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CHAPTER 1
Introduction

1.1 Queues with finite populations

Queueing phenomena occur whenever there is competition for a scarce
resource. Often, this resource is time and the competition is over the
attention of a server. As a result, abstract models of queues share some
defining primitive features: customers arrive at a service station, where
they require the attention of one or more servers. It is often not known
precisely when a certain customer will require service, or for how long,
and this assumption leads to the study of queues from a probabilistic
point of view.

The queueing literature is to a large extent built on the assumption that
customer arrivals are governed by some renewal process, an assumption
that allows the use of powerful probabilistic techniques based on ergodic
theory. In this thesis, however, we consider a transitory queueing model,
known in the literature as the ∆(i)/G/1 queue, which operates only a
finite amount of time and cannot be viewed as a standard regenerative
process. The ∆(i)/G/1 queue assumes a finite population of customers
entering the queue only once. As time progresses, more customers have
joined the queue, and fewer customers can potentially join. This mod-
elling assumption of a diminishing population of customers gives rise to a
class of reflected stochastic processes that lack a stationary distribution,
and instead display relevant behavior only during a finite time window.
Therefore, only the time-dependent behavior is of interest.

1



2 Chapter 1. Introduction

Assume the arrival times of the customers are sampled independently
from an identical distribution. The arrival times are then the order statis-
tics of the sample, and the interarrival times are the differences of order
statistics. Further assuming a single server, and generally distributed
independent service times, this model was coined the ∆(i)/G/1 queue by
Honnappa, Jain and Ward in [48], where they established fluid and dif-
fusion limits for the queue-length process. The same authors introduced
in [49] a wider class of transitory queues, with the ∆(i)/G/1 queue still
as the prime example, and stochastic-process limits were established for
large population sizes.

We will introduce a new heavy-traffic regime for the ∆(i)/G/1 queue,
leading to stochastic-process limits and heavy-traffic approximations.
Considering queueing processes in their critical regimes typically leads
to a reduction in complexity, since the complicated processes can often
be shown to converge to much simpler limiting stochastic processes.
Stochastic-process limits have been studied for single-server queues that
have a time-varying arrival rate. Newell [75, 76, 77, 78] pioneered this
direction by deriving diffusion approximations, see also [58, 67]. Rigorous
results in terms of stochastic-process limits were obtained by Mandel-
baum and Massey in [71] (building on [73, 74]). Here, stochastic-process
limits were established as refinements to deterministic ODE limits for the
time-dependent M/M/1 queue, also known as the Mt/Mt/1 queue. See
also [100] for a systematic treatment of the Mt/G/1 queue. The technique
used in [71] to develop Functional Law of Large Numbers (FLLN) and
Functional Central Limit Theorem (FCLT) results uses strong approxima-
tions and what is known as the uniform accelaration (UA) technique. UA
relies on the assumption that the relevant time scale for changes in the
queue-length process is of the order O(1/ε) for some ε > 0. Accelerating
the process in a uniform manner by scaling the arrival and service rates
by ε then reveals the dominant model behavior as ε→ 0. While in [48, 49]
the arrival and service rates are scaled in a similar manner, the time scale
considered is of the order O(1). In particular, the time of the process is not
scaled. The UA technique has been extensively applied to non-stationary
queueing systems with non-homogeneous Poisson input, but it remained
unclear whether it is also useful for transitory queueing models as consid-
ered in [49]. We will show how the key idea behind the UA technique can
be applied to these models. We shall now explain our approach in terms
of the easiest setting, in which the identical distribution that generates
the arrival times is exponential.

Let us now give the details of the basic ∆(i)/G/1 queue that plays a
central role in this thesis. Assume a finite population of n customers, with
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n very large, and where each customer has an independent exponential
clock with mean 1/λ. Customers join the queue when their clocks ring.
The initial arrival process (close to time zero) is then roughly Poisson with
rate nλ. However, as time progresses, the arrival intensity decreases, due
to those customers that have left the system. Thus, the arrival process is a
Poisson process that is thinned according to some time-dependent rule.
Denote the mean service time by E[S] = 1/µ. In order to create heavy-
traffic conditions we let the population size n grow to infinity, while at
the same time making sure that the (initial) traffic intensity ρn = nλ/µ
is close to one. The system can initially be underloaded (when nλ < µ),
overloaded (when nλ > µ), or critically-loaded (when nλ ≈ µ). In
case nλ > µ, the queue initially shows a roughly linear increase and
therefore the correct scaling of the queue length to obtain meaningful
limits is n for a first order approximation (FLLN) and n1/2 for second
order approximations (FCLT). In particular, no time scaling is needed to
obtain these approximations; these are the most relevant approximations
obtained in [48].

We focus on the critically-loaded regime, and we combine this with
UA through the population size n. In the spirit of UA, we let the arrival
and service rates scale with n while also rescaling time so as to observe
the queue-length process at a time scale of order O(1/nγ) for some γ > 0.
Denote the density of the arrival distribution as fT(t) (with fT(t) = λe−λt,
t ≥ 0 as an important special case corresponding to exponential arrivals),
and denote the i.i.d. service requirements of consecutive customers by
S1, S2, . . . with generic random variable S. Assuming a service rate of n,
the service times of consecutive customers are then D1 = S1/n, D2 =
S2/n, . . . with generic random variable D. For the sake of clarity, we
now first give a simplified version of the more general heavy-traffic
condition (1.1.2) below. The heavy-traffic regime we consider is given by
the condition

ρn := n fT(0)E[D] = fT(0)E[S] = 1, for n large. (1.1.1)

For the exponential case, fT(0) = λ, so that the condition reads ρn =
λE[S] = 1 and can be interpreted as follows: For times close to zero, the
expected number of newly arriving customer during one service time is
roughly one. For general service times, the condition can be understood
by interpreting fT(t) as the instantaneous arrival rate in t. Since we consider
time scales of the order O(1/nγ), only the mass in zero fT(0) matters for
describing the new arrivals.

We shall actually consider a slightly more general definition of the
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random variables Di and this leads to the more precise critical scaling

ρn = n fT(0)E[D] = 1 + βn−η , (1.1.2)

where η > 0 depends on the specific details of the model. The additional
term βn−η arises from detailed calculations, but can be interpreted as
the factor that describes the onset of the heavy-traffic period: when β >
0 (resp. < 0) the queue is initially slightly overloaded (resp. slightly
underloaded).

The heavy-traffic regime (1.1.2) is defined by two features: The cus-
tomer pool n grows to infinity and the initial (at time zero) rate of newly
arriving customers is such that, on average, one new customer is expected
to arrive during one service time. This gives rise to a large-scale system
that (initially) operates close to full utilization, and is expected to utilize
its resources efficiently. By this we mean that the server is typically busy,
and that idle times are negligible. In fact, we will characterize the con-
ditions under which sufficiently many customers will join the queue to
guarantee that the system will have a substantial backlog of customers.
We therefore will focus on the first busy period, and show how to set the
initial number of customers already present in the queue at time t = 0,
referred to as the head start, to create a considerable first busy period
during which the server can work continuously.

It is clear that the ∆(i)/G/1 queue is strongly influenced by the service-
time distribution. In particular, the heavy-traffic behavior is crucially
different depending on whether the variance of the service-time distri-
bution is finite or not. In the first part of this thesis we will assume that
E[S2] < ∞. In this case, the queueing process is in the domain of attrac-
tion of Brownian motion. We will take the queue-length process and scale
space and time. The resulting stochastic-process limit will turn out to be a
(reflected) Brownian motion with quadratic drift. The latter process is de-
fined as X̂(t) = at + bt2/2 + cW(t) with (W(t))t≥0 a standard Brownian
motion, and a, b, c constants. The constant b is negative, so that eventually
the free process (X̂(t))t≥0 drifts to minus infinity according to bt2/2, caus-
ing the reflected process to be essentially stuck at zero. This is due to the
diminishing population effect. One could interpret the quadratic term in the
limit as the (cumulative) effect of the customers already served not being
able to join the queue again. The stochastic-process limit provides insight
into the macroscopic behavior (for n large) of the transitory queueing
process, and the different phenomena occurring at different space-time
scales. It also gives insight into the orders of the average queue lengths
and the time scales of busy periods.
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1.1.1 Comparison with known results

The first asymptotic results for the ∆(i)/G/1 queue were proven by Igle-
hart and Whitt in their seminal paper [51]. They prove that, when the ar-
rival clocks are uniformly distributed, the fluctuations of the arrival count-
ing process around its mean are given by a Brownian bridge. They do so
through the theory of convergence of probability measures [17]. Building
on the same framework, Honnappa, Jain and Ward [48, 49] perform an
extensive analysis of the asymptotic behavior of the ∆(i)/G/1 queue. They
show that the macroscopic asymptotic behavior of the ∆(i)/G/1 queue is
given by

Qn(t)
n

a.s.→ Q(t) := φ(FT(t)− t/E[S]), (1.1.3)

where t 7→ FT(t) is the cumulative density function of T and φ( f )(x) :=
f (x)− infy≤x f−(y) is the reflection map; see Figure 1.1 for an example.
The asymptotic approximation Qn(t) ≈ nQ(t) given by (1.1.3) can be

t1 t2 t

FT (t)
µt

Q(t)

Q̂(t)

Figure 1.1: The fluid (thick line) and diffusion (thin line) limits for the
∆(i)/G/1 queue with arrival distribution FT(t), and service rate 1/E[S] =
µ. For t ∈ [t1, t2], Q(t) = Q̂(t) = 0.

further refined through an FCLT, describing the fluctuations of order n1/2

around nQ(t). The resulting stochastic approximation [48] is given by

Qn(t)− nQ(t)
n1/2

d→ Q̂(t), (1.1.4)

where Q̂(·) is a discontinuous process switching between three regimes:
a free Brownian motion, a driftless, reflected Brownian motion, and the



6 Chapter 1. Introduction

zero process; see Figure 1.1. The process Q̂(·) is obtained by applying
a complicated functional to the sample paths of the sum of a Brownian
bridge and a Brownian motion. In particular, the Brownian bridge aris-
ing in (1.1.4) represents the large-time, macroscopic effect of the finite
population of customers.

Our work also has connections with the work of Mandelbaum and
Massey [71] for the Mt/Mt/1 queue, who derive a fluid approximation
through a FLLN and use this approximation to classify various operating
regimes. In this setting, our results corresponds to the ‘Onset of Critical
Loading’ regime [71, Theorem 3.4] and the results of [48] correspond to
the FLLN and the FCLT [71, Theorems 2.1 and 2.2].

1.1.2 Other transitory models

We say that a queueing model is transitory if, denoting by An(t) the
cumulative number of customers who have entered the queue by time t,
almost surely [47, 49]

lim
t→∞
An(t) < ∞. (1.1.5)

Then, the ∆(i)/G/1 queue is a natural model for transitory queues. In fact,
under mild assumptions all transitory queueing models satisfy the same
FLLN (1.1.3) and FCLT (1.1.4) as the ∆(i)/G/1 queue [49]. Because of this,
the ∆(i)/G/1 queue can be considered the standard model for transitory
queues. Even the Mt/Mt/1 queue, which is time-inhomogeneous but not
transitory, has the same asymptotic behavior as the ∆(i)/G/1 queue.

Let us elaborate on the relation between the two models by drawing
a connection between the arrival process of the ∆(i)/G/1 queue and the
arrival process of the Mt/G/1 queue. It is well known that, for a Poisson
point process on the positive line with intensity function f (t), conditioned
on there being n points in an interval [0, T], the points themselves are
i.i.d. with distribution function t 7→ f (t)/

∫ T
0 f (s)ds. In particular, if the

Poisson point process has finite total intensity
∫ ∞

0 f (s)ds < ∞, condi-
tioned on there being n points, they are independently and identically
distributed over the positive line. Therefore, we can see the ∆(i)/G/1
model as a conditioned Mt/G/1 queue. More broadly, it is possible to
model a transitory queue by considering a general, rather than Poisson,
point process conditioned to have n points in a given time interval. This
has been named the conditional arrivals model in [49]. Therefore, the condi-
tional arrivals model corresponds to a Gt/G/1 queue [98] conditioned on
n customers joining in total. However, if the underlying point process is
not Poisson, the n points will not be i.i.d. under the conditioned measure
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and thus, in principle, the conditioned arrivals model and the ∆(i)/G/1
queue will behave differently. Nevertheless, as n → ∞ and under ad-
ditional assumptions, all conditioned arrival models satisfy (1.1.3) and
(1.1.4) [49].

If the arrival times t1, t2, . . . , tn of the n customers are fixed and pre-
scheduled, and each customer arrives at a random time ti + ζi close to its
assigned time, the resulting queue is also transitory according to (1.1.5).
This class of models is widely used in the study and optimization of
airport operations [42, 94], and health clinics with appointment systems
[43]. Unlike in the ∆(i)/G/1 queue, the arrival times are decidedly not
i.i.d., even if the random unpunctualities of the customers are. However,
if the number of customers is large, their assigned arrival times are evenly
distributed in a finite interval [0, T], and the support of the random noise
ζi is small, then the cumulative arrivals process is well approximated
by the cumulative distribution function of a uniform random variable
on [0, T]. Intuitively, in the limit all the customers are statistically equiv-
alent and the arrival time of a uniformly chosen customer will also be
approximately uniform, if the support of ζi is sufficiently small. Therefore,
for large n the ∆(i)/G/1 queue gives an asymptotically exact mean-field
approximation of the pre-scheduled arrivals model, where customers are
replaced by statistically equivalent entities.

1.1.3 The critical regime

In order to study the critical ∆(i)/G/1 queue, different time and space
scalings than (1.1.4) are necessary. Let us sketch how these arise in the
case of exponentially distributed arrival times with mean 1/λ. Assuming
that the system is never overloaded, that is supt≥0 fT(t)E[S] ≤ 1, as well
as (1.1.2), the macroscopic approximation of the queue given by (1.1.3) is
identically zero. We then look for κ, γ such that

n−κQn(tn−γ)
d→ Q̂(t). (1.1.6)

As a result of (1.1.3), the leading order behavior of the cumulative number
of arrivals An(t) is given by nFT(t). By Taylor expanding FT(tn−γ) as

FT(tn−γ) = 1− eλtn−γ
= λtn−γ − λ2/2t2n−2γ, (1.1.7)

and ignoring for the moment the first order term, we see that, if−κ− 2γ+
1 = 0, Qn(t) will have a deterministic drift given by −λ2/2t2. Moreover,
since the service rate is rescaled to be n, in a time interval [0, t], roughly
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tn1−γ customers are served. The second order behavior of the number
of services in [0, t] will be, accordingly, of order n(1−γ)/2. Therefore, in
order to obtain a meaningful limit, we must have nκ = n(1−γ)/2, that is
2κ + γ− 1 = 0. The two conditions above imply that κ = γ = 1/3. We
will prove the following result:

Theorem 1 (Critically loaded ∆(i)/G/1 queue with exponential arrivals).
Assume that the service times (Si)

n
n=1 satisfy E[S2] < ∞ and that the heavy-

traffic condition (1.1.2) holds with η = 1/3. Then

n−1/3Qn(·n−1/3)
d→ φ(X̂)(·), (1.1.8)

where X̂(·) is the diffusion process

X̂(t) = βλt− λ2

2
t2 + σW(t), (1.1.9)

with σ2 := λ3E[S2] and W(·) a standard Brownian motion.

The limit (1.1.8) reveals important properties of the critical ∆(i)/G/1
queue. The negative quadratic drift is unique to time-inhomogeneous
queueing models and encodes the transition of the system from heavy-
traffic (critical load) to stability. This phenomenon is often referred to
as depletion-of-points effect. The scaling limit result in (1.1.8) also implies
that the depletion-of-points effect has a key impact on the performance
of the system already at a short time scale of order n−1/3. This should
be contrasted with (1.1.4), where the effect of the finite population of
customers is represented, in the limit, by a Brownian bridge. Refinements
of the result (1.1.8) provide further insights on the performance of the
queue, for example prescribing how to regulate the server speed and the
initial number of customers in the queue in order to obtain a sizeable first
busy period.

As an immediate consequence of Theorem 1 we get an asymptotic
result for the length of the first busy period in the ∆(i)/G/1 queue, which
we call BPn. We assume that the queue length at time zero is deterministic
and grows with n as

lim
n→∞

Qn(0)
n1/3 = q > 0. (1.1.10)

The lenght of the first busy period depends in a crucial way on both β
and q since

n1/3BPn
d→ Tβλ

X̂q
(0), (1.1.11)
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where Tβλ
X̂q

(0) is the time until the process X̂q(·) crosses level 0, with

X̂q(t) = q + βλt− λ2

2
t2 + σW(t). (1.1.12)

As above, σ2 = λ3E[S2] and W(·) is a standard Brownian motion.

t

X̂1(t)

T 1
X̂1
(0)

Figure 1.2: A sample path of X̂1(t) with β = 1 (solid) and the drift
1 + t− 1

2 t2 (dashed).

Equation (1.1.11) can be used to obtain numerical approximations of
quantities related to the first busy period of the critically loaded ∆(i)/G/1
queue. In [72] an explicit expression for the first crossing time of zero of
X̂q(·) is given, and numerical simulations are carried out to display how
the shape of the density crucially depends on the two parameters q and β.
Let Ai(x) and Bi(x) denote the classical Airy functions [1]. When λ = 1,
the first crossing time of zero of X̂q(·) has probability density [72]

fq(t; β, σ) (1.1.13)

= e−((t−β)3+β3)/6σ2−βa

×
∫ +∞

−∞
etu Bi(cu)Ai(c(u− a))−Ai(cu)Bi(c(u− a))

π(Ai(cu)2 + Bi(cu)2)
du,

where c = (2σ2)1/3 and a = q/σ2 > 0. Figure 1.3 shows the convergence
of the empirical density function of the first excursion length of a ∆(i)/G/1
queue to the analytic expression (1.1.13) and also illustrates the influence
of the parameters β and q.

Figure 1.3 suggests that to obtain a considerable first busy period,
both parameters β and q must be chosen appropriately in order to avoid
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Figure 1.3: Density plot (black line) and Gaussian kernel density estimates
(colored lines) of the first busy period length. The plots for finite n were
obtained by averaging the results of 107 simulations.

a concentration of the probability mass close to zero. Indeed, in [72] it is
conjectured that there exists a q̄ such that for all q > q̄ and every choice
of β the distribution function is unimodal, while for q < q̄ there exists a
β̄ = β̄(q) such that for β < β̄ the distribution is unimodal, and bimodal
otherwise.

We conclude by showing numerical values for the mean busy period
for exponential clock times with mean 1 and different values of q and β

in Table 1.1. Observe that the approximation E[BPn] ≈ n−1/3E[Tβ
X̂
(0)] is

accurate also for moderate values of n.

1.1.4 The embedded queue

We will provide an indirect proof and a direct proof of Theorem 1. In
the indirect proof, we first prove that some embedded queueing process
converges, and then argue that the difference between the embedded
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q = 1, β = 1 q = 2, β = 1

n n1/3E[BPn] rel. error n1/3E[BPn] rel. error

10 3.0201 0.5072 4.0407 0.4079

100 2.2170 0.1062 3.2611 0.1362

1000 2.0341 0.0151 2.9813 0.0387

10000 2.0306 0.0133 2.9351 0.0226

100000 2.0295 0.0128 2.9145 0.0155

∞ 2.0038 — 2.8701 —

Table 1.1: Mean busy period for the pre-limit queue with different popu-
lation sizes and the exact expression for n = ∞ computed using (1.1.13).
Each value for the pre-limit queue is the average of 104 simulations.

queue and the queue-length process is negligible. Let Qe
n(k) denote the

number of customers in the queue just after the service completion of
the k-th customer. The embedded queue-length process Qe

n(·) is given by
Qe

n(0) = q ≥ 0 and

Qe
n(k) = (Qe

n(k− 1) + An(k)− 1)+, k = 1, 2, . . . (1.1.14)

with x+ = max{0, x} and An(k) the number of arrivals during the service
time of the k-th customer. For the exponential case, An(k) is given by

An(k) = ∑
i/∈νk

1{Ti≤Dk} (1.1.15)

where νk is the set of customers that is no longer in the population at
the beginning of the service of the k-th customer. The system defined in
(1.1.14) and (1.1.15) neglects idle times, which is a simplification of the
∆(i)/G/1 model. This in turn will greatly simplify the analysis since it
allows for the representation of the process as (1.1.14) and (1.1.15).

It is possible to give an equivalent definition of the process Qe
n(·) in

(1.1.14) through the reflection map. Define the process Nn(·) by Nn(0) = q
and

Nn(k) = Nn(k− 1) + An(k)− 1. (1.1.16)

Then it is easy to see that

(Qe
n(k))k≥0 = (φ(Nn)(k))k≥0. (1.1.17)
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We will first prove a limit theorem for Nn(·) and then apply the reflec-
tion map to obtain a limit for the queue-length process Qe

n(·) defined in
(1.1.14). For the case of exponential arrivals, assuming Nn(0) = qn1/3, the
free process Nn(·) converges to

n−1/3Nn(·n2/3)
d→ N̂(·), (1.1.18)

where
N̂(t) := q + βt− 1

2
t2 + σW(t) (1.1.19)

with σ2 = λ2E[S2] and W(·) a standard Brownian motion. Consequently,
the reflected processes also converge as

n−1/3Qe
n(tn

2/3)
d→ φ(N̂)(t). (1.1.20)

The embedded queue neglects both idle times and the fluctuations of the
queue-length process during one service. Therefore, in order to deduce
Theorem 1 from (1.1.18), first we will show that the cumulative idle time
in the critical ∆(i)/G/1 queue is negligible in the limit. Second, we will
bound the fluctuations of the queue-length process during the service of
one customer.

1.1.5 The queue-length process

The second proof of Theorem 1 is based on a direct representation of the
∆(i)/G/1 queue-length process. Denote the number of customers who
arrive in the interval [0, t] by

An(t) =
n

∑
i=1

1{Ti≤t}. (1.1.21)

Let

σn(t) = max
{

k ≥ 0 |
k

∑
i=1

Si
n
≤ t
}

(1.1.22)

be the renewal process associated with the rescaled service times. If
Qn(0) ≥ 0 denotes the number of customers already in the queue at the
beginning of the first service, then the queue-length process Qn(t) is given
by

Qn(t) = Qn(0) +An(t)− σn(Bn(t)), (1.1.23)

where the time change t 7→ Bn(t) represents the cumulative busy time
process, which is constant if and only if the server is idling, and increases
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linearly otherwise. Bn(·) depends both on (Ti)
∞
i=1 and (Si)

∞
i=1 and as

such makes the analysis of Qn(·) challenging. An approach pioneered
by Iglehart and Whitt [50] consists in studying a related queue in which
the server never idles, but rather continues working according to the
renewal process associated with (Si)

∞
i=1 even when the queue is empty.

This is often referred to as the queue with autonomous service or the
Borovkov modified system, see [96, Chapter 10.2]. It turns out that,
under mild assumptions, the original queue and the Borovkov modified
system are asymptotically equivalent in heavy traffic [96, Theorem 10.2.2],
in the sense that the distance between the two queue-length process
converges to zero. However, for this approach to work, the service time
limit process needs to be continuous. Indeed, the distance between the
two processes is bounded from above by the (scaled) maximum service
time, or equivalently the maximum jump functional applied to the service
time process. When the service time limit process is continuous, the
maximum jump functional converges to zero. If, on the other hand, the
service time limit process is discontinuous, then the distance between the
two queues cannot be shown to converge to zero.

Instead, we will adopt a different approach that will, among other
things, allow us to deal with a discontinuous service time limit process.
This consists in expressing Qn(·) as the reflection of an appropriate free
process Xn(·). Since, after rescaling, Xn(·) converges and the reflection
mapping is continuous a.s. in the limit point, the process Qn(·) also con-
verges by the Continuous Mapping Theorem. The free process Xn(·) has
the following interpretation: When the server is working, Xn(·) follows
Qn(·). When the queue is empty, Xn(·) decreases linearly at a rate pro-
portional to the service rate. Therefore, while in the Borovkov modified
system the server works continuously according to the service time re-
newal process, in the process Xn(·) the server provides instantaneous
work with rate 1/E[S] when there are no customers in the system. Conse-
quently, the process Xn(·) can be seen as a fluid version of the Borovkov
modified system. The process Qn(t) can then be represented as

Qn(t) = φ(Xn)(t), t ≥ 0, (1.1.24)

where Xn(·) is given by Xn(0) = Qn(0) and

Xn(t) = Xn(0) +An(t)− σn(Bn(t))− In(t)/E[S]. (1.1.25)

In Figure 1.4 we plot a sample path of the process Xn(·).
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t

Xn(t)

Figure 1.4: A sample path of the process Xn(·). When the queue is empty,
Xn(·) has a constant negative slope of −1/E[S].

1.2 Heavy-tailed services

In some applications, the finite variance condition of Theorem 1 might not
be realistic. When E[S2] = ∞, the random variable S is said to be heavy
tailed. Heavy tails arise naturally in the areas of communication networks,
insurance, and risk management. In the context of telecommunication
traffic measurements, [27] collects empirical evidence that the distribution
of available file sizes and transmission times is heavy tailed. See also
[28, 99, 101] and references therein. Additionally, [27] shows that the
file sizes and transmission times exhibit power-law tails, that is, when X
denotes a generic file size or transmission time, the probability that X
exceed a given threshold x is given by

P(X > x) = cx−γ, γ ∈ (0, 2), (1.2.1)

for some c > 0, x > c1/γ. Note that (1.2.1) implies that E[X2] = ∞.
Several other characteristics of the World Wide Web exhibit power-law or
heavy tails [60]. In the context of insurance companies, the time evolution
of the monetary reserves is often governed by sizeable negative jumps
with power-law tails, due to large but unpredictable claim sizes [7].

Later in this thesis we will drop the finite variance condition of Theo-
rem 1 and study the queue-length process under the additional assump-
tion that the service times are heavy tailed. More precisely, we assume
that the service times follow a power-law distribution as (1.2.1) with
power-law exponent γ ∈ (1, 2). Under these assumptions, our model is
the finite-pool analogue of the classical heavy-tailed M/G/1 queue; see
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below for a discussion. We will establish that in a similar heavy-traffic
regime as in Theorem 1 the rescaled queue-length process converges to an
γ-stable process with negative quadratic drift. Unlike Brownian motion,
the γ-stable motion is discontinuous: it jumps an infinite number of times
in every finite time interval. As a result, the γ-stable motion constitutes
a suitable approximation for those processes that exhibit a large degree
of burstiness and frequent large jumps. As in the finite variance case,
the diminishing pool effect is still there in the form of the drift term, but
the oscillations of the limiting queue length are much wilder. We will
also show that, as a consequence of the larger fluctuations, the desired
head start and canonical busy period should scale with n in a specific way
that vitally depends on the exponent γ. Recall the definition of Xn(·) in
(1.1.25). The behavior of the heavy-tailed ∆(i)/G/1 queue is contained in
the following result:

Theorem 2 (The critically loaded heavy-tailed ∆(i)/G/1 queue). Assume
that (Si)

n
i=1 satisfy (1.2.1) and (1.1.2), with η = (γ− 1)/(2γ− 1). If Qn(0) =

Xn(0) = qn1/(2γ−1) for q ≥ 0, then

n−
1

2γ−1 Xn(·n−
γ−1

2γ−1 )
d→ X̂(·), (1.2.2)

where

X̂(t) = q + βλt− λ2

2
t2 + sγS(t), (1.2.3)

sγ = E[S]−1−1/γ and S(·) is a spectrally positive γ-stable process. Moreover,

n−
1

2γ−1 Qn(·n
1−γ
2γ−1 )

d→ φ(N )(·). (1.2.4)

In Figure 1.5 we plot some sample paths of φ(X̂)(·) for different
choices of γ for fixed q, β, λ, sγ. We observe that as γ approaches 2,
the reflected stable motion starts to resemble a reflected Brownian motion
minus a quadratic drift. Figure 1.6 shows the first passage time as a
function of the linear drift β, for fixed γ and q, and different values of the
linear drift parameter β.

Similarly as in (1.1.11), we characterize the limiting distribution of the
first busy period of the ∆(i)/G/1 queue Tβλ

Qn
(0) as follows:

Tβλ
Qn

(0) d→ Tβλ

X̂
(0). (1.2.5)
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t

φ(X̂)(t) α = 1.1
α = 1.4
α = 1.9

Figure 1.5: Sample paths of φ(X̂)(·) for different choices of the power-law
exponent γ ∈ (1, 2). In all cases q = 4, β = 0, and λ = sγ = 1. The
dashed curve plots the function t 7→ 4− t2/2.

t

φ(X̂)(t) β = 2
β = 4

Figure 1.6: Sample paths of the process φ(X̂)(t) for varying values of β.
The dashed curves plot the functions t 7→ q + βλt− λ2/2t. In all plots,
q = 4, γ = 1.8, λ = sγ = 1.

Figures 1.5 and 1.6 suggest that the hitting time Tdq,β
(0) of the quadratic

drift given by

dq0,β(t) := q + βλt− λ2

2
t2 (1.2.6)

gives a first order approximation of Tβλ

X̂
(0). In particular, Tdq,β

(0) is the
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solution of a quadratic equation, and is equal to

Tdq,β(·)(0) =
−β +

√
β2 + 2q

λ
, (1.2.7)

where we have assumed that q ≥ 0. Note that the hitting time of zero
of S(·) is distributed as a 1/γ stable random variable by [86, Theorem
46.3]; see also [87]. The convergence result (1.2.5) allows us to estimate
the tail probability for the length of the first busy period. In fact, we have
the exact upper bound

P(Tβλ

X̂
(0) > t) ≤ P

(
sγS(t) > −q− βλt +

λ2

2
t2
)

, (1.2.8)

where we have used the trivial inclusion of events {Tβλ

X̂
(0) > t} ⊆

{X̂(t) > 0}. By basic properties of stable laws, we have the asymptotic
relation [85, pp. 16-17]

P
(

Zγ >
1
sγ

(−qt−1/γ − βλt1−1/γ +
λ2

2
t2−1/γ)

)
(1.2.9)

∼ cγsγ
γ

(−qt−1/γ − βλt(γ−1)/γ + λ2

2 t(2γ−1)/γ)γ
∼ 2γcγsγ

γ

λ2γ

1
t2γ−1 ,

where Zγ is distributed as a standard γ-stable law,

cγ =
1− γ

Γ(2− γ) cos(πγ/2)
(1.2.10)

for γ 6= 1, and t 7→ Γ(t) is the standard Gamma function. On the other
hand, due to the strong negative drift of X̂(·), it is natural to conjecture
that the two events {Tβλ

X̂
(0) > t} and {X̂(t) > 0} are of comparable

measure when t is large. In Figure 1.7 we show that the tails of the
empirical distribution of the first busy period behave like the upper
bound (1.2.9); see [3, 46], where this is proven when S(·) is replaced by
a more complicated thinned Lévy process. However, the approximation
becomes less effective as γ→ 2, and for γ = 2, (1.2.9) is not theoretically
justified. In fact, for this finite variance case, Pittel [82] (see also [83, 84])
shows that the tail asymptotically behaves like

P(Tβλ

X̂
(0) > t) =

1√
9π/8t3/2

e−
1
8 t(t−2β)2

(1 + o(1)), as t→ ∞.

(1.2.11)



18 Chapter 1. Introduction

100 101 102

10−3

10−5

10−7

t

P(T βλ
X̂n

(0) > t)

α = 1.1
α = 1.4
α = 1.9

Figure 1.7: A log-log scale plot of the empirical tail distribution
P(Tβλ

X̂n
(0) > t) of the first busy period of Qn(·) for different values of

γ ∈ (1, 2). The solid lines represent the asymptotic approximation (1.2.9).
In all plots, n = 1000 and q = β = λ = sγ = 1.

1.3 Finite-pool queues and random graphs

We now introduce an extension of the ∆(i)/G/1 queue that we have
called the ∆α

(i) /G/1 queue. In this model, again n customers are triggered
to join a queue after independent exponential times, but the rates of
their exponential clocks depend on their service requirements. When a
customer requires S units of service, its exponential clock rings after an
exponential time with mean E[S−α] with α ∈ [0, 1]. Depending on the
value of the free parameter α, the arrival times are i.i.d. (α = 0) or decrease
with the service requirement (α ∈ (0, 1]). For the case α = 0, we retrieve
the ∆(i)/G/1 queue with i.i.d. arrivals [48, 49], while the case α = 1 is
closely related to the critical inhomogeneous random graph studied in
[15, 55].

The IRG is a generalization of the Erdős-Rényi random graph (ERRG)
[36]. In the ERRG, each pair of different vertices chosen among n vertices
is connected by an edge with a fixed probability p. The ERRG shows
a very intricate behavior as the parameters n and p vary. In particular,
the structure of the ERRG changes dramatically (it undergoes a phase
transition) as p = c/n crosses the critical threshold c = 1, when n is very
large. More specifically, if c > 1, the largest connected component C1 of
the ERRG will contain a positive fraction of all the n vertices (the so-called
giant component), and all other connected components C2, C3, . . . will be
negligible compared to C1. If, on the other hand c < 1, C1 will contain
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O(log(n)) vertices. The ERRG is said to be supercritical in the first case,
and subcritical in the second. The behavior in the vicinity of c = 1 is
more delicate and requires a finer analysis [5, 20, 68]. The most important
result in this context was obtained by Aldous [5], who characterized the
joint limit law of the sizes of the ordered components of the ERRG. The
key insight of Aldous was that several characteristics of the ERRG can
be encoded by a random walk representing the exploration of the random
graph. This exploration process iteratively declares vertices as inactive,
active and explored. All vertices are inactive at first. An arbitrary vertex
v(1) is declared active, and subsequently all its neighbours {v(2), v(3) . . .}
are also declared active. Then, v(1) is declared explored. The process
then moves to v(2) and repeats the steps; see Figure 1.8 and Figure 1.9.

t

1

2 3

1

2 3

1

2 3

1

2 3

Figure 1.8: An example of an exploration process of a forest with one
connected component (a tree). Active vertices are black, inactive vertices
are white and explored vertices are grey. A circle around a node high-
lights which node is being explored. Vertices are numbered in order of
appearence in the exploration.

As a consequence of the definition of the exploration process, the sizes
of the ordered components are encoded by the time between successive
minima of the process. In other words, this technique allowed Aldous
to analyze the complicated random graph using powerful stochastic-
processes tools. More specifically, Aldous proved that, if c = 1 + βn−1/3

for β ∈ R, then the exploration process converges, after appropriate
rescaling, to the process N̂(t) = βt − 1/2t2 + σW(t), where W(t) is a
standard Brownian motion. From this he concluded that the ordered
component sizes of the ERRG, rescaled by n2/3, converge to the times
between successive minima of N̂(t). The ERRG has received lots of
attention in the past decades [21, 54], and continues to be a source of
challenging problems [2].

The inhomogeneous random graph (IRG) generalizes the ERRG by
assigning to each vertex i a (possibly random) weightWi. Vertices i and j
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Figure 1.9: The plot of the exploration process associated with Figure
1.8. The component sizes are given by the difference between successive
minima.

are connected (briefly i↔ j) with probability

P(i↔ j | Wi,Wj) = 1− exp
(
− WiWj

∑n
i=1Wi

)
. (1.3.1)

The graph thus constructed is also known as the Norros-Reittu random
graph [79]. It is inhomogeneous because high weight vertices have a higher
probability of having many neighbors. By choosing all weights equal
to the same constant, we see that the ERRG is a special case of the IRG.
Perhaps surprisingly, the phase transition behavior of the IRG is remark-
ably similar to the one of the ERRG [22]. In particular, if the weights
(Wi)

n
i=1 are i.i.d. with generic random variable w and E[W3] < ∞, then

in the critical regime E[W2]/E[W ] = 1, the distribution of the sizes of
the connected components of the IRG converges to the distribution of the
excursions above past minima of N̂(t) = c1t− c2t2 + c3W(t), for some
c1 ∈ R, c2, c3 > 0 [15].

Now consider the embedded ∆α
(i) /G/1 queue given by

Qe
n = (Qe

n(k− 1) + An(k)− 1)+, (1.3.2)

where An(k) denotes the number of arrivals during the k-th service. The
probability that customer i ∈ {1, . . . , n} joins during the service of cus-
tomer j, conditioned on the rescaled service times Si and Sj, is

P(i joins during service of j | Sj) = 1− exp
(
− Sα

i Sj

n

)
. (1.3.3)
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The similarity between (1.3.1) and (1.3.3) suggests that the two models
are in fact closely related. More precisely, assume that initially in the
queue there are q customers. Then, we construct a graph with vertex
set {1, 2, . . . , n} and in which two vertices i and j are joined by a directed
edge (briefly i → j) if and only if the i-th customer arrives during the
service time of the j-th customer. Let us focus momentarily on the graph
constructed from the first busy period of the queue. If q = 1, then the
graph is a rooted tree with n labeled vertices, the root being labeled 1. If
q > 1, then the graph is a forest consisting of q distinct rooted trees whose
roots are labeled 1, . . . , q respectively. The total number of vertices in the
forest is n. For this random graph model, we have

P(i→ j | Si, Sj) = 1− exp
(
− Sα

i Sj

n

)
, (1.3.4)

corresponding to the situation where customer i joins the queue during
the service of j. The service time Si of customer i has the interpretation
of the weight assigned to vertex i in the corresponding random graph.
Moreover, the busy periods of the queue correspond to the connected
components of the associated random graph. For α = 0 we retrieve the
standard ∆(i)/G/1 queue, while for α = 1 the right-side expression is
symmetric and we retrieve the IRG.

This random forest is exemplary for a deep relation between queues
and random graphs, perhaps best explained by interpreting the embed-
ded ∆(i)/G/1 queue as the exploration process of the corresponding
graph. Let Ak denote the neutral neighbors of the k-th explored vertex.
The exploration process then has increments (Ak)k≥1 that each have a dif-
ferent distribution. The exploration process encodes useful information
about the underlying random graph. For example, excursions above past
minima are the sizes of the connected components. The critical behavior
of random graphs connected with the emergence of a giant component
has received tremendous attention [2, 13, 15, 16, 33, 55]. Interpreting ac-
tive vertices as being in a queue, and vertices being explored as customers
being served, we see that the exploration process and the (embedded)
∆α

(i) /G/1 queue driven by (An(k))k≥1 are identical.
The analysis of the ∆α

(i) /G/1 queue and associated random forest is
challenging because the random variables (Ak)k≥1 are not i.i.d. In the
case of i.i.d. (Ak)k≥1, there exists an even deeper connection between
queues and random graphs, established via branching processes instead
of exploration processes [59]. To see this, declare the initial customers in
the queue to be the 0-th generation. The customers (if any) arriving during
the total service time of the initial i customers form the 1-st generation,
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and the customers (if any) arriving during the total service time of the
customers in generation t form generation t + 1 for t ≥ 1. Through
this connection, properties of branching processes can be carried over
to the queueing processes and associated random graphs [34, 64, 66, 90,
91, 92]. Takács [90, 91, 92] proved several limit theorems for the case
of i.i.d. (A(k))k≥1, in which case the queue-length process and related
processes such as the first busy period weakly converge to (functionals of)
the Brownian excursion process. In that classical line, this thesis can be
viewed as an extension to exploration processes with more complicated,
non-Markovian, dependency structures in (An(k))k≥1.

We will study the ∆α
(i) /G/1 queue in heavy traffic, in a similar heavy-

traffic regime as in (1.1.2). The initial traffic intensity ρn is kept close to
one by imposing the relation

ρ = λE[S1+α](1 + βn−1/3) = 1 + βn−1/3. (1.3.5)

In the ∆α
(i) /G/1 queue the order of arrival of customers plays an important

role. Accordingly, we define c(i) as the i-th served customer, so that the
arrival times of the customers are ordered as Tc(1) ≤ Tc(2) ≤ · · · ≤ Tc(n).
The number of arrivals during the k-th service in (1.3.2) are given by

An(k) = ∑
i/∈νk

1{Ti≤Dc(k)} (1.3.6)

where νk ⊆ [n] is the set of customers no longer in the population at the
beginning of the service of the k-th customer and Di is the rescaled service
time of customer i. Similarly as before, Qe

n(·) in (1.3.2) can be alternatively
represented as the reflected version of a process Nn(·), as

Qe
n(k) = φ(Nn)(k), (1.3.7)

with Nn(·) given by Nn(0) = Qe
n(0) = q and by the recursion

Nn(k) = Nn(k− 1) + An(k)− 1. (1.3.8)

Whenever the server finishes processing one customer, and the queue is
empty, the customer c(i) to be placed into service is chosen according to
the following size-biased distribution:

P(c(i) = j | (Si)i∈[n], νi−1) =
Sα

j

∑l /∈νi−1
Sα

l
, j /∈ νi−1. (1.3.9)
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Figure 1.10: Sample paths of the process n−1/3Qe
n(·n2/3) for various val-

ues of α and n = 10000. The service times are taken unit-mean exponential.
The dashed curves represent the drift t 7→ q + βt− λE[S1+2α]/(2E[Sα])t2.
In all plots, q = 1, β = 1, λ = 1/E[S1+α].

We see that, with this choice, the process Nn(·) exactly describes the
exploration process of the associated random graph and the total number
of vertices in the tree (forest) is given by

TQe
n(0) = inf{k ≥ 0 : Qe

n(k) = 0}, (1.3.10)

the hitting time of zero of the process Qe
n(·). We will show that, for

E[S2+α] < ∞ and Nn(0) = Qe
n(0) = qn1/3,

n−1/3Nn(tn2/3)
d→ N̂q(t) = q + βt− λ

E[S1+2α]

2E[Sα]
t2 + σW(t), n→ ∞

(1.3.11)
with σ2 = λ2E[Sα]E[S2+α] and W(·) a standard Brownian motion. By
continuity arguments, this also implies that

n−1/3Qe
n(tn

2/3)
d→ φ(N̂)(t), (1.3.12)

see Figure 1.10.
As a straightforward consequence of (1.3.11) and (1.3.10)

|Fn| d→ TN̂q
(0), n→ ∞, (1.3.13)

where Fn denotes the cardinality of the tree constructed from the ∆α
(i) /G/1

queue.
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The result (1.3.11) extends (1.1.18) to the ∆α
(i) /G/1 queue. A conver-

gence result for the queue-length process of the ∆α
(i) /G/1 queue follows

from (1.3.11) by proving that, in the limit, the (cumulative) idle time is
negligible and the embedded queue-length process is arbitrarily close
to the queue-length process uniformly over compact intervals. We will
develop this technique fully for the ∆(i)/G/1 queue, and will refrain from
repeating it for the ∆α

(i) /G/1 queue.

1.4 Outline

This thesis is organized as follows. In Chapter 2 we study the asymptotic
behavior of the standard embedded ∆(i)/G/1 queue under the assump-
tion that the variance of the service time is finite. First we treat the simpler
case of exponentially distributed arrival times, and then we move to the
more challenging general case. In both settings we show that, under a
novel scaling regime and if the queue is critical in zero, the limit process is
a Brownian motion with negative quadratic drift. We do this via discrete
martingale techniques. Furthermore, we discuss a generalization of the
results of Chapter 2 to arrival times whose first k derivatives are zero
in zero. This assumption leads to a polynomial, rather than quadratic,
drift in the limit process. Our results show that the limit process depends
weakly on the arrival time distribution. Chapter 2 is based on Sections 4
and 5 of [10].

Chapter 3 expands on the ideas of Chapter 2 in various directions. We
approach the asymptotic behavior of the ∆(i)/G/1 queue with two entirely
different techniques. First, building on the results in Chapter 2, we show
that the idle times are negligible and thus the embedded queue process
and the ∆(i)/G/1 queue process have the same limit, up to rescaling of
the coefficients. Second, we give a direct definition of the ∆(i)/G/1 queue
process, in which the arrival process is given by an empirical distribution
function, and prove directly its asymptotic behavior. We exploit this
result to prove a sample path Little’s Law, describing the relationship
between the queue-length process and the virtual waiting time process.
We conclude by proving that, if the ∆(i)/G/1 queue is subcritical in t,
then (Qn(t))n≥1 is a tight family of random variables. The content of this
chapter is based on the remaining sections of [10] and on [9].

In Chapter 4 we drop the finite variance assumption on the service
times. More specifically, we assume that the service time is distributed
as a power-law. We introduce a scaling regime that depends on the
exponent of the power-law and that, under the appropriate heavy-traffic
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assumption, leads to a new scaling limit for the ∆(i)/G/1 queue. We show
that in this setting the limit process is a pure jump process with a negative
quadratic drift. The proof of this result makes use of a new representation
of the arrival process as a thinned Poisson process (with time-dependent
thinning). Chapter 4 is based on [12].

In Chapter 5 we introduce the ∆α
(i) /G/1 queue and study its asymp-

totic behavior. We are able to prove a scaling limit for the ∆α
(i) /G/1

queue by exploiting the martingale approach introduced in Chapter 2 and
by carefully analysing the dependence structure of the arrival process.
As a special case of this result, we retrieve the analogous result for the
∆(i)/G/1 queue in Chapter 2, and the well-known scaling limit for the
critical inhomogeneous random graph. Chapter 5 is based on [11].

In Chapter 6 we depart from the stochastic-process limits framework.
There, we study the ∆(i)/G/1 queue with a fixed and finite number of
customers n. Assuming that both service times and arrival times are
exponentially distributed, the resulting process jointly describing the
queue length and the number of served customers is an absorbing Markov
process. Exploiting the recursive structure of this process, we derive an
explicit expression for the joint probability mass function of the number of
customers in the first busy period and the maximum number of customers
simultaneously in the queue during the first busy period.

Finally, in Chapter 7 we discuss our findings in the broader context of
time-inhomogeneous queues and the random graph literature. We iden-
tify the shortcomings of our results and suggest ways to deal with them.
Lastly, we discuss various interesting open problems that originated from
the research conducted for this thesis.





CHAPTER 2
The embedded queue

In this chapter we study the asymptotic behavior of the embedded queue-
length process of the heavy-traffic ∆(i)/G/1 queue by analyzing an ap-
proximating discrete-time process. We prove, first for exponentially dis-
tributed arrival times, and later for general arrival times, that when the
second moment of the service time is finite, the approximating process
converges to a reflected Brownian motion with parabolic drift. We do this
by showing that the approximating process satisfies the conditions of a
general Martingale Central Limit Theorem. When the arrival times are
exponentials, we show that the approximating process in fact coincides
with the embedded ∆(i)/G/1 queue. For general arrival times, this is true
up to the end of the first busy period.

Lastly, we show that when the density fT(·) of the arrival times in zero
vanishes, the approximating process converges to a Brownian motion
with polynomial drift, where the degree of the polynomial depends on
the behavior of fT(·) close to zero.

2.1 Model description

We now define in more detail the queueing model that we have intro-
duced in Section 1.1.4. It will turn out that this model coincides with the
embedded ∆(i)/G/1 queue up until the end of the first busy period. In
fact, our model neglects idling, and this leads to a stochastic recursion
driven by complicated, but tractable, increments.

27
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We once more consider a population of n customers that all possess
independent clocks (Ti)

n
i=1 with density function t 7→ fT(t). Whenever

a clock rings, that customer joins the queue. Customers are served in
order of arrival. The service requirements of consecutive customers are
given by the i.i.d. random variables (Si)

n
i=1. We assume that E[S2] < ∞.

We further assume that the service capacity per time unit scales as cn =
n/(1 + βn−1/3), so that the service times are given by

Di :=
Si
cn

=
Si
n
(1 + βn−1/3), i = 1, . . . , n. (2.1.1)

After her/his service is completed, a customer leaves the queue and is
permanently removed from the system. We shall work under the heavy-
traffic condition

ρn := n fT(0)E[D] = 1 + βn−1/3. (2.1.2)

Our crucial approximating assumption is the following: When, after a
service completion, the system is empty, the customer with the smallest
arrival time is drawn from the population and is immediately put into
service.

