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Summary

A Distributed Optimization Approach to Complete Vehicle Energy Management

Fuel economy and emission legislation play a dominant role in the development

process of modern commercial heavy-duty vehicles. To satisfy future require-

ments on fuel consumption and exhaust gas emissions, new technologies are in-

troduced in these vehicles. Clear examples are energy efficient (electrified) auxil-

iaries, hybrid electric powertrains and waste-heat recovery from the exhaust gas.

To facilitate integration of all these subsystems, a flexible and scalable energy

management system is needed. In this thesis, a holistic system approach is taken

that considers all energy sources, sinks and buffers present in the vehicle. This

approach is referred to as complete vehicle energy management (CVEM).

Solution methods for solving the energy management problem of a hybrid electric

vehicle, that consider the power split between the internal combustion engine

and the electric machine, are very well covered in today’s available literature.

However, expanding these solution methods with integrated control of all energy

sources, sinks and buffers, i.e., CVEM, is neither straightforward and nor does

it lead to a flexible and scalable approach for designing a holistic energy man-

agement system. In this thesis, a distributed optimization approach is proposed

for CVEM, with focus on the optimal control of all the auxiliary systems in the

truck.

Both an offline as well as an online solution method are developed. For the offline

solution method, it is assumed that all disturbances (such as the driving cycle)

are known. Even though the optimal solution can be computed, the control
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strategy cannot be implemented in the vehicle (online). The solution, however,

gives a valuable benchmark to verify the performance of other (online) solution

methods. The offline solution method, proposed in this thesis, uses a two-step

decomposition. First, dual decomposition is used to split the large-scale optimal

control problem of the energy management problem into smaller optimal control

problems per subsystem. For the second part of the approach, the optimal control

problem for every subsystem is solved with three different methods. The first two

methods rely on splitting the control horizon into several smaller horizons. The

first method uses the alternating direction method of multipliers and divides

the horizon a priori, while the second method divides the horizon iteratively by

solving unconstrained optimization problems analytically. The third method,

based on dynamic programming, is used to solve the optimal control problem

related to subsystems with on/off control. The approach is demonstrated on a

CVEM problem of a hybrid truck with a refrigerated semi-trailer, an air supply

system, an alternator, a DCDC converter, a low-voltage battery and a climate

control system. Offline simulation results show that the fuel consumption can

be reduced up to 1.42 % by optimizing the power flow to the auxiliaries with

the CVEM strategy. This requires, however, that the auxiliaries are continuous

controlled or that the number of switches is unbounded. More interestingly, the

computation time is reduced by a factor of 64 up to 1825, compared with solving

a centralized convex optimization problem.

For the online solution method proposed in this thesis, the disturbances are not

assumed to be known, but are predicted. The CVEM problem is solved with

a distributed economic model predictive control approach that uses a receding

control horizon in combination with a dual decomposition. The energy manage-

ment problem is decomposed with the dual decomposition approach that result

in smaller energy management problems that can be efficiently solved with an

embedded quadratic programming solver. The receding horizon control problem

is formulated with variable sample time intervals, allowing for large prediction

horizons with only a limited number of decision variables and constraints in the

optimization problem. Furthermore, a novel on/off control concept for control of

the refrigerated semi-trailer, the air supply system and the climate control sys-

tem is introduced. Simulation results show that a close to optimal fuel reduction

can be achieved. The fuel reduction for the on/off controlled subsystems strongly
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depends on the number of switches allowed. By allowing up to 15 times more

switches, a fuel reduction of 1.3 % can be achieved.

Finally, the online solution method is validated on a high-fidelity vehicle model.

The propulsion power needed for driving and the engine speed are predicted

by assuming that the vehicle follows a reference speed set by the cruise control

or the downhill speed control, which is valid for high-way driving. This allows

the vehicle speed to be predicted over a trajectory with a road slope predicted

by an e-horizon sensor, e.g., ADASIS, leading to a prediction of the propulsion

power and engine speed. The prediction algorithm is validated with measured

ADASIS information on a public road around Eindhoven, which demonstrates

that accurate prediction of the propulsion power and engine speed is feasible if

the vehicle follows the most probable path. Simulations with the high-fidelity

vehicle model show that a fuel reduction of 0.98 % can be obtained. The control

strategy is implemented on a dSpace Autobox and shows that the maximum

computation time is only 3.2 ms per iteration. This demonstrates that real-time

implementation is feasible.

The optimal control concepts in this thesis are presented in the context of smart

control of the auxiliaries, such as the refrigerate semi-trailer. The fuel reduction

potential for these auxiliaries can be limited compared to, e.g., the fuel reduction

potential of a hybrid system. Still, the main contribution of this thesis is not the

fuel reduction for these auxiliaries, but the step that is taken towards a flexible

and scalable framework that can handle the growing complexity of energy man-

agement systems that take into account more than just the power split between

an internal combustion engine and electric machine. This will ultimately lead to

close to optimal fuel consumption for the complete vehicle.
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1
Introduction

1.1 Motivation

Despite a growing number of climate change mitigation policies, the worldwide

annual greenhouse gas emissions grew on average by 1.0 gigatonne carbon dioxide

(CO2) per year from 2000 to 2010 compared to 0.4 gigatonne CO2 per year from

1970 to 2000. Without additional efforts to reduce the greenhouse gas emissions,

this emission growth is expected to persist [46]. The combustion of fossil fuels

(coal, natural gas and oil) for energy and transportation is a large contributor

to the emission of CO2. According to the latest report of the intergovernmen-

tal panel on climate change (IPCC [46]), the worldwide road transportation is

responsible for 10.2 % of the global CO2 emissions (see Figure 1.1 [46]). This

corresponds to 4.9 gigatonne CO2 per year. As CO2 emissions are one to one

related to the combustion of fuel, improving the road transport fuel efficiency con-

tributes to the climate change mitigation. It is also well known that the supply

of fossil fuels is not endless. Smart solutions for reducing the fuel consumption

therefore contribute to the road map towards a smart and sustainable society.
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Figure 1.1: Allocation of total greenhouse gas emissions per sector in 2010
(AFOLU: Agriculture, Forestry and Other Land Use) [46].

For these reasons, an ongoing trend is visible to improve the fuel economy of road

transportation vehicles, partly enforced by legislation.

Legislation is not the only drive for road transport manufacturers to improve

fuel economy. European freight transport over roads is characterized by high fuel

prices, high weights and large volumes and involves relatively long distances [64].

Fuel efficiency is therefore one of the most important competitive factors in de-

veloping and selling trucks and buses. Fuel cost is estimated to be 30 % of the

total operational costs of a 40 tonne tractor semi-trailer combination in Europe

(see Figure 1.2 [64]). Fuel efficiency is therefore the third purchasing criteria,

behind reliability (1) and service quality (2), for West European customers and

the second purchasing criteria for East European customers [85].

Fuel efficiency of a heavy-duty vehicle can be analyzed by considering the dis-

sipation of the fuel energy. This analysis has been carried out in [43] for a tractor

semi-trailer combination and shown in Figure 1.3. A lot of energy is dissipated

in the exhaust (29%), mainly in the form of thermal energy that disappears by

convection. Waste heat recovery systems [125] can recover some of this energy

that can be re-used, e.g., by the supply of power to the auxiliaries. Another ma-

jor energy dissipation factor (20 %) is cooling in the form of heat that dissipates

by conduction through the engine structure, the cooling radiator and oil cooler.

Studies have shown that the electrification of the cooling pump and smart cooling
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Figure 1.2: Operational cost of a 40 tonne tractor semi-trailer combination in
Europe [64].

strategies can reduce the energy losses in the cooling system (see, e.g. [20]). Air

drag accounts for 18 % of the energy losses and can be reduced by improving

the aerodynamics of the vehicle (see, e.g., [75]). Another 3 % is lost to energy

consuming auxiliaries, e.g., an air supply system. The electrification of these

auxiliaries is a current trend to improve the energy efficiency (see, e.g, [41, 97]).

Finally, 31 % of the energy is lost through the brakes, the rolling resistance of

the tyres, the transmission and the engine as a result of friction. Recent devel-

opments that reduce energy losses in these domains are engine downsizing [35],

low friction bearings [127] and regenerative braking.

Regenerative braking is possible by hybridization of the drive train. This tech-

nology is extensively studied to reduce the energy losses in heavy-duty vehicles

(see, e.g. [91, 119]). The drive train with the primary power source, i.e., the

internal combustion engine, is extended with a secondary power source, typi-

cally an electric motor/generator in combination with a secondary energy buffer,

typically a high-voltage battery system. Both power sources can be utilized to

provide propulsion power to the vehicle. Some of the kinetic energy in the ve-

hicle can be recovered by the secondary power source when braking the vehicle

(regenerative braking) and can be stored in the secondary energy buffer. The

stored energy can, at a later moment, be utilized to provide propulsion power to

the vehicle, thereby increasing the overall vehicle efficiency.

Hybrid drive trains require an energy management strategy to find the most
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Figure 1.3: Breakdown of the global average energy consumption for a tractor
semi-trailer combination [43].

efficient power split between both power sources. Energy management strategies

have also been developed to optimize the efficiency of individual systems, e.g., ex-

haust heat recovery systems and electrified auxiliaries. Optimization of all these

subsystems individually will not automatically guarantee global fuel efficiency at

vehicle level. Therefore, control of all these subsystems needs to be coordinated

into one complete vehicle energy management (CVEM) strategy [52]. Besides

global fuel efficiency, the CVEM strategy should satisfy the following major re-

quirements:

• Scalable: Modern vehicles are characterized by the broad range of power

train configurations augmented by a long list of auxiliaries. Customers ex-

pect to choose their own vehicle configuration, specialized for their specific

application area. This requires that the energy management strategy should

not be limited by the number of subsystems in the vehicle and complexity

should not increase rapidly with the number of subsystems.

• Flexible (Plug & Play): As customers can choose from almost an infi-

nite number of configurations, the development of an energy management

strategy for each of these configurations is very time consuming, inefficient

and extremely expensive. The CVEM strategy must therefore satisfy a

certain degree of flexibility, that allows the same strategy to be used for

many different vehicle configurations. In the ultimate case, a plug & play

design philosophy is foreseen to integrate new subsystems in the vehicle.
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This means that auxiliaries can be added or removed without changing (or

having knowledge of) the rest of the system and optimal fuel efficiency is

still guaranteed. This would also allow easy integration of hardware from

different suppliers.

• Include on/off auxiliaries: Often, the electrification of the auxiliaries

allows for continuous control, e.g., any power setpoint between an upper

and lower limit can be send to the auxiliary. Today’s heavy-duty vehicles,

however, are still equipped with auxiliaries that can only receive a setpoint

that turns the auxiliary on or off. Straightforward integration of auxiliaries

with on/off control is therefore essential.

To develop a scalable and flexible CVEM strategy, suitable for on/off control,

that guarantees global fuel efficiency at vehicle level is challenging. Therefore,

a novel approach is needed, which will be the main contribution of this thesis:

a distributed optimization approach for Complete Vehicle Energy Management

(CVEM).

1.2 Complete Vehicle Energy Management

Hybrid drive trains require an energy management strategy because multiple

(controllable) energy storage buffers are present in the vehicle. This means that

fuel energy can be converted to mechanical energy with the internal combustion

engine and chemical energy in the battery system can be converted to mechani-

cal energy through the electric motor as well. Via the gearbox and the wheels,

the mechanical energy is converted to kinetic energy in the vehicle mass. The

energy buffers in the vehicle are constrained by the maximum and minimum bat-

tery capacity, the maximum and minimum fuel capacity and the maximum and

minimum velocity of the vehicle. An energy management strategy is essential to

manage these energy flows, while satisfying the maximum and minimum amount

of energy in each of the energy buffers.

Energy can be stored in many different ways. Specifically, since any vehicle

combines physical properties from the mechanical, the thermal, the electrical,

the pneumatic and the chemical energy domain. An overview of these domains

and examples of energy storage systems in those domains are given in Figure 1.4.
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Figure 1.4: Energy storage and energy flows in heavy-duty vehicles.

Energy can be converted from one domain to another via the converters, however,

some energy will be dissipated in the conversion process. The internal combustion

engine, for example, converts the fuel energy into mechanical energy with an

efficiency given by

efficiency =
Mechanical energy

Fuel energy
100% = (1−

Energy losses

Fuel energy
)100%. (1.1)

The energy losses in the internal combustion engine are dissipated through, e.g.,

exhaust heat and coolant heat. Some of the heat can be converted to electri-

cal energy, if the vehicle is equipped with a waste heat recovery system. The

electrical energy can be converted and stored as chemical energy via the battery

system. Every energy conversion leads to energy dissipation. A proper energy

management strategy recognizes this and chooses the most efficient energy path

for each of these energy flows.
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It should also be noted that the internal combustion engine allows fuel energy

to be converted into mechanical energy. However, mechanical energy cannot be

converted to fuel energy. Similarly, the refrigerated semi-trailer allows electrical

energy to be converted to thermal energy, but today’s refrigerated semi-trailers

do not have a converter that converts the thermal energy to any other energy

domain. This is a significant disadvantage for energy management. After all,

energy that is converted can never be used for any other application. Still,

fluctuations between the maximum and minimum temperature are allowed, so

that the amount of energy flowing to the refrigerated semi-trailer can be scheduled

over time. This observation yields an opportunity for energy management, where

energy of different subsystems can be scheduled over time to balance energy

production with energy demand while maximizing efficiency. The development

of an energy management strategy that can optimize multiple energy flows, while

taking dynamics and constraints of each subsystem into account, while at the

same time meeting a certain degree of flexibility and scalability, is not trivial.

Therefore, this research on CVEM is initiated and incorporated as part of the

European project CONVENIENT1. We will elaborate more on the objectives in

this research in the next section.

1.3 Research Question and Objectives

Research in the field of CVEM has not received substantial attention yet. There-

fore, the research question posed in this thesis is formulated as follows:

What is the fuel reduction potential of a CVEM strategy that takes into account

all energy flows and energy buffers in the vehicle?

To answer this question, a novel control concept has to be developed that is

scalable, flexible and suitable for on/off control as well as real-time implementable

and robust with respect to model uncertainty. To do so, we can divide the research

question into two major objectives:

1The CONVENIENT project aims to develop a novel long-distance heavy-truck prototype
featuring a suite of technologies enabling a 30% fuel saving. To demonstrate the feasibility
of the fuel reduction measures, e.g., internal combustion engine downsizing, aerodynamic drag
minimization and CVEM, a prototype heavy-duty vehicle has been developed. This prototype
has a hybrid drive train with an internal combustion engine and an electric machine attached
to a high-voltage battery system and all auxiliaries are electrified.
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1. Objective 1: The development of a flexible and scalable optimal

control concept for CVEM with on/off controlled auxiliaries

A proper energy management strategy (EMS) manages the energy flows in

the vehicle in real-time with limited knowledge on the disturbances acting

on the components in the vehicle. A real-time EMS, however, typically

does not guarantee the global optimal solution. Without knowledge of the

global optimal solution, the performance of the real-time EMS cannot be

guaranteed. Therefore, optimal control concepts that guarantee the global

optimal solution have always been used in energy management to define a

benchmark. These optimal control concepts require that all disturbances,

e.g., the reference speed and road slope, are known prior to the optimization

for each time instant, which precludes these optimal control concepts to be

implemented in real-time.

The requirements (flexibility, scalability and integration of on/off auxil-

iaries) introduced in the first section, are not met by the optimal control

concepts used so far in energy management. A novel optimal control con-

cept needs to be developed, with as goal to maximize the energy efficiency

of the vehicle, generally expressed as minimizing the total fuel consumption.

2. Objective 2: The development of a flexible and scalable real-time

energy management strategy for CVEM with on/off controlled

auxiliaries

The optimal control concept developed under Objective 1 can never be

implemented in real-time as disturbances are never known exactly a pri-

ori. Moreover, the behavior of the mathematical models that are used to

optimize the energy flows are never equivalent to the behavior of the real

vehicle. The second objective in this research is therefore to develop a real-

time EMS for CVEM. The fuel reduction should be close to the optimal fuel

reduction obtained with the optimal control concept. As with the optimal

control concept, flexibility, scalability and control of on/off auxiliaries are

a major requirement. Contrary to the optimal control concept, the real-

time EMS cannot rely on exact knowledge of the disturbances, e.g., the

reference speed and road slope, but taking into account prediction of these

disturbances is essential. The latter requirement follows from the current

trends in automotive technology that allow for prediction of future events
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and communication between vehicles, so that it is necessary to develop a

real-time EMS that is ready for this technology.

These objectives will be evaluated along the research lines that can be found

in today’s literature in the next section.

1.4 Literature Review on Vehicle Energy Management

Research on the ‘classical’ energy management problem, i.e., the power-split prob-

lem between a primary power source, e.g., the internal combustion engine, and

a secondary power source, e.g., the electric machine, has received numerous at-

tention over the last decades. This is visible from the numerous books that have

appeared on this topic, see, e.g., [74, 44, 40, 30, 73, 130, 22]. The control concepts

that are used for energy management can roughly be classified into three domains

1) Optimal control 2) real-time EMS based on heuristic strategies and artificial

intelligence and 3) real-time EMS derived from an optimal control concept.

In the first domain, three optimal control concepts for solving the energy man-

agement problem received most attention in literature: dynamic programming

(DP) [5, 2, 3, 58, 67, 114], Pontryagin’s minimum principle (PMP) [38, 110, 18,

23, 106] and convex optimization [9, 115, 112, 78, 31]. For these optimal control

concepts, all the disturbances, e.g., the reference velocity and road slope, are

assumed to be known for each time instant. These optimal control concepts can

therefore not be used in real-time. Still, they are frequently used to provide a

valuable benchmark for a real-time EMS.

The second domain covers the very first strategies that were used to arrive at

a real-time EMS. Various heuristic strategies have been developed over the past

decades by using rule-based strategies [17, 42, 47, 122], neural networks [62, 123]

or fuzzy logic [4, 105]. These EMS strategies have been favoured as they are

often easy to implement. Optimality, however, is not guaranteed and, moreover,

the fuel reduction is strongly correlated to the parameters, e.g., the rules, of the

strategy. Often these strategies are tuned based on results from optimal control

or through experimental validation, but as a result, robustness of these strategies

cannot be guaranteed and flexibility is lacking.

To overcome these calibration issues and to obtain a certain degree of optimal-

ity, a complete line of research has been dedicated to real-time strategies derived



10 Introduction

from the optimal control concepts. Indeed, for all of the optimal control concepts

in the first domain, there exist a real-time equivalent strategy. For dynamic

programming, the real-time equivalent strategy is obtained by solving a stochas-

tic dynamic programming problem [60, 66, 77, 49], which results in a stochastic

optimal operation policy that can be evaluated in real-time.

A well known real-time equivalent strategy for PMP is the equivalent consump-

tion minimization strategy (ECMS) [107, 88, 89]. Applying PMP to the energy

management problem results in a cost function with a co-state related to the

energy in the battery. The physical interpretation to the co-state related to the

battery energy is that it translates the battery power into a fuel equivalent con-

tribution to the cost function, which explains the terminology ECMS. Whereas

for PMP, the co-state can be calculated under certain conditions, e.g., when the

complete drive cycle is known, for ECMS, the co-state is estimated and updated

over time. Estimating and updating the co-state is difficult and many different

methods can be found in literature [16, 39, 50, 51, 56, 59, 69, 79, 13] and an

extensive comparison of adaptive ECMS can be found in [86].

Finally, the real-time equivalent strategy for convex optimization is (nonlin-

ear) model predictive control [36]. This requires solving the (nonlinear) opti-

mal control problem at each time instant over a finite-time horizon and only

implementing the decisions at the current time instant. Often, the optimal con-

trol problem is linearized and the disturbances over the horizon are predicted,

which can be assumed deterministic as in [3, 53, 84, 8, 104, 116] or stochastic

as in [25, 129]. Interesting applications of nonlinear model predictive control for

energy management can be found in [7, 57].

Extensions to the above mentioned ‘classical’ energy management problem with

additional decision variables can be found in literature as well and can be seen

as first steps towards CVEM. Interesting extensions to the energy management

problem with engine exhaust emission management are given in [24, 54, 125].

As battery degradation is a major concern in hybrid electric vehicles, the energy

management problem is extended with battery state-of-health in [26, 94, 93, 108]

and extended with thermal management of the battery in [87, 92, 72]. Although,

each of these extensions is interesting, all of the papers use solutions methods

from ‘classical’ energy management to solve the optimal control problem.

The CVEM concept is first introduced in [52] where a holistic approach is fore-
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seen, taking into account all power flows and energy sources in the vehicle. Here,

it is recognized that existing energy management strategies based on the methods

discussed above will face severe limitations in handling the complexity of CVEM

and alternative approaches are needed. Indeed, scalability of the optimal control

methods (first domain) is poor as DP suffers from the curse of dimensionality and

solving the two-point boundary value problem resulting from PMP is difficult,

particularly when state constraints are present, see, e.g., [72] in the context of

thermal dynamics. Finally, a convex approximation of the energy management

problem can lead to a globally optimal solution, but still requires a large-scale

optimization problem to be solved.

Flexibility is the main concern for the real-time methods in the second and third

domain. Adding or removing components to these frameworks can be a cumber-

some task. Moreover, changing the energy management problem by adding or

removing components requires calibration of the entire energy management strat-

egy.

For this reason, distributed solutions for energy management start to appear.

These solutions are characterized by the fact that all subsystems share a limited

amount of information and decisions are taken autonomously at subsystem level.

In [12, 14, 11, 81], a real-time game-theoretic approach to CVEM is presented for

which prediction information is not utilized. In [82, 83], scalability is obtained by

using the Alternating Direction Method of Multipliers (ADMM) while ideas based

on ECMS are used to calculate the equivalent costs at a supervisory level. This

still requires a calibration effort at supervisory level. Moreover, these distributed

solutions all lead to real-time energy management strategies for which the global

optimal solution is not guaranteed.

In this thesis, we will extend the research on distributed solutions. In particu-

lar we will develop an optimal control concept to find the global optimal solution

to the CVEM problem. Moreover, we will develop a real-time energy manage-

ment strategy that fully exploits prediction information and does not require

calibration at supervisory level. We will do so along the lines of a distributed

optimization approach explained in the next section.
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1.5 Distributed Optimization Approach

It has been outlined in the previous section that in today’s literature, dynamic

programming, Pontryagin’s minimum principle and convex optimization are most

often used to find the global optimal solution to the energy management prob-

lem. From these three optimal control concepts, convex optimization is the only

concept for which distributed solutions already exist. These solutions are part

of the field of distributed optimization. In particular, the dual decomposition

method is popular and has already been used since the early 1960s [21] to solve

large-scale convex optimization problems. Since then, this method has been ap-

plied to problems with large-scale dynamical systems, e.g., the optimal routing of

data in wireless data networks [128] or optimal scheduling of appliances in smart

electricity grids [37]. The dual decomposition allows a large-scale optimization

problem to be decomposed into smaller optimization problems that are only cou-

pled through so-called dual variables. This problem can be solved, by iteratively

solving the smaller optimization problems followed by the update of the dual

variables by a master algorithm. This has an interesting economic interpreta-

tion. The dual variables can be interpreted as prices for resources. Each smaller

optimization problem tries to minimize its own cost, while the master algorithm

adjusts the prices in order to bring the demand in consistency with the supply.

This interpretation matches exactly the price-based philosophy envisioned in [52]

as a viable strategy for CVEM. Indeed, in this thesis, the application of the

dual decomposition to the convex approximation of the CVEM problem leads

to smaller optimization problems related to each subsystem in the vehicle. It

will be shown in this thesis how each of these smaller optimization problems can

be solved efficiently with a Lagrangian method, with another method from dis-

tributed optimization called Alternating Direction Method of Multipliers or with

dynamic programming to optimally control auxiliaries with on/off decisions.

Similarly, as the dual decomposition can be used to find the global optimal

solution to a large-scale convex optimization problem, the dual decomposition

can also be used to arrive at a distributed solution for the real-time equivalent

strategy, i.e., distributed model predictive control [70, 96]. Indeed, the dual

decomposition has been used, e.g., in [63, 6] to develop real-time strategies for

control in smart energy grids. In this thesis, the real-time energy management
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strategy is similarly obtained by defining the CVEM problem over a shorter

receding horizon to which we apply the dual decomposition. This again leads to

smaller optimization problems related to each subsystem in the vehicle that can

be solved efficiently with embedded quadratic programming solvers. Moreover,

the optimization problem associated with on/off auxiliaries is solved with a mixed

integer quadratic programming approach in this thesis.

In the next section, we will explain the different steps in the distributed opti-

mization approach along the outline of this thesis.

1.6 Thesis Outline

The outline of this thesis is schematically given in Figure 1.5. The distributed

optimization approach requires a model of the heavy-duty vehicle that approxi-

mates the behavior of the heavy-duty vehicle while at the same time is sufficiently

simple to be used for optimization and control. A convex (low-fidelity) vehicle

model of the heavy-duty vehicle is for this purpose developed and will be pre-

sented in Chapter 2.

This vehicle model is used in Chapter 3 to find the optimal complete vehicle

energy management strategy for the case where all disturbances, e.g., the velocity

and road slope, are known a priori. This chapter, which is based on [101, 102, 99],

provides key results on the fuel reduction that can be expected by smart control

of multiple subsystems in a unified CVEM strategy. These results provide a

benchmark for the real-time CVEM strategy developed in Chapter 4.

In Chapter 4, which is based on [103, 100], the disturbances are not known a

priori, but are predicted over a horizon. The distributed optimal control problem

is solved at each time instant and only the decisions at the first time instant

are implemented, as with distributed model predictive control. The real-time

strategy is evaluated on the low-fidelity vehicle model and compared with the

benchmark results of Chapter 3.

