be performed to obtain measured experimental data.
These data should excite all system dynamics we are in-
terested in. Second, the data are passed through the �lter
several times untill the parameter estimates converge. Af-
ter each �lter pass, the initial system states x and the cor-
responding covariance matrices are re-initialized with the
initial estimates of the �rst pass. The parameters � and
the corresponding covariance matrix are reset to the �nal
estimates of the previous �lter pass. When the parameters
have become constant, after applying the iterative EKF,
the estimates can be considered as smoothed estimates [3]
which implies that e�ectively an output error criterion is
minimized.

5 Experimental Study

In this section an experimental study will be reported,
where the parameters of the two proposed models are
estimated with experimental data obtained from the
rotating arm.

The rotating arm is excited by a motor torque cmu which
together with the measured angle and arm velocity re-
sponses of the system are depicted in Fig. 2. Here, we are
mainly interested in the friction phenomenon and non-zero
angular velocities. The measured angle is di�erentiated
numerically by a high pass �lter with a cut-o� frequency
of 200 [Hz] to reconstruct the angular velocity.
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Figure 2: Experimental data.

For the parameter estimation, the two model structures
have to be speci�ed, i.e., the number of neurons for the
NN and the number of linear models for the polytopic
model have to be chosen. Both the number of neurons
and the number of linear models are set to 3. Hence, the
total number of parameters to be estimated for the NN
model becomes 8; 6 parameters for the neural network,
one for the viscous damping and one for the inertia. For
the polytopic model 7 parameters have to be determined;
6 for the polytopic friction model and one for the inertia.
The motor constant cm is in both cases assumed to be
exactly known and set to 16.

The initial state of the system is known, but the model
parameters are not known. The initial model parame-
ters are chosen in such a manner that physical known
properties, e.g., positive inertia value or positive viscous
damper value, are met. Hence, the error variance for
the initial state estimates is small while we are not
sure of the initial estimates for the model parameters.
These considerations lead to the initial variance matrix
P (t0) = diag(0; 0; 1; : : : ; 1) where the non-zero elements
correspond to the variance of initially uncertain param-



eters. The matrix Q(t) can be seen as the variance of
the augmented state model errors. Here the assump-
tion is that the model errors are not cross-correlated.
Furthermore the model equations describing constant
model parameters and d

dt
q = _q from (1) are regarded

as true. Combined this gives a diagonal matrix with
Q(t0) = Q(t) = diag(0; Q22; 0; : : : ; 0) where Q22 = 0:001.
Due to the �nite encoder resolution of 2:10�4 [rad] and
the di�erentiation scheme an uncertainty on the angular
velocity reconstruction is introduced. To take this into
account the variance matrix R(t) is constructed by a
diagonal matrix R(t) = diag(0:001; 0:01) where 0:001
corresponds to the uncertainty in the angle measurement
and 0:01 to the uncertainty in the arm velocity recon-
struction. The �lter tuning is mainly based on experience
and trial and error. It is important that the parameters
converge to constant values. Di�erent �lter tunings will
result in di�erent convergence speeds and even parameter
divergence can occur.

After 10 �lter passes the parameter estimates become
constant and the sum of eigen-values of the covariance
matrix P (t) is minimal. The identi�ed inertia value is
the same for both models, i.e., 0:0292 [kg m2/rad]. In
Fig. 3 both the estimated neural network and polytopic
friction model, as a function of the angular velocity _q, are
shown. The following di�erent friction phenomena can
be distinguished from the estimated friction models: (i)
coulomb friction, (ii) static friction, (iii) stribeck e�ect for
low velocities and (iv) viscous friction for high velocities.
The obtained simulation models are validated by another
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Figure 3: Identi�ed friction models.

experiment. The results of the validation experiment
and simulated model responses are shown in Fig. 4.
Here the solid lines are the experimental validation data,
the dashed lines the Neural Network response and the
dash-dotted lines the Polytopic model response. For high
velocities, i.e., j _qj � 20 [rad/s], which were not present
in the training data, the displacement errors become
large. Hence, the models exhibit poor extrapolation
and good generalization behaviour. The assumption of
the continuous friction function, made in Section 2, is
justi�ed by the validation responses. For velocities near
zero the displacement is indeed much smaller than for
high velocities.
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Figure 4: Validation of identi�ed models.

An unexpected change of the friction characteristic of
the system was recorded due to maintenance e�ort.
This change was investigated by applying the same
input torque as for the validation, as shown in Fig. 5.
The dashed lines represent the new system responses,
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Figure 5: Changed system characteristics and new identi-
�ed friction models

which indicate a change of the friction characteristic.
A new identi�cation experiment was performed to get
appropriate measurements of the new system behaviour.
The inertia was estimated within 2% di�erence of the
earlier identi�ed inertia. New friction models were iden-
ti�ed with the earlier identi�ed friction models as initial
estimates and the same identi�cation procedure as above.
The static friction is not present any more resulting in a



friction characteristic describing: (i) coulomb friction and
(ii) viscous friction, as shown in the lower plot of Fig.
5. The black-box models are able to identify di�erent
friction characteristics, as shown in Fig. 3 and Fig. 5,
without changing the black-box topology, i.e., number of
neurons for the NN and number of local models for the
Polytopic model. To give insight in the accuracy of the
identi�ed friction models the reconstructed friction torque
from the identi�cation experiment is also plotted in Fig.
5. The assumption that the friction is an odd function
seems to be justi�ed. The neural network friction model
gives a slightly better �t of the experimental data than
the polytopic friction model. A change in the topology
of the polytopic model, e.g., �ve linear models, might
allow us to identify a better friction model due to more
freedom in the model. Furthermore, hysteresis curves for
high angular velocities are recorded which would prefer
dynamic friction models instead of static friction models.

The change in the system characteristics and the poor
extrapolation behaviour of the models would prefer an
on-line implementation of the EKF to adapt to changes in
friction, which will be an important topic in future work.

6 Conclusions

The identi�cation of grey-box models presented in this
paper yields good results for an experimental study on
a rotating arm which exhibits friction. Although the
two proposed grey-box modeling approaches, i.e., Neural
Network modeling and Polytopic modeling, are di�erent
from a theoretical point of view, both approaches are
able to identify a continuous friction function that by
construction models a priori known system character-
istics, e.g., equilibrium points. The friction models can
physically be interpreted where friction phenomena such
as static friction and the stribeck e�ect are observed.
The black-box elements can represent di�erent friction
characteristics without changing the black-box topology.
Hence, the proposed grey-box models are favourable
for the identi�cation of systems with unkown friction
characteristics. This ability to represent the friction
characteristic accurately results in simulation models that
have good long-term prediction with good interpolation
and poor extrapolation properties. In future work the
choice of the black-box model topology will be investigated
and an extension to dynamic friction models will be made.

The iterative EKF approach appears to be a useful iden-
ti�cation tool for the proposed nonlinear continuous-time
modeling techniques where discrete-time measurements
are available. The �lter tuning is an important aspect of
the model identi�cation due the possible divergence of the
parameter estimates. The EKF is able to identify the fric-
tion models based on angular displacement measurements
and velocity reconstruction. Due to the time-varying fric-

tion characteristics an on-line implementation of the EKF
is of future interest.
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