As will become clear, considering the queue-length process embedded
at service completions makes the process more amenable to mathematical
analysis (e.g. allowing access to discrete-time martingale techniques). Let
Qe

n(k) denote the number of customers that are waiting to be served
just after the service completion of the k-th customer. Assume that the
service of the first customer starts at time 0. The process Qe

n(·) counting
the number of customers waiting to be served and embedded at service
completions, is given by Qe

n(0) = q ≥ 0 and

Qe
n(k) = (Qe

n(k− 1) + An(k)− 1)+, k = 1, 2, . . . (2.1.3)

with x+ = max{0, x} and An(k) the number of arrivals during the service
time of the k-th customer. Assuming q > 0 means that q customers are
already waiting in the queue before the server starts working. For general
arrival times, An(k) is given by

An(k) = ∑
i/∈νk

1{∑k−1
j=1 Dj≤Ti≤∑k

j=1 Dj}, (2.1.4)

where νk is the set of customers no longer in the population at the be-
ginning of the service of the k-th customer. Note that (2.1.4) implies that
the server works continuously, and thus does not idle. From (2.1.3) and
(2.1.4) it is easy to see the following:
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Lemma 1. The process Qe
n(k) for k ≤ TQe

n(0) is distributed as the ∆(i)/G/1
queue embedded at service completions.

It turns out that the process Qe
n(·) in (2.1.3) can be rewritten as the

reflected version of a free process Nn(·). The process Nn(·) is defined as
Nn(0) = q ≥ 0 and

Nn(k) = Nn(k− 1) + An(k)− 1, (2.1.5)

with An(k) given by (2.1.4). Then,

(Qe
n(k))k≥0 = (φ(Nn)(k))k≥0 (2.1.6)

almost surely. We recall that the reflection mapping φ(·) applied to a
function f (·) is given by

φ( f )(t) := f (t)− inf
s≤t

f−(s). (2.1.7)

Note that the process defined in (2.1.5) may take negative values. The
representation (2.1.5) allows us to write

Nn(k) =
k

∑
i=1

(An(k)− 1). (2.1.8)

The process Nn(·) is a random walk with increments given by An(k)−
1. However, due to the complicated dependence structure of the An(k),
Nn(·) is not a Markov process. Nevertheless, we will be able to prove a

limit theorem for Nn(·), showing that Nn(·) d→ N̂(·). Since the reflection

map φ(·) is continuous, this will allow us to conclude that φ(Nn)
d→ φ(N̂).

All the processes that we consider are elements of the space D :=
D([0, ∞)) of càdlàg functions, which admit left limits and are continuous
from the right. To simplify notation, for a discrete-time process X(·) :
N → R, we write X(t), with t ∈ [0, ∞), instead of X(btc). In particular,
a process defined in this way always admits càdlàg paths. The space D
is endowed with the usual Skorokhod J1 topology. We then say that a
process converges in distribution in (D, J1) when it converges as a random
measure on the space D, when this is endowed with the J1 topology.

When the arrival times are exponentially distributed, the critical behav-
ior of our approximating model is determined in the following theorem:

Theorem 3 (Convergence of the approximating process for exponential
arrivals). Assume that (Ti)

n
i=1 are i.i.d. rate λ exponential arrival random
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variables, and that the service times (Si)
n
i=1 are such that E[S2] < ∞. Then, as

n→ ∞,
n−1/3Nn(·n2/3)

d→ N̂(·), in (D, J1), (2.1.9)

where N̂(·) is the diffusion process

N̂(t) := βt− 1
2

t2 + σW(t), (2.1.10)

with σ2 := λ2E[S2] and W(·) a standard Brownian motion. Consequently, as
n→ ∞,

n−1/3Qe
n(·n2/3)

d→ φ(N̂)(·), in (D, J1). (2.1.11)

Note that, since each service Di = Si(1 + βn−1/3)/n is of order Di =

OP(1/n), n2/3 services will take roughly ∑n2/3

i=1 Si/n ≈ E[S]n−1/3 time
units.

2.1.1 General arrivals

When the arrival times Ti are drawn from a general distribution, the
cumulative distribution function FT(·) and the density function fT(·) of Ti
must satisfy some technical regularity properties, which we now describe.
First, we assume that fT(·) is continuous, with fT(0) ∈ (0, ∞). We also
assume that the sublinear terms of the distribution function FT(·) decay
as quickly as

FT(x)− FT(x̄) = fT(x̄)(x− x̄) + o(|x− x̄|4/3), ∀x̄ ∈ (0, ∞). (2.1.12)

This is, for example, the case when FT(·) ∈ C2([0, ∞)). Furthermore, we
assume that f ′T(·) exists and is continuous in a neighborhood of zero. This
implies that

sup
x̄≤cy1/3

|FT(x̄ + y)− fT(x̄)− fT(x̄)y| ≤ sup
x̄≤cy1/3

ζ∈(x̄,x̄+y)

∣∣∣ f ′T(ζ)
2

y2
∣∣∣ ≤ M

2
y2,

(2.1.13)
where M > 0 is the supremum of f ′T(·) in a neighborhood of zero. Equa-
tion (2.1.13) is a technical condition that will be useful later on. Our
assumptions on fT(·) imply also that

fT(x) = fT(0) + f ′T(0)x + o(x). (2.1.14)
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Since limx→∞ fT(x) = 0 and fT(·) is continuous on [0, ∞), it admits a
maximum in [0, ∞). Our analysis will rely crucially on the assumption

fT(0) = sup
x≥0

fT(x). (2.1.15)

When the arrival times follow a general distribution, the heavy-traffic
behavior of the approximating model is given by the following theorem:

Theorem 4 (Convergence of the approximating process for general ar-
rivals). Assume that the arrival times (Ti)

n
i=1 satisfy (2.1.12)–(2.1.15), and that

the service times (Si)
n
i=1 are such that E[S2] < ∞. Then, as n→ ∞,

n−1/3Nn(·n2/3)
d→ N̂(·), (2.1.16)

where N̂(·) is the diffusion process

N̂(t) := βt +
f ′T(0)

2 fT(0)2 t2 + σW(t), (2.1.17)

with σ2 := fT(0)2E[S2] and W(·) a standard Brownian motion. Moreover, as
n→ ∞,

n−1/3Qe
n(·n2/3)

d→ φ(N̂)(·). (2.1.18)

We carry out the involved proof of Theorem 4 in Section 2.3. Note that
when T is exponentially distributed, f ′T(0)/(2 fT(0)2) = −1/2, so that
Theorem 4 is in fact a generalization of Theorem 3.

We now provide a heuristic argument that explains the scaling expo-
nents in Theorem 4. Setting Σi := ∑i

l=1 Dl/n, we estimate Nn(·) at time
tnp as

Nn(tnp) =
tnp

∑
i=1

(∑
j/∈νi

1{∑i−1
l=1 Dl≤Tj≤∑i

l=1 Dl} − 1)

≈
tnp

∑
i=1

(n(FT(Σi)− FT(Σi−1))− 1)

≈
tnp

∑
i=1

( fT(Σi−1)E[S]− 1) ≈
tnp

∑
i=1

i−1

∑
l=1

Sl
n

f ′T(0)E[S], (2.1.19)

where in the last approximation we used our heavy-traffic assumption
(2.1.2). This computation gives us the leading order term of the process
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Nn(·) up to a multiplicative constant as

Nn(tnp) ≈
tnp

∑
i=1

i
n
≈ t2

2
n2p−1. (2.1.20)

The process Nn(tnp) is the sum of tnp contributions, thus (ignoring depen-
dencies) the correct spatial scaling in order to obtain Gaussian fluctuations
is np/2. Equating the order of magnitude of the first order approximation
(2.1.19) and np/2 gives 2p− 1 = p/2, so that p should be 2/3.

For general arrival times, the coupling between the approximating
model and the ∆(i)/G/1 queue established in Lemma 1 breaks down
after the end of the first busy period since the clocks Ti are no longer
memoryless. However, Lemma 1 still allows us to prove results for
the first busy period of the ∆(i)/G/1 queue with general arrivals. The
functional f 7→ Tf (0) denotes the first hitting time of 0 of a function f (·).
We have the following:

Theorem 5 (Number of customers in the first busy period). The number
of customers served in the first busy period of the ∆(i)/G/1 queue is given by
TQe

n(0). Furthermore, assuming (2.1.12)-(2.1.15) and that Qe
n(0) = qn1/3,

n−2/3TQe
n(0)

d→ Tβ
N̂q
(0), (2.1.21)

where Tβ
N̂q
(0) is the first hitting time of zero of the process

N̂q(t) := q + βt +
f ′T(0)

2 fT(0)2 t2 + σW(t), (2.1.22)

and σ2 := fT(0)2E[S2].

Proof. The functional Tf : D → R, f 7→ Tf (0) is a.s. continuous in
N̂q(·) by [52, Chapter VI, Proposition 2.11], when D is endowed with the
Skorokhod J1 topology. Moreover,

n−2/3TQe
n(0) = n−2/3 inf{t > 0 : Qe

n(t) ≤ 0}
= inf{t > 0 : n−1/3Qe

n(tn
2/3) ≤ 0}. (2.1.23)

Since n−2/3Qe
n(·n−1/3)

d→ φ(N̂q)(·) by Theorem 4, the conclusion follows
from the Continuous-Mapping Theorem.
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It does not seem possible to extend Theorem 4 directly to the ∆(i)/G/1
queue beyond the first busy period. However, the limiting process (2.1.17)
only depends on the distribution of T through fT(0) (λ for exponential
clocks), suggesting that the result is insensitive to the arrival clocks dis-
tribution, as long as fT(0) > 0. In the next chapter we will show that the
queue-length process of the ∆(i)/G/1 queue with general arrivals converges
to (2.1.17), after a suitable scaling of time.

2.1.2 Preliminaries

We will first prove Theorem 3 and then move to the technically more
demanding Theorem 4.

Let us now set some notation and present some useful results. All ran-
dom variables that we consider are defined on some complete probability
space (Ω,F , P). Elements of Ω will always be denoted by ω. Given two
real-valued random variables X, Y we say that X stochastically dominates
Y, and we denote it by Y � X, if

P(X ≤ x) ≤ P(Y ≤ x), ∀x ∈ R, (2.1.24)

so that for every non-decreasing function f (·) : R→ R

E[ f (Y)] ≤ E[ f (X)]. (2.1.25)

If X and Y are defined on the same probability space Ω, and X(ω) ≤ Y(ω)

for almost every ω ∈ Ω, then we write X
a.s.
≤ Y. We write f (n) =

O(g(n)) for functions f (·), g(·) ≥ 0 and n→ ∞ if there exists a constant
c > 0 such that limn→∞ f (n)/g(n) ≤ c. We write f (n) = o(g(n)) if
limn→∞ f (n)/g(n) = 0. Furthermore, we write OP(an) for a sequence of
real-valued random variables Xn for which |Xn|/an is tight as n → ∞.
Moreover, we write oP(an) for a sequence of random variables Xn for

which |Xn|/an
P→ 0 as n→ ∞. We say that a sequence of events (En)∞

n=1
holds with high probability (briefly, w.h.p.) if P(En)→ 1 as n→ ∞. We
denote by |A| the cardinality of a set A.

Following [17], we say that Xn converges in distribution (or converges

weakly) to X (and denote it by Xn
d→ X) if E[ f (Xn)]→ E[ f (X)] as n→ ∞

for every f (·) that is real-valued, bounded and continuous. In particular,
if X is D-valued, f (·) can be any continuous function from D to R. Thus,
to formally establish convergence in distribution in the space of D-valued
random variables, a metric, or a topology, on D is needed (in order to
define continuity of the functions f (·)). Several topologies on the space
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D have been defined (all by Skorokhod in his celebrated paper [88]). For
our purposes we will consider the J1 topology, which can be described
as being generated by some metric d∞ on D([0, ∞), R) defined as an
extension of some metric dt onD([0, t], R). The latter is defined as follows.
Let ‖ · ‖ indicate the supremum norm, id(·) the identity function on [0, t]
and Λt the space of non-decreasing homeomorphisms on [0, t]. Define,
for any x1, x2 ∈ D,

dt(x1, x2) := inf
λ∈Λt
{max{‖λ(·)− id(·)‖, ‖x1(·)− x2(λ(·))‖}} (2.1.26)

and

d∞(x1, x2) :=
∫ ∞

0
e−t[dt(x1, x2) ∧ 1]dt. (2.1.27)

[95] shows that (2.1.27) is the correct way of extending the metric, and
thus the topology, from D([0, t], R) to D([0, ∞), R), since convergence
with respect to d∞ is equivalent to convergence with respect to dt on any
compact subset [0, t]. When dealing with vectors of functions we make
use of the weak J1 topology JW1. This coincides with the product topology
on D ×D × · · · × D = Dk.

In order to prove Theorems 3 and 4 we first show that the (rescaled)
process Nn(·) converges weakly to N̂(·), and then we deduce the con-
vergence of the reflected process φ(Nn)(·) exploiting the Continuous-
Mapping Theorem below. In fact, this procedure follows a general tech-
nique known as the Continuous-Mapping approach (see [95, 96] for a de-
tailed description).

Theorem 6 (Continuous-Mapping Theorem). If Xn
d→ X and f is continu-

ous almost surely with respect to the distribution of X, then f (Xn)
d→ f (X).

Through the Continuous-Mapping approach one reduces the problem
of establishing convergence of random objects to one of continuity of

suitable functions. Suppose we have shown that n−1/3Nn(·n2/3)
d→ N̂(·).

To prove Theorem 4 we are left to prove that the reflection map (2.1.7)
is continuous almost surely with respect to the distribution of N̂(·). For
this, note that P(N̂(·) ∈ C) = 1, where C = C([0, ∞), R) ⊂ D denotes the
space of continuous functions from [0, ∞) to R. Then by [95, Theorem
4.1] and [95, Theorem 6.1], φ(·) is continuous almost surely with respect
to the distribution of N̂(·).
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To prove the convergence of n−1/3Nn(·n2/3) we make use of a general
Martingale Functional Central Limit Theorem [38, Section 7] (MFCLT) in
the special case where the limit process is a standard Brownian motion;
for a thorough overview, see [97]. For a discrete-time process k 7→ X(k),
we consider its continuous-time version obtained by piece-wise constant
interpolation. We denote the continuous-time version of X(k) again as
X(t) = X(btc) with a slight abuse of notation.

We shall present the MFCLT below, as it is stated in [97]. Recall that,
when M(t) is a square-integrable martingale with respect to a filtration
{Ft}t≥0, the predictable quadratic variation process associated with M(·) is
the unique non-decreasing, non-negative, predictable, integrable process
V(·) such that M2(t)−V(t) is a martingale with respect to {Ft}t≥0.

Theorem 7 (Martingale Functional Central Limit Theorem). Assume that
{Fn

t }t≥0,n∈N is a family of increasing filtrations and let {M̄n(·)}∞
n=1 be a

sequence of continuous-time, real-valued, square-integrable martingales, each
with respect to (Fn

t )t≥0, such that M̄n(0) = 0. Assume that V̄n(·), the pre-
dictable quadratic variation process associated with M̄n(·), and M̄n(·) satisfy
the following conditions:

(i) V̄n(t)
P→ σ2t, ∀t ∈ R+,

(ii) limn→∞ E[supt≤t̄ |V̄n(t)− V̄n(t−)|] = 0, ∀t̄ ∈ R+,

(iii) limn→∞ E[supt≤t̄ |M̄n(t)− M̄n(t−)|2] = 0, ∀t̄ ∈ R+.

Then, as n → ∞, M̄n(·) converges in distribution in D([0, ∞)) to a centered
Brownian motion with variance σ2t.

Before applying the MFCLT, we recall the Doob decomposition of the
process Nn(·), writing it as the sum of a martingale—which will converge
to the Brownian motion—and an appropriate drift term, as follows:

Nn(k) =
k

∑
i=1

(An(i)−E[An(i) | Fi−1]) +
k

∑
i=1

(E[An(i) | Fi−1]− 1)

=: Mn(k) + Cn(k), (2.1.28)

with {Fi}i≥1 the filtration generated by (An(k))k≥1, i.e.Fi = σ({An}i
k=1).

Another Doob decomposition of interest is

M2
n(k) = Zn(k) + Vn(k) (2.1.29)
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with Zn(·) a martingale and Vn(·) the discrete-time predictable quadratic
variation of the process Mn(·). Note that for every fixed n and k, |Mn(k)|
is bounded and thus its second moment is finite. Therefore Vn(k) exists
and is given by

Vn(k) =
k

∑
i=1

E[(An(i)−E[An(i) | Fi−1])
2 | Fi−1]

=
k

∑
i=1

(E[An(i)2 | Fi−1]−E[An(i) | Fi−1]
2). (2.1.30)

To see this, we rewrite

M2
n(k) =

k

∑
i=1

(An(i)−E[An(i) | Fi−1])
2

+ ∑
i,j≤k
i 6=j

(An(i)−E[An(i) | Fi−1])(An(j)−E[An(j) | Fj−1])

=:
k

∑
i=1

(An(i)−E[An(i) | Fi−1])
2 + Ln(k). (2.1.31)

It is easy to see that Ln(·) is also a martingale. The decomposition (2.1.29)
follows from

Zn(k) :=
k

∑
i=1

(An(i)−E[A(i) | Fi−1])
2

−
k

∑
i=1

E[(An(i)−E[A(i) | Fi−1])
2 | Fi−1] + Ln(k),

Vn(k) :=
k

∑
i=1

E[(An(i)−E[A(i) | Fi−1])
2 | Fi−1]. (2.1.32)

Note that Zn(·) is the sum of two martingales and thus is also a martin-
gale.

2.2 Proof of Theorem 3

When the arrival clocks are exponentially distributed, the number of
customers that join the queue during one service has a simple expres-
sion by virtue of the memoryless property. Conditioned on νk, (2.1.4) is
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distributed as
Pn(k)

∑
i=1

1{Ti,k≤Dk}, (2.2.1)

where Ti,k
d
= Ti, which means that the clocks are re-drawn after each

service, and Pn(k) := |[n] \ νk| = n−Qe
n(k− 1)− k is the number of cus-

tomers still in the population. Since the dependence of Ti,k on k does not
play a role in our analysis, we will write Ti instead of Ti,k. The exponen-
tial distribution satisfies the assumptions (2.1.12)–(2.1.15). However, we
will prove Theorem 3 under a weaker assumption. In particular we will
assume that FT(·) and fT(·) satisfy

FT(x) = fT(0)x + o(x4/3). (2.2.2)

2.2.1 Supporting lemmas

In this section we prove various lemmas that we will make use of during
the proof. For Lemma 2, we restrict ourselves to the case β = 0 for
simplicity.

Lemma 2. Let S, T be positive random variables. Let D := S/n. If (2.2.2)
holds for T and E[S2] < ∞, then

E[|P(T ≤ D | D)− fT(0)D|] = o(n−4/3), (2.2.3)

E[|D(P(T ≤ D | D)− fT(0)D)|] = o(n−2), (2.2.4)

E[|P(T ≤ D | D)− fT(0)D|2] = o(n−2). (2.2.5)

Proof. Since

P(T ≤ D|D) = FT(D) = fT(0)D + o(S4/3n−4/3), (2.2.6)

pointwise convergence trivially holds. As n→ ∞,

n4/3|FT(D)− fT(0)D| a.s.→ 0. (2.2.7)

By assumption (2.2.2) there exists a constant c > 0 such that

|FT(x)− fT(0)x| ≤ cx4/3. (2.2.8)

Consequently,

n4/3|FT(D)− fT(0)D| ≤ cn4/3S4/3n−4/3 (2.2.9)
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almost surely. Since E[S4/3] < ∞, the random variable n4/3|FT(D)− fT D|
is bounded by an integrable random variable not depending on n. The
Dominated Convergence Theorem then gives us (2.2.3). Equations (2.2.4)
and (2.2.5) are proven similarly. Pointwise convergence is again trivial.
Next, note that there exist constant c1, c2 > 0 such that

x|FT(x)− fT(0)x| ≤ c1x2, |FT(x)− fT(0)x|2 ≤ c2x2. (2.2.10)

Indeed, for x � 1, |FT(x)− fT(0)x|2 ≤ c2x8/3 ≤ c2x2 for some c2 > 0,
and for x � 1 it is enough to notice that FT(x) is bounded. The first bound
in (2.2.10) is obtained in the same way. Since E[S2] < ∞ by assumption,
(2.2.4) and (2.2.5) again follow by the Dominated Convergence Theorem.

Roughly speaking, Lemma 2 states that the small-o term in the Taylor
expansion satisfies

E[oP(x)] = o(x). (2.2.11)

Assuming that, as customers join the queue, the customer population
does not deplete gives a stochastic upper bound on An(k). The random
variable that describes the number of arriving customers is then given by

A′n :=
n

∑
i=1

1{Ti≤D}. (2.2.12)

The upper bound (2.2.12) allows us to circumvent the difficulties of deal-
ing with the complicated set νk. Note that

An(k) � A′n (2.2.13)

for all k = 1, 2, . . . The next lemmas shed light into the behavior of the
process Nn(·):
Lemma 3. For k = O(n2/3),

n−2/3Nn(k) � Gn(k), (2.2.14)

where Gn(k) is a random variable such that Gn(k)
P→ 0.

Proof. First note that

Nn(k− 1) �
k−1

∑
j=1

( n

∑
l=1

1{Tl≤Dj} − 1
)
=

k−1

∑
j=1

(A′n − 1). (2.2.15)
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By the Weak LLN for uncorrelated random variables (see e.g. [63]) it is
enough to show that supn∈N Var(A′n) < ∞. Write

Var(A′n)
2 = E[(A′n)

2]−E[A′n]
2

= E[A′n] + E[ ∑
i,j≤n
i 6=j

1{Ti≤D}1{Tj≤D}]−E[A′n]
2. (2.2.16)

The terms E[A′n] and E[A′n]2 are uniformly bounded since

E[A′n] = 1 + βn−1/3 + o(n−1/3). (2.2.17)

Moreover,

E[ ∑
i,j≤n
i 6=j

1{Ti≤D}1{Tj≤D}] = ∑
i,j≤n
i 6=j

E[FT(D)2] ≤ c + o(1), (2.2.18)

for some c > 1, where we have performed a Taylor expansion of FT(·)
and have used Lemma 2 to bound the lower order terms. Both error
terms in (2.2.17) and (2.2.18) can be bounded from above by a constant
independent of n. Therefore supn∈N Var(A′n) < ∞ and the Weak LLN
allows us to conclude the statement in the lemma.

Note that the convergence established in Lemma 3 is not uniform in
j ≤ k, with k = O(n2/3). We now work towards this result.

We will make use of a well-known property of the order statistics of
exponential random variables. Recall that X(1), X(2), . . . , X(n) denote the
order statistics of random variables X1, . . . , Xn.

Lemma 4. Let E1, . . . , En be independent exponentially distributed random
variables with mean one. Then,

(E(j))
n
j=1

d
=
( j

∑
s=1

Es

n− s + 1

)n

j=1
. (2.2.19)

In particular there exists a coupling between (E(j))
n
j=1 and (Ej)

n
j=1 such that

E1 + · · ·+ Ej

n
≤ E(j) (2.2.20)

almost surely for all j ≤ n.
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See [31, Section 2.5] for a proof of Lemma 4. Next, we investigate the
random variable A′n. The following lemma states that on average, in the
limit, the contribution to the queue length of arrivals of order n1/3 or
greater is negligible:

Lemma 5. A′ 2n is stochastically dominated by a family of uniformly integrable
(with respect to n) random variables. In particular,

E[(A′n)
21{(A′n)2>εn2/3}]→ 0, (2.2.21)

as n→ ∞.

Proof. Recall that, when Ei is a mean one exponential random variable,
Ui = 1− exp(−Ei) is a uniform random variable on [0, 1]. The same
result implies that

T(i)
d
= F−1

T (1− exp(−E(i))), (2.2.22)

so that

A′n =
n

∑
i=1

1{Ti≤D} =
n

∑
i=1

1{T(i)≤D}
d
=

n

∑
i=1

1{F−1
T (1−exp(−E(i)))≤D}. (2.2.23)

Since the function x 7→ F−1
T (1− exp(−x)) is monotone, by Lemma 4 we

get

n

∑
i=1

1{F−1
T (1−exp(−E(i)))≤D} �

n

∑
i=1

1{F−1
T (1−exp(−∑i

j=1 Ej/n))≤D}

a.s.
=

n

∑
i=1

1{∑i
j=1 Ej≤−n log(1−FT(D))}. (2.2.24)

By (2.2.2), FT(x)/x is bounded from above by a positive constant K ∈ R+,
so that

n

∑
i=1

1{∑i
j=1 Ej≤−n log(1−FT(D))} �

n

∑
i=1

1{∑i
j=1 Ej≤−n log(1−KD)}. (2.2.25)

Fix ε and let c be such that − log(1− x) ≤ cx for all 0 ≤ x ≤ 1− ε. We do
this in order to remove the dependencies from n. We then obtain that

A′n �
( ∞

∑
i=1

1{∑i
j=1 Ej≤cnKD}

)
1{KD≤1−ε} + A′n1{KD>1−ε}

� N(cnKD) + A′n1{KD>1−ε}, (2.2.26)
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where

N(t, ω) :=
∞

∑
i=1

1{∑i
j=1 Ej≤t}(ω) (2.2.27)

is a Poisson process having rate one. We now prove that each of the two
terms in (2.2.26) is a family of uniformly integrable random variables,
and thus also their sum is. Since by assumption Sk has a finite second
moment, also N(cnKD) has. Since the latter does not depend on n, it is
uniformly integrable with respect to n. Moving to the second term, note
that, since A′n ≤ n almost surely,

E[A′ 2n 1{K·D>1−ε}] ≤ n2P
(

Sk >
(1− ε)n

K(1 + βn−1/3)

)
≤ n2K2(1 + βn−1/3)2

(1− ε)2n2 E[S2
k1{Sk>

(1−ε)n
K(1+βn−1/3)

}]. (2.2.28)

Since E[S2] < ∞, as n→ ∞

E[S2
k1{Sk>

(1−ε)n
K(1+βn−1/3)

}]→ 0. (2.2.29)

The second moments of the second term in (2.2.26) converge to zero as n
tends to infinity, and thus {A

′ 2
n 1{KD>1−ε}}n≥1 is a uniformly integrable

family. Therefore, (N(cnKD) + A′n1{KD>1−ε})2 is uniformly integrable.
We have then shown that (A′ 2n )n≥1 is stochastically dominated by a ran-
dom variable with uniformly integrable second moments. The second
claim then follows by the stochastic domination result in (2.1.25).

2.2.2 Proof of Theorem 3

Recall that Nn(k) can be decomposed as Nn(k) = Mn(k) + Cn(k), where
Mn(k) is a martingale and Cn(k) is a drift term. Moreover, we also wrote
M2

n(k) as M2
n(k) = Zn(k) + Vn(k) with Zn(k) the Doob martingale and

Vn(k) its drift. The proof then consists of verifying the following condi-
tions: For every t̄ ∈ R+,

(i) supt≤t̄ |n−1/3Cn(tn2/3)− βt + 1
2 t2| P→ 0,

(ii) n−2/3Vn(t̄n2/3)
P→ σ2 t̄,

(iii) limn→∞ n−2/3E[supt≤t̄ |Vn(tn2/3)−Vn(tn2/3−)|] = 0,
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(iv) limn→∞ n−2/3E[supt≤t̄ |Mn(tn2/3)−Mn(tn2/3−)|2] = 0.

Recall that σ2 = fT(0)2E[S2].
Condition (i) implies the convergence of the drift term, while condi-

tions (ii)-(iv) imply the convergence of the (rescaled) process Mn(k) to
a centered Brownian motion, by Theorem 7. By standard convergence
arguments, we can then conclude that the rescaled version of the sum
Cn(k) + Mn(k) converges in distribution to the sum of the respective
limits.

Proof of (i)

We first prove (i) and to that end, we expand the term E[An(i)|Fi−1].
Recall that νi denotes the set of the customers that are no longer in the
population at the beginning of the service of the i-th customer. Then,

E[An(i) | Fi−1] = ∑
s/∈νi

E[1{Ts≤Di} | Fi−1]

= ∑
s/∈νi

E[E[1{Ts≤Di} | Fi−1, Di] | Fi−1]

= ∑
s/∈νi

(E[ fT(0)Di | Fi−1] + o(n−4/3)), (2.2.30)

where, in the last equality, we have used Lemma 2 and the error term is
independent of s. Since Di is independent from Fi−1, we obtain

E[An(i) | Fi−1] = ∑
s/∈νi

(E[ fT(0)Di] + o(n−4/3)). (2.2.31)

The summation can then be simplified to

E[An(i) | Fi−1] = (n− |νi|)( fT(0)E[Di] + o(n−4/3))

= fT(0)E[Si](1 + βn−1/3)− fT(0)E[Si](1 + βn−1/3)
|νi|
n

+ (n− |νi|)o(n−4/3), (2.2.32)

since the error terms in (2.2.30) are uniform in s. Then,

E[An(i)− 1 | Fi−1]

= fT(0)(1 + βn−1/3)E[Si]− 1− fT(0)(1 + βn−1/3)E[Si]
|νi|
n

+ o(n−1/3).

(2.2.33)
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By (1.1.2),

E[An(i)− 1 | Fi−1] = βn−1/3− |νi|
n

(1+O(n−1/3)) + o(n−1/3). (2.2.34)

Note that, since the service times are independent from the history of the
system, conditioning on Fi−1 has no effect. Since |νi| = i + Nn(i− 1), the
drift term in the decomposition of Nn(k) can be written as

Cn(k) = kβn−1/3 −
( k2 + k

2
+

k

∑
i=1

Nn(i− 1)
)
(n−1 + O(n−4/3))

+ ko(n−1/3). (2.2.35)

The term −∑k
i=1 Nn(i − 1) in (2.2.35) accounts for the fact that the cus-

tomers already in the queue cannot rejoin it. This term converges to zero
as n tends to infinity (after appropriate scaling) by the following result:

Lemma 6. As n→ ∞,

n−2/3 sup
j≤an2/3

|Nn(j)| P→ 0. (2.2.36)

Proof. Recall that Nn(j) = Mn(j) + Cn(j). Then,

P(n−2/3 sup
j≤an2/3

|Nn(j)| ≥ 2ε) ≤ P(n−2/3 sup
j≤an2/3

|Mn(j)| ≥ ε)

+ P(n−2/3 sup
j≤an2/3

|Cn(j)| ≥ ε). (2.2.37)

We will bound the first and second terms separately. Applying Doob’s
inequality to the martingale Mn(·) gives

P(n−2/3 sup
j≤an2/3

|Mn(j)| ≥ ε) ≤ E[M2
n(an2/3)]

(εn2/3)2 . (2.2.38)

By (2.1.29), E[M2
n(k)] = E[Vn(k)]. Expanding this term gives

E[Vn(k)] = E[
k

∑
i=1

(E[An(i)2 | Fi−1]−E[An(i) | Fi−1]
2)]

≤ E[
k

∑
i=1

E[An(i)2 | Fi−1]] ≤ kE[A′ 2n ], (2.2.39)
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where A′n is defined as in (2.2.12). By rescaling we get

n−4/3E[Vn(an2/3)] ≤ an−2/3E[A′ 2n ]. (2.2.40)

A′n has a finite second moment uniformly in n by (2.2.16)–(2.2.18), thus
the right-most term in (2.2.40) tends to zero as n tends to infinity.

For the second term in (2.2.37) we make use of the decomposition of
the drift term in (2.2.35). From there we obtain

−(n−1 + O(n−4/3))
k

∑
i=1

(i+Nn(i− 1)) + ko(n−1/3) ≤ Cn(k), (2.2.41)

and
Cn(k) ≤ kβn−1/3 + ko(n−1/3), (2.2.42)

and thus, almost surely,

sup
j≤an2/3

|Cn(j)| ≤ (an2/3βn−1/3 + an2/3o(n−1/3)) (2.2.43)

∨ ((n−1 + O(n−4/3))
an2/3

∑
i=1

(i + Nn(i− 1)) + an2/3o(n−1/3)),

since the two bounds (2.2.41) and (2.2.42) are monotone functions of k. By
rescaling the first term by n−2/3 we obtain aβn−1/3 + ao(n−1/3), which
tends to zero almost surely as n goes to infinity. The second term in
(2.2.43) needs more attention. Notice that the function i 7→ i + Nn(i) is
non-negative and non-decreasing. Thus, we bound all the terms in the
sum by the final term:

an2/3

∑
i=1

(i + Nn(i− 1))
a.s.
≤ an2/3(an2/3 + Nn(an2/3 − 1)). (2.2.44)

Rescaling by n−2/3 we get for the second term in (2.2.43) that, almost
surely,

n−2/3
(
(n−1 + O(n−4/3))

an2/3

∑
i=1

(i+Nn(i− 1)) + an2/3o(n−1/3)
)

(2.2.45)

≤ a(n−1 + O(n−4/3))(an2/3 + Nn(an2/3 − 1)) + ao(n−1/3).

The O(n−4/3) term is of lower order than n−1, and thus can be ignored.
By Lemma 3, the right-hand side of (2.2.45) tends to zero in probability as
n tends to infinity and this concludes the proof that the second term in
(2.2.37) converges in probability to zero.
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Lemma 6 proves that the process n−2/3Nn(·) tends to zero in prob-
ability, uniformly in j ≤ an2/3, which is stronger than the conclusion of
Lemma 3. Substituting k = tn2/3 into (2.2.35) and multiplying by n−1/3

yields

n−1/3Cn(tn2/3) (2.2.46)

= βt−
( t2 + tn−2/3

2
+

tn2/3

∑
i=1

Nn(i− 1)
)
(1 + O(n−1/3)) + o(1).

Both the small-o and the big-O terms in (2.2.46) are independent of t.
Indeed, the small-o term originates from Lemma 2 (and is therefore inde-
pendent of k) and the big-O term was introduced in (2.2.34) and depends
only on n and β. Therefore, the convergence of n−1/3Cn(tn2/3) is uniform
in t ≤ t̄ for fixed t̄ as required, and this concludes the proof of Lemma 6
and thus of (i).

Proof of (ii)

In order to prove (ii) we first compute

E[An(i)2 | Fi−1]

= E[∑
j/∈νi

12
{Tj≤Di} + ∑

l 6=m
l,m/∈νi

1{Tl≤Di}1{Tm≤Di} | Fi−1]

= E[An(i) | Fi−1] + E[ ∑
l 6=m

l,m/∈νi

1{Tl≤Di}1{Tm≤Di} | Fi−1], (2.2.47)

which yields

E[An(i)2 | Fi−1]−E[An(i) | Fi−1]

= ∑
l 6=m

l,m/∈νi

E[E[1{Tl≤Di}1{Tm≤Di} | Fi−1, Di] | Fi−1]

= ∑
l 6=m

l,m/∈νi

E[P(Tl ≤ Di | Di)P(Tm ≤ Di | Di) | Fi−1]

= ∑
l 6=m

l,m/∈νi

E[FT(Di)
2 | Fi−1]. (2.2.48)
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Exploiting (2.2.2) we rewrite the summation term as

E[FT(Di)
2 | Fi−1] = fT(0)2E[D2

i ] + 2 fT(0)E[Di(FT(Di)− fT(0)Di)]

+ E[(FT(Di)− fT(0)Di)
2]. (2.2.49)

The second and third terms are o(n−2) by Lemma 2. We rewrite (2.2.48)
as

∑
l 6=m

l,m/∈νi

( fT(0)2

n2 (1 + βn−1/3)2E[S2] + o(n−2)
)

=
|Ξi| fT(0)2

n2 (1 + βn−1/3)2E[S2] + o(1). (2.2.50)

where Ξi := {(l, m) : l 6= m, l, m /∈ νi}. Note that the cardinality of Ξi is

|Ξi| = (n− Nn(i− 1)−i)2 − (n− Nn(i− 1)−i), (2.2.51)

thus of the order n2. Then, for k = O(n2/3),

Cn(k) =
k

∑
i=1

(E[An(i)2 | Fi−1]−E[An(i) | Fi−1]
2)

=
k

∑
i=1

( |Ξi| fT(0)2

n2 (1 + βn−1/3)2E[S2] + o(1)
)

+
k

∑
i=1

(E[An(i) | Fi−1]−E[An(i) | Fi−1]
2). (2.2.52)

Using (2.2.34), together with the fact that |νi|/n = OP(n−1/3) uniformly
for i = O(n2/3), we get

Cn(k) =
k

∑
i=1

( |Ξi| fT(0)2

n2 (1 + βn−1/3)2E[S2] + OP(n−1/3) + o(1)
)

=
k

∑
i=1

( (n− Nn(i− 1)− i)2 − (n− Nn(i− 1)− i)
n2

× fT(0)2(1 + βn−1/3)2E[S2]
)
+ OP(kn−1/3) + o(k). (2.2.53)
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We then split the term inside the summation to isolate the contribution of
the process Nn(·), and write

Vn(k) =
k

∑
i=1

(n−i)2 − (n−i)
n2 fT(0)2(1 + βn−1/3)2E[S2]

+
k

∑
i=1

Nn(i− 1)(Nn(i− 1)− 2(n− i) + 1)
n2 fT(0)2(1 + βn−1/3)2E[S2]

+ OP(kn−1/3) + o(k). (2.2.54)

The second term accounts for the process history. By Lemma 6, this term
tends to zero in probability after rescaling. A computation shows that

fT(0)2E[S2]

n2

n−1

∑
l=n−k

(l2 − l) =
σ2

n2 (
2
3

k + k2 − 1
3

k3 − 2kn− k2n + kn2)

= σ2k + O(k2n−1). (2.2.55)

The remaining terms were omitted because they are of order smaller than
O(k2n−1) when k = sn2/3. When rescaling space and time appropriately
in (2.2.54) we finally obtain that

n−2/3Vn(tn2/3)
P→ σ2t, (2.2.56)

as required, completing the proof of (ii).

Proof of (iii)

The process Vn(·) in (2.1.29) is almost surely increasing. To prove (iii), we
will estimate the largest possible jump

n−2/3|Vn(k + 1)−Vn(k)|
= n−2/3|E[An(k + 1)2 | Fk]−E[An(k + 1) | Fk]

2|, (2.2.57)

with k = O(n2/3). We will apply the Dominated Convergence Theorem.
The jump (2.2.57) has already been implicitly computed as the term in the
summation in (2.2.54) and it takes the form

n−2/3|E[An(k + 1)2 | Fk]−E[An(k + 1) | Fk]
2|

= n−2/3
∣∣∣ fT(0)2E[S2]

( (n− k− 1)2 − (n− k− 1)
n2

+
Nn(k)(Nn(k)− 2(n− k− 1) + 1)

n2

)
+ OP(n−1/3)

∣∣∣ (2.2.58)
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The term OP(n−1/3) is a byproduct of E[An(k)|Fk−1]−E[An(k)|Fk−1]
2,

as computed in (2.2.52) and following calculations. We now compute
it precisely by using the exact expression for E[An(k)|Fk−1] found in
(2.2.34),. We obtain the almost sure bound

|E[An(k) | Fk−1]−E[An(k) | Fk−1]
2| (2.2.59)

≤ βn−1/3 + 2|νk|n−1 + 2β|νk|n−4/3 + o(n−1/3).

The right-hand side of (2.2.59) is bounded by 3 for all sufficiently large
values of n, uniformly in k ≤ tn2/3, since |νk| ≤ n. Plugging this into
(2.2.58) we get that, almost surely,

n−2/3|E[An(k + 1)2 | Fk]−E[An(k + 1) | Fk]
2| (2.2.60)

≤ n−2/3
∣∣∣σ2
( (n− k− 1)2 − (n− k− 1)

n2

+
Nn(k)(Nn(k)− 2(n− k− 1) + 1)

n2

)
+ 3
∣∣∣.

Since |Nn(k)| ≤ n, there exists a constant C such that, uniformly in
k ≤ tn2/3,

n−2/3|E[An(k + 1)2 | Fk]−E[An(k + 1) | Fk]
2

≤ n−2/3(3 + σ2C), (2.2.61)

almost surely. Therefore, both assumptions of the Dominated Conver-
gence Theorem hold and this concludes the proof of (iii).

Proof of (iv)

We prove (iv) through a coupling argument. First, note that

n−2/3E[sup
t≤t̄
|Mn(tn2/3)−Mn(tn2/3−)|2] (2.2.62)

= n−2/3E[ sup
k≤t̄n2/3

|An(k)−E[An(k) | Fk−1]|2]

≤ n−2/3E[ sup
k≤t̄n2/3

|An(k)|2] + n−2/3E[ sup
k≤t̄n2/3

E[An(k) | Fk−1]
2].

We start with the second term in (2.2.62). Using the computations in
(2.2.34), and that the second term there is negative, yields

0
a.s.
≤ E[An(k) | Fk−1]

a.s.
≤ 1 + O(n−1/3). (2.2.63)
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For the first term we use a coupling argument. For ε > 0, we split

E[ sup
k≤t̄n2/3

|An(k)|2] = E[ sup
k≤t̄n2/3

An(k)21{supk≤t̄n2/3 An(k)2≤εn2/3}]

+ E[ sup
k≤t̄n2/3

An(k)21{supk≤t̄n2/3 A(k)2>εn2/3}]. (2.2.64)

Multiplying (2.2.64) by n−2/3, the first term is bounded by ε. For the
second term we estimate

E[ sup
k≤t̄n2/3

An(k)21{supk≤t̄n2/3 An(k)2>εn2/3}]

≤
t̄n2/3

∑
k=1

E[An(k)21{An(k)2>εn2/3}]

≤
t̄n2/3

∑
k=1

E[A′n
2
1{A′n

2>εn2/3}]

= t̄n2/3E[A′n
2
1{A′n

2>εn2/3}], (2.2.65)

where we have used the stochastic domination in (2.2.12). By Lemma 5,
E[A′n

2
1{A′n

2>εn2/3}]→ 0 and thus, as n→ ∞

n−2/3E[ sup
k≤t̄n2/3

An(k)21{supk≤t̄n2/3 An(k)2>εn2/3}]→ 0. (2.2.66)

This concludes the proof of (iv).

2.3 Proof of Theorem 4

In this section we prove Theorem 4. We assume that the arrival times
(Ti)

n
i=1 follow a general distribution with cumulative distribution function

FT(·) and density function fT(·) satisfying (2.1.12)–(2.1.15). The number
of arrivals during the k-th service is given by

An(k) = ∑
i/∈νk

1{∑k−1
j=1 Dj<Ti≤∑k

j=1 Dj}, (2.3.1)

where νk is the set of customers no longer in the population at the be-
ginning of the service of the k-th customer. We assume that FT(·) can be
Taylor expanded in a neighborhood of every point, as in (2.1.12), and that
the density fT(·) can be Taylor expanded in a neighborhood of zero, as in
(2.1.14).
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2.3.1 Supporting lemmas

For readability, throughout this section we will denote Σj := ∑
j
i=1 Di. In

this section we present results that generalize various lemmas in Section
2.2.1. For each result, we provide the proof only when it is substantially
different from the proof of the analogous result in Section 2.2.1. The
following lemma estimates the error term in the Taylor expansion of
FT(·).
Lemma 7. If k = O(n2/3), then

E[|FT(Σk)− FT(Σk−1)− fT(Σk−1)Dk| | Σk−1] = oP(n−4/3), (2.3.2)

E[|Dk(FT(Σk)− FT(Σk−1)− fT(Σk−1)Dk)| | Σk−1] = oP(n−2), (2.3.3)

E[|FT(Σk)− FT(Σk−1)− fT(Σk−1)Dk|2 | Σk−1] = oP(n−2). (2.3.4)

Moreover, all the statements of convergence hold uniformly for k = O(n2/3).

Proof. We give the proof for (2.3.3), the rest are shown in an analogous
way. Note that, by our assumptions on FT(·),

E[n2|Dk(FT(Σk)− FT(Σk−1)− fT(Σk−1)Dk)| | Σk−1]

≤ sup
y≤cn−1/3

n2E[|FT(y + Dk)− FT(y)− fT(y)Dk | Dk]

≤ n2E[ sup
y≤cn−1/3

|FT(y + Dk)− FT(y)− fT(y)Dk | Dk] (2.3.5)

since with high probability Σk−1 ≤ cn−1/3 for some c > 0. The right term
tends to zero by the Dominated Convergence Theorem and (2.1.13), and
this immediately implies (2.3.3).

The stochastic upper bound (2.2.12) is generalized as

A′n(k) :=
n

∑
i=1

1{Σk−1≤Ti≤Σk}. (2.3.6)

In the exponential case the process Nn(·) is roughly of the order n1/3

around time tn2/3. This is also the case in this more general setting, as the
following lemma shows:

Lemma 8. For k = 1, 2, . . . we have that

n−2/3Nn(k) � Gn(k), (2.3.7)
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where Gn(k) is a random variable such that Gn(k)
P→ 0 uniformly in k =

O(n2/3).

Proof. Let us set k = tn2/3. Fix an arbitrary ε > 0. Then,

P
(

n−2/3
tn2/3

∑
j=1

An(j)− n−2/3t ≥ ε
)

(2.3.8)

≤ P
(

n−2/3
tn2/3

∑
j=1

A′n(j)− n−2/3t ≥ ε
)

≤ P
(

n−2/3|
tn2/3

∑
j=1

A′n(j)− n−2/3t| ≥ ε
)

= P
(

n−2/3|
n

∑
l=1

1{Tl≤Σtn2/3} − n−2/3t| ≥ ε
)

≤ n−4/3ε−2E
[( n

∑
l=1

1{Tl≤Σtn2/3}
)2
1{|∑n

l=1 1{Tl≤Σ
tn2/3 }−n−2/3t|≥εn2/3}

]
.

Next, we bound the expected value on the right-hand side of (2.3.8). To
this end we define the event

En :=
{∣∣∣ n

∑
l=1

1{Tl≤Σtn2/3} − n−2/3t
∣∣∣ ≥ εn2/3

}
, (2.3.9)

and write

E
[( n

∑
l=1

1{Tl≤Σtn2/3}
)2
1En

]
≤ n + E

[
∑
h 6=k

1{Th≤Σtn2/3}1{Tk≤Σtn2/3}1En

]
≤ n + n2E[FT(Σtn2/3)21En ] ≤ n + cn2E[(Σtn2/3)21En ]

≤ n + cn4/3E[S21En ], (2.3.10)

for a large constant c > 0. In the last step in (2.3.10) we have used the
Cauchy-Schwarz inequality. Since P(En) → 0 and E[S2] < ∞, by plug-
ging (2.3.10) into (2.3.8) and by the Dominated Convergence Theorem,
we get the desired convergence.

The next lemma will be a crucial ingredient of the proof of Lemma 10,
below, which is the equivalent in this setting of Lemma 5.
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Lemma 9. Let (E(i))
n−υ
i=1 (υ ≤ n) be the order statistics of n exponential unit

mean random variables. Define |Υ(n−υ)
(0,c) | as the cardinality of the set

Υ(n−υ)
(0,c) := {j ∈ [n− υ] : E(j) ∈ (0, c)/n}. (2.3.11)

Then,

|Υ(n−υ)
(0,c) | � N

(n− υ

n
c
)

, (2.3.12)

where N(t) is a Poisson process with unit rate.

Proof. The statement is a consequence of Lemma 4. Fix j ∈ {1, . . . , n− υ}.
By definition of stochastic domination

P
(

E(j) ≤
c
n

)
≤ P

(∑
j
i=1 Ei

n− υ
≤ c

n

)
≤ P

(
Πj ≤

n− υ

n
c
)

, (2.3.13)

where Πj is the j-th point of a Poisson process with rate one. The com-
putation in (2.3.13) intuitively means that there are more Poisson points
in an interval of length (n− υ)c/n than order statistics in an interval of
length c/n. This gives (2.3.12).