In Chapter 5, which is based on [100], the real-time CVEM strategy is imple-

mented in a complex high-fidelity vehicle model to analyze its performance in

a realistic simulation environment. Finally, Chapter 6 presents the major con-

clusions, recommendations and implications that follow from this research on

distributed optimization for CVEM.
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2
Convex Modeling of a Heavy-Duty Vehicle

Abstract - In this chapter, a low-fidelity control-oriented model of a heavy-duty vehicle, suitable

for a model-based energy management approach, is presented. The vehicle model is entirely

defined in the input and output power of each subsystem, which allows the topology of the vehicle

to be fully described by the power balances on the mechanical, high-voltage and low-voltage

network. The input-output power behavior of all subsystems is approximated with a strictly

convex quadratic equality constraint. The dynamics of particular subsystems in the vehicle, i.e.,

the energy in the high-voltage battery, the low-voltage battery, the refrigerated semi-trailer, the

air-supply system and climate control system are described by a linear differential equation. The

behavior of each subsystem is compared with simulation data from the high-fidelity vehicle model

to quantify the approximation error.
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2.1 Introduction

Many design processes are nowadays model-based to reduce design time and

costs. This means that a model, in this case a vehicle model, is used to design,

optimize and analyse different aspects of the vehicle, such as, the impact of the

vehicle configuration on the fuel consumption. The models used for design, op-

timization and analysis are generally not the same. Two different models will

be used in this research. A high-fidelity vehicle model of the heavy-duty vehi-

cle, developed by the Institute für Kraftfahrzeugen Aachen (see [28, 76]), that is

used to analyse the fuel reduction of the Complete Vehicle Energy Management

(CVEM) strategy without the need for testing on the real vehicle. These anal-

yses will be presented in Chapter 5 together with a detailed explanation of the

high-fidelity vehicle model. This model can accurately simulate the behavior of

the heavy-duty vehicle, but is not suitable for optimal control due to its large

complexity.

Therefore, a second, low-fidelity vehicle model will be presented in this chap-

ter, that is suitable for optimization. This model is a simplified model of the

heavy-duty vehicle for which we use only (strictly) convex functions and is essen-

tial to take a distributed optimization approach to CVEM. The approximated

behavior of each subsystem in the vehicle is compared with measured data from

experiments or simulation data from the high-fidelity vehicle model to demon-

strate that the usage of only (strictly) convex functions is not overly restrictive.

The model will be introduced in a continuous-time framework. In Chapter 3 and

Chapter 4 we will derive a discrete-time model specifically for each chapter from

the continuous-time model. The sampling times in the discrete-time approach

are taken relatively large, e.g., 1 second or larger, as faster time dynamics do not

have a significant influence on fuel consumption. This is commonly referred to

as a quasi-static modeling approach (see, e.g., [40]) and will explain some of the

assumptions that are made in this chapter.

The remaining sections of this chapter are organized as follows. A power-based

vehicle topology describing the interconnection of all subsystems in the heavy-

duty vehicle is discussed in the second section. In Section 3, the models of each

of the subsystems will be presented and finally, Section 4 provides conclusions

and a discussion on the models presented in this chapter.
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2.2 Objective and Topology

The objective in energy management is to minimize the cumulative fuel consump-

tion, i.e.,

min
ṁf

∫ tf

0
ṁf(t)dt (2.1)

for tf ∈ R+ where ṁf is the fuel consumption rate and needs to be solved subject

to all the constraints acting on the vehicle and the subsystems in the vehicle.

These constraints and subsystem models will be developed below. The fuel con-

sumption of the engine typically depends on the engine output power and engine

speed, i.e., ṁf(t) = ṁf (yice(t), ωice(t)), where the engine output power at time

t ∈ R+ is defined as

yice(t) = Tice(t)ωice(t), (2.2)

where Tice(t) is the engine torque at time t and ωice(t) is the engine speed at

time t ∈ R+. We can also define the engine input power by

uice(t) = H0ṁf(t), (2.3)

where H0 is the constant lower heating value of the fuel in kJ/kg. The definition

of the engine input power allows (2.1) to be rewritten in a more general expression

of minimizing the energy consumption, i.e.,

min
uice

∫ tf

0
uice(t)dt. (2.4)

which has the same optimal solution as (2.1) because H0 is a constant value.

In (2.4), the engine input power is a function of the engine output power and

engine speed, i.e., uice(t) = uice (yice(t), ωice(t)) for which an approximation is

given in Section 2.3.1. Indeed, each of the subsystems in the heavy-duty vehicle

can be expressed in terms of their input and output power, as is done in [29] for

a hybrid electric vehicle.

The subsystems considered throughout this thesis are shown in Figure 2.1.

The topology under consideration includes an internal combustion engine (ICE),
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Figure 2.1: Topology of a hybrid truck with high-voltage and low-voltage auxil-
iaries and where the arrows indicate the direction of a positive power flow.

an electric machine, an alternator, a high- and low-voltage battery, a refriger-

ated semi-trailer, an air supply system, a DC/DC converter, a climate control

system (CCS), a gearbox and mechanical friction brakes. In this figure, um is

the (scalar) input power and ym is the (scalar) output power for m ∈ M =

{ice, em,hvb, rst, as, ccs,dc, lvb, alt,br}. Furthermore, xm is the state for subsys-

tem m ∈ Mdyn = {hvb, rst, as, ccs, lvb} ⊆ M that represent the energy in the

energy storage devices, which is only present for the subsystems m ∈ Mdyn, i.e.,

the high-voltage battery, the low-voltage battery, the refrigerated semi-trailer,

the air supply system and the climate control system. We will assume that the

power losses in the gearbox are negligible, i.e., ugb(t) = ygb(t), so that the two

nodes connected via the gearbox can be lumped together and the remaining three

nodes in the topology where power is aggregated can be described by

v1(t)− ybr(t)− yice(t) + uem(t) + ualt(t)− yccs(t) = 0, (2.5a)

v2(t)− yem(t)− yhvb(t)− yrst(t)− yas(t) + udc(t) = 0, (2.5b)

v3(t)− yalt(t)− ylvb(t)− ydc(t) = 0, (2.5c)

where (2.5a) gives the aggregation of mechanical power at the mechanical side

of the topology, (2.5b) gives the aggregation of high-voltage power at the high-

voltage side of the topology and (2.5c) gives the aggregation of low-voltage power
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at the low-voltage side of the topology. In (2.5), v1(t), v2(t) and v3(t) are the

disturbances acting on each node, which are the power required to follow a spec-

ified velocity profile, the power required for unmodeled high-voltage loads and

the power for unmodeled low-voltage loads, respectively. These disturbances can

either be assumed to be known as in Chapter 3 or predicted as in Chapter 4.

To complete the vehicle model for the topology given in Figure 2.1, a model

is required for each of the subsystems that describes the input power um, the

output power ym for m ∈ M and the state xm for m ∈ {hvb, lvb, rst, as, ccs}.

2.3 Subsystem Modeling

In this section, the models will be given for each of the subsystems in the heavy-

duty vehicle. For all these subsystems, the relation between the input and output

power is approximated with a quadratic equality constraint, i.e.,

1
2qm(t)um(t)2 + fm(t)um(t) + em(t) + ym(t) = 0, (2.6a)

for all m ∈ M with (time-dependent) efficiency coefficients qm(t) ∈ R+, fm(t) ∈

R and em(t) ∈ R. The input power is constrained to

um(t) ≤ um(t) ≤ um(t), (2.6b)

for all m ∈ M. Furthermore, we model the energy in the dynamic subsystems

with a linear differential equation, i.e.,

d
dtxm(t) = Ãmxm(t) + B̃m,wwm(t) + B̃m,uum(t), (2.6c)

for all m ∈ Mdyn = {hvb, lvb, rst, as, ccs} and with specific matrices Ãm, B̃m,w,

B̃m,u and disturbance wm(t) and where the energy stored inside the subsystem

is constrained to

xm ≤ xm(t) ≤ xm. (2.6d)

for all m ∈ Mdyn. Modeling each of the subsystems with (2.6) will lead in

Chapter 3 and Chapter 4 to an energy management problem that can be solved

by solving multiple linearly constrained quadratic programs, for which many



22 Convex Modeling of a Heavy-Duty Vehicle

0 1000 2000 3000

q i
ce

[1
/k

W
]

Engine speed ω [rpm]
0 1000 2000 3000

f i
ce

[-
]

Engine speed ω [rpm]
0 1000 2000 3000

e i
ce

[k
W

]

Engine speed ω [rpm]

Figure 2.2: Polynomial approximation of the efficiency coefficients of the internal
combustion engine.

(embedded) solvers exists. We will show below that each of the subsystems in

the heavy-duty vehicle can be accurately modeled as in (2.6).

2.3.1 Internal Combustion Engine

The internal combustion engine (ICE) of the vehicle considered in this thesis

is an 11 litre Euro VI engine. In this work, only the fuel consumption of the

ICE is considered, but extensions to take into account the emissions and thermal

management are interesting and have been done in, e.g., [19, 80]. The energy

management problem will be solved with a quasi-static approach with relatively

large sample time intervals, i.e., 1 second or larger, so that fast dynamics of the

ICE can be neglected (see, e.g., [40]).

By neglecting the fast dynamics of the ICE, the fuel consumption can be given

by a static map, which is obtained by measuring the fuel consumption at a grid

of steady-state operating points, i.e., at a grid of engine torques Tice and engine

speeds ωice. With the engine output and input power given by (2.2) and (2.3),

respectively, the input-output power behaviour can be described by (2.6a) for

m = ice, where the efficiency coefficients typically depend on engine speed, i.e.,

qice(t) = qice(ωice), fice(t) = fice(ωice), eice(t) = eice(ωice). (2.7)

These functions can be estimated directly by solving a least-squares problem that

minimizes the difference between the input-output power behaviour as in (2.6a)

with the measured input-output power behavior. Depending on the type of func-
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Figure 2.3: Approximation of the power losses in the internal combustion engine
and the approximation error.

tions, this can be hard as the functions as well as the output power depends on

the engine speed. A more simple, yet indirect, approach is taken, which amounts

to finding the coefficients q̃ice, f̃ice, and ẽice through a quadratic approximation

of the measured input-output behavior as in (2.6a) for a grid of steady-state en-

gine operating speeds. The second step is to solve a least-squares problem that

minimizes the difference between the functions qice(ωice), fice(ωice) and eice(ωice)

and the gridded coefficients q̃ice, f̃ice, and ẽice. With this method, the type of

functions is not restricted and can even be linear interpolation. Still, a polyno-

mial expressions is preferred as these functions can be evaluated computationally

efficient on an embedded platform. The polynomial approximation as well as the

coefficients q̃ice, f̃ice, and ẽice are shown in Figure 2.2.

Note that the quadratic equality constraint on the input-output power implies

power losses, i.e., uice − yice > 0, that are quadratic in the input power. The

measured power losses are compared with the modeled power losses in Figure 2.3
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for three different engine speeds. The approximation error on the input-output

behaviour is within 1 % of the maximum engine input power at 1000 and 1500

rpm and within 1.4 % at 2000 rpm. Note that the power losses as function of the

engine input power can also be approximated well with a (more simple) linear

function. However, this mapping is not strictly convex, which is not favorable for

the dual decomposition approach as will be explained the next chapter.

Finally, the input power is constrained to (2.6a) for m = ice, where the min-

imum input power uice(t) = uice(ωice) and maximum input power uice(t) =

uice(ωice) typically depend on engine speed.

2.3.2 Electric Machine

The electric machine subsystem of the vehicle considered in this thesis is the

combination of the integrated starter generator (ISG) from ZF and an inverter

that allows the alternating current ISG to be connected to the high-voltage direct

current board net of the vehicle. The electric machine can be operated in two

modes, i.e., the motor mode and the generator mode. In the motor mode, energy

is flowing from the electrical side to the mechanical side creating a positive me-

chanical torque to provide for part of the requested vehicle propulsion torque. In

the generator mode, energy is flowing from the mechanical side to the electrical

side resulting in a negative torque on the mechanical side that can be used to

decelerate the vehicle, i.e., regenerative braking.

Similar as with the internal combustion engine, the fast dynamics are neglected

such that the component characteristics are given by a map with power losses at

steady-state operating conditions, i.e., at a grid of electric machine torques Tem

and speeds ωem. The input power of the electric machine is defined as

uem(t) = Tem(t)ωem(t) (2.8)

and the output power is defined as

yem(t) = UHV(t)Iem(t) (2.9)

where UHV(t) is the voltage of the high-voltage board net and Iem(t) is the current

flowing through the electric machine. The electric machine input-output power

behaviour can be described by (2.6a) for m = em, where the efficiency coefficients
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Figure 2.4: Approximation of the power losses in the electric machine and the
approximation error.

typically depend on the electric machine speed, i.e.,

qem(t) = qem(ωem), fem(t) = fem(ωem), eem(t) = eem(ωem). (2.10)

These functions are estimated with the same indirect approach as used for the

internal combustion engine, i.e., the coefficients q̃em, f̃em, and ẽem are estimated

through a quadratic approximation of the measured input-output behavior as

in (2.6a) for a grid of steady-state electric machine operating speeds. The second

step is to solve a least-squares problem that minimizes the difference between

the functions qem(ωem), fem(ωem) and eem(ωem) and the gridded coefficients q̃em,

f̃em, and ẽem. Again, a polynomial expression is preferred as these functions can

be evaluated computationally efficient on an embedded platform. The measured

power losses, i.e., uem − yem > 0, are compared with the modeled power losses in
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Figure 2.4 for three different electric machine speeds. The approximation error on

the input-output behavior of the electric machine is within 0.6 % of the maximum

electric machine input power.

Finally, the electric machine input power is constrained to (2.6b) for m = em

where the minimum input power uem(t) = uem(ωem) and maximum input power

uem(t) = uem(ωem) depend on the electric machine speed.

2.3.3 Alternator

The alternator is similar to the electric machine. A major difference is that the

alternator is only used in generator mode to supply power to the low-voltage

board net in the vehicle. The input power is similarly defined as

ualt(t) = Talt(t)ωalt(t) (2.11)

where Talt(t) is the alternator torque and ωem(t) is the alternator speed. The

output power is defined as

yalt(t) = ULV(t)Ialt(t) (2.12)

where ULV(t) is the voltage of the low-voltage board net and Ialt(t) is the current

flowing through the alternator. The input-output behavior can be described

by (2.6a) for m = alt where the efficiency coefficients typically depend on the

alternator speed, i.e.,

qalt(t) = qalt(ωalt), falt(t) = falt(ωalt), ealt(t) = ealt(ωalt). (2.13)

A measured efficiency map is not available for the alternator. Still, the high-

fidelity vehicle model that will be presented in Chapter 5 includes a model of the

alternator. The simulated power losses over a drive cycle are used here to obtain

the functions qalt(ωalt), falt(ωalt) and ealt(ωalt). These functions are estimated

with the same indirect approach as used for the internal combustion engine, i.e.,

the coefficients q̃alt, f̃alt, and ẽalt are estimated through a quadratic approxima-

tion of the measured input-output behavior as in (2.6a) for a grid of steady-state

alternator operating speeds. The second step is to solve a least-squares prob-

lem that minimizes the difference between the functions qalt(ωalt), falt(ωalt) and
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Figure 2.5: Approximation of the power losses in the alternator and the approx-
imation error.

ealt(ωalt) and the gridded coefficients q̃alt, f̃alt, and ẽalt. Again, a polynomial ex-

pression is preferred as these functions can be evaluated computationally efficient

on an embedded platform. The measurements are compared with the modeled

power losses in Figure 2.5 for three different alternator speeds. The approxima-

tion error on the input-output behavior of the alternator is within 0.3 % of the

maximum alternator input power.

Finally, the alternator input power is constrained to (2.6b) for m = alt, where

the minimum input power ualt(t) = ualt(ωalt) and maximum input power ualt(t) =

ualt(ωalt) depend on the alternator speed.

2.3.4 DCDC Converter

The heavy-duty vehicle is also equipped with a DCDC converter, which allows

energy from the high-voltage domain to be converted to energy for the low-voltage
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Figure 2.6: Approximation of the power losses in the DCDC converter and the
approximation error.

domain. The input and output power of the DCDC converter are defined by

udc(t) = Idc,high(t)UHV(t), (2.14a)

ydc(t) = Idc,low(t)ULV(t), (2.14b)

respectively, where Idc,high(t) is the DCDC current at the high-voltage side,

Idc,low(t) is the DCDC current at the low-voltage side, UHV(t) is the voltage

at the high-voltage board net and ULV(t) is the voltage at the low-voltage board

net. The input-output power behavior can be described by (2.6a) for m = dc,

with constant efficiency coefficients qdc(t) = qdc, fdc(t) = fdc and edc(t) = edc. A

measured efficiency map is not available for the DCDC converter as well. Still,

the high-fidelity vehicle model includes the DCDC converter and the simulated

power losses are used to fit the efficiency coefficients qdc, fdc and edc. In particu-

lar, these coefficients are obtained by solving a least-squares problem, minimizing

the difference between the input-output behavior as in (2.6a) and the measured
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input-output behavior. The measurements are compared with the modeled power

losses in Figure 2.6. The approximation error on the input-output behavior of

the DCDC converter is within 0.6 % of the maximum input power.

Finally, the DCDC converter input power is constrained to (2.6b) for m = dc,

where the minimum input power udc(t) = udc and the maximum input power

udc(t) = udc are constant.

2.3.5 High- and Low-Voltage Battery System

The vehicle includes a 660 Volt high-power lithium iron phosphate battery (high-

voltage battery) connected to the high-voltage network and a 24 Volt lead-acid

battery (low-voltage battery) connected to the low-voltage network. Both bat-

teries in the vehicle are modeled using an equivalent circuit model as shown in

Figure 2.7. This model contains a voltage source with a constant open circuit

voltage Uoc,m in series with a resistance Rm and is frequently used for energy

management applications (see, e.g., [22, 40]). The Kirchhoff’s voltage law for

this battery model is given by

Um(t)− Uoc,m + Im(t)Rm = 0, (2.15)

for m ∈ {hvb, lvb}. By defining the battery output power as ym(t) = Um(t)Im(t)

and the battery input power as um(t) = Uoc,mIm(t), (2.15) can be rewritten

as (2.6a) with qm = Rm

U2
oc,m

, fm = −1 and em = 0 for m ∈ {hvb, lvb}. The input

power of the high-voltage and low-voltage battery is constrained to (2.6b) for

m ∈ {hvb, lvb} where the minimum power um(t) = um and maximum power

um(t) = um for m ∈ {hvb, lvb} are constant. The battery charge dynamics can
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Figure 2.8: Approximation of the power losses in the high-voltage battery and
the approximation error.

approximately be related to the current Im(t) (see, e.g., [40]) with

d
dtQm(t) = −Im(t), (2.16)

for m ∈ {hvb, lvb} where Qm(t) is the battery charge and negative current is

defined as charging the battery. The energy in the battery is given by

xm(t) = Qm(t)Uoc,m, (2.17)

so that (2.16) can be rewritten as (2.6c) for m ∈ {hvb, lvb} with Ãm = 0, B̃m,w =

0, wm(t) = 0 and B̃m,u = −1. This equation is obtained by taking the derivative

of xm(t) with respect to time and assuming that the open-circuit voltage is time

independent. Furthermore, the energy in the battery is constrained to (2.6d) for

m ∈ {hvb, lvb}.

The power losses in the high-voltage battery, i.e., uhvb − yhvb > 0, and low-

voltage battery, i.e., ulvb − ylvb, according to the equivalent circuit model are

shown in Figure 2.8 and Figure 2.9, respectively. The power losses are compared

with simulation data from the high-fidelity simulation models of the high-voltage

and low-voltage battery (see Chapter 5). It can be observed that the equivalent

circuit model as in Figure 2.7 does not fully capture the input-output behavior of

the high-fidelity simulation models. The approximation error is mainly caused by

the complex dynamic behaviour of the high-fidelity battery simulation models.
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Figure 2.9: Approximation of the power losses in the low-voltage battery and the
approximation error.

The equivalent circuit model can be extended with additional capacitors and

resistors as in [55], to better capture these dynamics, but each capacitor adds a

state to the model, which is less attractive for optimal control.

2.3.6 Refrigerated Semi-Trailer

Modeling a refrigerated semi-trailer (RST) and its cargo load is complicated. To

fully describe the dynamics, many influential factors need to be taken into ac-

count, e.g., heat transfer between the outside air and the container, heat transfer

from container to the inside air and heat transfer between the food and the refrig-

erated air [48], which typically lead to higher order models. For optimal control,

these higher-order models are computationally not attractive. Therefore, the

thermal dynamics of the air inside the refrigerated semi-trailer (see Figure 2.10)

is modeled with a first-order differential equation, i.e.,

Crst
d
dt
Trst(t) = urst(t) + η1(η2Tamb − Trst(t)), (2.18)

where Crst is the thermal capacity of the air in the RST, Trst is the air temperature

in the RST, urst(t) is the thermal power flowing into the RST where negative

powers indicate cooling, η1 is a heat transfer coefficient between the ambient

temperature Tamb and the RST temperature and 0 ≤ η2 ≤ 1 is an insulation

coefficient. By only modeling the air temperature in the RST, it is assumed that
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Figure 2.10: Thermal dynamics of the air inside the refrigerated semi-trailer.

the temperature of the cargo load remains within acceptable bounds as long as the

air temperature remains within acceptable bounds. We can represent the RST

model in terms of stored energy by defining the thermal energy relative to the

ambient temperature, i.e., xrst(t) = Crst(η2Tamb − Trst(t)) so that the thermal

energy is described by (2.6c) for m ∈ {rst} with Ãrst = − η1
Crst

, B̃rst,w = 0,

wrst(t) = 0 and B̃rst,u = −1. The thermal energy in the refrigerated semi-trailer

is constrained to (2.6d) for m = rst.

A refrigerated semi-trailer is typically a switched system that can only be

turned on or off, i.e., the thermal power urst(t) is constrained to

urst(t) ∈ {urst(t), urst(t)}. (2.19)

The thermal power is not continuous with this constraint and this set is not a

convex set, which is not attractive for optimal control. Therefore, a model with

continuous input-output behaviour is derived, which will be used to simplify the

optimal control problem in some parts in this thesis. The continuous input-output

behavior is described by (2.6a) for m = rst with constant efficiency coefficients

qrst(t) = qrst, frst(t) = frst and erst(t) = erst. The input power constrained

to (2.6b) for m = rst, where the minimum input power urst(t) = urst and the

maximum input power urst(t) = urst are constant.

The high-fidelity vehicle model of the vehicle also includes a model of the

refrigerated semi-trailer (see [121] for more details on this model). The input

and output power for this high-fidelity vehicle model are given by

urst(t) = {−4.2, 0} kW, (2.20a)

yrst(t) = {−11.6, −1.6} kW. (2.20b)



2.3. Subsystem Modeling 33

0 200 400 600 800 1000 1200 1400
4.5

5

5.5

 

 

Time [s]

T
em

p
er

at
u
re

T
rs
t

[◦
C

]

Tamb = 20 ◦C

Tamb = 20 ◦C

Tamb = 25 ◦C

Tamb = 25 ◦C

Tamb = 30 ◦C

Tamb = 30 ◦C

Figure 2.11: Temperature inside the refrigerated semi-trailer for different ambient
temperatures compared to simulation data from the high-fidelity vehicle model.

As only two data points are available for the switched system, the coefficients qrst,

frst and erst are not uniquely defined. Therefore, qrst = 0.03 is chosen in (2.6a)

for which the input-output power behavior is close to linear and frst and erst are

calculated such that (2.20) is satisfied. Note that qrst is required to be slightly

positive for strict convexity, which is necessary for the distributed optimization

approach.

The air temperature of the refrigerated semi-trailer is shown in Figure 2.11 for

three different ambient temperatures and a default hysteresis controller where the

cooling is turned on when the temperature hits the upper bound and turned off

when the temperature hits the lower bound. Also the air temperature from the

high-fidelity vehicle model is shown, which demonstrates that the first-order dif-

ferential equation (2.18) approximates the high-fidelity vehicle model well. Here,

the parameters Crst, η1 and η2 depend on the ambient temperature to arrive at

a simplified model that is close to the behavior of the high-fidelity model.

2.3.7 Air Supply System

The air supply system in the vehicle is schematically shown in Figure 2.12. In this

system, air is compressed by a compressor that is driven by an electric motor. The

compressed air flows through a desiccant cartridge, which removes the water from

the air. As water builds up in the cartridge, compressed air is used at regular

intervals to dry the cartridge, which is referred to as regeneration. The dried
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Figure 2.12: Schematic overview of the air supply system.

air is directed through a system of valves to the right air circuit in the vehicle

where each circuit has at least one air vessel to store compressed air. Any vehicle

configuration has at least Circuit 1 and Circuit 2, because a separate circuit

is necessary for the front and rear brakes for safety reasons. Often, auxiliary

circuits are installed on the vehicle depending on the application and additional

air circuits might be present on the trailer as well.

To reduce the amount of states in the air supply system, the air vessels of

Circuit 1 and Circuit 2 are lumped into one vessel with a lumped volume V

and air pressure pas. The other air vessels are not considered as they are only

sometimes present and often not allowed to store air under very high pressure.

The dynamics of the air pressure in the lumped system are assumed to satisfy a

mass energy balance (see, e.g. [81]) given by

V d
dt
pas(t) = R(Tinṁin(t)− Toutṁout(t)), (2.21)

where R is the specific gas constant for air, V is the lumped volume of the air

tanks, ṁin(t) is the mass flow into the air vessels with air temperature Tin and

ṁout(t) is the mass flow out of the air vessels with air temperature Tout.

We can represent the air supply model in terms of stored energy by defining

the pneumatic energy relative to the ambient pressure, i.e.,

xas(t) =
(pas(t)−pamb)V

γ−1 , (2.22)
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Figure 2.13: Air supply input-output power behaviour.

where pamb is the ambient pressure and γ = cp/cv is the ratio of specific heats

(approximately 1.4 for air). Furthermore, we define the pneumatic input power

by

uas(t) =
RTinṁin(t)

γ−1 , (2.23)

and the pneumatic power released to the environment as

was(t) =
RToutṁout(t)

γ−1 , (2.24)

so that the dynamics (2.21) can be represented by (2.6c) for m ∈ {as} with

Ãas = 0, B̃as,w = −1 and B̃as,u = 1. The pneumatic energy in the air supply

system is constrained to (2.6d) for m = as.

The input-output behavior is described by (2.6a) for m = as with efficiency

coefficients qas(t) = qas, fas(t) = fas(pas(t)) that depend on the air pressure

pas(t) and eas(t) = erst. These coefficients are obtained by solving a least-squares

problem that minimizes the difference between the input-output power behavior

as in (2.6a) and the measured input-output behavior. The quadratic input-output

power behaviour is shown in Figure 2.13 together with measurement data of

the compressor. The input power is constrained to (2.6b) for m = as where

the minimum input power uas(t) = uas(pas(t)) and the maximum input power
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Figure 2.14: Air pressure in the air supply system compared with simulation data
from the high-fidelity vehicle model.

uas(t) = uas(pas(t)) depend on the air pressure as well.

Although, the electric motor potentially allows the air compressor to be con-

tinuously controlled, in practice the air compressor is still only switched on or

off, i.e., uas(t) ∈ {uas, uas}. The air pressure from the simplified air supply sys-

tem model is compared with the air pressure in Circuit 1 and Circuit 2 of the

high-fidelity vehicle model of the air supply system (see Chapter 5) in Figure 2.14.

2.3.8 Climate Control System

A schematic drawing of the climate control system in the vehicle is shown in Fig-

ure 2.15. In this system, the compressor is attached via a clutch to the engine and

can only be switched on or off. The compressor pumps refrigerant vapor under

high pressure to the condenser where heat is drawn from the refrigerant, which

leads to condensation of the refrigerant. An expansion valve is then present to

regulate the amount of refrigerant flowing to the evaporator. In the evaporator,

the refrigerant absorbs heat from the air flow. The cooled (and possibly dehu-

midified) air flow is directed through a heat exchanger with warm air from the

internal combustion to have the air with the right air temperature send to the

cabin. The heated refrigerant vapor coming from the evaporator is then fed back

to the compressors again. A simplified version of the model developed in [118]

will be used to model the behaviour of the climate control system. As in [118],
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Figure 2.15: Schematic overview of a climate control system in a heavy-duty
vehicle.

only the evaporator is modeled, which is assumed to satisfy a coupled thermal

energy balance given by

Cr
d
dt
Tr(t) = hi(Tw(t)− Tr(t)) + uccs(t), (2.25a)

Cw
d
dt
Tw(t) = Ql(Tamb,Φamb) + ho(Tamb − Tw(t)) + hi(Tr(t)− Tw(t)), (2.25b)

where Cr and Cw are the heat capacities of the refrigerant and the walls of the

evaporator, respectively, Tr(t) and Tw(t) are the temperatures of the refrigerant

and walls of the evaporator, respectively, uccs(t) is the effective cooling power from

the compressor, Tamb is the ambient temperature, hi and ho are the heat transfer

coefficients between the inner and outer walls of the evaporator, respectively, and

Ql is the heat generated when the inlet air is condensed (latent heat). For the

simplified model, the latent heat is assumed to only depend on the ambient air

temperature Tamb and humidity Φamb. Similar to the battery, we can represent

the CCS model in terms of stored energy by defining the thermal energy in the
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Figure 2.16: Input-output power behaviour of the climate control system for
different engine speeds.

wall and refrigerant relative to the ambient temperature, i.e,

xccs(t) = [Cr (Tamb − Tr(t)) Cw (Tamb − Tw(t))]
T , (2.26)

which allows (2.25) to be rewritten as (2.6c) for m = ccs with

Ãccs =

[

− hi

Cr

hi

Cw

hi

Cr
− (hi+ho)

Cw

]

, B̃ccs,w =

[

0

−1

]

, B̃ccs,u =

[

−1

0

]

, (2.27)

and wccs(t) = Ql. The thermal energy in the wall and refrigerant is constrained

to (2.6d) for m = ccs.

A climate control system is typically a switched system that can only be turned

on or off, i.e., the input power uccs(t) is constrained to uccs(t) ∈ {uccs(t), uccs(t)}.

The input power is not continuous with this constraint and this set is not a

convex set, which is not attractive for optimal control. Therefore, a model with

continuous input-output behaviour is derived, which will be used to simplify the

optimal control problem in some parts in this thesis. The continuous input-output

behavior is described by (2.6a) for m = ccs with efficiency coefficients qccs(t) =

qccs, fccs(t) = fccs(ωice) that depend on the engine speed ωice and eccs(t) = eccs.

The input power constrained to (2.6b) for m = ccs where the minimum input

power uccs(t) = uccs(ωice) and the maximum input power uccs(t) = uccs(ωice)

depend on the engine speed ωice as well.
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Figure 2.17: Wall and refrigerant temperature of the climate control system
compared with simulation data of the high-fidelity vehicle model.

As with the refrigerated semi-trailer, only two data points are available for the

switched system for a given engine speed ωice so that the coefficients qccs, fccs

and eccs are not uniquely defined. Therefore qccs = 0.03 is chosen in (2.6a) for

which the input-output power behavior is close to linear. The function fccs(ωice)

is described as a polynomial function of the engine speed ωice and is obtained

together with eccs by solving a least-squares problem that minimizes the difference

between the input-output behavior as in (2.6a) and the compressor data. Note

that qccs is required to be slightly positive for strict convexity, which is necessary

for the distributed optimization approach. The quadratic approximation of the

input-output behavior, as well as the data points from the compressor are shown

in Figure 2.16.

Furthermore, the evaporator wall temperature and refrigerant temperature of

the simplified model (2.25) are compared with the evaporator wall temperature

and refrigerant temperature of the high-fidelity vehicle model in Figure 2.17.

2.4 Conclusions and Discussion

The low-fidelity vehicle model of the heavy-duty hybrid vehicle, suitable for a

model-based energy management approach, has been introduced and analyzed

in this chapter. Defining the subsystems in terms of their input and output

power allowed the topology of the vehicle to be fully described by the power

balances on the mechanical, high-voltage and low-voltage network. Furthermore,
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the input-output power behavior of all subsystems can be approximated well with

a (strictly) convex quadratic equality constraint. Constrained states have been

introduced for the high-voltage battery, the low-voltage battery, the refrigerated

semi-trailer, the air-supply system and climate control system, that represent the

energy in the subsystems. The dynamics for these states have been described by

a linear differential equation that approximates well the simulation data from

the high-fidelity vehicle model. The low-fidelity vehicle model of the heavy-duty

vehicle presented in this chapter will be used to find the optimal CVEM strategy

via a distributed optimization approach in the next chapter.



3
Distributed Optimization for Offline Energy

Management

Abstract - In this chapter, a distributed optimization approach is presented to solve the com-

plete vehicle energy management problem introduced in the previous chapter. The first part of

the approach is a dual decomposition, which allows the underlying optimal control problem to be

solved for every subsystem separately. For the second part of the approach, the optimal control

problem for every subsystem is solved with three different methods. The first two methods rely on

splitting the control horizon into several smaller horizons. The first method uses the Alternating

Direction Method of Multipliers and divides the horizon a priori, while the second method divides

the horizon iteratively by solving unconstrained optimization problems analytically. The third

method, based on dynamic programming, is used to solve the optimal control problem related to

subsystems with on/off control. The approach is demonstrated by solving the complete vehicle

energy management problem for a pan European driving cycle. Simulation results show that

the fuel consumption can be reduced up to 1.42 % by including smart auxiliaries in the energy

management problem. This requires, however, that the auxiliaries are continuous controlled or

that the number of switches is unbounded. More interestingly, the computation time is reduced

by a factor of 64 up to 1825, compared with solving a centralized convex optimization problem.
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3.1 Introduction

To efficiently manage all energy flows in the complete vehicle energy manage-

ment (CVEM) problem, an energy management strategy is needed that is scal-

able, flexible and suitable for on/off control. Many different solution strategies

for solving the energy management problem have been proposed over the past

decades. The proposed solution strategies can be divided into so-called online

and offline solution strategies [22, 40].

Online solution strategies are real-time implementable and rely on feedback

and/or predictions and therefore cannot guarantee the global optimal solution.

To verify the performance of the online solution strategies and to analyze differ-

ent configurations, so-called offline solution strategies have been developed based

on, e.g., dynamic programming (DP, see, e.g., [67, 1, 90]), Pontryagin’s mini-

mum principle (PMP, see, e.g., [120, 18, 110]) or convex optimization (see, e.g.,

[78, 31]). The offline solution strategies require all disturbances to be known (e.g.,

the driving cycle) so that the global optimal solution can be computed. Since

disturbances are generally unknown, these strategies can, in general, not be im-

plemented in real-time. Still, they do provide a benchmark for online solution

methods and are therefore valuable tools.

While some online optimization methods can handle the complexity of the

CVEM problem, the aforementioned offline optimal control methods cannot. It

should be noted that multi-state energy management problems, e.g., including

battery state-of-health [27], battery aging [109], thermal management [72, 65, 92]

and the control of a waste heat recovery system [124] are all based on the equiva-

lent consumption minimization strategy (ECMS), meaning that global optimality

of the solution cannot be guaranteed. For the offline optimization methods, scal-

ability is poor as the computational complexity of DP increases exponentially

with the number of states and solving the two-point boundary value problem re-

sulting from PMP is difficult, particularly when state constraints are present, see,

e.g., [72] in the context of thermal dynamics. Finally, a convex approximation

of the energy management problem can lead to a globally optimal solution, but

still requires a large-scale optimization problem to be solved.

Distributed solutions to the energy management problem aim to remedy/resolve

the complexity issue of the underlying optimizations. In [12, 81], an online im-
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plementable game-theoretic approach to CVEM is shown. In [83], scalability

is obtained by using the Alternating Direction Method of Multipliers (ADMM)

while ideas based on ECMS are used to calculate the equivalent costs at a super-

visory level. Still, these distributed solutions are all online solution methods for

which the global optimal solution is not guaranteed.

In this chapter, we propose to use methods from distributed optimization to

solve the convex approximation of the CVEM problem introduced in Chapter 2

and obtain the global optimal solution. This solution will be used to verify the

performance of the real-time energy management strategy developed in the next

chapter and to analyze the fuel reduction potential of different auxiliaries for

energy management. In particular, we use the dual decomposition approach for

CVEM that we first introduced in [101] in combination with efficient algorithms

to solve the dual functions that we first introduced in [102]. These results have

been unified and extended in [99] where the general CVEM problem is presented

as a quadratically constrained linear program (QCLP).

This chapter is to a large extent based on the results presented in [99]. The

approach is extended with a solution method based on dynamic programming

to solve the optimal control problem related to subsystems with on/off decisions

(Section 3.3.3). This solution method provides the optimal trade-off between the

number of switches and fuel reduction, which will be given for the refrigerated

semi-trailer, the air supply system and the climate control system.

The remainder of this chapter is organized as follows. The general optimal con-

trol problem and the application of the dual decomposition is given in Section 3.2.

In Section 3.3, solution methods are presented to solve the dual functions that

result from the dual decomposition. The CVEM problem is casted as an optimal

control problem in Section 3.4 and, finally, the results are discussed in Section 3.5.

3.2 Distributed Optimization of Power Nets

In this section, we consider the optimal control of the energy flows in a power net,

which is illustrated in Figure 3.1. The power net consists of energy storage de-

vices, e.g., a high-voltage battery, and energy converters, e.g., an electric machine.

The storage devices are connected to the converters, while the outputs ym,k and

inputs um,k of the converters are connected to each other via nodes according to
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Figure 3.1: Power net with energy storage devices and energy converters.

a specific topology, i.e., energy can be exchanged directly between converters, but

not directly between storage devices. At each node n ∈ {1, . . . , N}, there is also

a known exogenous load signal vn,k given for each time instant k. Subsystems

are composed of a combination of a converter, possibly with an energy storage

device. The goal of the power net is to minimize the cumulative energy losses

of all subsystems, while meeting constraints on the inputs, outputs and states in

each subsystem. In this section, we will introduce the optimal control problem

for this power net and we will give a dual decomposition approach to solve the

optimal control problem. In Section 3.4 we will show that the complete vehicle

energy management (CVEM) problem can be represented as a power net, where

minimizing the energy losses is equivalent to minimizing the fuel consumption.

3.2.1 Optimal Control Problem

The optimal control problem for the power net is given by

min
{um,k ,ym,k}

∑

m∈M

∑

k∈K

cmum,k − dmym,k, (3.1a)

where um,k ∈ R and ym,k ∈ R are the (scalar) inputs and outputs of the converter

in subsystem m ∈ M = {1, . . . ,M} with M the number of subsystems and at
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time instant k ∈ K = {0, 1, . . . ,K − 1}, with K the horizon length. In (3.1a),

cm ∈ R and dm ∈ R+ are coefficients that define the energy losses in converter

m. Moreover, we use the notation {um,k, ym,k} to indicate {um,k, ym,k}m∈M,k∈K.

This notation will be used throughout the chapter for minimizing over a set.

The optimization problem (3.1a) is to be solved subject to a quadratic equality

constraint describing the input-output behavior of each converter, i.e.,

1
2qm,ku

2
m,k + fm,kum,k + em,k + ym,k = 0, (3.1b)

with qm,k ∈ R+, fm,k ∈ R and em,k ∈ R being efficiency coefficients of the

converter m ∈ M at time instant k ∈ K, and subject to linear system dynamics

of the storage device in subsystem m ∈ M, i.e.,

xm,k+1 = Amxm,k +Bm,wwm,k +Bm,uum,k, (3.1c)

for all k ∈ K, where the initial state xm,0 and final state xm,K of the storage

device are assumed to be given, wm,k is a known load signal at every time instant

k ∈ K and the input um,k ∈ R is subject to linear inequality constraints, i.e.,

um,k ≤ um,k ≤ um,k, (3.1d)

for all k ∈ K, m ∈ M, and the state xm,k is subject to linear inequality con-

straints, i.e.,

xm,k ≤ xm,k ≤ xm,k, (3.1e)

for all k ∈ K and m ∈ M. Finally, the optimization problem is solved subject to

a linear equality constraint describing the power balance in the interconnection

of the subsystems, i.e.,

∑

m∈M

Amum,k + Bmym,k +
1
M
vk = 0, (3.1f)

for all k ∈ K, where Am ∈ R
N and Bm ∈ R

N are vectors with the n-th element

being −1 if the power flow to node n is positive, 0 if there is no power flow to

node n and 1 if the power flow to node n is negative. Here, N is the number of

nodes in the topology where power is aggregated. Furthermore, the load signal
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vk = [v1,k . . . vN,k]
T ∈ R

N is assumed to be known at each time instant k ∈ K. We

define the primal optimal solution as the solution {u∗m,k, y
∗
m,k} that satisfies (3.1),

if it exists, and p∗ as the primal optimal value of (3.1). We let p∗ = ∞ if (3.1)

has no solution.

3.2.2 Dual Decomposition and Convex Relaxation

The optimization problem (3.1) can be a large-scale problem (when K and M are

large), which is not convex due to the quadratic equality constraint (3.1b). We

propose in this chapter to solve (3.1) by decomposing it into several smaller prob-

lems and to relax (3.1b). In doing so, we can solve (3.1) efficiently without sac-

rificing optimality of the solution as we will show below. Problem (3.1a) subject

to (3.1b) - (3.1f) cannot be separated due to the complicating constraint (3.1f).

Therefore, we decompose the problem via dual decomposition by introducing the

following so-called partial Lagrangian

L({um,k, ym,k, µk}) =
∑

m∈M

∑

k∈K

cmum,k−dmym,k+µT
k (Amum,k+Bmym,k+

1
M
vk),

(3.2)

where µk ∈ R
N is a Lagrange multiplier, subject to (3.1b)-(3.1e). Indeed, the par-

tial Lagrangian (3.2) is obtained by adding the complicating constraints (the con-

straints that act on more than one subsystem) to the objective function in (3.1a).

The partial Lagrange dual function is now given by

g({µk}) = min
{um,k,ym,k}

L({um,k, ym,k, µk}) =
∑

m∈M

gm({µk}), (3.3a)

with

gm({µk}) = min
{um,k ,ym,k}

∑

k∈K

cmum,k − dmym,k + µT
k (Amum,k + Bmym,k +

1
M
vk),

(3.3b)

subject to (3.1b)-(3.1e) and defined for all m ∈ M. Note again that the argument

of gm is the sequence {µk}k∈K. Furthermore, note that each of the Lagrange dual

functions (3.3b) subject to (3.1b)-(3.1e) is related to one of the subsystems and
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can be solved independently. The dual problem is given by

max
{µk}

g({µk}) = d∗, (3.4)

subject to (3.1b)-(3.1e) where d∗ is defined as the dual optimal value. The dual

problem (3.4) gives a lower bound on the primal optimal value p∗ of problem (3.1),

i.e.,

d∗ ≤ p∗. (3.5)

The dual optimal value d∗ will be equal to the primal optimal value p∗, i.e.,

p∗ = d∗, if problem (3.1) is strictly convex and the constraints satisfy Slater’s

constraint qualifications [9]. Problem (3.1), however, is not strictly convex due

to the quadratic equality constraint (3.1b). By relaxing this constraint to an

inequality constraint, i.e.,

ym,k +
1
2qm,ku

2
m,k + fm,kum,k + em,k ≤ 0, (3.1b’)

for m ∈ M, k ∈ K, the optimization problem becomes strictly convex. We

define the optimal solution to the dual problem as the solution {u∗m,k, y
∗
m,k, µ

∗
k}

that satisfies (3.4) with g({µk}) defined in (3.3) with the minimum taken subject

to (3.1c)-(3.1e) and (3.1b’) instead of (3.1b). The following theorem provides a

condition for which the optimal solution to the dual problem leads to the optimal

solution to the primal problem.

Theorem 3.2.1. The optimal solution {u∗m,k, y
∗
m,k, µ

∗
k} to the dual problem (3.4)

when (3.1b) is replaced by (3.1b’), solves the primal optimization problem (3.1)

with {u∗m,k, y
∗
m,k} (and (3.1b) instead of (3.1b’)) if

• the optimal solution to the dual problem satisfies dm − BT
mµ∗

k > 0 for all

m ∈ M and for all k ∈ K,

• there exist a feasible point {um,k, ym,k} for all m ∈ M and for all k ∈ K

satisfying (3.1c) - (3.1e) and (3.1b’) with strict inequality.

Proof. Because the second condition in the hypothesis of the theorem implies

that Slater’s constraint qualification (see e.g., [9]) holds and that we have strong
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duality, we only need to show that the solution to (3.4) subject to (3.1c) - (3.1e)

and (3.1b’) is achieved with equality if dm − BT
mµ∗

k > 0.

To show that dm − BT
mµ∗

k > 0 for all m ∈ M, k ∈ K implies that the optimal

solution to the dual problem yields the optimal solution to the primal problem

that satisfies (3.1b), consider the partial Lagrange dual function of problem (3.1)

subject to (3.1b’) instead of (3.1b), which is given by

L({um,k, ym,k, µk}) =
∑

m∈M

∑

k∈K

cmum,k−dmym,k+µT
k (Amum,k+Bmym,k+

1
M
vk)

+ νm,k(ym,k +
1
2qm,ku

2
m,k + fm,kum,k + em,k), (3.6)

subject to (3.1c)-(3.1e) and where νm,k ≥ 0 is the (scalar) Lagrange multiplier

associated with the (scalar-valued) quadratic inequality constraint (3.1b’). The

derivative with respect to ym,k at {u∗m,k, y
∗
m,k, µ

∗
k} of this partial Lagrangian (3.6)

(one of the necessary conditions for optimality, see, e.g., [9]) is given by

BT
mµ∗

k − dm + ν∗m,k = 0. (3.7)

Since dm −BT
mµ∗

k > 0 by the hypothesis of the theorem, it follows that ν∗m,k > 0.

The positivity of νm,k ensures that inequality (3.1b’) is satisfied as an equality

by complementarity slackness [9], which completes the proof.

The first condition of this theorem is in general not mild, but provides an a

posteriori check for the optimal solution to the dual problem {u∗v,k, y
∗
v,k, µ

∗
k} that

satisfies (3.4) with g({µk}) defined in (3.3) with the minimum taken over (3.1c)-

(3.1e) and (3.1b’) instead of (3.1b), to be equal to the optimal solution to the

primal problem to (3.1). Moreover, for the objective function (3.1a) this condition

is naturally satisfied as the energy losses in each subsystem m ∈ M are defined

as cmum,k− dmym,k for each time instant k ∈ K, so that the quadratic inequality

constraint (3.1b’) at the optimal solution implies

cmu∗m,k − dmy∗m,k ≥dm
(

1
2qm,k(u

∗
m,k)

2 + fm,ku
∗
m,k + em,k

)

+ cmu∗m,k, (3.8)

for all m ∈ M and k ∈ K. If the quadratic inequality constraint holds with

equality at the optimal solution for all m ∈ M and k ∈ K, then the energy
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losses in each subsystem m ∈ M are minimal, which is intuitively needed for the

solution to be optimal. The second condition in the hypothesis of this theorem

is relatively mild (Slater’s constraint qualification, see, e.g., [9]) and is satisfied

for the numerical example given in Section 3.4. The dual problem (3.4) can be

solved efficiently using a subgradient method as will be shown below.

3.2.3 Maximizing the Lagrange Dual Function

Maximizing the Lagrange dual function (3.3) over µk can be done with a ‘steepest

ascent’ method, i.e.,

µs+1
k = µs

k + αs
k

(

∑

m∈M

Amusm,k + Bmysm,k +
1
M
vk

)

, (3.9)

for all k ∈ K where αk is a suitably chosen matrix and s ∈ N is the iteration

counter. In [101], a diagonal matrix with sufficiently small positive constant step

sizes on its diagonal was chosen such that the Lagrange dual problem will always

converge. However, convergence tended to be slow. A better convergence rate

is achieved with a Newton scheme (see e.g., [61]). We will derive this scheme

from a primal feasibility perspective. The idea is to update the dual variables µk

such that for the next iteration primal feasibility for the complicating constraints

holds, i.e.,

∑

m∈M

Amus+1
m,k + Bmys+1

m,k + 1
M
vk = 0. (3.10)

To verify this condition, we can approximate the value for us+1
m,k and ys+1

m,k by the

linear functions

us+1
m,k ≈ usm,k +

(

∂usm,k

∂µk

)T

(µs+1
k − µs

k), (3.11a)

ys+1
m,k ≈ ysm,k +

(

∂ysm,k

∂µk

)T

(µs+1
k − µs

k), (3.11b)

where
∂us

m,k

∂µk
is a vector with the approximations of the first-order derivatives of

usm,k(µk) with respect to the dual variables µk at iteration s. Similarly,
∂ys

m,k

∂µk
is

a vector with the approximations of the first-order derivatives of ysm,k(µk) with
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respect to the dual variables µk at iteration s. By substituting (3.11) into (3.10)

and solving for µs+1
k we obtain (3.9) with

αs
k =

(

∑

m∈M

−Am

(

∂usm,k

∂µk

)T

− Bm

(

∂ysm,k

∂µk

)T
)−1

, (3.12)

which can be obtained by calculating the vector with derivatives for each subprob-

lem in a distributed fashion. Note that calculating the derivatives with respect to

µk in (3.11) can be hard and they may not even exist due to the presence of con-

straints. To resolve this, the derivatives can be approximated by neglecting the

state constraints (3.1e). As a consequence, the iteration (3.9) may not converge.

In this case, sufficiently small constant step sizes can be chosen as was done in

[101]. The convergence speed might be significantly slower in this case, as will

be shown in the simulation study in Section 3.5. Finally, the dual decomposition

algorithm consists of iteratively solving (3.3) to obtain {usm,k, y
s
m,k} and updating

the Lagrange multipliers by solving (3.9) to obtain {µs+1
k }. In the section below,

we will provide methods to efficiently solve the dual functions (3.3b).

3.3 Evaluating the Dual Functions

Each of the Lagrange dual functions (3.3b) related to the subsystems m ∈ M

can be solved separately and can be written as a linearly constrained quadratic

program (LCQP) by substituting (3.1b) into (3.3b). This gives

gm({µk})= min
{um,k}

∑

k∈K

1
2Hm,ku

2
m,k+Fm,kum,k+Em,k, (3.13a)

with

Hm,k = (dm − BT
mµk)qm,k, (3.13b)

Fm,k = cm +AT
mµk + (dm − BT

mµk)fm,k, (3.13c)

Em,k = µT
k

1
M
vk + (dm − BT

mµk)em,k, (3.13d)

where the minimization is taken subject to (3.1c) - (3.1e). Note that for strict

convexity of (3.13a), it is required that dm−BT
mµ∗

k > 0 for all k ∈ K, m ∈ M, at

every iteration of the dual decomposition algorithm, which is a more restrictive
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condition than in Theorem 3.2.1 for the optimal solution to the dual problem

to be equal to the optimal solution to the primal problem. For the simulation

study presented in Section 3.4, this condition is satisfied, as will be shown with

the numerical example in Section 3.5.

As a result, the dual decomposition allows solving the quadratically constrained

quadratic program by solving multiple LCQPs iteratively for all m ∈ M. How-

ever, solving a LCQP for a large horizon length K is still numerically demanding.

Therefore, we introduce two solution methods to solve the optimization prob-

lem (3.13a), related to each of the subsystems, efficiently. Both methods use the

principle of splitting the horizon K into L disjoint intervals, where each interval

is defined as Kℓ = {Kℓ−1, . . . ,Kℓ − 1} with 0 = K0 < K1 < . . . < KL = K

and where ℓ ∈ L = {1, . . . , L} with L the number of intervals1. To decompose

the constraints in the optimization problem (3.13a) into smaller optimization

problems, we recall that a solution to (3.1c) satisfies

xm,k+1 = A
k+1−Kℓ−1
m x̃m,Kℓ−1

+
∑

i∈{Kℓ−1,...,k}

Ak−i
m (Bm,wwm,i +Bm,uum,i), (3.14a)

for all k ∈ Kℓ, where the local initial condition x̃m,Kℓ−1
at each interval ℓ ∈ L is

equal to the final condition at interval ℓ− 1, i.e.,

xm,Kℓ−1
= x̃m,Kℓ−1

, (3.14b)

for ℓ ∈ L and x̃m,0 = xm,0 and x̃m,KL
= xm,K , which follow from the initial and

final condition of the full horizon. Using these constraints, we can write the dual

function (3.13a) as

gm({µk}) = min
{um,k,x̃m,Kℓ−1

}

∑

ℓ∈L

∑

k∈Kℓ

1
2Hm,ku

2
m,k+Fm,kum,k+Em,k, (3.15)

subject to (3.1d), (3.1e) and (3.14). Note that the problem (3.15) subject to (3.1d),

(3.1e) and (3.14) is only coupled by (3.14b).