Since

N
(n− υ

n
c
)
� N(c), ∀υ ≤ n, (2.3.14)

it follows from (2.3.12) that

|Υ(n−υ)
(0,c) | � N(c), ∀υ ≤ n. (2.3.15)

Corollary 1. Under the same assumptions as in Lemma 9,

Υ(n)
(a,b) � N(b− a). (2.3.16)

Proof. By Lemma 9,

P(N(b− a) ≤ x) ≤ P
(
|Υ(n−υ)

(0,b−a)| ≤ x
)
. (2.3.17)

Note that, by the memoryless property,

P(|Υ(n−υ)
(0,b−a)| ≤ x) = P(|Υ(n)

(a,b)| ≤ x | |Υ(n)
(0,a)| = υ), (2.3.18)
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almost surely. Since the left side of (2.3.17) does not depend on υ, by
combining (2.3.17) and (2.3.18) and taking expectations on both sides in
order to remove the conditioning, we get

P(N(b− a) ≤ x) ≤ P(|Υ(n)
(a,b)| ≤ x), (2.3.19)

allowing us to conclude the claim.

Lemma 9 simplifies the task of estimating quantities involving order
statistics of exponentials by replacing them with a Poisson process.

One of the cornerstones of the analysis in Section 2.2 was the uniform
integrability of (A′n

2)n≥1 in Lemma 5. An analogous version holds in this
general setting:

Lemma 10. An(k) is stochastically bounded by a random variable with uni-
formly integrable (with respect to n) second moment, uniformly in k ≤ tn2/3.

Proof. Note that T(i)
d
= F−1

T (1− exp(−E(i))), where (E(i))
n
i=1 are the order

statistics of unit mean exponential random variables. Then,

An(k)
a.s.
≤ A′n(k)

d
=

n

∑
i=1

1{Σk−1≤F−1
T (1−exp(−E(i)))≤Σk}

d
=

n

∑
i=1

1{FT(Σk−1)−1≤− exp(−E(i))≤FT(Σk)−1}

d
=

n

∑
i=1

1{− log(1−FT(Σk−1))≤E(i)≤− log(1−FT(Σk))}. (2.3.20)

By Corollary 1,

An(k) � N
(

n log
(1− FT(Σk−1)

1− FT(Σk)

))
. (2.3.21)

By splitting the event space Ω we write (2.3.21) as

An(k) � N
(

n log
(1− FT(Σk−1)

1− FT(Σk)

))
1{Σk≤x̄} + An(k)1{Σk>x̄}, (2.3.22)

where x̄ is independent of n and will be determined later on. We now
show that the first term in (2.3.22) is bounded by a random variable
independent of n and with finite second moment. Moreover, the second
moment of the second term converges to zero as n tends to infinity. These
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two facts together imply that the right-hand side of (2.3.22) has uniformly
integrable second moments.

The first term is bounded as follows. Choose x̄ so that 1− FT(x̄) > 0.
By Taylor expanding the function

x 7→ log
( 1− FT(Σk−1)

1− FT(Σk−1 + x)

)
, (2.3.23)

for some x∗ ∈ (Σk−1, Σk) we get

N
(

n log
(1− FT(Σk−1)

1− FT(Σk)

))
1{Σk≤x̄} = N

(
n

fT(x∗)
1− FT(x∗)

Sk
n

)
1{Σk≤x̄}

� N
( fT(0)

1− FT(x̄)
Sk

)
, (2.3.24)

where we have used that the density fT(·) has finite maximum value
fT(0). The right-most term in (2.3.24) has finite second moment, since
E[S2] < ∞. For the second term we proceed as follows:

An(k)21{Σk≥x̄}
a.s.
≤ An(k)21{Dk≥x̄/2} + An(k)21{Σk≥x̄,Dk<x̄/2}, (2.3.25)

The mean of the first term is be bounded by

E[An(k)21{Dk≥x̄/2}] ≤ n2P(Sk ≥ nx̄/2)

≤ 4n2 E[S2
k1{Sk≥nx̄/2}]
(nx̄)2 , (2.3.26)

and the right-hand side tends to zero as n tends to infinity since E[S2] <
∞. For the second term, more work is needed. First observe that

1{Σk≥x̄,Dk<x̄/2} ≤ 1{Σk−1≥x̄/2}. (2.3.27)

Bounding An(k)2 by nA′n(k), we get

E[An(k)21{Σk≥x̄,Dk<x̄/2}]

≤ n2E[E[1{Σk−1≤Ti≤Σk}1{Σk−1≥x̄/2} | Σk]]

= n2E[1{Σk−1≥x̄/2}E[1{Σk−1≤Ti≤Σk} | Σk]]

= n2E[1{Σk−1≥x̄/2}(FT(Σk)− FT(Σk−1))]. (2.3.28)
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By applying the Mean Value Theorem to FT(·), we obtain

|FT(Σk)− FT(Σk−1)|
a.s.
≤ fT(0)Dk, (2.3.29)

since fT(0) = maxt∈R+ fT(t). Plugging this into (2.3.28),

E[An(k)21{Σk≥x̄,Dk<x̄/2}] ≤ n fT(0)E[Sk1{Σk−1≥x̄/2}]

= n fT(0)E[Sk]P(Σk−1 ≥ x̄/2), (2.3.30)

the equality following from independence of Sk and Σk−1.
It is easy to see that the right-hand side converges to zero by using

Chebyshev’s inequality. Indeed, taking n so large that n2/3E[S] ≤ nx̄/4,

P(Σk−1 ≥ x̄/2) ≤ P
(∣∣∣ tn2/3

∑
i=1

Si − n2/3E[Si]
∣∣∣ ≥ nx̄/4

)
≤ 16

tn2/3Var(Si)

n2 x̄
= o(n−1). (2.3.31)

This concludes the proof that the second moment of the second term in
(2.3.22) tends to zero as n tends to infinity.

We conclude with a useful application of Doob’s inequality, summa-
rized in the following lemma:

Lemma 11. Assume (Si)
∞
i= is a sequence of i.i.d. random variables with finite

second moment. Then, for any α, β > 0 such that α < 2β,

supk≤tnα |∑k
i=1 Si − kE[S]|
nβ

P→ 0. (2.3.32)

Proof. Define Mk := ∑k
j=1(Sj − E[S]). Then k 7→ Mk is a martingale.

Therefore, by Doob’s inequality applied to the sub-martingale k 7→ |Mk|,
we have

P
( supk≤tnα |Mk|

nβ
> ε
)
≤ E[M2

tnα ]

ε2n2β
=

tnαE[(S−E[S])2]

ε2n2β
. (2.3.33)

This converges to zero since α < 2β. Note that ε can depend on n, for
example by defining ε := n−δ and choosing δ such that δ < β− α/2.
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2.3.2 Proof of Theorem 4

The proof consists, again, in verifying the three conditions of Theorem 7,
and establishing the convergence of the drift Cn(·), as

(i) supt≤t̄ |n−1/3Cn(tn2/3)− βt− f ′T(0)/(2 fT(0)2)t2| P→ 0, ∀t̄ ∈ R+,

The filtration we consider henceforth is defined as

Fi := σ({An(j), Dj}j≤i). (2.3.34)

Proof of (i)

We obtain the asymptotic drift by computing

E[An(k)|Fk−1] = ∑
i/∈νk

E[1{Σk−1≤Ti≤Σk} | Fk−1]

= ∑
i/∈νk

E[1{Ti≤Σk} | Σk−1, {Ti ≥ Σk−1}], (2.3.35)

where, as above, νi denotes the set of the customers that no longer remain
in the population at the beginning of the service of the i-th customer.

Adding the conditioning on {Ti ≥ Σk−1} does not influence the con-
ditional expectation, since Ti is such that i /∈ νk−1. Indeed, note that i /∈ νk
implies Ti ≥ Σk−1. Then, defining for simplicity Ek−1 := {Σk−1, {Ti ≥
Σk−1}}, we compute

E[An(k)|Fk−1] = ∑
i/∈νk

E[E[1{Σk−1≤Ti≤Σk} | Dk, Ek−1] | Ek−1]

= (n− |νk|)E
[ FT(Σk)− FT(Σk−1)

1− FT(Σk−1)
| Ek−1

]
=

(n− |νk|)
1− FT(Σk−1)

E[FT(Σk)− FT(Σk−1) | Ek−1]. (2.3.36)

We now rearrange the terms in order to distinguish between the ones
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contributing to the limit and those vanishing, as follows

E[An(k) | Fk−1]− 1

=
(n− |νk|)

1− FT(Σk−1)
E[FT(Σk)− FT(Σk−1) | Ek−1]−

1− FT(Σk−1)

1− FT(Σk−1)

=
n

1− FT(Σk−1)
E[FT(Σk)− FT(Σk−1)− n−1 | Ek−1]

− 1
1− FT(Σk−1)

E[|νk|(FT(Σk)− FT(Σk−1))− FT(Σk−1) | Ek−1]

=: A(1)
n (k)− A(2)

n (k). (2.3.37)

A(1)
n (k) groups all the terms appearing in the limit, while A(2)

n (k) groups all
the terms of lower order, that vanish in the limit. We treat them separately,
starting with A(1)

n (k). The term FT(Σk)− FT(Σk−1) is simplified through
our assumptions. By (2.1.12) and Lemma 7,

A(1)
n (k)

=
n

1− FT(Σk−1)
E[ fT(Σk−1)Dk − n−1 + oP(n−4/3) | Ek−1], (2.3.38)

and by (2.1.14),

E[ fT(Σk−1)Dk | Ek−1] = ( fT(0) + f ′T(0)Σk−1 + o(Σk−1))E[D] (2.3.39)

= fT(0)E[Dk] + f ′T(0)Σk−1E[Dk] + o(Σk−1)E[Dk],

where, with an abuse of notation, we denoted the term | fT(Σk−1) −
fT(0)− f ′T(0)Σk−1| as o(Σk−1). Since by the strong Law of Large Numbers,
for k = O(n2/3),

n1/3| fT(Σk−1)− fT(0)− f ′T(0)Σk−1| a.s.→ 0, (2.3.40)

also convergence in probability holds, that is, o(Σk−1) = oP(n−1/3). In
particular we see that o(Σk−1)E[Dk] = oP(n−4/3) uniformly in k ≤ tn2/3.
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Plugging (2.3.39) into (2.3.38) yields

A(1)
n (k) =

n
1− FT(Σk−1)

×
(

fT(0)E[Dk]−
1
n
+ f ′T(0)E[Dk]Σk−1 + oP(n−4/3)

)
=

1
1− FT(Σk−1)

×
(

fT(0)E[Sk]− 1 +
f ′T(0)

n

k−1

∑
j=1

SjE[Sk] + oP(n−1/3)
)

. (2.3.41)

The criticality assumption fT(0)E[Sk] = 1+ βn−1/3 + o(n−1/3) then leads
to

A(1)
n (k) =

1
1− FT(Σk−1)

(
β + f ′T(0)E[Sk]

∑k−1
j=1 Sj

n2/3 + oP(1)
)

n−1/3.

(2.3.42)
Since the drift term is defined as

Cn(s) =
s

∑
k=1

(E[An(k) | Fk−1]− 1)

=
s

∑
k=1

(A(1)
n (k)− A(2)

n (k)) =: C(1)
n (s) + C(2)

n (s), (2.3.43)

we sum (2.3.42) over k, obtaining

C(1)
n (s) =

s

∑
k=1

βn−1/3

1− FT(Σk−1)
+

f ′T(0)E[S1]

n

s

∑
k=1

∑k−1
j=1 Sj

1− FT(Σk−1)

+
s

∑
k=1

1
1− FT(Σk−1)

oP(n−1/3). (2.3.44)

Scaling time as s = tn2/3 and multiplying the drift by n−1/3, we obtain

n−1/3C(1)
n (tn2/3) =

tn2/3

∑
k=1

βn−2/3

1− FT(Σk−1)
(2.3.45)

+
f ′T(0)E[S1]

n4/3

tn2/3

∑
k=1

∑k−1
j=1 Sj

1− FT(Σk−1)
+

tn2/3

∑
k=1

n−1/3oP(n−1/3)

1− FT(Σk−1)
.

The following lemma will be useful in analysing (2.3.45):
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Lemma 12. Let (Si)
∞
i=1 be a sequence of i.i.d. random variables such that

E[S2
1] < ∞. Then

∣∣∣∑N
n=1 ∑n

i=1 Si

N2 − E[S1]

2

∣∣∣ P→ 0, as N → ∞. (2.3.46)

Moreover,∣∣∣∑N
n=1(∑

n
i=1 Si)

2

N3 − E[S1]
2

3

∣∣∣ P→ 0, as N → ∞. (2.3.47)

Proof. Both claims are proved through Lemma 11. We omit the details.

Another useful fact is the following Taylor expansion:

1
1− FT(Σk−1)

= 1 + FT(Σk−1) +
( 1

1− FT(Σk−1)
− 1− FT(Σk−1)

)
= 1 + OP(Σk−1). (2.3.48)

In what follows, we compute the limits (in probability) for each term in
(2.3.45).

First term in (2.3.45). For the first term, by (2.3.48) and Lemma 12,

sup
t≤t̄

∣∣∣n−2/3
tn2/3

∑
k=1

1
1− FT(Σk−1)

− t
∣∣∣

= sup
t≤t̄

∣∣∣n−2/3
tn2/3

∑
k=1

(
FT(Σk−1) +

( 1
1− FT(Σk−1)

− 1− FT(Σk−1)
))∣∣∣

≤ 2n−2/3
t̄n2/3

∑
k=1

FT(Σk−1), (2.3.49)

where we dominated the error term in the Taylor expansion (2.3.48) by
FT(Σk−1) and used the fact that, as a function of t, the summation is
an increasing function. We dominate the sum in the right-hand side of
(2.3.49) uniformly as follows:

n−2/3
t̄n2/3

∑
k=1

2FT(Σk−1) ≤ n−2/3
t̄n2/3

∑
k=1

2 sup
k≤t̄n2/3

FT(Σk−1)

= 2t̄FT(Σt̄n2/3). (2.3.50)
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The right-hand side of (2.3.50) tends to zero almost surely, and thus also
in probability.

Second term in (2.3.45). Again, by (2.3.48), the second term simplifies to

f ′T(0)E[S]
n4/3

tn2/3

∑
k=1

∑k−1
j=1 Sj

1− FT(Σk−1)
(2.3.51)

=
f ′T(0)E[S]

n4/3

tn2/3

∑
k=1

k−1

∑
j=1

Sj +
f ′T(0)E[S] fT(0)

n4/3

tn2/3

∑
k=1

k−1

∑
j=1

SjOP(Σk−1).

By Lemma 12, the first term converges to t2 f ′T(0)E[S]2/2 uniformly in t.
Indeed,

sup
t≤t̄

∣∣∣n−4/3
tn2/3

∑
k=1

k−1

∑
j=1

Sj −
t2

2
E[S]

∣∣∣
= sup

t≤t̄

∣∣∣∑tn2/3

n=1 nE[S]
n4/3 − t2

2
E[S] +

∑tn2/3

k=1 (∑k
i=1 Si − kE[S])
n4/3

∣∣∣
= sup

t≤t̄

∣∣∣ tE[S]
2n2/3 +

∑tn2/3

k=1 (∑k
i=1 Si − kE[S])
n4/3

∣∣∣
≤ t̄

E[S]
2n2/3 + t̄

supk≤tn2/3 |∑k
i=1 Si − kE[S]|

n2/3 , (2.3.52)

almost surely. The second term converges to zero in probability by Lemma
12, since

sup
t≤t̄

∣∣∣ f ′T(0)E[S] fT(0)
n4/3

tn2/3

∑
k=1

( k−1

∑
j=1

Sj

)
OP(Σk−1)

∣∣∣
≤ c f ′T(0)E[S] fT(0)

n7/3

t̄n2/3

∑
k=1

∣∣∣( k−1

∑
j=1

Sj

)2∣∣∣, (2.3.53)

where we used the domination OP(Σk−1) ≤ cΣk−1. The right-most term
in (2.3.53) then converges to zero in probability by Lemma 12.

Third term in (2.3.45). The error term originates from the Taylor expan-
sion of n(FT(Σk)− FT(Σk−1)) done in (2.3.38). To see that it is uniform
in k ≤ k̄, we write FT(Σk)− FT(Σk−1)− fT(Σk−1)Dk = εk and, since by
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assumption f ′T(·) exists and is continuous in a neighborhood of 0, we
bound it as

|nεk| ≤ n sup
x≤cn−1/3

| f ′T(x)|D
2
k

2
, (2.3.54)

similarly as in Lemma 7, when k = O(n2/3). In particular,

sup
k≤tn2/3

E[nεk|Ek−1] ≤ sup
x≤cn−1/3

| f ′T(x)|E[S2]

2n
= o(n−1/3), (2.3.55)

and the right-hand side is independent of k. This concludes the bound on
the third term in (2.3.45) and thus the proof that

sup
t≤t̄
|n−1/3C(1)

n (tn2/3)− βt− f ′T(0)/(2 fT(0)2)t2| P→ 0. (2.3.56)

To conclude, we prove that supt≤t̄ n−1/3|C(2)
n (tn2/3)| vanishes in the

limit. We develop the terms of A(2)
n (k) similarly as before, obtaining

A(2)
n (k) =

1
1− FT(Σk−1)

×E[|νk|( fT(Σk−1)Dk + oP(n−1))− fT(0)Σk−1 + oP(n−1/3) | Ek−1]

=
1

1− FT(Σk−1)

×E[|νk| fT(Σk−1)Dk − fT(0)Σk−1 + |νk|oP(n−1) + oP(n−1/3) | Ek−1]

=
E[|νk| fT(0)Dk − fT(0)Σk−1 + f ′T(0)|νk|Σk−1Dk

1− FT(Σk−1)

+
|νk|oP(n−1) + oP(n−1/3) | Ek−1]

1− FT(Σk−1)
, (2.3.57)

where oP(n−1) is a convenient notation for the term FT(Σk)− FT(Σk−1)−
fT(Σk−1)Dk and oP(n−1/3) for FT(Σk−1) − fT(0)Σk−1. Next, we sum
(2.3.57) over k to obtain

C(2)
n (s) =

s

∑
k=1

1
1− FT(Σk−1)

(2.3.58)

×E[|νk| fT(0)Dk − fT(0)Σk−1 + f ′T(0)|νk−1|Σk−1Dk | Ek−1]

+
s

∑
k=1

1
1− FT(Σk−1)

E[|νk|oP(n−1) + oP(n−1/3) | Ek−1].
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Recall that |νk| = k + Nn(k− 1). Intuitively, k is of a much larger order
than Nn(k− 1), therefore at first approximation we ignore Nn(k− 1) and
we will later prove convergence of the terms containing it. We rescale,
and split C(2)

n (k) into

n−1/3C(2)
n (tn2/3) = n−1/3

tn2/3

∑
k=1

1
1− FT(Σk−1)

×E[k fT(0)Dk − fT(0)Σk−1 | Ek−1]

+ n−1/3
tn2/3

∑
k=1

1
1− FT(Σk−1)

×E[ f ′T(0)kΣk−1Dk + koP(n−1) + oP(n−1/3) | Ek−1]

+ εn, (2.3.59)

where εn represents the terms containing Nn(k − 1). Again we rescale
and study each term separately.

First term in (2.3.59). Expanding (1− FT(Σk−1))
−1 gives

fT(0)
n4/3

tn2/3

∑
k=1

E
[
kSk−

k−1

∑
j=1

Sj | Ek−1

]
(2.3.60)

+
fT(0)2

n1/3

tn2/3

∑
k=1

OP(Σk−1)E[kDk − Σk−1 | Ek−1],

The second term is almost surely dominated by the first for n sufficiently
large, so that it is enough to show (uniform) convergence of the first term.
By Lemma 12,

− 1
n4/3

tn2/3

∑
k=1

k−1

∑
j=1

Sj
P→ − t2

2
E[S],

1
n4/3

tn2/3

∑
k=1

kE[Sk]
P→ t2

2
E[S]. (2.3.61)

Therefore, (2.3.60) converges to zero in probability. Moreover, the conver-
gence is uniform in t ≤ t̄ by Lemma 11.

Second term in (2.3.59). Expanding (1− FT(Σk−1))
−1 and ignoring all

but the highest order term, which can be almost surely dominated, we
get for the second term

f ′T(0)E[S]n−7/3
tn2/3

∑
k=1

k
k−1

∑
j=1

Sj + n−1/3
tn2/3

∑
k=1

koP(n−1) + tn1/3oP(n−1/3).

(2.3.62)
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One can check, similarly as in Lemma 12, that N−3 ∑N
k=1 k ∑k

j=1 Sj con-
verges in probability to a non-trivial limit. Since 7/3 > (2/3)3, the first
term converges to zero in probability. In addition, it converges uniformly
in t ≤ t̄ because of the monotonicity of the sum. The small-o terms are
dominated uniformly as has already been done in (2.3.54).

Third term in (2.3.59). The remaining term is

εn =
tn2/3

∑
k=1

n−1/3

1− FT(Σk−1)
(2.3.63)

×E[Nn(k− 1)( fT(0)Dk + f ′T(0)Σk−1Dk + oP(n−1)) | Ek−1].

Again it is sufficient to show that the first term in the Taylor expansion
of (1− FT(Σk−1))

−1 converges uniformly. This simplifies the previous
expression to

fT(0)E[S]
n4/3

tn2/3

∑
k=1

Nn(k− 1)+
f ′T(0)E[S]

n4/3

tn2/3

∑
k=1

Nn(k− 1)Σk−1

+ n−4/3
tn2/3

∑
k=1

Nn(k− 1)oP(n−1). (2.3.64)

The second and third terms are again almost surely dominated by the first
for n large. Moreover, the first converges to zero uniformly in probability
by the following lemma:

Lemma 13. As n→ ∞,

n−2/3 sup
j≤an2/3

|Nn(j)| P−→ 0. (2.3.65)

Proof. The proof follows the ideas of the proof of Lemma 6. We split Nn(j)
as the sum of a martingale and a predictable process, Nn(j) = Mn(j) +
Cn(j), and bound each one separately. The probability that |Mn(j)| has
large jumps P(n−2/3 supj≤tn2/3 |Mn(j)| ≥ εn2/3) is bounded through

Doob’s inequality, giving the upper bound E[M2
n(an2/3)]/(εn2/3)2. As

was noted in Lemma 6, E[Mn(k)2] = E[Vn(k)], where Vn(k) is the pre-
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dictable quadratic variation of Mn(k), and its expectation is given by

E[Vn(k)] = E
[ k

∑
i=1

(E[An(i)2 | Fi−1]−E2[An(i) | Fi−1])
]

≤
k

∑
i=1

E[An(i)2]. (2.3.66)

This term is bounded exploiting Lemma 10. We have

1
(εn2/3)2 E[Vn(an2/3)] ≤ 1

(εn2/3)2

an2/3

∑
i=1

E[(A′n(i))
2], (2.3.67)

which tends to zero because E[A′2n(i)] < ∞ uniformly in i = O(n2/3)
by Lemma 10. The Cn(j) term computed in (2.3.37) and (2.3.43) is the
difference of two increasing processes. Therefore, it can be bounded from
above and below as was done in Lemma 5. We omit the details.

This concludes the proof that

sup
t≤t̄
|n−1/3C(2)

n (tn2/3)| P→ 0, (2.3.68)

and thus we have proven that

sup
t≤t̄
|n−1/3Cn(n2/3t)− βt− t2 f ′T(0)E[S]2/2| P→ 0. (2.3.69)

This completes the proof of (i).

Proof of (ii)

First we compute E[An(k)2 | Fk−1]. By proceeding as in (2.2.48) we
obtain

E[An(k)2 |Fk−1]−E[An(k) | Fk−1]

= E
[

∑
l 6=m

l,m/∈νk

1{Σk−1≤Tm≤Σk}1{Σk−1≤Tl≤Σk} | Fk−1

]

= ∑
l 6=m

l,m/∈νk

E
[ FT(Σk)− FT(Σk−1)

1− FT(Σk−1)

FT(Σk)− FT(Σk−1)

1− FT(Σk−1)
| Fk−1

]

=
∑l 6=m E[( fT(Σk−1)Dk + oP(D−4/3

k ))2 | Fk−1]

(1− FT(Σk−1))2 , (2.3.70)
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where the sum is over the set {l, m ≤ n : l 6= m, l, m /∈ νk} when not speci-
fied. We also denoted, for convenience, FT(Σk)− FT(Σk−1)− fT(Σk−1)Dk
as oP(D4/3

k ). We proceed as in (2.2.49) and (2.2.50). By Lemma 7,

E[An(k)2 | Fk−1]−E[An(k) | Fk−1]

=
1

(1− FT(Σk−1))2

× ∑
l 6=m

E[ fT(Σk−1)
2D2

k + 2 fT(Σk−1)DkoP(D4/3
k ) + oP(D2

k) | Fk−1]

=
1

(1− FT(Σk−1))2

× ∑
l 6=m

(( fT(0) + f ′T(0)Σk−1 + oP(Σk−1))
2E[D2

k ] + oP(n−2)). (2.3.71)

Here oP(Σk−1) is a shorthand notation for fT(Σk−1)− fT(0)− f ′T(0)Σk−1.
Developing the coefficient of E[D2

k ] reveals that it has the form fT(0)2 +

αkn−1/3 + βko(n−1/3), with αk and βk converging in probability to a con-
stant, for k = O(n2/3). We can ignore all the terms except the one with
the leading order, fT(0)2. From this point onwards the computations are
identical to (2.2.52), concluding the proof of (ii).

Proof of (iii) and (iv)

The proof of (iii) in the exponentials arrivals case can be carried over to
the general arrivals case without any significant changes, since it relies
only on (ii) and Lemma 13. For (iv), we split the quantity according to

n−2/3E[sup
t≤t̄
|Mn(tn2/3)−Mn(tn2/3−)|2] (2.3.72)

≤ n−2/3E[ sup
k≤t̄n2/3

|An(k)|2] + n−2/3E[ sup
k≤t̄n2/3

|E[An(k) | Fk−1]|2].

The second term is straightforward. Indeed, (2.3.37) and (2.3.42) give the
crude bound

E[An(k)|Fk−1]
a.s.
≤ A(1)

n (k)
a.s.
≤ c + oP(1), (2.3.73)

for k = O(n2/3) and some positive constant c > 1, uniform over k ≤ t̄n2/3.
The first term can also be estimated imitating (2.2.64). Indeed, fix ε > 0
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and split it as

E[ sup
k≤t̄n2/3

|An(k)|2] = E[ sup
k≤t̄n2/3

An(k)21{supk≤t̄n2/3 An(k)2≤εn2/3}]

+ E[ sup
k≤t̄n2/3

An(k)21{supk≤t̄n2/3 A(k)2>εn2/3}]. (2.3.74)

The first term is bounded by ε. We bound the second term as in (2.2.65)
and using Lemma 10. We omit the details.

2.4 Arrivals with `-th order contact

The goal of this section is to drop the assumption f ′T(0) 6= 0 of Section 2.3.
In fact, we will prove a limit theorem for the more general case where
the function t 7→ fT(t)− 1/E[S] has `-th order contact in zero, defined as
follows:

Definition 1 (`-th order contact point). Given a smooth, real-valued,
function f (·), and ` ∈ N, we say that f (·) has `-th order contact in t̄ if
f (t̄) = 0, f (l)(t̄) = 0 for l = 1, . . . , `− 1 and f (`)(t̄) 6= 0.

If, in Definition 1, f (t̄) = o(1), we still say that f (·) has an `-th order
contact in t̄. Indeed, our criticality assumption is fT(0)− 1/E[S] = o(1),
where the error term is specified later. The assumption that the argmax of
fT(·) is zero allows us to consider both odd and even order contacts. We
will assume again that the service times are given by Di := Si/cn, where
(Si)

n
i=1 is a sequence of i.i.d. random variables such that E[S2] < ∞ and

cn is the rate at which the server processes the customers. In this case, we
have the following result for the embedded queue Qe

n(·) introduced in
Chapter 2:

Theorem 8 (Asymptotics for the critical `-th order embedded queue).
Assume that the function fT(t)− 1/E[S] has `-th order contact in 0, where
` ≥ 1. Define

τ =
`

`+ 1/2
. (2.4.1)

Assume that the service times (Si)
n
i=1 are such that E[S2] < ∞ and that the

service speed is given by cn = n/(1 + βn−τ/2). Assume further that the
heavy-traffic condition n fT(0)E[D] = 1 + βn−γ/2 holds. Then, as n→ ∞,

n−τ/2Qe
n(·nτ)

d→ φ(N̂)(·), in (D, J1), (2.4.2)
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where N̂(·) is given by

N̂(t) := βt− ct`+1 + σW(t), (2.4.3)

for constants c, σ ∈ R+, and W(·) a standard Brownian motion.

Note that ` = 1 gives the same scaling as in Theorem 4. Moreover, the
case ` = 2 has already been known in the literature for quite some time, at
least at a heuristic level. Newell [77] derived the correct exponents (τ =
4/5) through an argument using the Fokker-Planck equation associated
with the queue-length process. Note also that

lim
`→∞

τ

2
= lim

`→∞

`

2`+ 1
=

1
2

, (2.4.4)

suggesting that the correct scaling for the uniform arrivals case (∞-order
contact) is the diffusive one.

The scaling constants. We will again express Qe
n(·) = φ(Nn)(·) and,

generalizing the heuristics in (2.1.19), we get

Nn(tnτ) ≈
tnτ

∑
i=1

(∑
j/∈νi

1{∑i−1
l=1 Dl≤Tj≤∑i

l=1 Dl} − 1)

≈
tnτ

∑
i=1

(n(FT(Σi)− FT(Σi−1))− 1)

≈
tnτ

∑
i=1

( fT(Σi−1)E[S]− 1) ≈
tnτ

∑
i=1

( i−1

∑
l=1

Sl
n

)`
fT(0)(`)E[S], (2.4.5)

where Σi := ∑i
j=1 Di. Thus the leading order term (up to a multiplicative

constant) of the queue-length process is

Nn(tnτ) ≈
tnτ

∑
i=1

i`

n`
≈ t`+1n(`+1)τ−`. (2.4.6)

The Brownian fluctuations of the random sum in (2.4.5) are of order nτ/2.
Equating the order of magnitude of the fluctuations and that of (2.4.6)
gives

(`+ 1)τ − ` = τ/2 ⇒ τ =
`

`+ 1/2
. (2.4.7)
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The proof of Theorem 8 follows from the proof for the case ` = 1. Re-
markably, the higher moments of S (higher than two) are not required
to be finite. In Section 2.4.1, we perform the key steps in the analysis in
order to show how to proceed in this general case.

There are no explicit formulas for the distribution of the first hitting
time of zero of a Brownian motion with parabolic drift and thus we resort
to numerical simulations. In Table 2.1 we provide numerical simulations
for the case of truncated normal arrival times, so that ` = 2. Recall
that if Z is normally distributed with mean 0 and variance σ2, then |Z|
is equivalent to a zero mean normal distribution that is conditioned to
be positive, which is a particular case of the so-called truncated normal
distribution; see [80]. In particular, f ′T(0) = 0 and f ′′T (0) < 0.

q = 1, β = 1 q = 2, β = 1

n n1/5E[BPn] n1/5E[BPn]

10 3.8340 5.3984

100 3.0997 4.1232

1000 2.8378 3.8772

10000 2.7801 3.7721

100000 2.7942 3.7548

Table 2.1: Mean busy period for the pre-limit queue with truncated normal
arrivals and different population sizes. The truncated normal distribution
has scale parameter σ =

√
π/
√

2, and f ′T(0) = 0, f ′′T (0) < 0. Each value
for the pre-limit queue is the average of 104 simulations.

2.4.1 Proof of Theorem 8

Note that τ in (2.4.1) is such that τ < 1. Some simple relations hold
between τ and ` and we will use these throughout this section. These are
given by

`− τ

2
= τ`, `+

τ

2
= τ(`+ 1). (2.4.8)
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We now explicitly state our assumptions for the `-th order contact case.
We assume that the distribution function of the arrival times satisfies

FT(x)− FT(x̄) = fT(x̄)(x− x̄) + o(|x− x̄|1+τ/2). (2.4.9)

This is, for example, the case when FT(·) ∈ C2([0, ∞)). Further, we assume
that the maximum of the density fT(·) is obtained in zero. The heavy-
traffic condition is then given by

n fT(0)E[D] = 1 + βn−τ/2. (2.4.10)

We proceed by verifying conditions (i)- (iv), where (i) is given by

(i) supt≤t̄ |n−1/3Cn(tn2/3)− βt− ct`| P→ 0, c > 0, ∀t̄ ∈ R+,

and conditions (ii)-(iv) correspond to the conditions in Theorem 7. The
drift Cn(·) in (i) is defined as in (2.3.43). We will treat condition (i) in great
detail as this changes profoundly, since the limiting drift is significantly
different. We will then discuss how (ii)-(iv) follow from the computations
in Section 2.3.2.

Proof of (i). Recall that Ek−1 := {Σk−1, {Ti ≥ Σk−1}} and Σj := ∑
j
i=1 Di.

The conditioned number of arrivals during one service are given by

E[An(k) | Fk−1]− 1

=
n

1− FT(Σk−1)
E[(FT(Σk)− FT(Σk−1)− 1/n) | Ek−1]

− 1
1− FT(Σk−1)

E[(|νk|(FT(Σk)− FT(Σk−1))− FT(Σk−1)) | Ek−1]

=: A(1)
n (k)− A(2)

n (k). (2.4.11)

Correspondingly, the drift is decomposed as

Cn(s) =
s

∑
k=1

(A(1)
n (k)− A(2)

n (k)) =: C(1)
n (s) + C(2)

n (s). (2.4.12)

The process A(1)
n (·) represents the terms appearing in the limit, while

A(2)
n (·) represents the terms that vanish. Performing a Taylor expansion

gives us

A(1)
n (k)

=
1

1− FT(Σk−1)

(
β +

fT(0)(`)

`!
E[S]

(∑k−1
j=1 Sj)

`

n`τ
+ oP(1)

)
n−τ/2. (2.4.13)
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It is easy to check that both the linear part of the drift and the error
term converge uniformly by proceeding as in (2.3.50) and the following
computations. Therefore, we focus on the second term of A(1)

n (·), that is,
on (

E[S]
fT(0)(`)

`!

)
n−τ/2

tnτ

∑
i=1

1
1− FT(Σi−1)

(∑i−1
j=1 Sj

n

)`
, (2.4.14)

for which we prove (uniform) convergence in probability. We begin by
computing∣∣∣ 1

nτ(`+1)

tnτ

∑
i=1

( i−1

∑
j=1

Sj

)`
− t`+1

`+ 1
E[S]`

∣∣∣
=

1
nτ(`+1)

∣∣∣ tnτ

∑
i=1

( i−1

∑
j=1

Sj

)`
−

tnτ

∑
i=1

((i− 1)E[S])` + o(nτ(`+1))
∣∣∣

≤ 1
nτ(`+1)

tnτ

∑
i=1

∣∣∣( i−1

∑
j=1

Sj

)`
− (i− 1)`E[S]`

∣∣∣+ o(1) (2.4.15)

We will make use of the following lemma:

Lemma 14. Assume (Si)i≥0 is a sequence of i.i.d. random variables such that
E[S2] < ∞. Then for any τ > 0, β ∈ R such that −τ < 2β,

supk≤tnτ |(∑k
i=1 Si)

` − k`E[S]`|
nτ`+β

P→ 0. (2.4.16)

Proof. The proof is an application of Lemma 11, hence we only sketch it.
We have

sup
k≤tnτ

∣∣∣( k

∑
i=1

Si

)`
− k`E[S]`

∣∣∣
≤ sup

k≤tnτ

∣∣∣(kE[S] + sup
k≤tnτ

∣∣∣ k

∑
i=1

(Si −E[S])
∣∣∣)` − k`E[S]`

∣∣∣ (2.4.17)

The term on the right can be shown to converge to zero when appropri-
ately rescaled. In fact, the leading order term is given by

sup
k≤tnτ

k`−1E[S]`−1 sup
k≤tnτ

|
k

∑
i=1

(Si −E[S])|

= (tn)τ(`−1)E[S]`−1 sup
k≤tnτ

|
k

∑
i=1

(Si −E[S])|, (2.4.18)
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which converges to zero when divided by nτ`+β, with β > −τ/2 by
Lemma 11.

Note that when ` = 1 we recover Lemma 11, since in that case τ + β >
τ − τ/2 = τ/2. By Lemma 14 the right side of (2.4.15) converges to
zero. The convergence is uniform in t ≤ t̄ by monotonicity in t. We can
similarly analyse A(2)

n (·) and C(2)
n (·). Equation (2.3.58) in this case is

C(2)
n (s) =

s

∑
k=1

1
1− FT(Σk−1)

×E
[
|νk| fT(0)Dk − fT(0)Σk−1 +

fT(0)(`)

`!
|νk|(Σk−1)

`Dk

]
,

+
s

∑
k=1

1
1− FT(Σk−1)

×E
[
|νk|oP(n−1) + oP(n−τ/2) | Ek−1

]
. (2.4.19)

where oP(n−1) =: |FT(Σk)− FT(Σk−1)− fT(Σk−1)Dk| and oP(n−τ/2) =:
|FT(Σk−1) − fT(0)Σk−1|. This gives a decomposition of the drift C(2)

n (·)
similar to (2.3.59) as

n−τ/2C(2)
n (tnτ) = n−τ/2

tnτ

∑
k=1

1
1− FT(Σk−1)

E[k fT(0)Dk − fT(0)Σk−1 | Ek−1]

+
tnτ

∑
k=1

n−τ/2

1− FT(Σk−1)

×E[ fT(0)(`)k(Σk−1)
`Dk + koP(n−1) + oP(n−τ/2) | Ek−1]

+ εn, (2.4.20)

where εn groups all the terms containing Nn(k). For the first term, we
compute (again ignoring the higher order terms in the expansion of
(1− FT(Σk−1))

−1)

n−τ/2
∣∣∣ tnτ

∑
k=1

(
k fT(0)E[D1]− fT(0)Σk−1

)∣∣∣
= fT(0)n−1−τ/2

∣∣∣ tnτ

∑
k=1

( k−1

∑
j=1

(Sj −E[S])
)∣∣∣

≤ fT(0)n−1−τ/2
tnτ

∑
k=1

∣∣∣ k−1

∑
j=1

(Sj −E[S])
∣∣∣. (2.4.21)
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Applying Lemma 11 with β = 1− τ/2 (note that 2β < τ) shows that the
first term in (2.4.20) tends to zero in probability, uniformly in t ≤ t̄. The
remaining terms are treated, without additional complications, similarly
to the analogous terms in Section 2.3.

Proof of (ii). The proof of (ii) was based on an analysis of the leading-
order term of the quadratic variation, in which the `-th derivative of the
density played no role.

Proof of (iii). The proof of (iii) relies on Lemma 13 which, in turn, relies
on the analysis of the order statistics done in Lemma 10. Since the latter
does not depend on the derivatives of the density (but rather on its
continuity), the proof carries over.

Proof of (iv). Again, the proof relies on the analysis carried out in
Lemma 10.

Having proved conditions (i)–(iv), the proof of Theorem 8 is complete.

2.5 Conclusions

In this chapter we have shown that, in the limit for n→ ∞, the depletion-
of-points effect gives rise to a negative quadratic drift of the embedded
queue process. This implies, in particular, that, even for very large n, the
finite pool of customers has a sizeable impact on the performance of the
system after only n2/3 � n services. We have also shown that, under
mild assumptions, the form of the limiting process does not depend on the
arrival time or service-time distribution. In fact, the density in zero of the
arrival time distribution, its derivative in zero and the second moment of
the service time completely determine the limiting process. Next we will
show that the ∆(i)/G/1 queue-length process satisfies a similar scaling limit
as the embedded queue, as long as the scaling exponents are modified
accordingly.



CHAPTER 3
The queue-length process

In this chapter, we build on the results of Chapter 2 to show that, when the
arrival times are exponentially distributed, the queue-length process of the
∆(i)/G/1 queue, when appropriately rescaled, converges to a Brownian
motion with parabolic drift. To this end, we construct a time-change
and we show that the supremum distance between the time-changed
embedded queue and the queue-length process is given by the maximum
number of customers arriving during one service. We prove that the
time-change converges to a constant times the identity function, and that
the rescaled maximum number of arrivals during one service converges
to zero. This implies that the difference between the embedded queue of
Chapter 2 and the queue-length process is negligible in the limit.

Next we adopt a different perspective, and prove the convergence of
the queue-length process directly. We give an explicit representation of
the queue-length process in terms of the empirical distribution function of
the arrival times, and we prove a functional Central Limit Theorem under
our special scaling. Next, building on this result we prove a sample-path
Little’s Law for the critical ∆(i)/G/1 queue.

We conclude the chapter by analysing the queue-length process of
the subcritical ∆(i)/G/1 queue. We prove that the queue-length process
converges pointwise to the stationary distribution of a M/G/1 queue
with the same service times of the original ∆(i)/G/1 queue and arrival
rate given by the density of the arrival times.

73
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3.1 Model description

In this section we give an explicit construction of the ∆(i)/G/1 queue-
length process. All the functions that we consider are elements of D. We
endow D with the Skorokhod J1 topology. Define the total number of
customers who arrive in the interval [0, t] as

An(t) :=
n

∑
i=1

1{Ti≤t}. (3.1.1)

Let

σ(t) := max
{

k ≥ 0 :
k

∑
i=1

Si ≤ t
}

(3.1.2)

be the renewal process associated with the job sizes S1, S2, . . . , Sn. We
rescale the server speed to be equal to cn = n/(1 + βn−1/3), and let
σn(t) := σ(cnt) denote the renewal process associated to the service times
Di = Si/cn. Define the net-put process as

Pn(t) :=
An(t)

∑
i=1

Si − cnt. (3.1.3)

The process Pn(·) is used in defining the rescaled cumulative busy time
process as

Bn(t) := t− In(t)
cn

= t− inf
0≤s≤t

(Pn(s)
cn

)−
, (3.1.4)

where f (x)− = min{0, f (x)} (resp. f (x)+ = max{0, f (x)}), and In(·)
represents the cumulative idle time. With definition (3.1.4), the total time
that the server has spent working up to time t is given by cnBn(t).

Finally, the queue-length process Qn(·) is given by

Qn(t) := Xn(0) +An(t)− σn(Bn(t)), (3.1.5)

where Xn(0) denotes the number of customers already in the queue at
the beginning of the first service.

Note that the time change t 7→ Bn(t) depends, through Pn(·), both on
(Ti)

n
i=1 and (Si)

n
i=1. Because of this, a direct analysis of the asymptotic

behavior of Qn(·) is often challenging, and various techniques have been
developed to overcome this difficulty; see the discussion in Section 1.1.5.
In fact, the advantage of the embedded process approach of Chapter 2 is
that one does not have to deal with the process Bn(t).

The main theorem of this section is the following:
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Theorem 9 (Critically loaded ∆(i)/G/1 queue with exponential arrivals).
Let (Ti)

n
i=1 be i.i.d. rate λ exponential random variables and let the i.i.d. service

times (Si)
n
i=1 be such that E[S2] < ∞. Assume that the heavy-traffic condition

(2.1.2) holds. Then

n−1/3Qn(·n−1/3)
d→ φ(X̂)(·), (3.1.6)

where X̂(·) is the diffusion process

X̂(t) := βλt− λ2

2
t2 + σW(t), (3.1.7)

with σ2 := λ3E[S2] and W(·) a standard Brownian motion.

The diffusion process (3.1.7) should be compared to (2.1.10). The for-
mer is obtained from the latter by the linear time change t 7→ λt = t/E[S].
For a critical system, in the limit a single service is instantaneous, sug-
gesting that the embedded queue and the queue-length process coincide.
However, the (rescaled) cumulative service time converges to a deterministic
process, leading to the time change described above.

As an immediate consequence of our approach we get an asymptotic
result for BPn, the length of the first busy period in the ∆(i)/G/1 queue.
This result will be valid for general arrival times. In order to obtain a
sizeable first busy period, we assume that the queue length at time zero
grows with n as

lim
n→∞

Qn(0)
n1/3 = q > 0. (3.1.8)

The next theorem is the continuous-time analogue of Theorem 5, and it
will show that the size of the first busy period depends crucially both on
β and q.

Theorem 10 (First busy period of the critical ∆(i)/G/1 queue with general
arrivals). Let Qn(·) be the queue-length process of the ∆(i)/G/1 queue. Assume
that the heavy-traffic condition (1.1.2) holds. Assume further that (3.1.8) holds
and that f ′T(0) < 0.. Let BPn denote the first busy period of Qn(·). Then

n1/3BPn
d→ Tβ fT

X̂q
(0), (3.1.9)

where Tβλ
Wq (0) is the time until the process X̂q(·) crosses level 0, with

X̂q(t) = q + β fT(0)t +
f ′T(0)

2
t2 + σW(t). (3.1.10)

Here we have σ2 := f 3
T (0)E[S2] and W(·) is a standard Brownian motion.
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q = 1, β = 1 q = 2, β = 1

n n1/3E[BPn] rel. error n1/3E[BPn] rel. error

10 2.8630 0.6581 3.8646 0.5620

100 1.9862 0.1503 2.9665 0.1991

1000 1.8103 0.0484 2.6486 0.0706

10000 1.7725 0.0265 2.5596 0.0346

100000 1.7440 0.0100 2.5050 0.0125

∞ 1.7267 — 2.4740 —

Table 3.1: Mean busy period for the pre-limit queue with hyperexponen-
tial arrivals and different population sizes and the exact expression for
n = ∞ computed using (1.1.13). The hyperexponential distribution is
distributed as a rate λ1 = 2 exponential random variable with probability
p1 = 0.2 and as a rate λ1 = 3/4 exponential random variable with proba-
bility p2 = 0.8. Each value for the pre-limit queue is the average of 104

simulations.

In Table 3.1 we show numerically that the (rescaled) average busy
period of the ∆(i)/G/1 queue with hyperexponential arrivals converges
to the exact value obtained with the explicit expression 1.1.13. The arrival
random variable is exponentially distributed with rate λ1 = 2 with prob-
ability p1 = 0.2 and with rate λ2 = 3/4 with probability p2 = 0.8. The
relative error is computed as |n1/3E[BPn]−E[Tβ fT

X̂q
(0)]|/E[Tβ fT

X̂q
(0)]. Note

that formula (1.1.13) holds for a parabolic drift of the form −t2/2. How-
ever, this can be extended to more general coefficients of the parabolic
term by some simple scaling properties. In particular, the first hitting
time of zero of X̂q(·) is distributed as

Tβ fT
X̂q

(0) d
= k−2/3Tβ fT(0)k−1/3

X̂qk1/3
(0), (3.1.11)

where k = f ′T(0). Relation (3.1.11) follows from a more general scaling
relation, see e.g. [45, Section 4.1].

We give two proofs of Theorem 9. In Section 3.2 we extend the tech-
niques of Chapter 2 for the embedded process to deal with the continuous-
time case. The second approach is presented in Section 3.3 and relies on
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the explicit expression (3.1.5).

3.2 An indirect approach to Theorem 9

In this section we show how Theorem 9 is deduced from Theorem 3 of
Chapter 2 through a time change argument. We denote by k 7→ Q̄n(k)
denoting the ∆(i)/G/1 queue embedded at service completions, we first
argue that Q̄n(·) is closely related to Qe

n:

Lemma 15 (Distribution of the embedded ∆(i)/G/1 queue). For all k ≥ 1,

Qe
n(k)

d
= Q̄n(k). (3.2.1)

Proof. We couple the two queues as follows. The sequence of service
times (Si)

n
i=1 are taken to be the same for the two queues while the arrival

clocks coincide until the end of the first busy period. After that, assign
new clocks to the customers still in the population. The first customer after
the idle period of Q̄n(·) is also the customer placed into service in Qe

n(·).
At the beginning of the busy period, assign new clocks to the customers
still in the population. The coupling then proceeds in this manner until
the population in both queues is depleted. By the memoryless property
of exponential random variables, these new processes (with the clocks
drawn multiple times) coincide in distribution with the original ones
(with the clocks drawn at the start of the system), since

P(Ti ≥ B + I + x | Ti ≥ B + I) = P(Ti ≥ x)
= P(Ti ≥ B + x | Ti ≥ B), (3.2.2)

where B = B(t) is the busy time process and I = I(t) the idle time process
at the instant t in which a new busy period starts. The number of arrivals
during one service time is then the same in the two coupled queues
because the arrival times are equal. In particular, the queues sampled at
the end of a service time have the same distribution.

The next step is to prove that the supremum distance between Qe
n(·)

and Qn(·) (when suitably rescaled in space and time) converges to zero.
Let ‖ f (·)‖T := supt≤T | f (t)| denote the supremum norm. The claim is
contained in the following proposition:

Proposition 1 (Asymptotic equivalence of the approximating model). For
each T > 0, as n→ ∞,

n−1/3‖Qe
n(·n2/3/E[S])−Qn(·n−1/3)‖T

P→ 0. (3.2.3)



78 Chapter 3. The queue-length process

By Slutsky’s theorem, Proposition 1 and Theorem 3 of Chapter 2 imply
that

n−1/3Qn(·n−1/3)
d→ φ(X̂)(·/E[S]) = φ(X̂)(λ·). (3.2.4)

Without loss of generality, we will assume from now on that E[S] =
1/λ = 1. To prove (3.2.3) we split

‖Qe
n(·/E[S])−Qn(·)‖T (3.2.5)

≤ ‖Qe
n(·/E[S])−Qe

n(ϕn(·))‖T + ‖Qe
n(ϕn(·))−Qn(·)‖T ,

for an appropriate yet still unspecified time change ϕn(·). Thus, we

are left to prove that n−1/3‖Qe
n(·n2/3/E[S])−Qe

n(ϕn(·)n2/3)‖T
P→ 0 and

n−1/3‖Qe
n(ϕn(·)n2/3)−Qn(·n−1/3)‖T

P→ 0. The idea behind introducing
ϕn(·) is to rescale time so that each time-step (corresponding to one
service) is replaced by the actual length of the service time. In this way,
the interval [0, 1] is replaced by [0, D1], the interval [1, 2] is replaced by
[D1, D1 + D2] (if a customer has arrived during the first service), and so
on. The time change ϕn(·) must also take into account idle times. The
precise expression of ϕn(·) is given in Section 3.2.2 below. In the following
lemma we prove that the time change ϕn(·) is, in the limit, a constant
times the identity function:

Lemma 16. As n→ ∞,

sup
t≤T
|t/E[S]− ϕn(t)| P→ 0. (3.2.6)

Consequently,

n−1/3‖Qe
n(·n2/3/E[S])−Qe

n(ϕn(·)n2/3)‖T
P→ 0. (3.2.7)

The proof of (3.2.6) crucially relies on the fact that, under our heavy-
traffic assumption, the idle time process of the ∆(i)/G/1 queue is negligi-
ble in the limit. We postpone the proof of this and of Lemma 16 to Section
3.2.2.

After this time change the two queues Qe
n(ϕn(·)) and Qn(·) are syn-

chronized in time. It still remains to be proven that their supremum
distance converges to zero. However, in their coupling Qe

n(ϕn(·)) is
constructed by sampling Qn(·) at service completions, so that the two
coincide at the time of each service completion. In other words, the maxi-
mum distance between Qe

n(ϕn(·)) and Qn(·) is the maximum number of
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arrivals during a single service time until time T, that is

‖Qe
n(ϕn(·)n2/3)−Qn(·n−1/3)‖T = max

k≤Tn2/3
An(k), (3.2.8)

where An(k) is the number of arrivals during the k-th service time, as
defined in (2.2.1). In the following lemma we will prove that the quantity
on the right of (3.2.8) negligible, thus concluding the proof of Proposition
1.

Lemma 17. As n→ ∞,

n−1/3 max
k≤Tn2/3

An(k)
P→ 0. (3.2.9)

Consequently,

n−1/3‖Qe
n(ϕn(·)n2/3)−Qn(·n−1/3)‖T

P→ 0. (3.2.10)

The following section is dedicated to discussing the idle times in the
∆(i)/G/1 queue, and how they relate to the Qe

n(·) process. Next, we will
prove Lemmas 16 and 17.

3.2.1 Idle times

Whenever the queue Qe
n(·) is empty at the end of a service (say, the k-

th service), the customer with the smallest arrival time is drawn from
the pool and placed into service. Denote this customer by c(k). Since
the minimum of n rate one exponential random variables is again an
exponential random variable with rate n, conditioned on |νk|, Ik := Tc(k)
is distributed as

Ik
d
=

Exp(1)
n− |νk|

, (3.2.11)

where Exp(1) is an exponential random variable with rate one. The
random variable Ik represents the time the server would have idled if customer
c(k) was not immediately placed into service. Alternatively, Ik is the idle
period after the k-th service in the coupled ∆(i)/G/1 queue. Thus we
name Ik a virtual idle time. In particular |νk| = O(n2/3) for k = O(n2/3),
and therefore its contribution in (3.2.11) is negligible and we can think
of the virtual idle periods up to time k = O(n2/3) as being independent
exponential random variables with rate n.

Let βn(k) be the number of customer who have been taken from the
population for immediate service before the completion of the (k + 1)-th
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service. Equivalently, βn(k) is the number of idle periods in the coupled
∆(i)/G/1 queue before the completion of the (k + 1)-th service. The
cumulative virtual idle time up to the k-th service completion takes the
form

I(k) =
βn(k)

∑
i=1

Ii. (3.2.12)

For exponential arrivals, an explicit expression for the virtual idle periods
is available in (3.2.11), thus we can estimate the average cumulative
virtual idle time at step k = O(n2/3) to be

βn(k)

∑
i=1

Ii ≈
βn(k)

n
. (3.2.13)

We now aim at making (3.2.13) rigorous by proving that I(k) is asymptot-
ically negligible, uniformly in k = O(n2/3). First we show that βn(k) =
OP(n1/3) and to this end we prove the following representation:

Lemma 18. For every k = 1, 2, . . .

βn(k) = − inf
j≤k

(Nn(j) ∧ 0) (3.2.14)

almost surely.

Proof. Equation (3.2.14) holds for k = 0 because in this case both βn(0) =
0 and Nn(0) = 0. Assume (3.2.14) holds for k ≥ 1. Without loss of
generality we can also assume that

βn(k) = − inf
j≤k

(Nn(j) ∧ 0) = −Nn(k). (3.2.15)

Let k̄ be the minimum index such that k̄ > k, Nn(k̄ − 1) = Nn(k) and
An(k̄) = 0. Equivalently, at the end of the k̄-th service time there are no
customers in the queue (and it is the first time after the k-th service that
this happens). By the definition of βn(·), we have that βn(k̄− 1) = βn(k)
and βn(k̄) = βn(k) + 1. On the other hand, we have that Nn(k̄) = Nn(k̄−
1) + An(k̄)− 1 = Nn(k)− 1. This gives

βn(k̄) = βn(k) + 1

= −Nn(k) + 1 = −Nn(k̄) = − inf
j≤k̄

(Nn(j) ∧ 0). (3.2.16)
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Moreover, for every q such that k < q < k̄,

− inf
j≤q

(Nn(j) ∧ 0) = −Nn(k), (3.2.17)

and βn(q) = βn(k), by definition of k̄.

Next we show that n−1/3βn(tn2/3) converges in distribution to a non-
trivial random variable, hence (3.2.13) is negligible in the limit when
k = O(n2/3). Recall that βn(k) denotes the number of customers that
have been removed from the population and directly put into service
before the end of the (k + 1)-st service.

Lemma 19 (Convergence of the number of idle periods). Fix t ∈ (0, ∞).
As n→ ∞,

n−1/3βn(tn2/3)
d→ − inf

s≤t
(X̂(s) ∧ 0), (3.2.18)

where X̂(t) = βt− 1/2t2 + σW(t).

Proof. The operator ψ : f 7→ ψ( f )(t) = − infs≤t( f (s) ∧ 0) acting from D
to itself is Lipschitz continuous with respect to the Skorokhod J1 topology
by [95, Theorem 6.1]. Note that

n−1/3βn(tn2/3) = ψ(n−1/3Nn(·n2/3))(t). (3.2.19)

Then, since n−1/3Nn(·n2/3)
d→ W, the Continuous-Mapping Theorem

gives

ψ(n−1/3Nn(· n2/3))
d→ ψ(W), (3.2.20)

and this is (3.2.18).

A consequence of Lemma 19, is that the cumulative virtual idle time
is asymptotically negligible, as shown in the following lemma:

Lemma 20 (Convergence of the cumulative idle time). Conditioned on
{Qe

n(s), s ∈ (0, tn2/3)}, as n→ ∞,

n
βn(tn2/3)

βn(tn2/3)

∑
i=1

Ii
P→ 1. (3.2.21)
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Proof. As was noted in (3.2.11), Ii is distributed as an exponential random
variable with rate n− |νki

|, where ki is the time step corresponding to the
i-th customer being placed directly into service. We rewrite the sum as

n
βn(tn2/3)

βn(tn2/3)

∑
i=1

Ei
n− |νki

|

=
1

βn(tn2/3)

βn(tn2/3)

∑
i=1

Ei

1− |νki
|

n

=
1

βn(tn2/3)

βn(tn2/3)

∑
i=1

Ei +
1

βn(tn2/3)

βn(tn2/3)

∑
i=1

Ei
|νki
|

n
+ εn, (3.2.22)

where εn = oP(1) and (Ei)
∞
n=1 are i.i.d. exponential random variables

with rate 1.
By Lemma 19, βn(tn2/3) ≥ cnα w.h.p. for a fixed c > 0 and α ∈

(0, 1/3). By the LLN, the first term in (3.2.22) converges in probability
to 1, and by Lemma 6 the second term, and consequently the error term,
converges to zero.

Lemma 20 intuitively says that the total virtual idle time up to time
tn2/3 is of the same order of magnitude of the number of virtual idle
periods up to time tn2/3 times the average interarrival time. In particular,
as we prove below, I(tn2/3) = oP(1), that is, the cumulative virtual idle
time up to times of the order n2/3 is negligible:

Corollary 2 (Cumulative idle time is negligible). Fix T > 0. Then,

sup
t≤T
I(tn2/3)

P→ 0. (3.2.23)

Proof. By monotonicity, supt≤T I(tn2/3) = I(T). Fix ε > 0. Then, by
Lemma 20,

I(Tn2/3) ≤ (1 + ε)βn(tn2/3)/n (3.2.24)

with high probability. By Lemma 19, βn(tn2/3)/n converges in probability
to zero, so that, as n→ ∞,

I(Tn2/3)
P→ 0, (3.2.25)

concluding the proof.
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3.2.2 Proof of Theorem 9

We begin by constructing the time change ϕn(·). Fix a realization of the
arrival and service times (Si)

n
i=1 = (Si(ω))n

i=1 and (Ti)
n
i=1 = (Ti(ω))n

i=1.
For simplicity we assume E[S] = 1 and β = 0, the generalization to a
different choice of parameters being straightforward. We define ϕn(t)
piece-wise, depending whether a customer is in service at time t or the
server is idling at time t.

Because the time scaling in Qn(·n−1/3) is n−1/3, for the two processes
Qn(·n−1/3) and Qe

n(ϕn(·)n2/3) to be on a comparable time scale, the time
change ϕn(·) must be such that

ϕn(·) = n−2/3φn(·n−1/3), (3.2.26)

for a suitable φn(·) : R+ 7→ R+. We now provide a precise expression
of φn(·). We remark that many other choices for φn(·) would work for
proving Lemma 16 and Lemma 17, and the one we present here is only
the simplest one.

To increase readability we define

ϑk2(k1) :=
k1

∑
i=1

Di + I(k2) =
∑k1

i=1 Si

n
+ I(k2). (3.2.27)

First assume that at time t a service (say, the k-th service) is taking place,
then

φn(t) = (k− 1) +
1

Sk/n
(t− νk(k− 1)) for t ∈ [ϑk(k− 1), ϑk(k)].

(3.2.28)
Note that, since the queue is serving at time t, I(k− 1) = I(k). In other
words φn(t) is the line joining the points (ϑk(k− 1), k− 1) and (ϑk(k), k),
where the term I(k) in ϑk(k) takes into account previous idle periods
which might have occurred before t. Assume now that an idle period (say,
the (β(k) + 1)-th idle period) is under way at time t. Then φn(t) takes the
form

φn(t) = k for t ∈ [ϑk(k), ϑk(k) + Iβ(k)+1]. (3.2.29)

In other words, φn(t) is constant during an idle period. This is because
φn(t) represents the number of completed services. Again, here ∑k

i=1 Si/n
takes previous services that have occurred before t into account. Summa-
rizing, φn(·) takes the form

φn(t) =
(

k− 1 +
n
Sk

(t− ϑk(k− 1))
)

, (3.2.30)
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1

2

3

t

k

S1

n
S2

n
I1 S3

n

Figure 3.1: An example of the time change φn(·). The •’s indicate arrival
times of customers.

for t ∈ [ϑk(k− 1), ϑk(k)] for some k, and

φn(t) = k, (3.2.31)

for t ∈ [ϑk(k), ϑk(k) + Iβ(k)+1] for some k. In particular φn(·) (and there-
fore also ϕn(·)) is a piecewise linear continuous function. See Figure 3.1
for one possible sample path of φn(·).

We now focus on ϕn(·) in (3.2.26) and show that it converges to the
identity function. The time change ϕn(t) takes the form

ϕn(t) = n−2/3
(

k− 1 +
n
Sk

( t
n1/3 − ϑk(k− 1)

))
, (3.2.32)

for t/n1/3 ∈ [ϑk(k− 1), ϑk(k)] for some k, and

ϕn(t) = n−2/3k. (3.2.33)

for t/n1/3 ∈ [ϑk(k), ϑk(k) + Iβ(k)+1] for some k. Note that the only values
of k for which φn(t) has a meaningful limit as n → ∞ are k = O(n2/3).
This observation is consistent with the fact that the original scaling for
Qe

n(·) is Qe
n(·n2/3), that is, in order to obtain a meaningful limit we ob-

serve the queue length at times when O(n2/3) services have been com-
pleted. As a consequence, we assume that k = sn2/3 for some s ∈ R+.
Summarizing, the final form of ϕn(t) is

ϕn(t) = s− 1
n2/3 +

1
Ssn2/3

(t− ϑsn2/3(sn2/3 − 1)), (3.2.34)
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for t ∈ n1/3[ϑsn2/3(sn2/3 − 1), ϑsn2/3(sn2/3)], and

ϕn(t) = s, (3.2.35)

for t ∈ n1/3[ϑsn2/3(sn
2
3 ), ϑsn2/3(sn2/3) + Iβ(sn2/3)]. We now turn to proving

Lemma 16.

Proof of Lemma 16. First note that

sup
t≤T

∣∣∣− 1
n2/3 +

1
Ssn2/3

(t− ϑsn2/3(sn2/3 − 1))
∣∣∣

≤ 2
n2/3 → 0, n→ ∞, (3.2.36)

implying that we can treat ϕn(t) as piece-wise constant, ϕn(t) ≡ s on
intervals of the form [l(s), u(s)]. We now prove (3.2.6). Since the function
t 7→ t− ϕn(t) = t− s (for some fixed s) defined on an interval [l, u] =
[l(s), u(s)] is linear in t, it obtains its maximum either in l or u. This
implies

lim
n→∞

‖t− ϕn(t)‖T

≤ lim
n→∞

(sup
s≤S
|ϑsn2/3(sn2/3 − 1)− s| ∨ sup

s≤S
|ϑsn2/3(sn2/3) + Iβ(sn2/3) − s|

∨ sup
s≤S
|ϑsn2/3(sn2/3)− s|), (3.2.37)

where we recall that x∨ y := max{x, y} and S = S(T) = T(1+ ε)/E[S] >
0 for some ε > 0. The inequality is implied by the fact that the three
suprema are taken over a larger set, by the definition of S(T). We prove
convergence to zero of one of the three terms on the right in (3.2.37), the
others being analogous. The triangle inequality to the last term yields

sup
s≤S

∣∣∣∑sn2/3

i=1 Si

n2/3 + n1/3I(sn2/3)− s
∣∣∣

≤ sup
s≤S

∣∣∣∑sn2/3

i=1 Si

n2/3 − s
∣∣∣+ sup

s≤S
|n1/3I(sn2/3)|. (3.2.38)

The first term converges to zero in probability by the FLLN. The second
term converges to zero in probability by Corollary 2. Indeed, the proof
of Lemma 20 and Corollary 2 show that I(sn2/3) = OP(n−2/3). This
concludes the proof of (3.2.6).
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We now turn to proving (3.2.7). Note that ϕn(·) P→ id, the identity
map on [0, T]. In particular, id is deterministic, so that by [96, Theorem
11.4.5],

(n−1/3Qe
n(·n2/3), ϕn)

d→ (φ(X̂)(·)id(·)). (3.2.39)

By Skorokhod’s representation theorem and (3.2.39) there exist Qe
n(·),

ϕn(·) and φ(X̂)(·) defined on the same probability space Ω such that

(Qe
n(·n2/3), ϕn)

d
= (Qe

n(·n2/3), ϕn) (3.2.40)

and
(n−1/3Qe

n(·n2/3), ϕn)
a.s.→ (φ(X̂)(·), id(·)). (3.2.41)

We now dominate (3.2.7) using the random variables provided by the
representation theorem, as follows:

n−1/3‖Qe
n(·n2/3)−Qe

n(ϕn(·)n2/3)‖T (3.2.42)

≤ n−1/3(‖Qe
n(·n2/3)− φ(X̂)(·)‖T + ‖φ(X̂)(·)−Qe

n(ϕn(·)n2/3)‖T).

Since the limiting process φ(X̂)(·) is almost surely continuous, by stan-
dard arguments both the convergence n−1/3Qe

n(·n2/3)
a.s.→ φ(X̂)(·) and

n−1/3Qe
n(ϕn(·)n2/3)

a.s.→ φ(X̂)(·) hold with respect to the uniform topol-
ogy. In particular, both terms on the right in (3.2.42) converge to zero in

probability. Moreover, since (Q(·n2/3), ϕn(·)) d
= (Qe

n(·n2/3), ϕn(·)),

n−1/3‖Qe
n(·n2/3)−Qe

n(ϕn(·)n2/3)‖T

d
= n−1/3‖Qe

n(·n2/3)−Qe
n(ϕn(·)n2/3)‖T , (3.2.43)

so that
n−1/3‖Qe

n(·n2/3)−Qe
n(ϕn(·)n2/3)‖T

P→ 0, (3.2.44)

as desired. This concludes the proof of Lemma 16.

The fact that during one service the number of arrivals is asymptot-
ically small is crucial in proving that Qe

n(·) and Qn(·) are close in the
supremum norm. We prove this fact in the following lemma:

Proof of Lemma 17. Note that if t/n1/3 = ∑k
i=1 Si/n + I(k) for k ∈ N

(i.e. if a service is completed in t, or an idle period is undergoing in t),
then

Qe
n(φn(t)) = Qn(t). (3.2.45)
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This follows from the definition of the time change φn(·), as discussed
above. This implies that during any service time Qe

n(φn(t)) and Qn(t)
differ by the number of arrivals that have occurred during that service
time. Moreover, during any idle time Qe

n(φn(t)) and Qn(t) are both equal
to zero. Therefore,

‖Qe
n(ϕn(·)n2/3)−Qn(·n−1/3)‖T = max

k≤Tn2/3
An(k). (3.2.46)

Hence (3.2.9) implies (3.2.10). Let now ε > 0 be arbitrary. Then

P(n−1/3 max
k≤Tn2/3

An(k) ≥ ε)

= P(n−1/3 max
k≤Tn2/3

An(k)1{An(k)>εn1/3} ≥ ε). (3.2.47)

In other words, only the very large values of An(·) contribute to the
probability being computed. By Markov’s inequality,

P(n−1/3 max
k≤Tn2/3

An(k) ≥ ε) ≤
E[maxk≤Tn2/3 An(k)21{An(k)>εn1/3}]

(n1/3ε)2

≤
Tn2/3

∑
k=1

E[An(k)21{An(k)>εn1/3}]

n2/3ε2 . (3.2.48)

The almost sure domination An(k) ≤ A′n(k) = ∑n
i=1 1{Ti≤Sk/n}, valid for

all k ≤ Tn2/3 simultaneously, gives

P(n−1/3 max
t≤T

An(tn2/3) ≥ ε) ≤
Tn2/3

∑
k=1

E[A′n(k)21{A′n(k)(k)>εn1/3}]

n2/3ε2

= Tε−2E[A′n(1)
21{A′n(1)>εn1/3}]. (3.2.49)

The right-most term in (3.2.49) tends to zero because A′n(·)2 is stochas-
tically dominated by a uniformly integrable random variable, as was
proven in Lemma 5.

3.3 A direct approach to Theorem 9

Both the pre-limit (3.1.5) and the limit queue-length process in (3.1.7) are
easily characterized through explicit formulas. This suggests that it is pos-
sible to prove Theorem 9 by using the elementary approach to stochastic
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process convergence, as detailed e.g. in [17]. Assume that a sequence of
processes (Sn(·))∞

n=1 and a candidate limit S(·) are given. This method
consists in proving separately the tightness of the family (Sn(·))∞

n=1, seen
as measures on a certain function space, and the convergence of the
finite-dimensional distributions, that is, as n→ ∞,

P(Sn(t1) ∈ A1, . . . , Sn(tk) ∈ Ak)→ P(S(t1) ∈ A1, . . . , S(tk) ∈ Ak),
(3.3.1)

for each k ≥ 1 and t1, . . . , tk. Condition (3.3.1) characterize the limit pro-
cess uniquely. By exploiting this method, we prove that the queue-length
process of the ∆(i)/G/1 queue converges in distribution to a Brownian
motion with negative quadratic drift, reflected at zero. In particular, the
proof we give is substantially simpler than the one in Section 3.2, requir-
ing only the standard notions of stochastic process convergence theory
[17]. This approach has two advantages. First, we impose mild assump-
tions on the arrival time distribution, thus generalizing [10], where the
arrival times were assumed to be exponentially distributed. Second, as a
consequence of our main theorem, several results relating quantities of
interest other than the queue length can be deduced. As an example of
this, we prove a sample path Little’s Law.

The techniques of this section allow us to extend Theorem 9 to general
arrival times (Ti)

n
i=1. Furthermore, the stochastic component of the limit

process is defined more precisely in terms of the random fluctuations
of the arrival process and of the service process. For simplicity, we will
restrict to the setting β = 0, and we will prove the following:

Theorem 11 (Scaling limit of the critical ∆(i)/G/1 queue with general
arrivals). Let (Ti)

n
i=1 be such that fT(0) > 0 and let the service times (Si)

n
i=1

be such that E[S2] < ∞. Assume that the heavy-traffic condition (2.1.2) holds
with β = 0. Then

n−1/3Qn(·n−1/3)
d→ φ(X̂)(·), in (D, J1), (3.3.2)

where

X̂(t) = W1( fT(0)t)−
σ

E[S]3/2 W2(t) +
f ′T(0)

2
t2, (3.3.3)

and W1(·), W2(·) are two independent standard Brownian motions.

We shall compare Theorem 11 and Theorem 9. The latter result shows
that, when β = 0 the queue-length process converges to φ(X̂)(t), where
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X̂(t) = σW(t)− t2/2, and σ2 = E[S2]/E[S]3. The random process con-
sisting of the sum of two Brownian motions in (3.3.3) is distributionally
equivalent to a single Brownian motion with variance equal to

fT(0) +
E[S2]−E[S]2

E[S]3
. (3.3.4)

By the heavy-traffic condition (2.1.2) this simplifies to

E[S]2 + E[S2]−E[S]2

E[S]3
=

E[S2]

E[S]3
. (3.3.5)

Therefore, the two limits are equal in distribution.

The cumulative busy time process

We now give an explicit analytical characterization of Bn(·). To this end,
we need to introduce several auxiliary processes. The total amount of
work that has entered the queue by time t (briefly, the cumulative input) is
given by

Cn(t) :=
An(t)

∑
i=1

Si. (3.3.6)

Recall that, when the server works with speed cn, the net-put process Pn(·)
of the queue is given by

Pn(t) := Cn(t)− cnt = cn

(An(t)

∑
i=1

Si
cn
− t
)

. (3.3.7)

The workload process is then defined as

Ln(t) := φ(Pn)(t) = Pn(t)− inf
s≤t

(Pn(s))−. (3.3.8)

Note that Ln(t) is positive if and only if

Cn(t) ≥ cnt + inf
s≤t

(Pn(s))− = cnt− ψ(Pn)(t). (3.3.9)

By construction, ψ(Pn)(t) increases (linearly) if and only if the server is
idling, and is constant otherwise. In other words, In(t) := ψ(Pn)(t) has
the interpretation of cumulative idle time. Consequently the term on the
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right-hand side of (3.3.9) is the cumulative busy time process, and we define
its rescaled version as

Bn(t) := t− ψ
(Pn

cn

)
(t) = t− In(t)

cn
, (3.3.10)

where for notational convenience we have rescaled Bn(·) by the server
speed cn. Note that Bn(·) increases only if the server is working, and is
constant otherwise. With this notation, the total amount of time units the
server has worked until time t is given by cnBn(t). Then, (3.3.9) reads

Cn(t) ≥ cnBn(t), (3.3.11)

so that the workload is positive if and only if the cumulative input up to
time t is larger than the total time the server has spent processing jobs,
and in that case it decreases linearly in time.

The queue-length process

It is more convenient to express Qn(·) as a reflection of a simpler process
Xn(·). We will refer to Xn(·) as the free process. We rewrite (3.1.5) as

Qn(t) = (An(t)− σn(Bn(t))− fT(0)In(t)) + fT(0)In(t) (3.3.12)

=
(
An(t)− σn(Bn(t)) +

cnBn(t)
E[S]

− fT(0)cnt
)
+ fT(0)In(t),

where we have used (2.1.2) and (3.3.10) in the second equality. Recall also
the definitions of An(·) and σn(·) in (3.1.1) and (3.1.2). We define

Xn(t) = An(t)− σn(Bn(t)) +
cnBn(t)

E[S]
− fT(0)cnt. (3.3.13)

For a given process Xn(t), the Skorokhod problem associated to Xn(t) con-
sists in finding two processes P(t) and R(t) such that P(t) = Xn(t) +
R(t) ≥ 0, R(t) is increasing, and

∫ ∞
0 Xn(t)dR(t) = 0. Note that In(·) is

increasing and, by definition of Qn(t) and In(t),∫ ∞

0
Qn(t)dIn(t) = 0. (3.3.14)

Then Qn(t) and In(t) are a solution to the Skorokhod problem associ-
ated with Xn(t) and, by applying [6, Proposition 2.2, p.251] we have the
representation

Qn(t) = Xn + ψ(Xn)(t) = φ(Xn)(t), (3.3.15)
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where

ψ(Xn)(t) = fT(0)In(t) = −
( cnBn(t)

E[S]
− fT(0)cnt

)
. (3.3.16)

The fluid and diffusive scaling regimes

The fluid-scaled heavy-traffic queue-length process is defined as

Qn(t) :=
Qn(tn−1/3)

n2/3 = n1/3
(An(tn−1/3)

n
− σn(Bn(tn−1/3))

n

)
. (3.3.17)

Correspondingly, since we assume cn = n, Xn(·) is defined as

Xn(t) := n1/3
(An(tn−1/3)

n
− σn(Bn(tn−1/3))

n

)
+ n1/3 Bn(tn−1/3)

E[S]
− fT(0)t

= n1/3
(An(n−1/3t)

n
− FT(tn−1/3)

)
− n1/3

(σn(Bn(tn−1/3))

n
− Bn(tn−1/3)

E[S]

)
+ (n1/3FT(tn−1/3)− fT(0)t). (3.3.18)

where in the second equality we have added and subtracted FT(t) in order
to rewrite Xn(t). It can be shown through an application of the functional
Law of Large Numbers that, as n → ∞, the fluid-scaled process Qn(·)
converges to a deterministic process Q(·). However, under our heavy-
traffic assumption the process Q(·) is identically zero. Because of this, the
diffusion-scaled queue-length process can be rewritten as

Q̂n(t) = n1/3(Qn(t)−Q(t)) = n1/3Qn(t). (3.3.19)

Accordingly, X̂n(t) is defined as

X̂n(t) := n1/3Xn(t)

= n2/3
(An(tn−1/3)

n
− FT(tn−1/3)

)
− n2/3

(σn(Bn(tn−1/3))

n
− Bn(tn−1/3)

E[S]

)
+ n2/3(FT(tn−1/3)− fT(0)tn−1/3). (3.3.20)
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In order to prove Theorem 11 we will rely on an analogous result for X̂n(·).
In fact, Theorem 11 is a straightforward consequence of the following
theorem:

Theorem 12 (Scaling limit of the free process). As n→ ∞,

X̂n(t)
d→ X̂(t), in (D, J1), (3.3.21)

where X̂(·) is as in (3.3.3).

The scaling exponents

Let us now give a heuristic motivation for the scaling exponents in (3.3.20).
Define the general time scaling exponent as −α and the spatial scaling
exponent as β, for some α, β > 0 to be determined, so that X̂n is given by

X̂n = nβ
(An(tn−α)

n
− FT(tn−α)

)
+ nβ

(σn(Bn(tn−α))

n
− Bn(tn−α)

E[S]

)
+ nβ(FT(tn−α)− fT(0)tn−α). (3.3.22)

For the deterministic drift to converge to a non-trivial limit it is necessary
that α, β be such that 2α = β. Indeed, replacing FT(tn−α) with its Taylor
expansion up to the second term, we get

nβ(FT(tn−α)− fT(0)tn−α) = nβ
( f ′T(0)

2
t2n−2α + o(n−2α)

)
. (3.3.23)

Moreover, a necessary condition for the first term in (3.3.22) to converge
to a non-trivial random process is that, for fixed time t > 0, its variance is
of order O(1). This is given by

Var
(

nβAn(tn−α)

n

)
=

n2β

n
Var(1{T≤tn−α})

=
n2β

n
P(T ≤ tn−α)(1−P(T ≤ tn−α))

=
n2β

n
( fT(0)tn−α + o(n−α)). (3.3.24)

Then, α and β should be such that

n2β−α

n
= O(1), (3.3.25)

which, together with β = 2α, imply that α = 1/3 and β = 2/3.
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3.3.1 Proof of Theorem 9

The proof of Theorem 11 proceeds in several steps. These consist in prov-
ing convergence of the three terms in (3.3.22) to the respective terms in
(3.3.3) separately. The first term in (3.3.22) is the centred and rescaled
empirical distribution function of the sequence (Ti)

n
i=1. Therefore, its

convergence to W1( fT(0)t) can be seen as a ‘local Donsker’s Theorem’, in
which the limiting Brownian Bridge is replaced by a Brownian motion.
The second term in (3.3.22) is a time-changed, centred and rescaled re-
newal process and thus converges by a random time-change theorem and
the FCLT for renewal processes. The third term also converges trivially to
the limiting quadratic drift. Then, the convergence (3.3.2) follows imme-
diately from (3.3.21) by the continuity of the Skorokhod reflection φ(x) in
all x ∈ C, the space of real-valued continuous functions, see [96, Theorem
13.5.1].

A local Donsker’s Theorem

For sake of simplicity, let us define

Ân(t) := n2/3
(An(tn−1/3)

n
− FT(tn−1/3)

)
(3.3.26)

and
Â(t) := W1( fT(0)t). (3.3.27)

The goal of this section is to prove the following:

Lemma 21 (Convergence of the arrival process). As n→ ∞,

Ân(·) d→ Â(·), in (D, J1). (3.3.28)

Proof. The proof proceeds in two steps. First, we prove convergence of
the finite-dimensional distributions. This characterizes the limit uniquely.
Second, we prove tightness of the family (Ân)∞

n=1, seen as elements of
P(D), the space of measures on the Polish space D of càdlàg functions.
By definition, we say that the finite-dimensional distributions of Ân(·)
converge to the finite-dimensional distributions of Â(·) if, for every n ∈N

and for each choice of (ti)
n
i=1 such that 0 < t1 < t2 < . . . < tn < ∞ it

holds that, as n→ ∞,

(Ân(t1), . . . , Ân(tn))
d→ (Â(t1), . . . , Â(tn)). (3.3.29)



94 Chapter 3. The queue-length process

For simplicity we shall prove (3.3.29) for t1 < t2, the generalization to an
arbitrary choice of (ti)

n
i=1 being straightforward. We then aim to show

that, as n→ ∞,

(Ân(t1), Ân(t2))
d→ (Â(t1), Â(t2)). (3.3.30)

LetN (m, v) denote a normally distributed random variable with mean m
and covariance matrix v. Then (Â(t1), Â(t2)) ∼ N (m, Vt1,t2), with mean
m = (0, 0) and covariance matrix Vt1,t2 given by

Vt1,t2 = fT(0)
(

t1 t1 ∧ t2
t1 ∧ t2 t2

)
, (3.3.31)

where a ∧ b = min{a, b}. To show joint convergence, we apply the
Cramér-Wold device. Given an arbitrary vector γ = (γ1, γ2) ∈ R2,
we aim to show that, as n→ ∞,

γ1 Ân(t1) + γ2 Ân(t2)
d→ γ1 Â(t1) + γ2 Â(t2). (3.3.32)

This is done through the following straightforward generalization of the
Lindeberg-Feller CLT:

Theorem 13 (Lindeberg-Feller CLT [63]). Let (Xn,l)
n
l=1 be an array of random

variables such that E[Xn,l ] = 0 for all n ≥ 1 and l ≤ n and ∑n
l=1 Var(Xn,l)→

1. Define
Sn := Xn,1 + . . . + Xn,n. (3.3.33)

Assume that the Lindeberg condition holds, i.e. for ε > 0,

1
Var(Sn)

n

∑
l=1

E[X2
n,l1{X2

n,l>ε2Var(Sn)}]→ 0, (3.3.34)

as n → ∞. Then Sn converges in distribution to a standard normal random
variable.

In the usual formulation of the Lindeberg-Feller CLT it is assumed
that ∑n

l=1 Var(Xn,l) = 1. The proof of the theorem, as presented e.g. in
[63] can be directly generalized to accommodate for the assumption that
∑n

l=1 Var(Xn,l)→ 1. We now take Xn,l to be

Xn,l = γ1
1{Tl≤t1n−1/3} − FT(t1n−1/3)

n1/3vt1,t2

+ γ2
1{Tl≤t2n−1/3} − FT(t2n−1/3)

n1/3vt1,t2

, (3.3.35)
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where vt1,t2 is a normalizing constant and is given by

vt1,t2 =
1√

fT(0)(γ2
1t1 + γ2

2t2 + 2γ1γ2t1)
. (3.3.36)

Recall that t1 < t2 by assumption. In order to deduce the desired con-
vergence in (3.3.32) we are left to check the conditions of Theorem 13.
Trivially, E[Xn,l ] = 0. We compute Var(Xn,l) explicitly as follows:

Var(Xn,l) =
γ2

1
n2/3v2

t1,t2

(FT(t1n−1/3)− FT(t1n−1/3)2)

+
γ2

2
n2/3v2

t1,t2

(FT(t2n−1/3)− FT(t2n−1/3)2)

+
2γ1γ2

n2/3v2
t1,t2

(FT(t1n−1/3)− FT(t1n−1/3)FT(t2n−1/3))

=
fT(0)
v2

t1,t2

(γ2
1

n
t1 +

γ2
2

n
t2 + 2

γ1γ2

n
t1

)
+ O(n−4/3), (3.3.37)

where in the second equality we Taylor expanded the distribution function
FT(·). In particular,

n

∑
l=1

Var(Xn,l) = 1 + O(n−1/3). (3.3.38)

The Lindeberg condition is also satisfied, since

n

∑
l=1

1
n2/3vt1,t2

(3.3.39)

×E[(1{Ti≤t1n−1/3} − FT(t1n−1/3))21{(1{Ti≤t1n−1/3}−FT(t1n−1/3))≥εn1/3}] = 0,

since 1{(1{Ti≤t1n−1/3}−FT(t1n−1/3))≥εn1/3} = 0 almost surely. The first term

is of the order O(n−1/3), while the second is identically zero for n large
enough.

By Theorem 13,

1
vt1,t2

(γ1, γ2) · (Ân(t1), Ân(t2))
d→ N (0, 1), (3.3.40)
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where · denotes the usual scalar product. However, since

(γ1, γ2)
t ·Vt1,t2 · (γ1, γ2) = v2

t1,t2
, (3.3.41)

where qt denotes the transpose of a vector q, so that

N (0, 1) d
=

1
vt1,t2

(γ1, γ2) · N ((0, 0), Vt1,t2). (3.3.42)

This together with (3.3.40) implies (3.3.32). By an application of the
Cramér-Wold device, joint convergence follows.

The last step of the proof is to show that (Ân(·))∞
n=1 is a tight family

of random variables on D. By [17, Theorem 13.5], in particular equation
(13.14), it is enough for (Ân(·))∞

n=1 to satisfy the following condition. For
every T > 0,

E[|Ân(t)− Ân(t1)|2|Ân(t2)− Ân(t)|2] ≤ ( finc(t2)− finc(t1))
2, (3.3.43)

for 0 ≤ t1 ≤ t ≤ t2 ≤ T and finc(·) is a non-decreasing function. Checking
(3.3.43) amounts to computing the mean appearing on the left side of the
equation. Define

p1 := FT(tn−1/3)− FT(t1n−1/3),

p2 := FT(t2n−1/3)− FT(tn−1/3). (3.3.44)

Define also

αi :=
{

1− p1, if Tin−1/3 ∈ (t1, t],
−p1, if Tin−1/3 /∈ (t1, t],

(3.3.45)

and

βi :=
{

1− p2, if Tin−1/3 ∈ (t, t2],
−p2, if Tin−1/3 /∈ (t, t2],

(3.3.46)

where we have omitted dependencies on n to avoid cumbersome notation.
Note that E[α1] = E[β1] = 0. With the help of these definitions, (3.3.43)
can be immediately rewritten in the following form:

E
[( n

∑
i=1

αi

)2( n

∑
i=1

βi

)2]
≤ n4/3( finc(t2)− finc(t1))

2. (3.3.47)

We will take finc(t) =
√

ct for a certain constant c > 0. By definition αi
(resp. βi) is independent from αj and β j for j 6= i, so that the left side of
(3.3.47) can be simplified as

nE[α2
1β2

1] + n(n− 1)E[α2
1]E[β2

2] + 2n(n− 1)E[α1β1]E[α2β2]. (3.3.48)
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The first term nE[α2
1β2

1] is of lower order, so we focus on the remaining
two. A simple computation gives

E[α2
1] = p1(1− p1) ≤ p1,

E[β2
1] = p2(1− p2) ≤ p2,

E[α1β2] = −p1 p2, (3.3.49)

so that, since p1 ≤ (p1 + p2) and p2 ≤ (p1 + p2),

E
[( n

∑
i=1

αi

)2( n

∑
i=1

βi

)2]
≤ c0n2 p1 p2 ≤ c0n2(p2 + p1)

2

= c0n2(FT(t2n−1/3)− FT(t1n−1/3))2

≤ c1n4/3 fT(0)(t2 − t1)
2, (3.3.50)

for a sufficiently large c1 > 0. Therefore, we have verified (3.3.47) with
finc(t) =

√
c1 fT(0)t,.

A functional CLT for renewal processes

We define

σ̂n(t) := n2/3
(σn(tn−1/3)

n
− 1

E[S]
tn−1/3

)
(3.3.51)

and
σ̂(t) :=

σ

E[S]3/2 W2(t), (3.3.52)

where σ2 = Var(S). In this section we prove the following lemma:

Lemma 22 (Convergence of the service process). As n→ ∞,

σ̂n(·) d→ σ̂(·), in (D, J1). (3.3.53)

Proof. Note that σn(tn−1/3) = σn2/3(t). Moreover,

n2/3
(σn(tn−1/3)

n
− 1

E[S]
tn−1/3

)
=

σn2/3(t)−E[S]−1tn2/3

n1/3 . (3.3.54)

Therefore, (3.3.53) is a consequence of the FCLT for renewal processes,
see e.g. [17, Theorem 14.6].
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Convergence of the cumulative busy time

In this section we exploit Lemma 22 and the random time change theorem
to prove that the rescaled service process in (3.3.20) converges. First, we
prove some scaling limits for the arrival process. Define the fluid-scaled
arrival process as

An(t) :=
An(tn−1/3)

n2/3 . (3.3.55)

The following generalized Markov inequality is useful when proving the
strong Law of Large Numbers.

Lemma 23 (Generalized Markov inequality). For any p = 1, 2, . . . and any
random variable X such that E[|X|p] < ∞,

P(|X| ≥ ε) ≤ E[|X|p]
εp . (3.3.56)

Lemma 23 together with the Borel-Cantelli lemma allow us to prove
the following:

Lemma 24 (LLN for the arrival process). For any fixed t ≥ 0, as n→ ∞,

|An(t)− fT(0)t| a.s.→ 0. (3.3.57)

Proof. First, we rewrite

An(t)− fT(0)t =
1
n

n

∑
i=1

(n1/31{Ti≤tn−1/3} − n1/3FT(tn−1/3)). (3.3.58)

We define
Yi := n1/31{Ti≤tn−1/3} − n1/3FT(tn−1/3). (3.3.59)

In order to apply the Borel-Cantelli lemma, we compute

P(|
n

∑
i=1

Yi| ≥ εn) ≤ E[|∑n
i=1 Yi|4]

n4ε4

=
nE[|Y1|4] + 3n(n− 1)E[|Y1|2]2

n4ε4 . (3.3.60)

It is immediate to see that the leading orders of the moments are

E[|Y1|4] = O(n4/3P(Ti ≤ tn−1/3)) = O(tn),

E[|Y1|2] = O(n2/3P(Ti ≤ tn−1/3)) = O(tn1/3). (3.3.61)
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We conclude that, for a large constant c1 > 0,

P(|
n

∑
i=1

Yi| ≥ εn) ≤ c1
tn2 + 3tn8/3

n4ε4 . (3.3.62)

Define the event A := {|∑n
i=1 Yi| ≥ εn for infinitely many n}. Since

∞

∑
n=1

P(|
n

∑
i=1

Yi| ≥ εn) ≤ c1

∞

∑
n=1

tn2 + 3tn8/3

n4ε4 ≤ c2

∞

∑
n=1

1
n4/3ε4 < ∞,

(3.3.63)
for some large constant c2 > 0, by the Borel-Cantelli lemma,

P(A) = 0. (3.3.64)

Since ε > 0 is arbitrary, this concludes the proof of (3.3.57).

We will now extend the convergence (3.3.57) to uniform convergence
over compact subsets of the positive half-line. Our result can be inter-
preted as a special Glivenko-Cantelli theorem. This is summarized in the
following lemma.

Lemma 25 (Glivenko-Cantelli Theorem for the arrival process). As n→
∞,

An(t)
a.s.→ fT(0)t, in (D, U). (3.3.65)

Consequently, as n→ ∞,

n1/3Cn(tn−1/3)
a.s.→ t in (D, U). (3.3.66)

Proof. Let T > 0 be arbitrary. The claim (3.3.65) is then equivalent to

lim
n→∞

sup
t≤T
|An(t)− fT(0)t| = 0, (3.3.67)

almost surely as n→ ∞. Let N be a large arbitrary natural number and
define

tj :=
1

fT(0)
j

N
T, j = 1, . . . , N, (3.3.68)

so that fT(0)tj = jT/N. The idea is that bothAn(t) and fT(0)t are increas-
ing, so for t ∈ (tj−1, tj) the difference of the two can be bounded by their
values in tj−1 and tj. Then, we have convergence because of Lemma 24
and because N is fixed. Formally, define the error as

En,N := max
j=1,...,N

(|An(tjn−1/3)/n2/3 − fT(0)tj|

+ |An((tjn−1/3)−)/n2/3 − fT(0)t−j |). (3.3.69)
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where f (t−) := lims↗t f (s). For t ∈ (tj−1, tj) we upper bound An(t) as
follows

An(t) ≤ An(t−j ) ≤ fT(0)t−j + En,N ≤ fT(0)t + En,N +
T
N

, (3.3.70)

where in the last inequality we have used that | fT(0)tj − fT(0)tj−1| ≤
T/N. Analogously, for the lower bound

An(t) ≥ An(tj−1) ≥ fT(0)tj−1 − En,N ≥ fT(0)t− En,N −
T
N

. (3.3.71)

Summarizing the two bounds, since En,N and T/N do not depend on t,

sup
t≤T
|An(t)− fT(0)t| ≤ En,N +

T
N

. (3.3.72)

Since N is fixed, almost surely

lim
n→∞

En,N = 0, (3.3.73)

by Lemma 24. Letting N → ∞, we obtain (3.3.65).
The convergence (3.3.66) follows from (3.3.65). Indeed, by the func-

tional strong Law of Large Numbers [24, Theorem 5.10]

tn2/3

∑
i=1

Si

n2/3
a.s.→ E[S]t in (D, U). (3.3.74)

Since An(t) converges to a deterministic limit, we also have the joint
convergence

( tn2/3

∑
i=1

Si

n2/3 , An(t)
)

a.s.→ (E[S]t, fT(0)t), in (D2, W J1). (3.3.75)

Recall that W J1 denotes the product J1 topology onD×D× · · ·×D = Dk.
Note that An(·) is non-decreasing. Then, by a time-change theorem [17,
Lemma p.151],

An(t)n2/3

∑
i=1

Si

n2/3
a.s.→ E[S] fT(0)t in (D, U). (3.3.76)

Recall that convergence in (D, J1) to a continuous function implies conver-
gence in (D, U). Moreover, E[S] fT(0) = 1 by the heavy-traffic condition
(2.1.2), and this concludes the proof of (3.3.66).
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Since t 7→ fT(0)t is not a proper distribution function, Theorem 25 is a
local version of the usual Glivenko-Cantelli Theorem. Let us now define
the fluid-scaled cumulative busy time process as

Bn(t) := n1/3Bn(tn−1/3). (3.3.77)

We are able to prove the following lemma:

Lemma 26 (Convergence of the time-changed service process). As n→ ∞,

Bn(·) a.s.→ id(·), in (D, U), (3.3.78)

Proof. Bn(t) can be rewritten as

Bn(t) = t + ψ(Pn)(t) = t + inf
s≤t

(Cn(s)− s)−. (3.3.79)

By Lemma 25, n1/3(Cn(tn−1/3)− tn−1/3)
a.s.→ 0 in (D, U). Moreover, the

null function is a continuity point of ψ(·) with probability one [96, Lemma
13.4.1]. The claim then follows from the Continuous-Mapping Theorem
[96, Theorem 3.4.3].