In the following subsection we will introduce three solution methods to evaluate

the dual functions. The first two solution methods can be used to select the

1Each interval can equivalently be defined as Kℓ = [Kℓ−1,Kℓ) ∩ Z; ℓ = 1, . . . , L where
0 = K0 < K1 < . . . < KL = K and note that Kℓ1 ∩ Kℓ2 = ∅ for all ℓ1 6= ℓ2 and that
∪ℓ∈LKℓ = K.
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intervals Kℓ and the initial state at each interval x̃m,Kℓ−1
. In the first solution

method, based on Alternating Direction Method of Multipliers (ADMM), the

horizon is split a priori in a fixed number of intervals. For each interval, an

optimization problem is solved that takes the initial state x̃m,Kℓ−1
as the decision

variable. ADMM is a suitable method as the resulting decomposed problem is not

strictly convex, but it is convex, as we will show below. In the second solution

method, based on the Lagrangian Method, the horizon is split iteratively and

the initial state is fixed on the lower or upper state constraint depending on

the solution of the state-unconstrained optimization problem. The Lagrangian

Method is only applicable to systems with scalar states, while the ADMM method

is applicable to systems with multiple states. Finally, we will introduce a third

method based on dynamic programming, that allows solving (3.13) for which

some subsystems are only allowed to be turned on or off, i.e., the input power is

constrained to

um,k ∈ {um,k, um,k} for all k ∈ K, (3.16)

for those subsystems m ∈ M that are only allowed to be turned on or off.

In (3.16), um,n|k and um,n|k correspond to the power consumption when the

auxiliary is off and on, respectively.

3.3.1 Horizon Splitting with ADMM

For this method, we define a priori the sets Kℓ = {Kℓ−1, . . . ,Kℓ − 1}, ℓ ∈ L =

{1, . . . , L}. This method is similar to the method proposed in [111] where inter-

vals that contain only one time instant, i.e., Kℓ = {ℓ − 1} are used for solving

the problem over a short horizon. Contrary to [111], we use intervals containing

multiple time instants, thereby making it more applicable for solving the problem

over a long horizon as will be demonstrated with the numerical example in Sec-

tion 3.5. The objective function in (3.15) is separable in variables related to each

interval, but is not strictly convex due to the minimization over the local initial

state x̃m,Kℓ−1
, which is an essential assumption for the dual decomposition ap-

proach taken in the previous section. Lagrangian methods as used in Section 3.2,

however, require convexity of the objective function rather than strict convexity.
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Instead, the partial augmented Lagrangian for problem (3.15) can be defined as

L̂m({um,k, x̃m,Kℓ−1
, νm,ℓ}) =

∑

ℓ∈L

∑

k∈Kℓ

1
2Hm,ku

2
m,k + Fm,kum,k +Em,k

+ νTm,ℓ−1(x̃m,Kℓ−1
− xm,Kℓ−1

) + 1
2

(

x̃m,Kℓ−1
− xm,Kℓ−1

)T
R
(

x̃m,Kℓ−1
− xm,Kℓ−1

)

,

(3.17)

for all m ∈ M in which νm,ℓ ∈ R
dim(xm,k) are Lagrange multipliers and where

R ≻ 0 is a diagonal matrix with positive penalty parameters on its diagonal. In

this expression, we temporarily omit the constraints that are acting only within

one interval, i.e., (3.1d), (3.1e) and (3.14a). We will reintroduce these constraints

later in the decomposed problem. The partial augmented Lagrange dual function

is defined by

ĝm({νm,ℓ}ℓ∈L) = min
{um,k,x̃m,Kℓ−1

}
L̂({um,k, x̃m,Kℓ−1

, νm,ℓ}) =
∑

ℓ∈L

ĝm,ℓ(νm,ℓ−1, νm,ℓ),

(3.18a)

for all m ∈ M with

ĝm,ℓ(νm,ℓ−1, νm,ℓ) = min
{um,k,x̃m,Kℓ−1

}

∑

k∈Kℓ

1
2Hm,ku

2
m,k +

1
2 x̃

T
m,Kℓ−1

Rx̃m,Kℓ−1

+ Ĝm,kx̃m,Kℓ−1
+ F̂m,kum,k + Êm,k, (3.18b)

in which

Ĝm,k = νTm,ℓ−1 − xTm,Kℓ−1
R− νTm,ℓA

Kℓ−Kℓ−1
m , (3.18c)

F̂m,k = Fm,k − νTm,ℓA
Kℓ−1−k
m Bm,u, (3.18d)

Êm,k = Em,k − νTm,ℓA
Kℓ−1−k
m Bm,wwm,k, (3.18e)

for ℓ ∈ L, with νm,L = 0 and is to be solved subject to (3.1d), (3.1e) and (3.14a).

Expressions (3.18c,d,e) are obtained by substituting (3.14a) for k = Kℓ − 1

into (3.17), only for the linear part of the equation, i.e., for νTm,ℓ−1(x̃m,Kℓ−1
−

xm,Kℓ−1
) and not for 1

2

(

x̃m,Kℓ−1
− xm,Kℓ−1

)T
R
(

x̃m,Kℓ−1
− xm,Kℓ−1

)

. This gives a

more desirable expression for (3.18b), i.e., the product um,k1um,k2 for k1 6= k2 is

not in the expression. However, as a result, (3.18b) is not separable due to the
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term xm,Kℓ−1
in (3.18b). By minimizing (3.18) sequentially from interval ℓ = 1 to

interval ℓ = L, as part of the ADMM algorithm (see, e.g., [9]), the minimization

problem (3.18), can still be solved efficiently.

To maximize the partial augmented Lagrange dual function (3.18), we use a

‘steepest ascent’ method, i.e.,

νt+1
m,ℓ = νtm,ℓ +R(x̃tm,Kℓ

− xtm,Kℓ
) (3.19)

for ℓ ∈ L, m ∈ M with t ∈ N the iteration number and for some given initial

condition ν0m,ℓ for ℓ ∈ L. Finally, the ADMM algorithm consists of iteratively

solving (3.18) subject to (3.1c) - (3.1e) to obtain {utm,k, x̃
t
m,Kℓ−1

} for ℓ ∈ L, k ∈ K

and solving (3.14a) for k = Kℓ − 1 to obtain xtm,Kℓ
for ℓ ∈ L, k ∈ K, followed by

an update of the Lagrange multipliers through (3.19) to obtain νt+1
m,ℓ−1 for ℓ ∈ L.

3.3.2 Horizon Splitting with the Lagrangian Method

Fixing the interval Kℓ a priori and using ADMM to solve (3.15) results in a

general solution method to solve the LCQP (3.13). We will also develop an it-

erative procedure that involves splitting the intervals based on solving (3.15) for

the particular case where xm,k ∈ R, i.e., the energy storage device in subsystem

m ∈ M is a scalar-state system. In Section 3.4, it will be shown that many com-

ponents in the CVEM problem can be represented by a scalar-state system and,

in Section 3.5, we will show that a tailored solution method for these components

is more favorable with respect to computation time, which also emphasizes the

advantage of using the dual decomposition approach to CVEM where each of the

dual functions can be solved with the most suitable solution method.

For this method, we initially take only one interval, i.e. the full horizon, so

that Kℓ = {Kℓ−1, . . . ,Kℓ−1} = {0, . . . ,K−1} and ℓ ∈ L = {1} and solve (3.13a)

subject to (3.1d) and (3.14) without considering the state constraints (3.1e). The

main reason for this is that the problem without (3.1e) is much easier to solve.

Depending on the solution of a state-unconstrained optimization, extra intervals

will be added as will be shown later in this section.

First, we define the state unconstrained problem for subsystem m ∈ M, which

is given by (3.15) subject to (3.1d) and (3.14). The Lagrangian of this problem
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is given by

L̂m({um,k, λℓ, νk, νk}) =
∑

ℓ∈L

∑

k∈Kℓ

1
2Hm,ku

2
m,k + Fm,kum,k + Em,k

+ λℓ

(

A
Kℓ−Kℓ−1
m x̃m,Kℓ−1

− x̃m,Kℓ
+
∑

i∈Kℓ

AKℓ−1−i
m (Bm,wwm,i +Bm,uum,i)

)

+ νk(um,k − um,k) + νk(um,k − um,k), (3.20)

with λℓ ∈ R, the Lagrange multiplier associated with the constraint (3.14),

νk ∈ R and νk ∈ R, the Lagrange multipliers associated with the upper and lower

input constraints (3.1d), respectively. The Karush-Kuhn-Tucker conditions [9] for

minimizing the Lagrangian (3.20) are given by the first-order necessary conditions

for optimality, i.e.,

∂L̂m({um,k ,λℓ,νk,νk})
∂um,k

= Hm,kum,k+Fm,k+νk−νk + λℓ

∑

i∈Kℓ

AKℓ−1−i
m Bm,u = 0,

(3.21a)

for all k ∈ Kℓ, ℓ ∈ L, feasibility of the constraint (3.14) and the complementary

slackness conditions for the inequality constraints

νk(um,k − um,k) = 0,

νk(um,k − um,k) = 0, (3.21b)

for all k ∈ Kℓ, ℓ ∈ L with νk ≥ 0 and νk ≥ 0. Finding a solution for (3.21a)

and (3.21b) simultaneously is difficult and often the solution is found with a

shooting method and a bisection algorithm over λℓ. This leads to the optimal

solution

u∗m,k=−H−1
m,k(Fm,k+λℓ

∑

i∈Kℓ

AKℓ−1−i
m Bm,u+νk−νk), (3.22)

for all k ∈ Kℓ, ℓ ∈ L for a given λℓ, νk and νk. Instead, we propose a procedure
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that aims, for each interval ℓ ∈ L, at solving

λt+1
ℓ = (1− γ)λt

ℓ + γĤ−1
m

(

A
Kℓ−Kℓ−1
m x̃m,Kℓ−1

− x̃m,Kℓ

+
∑

i∈Kℓ

AKℓ−1−i
m

(

Bm,wwm,i−Bm,uH
−1
m,i(Fm,i+νti−νti)

)

)

, (3.23a)

with relaxation parameter γ ∈ (0, 1] and with

Ĥm=
∑

i∈Kℓ

AKℓ−1−i
m Bm,uH

−1
m,i

∑

i∈Kℓ

AKℓ−1−i
m Bm,u, (3.23b)

and

νt+1
k = max

{

0,−Hm,kum,k − Fm,k − λt+1
ℓ

∑

i∈Kℓ

AKℓ−1−i
m Bm,u

}

, (3.23c)

νt+1
k = max

{

0,Hm,kum,k + Fm,k + λt+1
ℓ

∑

i∈Kℓ

AKℓ−1−i
m Bm,u

}

, (3.23d)

with t ∈ N the iteration index and for λ0 = 0 and ν0k = ν0k = 0 for all k ∈ K,

until (3.14) is satisfied within some desired tolerance. The expressions in (3.23)

are obtained by substituting (3.22) into (3.14) and (3.1d). If Hm,k is strictly

positive and if there exists an optimal solution u∗m,k for which (3.1d) and (3.14)

are satisfied, then the solution of iteration (3.23) will converge to the solution

of (3.15) (as t → ∞) subject to (3.1d) and (3.14) for a well chosen relaxation

parameter γ ∈ (0, 1].

For solving the state-constrained optimization problem (3.13), we use an idea

proposed in [120]. In [120] it is proven that when the relation between λℓ and

the final state xm,Kℓ
is monotonic (note that it is linear in this chapter), the

time instant at which the state constraint is violated most K̂ℓ is a contact point

of the state-constrained solution, i.e., x
m,K̂ℓ

= xm,k or x
m,K̂ℓ

= xm,k. This

concept is illustrated in Figure 3.2. This allows us to add K̂ℓ to the set of

splitting instances {Kℓ}ℓ∈L and we fix x
m,k̂ℓ

at either x
m,k̂ℓ

or x
m,k̂ℓ

depending

on whether the upper or lower bound was violated most and solve smaller optimal

control problems subject to initial and terminal constraints. Note that due to

the particular projection on the state constraints, this method is only suitable

for scalar-state systems, i.e., xm,k ∈ R.
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Figure 3.2: Solving the state-constrained optimization problem with the La-
grangian method

As a result of splitting the time horizon K into L segments using the method

outlined before, we might have a large number of ‘contact points’, which makes

the method inefficient. We can prove that, under certain conditions, the optimal

state trajectory equals either xm,k = xm,k or xm,k = xm,k for all k ∈ Kℓ, i.e.,

it is saturated on the upper or lower bound. This might occur when either

xm,Kℓ−1
= xm,Kℓ−1

and xm,Kℓ
= xm,Kℓ

or xm,Kℓ−1
= xm,Kℓ−1

and xm,Kℓ
= xm,Kℓ

.

The following theorem provides conditions, that can be evaluated a priori, for

which the optimal state trajectory is saturated on the upper or lower bound.

Theorem 3.3.1. The optimal state trajectory xm,k satisfies xm,k = xm,k for all

k ∈ Kℓ and the corresponding control input satisfies

u∗m,k = 1
Bm,u

(

(1−Am)xm,k +Bm,wwm,k

)

(3.24a)

if xm,Kℓ−1
= xm,Kℓ−1

and xm,Kℓ
= xm,Kℓ

, and if either one of the following

conditions holds for all k ∈ Kℓ:

• Am > 0, Bm,u < 0, Hm,k+1u
∗
m,k+1 −Hm,ku

∗
m,k < 0, Fm,k+1 − Fm,k < 0

• Am > 0, Bm,u > 0, Hm,k+1u
∗
m,k+1 −Hm,ku

∗
m,k > 0, Fm,k+1 − Fm,k > 0.

Similarly, the optimal state trajectory xm,k satisfies xm,k = xm,k for all k ∈ Kℓ
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and the corresponding control input satisfies

u∗m,k = 1
Bm,u

(

(1−Am)xm,k +Bm,wwm,k

)

(3.24b)

if xm,Kℓ−1
= xm,Kℓ−1

and xm,Kℓ
= xm,Kℓ

, and if either one of the following

conditions holds for all k ∈ Kℓ:

• Am > 0, Bm,u < 0, Hm,k+1u
∗
m,k+1 −Hm,ku

∗
m,k > 0,Fm,k+1 − Fm,k > 0

• Am > 0, Bm,u > 0, Hm,k+1u
∗
m,k+1 −Hm,ku

∗
m,k < 0,Fm,k+1 − Fm,k < 0.

Proof. We only prove the case that xm,k = xm,k for all k ∈ Kℓ and the proof for

xm,k = xm,k follows mutatis mutandis.

For u∗m,k to be a feasible solution it needs to satisfy (3.1d) by definition, such

that the Lagrangian of (3.15) subject to (3.14) and (3.1e) on interval ℓ is given

by

L̂m({u∗m,k, λℓ, υk}) =
∑

k∈Kℓ

1
2Hm,k(u

∗
m,k)

2 + Fm,ku
∗
m,k + Em,k + υk(xm,k − xm,k)

+ λℓ

(

A
Kℓ−Kℓ−1
m x̃m,Kℓ−1

−x̃m,Kℓ
+
∑

i∈Kℓ

AKℓ−1−i
m (Bm,wwm,i+Bm,uum,i)

)

, (3.25)

where xm,k is given by (3.14a) for all k ∈ Kℓ. In (3.25), υk ∈ R is the Lagrange

multiplier associated with the lower state constraint (3.1e). We will show that the

lower state is active for all k ∈ Kℓ, which means that the upper state is inactive

and can be left out of the Lagrangian. The Karush-Kuhn-Tucker conditions [9]

for minimizing the Lagrangian in (3.25) are given by the first-order necessary

optimality condition

∂L̂m({u∗
m,k

,λℓ,υk})

∂u∗
m,k

=Hm,ku
∗
m,k+Fm,k+λℓ

∑

i∈Kℓ

AKℓ−1−i
m Bm,u−υk

k
∑

i=Kℓ−1

Ak−i
m Bm,u=0,

(3.26)

for all k ∈ Kℓ, feasibility of the constraint (3.14) and the complementary slackness

conditions for the inequality constraint

υk(xm,k − xm,k) = 0, (3.27)
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for all k ∈ Kℓ, for a given υk ≥ 0. As λℓ

∑

i∈Kℓ
AKℓ−1−i

m Bm,u is a constant

in (3.26), we can derive the following relation between the Lagrange multipliers

υk at time instant k + 1 and k

υk+1 =





k+1
∑

i=Kℓ−1

Ak−i
m Bm,u





−1
(

υk

k
∑

i=Kℓ−1

Ak−i
m Bm,u +Hm,k+1u

∗
m,k+1

−Hm,ku
∗
m,k + Fm,k+1 − Fm,k

)

, (3.28)

for k ∈ Kℓ and where υKℓ−1
> 0 if x̃m,Kℓ−1

= xm,Kℓ−1
, such that if Am > 0,

Bm,u < 0, Hm,k+1u
∗
m,k+1 −Hm,ku

∗
m,k < 0 and Fm,k+1 − Fm,k < 0 or if Am > 0,

Bm,u > 0, Hm,k+1u
∗
m,k+1−Hm,ku

∗
m,k > 0 and Fm,k+1−Fm,k > 0 then there exist

a υk+1 > 0 for all k ∈ Kℓ, such that the first-order optimality conditions and

the complementary slackness conditions are satisfied and u∗m,k is optimal for all

k ∈ Kℓ. This completes the proof for xm,k = xm,k.

This theorem provides a priori verifiable conditions when the optimal state tra-

jectory is saturated at the lower bound or upper bound for all k ∈ {Kℓ−1, . . . ,Kℓ−

1}, respectively. The three preceding results, i.e., i) the solution of the opti-

mal control problem without considering the state constraints, ii) the iterative

method for splitting the control problem into smaller ones to incorporate state

constraints and iii) conditions for which the optimal solution satisfies xm,k = xm,k

or xm,k = xm,k for all k ∈ Kℓ allow us to propose the following algorithm for

solving (3.13).

Algorithm 3.3.2. Take K1 = {0, . . . ,K − 1}, L = {1} and let x̃m,0 and x̃m,K

be given.

• For each interval ℓ ∈ L, check if the conditions of Theorem 3.3.1 are satis-

fied.

– If the conditions of Theorem 3.3.1 are satisfied, the optimal solution

satisfies (3.24a) or (3.24b).

– If the conditions of Theorem 3.3.1 are not satisfied, compute the input

constrained solution using (3.23). Then verify
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εℓ = max
k∈Kℓ

{xm,k − xm,k}, (3.29a)

εℓ = max
k∈Kℓ

{xm,k − xm,k}. (3.29b)

∗ If εℓ > 0 and εℓ > εℓ, the lower state constraint is violated more

than the upper state constraint and

K̂ℓ = argmax
k∈Kℓ

{xm,k − xm,k}, (3.29c)

is added to the set of contact points {Kℓ}ℓ∈L and re-ordered, i.e.,

0 = K0 ≤ . . . ≤ Kℓ−1 ≤ K̂ℓ ≤ Kℓ ≤ KL to define new subsets

Kℓ = {Kℓ−1, . . . ,Kℓ − 1} and x̃
m,K̂ℓ

= x
m,K̂ℓ

.

∗ If εℓ > 0 and εℓ > εℓ, the upper state constraint is violated more

than the lower state constraint and

K̂ℓ = argmax
k∈Kℓ

{xm,k − xm,k}, (3.29d)

is added to the set of contact points {Kℓ}ℓ∈L and re-ordered, i.e.,

0 = K0 ≤ . . . ≤ Kℓ−1 ≤ K̂ℓ ≤ Kℓ ≤ KL to define new subsets

Kℓ = {Kℓ−1, . . . ,Kℓ − 1} and x̃
m,K̂ℓ

= x
m,K̂ℓ

.

∗ If both (3.29b) and (3.29a) are nonpositive, the ℓ-th interval does

not has to be further divided.

• Repeat until max{xm,k − xm,k, xm,k − xm,k} ≤ 0 for all k ∈ K.

Similarly as the dual decomposition allows the large-scale optimal control prob-

lem to be solved by solving smaller optimal control problems on subsystem level,

Algorithm 3.3.2 and the ADMM algorithm allow the optimal control problem

over a large horizon to be solved through multiple optimal control problems over

a smaller horizon. Note that, to ensure convergence of the solution to the dual

problem (3.4), the solution to each dual function obtained with Algorithm 3.3.2

or ADMM (3.19) needs to be converged before proceeding with the maximization

in (3.9). Still, by combining these solution methods, scalability is significantly

improved, which will be demonstrated with the numerical example in Section 3.5.
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3.3.3 Dynamic Programming for Subsystems with On/Off Con-

trol

The Lagrangian method and the ADMM method presented so far, can only be

used to solve the dual functions for which the input um,k is constrained to an

interval as in (3.1d). Only then, (3.1) satisfies the condition on strict convexity

and convergence of the dual decomposition is guaranteed. However, in Chapter 2,

auxiliaries have been introduced, e.g., the refrigerated semi-trailer, that are only

allowed to switch on or off, i.e., um,k is constrained to

um,k ∈ {um,k, um,k}, (3.30)

where um,n|k and um,n|k correspond to the power consumption when the auxil-

iary is off and on, respectively. Theoretically, the inputs um,k constrained to an

interval as in (3.1d) can be approximated with (3.30) with an infinite number of

on/off switches. In practice, however, the number of switches per time horizon

is limited and an optimal trade-off exist between the number of switches and the

fuel reduction. To find this trade-off, the LCQP (3.13) can be slightly modified,

i.e.,

gm({µk})= min
{um,k}

∑

k∈K

1
2Hm,ku

2
m,k+Fm,kum,k+Em,k + σ

um,k+1−um|k

um,k+1−um|k
, (3.31)

with Hm,k, Fm,k, Em,k as in (3.13b-d), respectively, and subject to (3.1c), (3.1e)

and (3.30) instead of (3.1d). In (3.31), σ is a penalty parameter that penalizes

the number of switches. Instead of an LCQP, (3.31) is a (non-convex) mixed in-

teger quadratic program (MIQP). Different solution methods exist for solving a

MIQP, see, e.g., [45]. In this thesis, we will use the generic dynamic programming

tool from [113] for simplicity, although faster solution methods might exist. Note

that convergence of the dual decomposition is not guaranteed anymore. Still, the

dual decomposition allowed the optimal control problem to be decomposed in

(strictly) convex optimization problems and non-convex optimization problems.

By updating the decisions of the non-convex optimization problems only at spe-

cific iterations in the maximization of the Lagrange dual function (3.9), the dual

decomposition converges to a close to optimal solution as will be demonstrated

with a numerical example in Section 3.5.
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3.4 Application to the CVEM problem

The distributed optimization approach presented in the previous sections will be

used to find the optimal solution for energy management of the vehicle model

introduced in Chapter 2. The vehicle topology (see Figure 2.1) includes an in-

ternal combustion engine (ICE), an electric machine, a high-voltage battery, a

refrigerated semi-trailer, an air supply system, an alternator, a DCDC converter,

a low-voltage battery and a climate control system (CCS). To find the optimal

solution with the distributed optimization approach, we need to make a discrete-

time model approximation of the models presented in Chapter 2 and redefine the

objective function.

3.4.1 Discrete-Time Model Approximation

We assume that the input power um(t) and output power ym(t) for all m ∈ M

is constant over the time interval t ∈ [kτ, (k + 1)τ) for all k ∈ K with τ being

the sample time. Then, the input-output behavior for each of the subsystems

in the vehicle, as given in Chapter 2, can indeed be described by the quadratic

function (3.1b) where the efficiency coefficients are either constant, i.e.,

qm,k = qm, fm,k = fm, em,k = em, (3.32)

for m ∈ {dc,br,hvb, lvb, rst, as} as given in Chapter 2 or depend on speed, i.e.,

qm,k = qm(ωk), fm,k = fm(ωk), em,k = em(ωk), (3.33)

for m ∈ {ice, em, alt, ccs} where qm(ωk), fm(ωk) and em(ωk) are functions pa-

rameterizing the efficiency coefficients as function of the piece-wise constant

drive line speed ωk as given in Chapter 2. Note that we have replaced the

set M = {1, . . . ,M} in the general optimization problem (3.1) by the set M =

{ice, em,hvb, rst, as, ccs,dc, lvb, alt,br}, to better indicate the physical origin of

the power flows.

Similarly, the input power of the subsystems are bounded by (3.1d) where the

upper and lower bounds are either constant, i.e.,

um,k = um, um,k = um, (3.34)
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for m ∈ {dc,br,hvb, lvb, rst, as} as given in Chapter 2 or depend on speed, i.e.,

um,k = um(ωk), um,k = um(ωk), (3.35)

for m ∈ {ice, em, alt, ccs} where um(ωk) and um(ωk) are functions parameteriz-

ing the lower and upper bound as function of the piece-wise constant drive line

speed ωk.

The dynamics of the high- and low-voltage battery, the refrigerated semi-

trailer, the air supply system and the climate control system can be repre-

sented by (3.1c) by making a forward Euler approximation of (2.6c) for m ∈

{hvb, lvb, rst, as, ccs}. In particular, the dynamics of the high- and low-voltage

battery can be represented by (3.1c) for m ∈ {hvb, lvb} with Am = 1, Bm,w = 0

and Bm,u = −τ with τ being the sample time, the dynamics of the refrigerated

semi-trailer can be represented by (3.1c) for m ∈ {rst} with Arst = 1 − τh
Crst

,

Brst,w = 0 and Brst,u = −τ , the dynamics of the air supply system can be rep-

resented by (3.1c) for m ∈ {as} with Aas = 1, Bas,w = −τ , Bas,u = τ and wrst,k

is the power, i.e, RToutṁout

γ−1 released to the environment at time instant k, and

finally the dynamics of the climate control system can be represented by (3.1c)

for m ∈ {ccs} with

Accs =

[

1− τhi

Cr

τhi

Cw

τhi

Cr
1− τ(hi+ho)

Cw

]

, Bccs,w =

[

0

−τ

]

, Bccs,u =

[

−τ

0

]

, (3.36)

and wrst,k is the latent heat Ql,k at time instant k. A quasi-static approach is

generally sufficient for energy management (see, e.g., [40]) such that the sample

time is chosen to be 1 second, i.e., τ = 1, which is smaller than the time constants

of the dynamics in the subsystems.

Finally, the three exogenous load signals in the topology are assumed to be

piece-wise constant as well, i.e., vk = [v1,k v2,k v3,k]
T ∈ R

3, which are the power

required to drive a certain drive cycle, the power required for uncontrolled high-

voltage auxiliaries and the power required for uncontrolled low-voltage auxiliaries,

respectively. These three signals are assumed to be known for every time instant

k ∈ K. Furthermore, we assume that the gearshift strategy is fixed such that the

rotational velocity of the drive line ωk is known (and constant) for every time

instant k ∈ K. The nodes in the topology where power is aggregated described
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by (2.5) is given in discrete-time by

v1,k − ybr,k − yice,k + uem,k + ualt,k − yccs,k = 0, (3.37a)

v2,k − yem,k − yhvb,k − yrst,k − yas,k + udc,k = 0, (3.37b)

v3,k − yalt,k − ylvb,k − ydc,k = 0, (3.37c)

for every time instant k ∈ K, which we can write in the form of (3.1f) with

Aice = [0 0 0 ]T , Bice = [−1 0 0 ]T , (3.38a)

Aem = [1 0 0 ]T , Bem = [ 0 −1 0 ]T , (3.38b)

Aalt = [1 0 0 ]T , Balt = [ 0 0 −1]T , (3.38c)

Adc = [0 1 0 ]T , Bdc = [ 0 0 −1]T , (3.38d)

Abr = [0 0 0 ]T , Bbr = [−1 0 0 ]T , (3.38e)

Ahvb = [0 0 0 ]T , Bhvb = [ 0 −1 0 ]T , (3.38f)

Alvb = [0 0 0 ]T , Blvb = [ 0 0 −1]T , (3.38g)

Arst = [0 0 0 ]T , Brst = [ 0 −1 0 ]T , (3.38h)

Aas = [0 0 0 ]T , Bas = [ 0 −1 0 ]T , (3.38i)

Accs = [0 0 0 ]T , Bccs = [−1 0 0 ]T . (3.38j)

3.4.2 Objective Function

The objective in energy management is to minimize the fuel consumption, which

is equivalent to minimizing the equivalent fuel energy, i.e.,

min
{uice,k}

∑

k∈K

τuice,k (3.39)

where the equivalent fuel power is given by uice,k = H0ṁf,k with H0 the lower

heating value of the fuel and ṁf,k the fuel consumption rate at sample k. This

objective function is only defined in variables related to the internal combustion

engine. However, we can obtain an objective function that is defined in variables

related to every subsystem in the network, i.e., in the form of (3.1a), which

is equivalent to (3.39) for a specific cm and dm. In particular, this holds if

we choose cm and dm for every subsystem such that
∑

k∈K cmum,k − dmym,k
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represents the energy losses in the subsystem. The energy losses in each converter

are given by the energy flowing into the converter minus the energy flowing

out of the converter where the energy flowing into the converter is indicated

with the arrow in Figure 2.1. According to this topology, the energy losses in

the internal combustion engine, the electric motor, the alternator, the DCDC

converter, the high-voltage battery and the low-voltage battery are given by the

difference between the input and output power, i.e.,

cm = τ, dm = τ, (3.40a)

for m ∈ {ice, em, alt,dc,hvb, lvb}. For the refrigerated semi-trailer, the air supply

system, the climate control system and the mechanical brakes, all energy flowing

into the subsystem is eventually lost and therefore the energy losses are given for

cm = 0, dm = τ, (3.40b)

for m ∈ {rst, as, ccs,br}. By substituting (3.40) into (3.1a), we obtain

min
{um,k,ym,k}

∑

m∈M

∑

k∈K

cmum,k − dmym,k =

min
{um,k,ym,k}

τ
(

uice,k − yice,k + uem,k+ualt,k−yccs,k−ybr,k−yem,k−yhvb,k

−yrst,k−yas,k+udc,k−yalt,k−ylvb,k−ydc,k+uhvb,k+ulvb,k
)

. (3.41a)

By using the power balance constraints (3.37), we can reduce this minimization

problem to the equivalent problem

min
{uice,k,uhvb,k,ulvb,k}

∑

k∈K

τuice,k − τ (v1,k + v2,k + v3,k) + τ(uhvb,k + ulvb,k). (3.41b)

Moreover, as explained in Chapter 2, the high-voltage battery and low-voltage

battery satisfy integrator dynamics so that we can write
∑

k∈K τum,k = xm,0 −

xm,K for m ∈ {hvb, lvb} and further reduce the minimization problem (3.41b) to

min
{uice,k}

∑

k∈K

τuice,k − τ (v1,k + v2,k + v3,k) + xhvb,0 − xhvb,K + xlvb,0 − xlvb,K .

(3.41c)
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As the load signals are known for all k ∈ K and the initial and final states xm,0

and xm,K for m ∈ {hvb, lvb} are fixed, the optimal value for uice,k for (3.41c)

is equivalent to the optimal value uice,k for (3.39) for all k ∈ K. Hence, the

optimal control problem (3.1) with objective function (3.1a) and cm and dm

given by (3.40) provides the optimal solution for which the fuel consumption is

minimized over all k ∈ K as is indicated in (3.39).

The CVEM problem for a vehicle with an internal combustion engine, an elec-

tric machine, a high-voltage battery, a refrigerated semi-trailer, an air supply

system, an alternator, a DCDC converter, a low-voltage battery and a climate

control system is now fully described by the optimal control problem defined in

Section 3.2. In particular, the topology of the vehicle is described through (3.1f)

for a given Am and Bm, the objective function, i.e., minimizing fuel consumption,

is described by (3.1a) by choosing cm and dm appropriately and the behavior of

each subsystem is fully described by (3.1b) - (3.1e) by choosing the efficiency co-

efficients qm,k, fm,k and em,k, the state-space matrices Am, Bm,u, Bm,w describing

the dynamics of the subsystems, the lower and upper bound on the inputs um,k

and um,k, respectively, and the lower and upper bounds on the states xm,k and

xm,k, respectively. This allows the CVEM problem to be solved with the solution

methods proposed in Section 3.2 and Section 3.3 as will be demonstrated in the

next section.

3.5 Simulation Results

In this section, we will demonstrate the distributed optimization approach to

complete vehicle energy management (CVEM) by using a simulation study. First,

we will give the exogenous signals that we used for the simulation study followed

by the results that will be discussed in three subsections. In the first subsection,

we will analyze the computational performance and compare it with the state-

of-the art solver CPLEX [45]. In the second subsection, we will discuss the

optimal power flows and state trajectories and, in the last subsection, the fuel

consumption reduction for CVEM will be discussed.
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Figure 3.3: Pan European driving cycle.

3.5.1 Exogenous Inputs

The driving cycle is commonly described by a velocity profile over time. If the

gear shift strategy is assumed to be known, the velocity profile can be converted

to a power required at the wheels and the engine speed. This set of data is derived

for a pan European driving cycle and shown in Figure 3.3. The brake power can

reach up to -1000 kW. However, only a small part of the total braking power

can be recovered by the subsystems. Therefore, the power request used as load

signal v1,k is limited to the maximum braking power that can be recovered with

all subsystems combined. Furthermore, the uncontrolled high-voltage auxiliaries

are assumed to be absent such that v2,k = 0 kW for all k ∈ K and the power

required from uncontrolled low-voltage auxiliaries is assumed to be constant, i.e.,

v3,k = 1.5 kW for all k ∈ K.

3.5.2 Computational Performance

The local optimization problem related to each component defined in (3.13a) can

be solved via different solution methods introduced in Section 3.3. In partic-
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Table 3.1: Computation time in seconds for ADMM method with different inter-
val lengths.

K = 1000 K = 5000

Subsystem Kℓ −Kℓ−1 min av max min av max

HVB

25 0.09 1.40 4.38 2.6 12.3 23.7

50 0.08 0.69 2.04 1.7 6.15 11.7

100 0.14 0.69 1.97 2.46 6.62 11.4

200 0.16 0.41 0.99 0.93 3.94 7.6

500 0.71 1.73 5.0 4.64 28.0 14.5

RST

25 0.09 1.16 3.7 0.45 6.3 19.8

50 0.09 0.72 1.94 0.46 4.3 18.3

100 0.17 0.71 1.54 0.93 5.79 24.3

AS

25 0.09 1.04 8.7 0.42 10.34 46.8

50 0.09 1.07 8.4 0.40 5.35 41.8

100 0.15 0.6 7.5 0.74 5.81 62.9

200 0.18 0.44 4.5 0.85 3.78 36.8

500 0.99 1.78 5.8 4.5 11.18 87.5

CCS

25 0.1 0.32 1.8 0.49 2.37 20.45

50 0.1 0.28 1.54 0.5 1.85 12.7

100 0.12 0.33 1.91 0.61 1.88 12.2

200 0.14 0.39 2.35 0.7 2.13 13.7

ular, the performance of the ADMM solution method depends on the penalty

parameter R in (3.19) and the interval length Kℓ − Kℓ−1 for ℓ ∈ L. For sim-

plicity, we assume that the interval length is equal for all intervals ℓ ∈ L. The

maximum, average and minimum time to compute the solution of the local op-

timization problem (3.13a) are given in Table 3.1 for the high-voltage battery

(HVB), the refrigerated semi-trailer (RST), the air supply system (AS) and the

climate control system (CCS) for different values of Kℓ −Kℓ−1 and two horizon

lengths K. The value of the penalty parameter R in (3.19) is manually tuned for

each Kℓ −Kℓ−1, but is kept constant for different lengths K of the drive cycle.

The computation time required to solve the optimization problem strongly

depends on the amount of iterations over t in (3.19), required for the ADMM

method to converge, which depends on the initial guess of the dual variables. We

use the dual variables from the previous iteration s in the dual decomposition,
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Table 3.2: Average computation time in seconds per component, per dual decom-
position iteration.

Subsystem
Solution K

method 1000 2000 3000 4000 5000

HVB

QP 2.81 23.0 93.0 253.8 527.6

ADMM 0.41 1.22 2.37 3.32 3.94

LM 2.5e-04 0.066 0.063 0.07 0.09

RST

QP 3.93 29.4 118.4 291.1 562.3

ADMM 0.72 1.38 1.94 2.60 4.3

LM 0.045 0.21 0.38 0.74 1.29

AS

QP 4.98 33.9 130.7 366.3 602.6

ADMM 0.44 0.59 1.15 3.09 3.78

LM 0.012 0.034 0.046 0.071 0.061

CCS
QP 3.50 40.2 89.6 136.9 159

ADMM 0.28 0.7 0.93 1.23 1.85

see (3.9), as an initial guess and therefore the amount of ADMM iterations reduces

as the dual decomposition converges. As a consequence, the maximum time is

significantly larger than the minimum time. The main conclusion drawn from

this table is that the optimal Kℓ −Kℓ−1 differs per component and it should be

chosen neither too small nor too large. Moreover, the optimal Kℓ − Kℓ−1 does

not seem to depend on K. For example, the high-voltage battery has the highest

performance for Kℓ − Kℓ−1 = 200, which is the optimal trade-off between the

size and number of QPs.

With the results of Table 3.1, we choose Kℓ −Kℓ−1 = 200 for the high-voltage

battery, Kℓ −Kℓ−1 = 50 for the refrigerated semi-trailer, Kℓ − Kℓ−1 = 200 for

the air supply system and Kℓ −Kℓ−1 = 50 for the climate control system. These

results are compared with other solution methods in Table 3.2. This table shows

the average computation time to solve the local optimization problem (3.13a)

over all iterations s in the dual decomposition. Here, QP indicates the com-

putation time for solving the local optimization problem (3.13a) with the QP

solver CPLEX [45] directly, ADMM corresponds with Section 3.3.1 and LM cor-

responds with the Lagrangian Method introduced in Section 3.3.2. This table

shows that ADMM offers a large improvement compared to QP, especially for
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Table 3.3: Case studies with problem size defined in number of inputs, states and
quadratic constraints.

Case Description Inputs States
Quadratic

constraints

Case 1 Truck with ICE, EM and a HVB 4K K K

Case 2 Case 1 with a RST 5K 2K K

Case 3 Case 2 with an AS 6K 3K K

Case 4 Case 3 with a CCS 7K 5K 2K

Case 5 Case 4 with an ALT and a LVB 9K 6K 3K

Case 6 Case 5 with a DCDC converter 10K 6K 3K

large horizons K. The LM method (with relaxation parameter γ = 1) reduces the

computation time even further and depends on the number of intervals L required

for the LM method. For K = 3000, the amount of intervals are 2, 6 and 53 for

the high-voltage battery, the air supply system and the refrigerated semi-trailer,

respectively. Note that this method cannot be used for the climate control system

as this method is only suitable for scalar-state systems, i.e., xm,k ∈ R. Due to the

absence of state constraints, the optimization problem for the internal combus-

tion engine, electric machine, alternator, DCDC converter and mechanical brakes

can be solved explicitly and are not shown in the table. Since the dynamics of

the low-voltage battery are similar to the dynamics of the high-voltage battery,

we conjecture that LM is also best for the low-voltage battery.

To assess the computational performance of solving the energy management

problem for different vehicle configurations, we define six case studies with in-

creasing complexity. These case studies are introduced in Table 3.3. To demon-

strate that the conditions in Theorem 3.2.1 hold, we show in Table 3.4 the mini-

mum value of the dual variables mink∈Kmins{µ
s
i,k}, where µs

i,k denotes the i-th

element of the vector µs
k at time k ∈ K and iteration s, i.e., µs

k = [µs
1,kµ

s
2,kµ

s
3,k]

T ∈

R
3. Note that with Bm = −1 for all m ∈ M and dm = τ for all m ∈ M, the

condition in Theorem 3.2.1 is satisfied if and only if µs
i,k > −τ for all k ∈ K,

i ∈ {1, 2, 3} and s, which is always satisfied as shown in Table 3.4 for τ = 1.

Theorem 3.2.1 is satisfied for all simulations and is not further demonstrated in

this section. Moreover, this table also shows the reduced iterations of the dual

Newton update strategy compared with an update strategy with fixed step sizes,
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Table 3.4: Number of iterations and minimum of the dual variables over all
iterations for K = 5000.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

iter. (αk
s constant) 105 122 119 228 221 384

iter. (Newton) 26 30 31 131 134 117

mink∈Kmins{µ
s
1,k} 0.416 0.430 0.431 −0.03 −0.03 −0.03

mink∈Kmins{µs
2,k} 0.621 0.622 0.626 0.616 0.623 0.612

mink∈Kmins{µ
s
3,k} N.A. N.A. N.A. N.A. 0.522 0.628

i.e., with αs
k being a constant. The Newton strategy always converged, which

implies that the derivatives in (3.12) are sufficiently well approximated.

The computation times are given in Table 3.5 for each configuration. For these

simulations, the optimal control problems related to each subsystem are solved

in series, which is more straightforward to implement and, moreover, this results

already in sufficient computational benefits for offline energy management. The

computation time of the Distributed Optimization (DO) method introduced in

this chapter are compared with the computation time of the QCQP solver CPLEX

[45]. The CPLEX solver cannot handle quadratic constraints written in vector

format and every quadratic constraint needs to be programmed separately. This

requires a large amount of assembly time, which is not used for solving the actual

optimization problem. Therefore, the computation times of CPLEX with and

without assembling the optimization problem are given. If we compare only the

time required to solve the optimization problem, DO is still 1825 times faster for

Case 1 with K = 5000 and 64 times faster for Case 6 with K = 3000. Scalability

of DO in the horizon length K is superior compared with CPLEX. Scalability in

the number of components is not always better with DO, but only in the rare

case with small K and many more components, CPLEX could be better than

DO. The flexibility of adding and removing components with CPLEX remains

poor though.

3.5.3 Optimal Input and State Trajectories

The optimal power flows as function of time are shown in Figure 3.4 for the

complete vehicle and with a drive cycle length of only K = 3000 for clarity.

Both, the results from DO, as well as the results from solving the optimization
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Table 3.5: Computation times of DO and CPLEX in seconds.

Case
Solution K

method 1000 2000 3000 4000 5000

Case 1

CPLEX1 8.1 80 300 727 1259

CPLEX2 46 389 1405 3403 6509

DO 0.035 0.24 0.21 0.74 0.69

Case 2

CPLEX1 20.3 369 1186 2355 6464

CPLEX2 90 924 3085 6946 15422

DO 0.14 0.99 1.19 1.96 3.25

Case 3

CPLEX1 45 334 2014 6650 > 104

CPLEX2 146 1177 4863 13528 > 104

DO 0.34 1.72 1.69 2.74 7.0

Case 4

CPLEX1 71 454 3112 > 104 > 104

CPLEX2 357 2721 10770 > 104 > 104

DO 4.35 10.5 18.6 24.2 40.1

Case 5

CPLEX1 76 958 2834 > 103 > 103

CPLEX2 791 6835 22213 ≫ 104 ≫ 104

DO 9.6 23.1 43.8 60.9 120.3

Case 6

CPLEX1 79 965 3285 > 104 > 104

CPLEX2 1003 8304 28202 ≫ 104 ≫ 104

DO 11.3 31.5 51.4 73.2 150.7
1 Computation times without assembly time
2 Computation times with assembly time

problem with CPLEX are shown. This figure demonstrates that both methods

converge to the same solution (within a desired tolerance). Moreover, the fuel

consumption of DO is 0.019 % smaller compared with CPLEX, which is negligible.

Two important observations can be made from this figure, i) all auxiliaries are

used to store (brake) energy and ii) the DCDC converter is generally used to

supply the low-voltage auxiliaries, except when free brake energy is available, then

the alternator supplies the low-voltage auxiliaries and charges the low-voltage

battery. The first observation can also be seen from the state trajectories given

in Figure 3.5 where x̃hvb = xhvb

Ehvb
is the high-voltage battery energy normalized

with respect to the maximum battery capacity Ehvb, x̃lvb =
xlvb

Elvb
is the low-voltage
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Figure 3.4: Optimal power flows (in kW) for DO and CPLEX.

battery energy normalized with respect to the maximum battery capacity Elvb,

Trst is the air temperature in the refrigerated trailer, pas is the air pressure in the

air supply system and Tccs is the wall temperature in the climate control system.

This figure shows that all state constraints are met, where for the climate control

system, only the constraint on the wall temperature is shown. The optimal state

trajectories over the full pan European driving cycle are given in Appendix A,

which requires solving the CVEM problem with over 500.000 input constraints,

300.000 state constraints and 150.000 quadratic constraints.
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Figure 3.5: Optimal state trajectories for distributed optimization.

3.5.4 Fuel Consumption Reduction

To analyze the fuel consumption for different parts of the complete drive cy-

cle, the drive cycle is split into three parts. The first part is given by k ∈

{0, . . . , 19999}, the second part by k ∈ {20000, . . . , 39999} and the third part by

k ∈ {40000, . . . , 55579}. The fuel consumption reduction for each of the cases

and for each of these drive cycles are given in Table 5.1. For the first case, the

baseline is a non-hybrid truck with the air temperature in the refrigerated semi-

trailer kept at its upper bound, the air pressure in the air supply system kept

at its lower bound and the temperature in the climate control system kept at its

upper bound. For the next cases, the baseline is the previous case to emphasize

the potential of each auxiliary. Results are shown without aging constraints on

the high-voltage battery, as presented in [99], and results with aging constraints.

The results with aging constraints are obtained with the method presented in

[55]. This method applies the same dual decomposition, but the optimal con-
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Table 3.6: Fuel reduction results.

Case
Without battery aging With battery aging

Part 1 Part 2 Part 3 Full Part 1 Part 2 Part 3 Full

1 6.00% 10.93% 2.33% 6.64% 5.35% 9.77% 2.02% 5.91%

2 0.08% 0.12% 0.03% 0.07% 0.32% 0.57% 0.13% 0.35%

3 0.02% 0.03% 0.01% 0.02% 0.10% 0.12% 0.04% 0.09%

4 0.01% 0.04% 0.02% 0.03% 0.01% 0.04% 0.02% 0.03%

5 0.07% 0.11% 0.02% 0.06% 0.07% 0.15% 0.03% 0.08%

6 0.34% 0.32% 0.25% 0.34% 0.40% 0.44% 0.38% 0.41%

trol problem related to the high-voltage battery system is solved as a sequential

quadratic program to satisfy the aging constraint. The aging constraint penalizes

the use of the high-voltage battery, which is more realistic, and causes a drop

in fuel reduction compared to an unrestricted high-voltage battery. The CVEM

strategy recognizes this and stores more energy in the buffers of the auxiliaries,

thereby recovering some of the lost fuel reduction. Overall, the DCDC converter

(Case 6) is the most potential auxiliary for reducing fuel with 0.41 %. Over-

all, the fuel reduction obtained with smart control of all auxiliaries, i.e., Case 6

compared with Case 1, is 0.52 % without taking into account battery aging and

0.96 % by taking into account battery aging.

3.5.5 Optimal trade-off between number of switches and fuel

reduction

The current trend in automotive applications is to electrify the auxiliaries in

the vehicle, which do allow for continuous control (see, e.g., [95]). Still, the

refrigerated semi-trailer, the air supply system and the climate control system

are often attached to the engine via a clutch and, therefore, can only be switched

on or off. Therefore, the optimal control problem related to the refrigerated semi-

trailer, the air supply system and the climate control system is also solved with

the dynamic programming solution method presented in Section 3.3.3.

The amount of switches is controlled with the penalty parameter σ. These

on/off decision variables are not convex so that the dual decomposition is not

guaranteed to converge. Still, the optimal control problem related to the on/off
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Figure 3.6: Convergence of the dual value for the convex optimal control problem
and the non-convex optimal control problem.

controlled subsystem is only solved every n-th iteration. This allows the algo-

rithm to converge for the remaining n−1 iterations while the non-convex decisions

are fixed. This is demonstrated in Figure 3.6 for n = 5. In this figure, the dual

value d defined by (3.4) as function of the dual iterations is given for the convex

optimal control problem and non-convex optimal control problem with on/off

decisions. Although, the global optimal solution is not guaranteed and choosing

n can be difficult, the solution seems to give a good approximation of the global

optimal solution. Moreover, solving the CVEM problem with many on/off aux-

iliaries is still efficient as the optimal control problem associated with the on/off

subsystems is only solved at a limited number of iterations.

This solution method for on/off control allows us to solve the CVEM problem

with different switching penalties for the refrigerated-semitrailer, the air supply

system and the climate control system. The results are shown in Figure 3.8 for

Part 1 and Part 2 of the pan European driving cycle and where battery aging is

taken into account. For each of the auxiliaries and each part of the driving cycle,

two hatched regions are shown, i.e., an infeasible region and a default region.

The boundary of the infeasible region is given by the optimal trade-off between

the number of switches and the fuel reduction and obtained with the method

presented in this chapter.

Furthermore, the default controller turns on the auxiliary when the lower en-
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Figure 3.7: Default control of a subsystem that can only be turned on or off for
two different lower bounds.

ergy limit is violated and turns the auxiliary off when the upper energy limit is

violated, which is illustrated in Figure 3.7. For these auxiliaries, it holds that

the more energy is stored, the higher is the rate of energy dissipation to the envi-

ronment. To show this, let us consider for example the refrigerated semi-trailer

where a larger difference between the air temperature inside and the ambient

temperature leads to a larger energy dissipation. By decreasing the upper energy

limit, the number of switches with default control will increase, but also the en-

ergy dissipation decreases leading to a fuel reduction. This trade-off defines the

boundary of the default region. A proper real-time energy management strat-

egy operates preferably close to the infeasible region, but definitely not in the

default region. This can be rather challenging for the climate control system as

the default region is close to the infeasible region leaving a very narrow band for

real-time control.

The fuel reduction obtained with continuous control is given at the average

switching time of 0 seconds, i.e., with infinite switching. For the climate control

system, this leads to a jump, which is a result of the 1 second sample time that

is used to solve the optimal control problem. This leads to a minimum average

switching time of 5 seconds. Another observation from these results is that the

fuel reduction shown in Figure 3.8 with continuous control for the refrigerated

semi-trailer, the air supply system and the climate control system is much larger

than the fuel reduction given in Table 5.1. This is a result of a different default

control strategy, i.e., the default control strategy used for Table 5.1 is a continuous

control strategy that keeps the energy in the subsystem at the upper bound. By
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comparing the smart continuous control strategy to the default switched control

strategy, a fuel reduction of 1.42 % can be obtained instead of 0.96 %.

Obtaining a fuel reduction by smart control of some auxiliaries, e.g., the cli-

mate control system, can be challenging and integration of those auxiliaries into

the energy management strategy might not outweigh the additional cost and

complexity. However, the main result of the distributed optimization approach

presented in this chapter is that the energy management problem is decomposed

into smaller energy management problems related to each subsystem. Each of

the energy management problems on subsystem level is much easier to solve and

can be solved with different algorithms, e.g., an ADMM method, Lagrangian

method or even dynamic programming. Extensions to more sophisticated mod-

els will also be easier. A very interesting example is the extension to higher-order

battery models and battery aging in [55] where only the smaller energy manage-

ment problem related to the high-voltage battery had to be modified. Finally,

developing optimal control algorithms for different subsystems can be done in

parallel, e.g., thermal management of the internal combustion engine can be

included in the internal combustion engine optimization problem, while at the

same time thermal management of the high-voltage battery can be included in

the high-voltage battery optimization problem.
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(a) Refrigerated semi-trailer, part 1
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0 100 200 300 400 500 600
0

0.05

0.1

0.15

 

 

F
u
el

re
d
u
ct

io
n

[%
]

Average switching time [s/switch]

Infeasible

Default

Real-time Control

(c) Air supply system, part 1

0 100 200 300 400 500 600
0

0.05

0.1

0.15

 

 

F
u
el

re
d
u
ct

io
n

[%
]

Average switching time [s/switch]

Infeasible

Default

Real-time Control

(d) Air supply system, part 2

0 5 10 15 20
0

0.05

0.1

0.15

0.2

F
u
el

re
d
u
ct

io
n

[%
]

Average switching time [s/switch]

Infeasible

Default

Real-time Control

(e) Climate control system, part 1

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

F
u
el

re
d
u
ct

io
n

[%
]

Average switching time [s/switch]

Infeasible

Default

Real-time Control

(f) Climate control system, part 2

Figure 3.8: Fuel reduction potential for smart on/off control of the refrigerated
semi-trailer, the air supply system and the climate control system.
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3.6 Conclusions and Discussion

In this chapter, a distributed optimization approach has been proposed to solve

the complete vehicle energy management problem of a hybrid truck with auxil-

iaries. Conclusions will be drawn and a discussion on the results will be given in

this section.

3.6.1 Conclusions

The approach presented in this chapter applies first a dual decomposition to the

optimal control problem such that the problem related to each subsystem can

be solved separately. Then, either an ADMM method, a Lagrangian Method or

a solution method based on dynamic programming has been used to efficiently

solve the optimal control problem for every subsystem in the vehicle. The pro-

posed approach has been demonstrated by solving the complete vehicle energy

management problem of a hybrid truck with a refrigerated semi-trailer, an air

supply system, an alternator, a DCDC converter, a low-voltage battery and a cli-

mate control system. Simulation results have shown that the computation time

is reduced by a factor of 64 up to 1825, compared to solving the problem with the

CPLEX solver, depending on the vehicle configuration and driving conditions.