Proof of Theorem 11

Since Bn(·) converges to a deterministic limit,

(Ân(·), σ̂n(·), Bn(·)) d→ (Â(·), σ̂(·), id(·)), in (D3, W J1). (3.3.80)

Note also that Ân(·) and σ̂n(·) are independent processes, so that Â(·) and
σ̂(·) are also independent. Applying the random time-change theorem
[17, Lemma p.151], we get

(Ân(·), σ̂n(Bn(·))) d→ (Â(·), σ̂(·)), in (D2, W J1). (3.3.81)

Since the limit points are continuous, by [95, Theorem 4.1] addition is also
continuous, so that, in (D, J1),

Ân(·)− σ̂n(·) + n2/3(FT(·n−1/3)− fT(0)id(·n−1/3))
d→ X̂(·), (3.3.82)

where

X̂(t) = Â(t)− σ̂(t)− f ′T(0)
2

t2, (3.3.83)

concluding the proof of (3.3.21). By [96, Theorem 13.5.1], the reflection
map φ(·) is continuous when D is endowed with the J1 topology, from
which (3.3.2) follows.
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3.3.2 Sample path Little’s Law

In this section we apply the ideas and results from the previous sections to
derive a ‘sample path Little’s Law’ for the ∆(i)/G/1 queue. The standard
formulation of Little’s Law relates the expected waiting time E[W], to
the expected queue length E[Lq] as E[Lq] = λE[W], where λ is the rate
at which customers arrive in the system. We will work instead with the
virtual waiting time Wn(t), defined as

Wn(t) := Cn(t)− Bn(t). (3.3.84)

Accordingly, we define the diffusion-scaled virtual waiting time as

Ŵn(t) := n2/3(Cn(tn−1/3)− Bn(tn−1/3))

= n1/3
(An(tn−1/3)

∑
i=1

Si

n2/3 − Bn(t)
)

. (3.3.85)

First, we rewrite the expression for Ŵn(t) as

Ŵn(t) = n1/3
(An(t)n2/3

∑
i=1

Si

n2/3 −E[S]An(t)
)

+ n1/3E[S]
(

An(t)− n1/3FT(tn−1/3)
)

+ n1/3E[S]
(

FT(tn−1/3)− fT(0)t
)

+ n1/3E[S]
(

fT(0)t− Bn(t)/E[S]
)

. (3.3.86)

By (3.3.16), n1/3( fT(0)t− Bn(t)/E[S]) = ψ(X̂n)(t), so that (3.3.86) can be
further simplified as

Ŵn(t) = E[S]Q̂n(t)

+ n1/3
(An(t)n2/3

∑
i=1

Si

n2/3 −E[S]An(t)
)
+ E[S]σ̂n(Bn(t)). (3.3.87)

We now focus on the second and third terms in (3.3.87). Let us ignore the
time change t 7→ An(t) and t 7→ Bn(t) for the moment. Then, the second
line in (3.3.87) is the difference between the diffusion-scaled partial sums
and the diffusion-scaled counting process associated with the sequence of
random variables (Si)

∞
n=1. These converge to the same limiting Brownian

motion, so that their contribution to Ŵn(t) vanishes in the limit. We now
aim make this reasoning rigorous:
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Theorem 14 (Diffusion sample path Little’s Law). As n→ ∞,

Ŵn(·) d→ Ŵ(·), in (D, J1), (3.3.88)

where
Ŵ(t) := E[S]Q̂(t). (3.3.89)

Proof. Define the diffusion-scaled partial sum process as

P̂n(t) = n1/3
( tn2/3

∑
i=1

Si

n2/3 −E[S]t
)

. (3.3.90)

By [96, Theorem 7.3.2], P̂n(·) and σ̂n(·) jointly converge as

(P̂n(·), σ̂n(·)) d→ (−E[S]σ̂(E[S]·), σ̂(·)), in (D2, W J1), (3.3.91)

where σ̂n(·) and σ̂(·) are the same as in (3.3.53). Since Ân(·) is indepen-
dent from P̂n(·) and σ̂n(·), in (D3, W J1),

(Ân(·), P̂n(·), σ̂n(·)) d→ (Â(·),−E[S]σ̂(E[S]·), σ̂(·)). (3.3.92)

Moreover, since An(·) and Bn(·) converge to deterministic limits, by [96,
Theorem 11.4.5] the above convergence can be strengthened to

(Ân(·), P̂n(·),σ̂n(·), An(·), Bn(·))
d→ (Â(·),−E[S]σ̂(E[S]·), σ̂(·), fT(0)id(·), id(·)), (3.3.93)

in (D4, W J1). It follows that

(Ân(·), P̂n(An(·)),E[S]σ̂n(Bn(·)))
d→ (Â(·),−E[S]σ̂(·), E[S]σ̂(·)), (3.3.94)

in (D3, W J1) by the heavy-traffic assumption (2.1.2). The limit processes
are continuous with probability one, and thus their sum converges to
the sum of the limits. This observation, together with the Continuous-
Mapping Theorem and (3.3.94) imply that, as n→ ∞,

E[S]Q̂n(t) + P̂n(An(·)) + E[S]σ̂n(Bn(·)) d→ Q̂(·), in (D, J1), (3.3.95)

concluding the proof.
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Thanks to the heavy-traffic condition E[S] = 1/ fT(0), we retrieve the
usual form of Little’s Law as

Q̂(t) = fT(0)Ŵ(t). (3.3.96)

Note that fT(0) = λ when T is exponentially distributed with mean 1/λ.
Theorem 14 should be contrasted with the analogous result [48, Propo-

sition 4]. There, an extra diffusion term in the expression of Ŵ(t) appears.
This term is a function of the fluid limit of the queue-length process. How-
ever, in our setting, this limit is the zero process, as can be seen in (3.3.19),
where no centering is needed.

3.4 The subcritical regime

This chapter is dedicated to proving the following lemma:

Lemma 27. Assume that fT(s) = e−s and

sup
t≥0

fT(t)E[S] = E[S] < 1. (3.4.1)

Then, for any fixed t > 0 there exists a non-trivial integer random variable Q(t)
such that, as n→ ∞

Qn(t)
d→ Q(t). (3.4.2)

Moreover, Q(t) is the stationary distribution of the queue length of a M/G/1
queue with constant arrival rate fT(t) and service distributions given by (Si)

∞
i=1.

We start by describing the idea of the proof. First, we show that
without loss of generality we can assume that the queue is empty at
t− δ, for small δ > 0. Then we stochastically bound Qn(t) at time t from
below and from above by two M/G/1 queues at time δn, with arrival
intensity approximately equal to FT(t) − FT(t − δ). By letting n → ∞,
the M/G/1 queues acting as lower and upper bound converge to their
stationary distributions, and subsequently letting δ→ 0, they converge
to the stationary distribution of an M/G/1 queue with arrival rate fT(t).
Let us now give the details.

Proof. Fix 0 < δ� 1. We define Qn,δ(t) the queue length of the ∆(i)/G/1
queue conditioned on starting in 0 at t− δ. Then,

Qn(t) = max{Qn,δ(t), Qn(t− δ) + ∆Nn}, (3.4.3)
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where ∆Nn is defined as ∆Nn := Nn(t) − Nn(t − δ). In [48] the au-
thors show that limn→∞ Nn(t)/n = FT(t)− µt almost surely. Therefore
limn→∞ ∆Nn/n = FT(t) − FT(t − δ) − µδ. By assumption (3.4.1), δ can
be chosen sufficiently small so that FT(t) − FT(t − δ) − µδ < 0. More-
over, by [48] limn→∞ Qn(s)/n = 0 almost surely for any s. Therefore,
limn→∞ Qn(t − δ) + ∆Nn = −∞ and therefore Qn(t) − Qn,δ(t) ↘ 0 as
n→ ∞ almost surely.

The arrival process An(t), consisting of order statistics of n i.i.d. expo-
nential random variables, can be cast as a thinned Poisson process, with
time-dependent thinning. This construction will play an important role
in the next chapter. We briefly introduce it here. Consider a rate n Poisson
process Π(·) and associate to each point PPi a ‘mark’ Mi chosen uni-
formly at random from the set {1, 2, . . . , n}. If Mi /∈ {M1, M2, . . . , Mi−1},
the point is accepted and otherwise it is rejected. The probability of accep-
tance Pi is then a random variable and, given M1, M2, . . . , Mi−1, is given
by Pi := 1− |{M1,M2,...,Mi−1}|

n . The process Am
n (·) constructed in this way

jumps almost surely exactly n times. In fact, we will show that this pro-
cess is distributionally equivalent to the cumulative arrival process of the
∆(i)/G/1 queue. In order to lower bound (resp. upper bound) An(t) with
a homogeneous Poisson process we compute the largest (resp. smallest)
number of different marks (arrivals) in the time interval (t− δ, t) and use
this as a constant thinning parameter. By [48, Proposition 1],

An(t)
n

a.s.→ FT(t). (3.4.4)

Therefore, for every fixed ε > 0, with high probability,

An(t)
n
∈ ((1− ε)FT(t), (1 + ε)FT(t)),

An(t− δ)

n
∈ ((1− ε)FT(t− δ), (1 + ε)FT(t− δ)). (3.4.5)

The number of cumulative arrivals An(t) coincides with the number
of different ‘marks’ seen up to time t in our equivalent description of
the arrival process. Then, on the event given by (3.4.5), the largest and
smallest number of arrivals in the interval (t− δ, t) are, respectively,

n((1 + ε)FT(t)− (1− ε)FT(t− δ))

= nδ( fT(t) + ε(FT(t) + FT(t− δ))/δ + oδ(1)) =: np. (3.4.6)
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and

n((1− ε)FT(t)− (1 + ε)FT(t− δ))

= nδ( fT(t)− ε(FT(t) + FT(t− δ))/δ + oδ(1)) =: np, (3.4.7)

where oδ(1) denotes a quantity such that limδ→0 oδ(1) = 0.
We now couple the process Am

n (·) with two homogeneous thinned
Poisson processes that act as upper and lower bound on Am

n (·). Recall
that Am

n (·) is defined by a time-dependant thinning of a rate n Poisson
process Π(·). We interpret this thinning as assigning to each point i
of Π(·) a Bernoulli random variable Bei(Pi) that accepts the point with
the time-dependent probability Pi. We simultaneously couple each of
these Bernoulli random variables in the interval (t− δ, t) with other two
Bernoulli random variables such that, almost surely,

Bei(p)≤Bei(Pi)≤Bei(p), (3.4.8)

where p and p are defined in (3.4.6)–(3.4.7). This implies the almost sure
stochastic domination

Np/δ(nδ2)≤Am
n (t)≤Np/δ(nδ2), (3.4.9)

where Np/δ(nδ2) (resp. Np/δ(nδ2)) represents a Poisson process with rate

p/δ (resp. p/δ) at time nδ2. The coupling (3.4.9) is constructed as follows:
Am

n (t) starts at zero in t− δ and for each Poisson point, the test to accept
it is performed with the three coupled Bernoulli random variables. We

obtain (3.4.9) by observing that Npn(δ)
d
= Np/δ(nδ2). We now consider

Np/δ, An(t)
d
= Am

n (t) and Np/δ as arrival processes for three queues, all
starting in 0 at t− δ. Let us denote the three queues respectively as Q,
Qn,δ and Q). Then (3.4.9) implies

Q(δn) � Qn,δ(t) � Q(δn), (3.4.10)

where Q(·) and Q(·) are M/G/1 queues. The arrival process of Q(·)
(resp. of Q(·)) has rate p/δ (resp. p/δ). The service times in the three
queues are given by the same random variables (Si)

∞
n=1. Equation (3.4.10)

is equivalent to

P(Q(δn) > x) ≤ P(Qn,δ(t) > x) ≤ P(Q(δn) > x). (3.4.11)
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Letting n→ ∞, Q(δn) (resp. Q(δn)) converges to its stationary distribu-
tion Q (resp. Q) [25, Section II.4.3]. Therefore,

P(Q > x) ≤ lim inf
n→∞

P(Qn,δ(t) > x)

≤ lim sup
n→∞

P(Qn,δ(t) > x)

≤ P(Q > x). (3.4.12)

Since Qn,δ(t) and Qn(t) have asymptotically the same distribution, the
previous relation simplifies to

P(Q > x) ≤ lim inf
n→∞

P(Qn(t) > x)

≤ lim sup
n→∞

P(Qn(t) > x)

≤ P(Q > x). (3.4.13)

Taking first ε ↘ 0 and then δ ↘ 0, |P(Q > x)− P(Q > x)| → 0 and
both Q and Q converge to the stationary distribution of an M/G/1 queue
Q = Q(t) with arrival rate fT(t). Thus,

lim
n→∞

P(Qn(t) > x) = P(Q(t) > x), (3.4.14)

concluding the proof.

3.5 Conclusions

This chapter concludes the analysis of the heavy-traffic standard ∆(i)/G/1
queue. We have shown that the limiting behavior of the embedded queue
and the queue-length process is almost identical. In fact, the two processes
differ by a linear time-change in the limit. We have crucially assumed
that the variance of the service-time distribution is finite. Next, we drop
this assumption and study the ∆(i)/G/1 queue with heavy-tailed services.





CHAPTER 4
Heavy-tailed services

In this chapter we investigate the heavy-tailed behavior of the ∆(i)/G/1
queue. Our starting point is the representation of the ∆(i)/G/1 queue-
length process given in Chapter 3. We give a new representation of
the arrival process as a thinned Poisson process with time-dependent
thinning. Assuming that the tail of the service distribution decays as a
power-law with exponent γ ∈ (1, 2), so that the mean of the service times
is finite, but the variance is not, we show that the queue-length process
converges to an γ-stable motion with negative quadratic drift.

4.1 Model description

For both the M/G/1 queue and the ∆(i)/G/1 queue it is clear that the
queue-length process is strongly influenced by the service times and in
particular depends on whether or not the service-time distribution is
heavy tailed. For the M/G/1 queue, several heavy-traffic limit theorems
have been established for heavy-tailed service-time distributions with
infinite variance; see [6, 23, 96] and references therein. In this chapter
we pursue similar limit theorems for the heavy-tailed ∆(i)/G/1 queue,
although our thinned arrival process leads to vastly different results.
A connection, however, with the classical work on the M/G/1 queue
[6, 23, 96] is that also in the case of the ∆(i)/G/1 queue stable laws play a
crucial role. For the M/G/1 queue, and in queueing theory in general,
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one typically distinguishes between light-tailed and heavy-tailed service-
time distribution, and many models originally studied under light-tailed
assumptions were later considered under heavy-tailed conditions. As
such, this chapter should be regarded as the heavy-tailed extension of the
light-tailed setting studied in Chapter 3.

For simplicity we will restrict ourselves to exponentially distributed
arrival times. More precisely, we assume (Ti)

n
i=1 to be a sequence of

i.i.d. exponential random variables with mean 1/λ. The arrival times are
then given by the order statistics of (Ti)

n
i=1. The job sizes are given by a

sequence (Si)
n
i=1 of i.i.d. random variables. The server works with speed

cn, so that the service time of customer i is given by Di := Si/cn. We will
take cn = n/(1 + βn−η) for some yet unspecified η > 0 that is chosen
appropriately. We denote the distribution function of S1 by FS(·). We say
a function `(·) is slowly varying when limt→∞ `(tc)/`(t) = 1 for all c > 0.
The service-time distribution is assumed to be in the domain of attraction
of an γ-stable law, that is its tail decays as

P(S > t) = 1− FS(t) = t−γ`(t), γ ∈ (1, 2), (4.1.1)

for a slowly-varying function `(·). Assumption (4.1.1) implies, in partic-
ular, that E[Sk] = ∞ for k > γ, and E[Sk] < ∞ for k < γ. In this setting,
our heavy-traffic condition simplifies to

nλE[D] = λE[S](1 + βn−η) = 1 + βn−η . (4.1.2)

We study the queue after Xn(0) customers have already joined, where
Xn(0) may depend on n and Xn(0)→ ∞. Since in our setting Xn(0)� n,
without loss of generality we can assume that at time 0 there are (still) n
customers in the pool. Before stating the main results of this chapter, let
us introduce some notation. Recall that the queue-length process Qn(t) is
given by

Qn(t) = Xn(0) +An(t)− σn(Bn(t)), (4.1.3)

where Xn(0) denotes the number of customers already in the queue at the
beginning of the first service; See Section 3.3 for the detailed construction
of Qn(·).

Alternatively, Qn(·) can be expressed as the reflection of a free process
Xn(·) as follows [6, Proposition 2.2, p. 251]:

Qn(t) = φ(Xn)(t), t ≥ 0, (4.1.4)

where Xn(·) is given by

Xn(t) = Xn(0) +An(t)− σn(Bn(t))− In(t)/E[S]. (4.1.5)
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Recall the definitions of An(·) and σn(·) in (3.1.1) and (3.1.2). See Figure
1.4 for an example of a sample path of Xn(·).

We will consider the scaled processes given by

X̂n(t) = n−
1

2γ−1 `2(n)Xn(τn(t)), (4.1.6)

Q̂n(t) = φ(X̂n)(t), (4.1.7)

τn(t) = tn−
γ−1

2γ−1 `1(n), (4.1.8)

where `1(·) and `2(·) are slowly-varying functions that depend on `(·) in
(4.1.1). Using basic properties of slowly-varying functions [18, Proposition
1.3.6], the scaling constants can be rewritten as

n−
γ−1

2γ−1 `1(n) = n−
(1+o(1))(γ−1)

2γ−1 , n−
1

2γ−1 `2(n) = n−
1+o(1)
2γ−1 . (4.1.9)

In particular, for γ = 2 the scaling exponents are asymptotically equal to
the exponents for the finite variance case in Theorem 9. We can now state
our main result:

Theorem 15 (The critically loaded ∆(i)/G/1 queue with heavy-tailed ser-

vices). Assume Xn(0) = qn
1

2γ−1 `−1
2 (n) for some q ≥ 0. Assume further that

η = (γ− 1)/(2γ− 1) so that cn = n/(1 + βn−(γ−1)/(2γ−1)). Then,

X̂n(·) d→ X̂(·) in (D, M1), (4.1.10)

where

X̂(t) = q + βλt− λ2

2
t2 + sγS(t), (4.1.11)

sγ = 1/E[S]1+1/γ and S(·) is a spectrally positive γ-stable process. Moreover,

Q̂(·) d→ φ(X̂·) in (D, M1). (4.1.12)

Convergence in (D, M1) is a shorthand notation for convergence in
distribution in the space of càdlàg functions D endowed with the M1
topology. We elaborate on this later on. See Figure 1.5 for some sample
paths of φ(X̂)(·) for different choices of γ for fixed q, β, λ, sγ. See also
Figure 1.6 for a graph of the first passage time as a function of the linear
drift β, for fixed γ and q, and different values of the linear drift parameter
β.

The following corollary of Theorem 15 characterizes the limiting dis-
tribution of TX̂(0):
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Corollary 3 (Busy period convergence). Under the assumptions of Theorem
15, as n→ ∞,

TX̂n
(0) d→ TX̂(0). (4.1.13)

Proof. Note that t 7→ X̂(t) only has positive jumps. Then, by [52, Chapter
VI, Proposition 2.11], the functional f 7→ Tf (0) is continuous in X̂ with
probability one when D is endowed with the M1 topology. Indeed, it
is continuous when D is endowed with the stronger J1 topology. The
conclusion follows by an application of the Continuous-Mapping Theo-
rem.

4.2 Preliminaries

In this section we introduce various results that will be useful for the proof
of Theorem 15. In Section 4.2.1 we present an FCLT for the service-time
process σ(·). In Section 4.2.2 we derive an alternative characterization of
the arrival process of the ∆(i)/G/1 queue which reveals a connection with
the Poisson process. Finally, in Section 4.2.3 we give a heuristic argument
that motivates the scaling constants appearing in Theorem 15.

Since we deal with limit processes with unmatched jumps, we endow D
with the M1 topology. This topology is coarser than the usual J1 topology,
so that convergence with respect to the J1 topology implies convergence
with respect to the M1 topology. When dealing with vector-valued func-
tions (taking values, say, in Rk) we make use of the weak M1 topology MW

1 ,
which coincides with the product topology on D ×D × · · · × D = Dk.
For an in-depth discussion on the various Skorokhod topologies, see [96].

4.2.1 FCLT for a renewal process

We start by presenting an FCLT for the renewal process σn(·). To do
so we exploit the well-known equivalence between the FCLT for partial
sums and counting processes. Let (Si)

n
i=1 be a sequence of non-negative

random variables and let

Σ̂n(t) :=
∑
bntc
i=1 Si −E[S]nt

dn
, (4.2.1)

where (dn)∞
n=1 will be chosen appropriately later. Let σ̂n(·) denote the

rescaled renewal process associated with the service times, defined as

σ̂n(t) :=
σn(t)−E[S]−1nt

dn
. (4.2.2)
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The relation between the scaling limits of Σ̂n(·) and σ̂n(·) is described
in the following theorem:

Theorem 16 (FCLT equivalence [96, Theorem 7.3.2]). Assume (Si)
∞
i=1 is a

sequence of non-negative random variables, and (dn)∞
n=1 is such that dn → ∞,

n/dn → ∞. Then,
Σ̂n(·) d→ S(·) in (D, M1) (4.2.3)

for some process S(·) if and only if

σ̂n(·) d→ −E[S]−1S ◦E[S]−1id(·) in (D, M1), (4.2.4)

where id(·) denotes the identity function.

The topology M1 plays a crucial role in Theorem 16. Indeed, it can
be seen that while (4.2.3) holds in most cases in the J1 topology, the
convergence (4.2.4) can only take place in the M1 topology when the limit
process has positive jumps; See [96, Chapter 7.3.2] for a more detailed
explanation. By assumption (4.1.1), the sequence (Si)

∞
i=1 is in the domain

of attraction of an γ-stable motion, that is (4.2.3) holds, and S(·) is a
centered, spectrally positive γ-stable motion.

By Theorem 16, the process σ̂n(·) is then also in the domain of attrac-
tion of an γ-stable motion. Note that the space scaling constants dn in
(4.2.1) and (4.2.2) are the same.

4.2.2 Poissonian representation of the arrival process

We now introduce an alternative characterization of the arrival process as
a thinned, marked Poisson process. It is constructed as follows. Given
Π(·), a rate λ homogeneous Poisson process, assign to each of its points
a mark chosen uniformly in [n] := {1, . . . , n}. We then discard a point
if it has a mark that has already been observed in the past. Therefore,
conditioned on the marks M1, . . . , Mk−1, the next point of Π(·) will be
accepted with probability (n − |{M1, . . . , Mk−1}|)/n. We denote this
thinned process as Am

n (·). Formally, Am
n (t) is given by

Am
n (t) = Π(t)− Rn(t), (4.2.5)

where Rn(t) counts the number of repeated marks until time t. We em-
phasize that Π(·) and Rn(·) are not independent. The arrival process just
defined is closely related with the i.i.d. sampling in the ∆(i)/G/1 queue.
In fact, we will show that An(·) and Am

n (·) are equivalent. First, let us
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introduce some preliminary notation and results. Given a sequence of
random variables (Xi)

n
i=1, recall that X(1) ≤ X(2) ≤ · · · ≤ X(n) denote their

order statistics. When (Xi)
n
i=1 are i.i.d. exponential random variables, the

distribution of the order statistics is well known:

Lemma 28 (Order statistics of exponentials). Let E1, . . . , En be independent
exponentially distributed random variables with mean one. Then,

(E(j))
n
j=1

d
=
( j

∑
s=1

Es

n− s + 1

)n

j=1
. (4.2.6)

See for example [31, Section 2.5] for a proof. Lemma 28 allows us
to relate the process Am

n (·) we just defined to the arrival process in the
∆(i)/G/1 queue.

Lemma 29. For all t ≥ 0,

Am
n (t)

d
= An(t/n). (4.2.7)

Proof. The ordered arrival times in the ∆(i)/G/1 queue are precisely the
order statistics of (Ti)

n
i=1 and the inter-arrival times are the differences

between the order statistics. By Lemma 28, the distributions of the inter-
arrival times are

1
λ
(E(k) − E(k−1))

d
=

Ek/λ

n− k + 1
, k ≥ 1, (4.2.8)

where we set E(0) = 0 for convenience. Multiplying both sides by n, and
noting that Ei/λ = Ti, gives

n(T(k) − T(k−1))
d
=

Ek

1− k−1
n

1
λ

. (4.2.9)

Now consider the process Am
n (·). Conditioned on the process up to the

arrival k− 1, the next point of Π(·) is accepted with probability 1− k−1
n .

Then, since Π(·) is a rate λ Poisson process, the time at which the next
point of Am

n (·) occurs is distributed as an exponential random variable
with rate λ(1− k−1

n ). Equation (4.2.9) then implies that the inter-arrival
times in the process t 7→ Am

n (t) have the same distribution as the inter-
arrival times of ∑n

i=1 1{nTi≤t} = An(t/n).
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4.2.3 Determining the scaling constants

We now derive the space and time scalings in the limit process X̂(·) in
(4.1.11), starting with the scaling of time k = k(n). It is well known that,
whenever the limit S(·) in (4.2.3) is an γ-stable motion, the fluctuations of

∑
bnktc
i=1 Si around its mean are of the order dk = `0(k)(nk)1/γ (see e.g. [96,

Theorem 4.5.1]), where `0(·) is a slowly-varying function that is a priori
different from `(·) in (4.1.1) (but can be determined from it). Moreover,
in (4.3.25) below we show that the highest order contribution to the drift
component Rn(nkt) is Π(nkt)2/(2n) = OP(k2n), all the other terms being
negligible. In the process X̂(·) both a drift and a random component
appear, so that we must have

`0(k)k1/γn1/γ = k2n. (4.2.10)

Equivalently,

`0(k)
− γ

2γ−1 k = n
γ−1

2γ−1 , (4.2.11)

where `0(·)−γ/(2γ−1) is, by basic properties of slowly-varying functions,
again slowly varying. On the left-hand side of (4.2.11) we recognize a
regularly-varying function with index 1. By [18, Theorem 1.5.12] each
regularly-varying function with index γ admits an (asymptotic) inverse
that is itself regularly varying, with index 1/γ. Therefore, there exists a
slowly-varying function ρ(·) such that

k = n
γ−1

2γ−1 ρ(n
γ−1

2γ−1 ). (4.2.12)

Any sequence (k(n))∞
n=1 that satisfies condition (4.2.12) is suitable for our

purposes, so that we simply take k(n) = n−
γ−1

2γ−1 `1(n), where `1(n) =

ρ(n−
γ−1

2γ−1 ). Note that n 7→ `1(n) is again slowly varying. Therefore, the
rescaled time parameter is defined as

τn(t) := tn−
γ−1

2γ−1 `1(n). (4.2.13)

We shall denote the time scaling factor by τn(1) = n−
γ−1

2γ−1 `1(n). In order
to obtain the space-scaling sequence (dn)∞

n=1, it is enough to insert k =

n−
γ−1

2γ−1 `1(n) into f (k) := k2n. Therefore, we define dn as

dn = ((n−
γ−1

2γ−1 `1(n))2n)−1 = `1(n)−2n−
1

2γ−1 = `2(n)n
− 1

2γ−1 , (4.2.14)

where `2(n) := `1(n)−2 is again slowly varying.
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4.3 Proof of Theorem 15

In this section we carry out the proof of Theorem 15. We first prove
Theorem 15 for β = 0, and later show how to extend it to the general case
β 6= 0.

Rewriting equation (4.1.5) using (4.2.7) gives

Xn(t)
d
= Xn(0) + (Am

n (nt)− cnt/E[S]) + (cnBn(t)/E[S]− σn(Bn(t))
= Xn(0) + (Π(nt)− nt/E[S])
+ (nBn(t)/E[S]− σn(Bn(t)))− Rn(nt), (4.3.1)

where we also used the equality In(t) = cnt− cnBn(t), with cn = n, see
(3.3.10). For simplicity, we introduce the scaled version of the arrival and
service processes, and of the busy time, as

Π̂(t) := n−
1

2γ−1 `2(n)(Π(nτn(t))− cnτn(t)/E[S]),

R̂n(t) := n−
1

2γ−1 `2(n)Rn(nτn(t)),

σ̂n(t) := n−
1

2γ−1 `2(n)(cnτn(t)/E[S]− σn(τn(t))),

Bn(t) := Bn(τn(t))/τn(1). (4.3.2)

Assume that Xn(0) = qn
1

2γ−1 `1(n), for some q ≥ 0. After rescaling, (4.3.1)
becomes

X̂n(τn(t)) = q + Π̂(t) + σ̂n(Bn(t))− R̂n(t). (4.3.3)

The proof of Theorem 15 proceeds as follows. First, the term Π̂(·) is
shown to be negligible in the limit. Second, σ̂n(·) converges to an γ-stable
motion by (4.1.1) and Theorem 16. Third, R̂n(·) is shown to converge to
the parabolic drift −λ2/2t2. Finally, Bn(·) is shown to converge to the
identity function. All these results are then pieced together in Section
4.3.3. Convergence of the above processes is proven in D([0, T]) for a
fixed T > 0. Since T is arbitrary, this implies convergence in D([0, ∞]) by
[17, Lemma 3, p.174].

4.3.1 Stable limit

We start by showing that the process Π̂(·) does not contribute to the
randomness of the limit process.
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Lemma 30. As n→ ∞,

sup
t≤T
|Π̂(τn(t))| P→ 0. (4.3.4)

Proof. By the FCLT for the Poisson process,

Π(nτn(·))− λnτn(·)√
nτn(1)

d→W(·), in (D, U), (4.3.5)

where W(·) is a standard Brownian motion, since 1/E[S] = λ by (4.1.2).
By the Skorokhod Representation Theorem, this implies that we can
couple Π(τn(·)) and W(·) in such a way that

sup
t≤T

∣∣∣Π(nτn(t))− λnτn(·)√
nτn(1)

−W(t)
∣∣∣ P→ 0. (4.3.6)

Moreover, for any c > 0 and n large enough,

c
√

nτn(1) = cnγ/(4γ−2)`1(n)1/2 ≤ n1/(2γ−1)`2(n)−1, (4.3.7)

so that kn := n1/(2γ−1)`2(n)/
√

τn → ∞ and

sup
t≤T

∣∣∣Π(nτn(t))− λnτn(·)
n1/(2γ−1)`−1

2 (n)

∣∣∣
≤ 1

kn
sup
t≤T

∣∣∣Π(nτn(t))− λnτn(t)√
nτn(1)

−W(t)
∣∣∣+ sup

t≤T

∣∣∣W(t)
kn

∣∣∣. (4.3.8)

Since the right-hand side of (4.3.8) converges in probability to zero as
n→ ∞, the claim follows.

Next, we show convergence of the rescaled service process σ̂n(·) to an
γ-stable motion:

Lemma 31 (Stable limit). As n→ ∞,

σ̂n(·) d→ sγS(·) in (D, M1), (4.3.9)

where sγ = 1/E[S](γ+1)/γ and S(·) is a spectrally positive γ-stable motion.
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Proof. By classical results, the rescaled partial sums of (Si)
∞
i=1 converge to

a spectrally positive γ-stable motion, see e.g. [52] and [96, Theorem 4.5.3].
In particular (4.2.3) is satisfied. Theorem 16 implies (4.2.4), that is

σ̂n(·) d→ 1
E[S]

S
( ·

E[S]

)
in (D, M1). (4.3.10)

By standard properties of stable motion (S(ct))t≥0
d
= (c1/γS(t))t≥0 for

c > 0, so that the claim (4.3.9) follows.

Remark 1. The stable law corresponding to γ = 2 is the standard normal
distribution. In particular, its variance is finite. Although our results do
not directly hold for γ = 2, it is still possible to enter γ = 2 in the formulas
that we obtain, and what is obtained should be consistent with our results
of Chapter 3. This is true, for example, for the coefficient of the stable
motion in (4.3.9). Indeed, in Theorem 9 we proved that if E[S2] = 1, the
standard deviation of the limiting Brownian motion is λ3/2 = E[S]−3/2.

4.3.2 Drift limit

The most difficult task in proving Theorem 15 is to deal with the compli-
cated drift R̂n(·) in (4.3.3). We will prove the following result:

Proposition 2 (Drift limit). As n→ ∞ and for any T > 0,

sup
t≤T

∣∣∣R̂n(t)−
λ2

2
t2
∣∣∣ P→ 0. (4.3.11)

The proof will exploit upper and lower bounds for R̂n(·), obtained by
giving an equivalent representation of the drift process. First, note that
the probability of extracting a mark that has already appeared at time
i > 0 is Dn(i− 1)/n, where Dn(i) denotes the number of different marks
seen up to the i-th arrival epoch in Π(·). Therefore, conditionally on
Dn(i− 1), the thinning procedure is represented by a Bernoulli random
variable with parameter Dn(i− 1)/n. Since at time t a total of Π(t) points
have been accepted, we have

Rn(t)
d
=

Π(t)

∑
i=1

1{Ui≤ Dn(i−1)
n }, (4.3.12)

where (Ui)
∞
i=1 are random variables that are uniformly distributed on

[0, 1], and are independent of all other randomness. Then, 1{Ui≤x} is
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distributed as a Bernoulli random variable with parameter x. Moreover,
Dn(i) is given explicitly as

Dn(i) = i− Zn(i), (4.3.13)

where Zn(i) is the number of repeated marks seen up to the time of the i-th
arrival. In other words we have the crucial relation

Dn(i)
d
= i− Rn(Π−1(i)), (4.3.14)

where Π−1(i) is the arrival time of the i-th customer; see Figure 4.1.

Π−1(1) Π−1(2) Π−1(3)

1

2

3

t

k

Figure 4.1: A sample path of the process Π(·).

Exploiting these ideas, we construct a process (Rn(k))∞
k=1 recursively,

by setting R̃n(0) := 0 and

R̃n(k) := R̃n(k− 1) + 1{Uk≤ k−1−R̃n(k−1)
n }, k ≥ 1. (4.3.15)

Unraveling the recursion, we get

R̃n(k) :=
k

∑
i=1

1{Ui≤ i−1−R̃n(i−1)
n }, k ≥ 1. (4.3.16)

We see that
Rn(t)

d
= R̃n(Π(t)). (4.3.17)

As already mentioned, the processes Rn(·) and Π(·) are not independent.
The distributional equality (4.3.17) reveals the dependency of Rn(·) on
the process Π(·).
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The next step is to construct an upper and a lower bound on R̃n(k).
Since R̃n(k) ≥ 0, the upper bound is trivially

1{Ui≤(i−1−R̃n(i−1))/n} ≤ 1{Ui≤ i−1
n }

, (4.3.18)

so that, almost surely,

R̃n(k) ≤ R̃(up)
n (k) :=

k

∑
i=1

1{Ui≤ i−1
n }

. (4.3.19)

The lower bound is more involved. By (4.3.19),

1{Ui≤ i−1−R̃n(i−1)
n } ≥ 1

{Ui≤ i−1−R̃
(up)
n (i−1)
n }

(4.3.20)

so that

R̃n(k) ≥ R̃(low)
n (k) :=

k

∑
i=1

1
{Ui≤ i−1−R̃

(up)
n (i−1)
n }

. (4.3.21)

Note that Ui is independent of R̃(up)
n (i− 1). We have then constructed a

coupling such that for all t ≥ 0, almost surely,

R(low)
n (t) ≤ Rn(t) ≤ R(up)

n (t), (4.3.22)

where R(low)
n (t) := R̃(low)

n (Π(t)) and R(up)
n (t) := R̃(up)

n (Π(t)). For the
next and last step we prove uniform convergence of the upper and lower
bounds to the same limit.

Upper bound

In this section we will estimate the quantity

Un(T) := sup
t≤T

∣∣∣n−1/(2γ−1)`2(n)R(up)
n (nτn(t))−

λ2

2
t2
∣∣∣, (4.3.23)

We will prove the following:

Lemma 32 (Upper bound converges to zero). As n→ ∞,

Un(T)
P→ 0, (4.3.24)

for every fixed T > 0.
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Proof. We split the absolute value in (4.3.23) as

Un(T) ≤
∣∣∣n− 1

2γ−1 `2(n)
Π(nτn(t))

∑
i=1

(
1{Ui≤ i−1

n }
− i− 1

n

)∣∣∣
+
∣∣∣n− 1

2γ−1 `2(n)
Π(nτn(t))

∑
i=1

( i− 1
n

)
− λ2

2
t2
∣∣∣

≤
∣∣∣n− 1

2γ−1 `2(n)
Π(nτn(t))

∑
i=1

(
1{Ui≤ i−1

n }
− i− 1

n

)∣∣∣
+
∣∣∣ Π(nτn(t))2

2n2γ/(2γ−1)`−1
2 (n)

− λ2

2
t2
∣∣∣+ εn, (4.3.25)

where εn = |Π(τn(t))/2n| is an error term. By the strong FLLN for the
Poisson process

Π(tnγ/(2γ−1)`1(n))
nγ/(2γ−1)`2(n)−1/2

a.s.→ λt, in (D, U). (4.3.26)

We note that we have made explicit use of the specific form of the scaling
functions `1(·) and `2(·) as determined above in (4.2.10). More specifically,
by definition we have that `1(n)−2 = `2(n). Moreover, the functional
x 7→ x2 from D([0, T]) to itself is almost surely continuous in f (t) = λt
in the uniform topology. This implies that the second and third terms in
(4.3.25) converge to zero uniformly for t ≤ T as n→ ∞.

By the LLN for the Poisson process we have that Π(s) ≤ (λ + ε)s with
high probability for s = O(nγ/(2γ−1)). The sum in the first term in (4.3.25)
is then bounded on the event {Π(s) ≤ (λ + ε)s} as

sup
s≤nτn(T)

∣∣∣Π(s)

∑
i=1

(
1{Ui≤ i−1

n }
− i− 1

n

)∣∣∣
≤ sup

s≤(λ+ε)nτn(T)

∣∣∣ bsc∑
i=1

(
1{Ui≤ i−1

n }
− i− 1

n

)∣∣∣. (4.3.27)

The right-hand side is the supremum of a martingale. In the following and
future computations we shall denote T̄ := T(λ + ε). Then, an application
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of Doob’s L2 martingale inequality [63, Theorem 11.2] gives

P
(

sup
s≤T̄nγ/(2γ−1)`1(n)

∣∣∣ bsc∑
i=1

(
1{Ui≤ i−1

n }
− i− 1

n

)∣∣∣ ≥ εn
1

2γ−1 `−1
2 (n)

)

≤
T̄n

γ
2γ−1 `1(n)

∑
i=1

E[(1{Ui≤ i−1
n }
− i−1

n )2]

ε2n
2

2γ−1 `−2
2 (n)

=
1

ε2n
2

2γ−1 `−2
2 (n)

T̄n
γ

2γ−1 `1(n)−1

∑
i=1

( i
n
− i2

n2

)

≤ T̄2n
2γ

2γ−1 `2
1(n)

ε2n
2γ+1
2γ−1 `−2

2 (n)
= O(n−

1
2γ−1 `2(n)), (4.3.28)

and this implies that the right-hand side of (4.3.27) is oP(n1/(2γ−1)`−1
2 (n)).

Lower bound

By (4.3.22) we also have

Rn(t) � R(low)
n =

Π(t)

∑
i=1

1{Ui≤(i−1−R̃n
(up)

(i−1))/n}. (4.3.29)

Consequently, we now estimate

Ln(T) := sup
t≤T

∣∣∣n−1/(2γ−1)`2(n)R(low)
n (nτn(t))−

λ2

2
t2
∣∣∣. (4.3.30)

Lemma 33 (Lower bound converges to zero). As n→ ∞,

Ln(T)
P→ 0, (4.3.31)

for every fixed T > 0.
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Proof. Similarly as before, conditioned on the event {Π(s) ≤ (λ + ε)s},
Ln(T)

≤ sup
s≤nτn(T̄)

∣∣∣n− 1
2γ−1 `2(n)

bsc
∑
i=1

(
1
{Ui≤ i−1−R̃

(up)
n (i−1)
n }

− i− 1− R̃(up)
n (i− 1)
n

)∣∣∣
+ sup

t≤T

∣∣∣n− 1
2γ−1 `2(n)

Π(nτn(t))

∑
i=1

i− 1
n
− λ2

2
t2
∣∣∣

+ sup
s≤nτn(T̄)

∣∣∣n− 1
2γ−1 `2(n)

bsc
∑
i=1

R̃(up)
n (i− 1)

n

∣∣∣. (4.3.32)

The first term in (4.3.32) is bounded as before, since it is the supremum

of a martingale. Denote Yn(i) := (i− 1− R̃(up)
n (i− 1))/n for convenience.

By Doob’s L2 martingale inequality,

ε2n
2

2γ−1 `−2
2 (n)P

(
sup

s≤nτn(T̄)

∣∣∣ bsc∑
i=1

(1{Ui≤Yn(i)} −Yn(i))
∣∣∣ ≥ εn

1
2γ−1 `−1

2 (n)
)

≤ E
[( nτn(T̄)

∑
i=1

1{Ui≤Yn(i)} −Yn(i)
)2]

=
nτn(T̄)

∑
i=1

E[(1{Ui≤Yn(i)} −Yn(i))2]. (4.3.33)

Since the variance of a Bernoulli random variable with parameter p is
p(1− p), we get

E[(1{Ui≤Yn(i)} −Yn(i))2] = E[Yn(i)−Yn(i)2] ≤ E[Yn(i)] ≤
i
n

. (4.3.34)

This implies that

sup

i≤T̄n
γ

2γ−1 `1(n)

E[(1{Ui≤Yn(i)} −Yn(i))2] ≤ T̄n
1−γ
2γ−1 `1(n). (4.3.35)

In particular,

nτn(T̄)

∑
i=1

E[(1{Ui≤Yn(i)} −Yn(i))2]

≤ τn(T̄)T̄n
1−γ
2γ−1 `2

1(n) = T̄2n
1

2γ−1 `2
1(n) = o(n

2
2γ−1 ). (4.3.36)
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The second term in (4.3.32) has been shown to converge in (4.3.25) and

(4.3.26). Since t 7→ R̃(up)
n (t) is non-decreasing, we bound the third term as

sup
s≤nτn(T̄)

∣∣∣ bsc∑
i=1

R̃(up)
n (i− 1)

n

∣∣∣ ≤ T̄n
1−γ
2γ−1 `1(n)R̃(up)

n (nτn(T̄)). (4.3.37)

Note that T̄n(1−γ)/(2γ−1)`1(n)→ 0 as n→ ∞. Since

n−1/(2γ−1)`2(n)R̃(up)
n (nτn(T̄))

P→ 0 (4.3.38)

by Lemma 32,

n−
1

2γ−1 `2(n) sup
s≤nτn(T̄)

X
∣∣∣ bsc∑

i=1

R̃(up)(i− 1)
n

∣∣∣
≤ (T̄n

1−γ
2γ−1 `1(n))n

− 1
2γ−1 `2(n)R̃(up)

n (τn(T̄))
P→ 0 (4.3.39)

as n→ ∞. This concludes the proof of Lemma 33.

Proof of Proposition 2. Since

sup
t≤T
|n−

1
2γ−1 `2(n)Rn(tn

γ
2γ−1 `1(n))−

1
2

t2| (4.3.40)

= sup
t≤T

(n−
1

2γ−1 `2(n)Rn(tn
γ

2γ−1 `1(n))−
1
2

t2)+

+ sup
t≤T

(n−
1

2γ−1 `2(n)Rn(tn
γ

2γ−1 `1(n))−
1
2

t2)− (4.3.41)

we get

sup
t≤T
|n−

1
2γ−1 `2(n)Rn(tn

γ
2γ−1 `1(n))−

1
2

t2| ≤ Un(T) ∨ Ln(T) (4.3.42)

and both Un(T) and Ln(T) converge in probability to zero by Lemma 32
and Lemma 33. This completes the proof of Proposition 2.

4.3.3 Busy-time process limit

For the final step, we prove that the cumulative busy-time process con-
verges to the identity function.
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Lemma 34 (Cumulative idle time is negligible). As n→ ∞,

Bn(·) d→ id(·), in (D, U), (4.3.43)

where id(·) : R+ 7→ R+ is the identity function.

Proof. Since Bn(t) = t− In(t), we will prove that In(t) = inf0≤s≤t(Pn(s)−)
converges uniformly to zero, where Pn(t) is the net-put process defined in
(3.3.7). By continuity of the map ψ(·) given by ψ : f (·)→ inf0≤s≤t( f (s)−),
it is sufficient to prove that Pn(·) converges uniformly to zero, when
appropriately rescaled. By manipulating (3.3.7) we immediately get

1
τn(1)

sup
t≤T
|Pn(τn(t))| = sup

t≤T

∣∣∣An(τn(t))
τn(1)

1
An(τn(t))

An(τn(t))

∑
i=1

Si − 1
∣∣∣

≤ sup
t≤T

∣∣∣An(τn(t))
τn(1)

− 1
E[S]

∣∣∣ 1
An(τn(t))

An(τn(t))

∑
i=1

Si

+ sup
t≤T

∣∣∣ 1
E[S]

1
An(τn(t))

An(τn(t))

∑
i=1

Si − 1
∣∣∣. (4.3.44)

Note that τn(t) → ∞ and An(τn(t))
P→ ∞ as n → ∞. Then the sec-

ond term converges to zero in probability by the LLN and the first one
converges to zero by the LLN for the Poisson process. Indeed, since
An(τn(t)) = Π(τn(t))− Rn(τn(t)), we have that

sup
t≤T

∣∣∣An(τn(t))
τn(1)

− 1
E[S]

∣∣∣
≤ sup

t≤T

∣∣∣Π(τn(t))
τn(1)

− 1
E[S]

∣∣∣+ 1
τn(1)

sup
t≤T
|Rn(τn(t))|

= sup
t≤T

∣∣∣Π(τn(t))
τn(1)

− 1
E[S]

∣∣∣+ n
1

2γ−1 `n(n)−1

τn(1)
sup
t≤T

|Rn(τn(t))|
n

1
2γ−1 `n(n)−1

. (4.3.45)

As shown above in Proposition 2, n−1/(2γ−1)`2(n)Rn(τn(t)) converges
uniformly to −λ2/2t2, and since n1/(2γ−1)`−1

n /τn(1) → 0, the second
term in (4.3.45) is negligible. By the heavy-traffic assumption (4.1.2) and
the LLN for the Poisson process the first term also converges to zero.

We conclude the proof of Theorem 15 by collecting the results from
the previous sections. First, we split the process X̂n(·) in its martingale
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and drift components as in (4.3.3) to get

X̂n(t) = q + Π̂(t) + σ̂n(Bn(t))− R̂n(t). (4.3.46)

Since Π̂(·) and σ̂n(·) are independent, and Bn(·) and R̂n(·) converge to
deterministic limits in D, we have

(Π̂(·), σ̂n(·), Bn(·), R̂n(·)) d→ (0, sγS(·), id(·), λ2/2id(·)2). (4.3.47)

in (D4, MW
1 ). This, together with the time-change theorem for processes

with discontinuous sample paths [96, Theorem 13.2.3] implies

(Π̂(·), σ̂n(Bn(·)), R̂n(·)) d→ (0, sγS(·), id(·)2λ2/2). (4.3.48)

in (D3, MW
1 ). Note that [96, Theorem 13.2.3] does not hold in general in

the finer J1 topology. Since the three limit processes in (4.3.48) do not
have common discontinuity points, we have that addition is continuous
in (0, 1/E[S](γ+1)/γS(·), id(·)2λ2/2) in the M1 topology, so that

X̂n(t)
d→ q + sγS(t)−

λ2

2
t2, in (D, M1). (4.3.49)

The second claim (4.1.12) follows immediately from the Continuous-
Mapping Theorem, since the reflection map is Lipschitz continuous in the
M1 topology by [96, Theorem 13.5.1].

Extension to general initial drift Now we assume that

cn = n/(1 + βn−
γ−1

2γ−1 `2(n)−1), (4.3.50)

with β 6= 0. We rewrite (4.3.1) for a general service speed cn as

Xn(t)
d
= Xn(0) + (Π(nt)− λcnt)
+ (cnBn(t)/E[S]− σn(Bn(t)))− Rn(nt)

= Xn(0)−
λ

1 + βn−
γ−1

2γ−1

t + (Π(nt)− λnt)

+ (cnBn(t)/E[S]− σn(Bn(t)))− Rn(nt), (4.3.51)

where we have used assumption (4.1.2). By rescaling the process as in
(4.3.3), we obtain

X̂n(t) = q− λtn
γ−1

2γ−1

1 + βn−
γ−1

2γ−1

+ Π̂(t) + σ̂n(Bn(t))− R̂n(t). (4.3.52)
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Since 1 + βn−(γ−1)/(2γ−1) → 1 as n → ∞, the rescaled partial sums of
the double sequence (Si/(1+ βn−(γ−1)/(2γ−1)))∞

i=1 converge to the γ-stable
motion S(·), hence Theorem 16 holds and σ̂n(·) → sγS(·). Moreover,
Π̂(·), Bn(·), and R̂n(·) converge as before, and as n→ ∞,

− λtn
γ−1

2γ−1

1 + βn−
γ−1

2γ−1

→ λβt. (4.3.53)

Summarizing, we have shown that

X̂n(t)
d→ q + λβt + sγS(·)−

λ2

2
t2, in (D, M1), (4.3.54)

concluding the proof.

4.4 Conclusions

In this chapter we have extended the analysis of the ∆(i)/G/1 queue to
the case of power-law service distributions. We have shown that the
limiting behavior of the queue-length process is vastly different from the
light-tailed case. In the heavy-tailed setting, the queue-length process is
driven by large upward jumps and, consequently, is discontinuous almost
everywhere. However, the depletion-of-points effect is again present in
the form of a negative quadratic drift. Next, we analyze the ∆(i)/G/1
queue in the setting of size-biased arrival times.