The fuel consumption can be reduced up to 1.42 % by including auxiliaries in

the energy management problem. This requires however, that the auxiliaries are

continuous controlled or that the number of switches is unbounded.

3.6.2 Discussion

The distributed optimization approach presented in this chapter recovers the

global optimal solution by solving the CVEM offline. This requires that all dis-

turbances are known on forehand, e.g., the driving cycle. As disturbances are

never exactly known, the solution cannot be implemented in real-time and more-

over, the computational complexity is still too high for real-time control. Rule-

based strategies have a low computational complexity and have been proposed in

literature for control of the hybrid electric system [17, 42, 47, 122]. These rules

can be derived from the optimal offline solution, e.g., from the optimal output

powers as function of the power request v1 at the wheels, which is given in Fig-

ure 3.9 for the electric motor output power and for the (continuous) refrigerated
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Figure 3.9: Optimal output power versus power request.

semi-trailer output power. This figure shows that the relation between power

request and the electric motor power is better defined than the relation between

the power request and the refrigerated semi-trailer power. Finding a rule-based

strategy for the refrigerated semi-trailer (and the other auxiliaries) is therefore

not straightforward.

More advanced strategies based on optimal control can lead to close to opti-

mal decisions, but are often restricted by their computational complexity. Still,

the approach presented in this chapter can be modified to be used for real-time

control. To do so, the optimal control problem needs to be defined over a shorter

(receding) horizon. After dual decomposition, this results in small Linearly Con-

strained Quadratic Programs (LCQP) for each of the subsystems, which can be

solved in real-time with embedded LCQP solvers. The optimal control problem

is then solved at each time instant k after which only the decisions at the first

time instant are implemented. The so-called distributed model predictive control

approach will be presented in the next chapter for real-time CVEM.
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4
Distributed Economic MPC for Online

Energy Management

Abstract - In this chapter, a real-time distributed economic model predictive control approach

to Complete Vehicle Energy Management (CVEM) is presented using a receding control horizon

in combination with a dual decomposition. The dual decomposition allows the CVEM optimiza-

tion problem to be solved by solving several smaller optimization problems. The receding hori-

zon control problem is formulated with variable sample intervals, allowing for large prediction

horizons with only a limited number of decision variables and constraints in the optimization

problem. Furthermore, a novel on/off control concept for control of the refrigerated semi-trailer,

the air supply system and the climate control system is introduced. Simulation results on a low-

fidelity vehicle model show that close to optimal fuel reduction performance can be achieved. The

fuel reduction for the on/off controlled subsystems strongly depends on the number of switches

allowed. By allowing up to 15 times more switches, a fuel reduction of 1.3 % can be achieved.
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4.1 Introduction

The previous chapter provides an offline solution strategy to solve the Complete

Vehicle Energy Management (CVEM) problem. The offline solution strategy re-

quires all disturbances to be known (e.g., the driving cycle) so that the global

optimal solution can be computed. This solution strategy cannot be used in

real-time as these disturbances are generally not known. Still, it does provide a

benchmark for online solution strategies and is therefore a valuable tool. Exam-

ples of online solution strategies that are real-time implementable are rule-based

strategies (see, e.g., [17, 42]), equivalent consumption minimization strategies

(ECMS, see, e.g., [107, 88, 89]) and solution strategies based on model predictive

control (MPC, see, e.g., [3, 53, 84]).

The MPC strategies are interesting as they naturally take into account predic-

tion information. The prediction information can be stochastic as in [25, 129] or

deterministic as in [3, 53, 84, 104, 7, 116]. The deterministic MPC strategies ei-

ther predict the future power demand as a function of the current power demand,

e.g., the power demand is exponentially decaying, as in [104, 7] or held constant

as in [116], or the future power demand is predicted with a vehicle model and

road preview information, as in [3] or it is assumed that the future power de-

mand is exactly known, as in [53, 84]. The choice of the cost function also leads

to many variations in MPC strategies. The cost function generally weights the

fuel consumption, with or without additional terms penalizing the final state, the

state deviations and the size of the control inputs, which leads to many penalizing

parameters.

While the aforementioned online solution strategies might be able to handle

the complexity of the CVEM problem, the flexibility of these strategies is poor.

Rule-based strategies require a new set of rules for every subsystem that is added

to the CVEM problem, ECMS requires tuning of an equivalence factor for each

additional state in the CVEM problem and MPC requires reformulating the op-

timal control problem, the cost function and tuning of the penalizing parameters

each time a subsystem is added.

To enhance the flexibility of the online energy management strategy, a dis-

tributed solution strategy can be taken. In [11], an online game-theoretic ap-

proach to CVEM is presented, but prediction information is not taken into ac-
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count. In [81], an online game-theoretic approach in combination with MPC

is presented, which does utilize prediction information, but requires solving a

nonlinear program. In [83], flexibility is obtained by using the Alternating Di-

rection Method of Multipliers (ADMM), while ideas based on ECMS are used

to calculate the equivalent costs at a supervisory level. While each of these so-

lution strategies is interesting and provides a certain degree of flexibility, they

require still a significant amount of tuning while a real-time implementability is

not guaranteed.

In this chapter, which is based on [103, 100], we propose to use distributed eco-

nomic MPC to solve the CVEM problem introduced in Chapter 2. In particular,

we define the optimal control problem as in Chapter 3 over a shorter (receding)

horizon. After applying a dual decomposition, this results in small Linearly Con-

strained Quadratic Programs (LCQP) for each of the subsystems, which can be

efficiently solved in real-time with embedded LCQP solvers. The optimal control

problem is then solved at each time instant k ∈ N over a horizon with length N

after which only the decisions at the time instant k are implemented. The con-

ventional cost function in MPC is generally chosen as a quadratic performance

index, which is a measure of the predicted deviation of the error between the

states and inputs from their corresponding steady-state values, as was done in

the context of energy management in, e.g., [104, 7, 116]. For CVEM, the cost

function follows from the desire to minimize the energy losses in the vehicle.

Therefore, we will adopt the terminology as in [32], which uses economic MPC

as forcing the system to operate around a pre-specified steady-state value is not

necessarily the most efficient.

Choosing the length of the prediction horizon for economic MPC is difficult.

On the one hand, the need for soft final state constraints to be added to the cost

function, as is done in, e.g., [104], can be avoided by taking a long prediction

horizon. On the other hand, the number of decision variables is typically pro-

portional to the length of the prediction horizon, which leads to a preference for

short prediction horizons to allow for real-time implementation. Therefore, we

will use variable prediction time intervals that allows long prediction horizons

with a limited number of decision variables. These were first introduced in [103].

Furthermore, we will incorporate the control concept first introduced in [100]

that allows the control of auxiliaries that can only be turned on or off. This
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concept relaxes the use of binary (on/off) decision variables to continuous deci-

sion variables over the entire horizon, except for the first time instant, where the

decision variable is actually binary. Recall that in MPC this is the only control

input that is actually implemented. This allows the relaxed control problem to

be formulated as the minimization of two solutions to a LCQP, where one LCQP

is solved under the assumption that the first decision being "on" and one LCQP

is solved under the assumption that the first decision being "off". The solution

with the lowest total cost of the two is then the optimal solution.

In this chapter, we will formalize such an optimization strategy. In doing so,

the disturbances over the prediction horizon are assumed to be known exactly and

the solution strategy is evaluated on the low-fidelity vehicle model presented in

Chapter 2. This excludes the influence of faulty prediction information and allows

a thorough analysis of the algorithm. In the next chapter, the solution strategy

will be implemented on a high-fidelity vehicle model and future disturbances are

predicted to truly demonstrate the fuel reduction potential of the algorithm in a

realistic simulation environment.

The outline of this chapter is as follows. The distributed model predictive

control approach is given in Section 4.2. In Section 4.3, the prediction method

for the disturbances is given and the simulation results on the low-fidelity vehicle

model are given in Section 4.4. Some important conclusions will be drawn in

Section 5.5.

4.2 Distributed Economic Model Predictive Control

In this section, we propose to use a distributed economic model predictive con-

trol (DEMPC) approach to efficiently solve the CVEM problem over a receding

horizon. The solution is found by decomposing the optimal control problem with

a dual decomposition, which results in a smaller optimization problem related to

each component, which can be solved efficiently. This section first presents the

receding horizon control problem, then the distributed solution approach followed

by a method to handle on/off-controlled subsystems. Finally, we will discuss the

stability and recursive feasibility properties.
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4.2.1 Receding Horizon Optimal Control Problem

The objective for CVEM is minimizing the cumulative fuel consumption, which is

equivalent to minimizing the cumulative fuel energy given by (2.4). In this chap-

ter, the CVEM is solved in a receding horizon fashion, for which we approximate

the objective function (2.4), at each given time instant k ∈ N by

{uice,n|k}n∈N = argmin
{uice,n|k}n∈N

∑

n∈N

τnuice,n|k (4.1)

with prediction time instant n ∈ N = {0, 1, . . . , N−1} where N is the prediction

horizon length and where the engine input power uice,n|k is constant over the

length of the sample interval τn. In MPC, (4.1) is solved over the horizon N at

each given time instant k ∈ N and only the first decision is implemented, i.e.,

uice,0|k = uice(kτ0) is implemented at time kτ0. At the next time instant k + 1,

this process is repeated and results in uice,0|k+1 = uice((k + 1)τ0) as the imple-

mented control action at time (k + 1)τ0. Note that the objective function (4.1)

is only defined in variables related to the internal combustion engine. However,

in Section 3.4.2, it has been shown that an objective function can be defined in

variables related to every subsystem in the network, i.e., in the form of

{um,n|k, ym,n|k} = argmin
{um,n|k ,ym,n|k}

∑

m∈M

∑

n∈N

cm,num,n|k − dm,nym,n|k, (4.2a)

where um,n|k ∈ R and ym,n|k ∈ R are the inputs and outputs of the converter

in subsystem m ∈ M = {ice, em,hvb, rst, as, ccs,dc, lvb, alt,br}, which are con-

stant over the length of the sample interval τn. In particular, the objective

in (4.2a) is equivalent to (4.1) for dm,n = τn for all m ∈ M, cm,n = τn for

m ∈ {ice, em, alt,dc,hvb, lvb} and cm,n = 0 for m ∈ {rst, as, ccs,br} as was

shown in Section 3.4.2. Note that, in (4.2a) we use the notation {um,n|k, ym,n|k}

to indicate {um,n|k, ym,n|k}m∈M,n∈N . This notation will be used throughout the

chapter for minimizing over a set.

The receding horizon optimal control problem aims at solving (4.2a) at each

time instant k ∈ N subject to a quadratic equality constrained describing the
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input-output behavior of each converter, i.e.,

qm,n|ku
2
m,n|k + fm,n|kum,n|k + em,n|k + ym,n|k = 0, (4.2b)

for m ∈ M and n ∈ N and subject to linear system dynamics of the energy in

the storage device in subsystem m, i.e.,

xm,n+1|k=Am,nxm,n|k+Bw
m,nwm,n|k+Bu

m,num,n|k, (4.2c)

for m ∈ M and n ∈ N and where xm,0|k is the measured current state of the

storage device m, xm,N |k is a desired final state of the storage device m at the end

of the prediction horizon, wm,n|k is a predicted disturbance at every prediction

time instant n ∈ N at time k ∈ N for storage device m and subject to linear

inequality constraints on the inputs of each converter, i.e.,

um,n|k ≤ um,n|k ≤ um,n|k, (4.2d)

for all n ∈ N and m ∈ M and subject to linear inequality constraints on the

states of each storage device, i.e.,

xm,n|k ≤ xm,n|k ≤ xm,n|k, (4.2e)

for all n ∈ N and m ∈ M. Finally, the optimization problem is solved subject

to a linear equality constraint describing the interconnection of the subsystems,

i.e.,

vn|k +
∑

m∈M

Amum,n|k + Bmym,n|k = 0 (4.2f)

for all n ∈ N , where Am ∈ R
L and Bm ∈ R

L are vectors with the ℓ-th element

being −1 if the power flow to the node ℓ is positive, 0 if there is no power flow

to the node ℓ and 1 if the power flow to the node is negative. Here, L is the

number of nodes in the topology where power is aggregated. Indeed, the power

balance constraints in (2.5) are given by (4.2f) for well chosen matrices Am and

Bm. Furthermore, it is assumed that the disturbance v0|k can be measured at

each time instant k ∈ N, while vn|k for n ∈ {0, . . . , N − 1} has to be predicted at

each time instant k ∈ N with the prediction algorithm presented in Section 4.3.
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Figure 4.1: Prediction of xm,n|k = xm(tk + t̂n) at some future time tk + t̂n.

It should be noted that the efficiency coefficients qm,n|k, fm,n|k and em,n|k and

the lower and upper bounds um,n|k and um,n|k, respectively, that depend on

speed, as is the case for the internal combustion engine, the electric machine

and alternator, are obtained by evaluating these coefficients and bounds at the

predicted speed ωn|k for n ∈ N at each time instant k ∈ N. Moreover, the

dynamics of the high- and low-voltage battery, the refrigerated semi-trailer, the

air supply system and the climate control system given in Chapter 2 can all be

formulated as a linear differential equation, i.e.,

d
dt
xm(t) = Ãmxm(t) + B̃m,wwm(t) + B̃m,uum(t), (4.3)

for m ∈ {hvb, lvb, rst, as, ccs}. This differential equation allows us to make a

prediction of xm,n|k = xm(tk + t̂n) at some future time tk + t̂n (see Figure 4.1),

where t̂n =
∑n−1

i=0 τi, given a measurement of the state xm,0|k = xm(tk) at present

time tk and a piecewise constant um, i.e., um(tk+ t) for t ∈ [t̂n, t̂n+1) and n ∈ N .

This prediction is made by making a discrete approximation of (4.3), leading

to (4.2c) with

Am,n= eÃmτn , Bw
m,n= Γm,nB̃

w
m, Bu

m,n= Γm,nB̃
u
m, (4.4)

in which Γm,n =
∫ τn
0 eÃmsds and τn is the sample time used in (4.3).

In [103], we proposed to take variable prediction time intervals τn to allow

for a long prediction horizon using only a limited amount of prediction instants

N . This is necessary to keep the optimal control problem small in the number of

decision variables and real-time solvable. This method is similar to move blocking
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strategies [10] except that it does not only assume that the control inputs over the

prediction time intervals are constant, it also assumes that it is sufficient to only

constrain the dynamics at the beginning and end of each interval through (4.2c).

4.2.2 Distributed Solution using a Dual Decomposition

The optimal control problem (4.2a) subject to (4.2b) - (4.2f) is a quadrati-

cally constrained linear program, which cannot be easily solved using embedded

solvers, e.g., CVXgen [71] or QPoases [34]. We therefore apply ideas from dis-

tributed optimization and will show that this leads to several linearly constrained

quadratic programs (LCQPs). It should be noted that the subsystems in (4.2)

are only connected by (4.2f).

To decompose the problem, we will employ the dual decomposition approach,

as was done in the previous chapter. Using the notation of this chapter, we again

augment the objective function (4.2a) with the complicating constraints (i.e., the

constraints that act on more than one subsystem), which is (4.2f) in this case.

This leads to the following so-called partial Lagrangian:

L({um,n|k, ym,n|k, µn|k}) =
∑

n∈N

µT
n|kvn|k +

∑

m∈M

cm,num,n|k − dm,nym,n|k

+ µT
n|k(Amum,n|k + Bmym,n|k), (4.5)

where µn|k ∈ R
L is a Lagrange multiplier, which is to be solved subject to (4.2b)-

(4.2e). The partial Lagrange dual function is given by

g({µn|k}) = min
{um,n|k ,ym,n|k}

L({um,n|k, ym,n|k, µn|k})

=
∑

n∈N

µT
n|kvn|k +

∑

m∈M

gm({µn|k}), (4.6a)

with

gm({µn|k}) = min
{um,n|k ,ym,n|k}

∑

n∈N

cm,num,n|k − dm,nym,n|k

+ µT
n|k(Amum,n|k + Bmym,n|k), (4.6b)

subject to (4.2b)-(4.2e). Note that each of the Lagrange dual functions (4.6b)
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subject to (4.2b)-(4.2e) is related to one of the subsystems m ∈ M and can be

solved independently. To solve the dual optimization problem, the dual func-

tion (4.6) has to be maximized over µn|k. This can be done using a ‘steepest

ascent’ method by iteratively solving

µs+1
n|k = µs

n|k + αs
k

(

vn|k +
∑

m∈M

Amusm,n|k + Bmysm,n|k

)

, (4.7)

where αs
k is a suitably chosen matrix. It has been shown in Section 3.2.2 that

under very mild and verifiable conditions, the solutions to the dual optimization

problem (4.6) and (4.7) and the primal optimization problem (4.2) are the same.

Each of the Lagrange dual functions (4.6b) related to one of the subsystems

can be solved separately and can be written as an LCQP by substituting (4.2b)

into (4.6b), which gives

gm({µn|k}) = min
{um,n|k}

∑

n∈N

1
2Hm,n|ku

2
m,n|k + Fm,n|kum,n|k + Em,n|k (4.8a)

with

Hm,n|k = (dm,n + BT
mµn|k)qm,n|k, (4.8b)

Fm,n|k = cm,n +AT
mµn|k + (dm,n + BT

mµn|k)fm,n|k (4.8c)

Em,n|k = (dm,n + BT
mµn|k)em,n|k (4.8d)

and subject to (4.2c) - (4.2e). Note that for convexity of (4.8a), it is required

that dm,n + BT
mµn|k > 0 for all k ∈ K, m ∈ M. Under this condition, the

dual decomposition allows solving the quadratically constrained linear program

by solving multiple LCQPs iteratively. These LCQPs can be solved efficiently in

real-time using, e.g., CVXgen [71] or QPoases [34].

The dual decomposition leads to a distributed economic model predictive con-

trol approach for CVEM that can be summarized in the following algorithm

where ǫ > 0 is a well chosen convergence criteria, s ∈ {0, . . . , smax} is the itera-

tion counter and smax is the maximum number of iterations.

Algorithm 4.2.1. Take k = 0 and initialize {µ0
n|0}n∈N

• Measure xm,0|k for all m ∈ M and v0|k and predict vn|k for all n ∈ N
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• repeat until ‖µs+1
n|k − µs

n|k‖ ≤ ǫ for all n ∈ N or s > smax

– Solve (4.8) subject to (4.2c) - (4.2e) for all m ∈ M

– Update the Lagrange dual variables using (4.7) for all n ∈ N

• Implement the first element of the decision variables, i.e., um,0|k for all

m ∈ M.

• Initialize the dual variables at k + 1 with the optimal dual variables at k,

i.e., {µ0
n|k+1}n∈N = {µ∗

n|k}n∈N

• Set k = k + 1

4.2.3 Modified Lagrange Dual Function for On/Off Control

For the optimal control problem presented so far, it has been assumed that the

decision variables um,n|k for all n ∈ N and all m ∈ M are constrained to an inter-

val given by (4.2d). However, for some subsystems m ∈ Mbin ⊂ M introduced

in Chapter 2, the power can only be turned on or off, i.e.,

um,n|k ∈ {um,n|k, um,n|k}, (4.9)

for all n ∈ N and m ∈ Mbin where um,n|k and um,n|k correspond to the power

consumption when the auxiliary is off and on, respectively. The optimal control

problem (4.2) subject to (4.9) instead of (4.2d) for m ∈ Mbin is hard to solve

due to the binary decision variables. To still allow on/off control for some of

the subsystems, we approximate the solution of (4.2) subject to (4.9) instead

of (4.2d) for m ∈ Mbin by a solution for which we only take (4.9) for n = 0 and

take (4.2d) for n > 0, i.e., (4.9) is relaxed to being an element of a continuous

interval for the tail of the horizon. This approximation is justified as only the

first element of the decision variables is actually used as a setpoint for the power

to a subsystem. To do so, we augment (4.8) with a penalty for switching from

on to off and vice versa, i.e.,

gm({µn|k}) = min
{um,n|k}n∈N

∑

n∈N

1
2Hm,n|ku

2
m,n|k + Fm,n|kum,n|k + Em,n|k

+ σ(xm,0|k)‖um,0|k − um,0|k−1‖ (4.10a)
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where the Lagrange dual function for which um,0|k = um,n|k is given by

gm({µn|k}) =

1
2Hm,0|ku

2
m,0|k + Fm,0|kum,0|k + Em,0|k + σ(xm,0|k)‖um,0|k − um,0|k−1‖

+ inf
{um,n|k}n∈N\{0}

∑

n∈N\{0}

1
2Hm,n|ku

2
m,n|k + Fm,n|kum,n|k + Em,n|k (4.10b)

and where the Lagrange dual function for which um,0|k = um,n|k is given by

g
m
({µn|k}) =

1
2Hm,0|ku

2
m,0|k + Fm,0|kum,0|k + Em,0|k + σ(xm,0|k)‖um,0|k − um,0|k−1‖

+ inf
{um,n|k}n∈N\{0}

∑

n∈N\{0}

1
2Hm,n|ku

2
m,n|k + Fm,n|kum,n|k + Em,n|k (4.10c)

with Hm,n|k, Fm,n|k and Em,n|k as defined in (4.8b,4.8c,4.8d), subject to (4.2c) -

(4.2e) and subject to (4.9) instead of (4.2d) for n = 0. In (4.10), um,0|k−1 indicates

whether the subsystem is currently on or off and σ(xm,0|k) is a (state-dependent)

penalty parameter. This penalty parameter is used to achieve a desired switching

frequency.

The optimization problem (4.10) can now be solved by solving the two LCQPs

(4.10b) and (4.10c) and the optimal decision at the first time instant (n = 0) is

given by

um,0|k =







um,0|k if g
m

≤ gm

um,0|k if gm ≤ g
m
.

(4.11)

It is this control action that is implemented at time instant k ∈ N for this

subsystem m ∈ Mbin. It has to be noted that the optimal control problem (4.2)

subject to (4.9) for n = 0 and (4.2d) for n > 0 is not convex and consequently it

is not guaranteed that the dual solution d∗ will converge to the primal solution

p∗. However, in case that the power of the on/off (non-convex) subsystems is

small compared to the continuous (convex) subsystems, the dual solution will

still converge for most time instances k ∈ N and a close to optimal performance

can be achieved as will be demonstrated in Section 4.4.
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4.2.4 Stability and Feasibility

Stability and feasibility are generally important properties that need to be ad-

dressed for MPC. Stability, however, is not a concern for the economic MPC

approach presented in this chapter. Namely, the objective is not to control the

states to a steady-state value, but to find a solution that minimizes the energy

losses in the vehicle while satisfying the upper and lower state constraints over a

finite horizon.

Still, feasibility does need to be addressed. The following three causes can lead

to an infeasible solution:

1. The CVEM problem becomes infeasible if the power of the internal com-

bustion engine is not sufficient to provide power to all subsystems and

disturbances in the vehicle.

2. The optimal control problem related to one of the subsystems becomes

infeasible if the final state cannot be reached due to limitations on the

control inputs and a horizon that is not sufficiently long.

3. The optimal control problem related to one of the subsystems becomes

infeasible if the initial state at time instant k ∈ N violates the state con-

straints as a result of unpredicted disturbances and modeling errors.

The first cause for infeasibility can be avoided by having a sufficiently pow-

erfull internal combustion engine that can always provide enough power to all

subsystems and disturbances in the vehicle. In practice, it can occur that the

engine power is limited, which eventually would lead to a smaller acceleration

than requested.

The second cause for infeasibility can be avoided by taking a sufficiently long

horizon. An indicative measure for the minimal length of the horizon for each of

the dynamic subsystems can be obtained by maximizing the lower bound on the

required control horizon τ . This lower bound should be such that there exists an

input um(t) ∈ [um, um] for t ∈ [0, τ) such that

xm,N |k = eÃmτxm + B̃w
mwm

∫ τ

0
eÃmsds+ B̃u

m

∫ τ

0
eÃmsum(s)ds, (4.12)

for both xm ∈ {xm, xm} and (an estimate of) the worst-case disturbance wm and
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the given final state xm,N |k. With the variable prediction time intervals proposed

in this chapter, the horizon τ can be taken sufficiently long, so as to satisfy (4.12),

without the need for many decision variables.

The third and final cause for infeasibility can be solved by projecting the initial

state into the feasible set and contracting the input constraint (4.2d) for n = 0

to ensure feasibility for the next time instant. Note that, as a result, it is not

guaranteed that the state constraints will not be violated. For CVEM, this is not

a concern as the state constraint are already chosen conservatively from practical

considerations and small violations of the state constraints is allowed.

4.3 Prediction of Disturbance Signals

In order to solve the receding horizon problem, accurate predictions of the distur-

bances wm,n|k, m ∈ M, and vn|k = [v1,n|k v2,n|k v3,n|k]
T , as in (4.2c) and (4.2f), are

needed, as well as time varying efficiency constants in (4.2b), which requires and

accurate prediction of the engine speed ωn|k. In this chapter, we assume that all

disturbances at the energy storage buffers wm,n|k are constant (i.e. wm,n|k = wm,k

for all m ∈ M and n ∈ N ) and measurable, e.g., the ambient temperature of

the refrigerated semitrailer, see Chapter 2. Furthermore, we assume that the

high-voltage network has no disturbances, i.e., v2,n|k = 0 for all n ∈ N and k ∈ N

and the disturbance power on the low-voltage network (consisting of e.g., the

power needed for the head lights) is constant, i.e., v3,n|k = 1.5 kW for all n ∈ N

and k ∈ N. As a result of these assumptions, we only need to propose a method

to obtain an accurate prediction of the propulsion power v1,n|k, i.e., the power

needed at the wheels for tracking a reference velocity.

The propulsion power v1,n|k and the engine speed ωn|k at prediction step n ∈ N

at time k ∈ N are obtained by averaging the prediction of the propulsion power

and engine speed, i.e.,

v1,n|k = 1
τn

∫ t̂n+1

t̂n

Pr(t+ tk)dt, (4.13a)

ωn|k = 1
τn

∫ t̂n+1

t̂n

ωr(t+ tk)dt, (4.13b)

for n ∈ N with tk = kτ0 for k ∈ N and t̂n =
∑n−1

i=0 τi, where Pr is the propul-
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Figure 4.2: Part 1 (t ∈ [0, 20000)) and Part 2 (t ∈ [20000, 40000)) of a pan
European driving cycle.

sion power and ωr is the engine speed. In the next chapter, we will present a

method that can predict the propulsion power and engine speed as function of

the predicted velocity, the predicted road slope with an eHorizon sensor, e.g.,

ADASIS [98] and the predicted gear.

In this chapter, we will only focus on the analysis of the solution strategy,

where we assume that the predicted propulsion power and engine speed is exact.

In particular, the propulsion power and engine speed are obtained with the high-

fidelity vehicle model presented in the next chapter for a pan European driving

cycle. The propulsion power and engine speed are shown in Figure 4.2 where we

define Part 1 by t ∈ [0, 20000) and Part 2 by t ∈ [20000, 40000). Indeed, the first

and the second part in Figure 4.2 correspond with the first and second part used

in Section 3.5.4 for the analysis of the fuel consumption with the offline solution

strategy.

4.4 Simulation Results

In this section, the results of the DEMPC approach to CVEM will be presented.

The energy management problem is solved in a receding horizon as in Section 4.2,

and at each time instant k ∈ N the first input is implemented on the simplified

power-based vehicle model introduced in Chapter 2. The vehicle model runs at

a frequency of 1 Hz where the exogenous disturbances, e.g., the drive cycle Pr(t)

are constant at each time interval t ∈ [kτ, (k + 1)τ) with τ = 1 second, k ∈ N.
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We will first analyze the influence of the prediction horizon. Then the results on

the control of auxiliaries that can only be turned on or off will be given. Finally,

the influence of the number of iterations on the fuel reduction will be given.

4.4.1 Influence of Prediction Horizon

A key element in the proposed algorithm is variable prediction time intervals

to allow for large control horizons with a few decision variables. Choosing the

length of these variable prediction time intervals is not straightforward, but we

will demonstrate that choices can be made based on practical limitations and

intuition, while close to optimal performance can be achieved. To do so, we first

consider the case of a hybrid electric truck without auxiliaries and predict the

power at the wheels, i.e., v1,n|k for all n ∈ N at time instant k and the engine

speed ωn|k for all n ∈ N at time instant k with (4.13) for three different cases

with decreasing accuracy in prediction information, i.e.,

• Case 1: In this case, we do not take variable prediction time intervals,

but take intervals of 1 second, i.e.,
∑

n∈N τn = N . Because the simulation

model has a sample time of 1 second, we have that the prediction is exact

over the length of the interval [tn, tn+1). This also means that N is large to

obtain a large control horizon. Real-time implementation is therefore not

feasible and this case can only be solved for a hybrid truck without taking

the auxiliaries into account in the energy management strategy.

• Case 2: In this case, we do take variable sample intervals with

(τ0, . . . , τN−1) = (1, 1, 2, 4, 6, 8, 10, 12, 16, 20, τN−1) and predict the propul-

sion power and engine speed with (4.13). We choose
∑

n∈N τn− τN−1 = 80

from a practical point of view as 80 seconds corresponds to about 2 km of

preview information at cruise control speed (88 km/h). This is the maxi-

mum distance over which preview information is available in the heavy-duty

vehicle. To still allow for a larger control horizon, we can choose τN−1 for

which in this case the power at the wheels and the engine speed is calculated

with (4.13) as well.

• Case 3: This case is a small adaptation to Case 2. Namely, as preview

information is not available after 80 seconds (in practice), the propulsion
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Figure 4.3: Length of the sampling time intervals.

power and the engine speed for N − 1, i.e., v1,N−1|k and ωN−1|k, cannot

be predicted and are therefore assumed to be fixed to a pre-specified value

after 80 seconds.

The choice for the sampling time intervals for Case 2 and Case 3 is plotted

in Figure 4.3 and is based on three considerations, i.e., i)
∑

n∈N τn − τN−1 =

80 seconds, ii) The first interval is 1 second as this decision is implemented,

iii) The intervals should increase in size for n → N − 1 as nearby prediction

information is likely to be more accurate. These considerations do not lead

to too many significant different choices for the sequence τn, n ∈ N and the

results in Figure 4.4 show that good performance can be achieved with the one

proposed. In this figure, the fuel reduction is shown as function of the horizon

length
∑

n∈N τn for each of the three cases and for the two parts of the drive cycle.

The horizon length for Case 1 is changed by changing N while for Case 2 and Case

3, the horizon length is changed by changing τN . Moreover, the global optimal

solution is calculated with the approach presented in Chapter 3 and shown as

a constraint. Note that for Case 3, the power request after 80 s is fixed to a

pre-specified value. Therefore, it is not useful to choose the horizon very long for

Case 3 as this results in a lower fuel reduction. Figure 4.5 shows the simulation

results for Case 3 for three different horizon lengths and where v1,N |k is varied

from 10 kW to 90 kW and ωN |k = 1250 rpm. The main conclusion drawn from

these two figures is that Case 3, which is closest to practice, can achieve good

fuel reduction performance and sensitivity to the length of the control horizon

and the choice for v1,N |k is not significant. For the remaining simulations, we

choose
∑

n∈N τn = 280, v1,N |k = 30 kW and ωN |k = 1250 rpm.

These settings also fully define the smart control of the continuous controlled
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Figure 4.4: Fuel reduction of a hybrid heavy-duty vehicle for two parts of the
drive cycle and various cases.

alternator and DCDC converter. Smart control of the alternator (without a

DCDC converter) leads to a fuel reduction of 0.09 % and 0.24 % fuel reduction

for Part 1 and Part 2, respectively. By adding smart control of the DCDC

converter, the fuel reduction is increased to 0.47 % and 0.6 % for Part 1 and

Part 2, respectively. Smart control of the auxiliaries with on/off control will be

discussed in the next section.

4.4.2 Auxiliaries with On/Off Control

Next, we consider the analysis of the on/off controlled auxiliaries. The simulation

results are obtained by taking only the hybrid vehicle with one additional switch-

ing subsystem, e.g., the refrigerated semi-trailer. Note that this requires solving

two QPs for every switched system at each time instant k. We have defined three

different switching strategies, i.e.,

• Strategy 1: For this strategy, the penalty parameter for switching

σ(xm,0|k) = σ > 0 is a constant value.

• Strategy 2: Inspired by [15], the penalty parameter for switching is for

this strategy defined by σ = (xm,0|k − x̂m)δ where x̂m is a target state

and δ is a positive weight. The target state is the lower energy bound if
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Figure 4.5: Sensitivity to the pre-specified value of v1,N |k.

the subsystem is off and the target state is the upper energy bound if the

subsystem is on.

• Strategy 3: This strategy is a small adaptation of Strategy 2 and only used

for the refrigerated semi-trailer and air supply system. Here, the desired

final state in the energy storage device is adapted as a linear function of the

average value of the dual variables, i.e., xm,N = aµ̄2,n + b for some a and b

and where the average value of the dual variables over the prediction horizon

is given by µ̄2,n = 1∑
n∈N τn

∑

n∈N µ2,n. This can improve the performance

of subsystems with a default switching time much larger than the prediction

horizon, such as the refrigerated semi-trailer and air supply system.

The results for each of these strategies and each of the subsystems are shown in

Figure 4.6 for Part 1 (a,c,e) and Part 2 (b,d,f) of the drive cycle. Different penalty

parameter settings are used, which result in a different average switching time.

The fuel reductions are obtained by comparing to a default controller, which

switches between an upper and lower bound , as in Section 3.5.5. The results are

plotted on top of the results given in Figure 3.8, which showed the feasible region

for real-time control in between the two hatched areas, i.e., an infeasible region

and a default controller region. The upper boundary of the feasible region is given

by the optimal trade-off between the number of switches and the fuel reduction

and obtained with the offline solution method presented in Chapter 3. The default
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controller turns on the auxiliary when the lower energy limit is violated and turns

the auxiliary off when the upper energy limit is violated. For these auxiliaries, it

holds that the more energy is stored, the higher is the rate of energy dissipation

to the environment. To show this, let us consider the example of a refrigerated

semi-trailer, where a larger difference between the air temperature inside and

the ambient temperature leads to a larger energy dissipation. By decreasing the

upper energy limit, the number of switches with default control will increase, but

also the energy dissipation decreases leading to a fuel reduction. This trade-off

defines the lower boundary of the feasible region, which lowers fuel benefit by

smart on/off control for these auxiliaries. Still, a significant amount of fuel can

be saved with the refrigerated semi-trailer, the air supply system and the climate

control system, but the average switching time is also significantly lower.

For the refrigerated semi-trailer and the air supply system, it is very difficult

to obtain a large average switching time as this time easily exceeds the maximum

length of accurate prediction information. The climate control system is difficult

to optimize as the fuel reduction for the default strategy with a shorter switching

time is already high compared to the maximum obtainable fuel reduction.

4.4.3 Limiting the Number of Iterations

The number of iterations for all the simulations so far does not have an upper

bound. However, at each iteration, 8 LCQPs need to be solved so that limiting

the amount of iterations reduces the computation time and thereby improves the

real-time properties. Therefore, smart control of the hybrid vehicle with all aux-

iliaries is simulated subject to a maximum on the number of iterations. The fuel

reduction results by smart control of the auxiliaries are shown in Figure 4.7 for

Part 1 and Part 2 of the drive cycle. Only the fuel reduction of the smart auxil-

iaries are shown to demonstrate the potential of CVEM. The average switching

time for the refrigerated semi-trailer is 35 and 22 seconds for Part 1 and Part 2,

respectively, for the air supply system 52 and 31 seconds, for Part 1 and Part 2,

respectively, and for the climate control system 7 seconds for both parts of the

drive cycle. With a very low number of iterations, fuel reduction performance is

indeed sacrificed. However, with an upper limit of 50 iterations, around 99 % of

the maximum fuel reduction is already obtained and with 25 iterations, around

97 % of the maximum fuel reduction is obtained.
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(b) Refrigerated semi-trailer, part 2
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(c) Air supply system, part 1
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(d) Air supply system, part 2
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(e) Climate control system, part 1
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Figure 4.6: Fuel reduction with real-time on/off control of the refrigerated semi-
trailer, the air supply system and the climate control system for three different
switching strategies.
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Figure 4.7: Fuel reduction as a result of smart control of auxiliaries with number
of iterations being limited.

4.4.4 State Trajectories

The state trajectories for Part 1 of the driving cycle are shown in Figure 4.8.

Here, x̃hvb =
xhvb

Ehvb
is the high-voltage battery energy normalized with respect to

the maximum battery capacity Ehvb, x̃lvb =
xlvb

Elvb
is the low-voltage battery energy

normalized with respect to the maximum battery capacity Elvb, Trst is the air

temperature in the refrigerated trailer, pas is the air pressure in the air supply

system and Tccs is the wall temperature of the climate control system. This

figure shows that all state constraints are satisfied. The state trajectories for the

complete pan European driving cycle, as in Chapter 3, are given in Appendix A.2.

4.5 Conclusions and Discussion

In this chapter, a real-time and distributed solution for complete vehicle energy

management is presented using a receding horizon in combination with a dual

decomposition. Conclusions will be drawn and a discussion on the results will be

given in this section.
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Figure 4.8: State trajectories for Part 1 of the pan European driving cycle.

4.5.1 Conclusions

The approach presented in this chapter first applies a dual decomposition to the

receding horizon optimal control problem, so that the problem related to each

subsystem can be solved separately. Each sub-problem related to each subsystem

is a linearly constrained quadratic program that can be solved efficiently with

embedded quadratic programming solvers. Variable prediction time intervals are

used to obtain a long control horizon with a limited number of decision variables.

As a result, the final state constraint can be used as a constraint, instead of a

‘soft’ constraint, which avoids the need for tuning parameters.

Furthermore, a novel on/off control concept for control of the refrigerated semi-

trailer, the air supply system and the climate control system is introduced. The

concept requires solving the linearly constrained quadratic program twice, one
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with the first decision being on and one with the first decision being off. The

solution with the lowest cost is taken as the optimal solution.

The only parameters for the solution strategy proposed in this chapter are the

variable prediction time intervals and the penalty parameters for switching. The

variable sample times can be chosen intuitively and simulation results on a low-

fidelity vehicle model show that close to optimal fuel reduction performance can

be achieved without carefully tuning these sample times. The fuel reduction of the

on/off controlled subsystems strongly depends on the number of switches allowed.

The fuel reduction for the on/off controlled subsystems can be close to optimal,

but the number of switches needs to be increased significantly. Particularly for

the refrigerated semi-trailer and the air supply system, it is very difficult to obtain

a large average switching time as this time easily exceeds the maximum length of

accurate prediction information. Still, by allowing more switches, a fuel reduction

of up to 1.3 % can be achieved.

4.5.2 Discussion

The variable sample times are chosen intuitively and simulation results on the

low-fidelity vehicle model show that close to optimal fuel reduction performance

can be achieved without carefully tuning these sample times. However, not having

to rely on intuition, these variable sample times can be adapted based on the

prediction information.

The simulation results on the low-fidelity vehicle model presented in this chap-

ter provide valuable insights in the sensitivities of the parameters and perfor-

mance of the algorithm in a simple and predictable environment. Indeed, the

control-oriented model used for the DEMPC approach to optimize the setpoints

is exactly the same as the vehicle model on which the setpoints are implemented.

The control-oriented model is a (convex) approximation of high-fidelity vehicle

model (see Chapter 2), which induces an error between the predicted behavior

and the actual behavior. Although the simulation results are promising, it is

necessary to implement the setpoints on the high-fidelity vehicle model to assess

the sensitivity of this approximation.

Furthermore, the prediction of the propulsion power and engine speed in this

chapter is exact to exclude the influence of faulty prediction information. To pre-

dict the propulsion power and engine speed of the high-fidelity vehicle model, a
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preview functionality needs to be developed that leads to an accurate prediction,

but the computational load must be limited to allow for real-time implementa-

tion. The predicted propulsion power and engine speed is therefore always an

approximation and the influence of the accuracy of the prediction needs to be

taken into account.

Finally, the real-time aspects of the solution strategies have not been demon-

strated. The variable sample times do allow for a small number of decision

variables, thereby greatly enhancing the real-time properties, but the solution

strategy needs to be implemented on an embedded platform to fully demonstrate

the real-time feasibility of the solution strategy.



5
Validation on a High-Fidelity Vehicle Model

Abstract - In this chapter, the distributed economic model predictive control approach is

validated on a high-fidelity vehicle model of the heavy-duty vehicle. The propulsion power needed

for driving and the engine speed is predicted by assuming that the vehicle follows a reference

speed set by the cruise control or the downhill speed control, which is valid for long-haul driving.

This allows the vehicle speed to be predicted over a trajectory with a road slope predicted by an e-

horizon sensor, e.g., ADASIS, leading to a prediction of the propulsion power and engine speed.

The prediction algorithm is validated with measured ADASIS information on a public road

around Eindhoven, which demonstrates that sufficiently accurate prediction of the propulsion

power and engine speed is feasible if the vehicle follows the most probable path. Simulations with

the high-fidelity vehicle model show that a fuel reduction of 0.58 % can be obtained compared to

the best default control strategy and 0.98 % compared with the worst default control strategy. The

control strategy is implemented on a dSpace Autobox and shows that the maximum computation

time is only 3.2 ms per iteration, which demonstrates that real-time implementation is feasible.
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5.1 Introduction

The previous chapter provides an online solution strategy to solve the complete

vehicle energy management (CVEM) problem. The online solution strategy re-

quires a prediction of the future disturbances and solves optimal control with a

distributed economic model predictive control (DEMPC) approach. In particu-

lar, the dual decomposition is applied, which results in small linearly constrained

quadratic programs (LCQP) for each of the subsystems, which can be efficiently

solved in real-time with embedded LCQP solvers. The optimal control problem

is solved at each time instant k ∈ N after which only the decisions at the first

time instant are implemented. This online solution strategy is validated with

the low-fidelity vehicle model presented in Chapter 2. The results provide key

insights in the performance and sensitivities of the DEMPC strategy. The low-

fidelity vehicle model however, has a restricted complexity and does not capture

all nonlinear behavior and power restrictions of the heavy-duty vehicle.

A prototype vehicle has been built for the CONVENIENT project (see Fig-

ure 5.1), which is a research project part of the 7th framework programme of the

European Commission. The prototype has a hybrid drive train with an internal

combustion engine and an electric machine attached to a high-voltage battery sys-

tem and all auxiliaries are electrified. At the moment of developing the DEMPC

strategy, the prototype vehicle is not approved to be tested on the public road,

but only on designated test tracks. This constrains the validation of the online

solution strategy as prediction information is not available for driving on the

test track. Namely, prediction information is essential to demonstrate the fuel

reduction potential of the DEPMC strategy. Therefore, the DEMPC strategy is

validated on a high-fidelity vehicle model of the heavy-duty vehicle. The vehicle

model is developed by the Institute für Kraftfahrzeugen Aachen (IKA) [28, 76].

It consists of a detailed vehicle model describing the longitudinal dynamics of the

vehicle and the dynamics of all (nonlinear) components in the vehicle.

The DEMPC strategy provides a setpoint to all subsystems in the vehicle,

including the electric machine and internal combustion engine. However, control

of the electric motor and internal combustion engine is difficult as safety is critical

for a vehicle that weighs up to 40.000 kg. Control of the hybrid system is therefore

not feasible in the prototype vehicle. Therefore, it is decided to validate the
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Figure 5.1: CONVENIENT prototype truck.

strategy without control of the hybrid system in the high-fidelity vehicle model as

well. Still, the other subsystems, i.e., the refrigerated semi-trailer, the air supply

system, the climate control system, the DCDC converter and the alternator can

receive setpoints from the online solution strategy. This still allows validation of

the fuel reduction potential for most of the subsystems in the heavy-duty vehicle.

The outline of this chapter is as follows. In Section 5.2, the high-fidelity ve-

hicle model and the integration of the online solution strategy will be discussed.

In Section 5.3, prediction of the disturbances will be discussed and, finally, in

Section 5.4, the simulation results will be presented.

5.2 High-fidelity Simulation Model

The high-fidelity vehicle model is developed by the Institute für Kraftfahrzeugen

(IKA) to evaluate the fuel reduction potential for complete vehicle energy man-

agement, see [28, 76]. The vehicle model simulates the behavior of the prototype

truck and is shown in Figure 5.2. The vehicle model consist of three large sub-

systems, i.e., the dSpace autobox that contains all the control functionality, the

driver model and the vehicle model. The vehicle model and drive model will be

discussed briefly followed by the integration of the DEMPC approach presented

in Chapter 3.
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Figure 5.2: High-fidelity vehicle model.

5.2.1 Vehicle and Driver Model

All the components in the heavy-duty vehicle and their interaction are modeled

in the vehicle subsystem. In this subsystem, the internal combustion engine,

the electric machine, the clutch, the gearbox and the differential are modeled

to simulate the powertrain of the vehicle. The torque delivered by the power

train results in a movement, velocity and acceleration of the truck. The high-

voltage battery is connected via a multi-mode inverter to the electric motor, the

refrigerated semi-trailer, and the air supply system, which makes up the high-

voltage network in the truck. The alternator is connected to the engine and

delivers power to the low-voltage network consisting of the low voltage batteries,

the electric steering pump and the constant low-voltage auxiliaries, e.g., the head

lights. A DCDC converter is also present that connects the high-voltage network

to the low-voltage network. A mechanical compressor from the climate control

system is connected to the engine via a clutch. The setpoints for each of the

components, e.g, the engine torque, are given externally from the Autobox or
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Figure 5.3: Integration of distributed model predictive control approach

driver subsystem. The main responsibility of the driver subsystem is tracking a

velocity profile that is defined by the drive cycle. Some setpoints are first sent to

the Autobox, e.g., the drive torque request, and then further processed and some

are directly sent to the truck, e.g., the blower level of the climate control system.

The interested reader is referred to [28, 76] for more details on the high-fidelity

vehicle model.

5.2.2 Integration of the DEMPC approach

The DEMPC approach presented in the previous chapter is integrated in the

dSpace autobox subsystem together with the control system for the hybrid drive

train. An schematic overview of the implementation is given in Figure 5.3 and

consists of the prediction algorithm, the DEMPC and the low-level controllers.

The prediction algorithm provides a prediction of the disturbance vn|k and engine

speed ωn|k for all n ∈ N for which more details will be given in the next section.

The DEMPC is as presented in Chapter 4. It was envisioned in [52] to have an

energy management system operator (EMSO) and for each subsystem a smart

algorithm that optimizes its own power setpoints based on information from the

EMSO. In particular, the EMSO defines the prices for which components can buy

or sell energy and each of the subsystems maximizes their own profit based on

these prices. This provides the necessary flexibility for adding new subsystems

and maximizing the profit for each of the subsystems can even be done in a

distributed fashion on different electronic control units.

Indeed, the solution strategy presented in Chapter 4 can be integrated along the

lines of [52], as is shown in Figure 5.4. Here, the Lagrange dual functions related

to each subsystem m ∈ M are solved independently given the dual variables µn|k
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Figure 5.4: Flexible control interface.

for node n ∈ N at time k ∈ N , i.e., the prices from the EMSO. Depending on

the power request of each subsystem, the EMSO performs a price update, i.e., by

updating the dual variables. This solution strategy can be implemented by having

a separate electronic control unit for solving the optimization problem for each

of the subsystems and the EMSO. This requires communication of the decisions

and dual variables over a communication bus, e.g., CAN. This implementation

is challenging as each of the subsystems needs to share N decisions with N

being the length of the prediction horizon and the communication needs to be

synchronized. Alternatively, the EMSO and the optimization problem related to

each subsystem can be implemented on the same electronic control unit. This

approach is taken here by integrating the entire DEMPC strategy on a dSpace

Autobox.

The low-level control in Figure 5.3 transforms the power setpoints from the

DEMPC solution to setpoints suitable for each of the components, e.g., the al-

ternator and DCDC converter require a voltage setpoint. To do so, the voltage

setpoint for the alternator is controlled with a PI controller, i.e.,

ũalt(t) = Kp
alt

(

ualt,0|k − ULV(t)Ialt(t)
)

+K i
alt

∫ t

0
ualt(s)− ULV(s)Ialt(s)ds, (5.1)

where ualt,0|k is the desired alternator input power, ULV is the measured voltage of

the low-voltage network, Ialt is the measured alternator current and Kp
alt and K i

alt

are the proportional gain and integral gain of the PI controller, respectively. The
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voltage setpoint of the DCDC converter is controlled with another PI controller,

i.e.,

ũdc(t) = Kp
dc

(

udc,0|k − ULV(t)Idc(t)
)

+K i
dc

∫ t

0
udc(s)− ULV(s)Idc(s)ds, (5.2)

where udc,0|k is the desired DCDC converter input power, UHV is the measured

voltage of the high-voltage network, Idc is the measured DCDC current and

Kp
dc and K i

dc are the proportional gain and integral gain of the PI controller,

respectively. Note that providing power with the alternator and DCDC converter

simultaneously can lead to problems with two separate PI controllers. Therefore,

either only the alternator will be used to provide power to the low-voltage network

or only the DCDC converter will be used.

The refrigerated semi-trailer, the air supply system and the climate control

system are turned on or off with a binary signal, i.e, they are turned on when

they receive a ‘1’ and are turned off when they receive a ‘0’. To do so, the power

setpoint from the DEMPC approach is transformed to a binary signal with

ũm = 1, if |um,0|k| > 0

ũm = 0, if |um,0|k| = 0 (5.3)

for m ∈ {rst, as, ccs}. As stated in the introduction, control of the hybrid system

is not feasible in the prototype vehicle as well as in the high-fidelity vehicle

model. Instead, the hybrid system is controlled with a black box rule-based

strategy. The hybrid system is still an essential part of the DEMPC strategy, as

the auxiliaries need the decisions from the hybrid system to optimize their own

decisions. By doing so, the algorithm predicts the behavior of the hybrid system

by assuming that the hybrid system will make the optimal decisions along the

objective function in the optimal control problem.

5.3 Prediction of Disturbance Signals with ADASIS

In order to solve the CVEM problem with the DEMPC approach, accurate pre-

dictions of the disturbances wm,n|k, m ∈ M, and vn|k = [v1,n|k v2,n|k v3,n|k]
T ,

as in (4.2c) and (4.2f), are needed, as well as time varying efficiency constants
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Figure 5.5: Longitudinal forces acting on a moving vehicle.

in (4.2b), which requires an accurate prediction of the engine speed ωn|k. As

was done in the previous chapter, we assume that all disturbances at the energy

storage buffers are constant (i.e. wm,n|k = wm,k for all m ∈ M and n ∈ N )

and measurable, e.g., the ambient temperature of the refrigerated semitrailer,

see Chapter 2. Furthermore, the high-voltage network has no disturbances, i.e.,

v2,n|k = 0 for all n ∈ N and k ∈ N and the disturbance power on the low-voltage

network (consisting of e.g., the power needed for the head lights) is identified

online. The latter is done by considering the optimal solution at time instant

k ∈ N and finding the value v3,0|k that satisfies (2.5). This value is assumed to

remain constant over the prediction horizon, i.e., v3,n|k = v3,0|k for n ∈ N . As a

result, we only need a method to obtain an accurate prediction of the propulsion

power v1,n|k, i.e., the power needed at the wheels for tracking a reference velocity

and the engine speed ωn|k.

5.3.1 Power Required at the Wheels

The propulsion power v1,n|k and the engine speed ωn|k at prediction step n ∈ N

at time k ∈ K are obtained by averaging the prediction of the propulsion power

and engine speed, i.e.,

v1,n|k = 1
τn

∫ t̂n+1

t̂n

Pr

(

v(tk + t), α(tk + t), γ(tk + t)
)

dt, (5.4a)

ωn|k = 1
τn

∫ t̂n+1

t̂n

ωr

(

v(tk + t), γ(tk + t)
)

dt, (5.4b)
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for n ∈ N with tk = kτ0, k ∈ N, and t̂n =
∑n−1

i=0 τi. The propulsion power and

engine speed mainly depend on the road slope α(t), the vehicle speed v(t) and

the selected gear γ(t) and can be predicted using a simple longitudinal vehicle

model (see, e.g., [40]). In particular, we predict these quantities using

Pr(v, α, γ) = (Facc(v, γ) + Fslope(α) + Froll(α) + Fdrag(v)) v, (5.5a)

ωr(v, γ) =
rgb(γ)
rdyn

v, (5.5b)

where rgb(γ) is the combined gearbox and differential ratio that depends on

the selected gear γ ∈ {1, . . . , 12}, rdyn is the dynamic wheel radius, v is the

(predicted) vehicle speed, Facc is the force required to accelerate the vehicle,

Fslope is the force required to drive the vehicle up or down a slope, Froll the

rolling resistance of the tyres and Fdrag is the air resistance of the vehicle. These

forces are schematically shown in Figure 5.5 and are given by

Facc(v, γ) =
(

m+
Jeq(γ)
r2
dyn

)

dv
dt , (5.5c)

Fslope(α) = mg sinα, (5.5d)

Froll(α) = mgCroll cosα, (5.5e)

Fdrag(v) =
1
2ρairCdragAv

2, (5.5f)

where m is the vehicle mass, Jeq is the equivalent inertia of the drive line at

the wheels as function of the selected gear, g is the gravitational constant, Croll

rolling resistance coefficient of the tires, A is the frontal area, Cdrag is the air

drag coefficient and ρair is the air density. It is assumed that all constants are

known, or can be estimated online using techniques presented in [68, 126, 117, 33].