CHAPTER 5
Biased arrivals and random

graphs

In this chapter we consider a generalization of the ∆(i)/G/1 queue, which
we call the ∆α

(i) /G/1 queue. In this model, n customers arrive at the
queue at times depending on their service requirement. A customer with
stochastic service requirement S arrives to the queue after an exponen-
tially distributed time with mean S−α for some α ∈ [0, 1]; so larger service
requirements trigger customers to join earlier. As α varies in [0, 1], this
model interpolates between the ∆(i)/G/1 queue and the exploration pro-
cess for inhomogeneous random graphs. We consider the asymptotic
regime in which the pool size n grows to infinity and establish that the
scaled embedded queue process converges to a diffusion process with a
negative quadratic drift. While the form of the limit process is identical to
the α = 0 case, the coefficients of the drift and the Brownian component
depend crucially on α. We also describe how this first busy period of the
queue gives rise to a critically connected random forest.

5.1 Model description

The ∆α
(i) /G/1 queue is defined as follows. Again n customers are trig-

gered to join the queue after independent exponential times, but the
rates of their exponential clocks depend on their service requirements.
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More specifically, denoting again the service requirement of customer i
by Si, conditioned on Si the arrival time Ti of i is distributed as a rate
S−α exponential random variable. We will initially take α ∈ [0, 1]. Then,
when α = 0, the arrival times are i.i.d. and when α ∈ (0, 1] the arrival
times decrease with the service requirement. The queue is attended by a
single server that starts working at time zero, works at unit speed, and
serves the customers in a first-come first-served order. At time zero, we
allow for the possibility that i of the n customers have already joined the
queue and are waiting for service. We will take i � n, so that without
loss of generality we assume that there are still n customers waiting for
service. These initial customers are numbered 1, . . . , i and the customers
that arrive later are numbered i + 1, i + 2, . . . in order of their arrival.
Let An(k) denote the number of customers arriving during the service
time of the k-th customer. Note that the random variables (An(k))k≥1 are
not i.i.d. due to the finite-pool effect and the service-dependent arrival
rates. Because of the complicated dependence structure of the (An(k))k≥1,
we will model and analyze this queue using the queue-length process
embedded at service completions, generalizing the results of Chapter 2.

While the queueing process consists of alternating busy and idle peri-
ods, in the ∆α

(i) /G/1 queue we naturally focus on the first busy period.
The negative quadratic drift in the scaling captures the effect of a pool
of potential customers that diminishes with time: after some time, the
activity in the queue inevitably becomes negligible. The early phases of
the process are therefore of primary interest, when the head start pro-
vided by the initial customers still matters and when the rate of newly
arriving customers is still relatively high. The head start and strong influx
together lead to a substantial first busy period, and essentially determine
the relevant time of operation of the system.

We also consider the structural properties of the first busy period in
terms of a (directed) random graph associated to the queueing process as
follows. Say that the number of customers served in the first busy period,
starting with i initial customers, is N and consider a graph with vertex
set {1, 2, . . . , N} and in which two vertices r and s are joined by an edge
if and only if the r-th customer arrives during the service time of the s-th
customer. If i = 1, then the graph is a rooted tree with N labeled vertices,
the root being labeled 1. If i > 1, then the graph is a forest consisting of
i distinct rooted trees whose roots are labeled 1, . . . , i, respectively. The
total number of vertices in the forest is N.
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5.1.1 The ∆α
(i)/G/1 queue

Let us now describe our assumptions in detail. We consider a sequence
of queueing systems, each with a finite number n of potential customers
labelled with indices i ∈ [n] := {1, . . . , n}. Customers have i.i.d. service
requirements S1, S2, . . . with cumulative distribution function FS(·). We
denote with S a generic random value with distribution FS(·). In order
to obtain meaningful limits as the system grows large, we assume that
the service speed cn scales as cn = n/(1 + βn−1/3) with β ∈ R so that the
service time of customer i is given by

Di =
Si
cn

=
Si
n
(1 + βn−1/3). (5.1.1)

The assumptions above follow the assumptions on the ∆(i)/G/1 model in
Chapter 2 closely. For the ∆α

(i) /G/1 queue, we fix a parameter α ∈ [0, 1]
and we assume, crucially, that E[S2+α] < ∞.

Conditioned on Si, the arrival time Ti of customer i is assumed to be
exponentially distributed with mean 1/(λSα

i ), with λ > 0. Hence

Ti
d
=

Ei
λSα

i
, (5.1.2)

where (Ei)
n
i=1 denotes a family of independent mean one exponential

random variables. Note that conditionally on the service times, the arrival
times are independent. However they are not identically distributed. We
introduce c(1), c(2), . . . , c(n) as the indices of the customers in order of
arrival, so that Tc(1) ≤ Tc(2) ≤ Tc(3) ≤ . . . almost surely.

We crucially assume that the queueing system is critically loaded. In
this setting, the heavy-traffic condition for the load ρn turns out to be

ρn := λnE[S1+α](1 + βn−1/3) = 1 + βn−1/3 + oP(n−1/3), (5.1.3)

where λ = λn may depend on n and fn = oP(n−1/3) is such that fnn1/3 P→
0. The parameter β then determines the position of the system inside
the critical window: the traffic intensity is greater than one for β > 0,
so that the system is initially overloaded, while the system is initially
underloaded for β < 0.

Our main object of study is the queue-length process embedded at
service completions, given by Qe

n(0) = i and

Qe
n(k) = (Qe

n(k− 1) + An(k)− 1)+. (5.1.4)
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The number An(k) of arrivals during the k-th service is given by

An(k) = ∑
i/∈νk

1{Ti≤Dc(k)} (5.1.5)

where νk ⊆ [n] denotes the set of customers who have been served or are
in the queue at the start of the k-th service. Note that

|νk| = (k− 1) + Qe
n(k− 1) + 1 = k + Qe

n(k− 1). (5.1.6)

We recall that Qe
n(·) is also represented as the reflected version of a process

Nn(·), as
Qe

n(k) = φ(Nn)(k), (5.1.7)

with Nn(·) given by Nn(0) = i and satisfying the recursion

Nn(k) = Nn(k− 1) + An(k)− 1. (5.1.8)

By construction, in this queueing system there are no idle periods. We
assume that whenever the server finishes processing one customer, and
the queue is empty, the customer to be placed into service is chosen
according to the size-biased distribution

P(customer j is placed in service | νi−1) =
Sα

j

∑l /∈νi−1
Sα

l
, j /∈ νi−1,

(5.1.9)
where we tacitly assumed that customer j is the i-th customer to be served.
In fact, with definitions (5.1.5) and (5.1.9), the process (5.1.4) describes
the ∆α

(i) /G/1 queue with exponential arrivals (5.1.2) embedded at service
completions.

Remark 2 (A directed random tree). The embedded queueing process in
(5.1.4) and (5.1.7) gives rise to a certain directed rooted tree. To see this,
associate a vertex i to customer i and let c(1) be the root. Then, draw
a directed edge to c(1) from c(2), . . . , c(An(1) + 1) so to all customers
who have joined during the service time of c(1). Then, draw an edge
from all customers who have joined during the service time of c(2) to
c(2), and so on. This procedure draws a directed edge from c(i) to c(i +
∑i−1

j=1 An(j)), . . . , c(i + ∑i
j=1 An(j)) if An(i) ≥ 1. The procedure stops

when the queue is empty and there are no more customers to serve. When
Qe

n(0) = 1, this gives a random directed rooted tree (resp. forest when
Qe

n(0) = i with i ≥ 2). The degree of vertex c(i) is 1 + |An(i)| and the
total number of vertices in the tree (forest) is given by

TQe
n(0) = inf{k ≥ 0 : Qe

n(k) = 0}, (5.1.10)
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the hitting time of zero of the process Qe
n(·).

Remark 3 (An inhomogeneous random graph). If α = 1, the random tree
constructed as above is distributionally equivalent to the tree spanned
by the exploration process of an inhomogeneous random graph. Let us
elaborate on this. An inhomogeneous random graph is a set of vertices
V = [n] with (possibly random) weights (Wi)

n
i=1 and edges between

them. In a Norros-Reittu random graph, given (Wi)
n
j=1, i and j share an

edge with probability

pi↔j := 1− exp
(
− WiWj

∑n
j=1Wi

)
. (5.1.11)

The tree constructed from the ∆1
(i)/G/1 queue then corresponds to the

exploration process of a rank-1 inhomogeneous random graph, defined
as follows. Start with a first arbitrary vertex and reveal all its neighbors.
Then the first vertex is discarded and we move to one (suitably chosen)
neighbor, and reveal its neighbors. This process continues by exploring
the neighbors of each revealed vertex, in order of appearance. By inter-
preting each vertex as a different customer, this exploration process can
be coupled to a ∆1

(i)/G/1 queue, for a specific choice of (Wi)
n
i=1 and λn.

Indeed, ifWi = (1 + βn−1/3)Si for i = 1, . . . , n, we get

pj↔i = 1− exp
(
− (1 + βn−1/3)

Si
n

Sj

∑n
l=1 Sl/n

)
= 1− exp

(
− DiSj

n
∑n

i=1 Si

)
= P(Tj ≤ Di | (Si)

n
j=1), (5.1.12)

where

Tj ∼
Ej

Sjλn
, (5.1.13)

and λn = n/(∑n
i=1 Si). The rank-1 inhomogeneous random graph with

weights (Si)
n
i=1 is said to be critical (see [15, (1.13)]) if

∑n
i=1 S2

i
∑n

i=1 Si
=

E[S2]

E[S]
+ oP(n−1/3) = 1 + oP(n−1/3). (5.1.14)

Consequently, if β = 0 and λn = n/ ∑n
i=1 Si, the heavy-traffic condition

(5.1.3) for the ∆1
(i)/G/1 queue implies the criticality condition (5.1.14) for

the associated random graph, and vice versa.
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Remark 4 (The embedded queue and the queue-length process). By def-
inition, the embedded queue (5.1.4) neglects the idle time of the server.
Via the time-change argument of Chapter 3 it is possible to prove that,
in the limit, the cumulative idle time is negligible and the embedded
queue process is arbitrarily close to the queue-length process uniformly
over compact intervals. Indeed, the techniques developed earlier can
be extended to the ∆α

(i) /G/1 queue without additional difficulties. We
refrain from doing it here.

5.1.2 The scaling limit of the ∆α
(i)/G/1 queue

In what follows, all the processes we consider are elements of the space
D := D([0, ∞)). Recall that, for a discrete-time process X(·) : N → R,
we write X(t), with t ∈ [0, ∞), instead of X(btc). In particular, a process
defined in this way has càdlàg paths. In this setting, we endow the space
D with the Skorokhod J1 topology.

We are now able to state our main result:

Theorem 17 (Scaling limit for the ∆α
(i) /G/1 queue). Assume that α ∈ [0, 1],

E[S2+α] < ∞ and that the heavy-traffic condition (5.1.3) holds. Assume also
that the arrival times (Ti)

n
i=1 satisfy (5.1.2). If Qe

n(0) = qn1/3, then as n→ ∞,

n−1/3Qe
n(·n2/3)

d→ φ(N̂)(·) in (D, J1), (5.1.15)

where N̂(·) is the diffusion process

N̂(t) = q + βt− λ
E[S1+2α]

2E[Sα]
t2 + σW(t), (5.1.16)

with σ2 := λ2E[Sα]E[S2+α] and W(·) is a standard Brownian motion.

As a straightforward consequence of Theorem 18 we have the follow-
ing:

Theorem 18 (Number of customers in the first busy period). Assume that
α ∈ [0, 1], E[S2+α] < ∞ and that the heavy-traffic condition (5.1.3) holds. If
Qe

n(0) = qn1/3, then as n→ ∞,

n−2/3TQe
n(0)

d→ Tφ(N̂)(0), (5.1.17)

where N̂(·) is given in (5.1.16).
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In particular, denoting by |Fn| the number of vertices in the forest
constructed from the ∆α

(i) /G/1 queue in Remark 2, we have that, as
n→ ∞,

|Fn| d→ Tφ(N̂)(0). (5.1.18)

Remark 5 (The parameter α). We restrict the parameter α in the interval
[0, 1] because the extremes correspond to two well-known models, but it
is also of interest to investigate the scaling limit for the ∆α

(i) /G/1 model
when α is any real number. It is clear from (5.1.16) that a necessary con-
dition for Theorem 17 to hold is that E[max{S2+α, S1+2α, Sα}] < ∞. If
α ∈ [0, 1], this is equivalent to E[S2+α] < ∞, as can be seen from Figure 5.1.
The same figure also clarifies the necessary conditions for convergence for
the remaining values of α. In particular, if α ∈ [−1, 0), E[S2+α] < ∞ and
E[Sα] < ∞ are both necessary conditions, since one does not imply the
other. Analogously, if α ∈ (−2,−1), both E[S2+α] < ∞ and E[S1+2α] < ∞
are necessary conditions. In all cases, the moment condition in Figure 5.1
and the heavy-traffic assumption turn out to be sufficient for Theorem 17
to hold.

−2 −1 1 2 α

2 + α
1 + 2α

α

Figure 5.1: Exponents of the service requirement S in the limiting diffu-
sion. The thick black line represents the moments that are required to be
finite for the main theorem to hold.

Remark 6 (The ∆(i)/G/1 queue and related models). Let us now compare
Theorem 17 with two known results. For α = 0, the limit diffusion
simplifies to

N̂(t) = βt− 1
2

t2 + σW(t), (5.1.19)

with σ2 := λ2E[S2], in agreement with our results in Chapter 2.
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In [15] it is shown that, for a general class of weights (Wi)
n
i=1 that in-

clude i.i.d. weights and further assuming (5.1.14), the exploration process
of the corresponding inhomogeneous random graph converges to

N̂(t) = βt− E[W3]

2E[W2]2
t2 +

√
E[W ]E[W3]

E[W2]
W(t). (5.1.20)

For α = 1, (5.1.16) can be rewritten using (5.1.3) as

N̂(t) = βt− E[S3]

2E[S2]2
t2 +

√
E[S]E[S3]

E[S2]
W(t). (5.1.21)

Therefore the two processes coincide ifWi = Si, as expected.
Let us now draw a subtler connection, this time between the ∆α

(i) /G/1
and the ∆(i)/G/1 queues. We will show that, in small time intervals and
for large n, the ∆α

(i) /G/1 queue is approximated by a ∆(i)/G/1 queue with
different service and arrival time distributions. Despite being valid only
at very small time scales, this approximation gives the correct leading
order behavior of the queue. In particular, it will motivate our choice of
the heavy-traffic parameter (5.1.3). The interarrival times in the ∆α

(i) /G/1
queue are distributed as

T(k) − T(k−1)
d
=

Ek
λ ∑i/∈Sk−1

Sα
i

, (5.1.22)

where (Ek)
n
k=1 denote mean one exponential random variables and the

sum is over the set [n] \Sk−1, where Sk−1 = {c(1), c(2), . . . , c(k − 1)}.
Note that |[n] \Sk−1| = n− (k− 1). When k = k(n)→ ∞ as n→ ∞, but
k = o(n) (say, k = n2/3) we have

n(T(k) − T(k−1))
d→ Ek

λE[Sα]
. (5.1.23)

Note that by (5.1.5), scaling the service requirement as Si/cn is equivalent
to scaling the arrival times as cnTi, where in (5.1.23) we have taken cn = n
for simplicity. It is also equivalent to studying the (unscaled) ∆α

(i) /G/1
queue on a time interval [0, t/cn] = [0, t/n]. Equation (5.1.23) implies
that the arrival process of the ∆α

(i) /G/1 queue is approximated for large
n by the arrival process of a ∆(i)/G/1 queue with a different arrival rate
parameter λ∗ = λE[Sα], the equality holding in the limit as n→ ∞.

Let us now focus on the service times and compute the law Lt(Si)
of Si conditioned on Ti = t. We will show that for any fixed i, Lt(Si)
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is different from the law of Si, and that asymptotically is independent
from t. This result can be directly extended to a finite family (Lt(Si))

k
i=1

and thus holds for all arrival-service pairs occurring in a small time
interval [0, t/n]. The probability density function of Lt(Si) is given by
fSi ,Ti (s, t)/ fTi (t), where fSi ,Ti (s, t) is the joint density function of Si and Ti.
First we compute

P(Si ≤ s, Ti ≤ t) = P(Si ≤ s, expi(λSα
i ) ≤ t) =

∫ s

0
(1− e−txα

) fS(x)dx.

(5.1.24)
Taking s→ ∞ gives P(Ti ≤ t) as

P(Ti ≤ t) =
∫ ∞

0
(1− e−txα

) fS(x)dx. (5.1.25)

Therefore,
fSi ,Ti (s, t)

fTi (t)
=

sα fS(s)e−tsα∫ ∞
0 xα fS(x)e−txα dx

. (5.1.26)

By rescaling Ti as nTi as in (5.1.23) we get that

fSi ,nTi (s, t)
fnTi (t)

=
fSi ,Ti (s, t/n)

fTi (t/n)
→ sα fS(s)∫ ∞

0 xα fS(x)dx
, (5.1.27)

as n → ∞. In this scaling regime, the (conditioned) service times of
customers arriving in the time interval [0, t/n] converge to i.i.d. random
variables S∗i with density function given by

fS∗i (s) =
sα fS(s)∫ ∞

0 xα fS(x)dx
. (5.1.28)

Note that E[S∗] = E[S1+α]/E[Sα]. Equation (5.1.27) implies that, under
the scaling regime nTi (i.e. on every time interval [0, t/n]) and for large
n, the ∆α

(i) /G/1 queue is approximated by a ∆(i)/G/1 queue with arrival
rate parameter λ∗ = λE[Sα] and a different service-time distribution S∗.

We are now able to show how this approximation motivates assump-
tion (5.1.3). Recall from (2.1.2) that the heavy-traffic condition for the
standard ∆(i)/G/1 queue is

λ∗E[S∗](1 + βn−1/3) = 1 + βn−1/3. (5.1.29)

Rewriting the left-hand side of (5.1.29) in terms of λ and S gives

λ∗E[S∗](1 + βn−1/3) = λE[Sα]
E[S1+α]

E[Sα]
(1 + βn−1/3)

= λE[S1+α](1 + βn−1/3), (5.1.30)
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as in (5.1.3). The above computations explain the unusual heavy-traffic
assumption (5.1.3), but also suggest that, if the service distribution and ar-
rival times are suitably chosen, Theorem 17 should follow from Theorem
3 of Chapter 2. However, (5.1.23) is a marginal convergence result. For
Theorem 17 we consider the first tn2/3 arrival-service pairs, and for these
we cannot prove a joint convergence like (5.1.23). In fact, it is this subtle
dependence structure that gives rise to the quadratic drift in (5.1.16). We
illustrate this by comparing the two limiting processes for the ∆(i)/G/1
queue and the ∆α

(i) /G/1 queue. Equation (5.1.19) gives the general expres-
sion of the limit process for a ∆(i)/G/1 queue. We apply this to a ∆(i)/G/1
queue with rate λ∗ exponential arrival clocks and service requests given
by S∗. We see that the limit process is

N̂∗(t) = βt− 1
2

t2 + λ∗
√

E[S∗2]W(t)

= βt− 1
2

t2 + λE[Sα]

√
E[S2+α]

E[Sα]
W(t)

= βt− 1
2

t2 +

√
E[Sα]E[S2+α]

E[S1+α]
W(t). (5.1.31)

The variance of the Brownian motion is predicted correctly (compare with
(5.1.16) and (5.1.21)), but the coefficient of the quadratic drift, accounting
for the depletion-of-points effect, is not. The approximation only captures
the leading order behavior of the queue, yielding for example the correct
heavy-traffic assumption.

5.1.3 Numerical results

We now use Theorem 18 to obtain numerical results for the first busy
period. We also use the explicit expression of the probability density
function of the first passage time of zero of φ(N̂) obtained by Martin-
Löf [72], see also [45]. Let Ai(x) and Bi(x) denote the classical Airy
functions [1]. We recall that the first passage time of zero of N̂(t) =
q + βt− 1/2t2 + σW(t) has probability density [72]

f (t; β, σ) = e−((t−β)3+β3)/6σ2−βa (5.1.32)

×
∫ +∞

−∞
etu Bi(cu)Ai(c(u− a))−Ai(cu)Bi(c(u− a))

π(Ai(cu)2 + Bi(cu)2)
du,

where c = (2σ2)1/3 and a = q/σ2 > 0. The result (5.1.32) can be extended
to a diffusion with a general quadratic drift through the scaling relation
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N̂(τ2t) = τ(q/τ + βτt− τ3t2/2+ σW(t)). Figure 5.2 shows the empirical
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Figure 5.2: Density plot (black) and Gaussian kernel density estimates
(colored) of the first busy period length. The plots for finite n were
obtained by running 106 simulations of the ∆α

(i)/G/1 queue. In all cases,
the service times are exponentially distributed and q = β = E[S] = 1.

density of n−2/3TQe
n , for increasing values of n and various values of α,

together with the exact limiting value (5.1.32). Table 5.1 shows the
mean busy period for different choices of α and different service time
distributions. We computed the exact value for n = ∞ by numerically
integrating (5.1.32). Observe that E[TQe

n ] decreases with α. This might
seem counterintuitive, because the larger α, the more likely customers
with larger service join the queue early, who in turn might initiate a large
busy period. Let us explain this apparent contradiction. When the arrival
rate λ is fixed, assumption (5.1.3) does not necessarily hold and E[TQe

n ]
increases with α, as can be seen in Table 5.2. However, our heavy-traffic
condition (5.1.3) implies that λ depends on α since λ = 1/E[S1+α]. The
interpretation of condition (5.1.3) is that, on average, one customer joins
the queue during one service time. Notice that, due to the size-biasing,
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Deterministic Exponential Hyperexponential

α 0, 1/2, 1 0 1/2 1 0 1/2 1

n

10 1.1318 1.0359 0.8980 0.7429 0.8920 0.6356 0.5332

100 1.5842 1.3584 1.0924 0.8333 1.0959 0.7454 0.5525

1000 1.9188 1.6387 1.2506 0.9284 1.2936 0.8352 0.6134

10000 2.1474 1.8419 1.3925 1.0014 1.4960 0.9210 0.6554

∞ 2.3374 2.0038 1.4719 1.0440 1.6242 0.9717 0.6881

Table 5.1: Numerical values of n−2/3E[TQe
n ] for different population sizes

and the exact expression for n = ∞ computed using (5.1.32). The service
requirements are displayed in order of increasing coefficient of variation.
In all cases q = β = E[S] = 1. The hyperexponential service times follow
a rate λ1 = 0.501 exponential distribution with probability p1 = 1/2 and
a rate λ2 = 250.5 exponential distribution with probability p2 = 1− p1 =
1/2. Each value for finite n is the average of 104 simulations.

Exponential

α 0 1/4 1/2 3/4 1

n

10 1.0854 1.0922 1.1053 1.1118 1.1306

100 5.9515 8.1928 11.4478 16.3598 22.0381

Table 5.2: Expected number of customers served in the first busy period
of the nonscaled ∆α

(i)/G/1 queue with mean one exponential service times
and arrival rate λ = 0.01. In all cases q = 1. Each value is the average of
104 simulations.

the average service time is not E[S]. Therefore, the number of customers
that join during a (long) service is roughly equal to one as α ↑ 1. However,
when customers with large services leave the system, they are not able to
join any more. As α ↑ 1, customers with large services leave the system
earlier. Therefore, as α ↑ 1, the resulting second order depletion-of-points
effect causes shorter excursions as time progresses, see also Figure 1.10.
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In the limit process, this phenomenon is represented by the fact that the
coefficient of the negative quadratic drift increases as α ↑ 1, as shown in
the following lemma:

Lemma 35. Let

α 7→ f (α) :=
E[S1+2α]

E[Sα]E[S1+α]
. (5.1.33)

Then f ′(α) ≥ 0.

Proof. Since

f ′(α) =
2E[log(S)S1+2α]

E[Sα]E[S1+α]
− E[S1+2α]E[log(S)Sα]

E[Sα]2E[S1+α]

− E[S1+2α]E[log(S)S1+α]

E[Sα]E[S1+α]2
, (5.1.34)

f ′(α) ≥ 0 if and only if

2E[log(S)S1+2α]E[Sα]E[S1+α] ≥ E[S1+α]E[S1+2α]E[log(S)Sα]

+ E[Sα]E[S1+2α]E[log(S)S1+α]. (5.1.35)

We split the left-hand side in two identical terms and show that each of
them dominates one term on the right-hand side. That is

E[log(S)S1+2α]E[Sα]E[S1+α] ≥ E[S1+α]E[S1+2α]E[log(S)Sα], (5.1.36)

the proof of the second bound being analogous. The inequality (5.1.36) is
equivalent to

E[(log(S)S1+α)Sα]

E[Sα]
≥ E[S1+αSα]

E[Sα]

E[log(S)Sα]

E[Sα]
. (5.1.37)

The term on the left and the two terms on the right can be rewritten as
the expectation of a size-biased random variable W, so that (5.1.37) is
equivalent to

E[log(W)W1+α] ≥ E[log(W)]E[W1+α]. (5.1.38)

Finally, the inequality (5.1.38) holds because W is positive with probability
one and x 7→ log(x) and x 7→ x1+α are increasing functions [44, Lemma
2.14].
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5.2 Overview of the proof

The proof of Theorem 17 uses the techniques developed in Chapter 2.
However, the dependency structure of the arrival times complicate the
analysis considerably. Customers with larger job sizes have a higher
probability of joining the queue quickly, and this gives rise to a size-
biased reordering of the service times.

5.2.1 Preliminaries

All the random variables that we consider are defined on a probability
space (Ω,F , P). For all our results, we condition on the entire sequence
(Si)

n
i=1. More precisely, we define a new probability space (Ω,FS, PS),

with PS(A) := P(A|(Si)
∞
i=1) and FS := σ({F , (Si)

∞
i=1}), the σ-algebra

generated by F and (Si)
∞
i=1. Correspondingly, for any random variable

X on Ω we define ES[X] as the expectation with respect to PS, and E[X]
for the expectation with respect to P. We say that a sequence of events
(En)∞

n=1 holds with high probability if P(En)→ 1 as n→ ∞.
The following well-known result will be useful on several occasions:

Lemma 36. Assume (Xi)
n
i=1 is a sequence of positive i.i.d. random variables

such that E[X] < ∞. Then maxi∈[n] Xi = oP(n).

Proof. We have the inclusion of events

{max
i∈[n]

Xi ≥ εn} ⊆
n⋃

i=1

{Xi ≥ εn}. (5.2.1)

Therefore,

P(max
i∈[n]

Xi ≥ εn) ≤
n

∑
i=1

P(Xi ≥ εn). (5.2.2)

Since for any positive random variable Y, ε1{Y≥ε} ≤ Y1{Y≥ε} almost
surely, it follows that

P(max
i∈[n]

Xi ≥ εn) ≤ ∑n
i=1 E[Xi1{Xi≥εn}]

εn
=

E[X1{X≥εn}]
ε

. (5.2.3)

The right-most term tends to zero as n → ∞ since E[X] < ∞, and this
concludes the proof.
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The intuitive notion that customers with larger service times are more
likely to join earlier is formalized by the concept of size-biased reordering.
Given a vector x̄ = (x1, x2, . . . , xn) with deterministic, real-valued entries,
the size-biased ordering of x̄ is a random vector X̄ = (X1, X2, . . . , Xn) such
that

P(X1 = xj) =
xj

∑n
l=1 xl

, P(X2 = xj | X1 = xi) =
xj

∑n
l=1 xl − x1

, . . .

(5.2.4)
For any α ∈ R, the α-size-biased ordering of x̄ is given by a vector
X̄(α) = (X(α)

1 , X(α)
2 , . . . , X(α)

n ) such that

P(X(α)
1 = xj) =

xα
j

∑n
l=1 xα

l
, P(X(α)

2 = xj | X(α)
1 = xi) =

xα
j

∑n
l=1 xα

l − xα
i

, . . .

(5.2.5)
Finally, we denote by

Sk = {c(1), . . . , c(k)} (5.2.6)

the set of the first k customers served. The following lemma is the first
step in understanding the structure of the arrival process:

Lemma 37 (Size-biased reordering of the arrivals). The order of appearance
of customers is the α-size-biased ordering of their service times. In other words,

PS(c(j) = i | Sj−1) =
Sα

i
∑l /∈Sj−1

Sα
l

. (5.2.7)

Proof. Conditioned on (Si)
n
i=1, the arrival times are independent expo-

nential random variables. By basic properties of exponentials, we have,
for i /∈ Sj−1,

PS(c(j) = i | Sj−1)

= PS(min{Tl : l /∈ Sj−1} = Ti | Sj−1) =
Sα

i
∑l /∈Sj−1

Sα
l

, (5.2.8)

concluding the proof.

We remark that (5.2.7) differs from the classical size-biased reordering
in that the weights are a non-linear function of the (Si)

n
n=1.

The next lemma is crucial, establishing stochastic domination between
the service requirements of the customers in order of appearance. In
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our definition of the queueing process (5.1.4)–(5.1.5), we do not keep
track of the service requirements of the customers that join the queue,
but only of their arrival times (5.1.2). Therefore, at the start of service, a
customer’s service requirement is a random variable that depends on the
arrival time relative to the remaining customers. Lemma 37 then gives
the precise distribution of the service requirement of the j-th customer
entering service. Recall that X stochastically dominates Y (briefly Y � X)
if and only if there exists a probability space (Ω̄, F̄ , P̄) and two random

variables X̄, Ȳ defined on Ω̄ such that X̄ d
= X, Ȳ d

= Y and P̄(Ȳ ≤ X̄) = 1.

Lemma 38. Let f : R+ → R be a function such that E[ f (S)Sα] < ∞. Then
there exists a constant C f ,S such that almost surely, for n large enough,

ES[ f (Sc(k))] ≤ C f ,S < ∞, (5.2.9)

uniformly in k ≤ cn, for a fixed c ∈ (0, 1).

Proof. We compute explicitly

ES[ f (Sc(k))] = ES

[∑j/∈Sk−1
f (Sj)Sα

j

∑j/∈Sk−1
Sα

j

]
= ES

[∑n
j=1 f (Sj)Sα

j −∑j∈Sk
f (Sj)Sα

j

∑j/∈Sk−1
Sα

j

]
≤ ES

[ 1
∑j/∈Sk−1

Sα
j

] n

∑
j=1

f (Sj)Sα
j . (5.2.10)

We have the almost sure bound

1
∑j/∈Sk−1

Sα
j
=

1
∑n

j=1 Sα
j −∑j∈Sk−1

Sα
j
≤ 1

∑n
j=1 Sα

j −∑j∈Sk−1
Sα

j

≤ 1

∑n
j=1 Sα

j −∑k−1
j=1 Sα

(n−j+1)

=
1

∑n−k+1
j=1 Sα

(j)

, (5.2.11)

where S(1) ≤ S(2) ≤ . . . ≤ S(n) denote the order statistics of the sequence
(Si)

n
i=1. There exists p ∈ (0, 1) such that n− k + 1 ≥ pn, for large enough

n. Consequently,
1

∑j/∈Sk−1
Sα

j
≤ 1

∑
bpnc
j=1 Sα

(j)

, (5.2.12)
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so that

ES[ f (Sc(k))] ≤
∑n

j=1 f (Sj)Sα
j

∑
bpnc
j=1 Sα

(j)

. (5.2.13)

Note that S(bnpc) = F−1
n,S (bnpc/n), where Fn,S(t) = ∑n

i=1 1{Si≤t}/n is the
empirical distribution function of the (Si)

n
i=1. Indeed, the assumption

fS(ξp) > 0 implies that FS(·) is invertible in a neighborhood of ξp. Then,
since S(bpnc)

a.s.→ ξp as n→ ∞,

1
n

∣∣∣ n

∑
j=1

Sj1{Sj≤ξp} −
n

∑
j=1

Sj1{Sj≤S(bpnc)}
∣∣∣ a.s.→ 0, (5.2.14)

as n→ ∞. Therefore, by the strong Law of Large Numbers, as n→ ∞,

∑
bpnc
j=1 S(j)

n
a.s.→ E[S1{S≤ξp}]. (5.2.15)

Then, choosing Cn, f ,S = E[ f (S)Sα]/E[S1{S≤ξp}] + ε, for an arbitrary ε >

0, gives the conclusion.

When α > 0 the proof of Lemma 38 shows that, uniformly in k =
O(n2/3),

ES[ f (Sc(k))] ≤
∑n

j=1 f (Sj)Sα
j

∑
bpnc
j=1 Sα

(j)

=
∑n

j=1 f (Sj)Sα
j

∑n
j=1 Sα

(j)

(
1 +

∑n
j=bpnc Sα

(j)

∑
bpnc
j=1 Sα

(j)

)
. (5.2.16)

Since k = O(n2/3), we may take p = pn → 1 sufficiently slowly and
therefore

ES[ f (Sc(k))] ≤ ES[ f (Sc(1))](1 + oPS(1)). (5.2.17)

If f (·) is an increasing function, then (5.2.17) makes precise the intuition
that, when α > 0, customers with larger job sizes join the queue earlier.
We will often make use of the expression (5.2.17).

The following lemma will often prove useful in dealing with sums
over a random index set:
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Lemma 39 (Uniform convergence of random sums). Let (Sj)
∞
j=1 be a se-

quence of positive random variables such that E[S2+α] < +∞, for α ∈ (0, 1).
Then,

sup
X⊆[n]

|X |=OP(n2/3)

1
n ∑

j∈X
Sα

j = oP(1). (5.2.18)

Proof. By Lemma 36, maxj∈[n] Sα
j = oP(nα/(2+α)). Then,

sup
X⊆[n]

|X |=OP(n2/3)

1
n ∑

j∈X
Sα

j

≤
maxj∈[n] Sα

j

n1/3 OP(1) = oP(n
α−2/3−α/3

2+α ) = oP(n
2
3

α−1
2+α ). (5.2.19)

Since α− 1 ≤ 0 by assumption, the claim is proven.

We now focus on the i-th customer joining the queue (for i large) and
characterize the distribution of its service time. In particular, for α > 0
this is different from Si.

Lemma 40 (Size-biased distribution of the service times). Let f (·) be a
bounded, continuous function. Then, as n→ ∞,

ES[ f (Sc(i)) | Fi−1]
P→ E[ f (S)Sα]

E[Sα]
, (5.2.20)

uniformly for i = OPS(n
2/3). Moreover, as n→ ∞,

ES[ f (Sc(i))]→
E[ f (S)Sα]

E[Sα]
, for i = OPS(n

2/3). (5.2.21)

Proof. First note that

ES[ f (Sc(i)) | Fi−1] = ∑
j/∈Si−1

f (Sj)PS(c(i) = j | Fi−1)

= ∑
j/∈Si−1

f (Sj)Sα
j

∑l /∈Si−1
Sα

l
. (5.2.22)

This can be further decomposed as

ES[ f (Sc(i)) | Fi−1] =
∑n

j=1 f (Sj)Sα
j −∑j∈Si−1

f (Sj)Sα
j

∑n
l=1 Sα

l −∑l∈Si−1
Sα

l
. (5.2.23)
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Since |Si−1| = i − 1 and i = OP(n2/3), by the Law of Large Numbers
and Lemma 39,

∑j/∈Si−1
f (Sj)Sα

j

n
P→ E[ f (S)Sα],

∑l /∈Si−1
Sα

l
n

P→ E[Sα]. (5.2.24)

uniformly in i = OP(n2/3). This gives the first claim.
Next, we bound ES[ f (Sc(i)) | Fi−1] as

ES[ f (Sc(i)) | Fi−1] = ∑
j/∈Si−1

f (Sj)Sα
j

∑l /∈Si−1
Sα

l
≤ sup

x≥0
f (x) < ∞. (5.2.25)

Since ES[ f (Sc(i)] = ES[ES[ f (Sc(i)) | Fi−1]], using (5.2.20) and the Domi-
nated Convergence Theorem the second claim follows.

In Lemma 40 we have studied the distribution of the service time
of the i-th customer, and we now focus on its (conditional) moments.
The following lemma should be interpreted as follows: Because of the
size-biased re-ordering of the customer arrivals, the service time of the
i-th customer being served (for i large) is highly concentrated:

Lemma 41. For any fixed γ ∈ [−1, 1],

ES[S
1+γ
c(i) | Fi−1] =

E[S1+γ+α]

E[Sα]
+ oP(1) for i = OPS(n

2/3), (5.2.26)

where the error term is uniform in i = OPS(n
2/3). Moreover, the convergence

holds in L1, i.e.

ES

[∣∣∣ES[S
1+γ
c(i) | Fi−1]−

E[S1+γ+α]

E[Sα]

∣∣∣] = oP(1), (5.2.27)

uniformly in i = OPS(n
2/3).

Proof. In order to apply Lemma 40, we first split

S1+γ
c(i) = (Sc(i) ∧ K)1+γ + ((Sc(i) − K)+)1+γ, (5.2.28)

where K > 0 is arbitrary, so that

ES[S
1+γ
c(i) | Fi−1]

= ES[(Sc(i) ∧ K)1+γ | Fi−1] + ES[((Sc(i) − K)+)1+γ | Fi−1]. (5.2.29)
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The first term is bounded, and thus converges to E[(S ∧ K)1+γSα]/E[Sα]
by Lemma 40. The second term can be bounded through Markov’s in-
equality, as

PS(ES[((Sc(i) − K)+)1+γ | Fi−1] ≥ ε) ≤
ES[((Sc(i) − K)+)1+γ]

ε
. (5.2.30)

Applying Lemma 38 to the function f (x) = fK(x) = ((x− K)+)1+γ we
get

ES[((Sc(i) − K)+)1+γ] ≤ C fK ,S. (5.2.31)

Therefore,∣∣∣ES[S
1+γ
c(i) |Fi−1]−

E[S1+γ+α]

E[Sα]

∣∣∣
≤
∣∣∣ES[(Sc(i) ∧ K)1+γ | Fi−1]−

E[S1+γ+α]

E[Sα]

∣∣∣+ C fK ,S. (5.2.32)

The proof of Lemma 38 shows that, for any ε > 0, limK→∞ C fK ,S ≤ ε,
thus limK→∞ C fK ,S = 0. Therefore, by letting K → ∞ in (5.2.32), the claim
(5.2.26) follows. Next split

ES

[∣∣∣ES[S
1+γ
c(i) | Fi−1]−

E[S1+γ+α]

E[Sα]

∣∣∣]
≤ ES

[∣∣∣(Sc(i) ∧ K)1+γ − E[S1+γ+α]

E[Sα]

∣∣∣]+ ES[((Sc(i) − K)+)1+γ]. (5.2.33)

The second term is bounded as in (5.2.31). For the first term,

ES

[∣∣∣(Sc(i) ∧ K)1+γ − E[S1+γ+α]

E[Sα]

∣∣∣] ≤ ∣∣∣∑n
j=1(Sj ∧ K)1+γSα

j

∑n
j=1 Sα

j
− E[S1+γ+α]

E[Sα]

∣∣∣
+ ES

[∣∣∣∑n
j=1(Sj ∧ K)1+γSα

j ∑l∈Si−1
Sα

l

(∑n
j=1 Sα

j )
2

∣∣∣]
+ ES

[∣∣∣∑n
l=1 Sα

l ∑j∈Si−1
(Sj ∧ K)1+γSα

j

(∑n
j=1 Sα

j )
2

∣∣∣], (5.2.34)

where we have used that |(a − b)/(c − d) − a/c| ≤ ad/c2 + bc/c2, for
positive a, b, c, d. The second and third terms converge uniformly over
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i = OPS(n
2/3) by Lemma 39. Summarizing,

ES

[∣∣∣ES[S
1+γ
c(i) | Fi−1]−

E[S1+γ+α]

E[Sα]

∣∣∣]
≤
∣∣∣∑n

j=1(Sj ∧ K)1+γSα
j

∑n
j=1 Sα

j
− E[S1+γ+α]

E[Sα]

∣∣∣
+

∑n
l=1((Sl − K)+)1+γ

∑n
j=1 Sα

j
+ oP(1). (5.2.35)

Letting first n→ ∞ and then K → ∞, the claim (5.2.27) follows.

We will make use of Lemma 41 several times throughout the proof,
with the specific choices γ ∈ {0, α, 1}. The following lemma is of central
importance in the proof of the uniform convergence of the quadratic drift:

Lemma 42. As n→ ∞,

n−2/3 sup
j≤tn2/3

∣∣∣ j

∑
i=1

(
S1+α

c(i) −
E[S1+2α]

E[S]

)∣∣∣ P→ 0. (5.2.36)

Proof. By Lemma 41, (5.2.36) is equivalent to

n−2/3 sup
j≤tn2/3

∣∣∣ j

∑
i=1

(
S1+α

c(i) −E[S1+α
c(i) | Fi−1]

)∣∣∣ P→ 0. (5.2.37)

We split the event space to bound separately

n−2/3 sup
j≤tn2/3

∣∣∣ j

∑
i=1

(
S1+α

c(i) 1{S1+α
c(i) ≤Kn} −E[S1+α

c(i) 1{S1+α
c(i) ≤Kn} | Fi−1]

)∣∣∣
(5.2.38)

and

n−2/3 sup
j≤tn2/3

∣∣∣ j

∑
i=1

(
S1+α

c(i) 1{S1+α
c(i) >Kn} −E[S1+α

c(i) 1{S1+α
c(i) >Kn} | Fi−1]

)∣∣∣,
(5.2.39)

for a yet unspecified sequence (Kn)∞
n=1 such that Kn → ∞. We start

with (5.2.38). Since the sum inside the absolute value is a martingale as
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a function of j, (5.2.38) can be bounded through Doob’s L2 martingale
inequality [63, Theorem 11.2] as

PS

(
sup

j≤tn2/3

∣∣∣ j

∑
i=1

(
S1+α

c(i) 1{S1+α
c(i) ≤Kn} −ES[S1+α

c(i) 1{S1+α
c(i) ≤Kn} | Fi−1]

)∣∣∣ ≥ εn2/3
)

≤ 1
εn4/3 ES

[ tn2/3

∑
i=1

(S1+α
c(i) 1{S1+α

c(i) ≤Kn} −ES[S1+α
c(i) 1{S1+α

c(i) ≤Kn} | Fi−1])
2
]

≤ 2
εn4/3

tn2/3

∑
i=1

ES[S2+2α
c(i) 1{S1+α

c(i) ≤Kn}] ≤
2

εn4/3

tn2/3

∑
i=1

K2α
n ES[S2

c(i)]. (5.2.40)

Using Lemma 41 we approximate ES[S2
c(i)] uniformly by E[S2+α]/E[Sα],

obtaining

2
εn4/3

tn2/3

∑
i=1

(
K2α

n
E[S2+α]

E[Sα]
+ oP(1)

)
=

tK2α
n

εn2/3 OP(1), (5.2.41)

which converges to zero as n → ∞ if and only if Kα
n/n1/3 converges to

zero. We now turn to (5.2.39) and apply Doob’s L1 martingale inequality
[63, Theorem 11.2] to obtain

PS

(
sup

j≤tn2/3

∣∣∣ j

∑
i=1

(
S1+α

c(i) 1{S1+α
c(i) >Kn} −ES[S1+α

c(i) 1{S1+α
c(i) >Kn} | Fi−1]

)∣∣∣ ≥ εn2/3
)

≤ 1
εn2/3 ES

[∣∣∣ tn2/3

∑
i=1

(S1+α
c(i) 1{S1+α

c(i) >Kn} −ES[S1+α
c(i) 1{S1+α

c(i) >Kn} | Fi−1])
∣∣∣]

≤ 2
εn2/3

tn2/3

∑
i=1

ES[S1+α
c(i) 1{S1+α

c(i) >Kn}]

≤ 2
εn2/3

tn2/3

∑
i=1

ES[S1+α
c(1)1{S1+α

c(1)>Kn}](1 + OPS(1))

=
2t
ε

ES[S1+α
c(1)1{S1+α

c(1)>Kn}](1 + OPS(1)) = oP(1). (5.2.42)

We have used Lemma 41 in the second inequality, and Lemma 38 with
f (x) = x1+α1{x1+α>Kn} in the third. The right-most term in (5.2.42) is
oP(1) as n → ∞ by the strong Law of Large Numbers. Note that this
side of the bound does not impose additional conditions on Kn, so that, if
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we take Kn = nc, it is sufficient that c < 1/3α, with the convention that
1/0 = ∞.

We conclude this section with a technical lemma concerning error
terms in the computations of quadratic variations. Denote the density
(resp. distribution function) of a rate λ exponential random variable by
fE(·) (resp. FE(·)):
Lemma 43. We have that

ES

[ n

∑
h,q=1

∣∣∣FE

(Sc(i)Sα
h

n

)
−

λSc(i)Sα
h

n

∣∣∣
×
∣∣∣FE

(Sc(i)Sα
q

n

)
−

λSc(i)Sα
q

n

∣∣∣ | Fi−1

]
= oP(1) (5.2.43)

uniformly in i = O(n2/3).

Proof. Since |FE(x)− x| = O(x2), the bound

|λSc(i)S
α
h/n− FE(Sc(i)S

α
h/n)| ≤ C(Sc(i)S

α
h/n)1+ε (5.2.44)

holds almost surely for 0 < ε < 1 and C > 0, giving

λ2
n

∑
h,q=1

ES

[(Sc(i)Sα
h

n

)1+ε(Sα
q Sc(i)

n

)1+ε
| Fi−1

]
=

λ2

n2+2ε

n

∑
h,q=1

ES[S2+2ε
c(i) | Fi−1]S

α(1+ε)
h Sα(1+ε)

q . (5.2.45)

Therefore,

λ2
n

∑
h,q=1

ES

[(Sc(i)Sα
h

n

)1+ε(Sα
q Sc(i)

n

)1+ε
| Fi−1

]
(5.2.46)

≤ λ2

n2+2ε
max
j∈[n]

S2ε
j ES[S2

c(i) | Fi−1]
n

∑
h,q=1

Sα(1+ε)
h Sα(1+ε)

q

≤ λ2E[S2+α]

E[Sα]

maxj∈[n] S2ε
j

n2ε

1
n2

n

∑
h,q=1

Sα(1+ε)
h Sα(1+ε)

q + oP(1),

where in the last step we have used Lemma 41. Note that, since E[S2+α] <

∞, Lemma 36 gives maxj∈[n] S2ε
j = oP(n2ε/(2+α)). The right-most term

in (5.2.46) then tends to zero as n tends to infinity as long as 0 < ε <
min{1, 2/α}.
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5.3 Proof of the scaling limit

We first establish various preliminary estimates on Nn(·) that will be
crucial for the proof of convergence. We will upper bound the process
Nn(·) by a simpler process NU

n (·) in such a way that the increments of
NU

n (·) almost surely dominate the increments of Nn(·). We also show
that, after rescaling, NU

n (·) converges in distribution to N̂(·). The process
NU

n (·) is defined as NU
n (0) = Nn(0), and

NU
n (k) = NU

n (k− 1) + AU
n(k)− 1, (5.3.1)

where
AU

n(k) = ∑
i/∈Sk

1{Ti≤cn,βSc(k)/n}, (5.3.2)

with
cn,β = 1 + βn−1/3, (5.3.3)

and, as before,

Ti
d
=

Ei
λSα

i
. (5.3.4)

An interpretation of the process NU
n (·) is that customers are not removed

from the pool of potential customers until they have been served. There-
fore, a customer could potentially join the queue more than once. The
processes Nn(·) and NU

n (·) are coupled as follows. Consider a sequence
of arrival times (Ti)

∞
i=1 and of service times (Si)

∞
i=1, then define An(·)

as (5.1.5) and AU
n(·) as (5.3.2). With this coupling we have that, almost

surely,
An(k) ≤ AU

n(k) ∀ k ≥ 0. (5.3.5)

Consequently,
Nn(k) ≤ NU

n (k) ∀k ≥ 0, (5.3.6)

and

Qe
n(k) = φ(Nn)(k) ≤ φ(NU

n )(k) =: Qe,U
n (k) ∀k ≥ 0, (5.3.7)

almost surely. Note that the reflection map φ(·) is not monotone, thus
(5.3.6) does not imply (5.3.7). On the other hand, almost sure step-size
domination (5.3.5) guarantees that (5.3.7) holds.

While in general only the upper bounds (5.3.6) and (5.3.7) hold, the
processes Nn(·) and NU

n (·) (resp. Qe
n(·) and Qe,U

n (·)) turn out to be close
to each other for large n. We first prove a convergence result for NU

n (·)
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and Qe,U
n (·) because they are easier to handle. This allows us to prove that

identical results hold for Nn(·) and Qe
n(·).

In fact, we introduce the upper bound NU
n (·) to deal with the com-

plicated index set for the summation in (5.1.5). The difficulty arises as
follows: in order to estimate Nn(·) one has to estimate An(·). To do this,
one has to separately (uniformly) bound each element in the sum, and
also estimate the number of elements in the sum. The first goal is accom-
plished, for example, through Lemma 41, while for the second the crude
upper bound n is not sharp enough. However, estimating |νk| requires
an estimate on Nn(·) itself, as (5.1.6) shows. To solve this circularity, we
introduce a bootstrap argument: first, we upper bound Nn(·) and we
obtain estimates on the upper bound, from this follows an estimate on
|νk|, and this in turn allows us to estimate Nn(·).

This technique can be applied to solve a recently found technical issue
in the proof of the main result of [15]. In fact, the authors in [15] prove
convergence of a process which upper bounds the exploration process
of the graph. Therefore, their main result is analogous to Theorem 19.
However, a further step is required to complete the proof of convergence
of the exploration process, and this is provided by our approach.

The convergence of the process NU
n (·) is given in the following theo-

rem:

Theorem 19 (Convergence of the upper bound). As n→ ∞,

n−1/3NU
n (·n2/3)

d→ N̂(·) in (D, J1), (5.3.8)

where N̂(·) is the diffusion process in (5.1.16). In particular, as n→ ∞,

n−1/3Qe,U
n (·n2/3)

d→ φ(N̂)(·) in (D, J1). (5.3.9)

The next section is dedicated to the proof of Theorem 19.

5.3.1 Convergence of the upper bound

We use a classical martingale decomposition followed by a Martingale
Functional Central Limit Theorem (MFCLT). The process NU

n (·) in (5.3.1)
is decomposed as NU

n (k) = MU
n (k) + CU

n (k), where MU
n (·) is a martingale
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and CU
n (·) is a drift term, as follows:

MU
n (k) =

k

∑
i=1

(AU
n(i)−ES[AU

n(i) | Fi−1]),

CU
n (k) =

k

∑
i=1

(ES[AU
n(i) | Fi−1]− 1). (5.3.10)

Moreover, MU
n (k)2 is rewritten as MU

n (k)2 = ZU
n (k) + VU

n (k) with ZU
n (k) a

martingale and VU
n (k) the compensator, or quadratic variation, of MU

n (k)
given by

VU
n (k) =

k

∑
i=1

(ES[(AU
n(i))

2 | Fi−1]−ES[AU
n(i) | Fi−1]

2). (5.3.11)

In order to prove convergence of NU
n (·) we separately prove conver-

gence of CU
n (·) and of MU

n (·). We prove the former directly, and the latter
by applying the MFCLT [38, Theorem 7.1.4]. For this, we need to verify
the following conditions, for every t̄ ∈ R+,

(i) supt≤t̄ |n−1/3CU
n (tn2/3)− βt + λ

E[S1+2α ]
2E[Sα ]

t2| P→ 0;

(ii) n−2/3VU
n (t̄n2/3)

P→ σ2 t̄;

(iii) limn→∞ n−2/3ES[supt≤t̄ |VU
n (tn2/3)−VU

n (tn2/3−)|] = 0;

(iv) limn→∞ n−2/3ES[supt≤t̄ |MU
n (tn2/3)−MU

n (tn2/3−)|2] = 0.



5.3. Proof of the scaling limit 155

Proof of (i) for the upper bound.

First we obtain an explicit expression for E[AU
n(i) | Fi−1], as

ES[AU
n(i) | Fi−1] = ∑

j/∈Si−1

PS(c(i) = j | Fi−1) ∑
l /∈Si−1∪{j}

FE

(
cn,β

SjSα
l

n

)
= ∑

j/∈Si−1

PS(c(i) = j | Fi−1)
n

∑
l=1

cn,βλ
SjSα

l
n

− ∑
j/∈Si−1

PS(c(i) = j | Fi−1) ∑
l∈Si−1∪{j}

cn,βλ
SjSα

l
n

+ ∑
j/∈Si−1

PS(c(i) = j | Fi−1)

× ∑
l /∈Si−1∪{j}

(
FE

(
cn,β

SjSα
l

n

)
− cn,βλ

SjSα
l

n

)
. (5.3.12)

The third term is an error term. Indeed, for some ζn ∈ [0, Sc(i)Sl/n],

ES

[∣∣∣ ∑
l /∈Si−1∪{j}

FE

(Sc(i)Sα
l

n

)
− λ

Sc(i)Sα
l

n

∣∣∣ | Fi−1

]
(5.3.13)

≤
n

∑
l=1

ES

[
|FE

(Sc(i)Sα
l

n

)
− λ

Sc(i)Sα
l

n

∣∣∣ | Fi−1

]
=

1
2n2 ES[|F′′E (ζn)S2

c(i)| | Fi−1]
n

∑
l=1

S2α
l ≤

λ2

2n2 ES[S2
c(i) | Fi−1]

n

∑
l=1

S2α
l ,

since |F′′E (x)| ≤ λ2 for all x ≥ 0. By Lemma 41 this is bounded by

λ2

2n2 (cn + oP(1))
n

∑
l=1

S2α
l , (5.3.14)

where cn is bounded with high probability and the oP(1) term is uniform
in i = O(n2/3). Therefore, the third term in (5.3.12) is oP(n−1/3). The
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remaining terms in (5.3.12) are simplified as

ES[AU
n(i)|Fi−1]− 1 = cn,βλ ∑

j/∈Si−1

PS(c(i) = j | Fi−1)Sj
∑n

l=1 Sα
l

n

− cn,βλ ∑
j/∈Si−1

PS(c(i) = j | Fi−1) ∑
l∈Si−1

Sj
Sα

l
n

− cn,βλ ∑
j/∈Si−1

PS(c(i) = j | Fi−1)
S1+α

j

n
− 1 + oP(n−1/3)

=
(

cn,βλ
∑n

l=1 Sα
l

n
E[Sc(i)|Fi−1]− 1

)
− cn,βES[Sc(i) | Fi−1] ∑

l∈Si−1

λ
Sα

l
n

− cn,β
λ

n
ES[S1+α

c(i) | Fi−1] + oP(n−1/3). (5.3.15)

For the first term of (5.3.15), using c
a−b = c

a +
c

a−b
b
a , with a = ∑n

l=1 Sα
l and

b = ∑l∈Si−1
Sα

l , we get

cn,βλ
∑n

l=1 Sα
l

n
ES[Sc(i) | Fi−1]− 1 (5.3.16)

= cn,βλ
∑n

l=1 Sα
l

n ∑
j/∈Si−1

S1+α
j

∑n
l=1 Sα

l
− 1

+ cn,βλ
∑n

l=1 Sα
l

n ∑
j/∈Si−1

S1+α
j

∑l /∈Si−1
Sα

l

∑s∈Si−1
Sα

s

∑n
l=1 Sα

l

=
(

cn,β
λ

n ∑
j/∈Si−1

S1+α
j − 1

)
+ cn,βES[Sc(i) | Fi−1] ∑

s∈Si−1

λ
Sα

s
n

.

Note that the right-most term in (5.3.16) and the second term in (5.3.15)
cancel out. This cancellation is what makes the analysis of NU

n (·) consid-
erably easier than the analysis of Nn(·).

Moreover, Lemma 41 implies that the third term in (5.3.15) is also
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oP(n−1/3). The expression in (5.3.12) is then simplified to

ES[AU
n(i) | Fi−1]− 1

= cn,β
λ

n ∑
j/∈Si−1

S1+α
j − 1 + oP(n−1/3)

=
(

cn,β
λ

n

n

∑
j=1

S1+α
j − 1

)
− cn,β

λ

n ∑
j∈Si−1

S1+α
j + oP(n−1/3)

=
(

cn,β
λ

n

n

∑
j=1

S1+α
j − 1

)
− cn,β

λ

n

i−1

∑
j=1

S1+α
c(j) + oP(n−1/3), (5.3.17)

and the oP(n−1/3) term is uniform in i = O(n2/3). We are now able to
compute

n−1/3CU
n (tn

2/3) = n−1/3
tn2/3

∑
i=1

(ES[AU
n(i) | Fi−1]− 1)

= tn1/3
(

cn,β
λ

n

n

∑
j=1

S1+α
j − 1

)

− cn,β
λ

n4/3

tn2/3

∑
i=1

i−1

∑
j=1

S1+α
c(j) + oP(1). (5.3.18)

Note that, since E[(S1+α)(2+α)/(1+α)] < ∞, by the Marcinkiewicz and
Zygmund Theorem [35, Theorem 2.5.8], if α ∈ (0, 1],

cn,β
λ

n

n

∑
j=1

S1+α
j = cn,βλE[S1+α] + oP(n−

1
2+α )

= 1 + βn−1/3 + oP(n−
1

2+α ). (5.3.19)

For α = 0, by a similar result [35, Theorem 2.5.7], for all ε > 0,

1
n

n

∑
j=1

Sj = E[S] + oP(n−1/2 log(n)1/2+ε). (5.3.20)

In particular,

tn1/3
(

cn,β
λ

n

n

∑
j=1

S1+α
j − 1

)
= t(β + oP(1)). (5.3.21)



158 Chapter 5. Biased arrivals and random graphs

By monotonicity, it follows that

sup
t≤T

∣∣∣tn1/3
(

cn,β
λ

n

n

∑
j=1

S1+α
j − 1

)
− βt

∣∣∣ P→ 0. (5.3.22)

Therefore, for α ∈ [0, 1],

n−1/3CU
n (tn

2/3) = βt− cn,β
λ

n4/3

tn2/3

∑
i=1

i−1

∑
j=1

S1+α
c(j) + oP(1). (5.3.23)

Since cn,β = 1 + O(n−1/3), the second term in (5.3.23) converges uni-

formly to −λ
E[S1+2α ]
2E[Sα ]

t2 by Lemma 42.

Proof of (ii) for the upper bound.

Rewrite VU
n (k), for k = O(n2/3), as

VU
n (k) =

k

∑
i=1

(ES[AU
n(i)

2 | Fi−1]−ES[AU
n(i) | Fi−1]

2)

=
k

∑
i=1

(ES[AU
n(i)

2 | Fi−1]− 1) + OP(kn−1/3), (5.3.24)

where we have used the asymptotics for ES[AU
n(i)|Fi−1] obtained in

(5.3.17)–(5.3.23). Moreover, we compute ES[AU
n(i)2|Fi−1] as

ES[AU
n(i)

2 | Fi−1] = ES[( ∑
h/∈Si

1{Th≤cn,βSc(i)Sh/n})
2 | Fi−1] (5.3.25)

= ES[AU
n(i) | Fi−1] + ES[ ∑

h,q/∈Si
h 6=q

1{Th≤cn,βSc(i)Sh/n}1{Tq≤cn,βSc(i)Sq/n} | Fi−1].

Again by (5.3.17), ES[An(i)|Fi−1] = 1 + oP(1), uniformly in i = O(n2/3),
so that (5.3.24) simplifies to

VU
n (k) =

k

∑
i=1

ES[ ∑
h,q/∈Si

h 6=q

1{Th≤cn,βSc(i)S
α
h /n}1{Tq≤cn,βSc(i)S

α
q /n} | Fi−1]

+ OP(kn−1/3). (5.3.26)
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We then focus on the second term in (5.3.25), which we compute as

∑
h,q/∈Si

h 6=q

ES[1{Th≤cn,βSc(i)S
α
h /n}1{Tq≤cn,βSc(i)S

α
q /n} | Fi−1]

= ∑
j/∈Si−1

PS(c(i) = j | Fi−1)

× ∑
h,q/∈Si−1∪{j}

h 6=q

ES[1{Th≤cn,βSjSα
h /n}1{Tq≤cn,βSjSα

q /n} | Fi−1]. (5.3.27)

By Lemma 43,

(5.3.27) = ∑
j/∈Si−1

Sα
j

∑l /∈Si−1
Sα

l

1
n2 ∑

h,q/∈Si−1∪{j}
h 6=q

(c2
n,βλ2S2

j Sα
hSα

q + oP(n−2))

= (cn,βλ)2ES[S2
c(i) | Fi−1]

1
n2 ∑

h,q/∈Si−1∪{c(i)}
h 6=q

Sα
hSα

q + oP(1)

=
(cn,βλ)2

n2 ES[S2
c(i) | Fi−1]

n

∑
h,q=1

Sα
hSα

q

− (cn,βλ)2

n2 ES[S2
c(i) ∑

h,q∈Si−1∪{c(i)}
∪{h=q}

Sα
hSα

q | Fi−1] + oP(1).

The leading contribution to VU
n (k) is given by the first term, while the

second term is an error term by Lemma 39. We have shown that VU
n (·)

can be rewritten as

VU
n (k) =

(λ

n

n

∑
h=1

Sα
h

)2 k

∑
i=1

ES[S2
c(i) | Fi−1] + oP(k). (5.3.28)

Thus,
n−2/3VU

n (n2/3u) P→ λ2E[Sα]E[S2+α]u, (5.3.29)

concluding the proof of (ii).
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Proof of (iii) for the upper bound.

The jumps of VU
n (k) are given by

VU
n (i)−VU

n (i− 1) = ES[AU
n(i)

2 | Fi−1]−ES[AU
n(i) | Fi−1]

2

= ES[ ∑
h,q/∈Si

h 6=q

1{Th≤cn,βSc(i)S
α
h /n}1{Tq≤cn,βSc(i)S

α
q /n} | Fi−1]

+ (ES[AU
n(i) | Fi−1]−ES[AU

n(i) | Fi−1]
2) (5.3.30)

In particular, VU
n (i) − VU

n (i − 1) ≥ 0. Since ES[AU
n(i) | Fi−1] = 1 +

OP(n−1/3) for i = OP(n2/3) by (5.3.17), the second term is of order
OP(n−1/3), uniformly in i = OP(n2/3). The first term was computed
in (5.3.27). Therefore,

VU
n (i)−VU

n (i− 1)

=
(cn,βλ)2

n2 ES[S2
c(i) | Fi−1]

n

∑
h,q=1

Sα
hSα

q

− (cn,βλ)2

n2 ES[S2
c(i) ∑

h,q∈Si−1∪{c(i)}
∪{h=q}

Sα
hSα

q | Fi−1] + oP(1)

≤ (cn,βλ)2

n2 ES[S2
c(i) | Fi−1]

n

∑
h,q=1

Sα
hSα

q + oP(1). (5.3.31)

After rescaling and taking the expectation, we obtain the bound

n−2/3ES[ sup
i≤t̄n2/3

|VU
n (i)−VU

n (i− 1)|]

≤ (cn,βλ)2

n2/3 ES[ sup
i≤t̄n2/3

S2
c(i)]
( n

∑
h,q=1

Sα
h

n

)2
. (5.3.32)

Lemma 44. Assume that E[S2+α] < ∞. Then,

ES[ sup
k≤tn2/3

S2
c(k)] = oP(n2/3). (5.3.33)

Proof. For ε > 0 split the expectation as

ES[( sup
k≤tn2/3

Sc(k))
2] ≤ ES[ sup

k≤tn2/3
S2

c(k)1{Sc(k)>εn1/3}] + ε2n2/3. (5.3.34)
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We bound the expected value in the first term as

ES[ sup
k≤tn2/3

S2
c(k)1{Sc(k)>εn1/3}]

≤ ∑
k≤tn2/3

1
n2/3 ES[S2

c(k)1{Sc(k)>εn1/3}]

≤ n2/3tES[S2
c(1)1{Sc(1)>εn1/3}](1 + OPS(1)), (5.3.35)

where we have used Lemma 38 with the function f (x) = x21{x>εn1/3}.
Computing the expectation explicitly we get

tES[S2
c(1)1{Sc(1)>εn1/3}] = t

n

∑
i=1

S2
i 1{Si>εn1/3}P(c(1) = i)

= t
n

∑
i=1

S2
i 1{Si>εn1/3}

Sα
i

∑n
j=1 Sα

j
, (5.3.36)

so that the left-hand side of (5.3.34) is bounded by

t
∑n

j=1 Sα
j

n

∑
i=1

S2+α
i 1{Si>εn1/3} +

( n

∑
i=1

Sα
i

n

)2
ε2, (5.3.37)

which tends to zero as n → ∞ since E[S2+α] < ∞ and ε > 0 is arbitrary.

By Lemma 44 the right-hand side of (5.3.32) converges to zero, and
this concludes the proof of (iii).

Proof of (iv) for the upper bound.

First we split

ES[ sup
k≤tn2/3

(MU
n (k)−MU

n (k− 1))2]

= ES[ sup
k≤tn2/3

(AU
n(k)−ES[AU

n(k) | Fk−1])
2]

≤ ES[ sup
k≤tn2/3

|AU
n(k)|2] + ES[ sup

k≤tn2/3
E[AU

n(k) | Fk−1]
2]

≤ 2ES[ sup
k≤tn2/3

|AU
n(k)|2]. (5.3.38)
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We then stochastically dominate (AU
n(k))tn2/3

k=1 by a sequence of Poisson

processes (Πk)
tn2/3

k=1 , according to

AU
n(k) � Πk

(
cn,βSc(k)

n

∑
i=1

Sα
i

n

)
=: A′n(k). (5.3.39)

Given n exponential random variables E1/λ1, E2/λ2, . . . , En/λn with
parameters respectively λ1, λ2, . . . , λn, there exists an explicit coupling
with a Poisson process Π(·) such that ∑i≤n 1{Ei/λi≤t} ≤ Π(∑i≤n λit).
The coupling is constructed as follows. Each random variable Ei/λi
is coupled with a rate one Poisson process Π(i) in such a way that
1{Ei/λi≤t} ≤ Π(i)(λit). Moreover, by basic properties of the Poisson

process ∑n
i=1 Π(i)(λit)

d
= Π(∑n

i=1 λit).
We bound (5.3.39) through martingale techniques applied to the de-

composition

n−2/3ES[ sup
k≤tn2/3

|AU
n(k)|2]

≤ 2n−2/3ES

[(
sup

k≤tn2/3
|A′n(k)− cn,βSc(k)

n

∑
i=1

Sα
i

n

∣∣∣)2]
+ 2n−2/3ES

[(
cn,β sup

k≤tn2/3
Sc(k)

n

∑
i=1

Sα
i

n

)2]
(5.3.40)

Applying Doob’s L2 martingale inequality [63, Theorem 11.2] to the first
term we see that it converges to zero, since

n−2/3ES

[(
sup

k≤tn2/3

∣∣∣A′n(k)− Sc(k)

n

∑
i=1

Sα
i

n

∣∣∣)2]
≤ 4n−2/3ES

[∣∣∣A′n(tn2/3)− Sc(tn2/3)

n

∑
i=1

Sα
i

n

∣∣∣2]
= 4n−2/3ES

[
Sc(tn2/3)

n

∑
i=1

Sα
i

n

]
. (5.3.41)

The last equality follows from the expression for the variance of a Poisson
random variable. The right-most term converges to zero by Lemma 41.
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We now bound the second term in (5.3.40), as

n−2/3ES

[(
sup

k≤tn2/3
Sc(k)

n

∑
i=1

Sα
i

n

)2]
=
( n

∑
i=1

Sα
i

n

)2
n−2/3ES[( sup

k≤tn2/3
Sc(k))

2] (5.3.42)

By Lemma 44 the right-hand side of (5.3.42) converges to zero, concluding
the proof of (iv).

5.3.2 Convergence of the embedded queue

As a consequence of (5.3.7) and Theorem 19 we see that Qe
n(k) = OP(n1/3)

for k = O(n2/3). Moreover, the following lemma shows that the process
n−1/3Qe

n(·n2/3) is tight:

Lemma 45. Fix t̄ > 0. The sequence n−1/3 supt≤t̄ Qe
n(tn2/3) is tight.

Proof. The supremum function f (·) 7→ supt≤t̄ f (t) is continuous in (D, J1)
by [96, Theorem 13.4.1]. In particular,

n−1/3 sup
t≤t̄

Qe,U
n (tn2/3)

d→ sup
t≤t̄

N̂(t). (5.3.43)

Since Qe
n(k) ≤ Qe,U

n (k), the conclusion follows.

As an immediate consequence of (5.1.6) and Lemma 45, we have the
following important corollary. Recall that νi is the set of customers who
have left the system or are in the queue at the beginning of the i-th service,
so that |νi| = i + Qe

n(i). Recall also that 0 ≤ Qe
n(t) ≤ Qe,U

n (t).

Corollary 4. As n→ ∞,

|νi| = i + oP(i), uniformly in i = OP(n2/3). (5.3.44)

Intuitively, this implies that the main contribution to the downwards
drift in the queue-length process comes from the customers that have left
the system, and not from the customers in the queue. Alternatively, the
order of magnitude of the queue length, that is n1/3, is negligible with
respect to the order of magnitude of the customers who have left the
system, which is n2/3.
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In order to prove Theorem 17 we proceed as in the proof of Theorem 19,
but we now need to deal with the more complicated drift term. As before,
we decompose Nn(k) = Mn(k) + Cn(k) and Mn(k)2 = Zn(k) + Vn(k),
where

Mn(k) =
k

∑
i=1

(An(i)−ES[An(i) | Fi−1]),

Cn(k) =
k

∑
i=1

(ES[An(i) | Fi−1]− 1),

Vn(k) =
k

∑
i=1

(ES[An(i)2 | Fi−1]−ES[An(i) | Fi−1]
2). (5.3.45)

As before, we separately prove the convergence of the drift Cn(k) and of
the martingale Mn(k), by verifying the conditions (i)–(iv) in Section 5.3.1.
Verifying (i) proves to be the most challenging task, while the estimates
for (ii)–(iv) in Section 5.3.1 carry over without further complications.

Proof of (i) for the embedded queue.

By expanding ES[An(i) | Fi−1]− 1 as in (5.3.15), we get

ES[An(i) | Fi−1]− 1 =
(

cn,βλ
∑n

l=1 Sα
l

n
ES[Sc(i) | Fi−1]− 1

)
− cn,βES[Sc(i) | Fi−1] ∑

l∈νi\{c(i)}
λ

Sα
l

n

− cn,β
λ

n
ES[S1+α

c(i) | Fi−1] + oP(n−1/3). (5.3.46)

By further expanding the first term in (5.3.46) as in (5.3.16), we get

ES[An(i) | Fi−1]− 1 =
(

cn,β
λ

n ∑
j/∈Si−1

S1+α
j − 1

)

− cn,βES[Sc(i) | Fi−1]
i+1+Qe

n(i−1)

∑
l=i+1

λ
Sα

c(l)

n

− cn,β
λ

n
ES[S1+α

c(i) | Fi−1] + oP(n−1/3), (5.3.47)
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where in the first equality we have used (5.1.6). Comparing equation
(5.3.47) with equation (5.3.17), one sees that the drift can be rewritten as

Cn(k) = CU
n (k)− cn,βλ

k

∑
i=1

ES[Sc(i) | Fi−1]
i+1+Qe

n(i−1)

∑
l=i+1

Sα
c(l)

n
. (5.3.48)

Therefore, to conclude the proof of (i) it is enough to show that the second
term vanishes, after rescaling. This is proven in the following lemma:

Lemma 46. As n→ ∞,

n−1/3cn,βλ
tn2/3

∑
i=1

ES[Sc(i) | Fi−1]
i+1+Qe

n(i−1)

∑
l=i+1

Sα
c(l)

n
P→ 0. (5.3.49)

Proof. By Lemma 45, supi≤tn2/3 Qe
n(i) ≤ c1n1/3 with high probability for

a large constant c1, and by Lemma 41, supi≤tn2/3 ES[Sc(i) | Fi−1] ≤ c2
with high probability for another large constant c2. This implies that, with
high probability,

n−1/3cn,βλ
tn2/3

∑
i=1

ES[Sc(i) | Fi−1]
i+1+Qe

n(i−1)

∑
l=i+1

Sα
c(l)

n

≤ cn,βλC2

tn2/3

∑
i=1

i+1+C1n1/3

∑
l=i+1

Sα
c(l)

n4/3 . (5.3.50)

We rewrite the double sum as

cn,βλC2

tn2/3

∑
i=1

i+1+c1n1/3

∑
l=i+1

Sα
c(l)

n4/3 ≤ cn,βλc2

tn2/3+c1n1/3

∑
j=1

min{j, c1n1/3}
Sα

c(j)

n4/3

≤ cn,βλc1c2

(t+c1)n2/3

∑
j=1

Sα
c(j)

n
. (5.3.51)

The right-hand side term converges to zero in probability as n → ∞ by
Lemma 42, concluding the proof.

Since

n−1/3Cn(tn2/3) = n−1/3CU
n (tn

2/3)

− n−1/3cn,βλ
tn2/3

∑
i=1

ES[Sc(i) | Fi−1]
i+1+Qe

n(i−1)

∑
l=i+1

Sα
c(l)

n
, (5.3.52)
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Lemma 46 and the analogous convergence result for n−1/3CU
n (·n2/3) in

Section 5.3.1 conclude the proof of (i).

Proof of (ii), (iii) and (iv) for the embedded queue

Proceeding as in Section 5.3.1, we find that

Vn(k) =
k

∑
i=1

(ES[An(i)2 | Fi−1]−ES[An(i) | Fi−1]
2)

=
k

∑
i=1

(ES[An(i)2 | Fi−1]− 1) + OP(kn−1/3), (5.3.53)

where

ES[An(i)2 | Fi−1] = ES[An(i) | Fi−1]

+ ES[ ∑
h,q/∈νi−1

h 6=q

1{Th≤Sc(i)Sh/n}1{Tq≤Sc(i)Sq/n} | Fi−1]. (5.3.54)

Similarly as in Section 5.3.1, we get

∑
h,q/∈νi−1

h 6=q

ES[1{Th≤Sc(i)S
α
h /n}1{Tq≤Sc(i)S

α
q /n} | Fi−1] (5.3.55)

= ES[S2
c(i) | Fi−1]λ

2
( n

∑
h=1

Sα
h

n

)2

−ES

[
λ2

S2
c(i)

n2 ∑
h,q∈νi−1∪{c(i)}
∪{h=q}

Sα
hSα

q | Fi−1

]
+ oP(1).

The second term is an error term by Lemma 39 and Corollary 4. This
implies that Vn(·) can be rewritten as

Vn(k) =
(λ

n

n

∑
h=1

Sα
h

)2 k

∑
i=1

ES[S2
c(i) | Fi−1] + oP(k), (5.3.56)

so that
n−2/3Vn(n2/3u) P→ λ2E[Sα]E[S2+α]u, (5.3.57)

which concludes the proof of (ii).
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To conclude the proof of Theorem 17, we are left to verify (iii) and
(iv). However, the estimates in Sections 5.3.1 and 5.3.1 also hold for Vn(·)
and Mn(·), since they rely respectively on (5.3.32) and (5.3.39) to bound
the lower-order contributions to the drift. This concludes the proof of
Theorem 17.

5.4 Conclusions

In this chapter we have analyzed the critical ∆α
(i) /G/1 queue. We have

also shown that a (directed) tree can be associated to the ∆α
(i) /G/1 queue

in a natural way. The heavy-traffic assumption for the queue then corre-
sponds to assuming that the associated random tree is critical.

Lemma 40 implies that the distribution of the service time of the first
O(n2/3) customers to join the queue converges to the α-size-biased dis-
tribution of S, irrespectively of the precise time at which the customers
arrive. This suggests that it is possible to prove Theorem 17 by approxi-
mating the ∆α

(i) /G/1 queue via a ∆(i)/G/1 queue with service-time distri-
bution S∗ such that

P(S∗ ∈ A) = E[Sα1{S∈A}]/E[Sα], (5.4.1)

and i.i.d. arrival times distributed as Ti ∼ exp(λE[Sα]). This conjecture
is supported by two observations. First, the heavy-traffic conditions for
the two queues coincide. Second, the standard deviation of the Brownian
motion is the same in the two limiting diffusions. However, this approxi-
mation fails to capture the higher-order contributions to the queue-length
process. Because of this, the coefficients of the negative quadratic drift in
the two queues are different. Therefore, Theorem 17 cannot be deduced
by the analogous theorem for the ∆(i)/G/1 queue.

Surprisingly, the assumption that α lies in the interval [0, 1] plays no
role in our proof. On the other hand, we see from (5.1.16) that

max{E[S2+α], E[S1+2α], E[Sα]} < ∞ (5.4.2)

is a necessary condition for Theorem 17 to hold. From this we conclude
that Theorem 17 remains true as long as α ∈ R is such that (5.4.2) is satis-
fied. From a modelling point of view, the assumption α > 1 represents a
situation in which customers with larger job sizes have an even stronger
incentive to join the queue. On the other hand, when α < 0, the queue
models a situation in which customers with large job sizes are lazy and
favour joining the queue later. We remark that the form of the limiting
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diffusion is the same for all α ∈ R, but different values of α yield different
fluctuations (standard deviation of the Brownian motion), and a different
quadratic drift.



CHAPTER 6
Finite-population queues

In this chapter we study the ∆(i)/G/1 queue in the finite-population
regime. We assume that the number n of customers in the pool at the
start of the queue is fixed and finite. For tractability, we further assume
that the arrival and service times are exponentially distributed, leading to
a two-dimensional absorbing Markov process in the positive quadrant.
In contrast to earlier chapters, we do not scale the service speed with n
and are interested in exact rather than asymptotic results. The resulting
Markov Process has inhomogeneous transition rates and is thus outside of
the reach of classical methods for the analysis of time-dependent behavior.
To overcome this, we develop novel ad-hoc combinatorial techniques to
recursively express quantities of interest, such as the distribution of the
number of customers served in the first busy period.1

6.1 Introduction

The goal of this chapter is to study the combinatorial structure of the
∆(i)/G/1 queue-length process for a fixed, small number of initial cus-
tomers n. This analysis is meant to complement the asymptotic results
we have presented so far. Indeed, on one hand the formulas we obtain
are typically unwieldy for large values of n, further motivating the need

1This chapter contains the results of an ongoing collaboration with Jori Selen and
Alessandro Zocca.
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for asymptotic approximation schemes. On the other hand, when n is
not too large, our results provide workable (exact) expressions for var-
ious performance measures of the ∆(i)/G/1 queue. For tractability, we
assume that the arrival epochs and service times of the n customers are
i.i.d. exponential random variables with rates respectively λ and µ. This
assumptions lead to the definition of a two-dimensional Markov process
X(·), describing the number of completed services and the total number
of customers who have joined the queue. The process X(·) is both absorb-
ing (the sink state is (n, n)) and time-inhomogeneous, since the transition
rates crucially depend on the current state of the process.

Juneja and Shimkin [56] studied a finite-population queue (for a fixed
population n) in the context of the concert queueing game. In their
setting each customer independently chooses when to arrive (possibly
at a random time) in order to minimize a certain linear cost functional.
In the Nash equilibrium, all customers sample their arrival times from
the same distribution, leading to the ∆(i)/G/1 queue. They show that the
unique equilibrium distribution has a complicated form for finite n, but
tends to a uniform distribution as n→ ∞.

A large number of probabilistic tools are unsuitable for the analysis of
absorbing Markov processes, since no non-trivial stationary distribution
exists. Nonetheless, in some cases it is possible to define a so-called quasi-
stationary distribution and to compute it explicitly via matrix-theoretic
techniques. Darroch and Seneta [29, 30] introduce various definitions
of quasi-stationary distributions for absorbing Markov processes and
discuss how they are related to each other and to the classical notion of
stationary distribution. One approach consists in defining a new Markov
process, with identical transition rates to the original one, and additional
(small, say ε) transition rates from the sink states to the transient states.
This new Markov process admits a proper stationary distribution and,
conditioned on the process being in a transient state, it is independent
of ε. In our setting, this would correspond to allow a transition from
the absorbing state (n, n) to the starting state (0, 0). Barlett [8] applied
this technique in the context of (diminishing) population models. When
ε > 0, the modified process can also be studied using techniques from
regenerative process theory. As ε→ 0, transitions out of the sink state(s)
become less likely and one expects to obtain information on the original
∆(i)/G/1 queue-length process. In this context, see Keilson’s Theorem
for the asymptotic exponentiality of rare events in regenerative processes
[41]. It is not obvious, however, how the two processes are related.

Another powerful approach to the study of random walks is via com-
binatorial methods, such as lattice path counting [65, 93] and generating
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functions [37, 81]. Takács [89, 90, 92] has pioneered the application of com-
binatorial methods to the study of queueing models. In [90], Takács stud-
ies various combinatorial models and their probabilistic conterparts. In
particular, he derives the distribution of the number of customers served
in the first busy period of a simplified ∆(i)/G/1 queue. However, these
combinatorial techniques rely crucially on some assumed symmetries of
the underlying probabilistic model. Perhaps closer to our setting is the
OK Corral model studied by Kingman [61, 62]. In this model, two (dimin-
ishing) populations of gunmen shoot at each other until one of the two is
eliminated. The transition rates of the resulting two-dimensional Markov
process depend on the state of the process, similarly as in the ∆(i)/G/1
queue. However, the analysis in [61] crucially exploits the symmetric
structure of the problem (the two populations are interchangeable). In
fact, this symmetry is what ultimately allows for explicit expressions in
the OK Corral model.

6.2 Model description

In this section we briefly recall the definition of the ∆(i)/G/1 queue and
introduce various notations that simplify the treatment of the queue in
the finite-population regime. Consider a single-server queue that serves
customers in a first-come first-served manner. A finite pool of n customers
will enter the system only once. Each customer independently joins the
queue after an exponential time with rate λ and requires a service time
that is exponentially distributed with rate µ. We define

λi := λ(n− i) (6.2.1)

as the arrival rate of customers to the system if i customers have already
arrived to the system. Denote by X1(t) the number of completed services
at time t and let X2(t) be the number of customers that have joined the
system up until time t. The state of the system at time t is X(t) :=
(X1(t), X2(t)). The process X(·) is a Markov process on the state space

B := {(i, j) ∈N2
0 : 0 ≤ i ≤ n, 0 ≤ j ≤ i}. (6.2.2)

The transition rate diagram is depicted in Figure 6.1.
We denote by B be the number of customers served in the first busy

period. Abbreviate bn := P(B = n) as the probability that exactly n
customers are served in the first busy period. We denote by Di :=
{(0, i), (1, i + 1), . . . , (n− i, n)}, i ≥ 1 the set of states on the n-th super-
diagonal of S . For the diagonal we define D0 := {(1, 1), (2, 2), . . . , (n, n)}.
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X2(t)

X1(t)
0

1

2

3

n− 1

n

µ

µ µ

µ µ µ

µ µ µ µ µ

µ µ µ µ µ µ

λ0

λ1 λ1

λ2 λ2 λ2

λn−1 λn−1 λn−1 λn−1 λn−1 λn−1

...

Figure 6.1: Transition rate diagram of the Markov process X(·).

By phase i we refer to the set of states Pi := {(0, i), (1, i), . . . , (i, i)}. Given
any stochastic process Y, we let Ey[ f (Y)] represent the expectation of
a functional of Y, conditional on Y(0) = y and similarly for Py(·). De-
note by Gp a geometric random variable with support {0, 1, . . .}, failure
probability p and probability generating function

Gp(z) =
1− p
1− pz

, |z| < 1
p

. (6.2.3)

We define for each set A ( B the hitting-time random variables

HX(A) := inf{t > 0 : X(t) ∈ A} (6.2.4)

as the first time X(·) makes a transition into the set A. For a singleton x,
H(x) should be understood to mean H({x}). The probabilities bn can be
expressed in terms of the hitting-time random variables as

bn = P(0,1)(X(HD0) = (n, n)). (6.2.5)
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6.3 The number of customers in the first busy period

In this section we derive a recursion for the probabilities bn by employing
generating functions. To that end, we define, for 0 ≤ i ≤ j− 1, 2 ≤ j ≤ n,

pj(i) := P(0,0)(H(Pj) < H(D0), X(H(Pj)) = (i, j)). (6.3.1)

as the probability that, conditional on X(0) = (0, 0), the Markov process
X(·) reaches phase n in state (i, j) without residing in D0 before phase j
is reached. Note that pj(j− 1) = 0. Define its generating function, for
z ∈ C,

Pj(z) :=
j−2

∑
i=0

pj(i)zi, 2 ≤ j ≤ n. (6.3.2)

Clearly, if n = 1, then s1 = 1. For n > 1, we have by the strong Markov
property that s1 = ρ1 and for 2 ≤ j ≤ n− 1,

ρ
j
jPj(ρ

−1
j ) = bj, Pn(1) = bn, (6.3.3)

where for convenience we have abbreviated

ρj :=
µ

µ + λj
. (6.3.4)

The following theorem identifies Pj(z):

Theorem 20. For 1 ≤ j ≤ n− 1, the generating functions are explicitly given
by

Pj+1(z) =
j

∏
i=1
Gρj(z)−

j

∑
i=1

bizi
n

∏
k=i
Gρk (z), |z| < 1

ρj
. (6.3.5)

Proof. We start by expressing Pj+1(z) in terms of Pj(z). From the strong
Markov property at time H(Pj) we can write

pj+1(i) =
i

∑
k=0

pj(k)ρi−k
j (1− ρj), 0 ≤ i ≤ j− 2, (6.3.6)

pj+1(j− 1) =
j−2

∑
k=0

pj(k)ρ
j−1−k
j (1− ρj). (6.3.7)

Multiply both sides of (6.3.6) by zi and sum over all i with 0 ≤ i ≤
j− 2 and multiply both sides of (6.3.7) by zj−1. Sum the two resulting
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expressions to get

Pj+1(z)

=
j−2

∑
i=0

i

∑
k=0

pj(k)ρi−k
j (1− ρj)zi +

j−2

∑
k=0

pj(k)ρ
j−1−k
j (1− ρj)zj−1. (6.3.8)

Switch the order of the double summation to obtain

Pj+1(z)

= (1− ρj)
( j−2

∑
k=0

pj(k)
j−2

∑
i=k

ρi−k
j zi +

j−2

∑
k=0

pj(k)ρ
j−1−k
j zj−1

)
= (1− ρj)

( j−2

∑
k=0

pj(k)
j−2−k

∑
l=0

ρl
jz

k+l +
j−2

∑
k=0

pj(k)ρ
j−1−k
j zj−1

)
. (6.3.9)

Performing the inner summation over l and rewriting yields

Pj+1(z) = (1− ρj)
( j−2

∑
k=0

pj(k)
zk − ρ

j−1−k
j zj−1

1− ρjz
+

j−2

∑
k=0

pj(k)ρ
j−1−k
j zj−1

)
=

1− ρj

1− ρjz

( j−2

∑
k=0

pj(k)zk − ρ
j
jz

j
j−2

∑
k=0

pj(k)ρ−k
j

)
= Gρj(z)(Pj(z)− bjzj). (6.3.10)

By iterating the relation (6.3.10) we obtain

Pj+1(z) = P2(z)
n

∏
i=2
Gρi (z)−

n

∑
i=2

bizi
j

∏
k=i
Gρk (z). (6.3.11)

We can further simplify (6.3.11) by noting that

P2(z) = p2(0) = 1− ρ1 = (1− ρ1z)Gρ1(z). (6.3.12)

Since b1 = ρ1, we finally obtain (6.3.5). Notice that the radii of con-
vergence of Gρj(z) are decreasing in j, i.e., the radii of convergence are
ordered: ρ−1

1 > ρ−1
2 > · · · > ρ−1

n > 1.

Theorem 20 allows us to obtain an explicit recursion for the distribu-
tion of B, as detailed in the following corollary.
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Corollary 5. For n > 1 and 2 ≤ j ≤ n − 1, the probabilities bj satisfy the
recursion

bj = ρ
j
j

(
n− 1
j− 1

)
−

j−1

∑
i=1

biρ
j−i
j

(
n− i
j− i

)
, bn = 1−

n−1

∑
i=1

bi (6.3.13)

with initial term b1 = ρ1.

Proof. Combining the result of Theorem 20 with (6.3.3) yields the follow-
ing recursion, for 2 ≤ j ≤ n− 1,

bj = ρ
j
j

j−1

∏
i=1
Gρi (ρ

−1
j )−

j−1

∑
i=1

biρ
j−i
j

j−1

∏
k=i
Gρk (ρ

−1
j ), bn = 1−

n−1

∑
i=1

bi. (6.3.14)

Since

Gρk (ρ
−1
n ) =

1− ρk

1− ρk
ρn

=
1− µ

µ+λk

1− µ+λn
µ+λk

=
λk

λk − λn
=

N − k
n− k

, (6.3.15)

we can simplify

j−1

∏
k=l
Gρk (ρ

−1
j ) =

n− l
j− l

n− l − 1
j− l − 1

n− l − 2
j− l − 2

· · · n− j + 1
1

=

(
n− l
j− l

)
, (6.3.16)

which proves the claim.

Equation (6.3.5) has an appealing interpretation, which we now dis-
cuss. To this end, we introduce a Markov process t 7→ U(t) on the state
space

Bunb := {(i, j) ∈N2
0 : 1 ≤ j ≤ n} ∪ {(0, 0)}, (6.3.17)

which is unbounded in its first dimension. The transition rate diagram of
U(·) is similar to the transition rate diagram of X(·) with the exception
that for phases 1 until n there is no boundary that stops the process from
transitioning further to the right, see Figure 6.2.

We interpret (6.3.5) in terms of the process U(·). The rough idea is
as follows. The term Gρj(z) corresponds to the number of transitions
to the right performed by the process U(·) in phase j, before reaching
phase j + 1. So, the first term in (6.3.5) is a combinatorial object that
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U2(t)

U1(t)
0

1

2

3

N − 1

N

µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ

λ0

λ1 λ1 λ1 λ1 λ1 λ1 λ1

λ2 λ2 λ2 λ2 λ2 λ2 λ2

λN−1 λN−1 λN−1 λN−1 λN−1 λN−1 λN−1

...

· · ·

· · ·

Figure 6.2: Transition rate diagram of the Markov process U(·).

corresponds to all the ways in which the process U(·) can reach phase
j + 1, starting from (0, 0) or equivalently, (0, 1). On the other hand, the
second term in (6.3.5) corresponds to only those paths that hit the diagonal
D0 for the first time in state (i, i) for some i = 1, 2, . . . , j. Intuitively, by
subtracting these two terms, one is left with the trajectories of U(·) that
do not intersect the diagonal and thus hit phase j + 1 in one of the states
{(0, j + 1), (1, j + 1), . . . , (j− 1, j + 1)}. Formally, we see that

Pj+1(z) = E[z∑n
i=1 Gρi ]−E[z

B[j]+∑n
j=B[j]

Gρj ], (6.3.18)

where the (defective) distribution of the random variable B[j] is given by
P(B[j] = k) = P(B = k) for k = 1, 2, . . . , j and P(B[j] = k) = 0 otherwise.
Another perspective on (6.3.18) is the following:

Pj+1(z) =
∞

∑
k=0

(
P
( j

∑
i=1

Gρi = k
)
−P

(
B[j] +

j

∑
i=B[j]

Gρi = k
))

zk. (6.3.19)
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We have the inclusion of events{
B[j] +

n

∑
i=B[j]

Gρi = k
}
⊂
{ j

∑
i=1

Gρi = k
}

, (6.3.20)

so that

Pn+1(z) =
∞

∑
k=0

P
({ j

∑
i=1

Gρi = k
}
\
{

B[j] +
j

∑
i=B[j]

Gρi = k
})

zk. (6.3.21)

Equation (6.3.21) formalizes the intuitive interpretation of (6.3.5) given
above. In yet other words, relation (6.3.5) is a consequence of a decompo-
sition of the sample space Ω associated with the process U(·). The space
is decomposed as Ω = (Ω ∩ B) ∪ (Ω ∩ Bc), where B denotes the event
in which the process U(·) does not hit D0 before hitting phase j + 1. The
event Bc is then further decomposed in the disjoint events corresponding
to the process U(·) hitting D0 at different phases i = 1, . . . , j.

6.4 The maximum queue length in the first busy period

In this section, we investigate the distribution of the maximum number
of customers during the first busy period, i.e., the quantity

M := max
0≤t≤H(D0)

(X2(t)− X1(t)) (6.4.1)

under the measure P( · | X(0) = (0, 0)). We will compute

bm,j := P(M ≤ m, B = j), 1 ≤ m, j ≤ n. (6.4.2)

Summing over all relevant values of j, we get

P(M = m) =
n

∑
j=m

(bm,j − bm−1,j). (6.4.3)

We adopt the generating function approach of Section 6.3. Define, for
2 ≤ m, j ≤ n and max(0, j−m) ≤ i ≤ j− 2,

pm,j(i) := P(0,0)(H(Pj) < H(D0 ∪Dm+1), X(H(Pj)) = (i, n)) (6.4.4)

as the probability that, conditional on X(0) = (0, 0), the Markov process
X(·) reaches phase j in state (i, j) without residing in D0 ∪Dm+1 before
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phase j is reached. Define its generating function, for z ∈ C, by

Pm,j(z) :=
j−2

∑
i=j−m

pm,j(i)zi, 2 ≤ m, j ≤ n. (6.4.5)

For m ≥ j, notice that Pm,j(z) = Pj(z) and bm,j = bj, which makes the case
m ≥ j not interesting. If n = 1, then b1,1 = 1. For n > 1, we have by the
strong Markov property that b1,1 = ρ1 and for 2 ≤ m ≤ j ≤ n− 1,

ρ
j
jPm,j(ρ

−1
j ) = bm,j, Pk,j(1) = bk,j, 2 ≤ k ≤ j. (6.4.6)

The following theorem identifies Pm,j(z):

Theorem 21. For 2 ≤ m < j + 1 ≤ n, the generating functions are explicitly
given by

Pm,j+1(z) = Pm(z)
j

∏
k=m
Gρk (z)−

j

∑
i=m

bm,izi
j

∏
k=i
Gρk (z)

−
j

∑
i=m

(1− ρi)pm,i(i−m)zi−m
j

∏
k=i+1

Gρk (z) (6.4.7)

with the convention that the empty product ∏
j
k=j+1(·) = 1.

Proof. We proceed similarly as in the proof of Theorem 20. Figure 6.3 can
be used as a visual aid. We assume that 3 ≤ m < j + 1 for m fixed; the
case m = 2 is similar. From the strong Markov property at time H(Pj) we
can write for i such that j + 1−m ≤ i ≤ j− 2

pm,j+1(i) =
i

∑
k=j−m

pm,j(k)ρi−k
j (1− ρj), (6.4.8)

pm,j+1(j− 1) =
j−2

∑
k=j−m

pm,j(k)ρ
j−1−k
j (1− ρj). (6.4.9)

Multiply both sides of (6.4.8) by zi and sum over all i with j + 1−m ≤
i ≤ j− 2. Further, multiply both sides of (6.4.9) by zj−1. Sum the two
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X2(t)

X1(t)

D0

Dm+1

m

j

Figure 6.3: Visual aid for determining M. The process is only allowed to
hit the black states.

resulting expressions to get

Pm,j+1(z) =
j−2

∑
i=j+1−m

i

∑
k=j−m

pm,j(k)ρi−k
n (1− ρj)zi

+
j−2

∑
k=j−m

pm,j(k)ρ
j−1−k
j (1− ρj)zj−1. (6.4.10)

Isolate the summand corresponding to k = j−m in the double summation
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and switch the order of the double summation to obtain

Pm,j+1(z) = (1− ρj)

×
( j−2

∑
k=j+1−m

pm,j(k)
j−2

∑
i=k

ρi−k
j zi + pm,j(j−m)

j−2

∑
i=j+1−m

ρ
i−(j−m)
j zi

+
j−2

∑
k=j−m

pm,j(k)ρ
j−1−k
j zj−1

)
. (6.4.11)

Simplifying the geometric series yields

Pm,j+1(z) = (1− ρj)

×
( j−2

∑
k=j+1−m

pm,j(k)
zk − ρ

j−1−k
j zj−1

1− ρjz
+ pm,j(j−m)

ρjzj+1−m − ρm−1
j zj−1

1− ρjz

+
j−2

∑
k=j−m

pm,j(k)ρ
j−1−k
j zj−1

)
. (6.4.12)

Rewriting the expression produces

Pm,j+1(z) =
1− ρj

1− ρjz

( j−2

∑
k=j−m

pm,j(k)zj − (1− ρjz)pm,j(j−m)zj−m

− ρ
j
jz

j
j−2

∑
k=j−m

pm,j(k)ρ−k
j

)
. (6.4.13)

By recognizing the generating function of a geometric random variable,
the definition of the generating function Pm,j(z), and the probability bm,j,
we finally obtain the relation

Pm,j+1(z) = Gρj(z)(Pm,j(z)− bm,jzj)− (1− ρj)pm,j(j−m)zj−m. (6.4.14)

Iterating (6.4.14) and using the fact that Pm,m(z) = Pm(z) proves the
claim.

Theorem 21 gives the following:
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Corollary 6. For n > 1, the probabilities bm,j satisfy the recursion on j, for
2 ≤ m < j ≤ n− 1,

bm,j = ρ
j
j

(
n− 1
j− 1

)
−

j−1

∑
i=1

bm,iρ
j−i
j

(
n− i
j− i

)

−
j−1

∑
i=m

(1− ρi)pm,i(i−m)ρ
m+j−i
j

(
n− (i + 1)
j− (i + 1)

)
(6.4.15)

and for 2 ≤ m < n,

bm,n = 1−
n−1

∑
i=1

bm,i −
n−1

∑
i=m

(1− ρi)pm,i(i−m). (6.4.16)

with initial terms b1, b2, . . . , bm calculated from Corollary 5.

Proof. Combining the result of Theorem 21 with (6.4.6) yields the follow-
ing recursion, for 2 ≤ m < j ≤ n− 1,

bm,j = ρ
j
jPm(ρ

−1
j )

j−1

∏
i=m
Gρi (ρ

−1
j )−

j−1

∑
i=m

bm,iρ
j−i
j

j−1

∏
k=i
Gρk (ρ

−1
j )

−
j−1

∑
i=m

(1− ρi)pm,i(i−m)ρ
m+j−i
j

j−1

∏
k=i+1

Gρk (ρ
−1
j ) (6.4.17)

and for 2 ≤ m < n,

bm,n = Pm(1)−
n−1

∑
i=m

bm,i −
n−1

∑
i=m

(1− ρi)pm,i(i−m). (6.4.18)

Notice that the term Pm(1) in (6.4.18) is the probability that the pro-
cess reaches phase m before it reaches the diagonal D0, so Pm(1) =

1−∑m−1
i=1 bi.

The term ρ
j
jPm(ρ

−1
j ) in (6.4.17) can be simplified by using Theorem 20

and the fact that

L

∏
k=l
Gρk (ρ

−1
j ) =

( n−l
L+1−l)

( j−l
L+1−l)

, l ≤ L < j. (6.4.19)

Employing this simplification and using that bn = bm,n if m ≥ n, we find
the claimed result after some rewriting.
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Note that equation (6.4.16) can be written as

n

∑
i=1

bm,i = 1−
n−1

∑
i=m

(1− ρi)pm,i(i−m). (6.4.20)

The interpretation of this relation is as follows. The left-hand side equals
the probability P(M ≤ m). The term (1− ρi)pm,i(i−m) at the right-hand
side sum is equal to the probability that the process visits the superdiago-
nal Dm+1 for the first time at phase i ≥ m.

6.5 Coupling different finite-pool queues

In the previous sections we have developed various recursions for the
∆(i)/G/1 queue by relating the distribution of the process at different
phases. In this section we expand on this idea by developing recursions
that involve a different number of initial customers in the pool. We use the
superscript x(n) whenever we want to emphasize the dependence of a
certain quantity x on the initial number n of customers in the pool. For
example, X(n)

2 (t) denotes the number of customers who have joined the
system by time t, when there were n customers in the pool at time zero.
For our proofs, we construct an explicit coupling between X(n+1)(·) and
X(j)(·), for j ≤ n. Note that

λ
(n+1)
i = λ((n + 1)− i) = λ(n− (i− 1)) = λ

(n)
i−1. (6.5.1)

Equation (6.5.1) expresses in precise terms the simple observation that,
when we consider a ∆(i)/G/1 queue with n + 1 initial customers and
we disregard the first customer that arrives at the queue, we obtain a
∆(i)/G/1 queue with n initial customers. Therefore, we couple X(n)(·)
and X(n+1)(·) by considering the state space S (n) as a subset of S (n+1)

and by letting the transition probabilities be determined by the same rate
λ
(n+1)
i , i = 2, . . . , n + 1 (resp. rate µ) exponential clocks.

6.5.1 The number of customers in the first busy period

In this section we develop another recursive expression for the distribu-
tion of the number of customers in the first busy period. We will express
b(n)j as a function of b(l)i for l = 1, . . . , n− 1 and i = 1, . . . , l. We define the

probability generating function of the number B(n) of customers served
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in the first busy period in a system with n total customers as

P(n)
B (z) :=

n

∑
i=1

P(B(n) = i)zi. (6.5.2)

Next we show that P(n)
B (·) solves a recursion formula similar to (6.3.10).

Theorem 22. For z ∈ C,

P(n)
B (z) =

(
ρ
(n)
1 + (1− ρ1)

n−1

∑
k=1

s(n−1)
k zkP(n−1−k)

B (z)
)

z. (6.5.3)

Proof. We split P(n)
B (z) as

P(n)
B (z) = ρ

(n)
1 z +

n−1

∑
i=1

P(B(n) = 1 + i)z1+i. (6.5.4)

By the coupling given by (6.5.1), we have that, for i ≥ 1,

P(S(n) = 1 + i)

= (1− ρ1)
i

∑
k=1

P(S(n−1) = k)P(S(n−1−k) = i− k), (6.5.5)

with the convention that P(S(0) = 0) = 1. See Figure 6.4 for an example.
This allows us to rewrite (6.5.4) as

P(n)
B (z)

= ρ
(n)
1 z + (1− ρ1)

n−1

∑
i=1

i

∑
k=1

P(S(n−1) = k)P(S(n−1−k) = i− k)z1+i

= ρ
(n)
1 z + (1− ρ1)

n−1

∑
k=1

P(S(n−1) = k)z
n−1

∑
i=k

P(S(n−1−k) = i− k)zi

= z
(

ρ
(n)
1 + (1− ρ1)

n−1

∑
k=1

s(n−1)
k zk

n−1

∑
i=k

P(S(n−1−k) = i− k)zi−k
)

. (6.5.6)

The inner sum can be rewritten using the definition (6.5.2), leading to

P(n)
B (z) = z

(
ρ
(n)
1 + (1− ρ1)

n−1

∑
k=1

s(n−1)
k zkP(n−1−k)

B (z)
)

, (6.5.7)

and concluding the proof.
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X2(t)

X1(t)
0

1

2

3

4

5

6

Figure 6.4: An example of the sample-path coupling obtained by (6.5.1)
with n = 6. We have that P(→) = ρ

(n)
1 and P(↑) = 1− ρ

(n)
1 . In the first

event, the first busy period consists of one service. In the second event,
we split the busy period in the busy periods of two coupled ∆(i)/G/1
queues. The→ path represents the first busy period of a queue with n− 1
initial customers. The→ path represents the first busy period of a queue
with n− 3 = 3 initial customers.

6.5.2 The total number of busy periods

The recursive techniques that we have introduced in the previous section
can be used to obtain further insight on the performance of the ∆(i)/G/1
queue. As an example, in this section we compute the distribution of the
total number of busy periods before the pool of customers depletes. We
do so by recursively conditioning on the number of services in all of the n
busy periods.

Denote by K(n) the total number of busy periods until all customers
have been served when initially the number of customers in the pool is n.
Trivially, 1 ≤ K(n) ≤ n almost surely. Our aim is to determine P(K(n) = j)
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for j = 1, 2, . . . , n. We see that P(K(n) = 1) = b(n)n , so we focus on the
cases j = 2, 3, . . . , n. We use the recursive structure of the ∆(i)/G/1 queue
to develop an expression for the probability generating function of K(n).
To that end, define P(0)

K (z) := 1 and

P(n)
K (z) :=

n

∑
j=1

P(K(n) = j)zj, z ∈ C, n ≥ 1. (6.5.8)

The next theorem shows that P(n)
K (·) satisfies a recursion in n:

Theorem 23. For z ∈ C

P(n)
K (z) =

( n

∑
k1=1

b(n)k1
P(n−k1)

K (z)
)

z. (6.5.9)

Proof. Let B(n) denote the number of services during the first busy period
if initially the number of customers in the pool is n. By conditioning
on the number of services during the first busy period we obtain the
expression

P(K(n) = j) =
n−(j−1)

∑
k1=1

P(K(n) = j | B(n) = k1)P(B(n) = k1). (6.5.10)

Invoking the strong Markov property at the time at which the queue
empties for the first time, we see that

P(K(n) = j | B(n) = k1) = P(K(n−k1) = j− 1) (6.5.11)

and thus

P(K(n) = j) =
n−(j−1)

∑
k1=1

b(n)k1
P(K(n−k1) = j− 1). (6.5.12)

Multiply both sides of (6.5.12) by zj, sum over all j = 2, 3 . . . , n, and add
the equality P(K(n) = 1)z = b(n)n z to obtain

P(n)
K (z) = b(n)n z +

n

∑
j=2

n−(j−1)

∑
k1=1

b(n)k1
P(K(n−k1) = j− 1)zj. (6.5.13)
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Switch the order of the double summation and simplify using the defini-
tion of the probability generating function. This yields

P(n)
K (z) =

[
b(n)n +

n−1

∑
k1=1

b(n)k1
P(n−k1)

K (z)
]
z

=
( n

∑
k1=1

b(n)k1
P(n−k1)

K (z)
)

z, (6.5.14)

concluding the proof.

Theorem 23 can be used to obtain performance meaures. For example,
taking derivatives with respect to z on both sides of (6.5.9) and setting
z = 1 provides the mean number of busy periods until the system is
empty:

E[K(n)] =
n

∑
k1=1

b(n)k1
P(n−k1)

K (1) +
n

∑
k1=1

b(n)k1
E[K(n−k1)]

= 1 +
n−1

∑
k1=1

b(n)k1
E[K(n−k1)], (6.5.15)

with the convention that E[K(0)] = 0. Iterating the recursion (6.5.15) gives
the expression

E[K(n)] = 1 + (1− b(n)n ) +
(

1−
n−1

∑
k1=1

b(n)k1
b(n−k1)

n−k1

)
+ . . . (6.5.16)

+
(

1−
2

∑
k1=1

3−k1

∑
k2=1
· · ·

(n−1)−...−kn−3

∑
kn−2=1

b(n)k1
b(n−k1)

k2
· · · b(n−k1−...−kn−2)

n−k1−...−kn−2

)
The second factorial moment can be obtained by taking derivatives twice
with respect to z on both sides of (6.5.9) and setting z = 1. This yields

E[K(n)(K(n) − 1)] = 2
n

∑
k1=1

b(n)k1
E[K(n−k1)]

+
n

∑
k1=1

b(n)k1
E[K(n−k1)(K(n−k1) − 1)]. (6.5.17)
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Combining (6.5.15) and (6.5.17) gives

Var(K(n)) = E[K(n)(K(n) − 1)] + E[K(n)]− (E[K(n)])2

=
n

∑
k1=1

b(n)k1
E[K(n−k1)(K(n−k1) − 1)]

+
n

∑
k1=1

b(n)k1
E[K(n−k1)]−

( n

∑
k1=1

b(n)k1
E[K(n−k1)]

)2
.

=
n

∑
k1=1

b(n)k1
E[(K(n−k1))2]−

( n

∑
k1=1

b(n)k1
E[K(n−k1)]

)2
. (6.5.18)

Equations (6.5.18) has a simple interpretation. We see that the right-hand
side is equal to E[(K(n−B(n)))2]−E[K(n−B(n))]2 = Var(K(n−B(n))). Noting

then that K(n) d
= 1 + K(n−B(n)) gives a more straightforward proof of

(6.5.18).

6.6 Conclusions

In this chapter we have studied the ∆(i)/G/1 queue for a finite and fixed
number of customers n. Assuming exponentially distributed arrival and
service times, we have analyzed the two-dimensional Markov process
representing the number of completed services and the number of cus-
tomers who have joined the queue. Exploiting the recursive structure
of the Markov chain, we have derived an explicit expression for the join
probability mass function of the number of customers served and the
maximum queue length in the first busy period. We have also illustrated
how the recursive structure can be exploited further to obtain explicit
expressions for other quantities of interest.





CHAPTER 7
Open problems

In this thesis we have studied the ∆(i)/G/1 queue, a model for a queue
where only a finite number n of customers can join. We have focused
on the heavy-traffic regime, defined as follows: We let the customer pool
n grow, while speeding up the service time so that, on average, approxi-
mately one customer arrives during one service. This assumption must
hold at the peak of congestion of the queue, and we assume that this
happens at time 0. Our heavy-traffic assumption gives rise to a negative
quadratic (resp. polynomial) drift in the n→ ∞ limit of the queue-length
process. This depletion-of-points effect exactly describes the influence of
the finite pool of customers on the dynamics of the queue. Surprisingly,
our results reveal that the depletion-of-points effect becomes relevant
only after nδ services with δ < 1, that is, when there are still n− nδ ≈ n
customers left in the pool. We have investigated this behavior for vari-
ous ∆(i)/G/1 models and found that it holds with remarkable generality.
Our results suggest that, when the variance of the service times is finite,
the depletion-of-points effect invariably appears as a negative quadratic
(resp. polynomial) drift. On the other hand, when the variance of the
service times is infinite, the depletion-of-points effect is more subtle and
requires a delicate analysis. In the remainder of the section we discuss
this issue and other interesting open problems that arise from the study
of the ∆(i)/G/1 queue.

189
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Size-biased arrival times, infinite-variance service times. In Chapter
5 we studied in detail the ∆α

(i) /G/1 queue with size-biased exponential
arrival clocks. For this model,

P(i joins during service of j|Di, Dj) ≈
Dα

i Dj

n
, (7.1)

for some α ∈ [0, 1]. If we interpret customers as vertices, and the ser-
vice time of customer i as a weight associated to vertex i, we see that the
∆α

(i) /G/1 queue is equivalent to the exploration process of an inhomo-
geneous random graph. For α = 1 we retrieve the well-known rank-1
inhomogeneous random graph. In Chapter 5 we have shown that, if the
variance of the size-biased service times is finite, i.e. E[S2+α] < ∞, the
∆α

(i) /G/1 queue-length process converges to the same limit as the stan-
dard ∆(i)/G/1 queue (α = 0). When the third moment of the weights is
infinite, Bhamidi, van der Hofstad and van Leeuwaarden [16] have shown
that, for a certain choice of deterministic weights, the exploration process of
the rank-1 inhomogeneous random graph converges to a so-called thinned
Lévy process defined as

S(t) = b + ct +
∞

∑
i=1

bi−1/γ(Ii(t)− ati−1/γ), (7.2)

where a, b > 0 and c ∈ R are constants, γ is the power-law tail exponent
as in (4.1.1), Ii(t) = 1{Ei≤ati−1/γ}, and Ei are mean one i.i.d. exponential
random variables. See also [32] for an analogous result for the configu-
ration model. The authors of [32] also argue that, when the degrees are
given by an i.i.d. sequence (Wi)

n
i=1 following a power-law distribution,

conditioned on (Wi)
n
i=1 the limit (7.2) holds with the following modifi-

cation. The term i in the sum is replaced by Γi := ∑i
j=1 Ēj, where Ēj are

i.i.d. rate one exponential random variables. This substitution gives

S(t) = b + ct +
∞

∑
i=1

bΓ−1/γ
i (Ii(t)− atΓ−1/γ

i ). (7.3)

and
Ii(t) := 1{Ei≤atΓ−1/γ

i }. (7.4)

Note that E[Γi] = i. Roughly speaking, the first term bΓ−1/γ
i in the

summation in (7.2) represents the size of the jump of the exploration
process when a high-weight vertex is found. On the other hand, the
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second term (Ii(t)− atΓ−1/γ
i ) represents the arrival process of the high-

weight vertices. Consider now our ∆α
(i) /G/1 model with service times Si

such that
1− FS(t) = ct−γ (7.5)

with t > cγ and γ ∈ (1 + α, 2 + α), α ∈ (0, 1). As a generalization of (7.3),
we conjecture that, conditioned on the service times (Si)

n
i=1, the embedded

queue process Qe
n(·) converges to

Sα(t) = b + ct +
∞

∑
i=1

bΓ−1/γ
i (Ii,α(t)− atΓ−α/γ

i ) (7.6)

with Ii,α(t) := 1{Ei≤atΓ−α/γ
i }. It is reasonable to expect that setting α = 0

in (7.6) yields a γ-stable motion with quadratic drift, consistently with our
results in Chapter 4. To see this, we resort to the series representation for
γ-stable random measures [85, Chapter 3.10]. The representation holds
for processes defined on [0, 1] and is given by

Xγ(t) =
∞

∑
i=1

(Γ−1/γ
i 1{Ui≤t} − dit), γ ∈ (1, 2), (7.7)

where (Ui)
n
i=1 are i.i.d. uniform random variables and di is such that

di ∼ i−1/γ. The process Xγ(·) in (7.7) is then a γ-stable motion. Let us
define FE(t) = 1− e−t. Applying the time-change t 7→ F−1

E (t) to (7.6) and
approximating Γ−1/γ

i ≈ i−1/γ ≈ di we get

Sα(F−1
E (t)) d

= b + cF−1
E (t) + b

∞

∑
i=1

Γ−1/γ
i (1{Ui≤t} − aF−1

E (t)). (7.8)

It turns out that a = 1 when α = 0. By Taylor expanding F−1
E (t) as

F−1
E (t) = t + t2/2 + o(t2), we obtain

Sα(t) ≈ b + ct + bXγ(t)−
t2

2

∞

∑
i=1

bΓ−1/γ
i , t� 1. (7.9)

Note that the coefficient of the quadratic drift in (7.9) is random. In fact,
the limit process we obtained in Theorem 17 is an annealed version of
(7.9), averaged over the laws of the Γi. The expression (7.9) is only formal,
since the summation on the right-hand side diverges. This suggests that
the heuristic argument above is too crude, and a more subtle analysis
is needed. Indeed, it would be interesting to formalize this argument,
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and in particular to understand why it yields the expected result only for
small t.

Joseph [55] investigates the configuration model with i.i.d. heavy-
tailed weights. In particular, he shows that the exploration process con-
verges to Y(·) + A(·), where A(·) = −ctγ−1 is a negative deterministic
drift and c is given in terms of the Gamma function. Moreover, Y(·) is
uniquely characterized by having independent increments and Fourier
transform

E[exp(iuY(t)] = exp
( ∫ t

0

∫ ∞

0
(eiux − 1− iux)a

1
xγ

e−bxsdsdx
)

. (7.10)

Here a, b ∈ R are unimportant constants. It is rather straightforward
to adapt the arguments in [55] to extend this result to our ∆α

(i) /G/1
model. We find that, when the service times follow the power-law
(7.5), the ∆α

(i) /G/1 embedded queue process converges to the process
Q̂e(·) = Ŷ(·) + Â(·), where Ŷ(·) has independent increments and Fourier
transform

E[exp(iuŶ(t))] = exp
( ∫ t

0

∫ ∞

0
(eiux − 1− iux)a

1
xγ+1−α

e−bxαsdsdx
)

,

(7.11)
and a, b ∈ R are again unimportant constants. The term e−bxαs in (7.11)
accounts for the α-size-biased order of arrival of the customers. More-
over, the techniques of [55] imply that, when γ ∈ (1 + 2α, 2 + α), the
deterministic drift A(·) is given by

Â(t) = −E[X1+2α]

2E[Xα]
t2. (7.12)

Interestingly, the drift (7.12) coincides with the drift for the E[S2+α] < ∞
case, when λ = 1. This is consistent with the fact that, when α < 1, it
is possible to choose γ such that 2 + α > γ > 1 + 2α and thus, even
if E[S2+α] = ∞, E[S1+2α] and E[Xα] are finite. However, when α = 1
we have 2 + α = 1 + 2α and there is a continuous phase transition from
a drift with degree 2 to a drift with degree γ − 1, with γ ∈ (2, 3). It
is not clear what the drift, or even the limit process, should be when
γ ∈ (1+ α, 1+ 2α). We remark that, in order to obtain (7.11) , we have not
conditioned on the service times (Si)

n
i=1. It should be possible to show

that the law of Ŷ(t) + Â(t) coincides with the law of (7.6) when the latter
is averaged over the Γi.
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Excursions of drifted stable processes. Let us go back to the setting of
Chapter 4, where we dealt with the ∆(i)/G/1 queue with heavy-tailed
service times. We have shown that the free process Xn(·) converges in
distribution to X̂(·), a γ-stable motion with negative quadratic drift. Very
little is known about this class of processes. In particular, it is not known
whether the excursions above past minima of X̂(·) can be ordered, that
is if there is a well-defined maximal excursion above zero of the process
φ(X̂)(·). This result would be instrumental in proving that, for K ∈ N

and for a sufficiently large head start q, the first busy period of Q̂(·) is
one of the K largest ones with probability close to 1. A striking property
of φ(X̂)(·) is that supt≥0 φ(X̂)(·) = ∞ almost surely. Indeed, it is well
known that for any Lévy process X(·) with unbounded Lévy measure

P(∀N ∈N, ∀T > 0 ∃t ≥ T : ∆X(t) ≥ N) = 1, (7.13)

where ∆X(t) := X(t) − lims→t− X(s). However, due to the parabolic
drift the excursions of φ(X̂)(·) containing a large jump become smaller
as time passes. This can be justified heuristically as follows. Recall that
φ(X̂)(t) = φ(q + βt + S(t)− 1/2t2), where S(·) is a γ-stable motion. Let
us set q = β = 0 for simplicity. Let (tn)∞

n=1 a sequence of time instants
such that tn → ∞ and S(·) performs a ‘typical large jump’ in tn. With
‘typical large jump’ we mean that S(tn) ≈ t1/α

n . We look for 0 < t � 1
such that φ(Xn)(tn + t) is zero for the first time after tn. Equivalently, we
look for 0 < t� 1 such that

Xn(tn + t)− Xn(tn) = −t1/α
n . (7.14)

Rewriting the left-hand side of (7.14) using the definition of Xn(·) gives

S(tn + t)− (tn + t)2

2
−
(
S(tn)−

t2
n
2

)
= (S(tn + t)− S(tn))−

t2

2
− tnt. (7.15)

The first term is a mean-zero stable random variable and thus we ignore
it at a first approximation. We also ignore the second term, since t2 is of
lower order than t. It follows that t > 0 should be such that−tnt = −t1/α

n ,
that is t = t(1−α)/α

n . Since α ∈ (1, 2), this suggests that the average excur-
sion length decreases over time (as tn → ∞). In particular, by formalizing
this argument it should be possible to show that the excursions of φ(X̂)(·)
can be ordered by their length and that the largest one is finite.
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Large deviations. Recall that the net-put process Pn(·) is defined as

Pn(t) :=
An(t)

∑
i=1

Si − cnt, (7.16)

where An(t) = ∑n
i=1 1{Ti≤t} and cn is the rescaled service rate. Equation

(7.16) can be cast in a simpler form as

Pn(t)
d
=

n

∑
i=1

(Si1{Ti≤t} − t), (7.17)

where we have taken cn = n. In (7.17), Pn(t) is represented as a partial
sum of i.i.d. random variables. It seems that much information can be
gained by exploiting the representation (7.17). For fixed n ∈ N and
assuming that the Si follow a subexponential distribution we can estimate
the probability P(Pn(t) > x) for fixed t and large x. Indeed, we have

P(Pn(t) > x) ≤ P
( n

∑
i=1

Si > x + t
)
∼ nP(S > x + t), (7.18)

where f (x) ∼ g(x) means limx→∞ f (x)/g(x) = 1. In the large n regime
we can be more precise, and we expect the following to hold

P(Pn(t) > x) ∼ nFT(t)P(S > x + t). (7.19)

To obtain the heuristic (7.19) we have replaced An(t) by nFT(t) in (7.16).
On the other hand, if the cumulant generating function s 7→ Λ(s) of
Xi(t) := Si1{Ti≤t} − t is finite for some s > 0 , then (7.17) allows us to
estimate, as n→ ∞,

P(Pn(t) > nx) ≈ e−nI(x), (7.20)

for fixed t and x and a rate function I(·) given by the Legendre trans-
form of Λ(·). It should be possible to refine these basic results to obtain
asymptotic estimates for the workload process Ln(t) := φ(Pn)(t). Finally,
another interesting venue of investigation are asymptotics for the length
of the busy period. For the G/G/1 queue with regularly varying service
distribution, it is known that the probability of a large busy period is
related to the probability of a large cycle maximum [102]. The ∆(i)/G/1
queue is transitory, thus the focus lies on the first busy period. Never-
theless, it should still be possible to relate the busy period to the cycle
maximum. Results on the maximum of a Brownian motion with parabolic
drift are given in [39, 40, 53].
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Heavy traffic in tc > 0. Throughout this thesis we have assumed that
the ∆(i)/G/1 queue satisfies the heavy-traffic condition

max
t≥0

fT(t)E[S] = fT(0)E[S] = 1, (7.21)

where fT(t) is the distribution function of the arrival time and 1/E[S]
is the service rate. Assumption (7.21) implies that the queue is never
overloaded (i.e. it is never the case that fT(t)E[S] > 1), and is critically
loaded at the moment of peak congestion tc. Additionally, (7.21) implies
that tc is attained in 0. We have showed that the first assumption reveals
the depletion-of-points effect of the ∆(i)/G/1 queue. On the other hand,
the assumption tc = 0 is of a technical nature and does not lend itself to a
satisfying justification. We note that tc = 0 is satisfied for the important
case of exponential clocks Ti. However, it is often the case that the instant
of peak congestion is significantly later than the instant in which service
starts. It is therefore also of great practical interest to investigate the
heavy-traffic behavior of the ∆(i)/G/1 queue for tc > 0.

Mandelbaum and Massey [71, Theorem 3.4] give one of the first results
for the case tc > 0 in the context of the Mt/Mt/1 queue. They introduce
an additional time parameter T0 such that T0 ≤ tc. Conditioning on
Qn(T0) = 0, and assuming that T0 ↗ tc after a suitable scaling, they
show that the distribution of the queue length Qn(t) in t ≥ T0 (for t suffi-
ciently close to tc) is that of a Brownian motion with negative quadratic
(resp. polynomial) drift starting in 0 in T0. In fact, Mandelbaum and
Massey scale T0 in such a way that it is inside the critical window, that is
the queue is in heavy-traffic in T0. Conditioning on Qn(T0) = 0 implies
that there is no backlog of work in T0 and thus the queue behaves as
if T0 = tc = 0. It would be interesting to understand what happens
to the queue-length process close to tc when T0 is fixed or, more gener-
ally, when T0 ↗ tc but T0 lies outside the critical window. Recall that
the negative quadratic drift can be interpreted as the effect of the tran-
sition of the queue from being critical to being subcritical. Restricting
ourselves to the finite-variance case, we wish to study Qn(tc + n−1/3t) for
t ∈ ((T0 − tc)n1/3, ∞) conditioned on Qn(T0) = 0. Then, fixing T0 < tc
and letting n→ ∞ intuitively corresponds to conditioning the queue to be
0 at −∞. In this intuitive picture, in the time interval (−∞, 0) the queue
transitions from being subcritical to being critical. Moreover, conditioned
on Qn(0) = q, we expect the queue for t > 0 to follow a Brownian path
around a negative parabolic (resp. polynomial) drift, representing again
the transition away from criticality.
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Keller [58] gives a heuristic solution to the problem above in the
context of the heavy-traffic Mt/Mt/1 queue. Because of the deep relation
between the ∆(i)/G/1 queue and the Mt/Mt/1 queue, we conjecture that
an analogous result holds for the ∆(i)/G/1 queue. Let us then describe the
result of Keller. Recall that in the Mt/Mt/1 queue, arrivals (resp. services)
occur according to a time-dependent rate λ(t) (resp. µ(t)). Keller scales
the arrival and service rates as λ(t/n) and µ(t/n), and focuses on the
behavior of the system when n → ∞. He then expresses the transient
probability mass function P(q, t, n) := P(Qn(t) = q) as a power series,
for which he computes the first few terms. He shows that, when the
queue is in heavy-traffic in tc, P(q, t, n) satisfies

P(n1/3q, tc + n−1/3t, n) = c1n−1/3P1(c1q, c2t, 0) + O(n−2/3), (7.22)

where c1, c2 are constants and with an abuse of notation we have written
n1/3q instead of bn1/3qc. Note that the first c1n−1/3 term on the right-
hand side is a normalization constant. Moreover, the probability mass
function (x, t) 7→ P1(x, t, 0) is given by the solution of the following
partial differential equation

∂P1

∂t
=

1
2

∂2P1

∂x2 − t
∂P1

∂x
, x > 0, (7.23)

with nonstandard boundary conditions

1
2

∂P1

∂x
(0, t, 0)− tP1(0, t, 0) = 0, (7.24)

P1(x, t, 0) ∼ −2te−(−2t)x, as t→ −∞. (7.25)

Note that, the solution of (7.23) with boundary condition (7.24) and
P1(x, 0, 0) = δa(x) is the probability density function of a reflected Brown-
ian motion with negative quadratic drift, starting in a ≥ 0. Here x 7→ δa(x)
is the Dirac measure centered in a. The nonstandard boundary term (7.25)
can be interpreted as follows: when t→ −∞, the queue gradually moves
outside of the critical window; for t � −1 the queue is approximately
subcritical. It can be shown that the queue-length process of the subcriti-
cal Mt/Mt/1 queue converges pointwise to a geometric random variable
Gt with parameter 1− ρ(t). This is the stationary distribution of an as-
sociated M/M/1 queue; see Chapter 3.4 where we prove this for the
∆(i)/G/1 queue. As t→ tc, ρ(t)→ 1, and Gt is well approximated by an
exponential random variable. Therefore, the boundary condition (7.25)
forces a continuous transition between the subcritical (t = −∞) and the
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critical (t = O(1)) regimes of the queue. Note also that, as t → −∞,
−2te2tx → δ0(x), which is consistent with our previous intuition of con-
ditioning the queue to be zero at −∞.

The function P1(x, t, 0) describes the evolution of the probability mass
distribution as the queue evolves from subcritical, through criticality, to
subcritical again. In Chapter 5 we have established a connection between
the ∆α

(i) /G/1 queue and the Norros-Reittu random graph. It would be
interesting to investigate whether P1(x, t, 0) also describes the evolution
of an appropriate random graph process.

Higher-order contact criticality for random graphs. We now take the
connection between the finite-pool queues and random graphs further,
and focus on the `-th order contact introduced in Section 2.4. By exploiting
this connection it should be possible to develop a theory of `-th order
criticality for random graphs. More precisely, it would be interesting to
investigate for which random graphs the exploration process converges
to a stochastic process with negative polynomial (not quadratic) drift. Let
us focus on the Erdős-Rényi random graph with connection probability
p = 1/n for simplicity. The number of vertices visited by the exploration
process t 7→ Xn(t) grows linearly in time; in [t, t + δ] the exploration
process visits O(δ) vertices. Therefore at time t the number of visited
vertices is approximately t and the number of potential neighbors of the
vertex currently being explored is approximately n − t = n(1 − t/n).
Consequently, the expected number of neighbors of the vertex being
explored at time t is approximately 1− t/n. Here we have ignored the
contribution from the active vertices that have not been explored yet. The
cumulative effect of the negative contribution −t/n gives the negative
parabolic drift −t2/2 in the limit. This suggests that a random graph
model will be `-th order critical when the expected number of new active
vertices discovered by the exploration process at time t is approximately
1 + c(t/n)` for some constant c ∈ R and ` ∈N. Note that when c = −1
and `1 < `2, we have 1− (t/n)`1 > 1− (t/n)`2 ; when ` is larger, the
critical window shrinks. The computations in Section 2.4 suggest that, as
`→ ∞, the critical window converges to βn−1/2.

Critical digraphs. Recall that the graph constructed from the ∆α
(i) /G/1

queue with α ∈ [0, 1) is a directed graph (briefly, digraph). We now
abstract the construction of the random digraph in Chapter 5. We are led
to consider a random digraph defined as follows: To each vertex i ∈ [n]
we assign two weightsWi,out andWi,in. Conditionally on the weights,
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we draw a directed edge from vertex i to vertex j with probability

P(i→ j) = 1− exp
(
− Wi,outWj,in

n

)
. (7.26)

Note that for the random graph generated from the ∆α
(i) /G/1 queue

it holds Wi,out = Wα
i,in. We wish to investigate the critical behavior

of this random graph by determining the size of the largest strongly
connected components C1, C2, . . .. A strongly connected component (briefly,
a component) Ci is a (maximal) set of vertices such that each vertex in
Ci is reachable from each other vertex in Ci by following the directed
arrows. Very little is currently known about critical digraphs. Most of the
literature focuses on the supercritical and subcritical phases of various
digraph models. This procedure identifies the critical window, but gives
no additional information on the structure of the strongly connected
components. Let us briefly summarize the previous literature.

Luczak [69] considers a graph sampled uniformly at random from
the set of simple graphs on n vertices, with M edges present (directed
Erdős-Rényi random graph). He proves that the critical threshold for
the emergence of a size O(n) component is M/n = 1 (in the undirected
Erdős-Rényi random graph this is 1/2). See also Karp [57]. Luczak [70]
identifies the precise critical window for this model. He proves that the
connectivity structure changes when np = 1 + εn, where εn = o(1) and
εn = Θ(n−1/3). They also show that when np = 1 + εn−1/3 the strongly
connected components are essentially a OP(1) number of cycles of length
OP(n1/3) ‘glued together’. Bloznelis, Götze and Jaworski [19] derive
similar results for a large class of inhomogeneous random graphs, by
building on the celebrated paper by Bollobás, Janson and Riordan [22].
Their proof is based on the relation between the giant strongly connected
component and two different branching processes, describing respectively
the descendants and the ancestors of a uniformly chosen vertex. See [26]
for analogous results in the context of the directed configuration model.

The classical approach to the study of the component sizes of a crit-
ical random graph is via an exploration process [5, 15, 16, 33, 32]. For
a random directed graph this approach does not seem to be appropri-
ate. Intuitively, this is because the exploration process only provides
local information on a neighborhood of a uniformly chosen vertex. On
the other hand, due to the directed edges, the strongly connected com-
ponents depend on the global structure of the graph. One of the most
successful approaches to the study of the global structure of connected
components relies on Aldous’s theory of continuum random trees [4] and
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was pioneered by Addario-Berry, Broutin and Goldschdmit for the Erdős-
Rényi random graph [2]. In this approach the connected components are
seen as metric measured spaces. The distance is given by the usual graph
distance, rescaled so as the distance between two neighbouring vertices
converges to zero and the measure is the usual counting measure. In [2],
the spanning tree of a single connected component conditioned on its
size is encoded by a depth-first exploration. The ‘surplus edges’ (the edges
that are in the component but not in the spanning tree) are described
by (random) marks on the area below the graph of the depth-first explo-
ration. See also [14], where this approach is applied to study the critical
inhomogeneous random graph.

This technique seems to be well suited for the study of critical inho-
mogeneous digraphs. Each connected component is now to be equipped
with three measures µout

n (·), µin
n (·), µe

n(·). The first two describe respec-
tively the empirical out-degree distribution and the empirical in-degree
distribution of the vertices in the component. The third measure µe

n(·) de-
scribes the number of edges in a component. Conditioned on the number
of descendants of a vertex v, the depth-first exploration then describes
the structure obtained by considering the outgoing edges from v. The
ingoing edges are added as marks on the depth-first exploration similarly
as for the ‘surplus edges’ in the Erdős-Rényi random graph in [2]. This
procedure depends crucially on the in-degrees and out-degrees of the
vertices encountered in the depth-first exploration. This information is
encoded in the measures µout

n (·) and µin
n (·). Note that, differently from

the undirected case, this construction does not directly yield a (strongly)
connected component. Instead, the connected component is contained in
the resulting graph; see Figure 7.1, where the strongly connected compo-
nent consists of two directed cycles glued together at the vertex v. The
measure µe

n(·) is then necessary in order to identify the limiting structure
of the strongly connected component. Finally, the number of descendants
of a vertex v is obtained through a convergence result for the breadth-first
exploration; this would entail generalizing our main theorem in Chapter
5 to an arbitrary out-degree distributionWi,out.

The ideas outlined above originated from personal communications
with Shankar Bhamidi and Souvik Dhara.

Finite-population queues and random trees. In Chapter 5 and in the
previous paragraphs we have focused on the connection between the
∆(i)/G/1 queue and the exploration process of certain random graphs.
However, the exploration process also generates a spanning tree of the
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v

Figure 7.1: The depth-first exploration of the descendants of a vertex v
and the associated strongly connected component (black vertices). The
dashed arrows are ingoing edges.

random graph, which can be studied independently of the original graph.
In fact, there is a natural connection between queues and random trees,
given by the following general scheme. Consider a queue with one
server which serves according to a First-Come-First-Served discipline.
The first customer begins service at time t = 0. Let us denote the number
of customers served in the first busy period by γ1. We identify each
customer i ∈ {1, . . . , n} with a (labelled) vertex, and label the customer
in the queue at time t = 0 as the root. We define νi as the number of
customers that join the queue during the i-th service, conditioned on
γ1 = n. Next we draw an edge from the root to all the ν1 customers
that joined during the first service. Then, we draw an edge between the
second customer in the queue and all the ν2 customers that join during
the second service. By iterating this procedure we construct a labelled,
rooted random tree with n vertices. We remark that in this context the
queueing model is determined by the random variables (νi)

∞
i=1, which are

in principle completely general. The difference with the similar procedure
presented in Chapter 5 is twofold. First, here the emphasis lies on the
family of random variables (νi)

∞
i=1 rather than on the precise arrival and

service processes. Second, in this setting the total number of vertices
in the tree is fixed. We use distinct notation from Chapter 5 in order to
emphasize the difference between the two settings. We see that there
is a correspondence between the construction of the random tree and
the queue-length process embedded at service completions. The latter
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is defined as ζ(0) = 1 and ζ(k) = (ζ(k − 1) + νk − 1)+. The problem
we present here can be broadly formulated as follows: can queueing
techniques help to understand the geometry of the random tree associated
with the random variables (νi)

∞
i=1? In turn, can a deeper understanding

of the tree structure reveal new interesting features of the associated
queueing model?

In fact, for the specific cases of i.i.d. and exchangeable (νi)
∞
i=1 the an-

swer is positive, as Takács has shown in [90, 92]. In [90] Takács obtains
exact (not asymptotic) explicit results by using combinatorial arguments
on simple examples. His main tool is a simple formula for P(γ1 = n)
in the case of exchangeable (νi)

∞
i=1. His techniques allow him to give

an explicit expression for the embedded queue length distribution for
the M/M/1 queue since in this case (νi)

∞
i=1 are i.i.d. random variables.

Interestingly, Takács is also able to give explicit formulas for the Erdős-
Rényi random graph by a careful choice of the (νi)

∞
i=1. In [92], Takács stud-

ies the geometry of the random tree as n → ∞. He assumes that (νi)
∞
i=1

are i.i.d. so that the process (ζk)
∞
k=1 is Markov. He proves that, when

E[ν] = 1, the rescaled process (ζk)
∞
k=1 converges to a Brownian excursion.

This fundamental result reveals a deep connection between the queue
and the random tree. In fact, it turns out that various functionals of the
embedded process such as the maximum queue length and the maximum
number of arrivals during one service are asymptotically equivalent to
certain quantities related to the random tree, such as the width of the
tree and the height of the tree. Therefore, by exploiting the asymptotic
results for the queueing process, Takács is able to characterize the limiting
distribution of the width and the height of the associated random tree, in
terms of functionals of a Brownian excursion. We remark that the Markov
structure is crucial for the arguments of Takács. The arguments above
can be easily carried over to the M/G/1 queue, since (νi)

∞
i=1 are again

i.i.d. random variables.
It would be interesting to understand if the method outlined above

is robust enough to be extended to a non-Markovian setting. We present
two concrete problems that could guide future research efforts. First,
given a queue in which the inter-arrival times and service times are
generally distributed with unit mean and finite second moment, we
ask what can be said on the associated random tree in the asymptotic
regime n → ∞. See also [92], where a similar issue is raised. Note
that in this setting (νi)

∞
i=1 are not i.i.d. We conjecture that, conditioned

on hitting zero at time n, the embedded queue-length process again
converges to a Brownian excursion. In fact, the results of Takács [92]
can be interpreted as a conditioned Invariance Principle, for which the
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Markovian structure is not necessary. It is not yet clear, however, if it
would be possible to relate the functionals of the queue and geometrical
properties of the random tree as in the i.i.d. case. Second, it would
be interesting to apply these techniques to gain further insights in the
exploration process ζk of the Erdős-Rényi random graph. In this case,
the νi have a strong dependency structure. We ask if new properties of
the associated random spanning tree can be obtained by exploiting this
connection. In fact, this issue is investigated in a different context in [2].
The authors characterize the distribution of the spanning tree of the Erdős-
Rényi random graph conditioned on being connected. However, the
spanning tree they consider is associated with the depth-first exploration
process, and thus it has not a clear queueing interpretation.
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[92] L. Takács. Queueing methods in the theory of random graphs. In
Advances in Queueing Theory, Methods, and Open Problems. CRC Press,
1995.

[93] L. A. V. Vianen, A. F. Gabor, and J.-K. van Ommeren. Waiting times
in classical priority queues via elementary lattice path counting.
Queueing Systems, 84(3-4):295–307, 2016.

[94] M. Virginia, A. Iovanella, C. Lancia, G. Lulli, and B. Scoppola. A
model of inbound air traffic: The application to Heathrow airport.
Journal of Air Transport Management, 34:116–122, 2014.

[95] W. Whitt. Some useful functions for functional limit theorems.
Mathematics of Operations Research, 5(1):67–85, 1980.

[96] W. Whitt. Stochastic-Process Limits. An Introduction to Stochastic-
Process Limits and Their Application to Queues. Springer, New York,
2002.

[97] W. Whitt. Proofs of the martingale FCLT. Probability Surveys, 4:268–
302, 2007.

[98] W. Whitt. Heavy-traffic limits for a single-server queue leading up
to a critical point. Operations Research Letters, 44(6):796–800, 2016.

[99] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-similar
through high-variability: statistical analysis of Eternet LAN traffic
at the source level. IEEE/ACM Trans. on Networking., 5(1):71–86,
1997.

[100] Y. Yang and C. Knessl. Asymptotic analysis of the M/G/1 queue
with a time-dependent arrival rate. Queueing Systems, 26:23–68,
1997.



Bibliography 211

[101] A. P. Zwart. Queueing systems with heavy tails. PhD thesis, Eindhoven
University of Technology, 2001.

[102] A. P. Zwart. Tail asymptotics for the busy period in the GI/G/1
queue. Mathematics of Operations Research, 26(3):485–493, 2001.





Summary

This thesis studies the ∆(i)/G/1 queue, a model for a queueing system
that serves only a finite number of customers. In the ∆(i)/G/1 queue,
as time passes more customers have joined the system and thus fewer
can potentially join, leading to a highly inhomogeneous arrival process.
This modelling assumption of a diminishing population of customers
gives rise to a class of reflected stochastic processes that lack a station-
ary distribution, and instead display relevant behavior only during a
finite time window. The ∆(i)/G/1 queue is a model for numerous real-
world situations, such as hospital out-patient wards and queues outside
of concert halls, but is also useful in the study of the time-dependent
behavior of classical ergodic models. Moreover, the ∆(i)/G/1 queue con-
stitutes a good approximation for more complicated time-inhomogeneous
queueing models. Chapter 1 introduces the ∆(i)/G/1 queue, presents the
contents of this thesis and discusses the relevant results in the literature.

Chapters 2 and 3 deal with the standard ∆(i)/G/1 queue. In this model,
n customers independently sample their arrival time from a common
distribution and upon arrival join a common queue. The resulting queue-
length process, describing the number of customers waiting to be served,
is not Markovian since the evolution of the system crucially depends
on the history of the process, that is on how many customers have been
served. As a consequence, the exact study of the ∆(i)/G/1 queue is
difficult, and we develop asymptotic approximations for the queue-length
process. The proposed approximation rests upon the crucial assumption
that the queueing system is critical, that is, we require the initial traffic
intensity to be roughly one. Under the additional assumption that the
service times are light-tailed, we show that, as the number of customers
in the pool grows, the rescaled queue-length process converges to a
Brownian motion with negative quadratic drift. The limiting negative
drift encodes the depletion-of-points effect caused by the diminishing pool
of customer.

213



214 Summary

Chapters 4 and 5 generalize the results of the previous chapters. Chap-
ter 4 concerns the setting of heavy-tailed service times. More precisely,
assuming that the service times follow a power-law distribution, we show
that the rescaled queue-length process of the critical ∆(i)/G/1 queue
converges to a stable motion with negative quadratic drift. The scaling
exponents depend crucially on the precise distribution of the service
times, in particular on the power-law exponent. The depletion-of-points
effect contributes to the limiting process again in the form of a negative
quadratic drift.

When the arrival times are exponential, the ∆(i)/G/1 queue can alter-
natively be seen as describing the exploration process of an appropriate
random graph. In this analogy, customers are seen as vertices, and edges
are traced between two vertices whenever one of the corresponding cus-
tomers joins the queue during the service of the other. In Chapter 5 this
connection is studied by introducing a new queueing model that we name
the ∆α

(i) /G/1 queue. As the parameter α varies in (0, 1), this model inter-
polates between the standard ∆(i)/G/1 queue and the exploration process
of the Norros-Reittu random graph. The scaling limit of the ∆α

(i) /G/1 queue
then provides insight in the structure of the corresponding critical random
graph.

When the number of customers n is held fixed, no scaling of the queue
is needed. If, additionally, the arrival and service times are assumed to be
exponentially distributed, then the vector representing the queue length
and the number of customers in the pool at time t is a two-dimensional
Markov process. Chapter 6 presents exact results for this process. In
particular, we derive an explicit expression for the distribution of the
number of customers served in the first busy period by exploiting the
recursive structure of the embedded Markov chain.

Lastly, Chapter 7 collects various open problems that originated from
the research conducted for this thesis. These problems represent funda-
mental questions in queueing theory as well as random graph theory. We
outline the most promising approach for the solution of each problem
and leave the details to future research.



About the author

Gianmarco Bet was born in Conegliano, Italy, on October 1, 1989. He com-
pleted his secondary education in 2008 at “Liceo Scientifico A. Cornaro”
in Padova, Italy, and then started his studies in Mathematics at the Uni-
versity of Padova. After obtaining his Bachelor’s degree in July 2011, he
continued his studies by pursuing a Master’s degree in Mathematics at
the University of Padova. In July 2013, he obtained his Master’s degree.

In September 2013, he started a PhD project at Eindhoven University
of Technology in the Stochastic Operations Research group under the
supervision of Johan van Leeuwaarden and Remco van der Hofstad.
His PhD research focused on the critical scaling of time-inhomogeneous
queueing systems.

Gianmarco will defend his PhD thesis at Eindhoven University of
Technology on September 11, 2017.

215