The time-dependent road slope α(t), vehicle speed v(t) and gear selection γ(t),

however, need to be predicted for t > 0.

5.3.2 Prediction Algorithm

The road slope can be predicted with an e-horizon system, e.g., ADASIS [98],

which gives a vector of road slopes over the relative distance s(t) to the current

position of the vehicle, i.e., α(t) = α(s(t)). Prediction of the velocity v(t) is

more difficult. Nevertheless, since we consider long-haul heavy-duty vehicles,
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which spend most of their time on the highway, we can assume that the cruise

control (CC) or the downhill speed control (DSC) is active during most of the

driving. In this case, the desired velocity of the vehicle is regulated towards vcc

for cruise control and towards vdsc for downhill speed control. Typically, it holds

that vdsc > vcc, i.e., the DSC speed is larger than the CC speed, which allows

some of the potential energy to be stored as kinetic energy. Finally, a rule-based

gear shift strategy is assumed that satisfies

γ(v) = max{{1, . . . , 12} | ωr ≤ ωr(v, γ)}, (5.6)

were ωr is the constant lower threshold for gear shifting, respectively. This strat-

egy seeks always the highest gear for which the minimum engine speed is satis-

fied, which corresponds generally with the most efficient gear shift strategy. The

propulsion power is constrained as well

P r(v, γ) ≤ Pr(v, α, γ) ≤ P r(v, γ), (5.7a)

where P r(v, γ) and P r(v, γ) are the lower and upper bound that depend on the

vehicle speed, the selected gear and whether CC or DSC is active. In particular,

the maximum power is always constrained to the maximum engine power, i.e.,

P r(v, γ) = ηgb(γ)uice(ωr(v, γ)), (5.7b)

where ηgb(γ) is the efficiency of the gearbox and differential as function of the

selected gear. The minimum power is constrained to

P r(v, γ) =







uice(ωr(v,γ))
ηgb(γ)

if v < vdsc

−∞ otherwise.
(5.7c)

This constraint means that braking with the electric motor and friction brakes is

only allowed when the vehicle speed exceeds the desired downhill speed.

Solving (5.5) subject to (5.6) and (5.7a) is hard due to the nonlinear vehicle

dynamics, the appearance of the derivative dv
dt and the constraints (5.7) and

because the road slope is given as function of distance and not as function of

time. Therefore, we propose to make a forward Euler approximation of (5.5)

over the time horizon t ∈ [tk, tk +
∑N−1

i=0 τi) at time instants t̃ℓ =
ℓ

L−1

∑N−1
i=0 τi,
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ℓ ∈ {0, . . . , L− 1}. This includes approximating

dv

dt

∣

∣

t=tk+t̃ℓ
≈

v(tk + t̃l+1)− v(tk + t̃l)

t̃l+1 − t̃l
. (5.8)

We then find a solution for (5.5) subject to (5.6) and (5.7a) sequentially over the

interval [tk, tk+
∑N−1

i=0 τi) and at each time instant tk+ t̃ℓ we switch, if necessary,

between CC and DSC and select a different gear. The algorithm to predict the

power request at the wheels is then given by

Algorithm 5.3.1.

Initialize s(tk) = 0 and measure v(tk), γ(tk).

For ℓ ∈ {0, . . . , L− 1},

• Obtain the road slope from ADASIS α(s(tk + t̃ℓ))

• Calculate the engine speed with (5.5b) and, if necessary, shift gears accord-

ing to (5.6) to obtain γ(tk + t̃ℓ) and ωr(tk + t̃ℓ)

• If v(tk + t̃ℓ) > vcc, set DSC active, otherwise set CC active

• if CC active: Calculate the power request with (5.5a) for the desired
dv
dt = vcc−v(tk+t̃ℓ)

t̃ℓ+1−t̃ℓ
to obtain Pr(tk + t̃ℓ)

• if DSC active: Calculate the power request with (5.5a) for the desired
dv
dt = vdsc−v(tk+t̃ℓ)

t̃ℓ+1−t̃ℓ
to obtain Pr(tk + t̃ℓ)

• If Pr(tk + t̃ℓ) ≥ P r(v, γ), set Pr ⇒ P r(v, γ), if Pr(tk + t̃ℓ) ≤ P r(v, γ), set

Pr ⇒ P r(v, γ) and compute dv
dt satisfying (5.5)

• Update vehicle speed: v(tk + t̃ℓ+1) = v(tk + t̃ℓ) +
dv
dt (t̃ℓ+1 − t̃ℓ)

• Update distance: s(tk + t̃ℓ+1) = s(tk + t̃ℓ) + v(tk + t̃ℓ)(t̃ℓ+1 − t̃ℓ)

This algorithm predicts the power request Pr(v, α, γ) and engine speed ωr(v, γ)

over the prediction horizon [tk, tk +
∑N−1

i=0 τi), which is used in (5.4) to obtain

the average propulsion power and the average engine speed over the variable pre-

diction time intervals τi for i ∈ N . This allows the optimal control problem (4.2)

to be solved with the distributed model predictive control approach, as will be

demonstrated in the next section.
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5.4 Simulation Results

In this section, the results of the DEMPC approach to CVEM will be presented.

Prediction information is a key element in the proposed approach and in the first

section, results will be given on predicting the power request and engine speed

with Algorithm 5.3.1 and ADASIS. In the next section, the fuel reduction for

CVEM on the high-fidelity vehicle model will be presented followed by a detailed

analysis of the energy flows. Finally, to demonstrate the real-time aspects of the

algorithm, we will show the computational performance of the algorithm for a

dSpace Autobox.

5.4.1 Power Request and Engine Speed Prediction with ADA-

SIS

In the prototype vehicle, the road slope is predicted by the ADASIS protocol,

which gives the road slope as function of the relative distance from the current

position of the vehicle. ADASIS measurements are gathered for a highway cycle

of 19 km driven in the region of Eindhoven (Netherlands). ADASIS provides the

road slope at non-uniform distances from the current position depending on the

future road slope. Moreover, the road slopes are not instantly available but new

predictions are gradually added and old predictions are gradually removed based

on the most probable path predicted by ADASIS.

The amount of predicted road slopes, indicated with NADASIS therefore changes

all the time as shown in Figure 5.6. The upper plot in this figure shows the

number of predictions as function of the distance driven by the vehicle in the

high-fidelity simulation environment. The number of predictions sometimes goes

to zero, which happens when the vehicle takes an exit, which is different from the

most probable path predicted by the ADASIS protocol. After the exit, the ADA-

SIS protocol notices that a different path is taken and all erroneous predictions

are discarded. This happens three times on the drive cycle under consideration.

The measured road slope and four examples of a road slope prediction by ADASIS

are shown in the second plot. For the green labeled cases, plenty of predictions

are available and no unpredicted exit is taken, which lead to very accurate pre-

diction of the road slope. For the red labeled cases however, unpredicted exits

are taken in the future, which result in a faulty prediction of the road slope. As



5.4. Simulation Results 119

a consequence, the velocity, the power request and the engine speed predicted

with Algorithm 5.3.1, is sufficiently accurate for the green examples but faulty

for the red examples. This is also shown by the plot with the average root mean

square error (RMSE) of the difference between the predicted power request and

the measured power request over the entire prediction horizon. This plot clearly

shows that if the vehicle follows the most probable path, a sufficiently accurate

prediction of the future power request can be made with Algorithm 5.3.1 in com-

bination with the ADASIS protocol. As heavy-duty vehicles often tend to drive

the same route, the protocol can and will be improved in coming years by taking

this information into account for predicting the most probable path.

The drive cycle for which ADASIS information is available is very short and the

region around Eindhoven is very flat so that differences in road slope are mainly

caused by driving up and down flyovers. The differences in road slope are not

even significant to reach the downhill speed control (DSC) reference speed after

which the vehicle starts to actively recover brake energy with the hybrid system.

This cycle will therefore not show the true potential of the DEMPC. Instead

the fuel reduction is analyzed with the high-fidelity vehicle model by driving the

same drive cycle as used for the low-fidelity vehicle model for which the reference

vehicle speed and road slope is given in Figure 5.7. We will assume that the

vehicle always follows the most probable path, i.e, the road slope prediction is

exact. This leads to an average RMSE of 29 kW for the power prediction, which

is similar to the RMSE made with the ADASIS protocol and Algorithm 5.3.1.
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Figure 5.7: Reference vehicle speed on the PAN European driving cycle.

5.4.2 Fuel Reduction for CVEM

The fuel consumption for the high-fidelity vehicle model with CVEM is compared

with the fuel consumption of the high-fidelity vehicle model with two default

control strategies. The first default strategy (D1) is as follows

• Refrigerated semi-trailer: The temperature in the refrigerated trailer

cycles between the lower and upper temperature bound, i.e, between 4.5 ◦C

and 5.5 ◦C.

• Air supply system The air pressure in the air supply system cycles be-

tween the lower and upper pressure bound, i.e, between 9.6 bar and 13.1

bar. Each time that the pressure hits the upper bound, some of the pres-

sure is released through the desiccant cartridge to remove the water build

up inside the cartridge.

• Climate control system The wall temperature of the evaporator cycles

between the lower and upper temperature bound, i.e, between 5 ◦C and

7 ◦C.

• Alternator A fixed voltage setpoint is sent to the alternator such that

the initial amount of energy in the low-voltage battery is equal to the final
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amount of energy.

• DCDC converter The DCDC converter is not used on the default control

strategy.

This strategy is the same default control strategy as used in [11]. The following

default control strategy (D2) is an adaptation to D1 with a different control

strategy for the air supply system and the climate control system, i.e.,

• Air supply system Recent developments made it possible to only remove

the water from the desiccant cartridge after a certain amount of cycles.

This reduces the amount of air released to the environment and thereby

improves the efficiency of the air supply system.

• Climate control system Automotive climate control systems generally

cycle between a very low upper and lower temperature bound as in default

strategy D1. The cold air is mixed with warm air heated by the internal

combustion engine to supply the right air temperature to the cabin. This

is very inefficient and recent trends increased the upper and lower temper-

ature bound. For this default control strategy the wall temperature of the

evaporator cycles between 9 ◦C and 13.5 ◦C.

This strategy is the same as the default strategy used in Chapter 4 for the low-

fidelity vehicle model, except that the alternator receives a constant voltage set-

point instead of a constant power setpoint, which results in a slightly different

alternator power.

The fuel reduction results with CVEM compared to the two baseline strategies

are given in Table 5.1. To analyze the fuel reduction contribution of each of

the subsystems, the results of various simulations are shown for which only one

subsystem is being controlled with the CVEM algorithm. For completeness, the

fuel reductions are given for Part 1, i.e., for t ∈ [0, 20000), for Part 2, i.e., for

t ∈ [20000, 40000) and for the complete driving cycle. Part 1 and Part 2 are the

same parts used in Chapter 4 to evaluate the control strategy on the low-fidelity

vehicle model. For a complete analysis, the difference in stored energy inside

the energy storage systems at the start and end of the cycle must be taken into

account. However, as each of these drive cycles is very long, the effect on the

overall fuel consumption is small and neglected in this table.
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Table 5.1: Fuel reduction results on the high-fidelity vehicle model

Default D1 Default D2

Subsystem Complete Part 1 Part 2 Complete

Refrigerated semi-trailer 0.30 % 0.43 % 0.30 % 0.30 %

Air supply system 0.26 % 0.07 % 0.04 % 0.05 %

Climate control system 0.19 % 0.07 % 0.00 % 0.02 %

Alternator 0.07 % 0.13 % 0.04 % 0.07 %

DCDC converter 0.20 % 0.15 % 0.22 % 0.20 %

CVEM 0.98 % 0.63 % 0.56 % 0.58 %

The fuel reduction is strongly related to the average switching time for the

refrigerated semi-trailer, the air supply system and the climate control system.

These times are shown in Figure 5.8 for the two default control strategies and

for the smart CVEM control strategy. Indeed, compared with the second default

control strategy, the average switching time is decreased with a factor 8.5, 8.2

and 1.5 for the refrigerated semi-trailer, the air supply system and the climate

control system, respectively.

For the average switching times given in Figure 5.8, the fuel reduction obtained

with CVEM in the high-fidelity vehicle model is around half the fuel reduction

obtained with CVEM in the low-fidelity vehicle model. We will present some

analysis on the energy flows in the next section to obtain a better understanding

on this result.

5.4.3 Energy Flows in the Vehicle

The CVEM strategy utilizes the energy buffers in all subsystems to store energy.

This is shown in Figure 5.9 for only t ∈ [0, 10000) and shown for the complete

driving cycle in Appendix A.3. Here, x̃hvb = xhvb

Ehvb
is the high-voltage battery

energy normalized with respect to the maximum battery capacity Ehvb, x̃lvb =
xlvb

Elvb
is the low-voltage battery energy normalized with respect to the maximum

battery capacity Elvb, Trst is the air temperature in the refrigerated trailer, pas

is the air pressure in the air supply system and Tccs is the wall temperature of

the climate control system. Note that the control of the hybrid system is rule-

based in the high-fidelity vehicle model, which can be observed from the energy
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Figure 5.8: Average switching times.

in the high-voltage battery. In particular, regenerative braking energy stored in

the high-voltage battery, i.e, the peaks where x̃hvb = 0.55, is directly used for

boosting leading to a sharp drop in energy. This figure shows, indeed, that most

subsystems are used at these moments to store energy as the temperature in the

refrigerated semi-trailer is lowered, the air pressure is increased and the energy

in the low-voltage battery is increased. Only the climate control system hardly

lowers its temperature.

The amount of regenerative energy that is stored in the subsystems relative to

their total energy consumption is given in Figure 5.10 for the two default control

strategies and for the smart control strategy evaluated on the high-fidelity vehicle

model (HF) and on the low-fidelity vehicle model (LF). The amount of regenera-

tive energy harvested on the low-fidelity vehicle model is for all subsystems larger

than for the high-fidelity vehicle model, which can explain some of the differences

in the fuel reduction. In particular, the energy harvested by the electric machine

in the high-fidelity vehicle model is 25.8 % lower than in the low-fidelity vehicle

model due to, e.g., not taking into account gear shifting in the low-fidelity vehicle

model. This has a significant impact on the fuel reduction potential of CVEM.

Furthermore, comparing percentages is difficult as the fuel consumption for the

default control strategy is 10.7 % higher in the high-fidelity vehicle model than

in the low fidelity vehicle model.

Finally, to put the fuel reduction potential in perspective, the energy losses in
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Figure 5.9: State trajectories for t ∈ [0, 10000) of the PAN European driving
cycle.

each subsystem are given as percentage of the total fuel energy in Figure 5.11 for

the two default control strategies and for the smart control strategy evaluated

on the high-fidelity vehicle model. An interesting observation is that only 1 %

of the fuel energy is used for the refrigerated semi-trailer with the default con-

trol strategy, which is slightly reduced with the smart control strategy. A fuel

reduction of 0.3 % as given in Table 5.1 is then actually a 30 % improvement

on subsystem level. The majority of the energy losses in the vehicle are in the

internal combustion engine and other energy losses as a result of air drag, friction

brakes, etc., which is shown in Figure 5.12. It is remarkable that the other energy

losses, which include the energy losses in the friction brakes, are only reduced
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Figure 5.10: Regenerative energy stored in the subsystems relative to their total
energy consumption.
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Figure 5.11: Energy losses for each subsystem as percentage of the total fuel
energy.

with 0.2 %. This means that the electric machine is not used to significantly

recover more braking energy as with the default control strategy and this can be

an opportunity for improving the fuel reduction. Still, with CVEM, the energy

losses in the internal combustion engine are reduced with 1.2 %, which indicates

that energy from the internal combustion engine is used more efficiently.
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5.4.4 Implementation on a dSpace Autobox

As a final step to prove feasibility of the DEMPC approach to CVEM, the algo-

rithm is implemented on a dSpace Autobox. The prototype vehicle is equipped

with a dSpace autobox with a DS1005 PPC Board that features a PowerPC

750GX processor running at 1 GHz. To test the real-time aspects of the con-

trol algorithm proposed in this paper, the algorithm is implemented onto the

DS1005. The algorithm is running in open loop, i.e., the inputs for the control

algorithm, e.g., the vehicle velocity, distance are not following from the vehicle

model, which is too large to run in real-time, but follow from lookup tables. Sim-

ilarly, the setpoints generated by the control algorithm are not implemented on

the vehicle model but are discarded. Still, the ADASIS information is processed

Table 5.2: Case studies for implementation on a dSpace Autobox.

Case Description Number of QPs solved at
each iteration

1 Only hybrid system 1

2 Case 2 with the refrigerated semi-trailer 3

3 Case 3 with the air supply system 5

4 Case 3 with the climate control system 7

5 Case 4 with the low-voltage battery 8
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Figure 5.13: Turnaround times.

in real-time as function of the distance driven by the heavy-duty vehicle. This

approach allows us to isolate the computational performance of the previewer

and the control algorithm only.

Five cases are given in Table 5.2 to analyze the scalability properties. The

algorithm is running at 50 Hz and at each sampling period, one iteration of the

dual decomposition algorithm is executed, i.e., the number of QPs as given in

Table 5.2 are solved and the dual variables are updated once. This allows for 50

iterations as the setpoints for the subsystems are updated with a frequency of

1 Hz. The turnaround times of the algorithm are given in Figure 5.13 for each

of the cases over the first 50 seconds of the drive cycle given in Fig. 5.6. It is

shown that by smart control of all subsystem (Case 5), the worst case execution

time still only occupies 16% (3.2 ms

20ms
100%) of the sampling period. The remaining

time can be used for other tasks or the update frequency of the setpoints can be

lowered.
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5.5 Conclusions and Discussion

In this chapter, a distributed economic model predictive control (DEMPC) ap-

proach to complete vehicle energy management is validated on a high-fidelity

vehicle model. Conclusions will be drawn and a discussion on the results will be

given in this section.

5.5.1 Conclusions

Prediction of the disturbances is essential for DEMPC. The propulsion power

needed for driving and the engine speed have been predicted by assuming that

the vehicle follows a reference speed set by the cruise control or the downhill speed

control, which is valid for high-way driving. This allowed the vehicle speed to be

predicted over a trajectory with a road slope predicted by an e-horizon sensor,

e.g., ADASIS, leading to a prediction of the propulsion power and engine speed.

The prediction algorithm has been validated with measured ADASIS information

on a public road around Eindhoven, which demonstrated that sufficiently accurate

prediction of the propulsion power and engine speed is feasible if the vehicle

follows the most probable path.

The fuel reduction for the DEMPC approach to CVEM has been validated

for a PAN European driving cycle. A fuel reduction of 0.58 % can be obtained

compared to the best default control strategy and 0.98 % compared with the

worst default control strategy. This is indeed lower than estimated with the

low-fidelity vehicle model, which can partly be related to the 25 % less braking

energy that is recovered in the high-fidelity vehicle model and the absolute fuel

consumption of the default control strategy is 10 % higher.

The DEMPC approach applies first a dual decomposition to the receding hori-

zon optimal control problem such that the problem related to each subsystem

can be solved separately, e.g., on a separate electronic control unit. To avoid a

heavy communication load, all subproblems have been solved on the same plat-

form. This type of implementation has been demonstrated by implementing the

DEMPC approach on a dSpace Autobox. The results showed that the maximum

computation time is only 3.2 ms per iteration, which demonstrated that real-time

implementation is feasible.
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5.5.2 Discussion

In this chapter, the DEMPC approach has been implemented and validated on the

high-fidelity vehicle model. The results demonstrated that the fuel consumption

can indeed be reduced by smart control of all the subsystems in the vehicle.

However, to obtain this fuel reduction, the switching frequency of the refrigerated

semi-trailer, the air supply system and the climate control system need to be

increased with up to factor 9. These subsystems can be modified to be controlled

with a continuous setpoint, e.g., with an electric motor that runs at variable

speeds. This avoids a compromise between the number of switches and the fuel

reduction for these components and fuel efficiency can be further improved.

The DEMPC approach is only validated on the high-fidelity vehicle model. To

fully demonstrate the approach, the solution strategy needs to be implemented on

the heavy-duty vehicle and tested on a road with significant fluctuations in road

slope. This also requires that other disturbances, e.g., the ambient temperature

need to be measured. An interesting extension to this field is to use online

parameter estimation to update the parameters that are used to predict and

optimize the decisions and states of each subsystem.



6
Conclusions

As stated in the introduction of this thesis, reducing the emission of the greenhouse gas CO2

and developing competitive heavy-duty vehicles are the main drivers for reducing the fuel con-

sumption. This has led to many technological developments that improved the efficiency of each

of the subsystems in the vehicle. However, optimizing all these subsystems individually does

not automatically guarantee global optimal fuel efficiency at the vehicle level. Therefore, a new

energy management strategy that takes into account all the energy flows and energy buffers in

the vehicle, i.e., a complete vehicle energy management (CVEM), is needed. The research ques-

tion posed in the introduction was to assess the fuel reduction potential of a CVEM strategy

that takes into account all energy flows and energy buffers in the vehicle. Key objectives in

this assessment are that the CVEM is required to be flexible with respect to adding auxiliaries,

scalable for real-time purposes and suitable for on/off controlled devices. This assessment led

to the two main objectives in this thesis, i.e.,

• Objective 1: The development of a flexible and scalable optimal control concept for CVEM

with on/off controlled auxiliaries

• Objective 2: The development of a flexible and scalable real-time energy management

strategy for CVEM with on/off controlled auxiliaries

The conclusions of the research along the lines of these objectives will be given in Section 6.1.

The research has also led to inspiration and directions for further research, which will be given

in Section 6.2 and, finally, this thesis will be concluded with some implications in Section 6.3.
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6.1 Conclusions

The main conclusions of this thesis are summarized below.

Convex approximation of the behavior of a heavy-duty vehicle: The

distributed optimization approach to CVEM requires a model that is suitable for

a model-based energy management approach. This low-fidelity vehicle model has

been obtained in Chapter 2 by making a convex approximation of the behavior of

the subsystems in the heavy-duty vehicle considered in this thesis. The behavior

of each of the subsystems has been defined in their input and output power

and the stored energy inside the subsystems. This general framework in terms of

powers and energies allows any vehicle topology to be fully described by the power

balances on the networks in the vehicle, e.g., the mechanical, the high-voltage and

the low-voltage network. The input-output power behavior of all subsystems is

approximated with a strictly convex quadratic equality constraint. The dynamics

for some subsystems in the vehicle, i.e., the energy in the high-voltage battery,

the low-voltage battery, the refrigerated semi-trailer, the air-supply system and

climate control system are described by a linear differential equation. The low-

fidelity vehicle model allows the CVEM problem to be formulated as an optimal

control problem that can be solved with a distributed optimization approach.

Flexible and scalable optimal control concept for CVEM with on/off

controlled auxiliaries: In Chapter 3, the distributed optimization approach

has been presented to solve the complete vehicle energy management problem of-

fline. The offline solution strategy requires all disturbances (such as the driving

cycle) to be known, so that the global optimal solution can be computed. This

computation has been performed in a two step procedure. In the first step, a

dual decomposition has been applied that allowed the underlying optimal control

problem to be solved for every subsystem separately. The second step amounts to

solving the optimization problem for every subsystem separately, yielding a dis-

tributed implementation of the optimization. Three methods have been proposed

for the latter. The first two methods rely on splitting the control horizon into

several smaller horizons. The first method uses Alternating Direction Method of

Multipliers and divides the horizon a priori, while the second method divides the

horizon iteratively by solving unconstrained optimization problems analytically.
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The third method, based on dynamic programming, is used to solve the optimal

control problem related to subsystems with on/off control. The approach has

been demonstrated by solving the complete vehicle energy management problem

for a PAN European driving cycle. Simulation results have shown that the fuel

consumption can be reduced up to 1.42 %, assuming that the auxiliaries are con-

tinuous controlled. This requires, however, that the auxiliaries are continuous

controlled or that the number of switches is unbounded. More interestingly, the

computation time has been reduced by a factor of 64 up to 1825, when compared

to solving a centralized convex optimization problem.

Flexible and scalable real-time energy management strategy for CVEM

with on/off controlled auxiliaries: The offline solution strategy cannot be

used in real-time as the disturbances, e.g., the driving cycle, are generally not

known a priori. In Chapter 4, the optimal control problem has been formulated as

a receding horizon optimal control problem and has been solved with a distributed

economic model predictive control (DEMPC) approach. In particular, a dual de-

composition has been applied to this receding horizon optimal control problem

such that the problem related to each subsystem can be solved separately. All

of the optimization problems related to each subsystem are linearly constrained

quadratic programs that can be solved efficiently with embedded quadratic pro-

gramming solvers. Variable prediction time intervals have been used to obtain a

long control horizon with a limited number of decision variables. As a result, the

final state constraint can be used as a constraint, instead of a ‘soft’ constraint,

which avoids the need for tuning parameters.

To deal with auxiliaries that can only be turned on or off, a novel on/off control

concept has been developed for control of the refrigerated semi-trailer, the air

supply system and the climate control system. The concept requires solving the

linearly constrained quadratic program twice, one with the first decision being

on and one with the first decision being off. The solution with the lowest cost is

taken as the optimal solution.

The only parameters for the solution strategy proposed in Chapter 4 are the

variable prediction time intervals and the penalty parameters for switching. The

variable sample times have been chosen intuitively and simulation results on a

low-fidelity vehicle model show that close to optimal fuel reduction performance

can be achieved without carefully tuning these sample times. The fuel reduction



134 Conclusions

of the on/off controlled subsystems strongly depends on the number of switches

that are allowed. The fuel reduction for the on/off controlled subsystems can be

close to optimal, but the number of switches needs to be increased significantly.

Particularly for the refrigerated semi-trailer and the air supply system, it is very

difficult to obtain a large average switching time as the average switching time

easily exceeds the maximum length of accurate prediction information. Still, by

allowing more switches, a fuel reduction of up to 1.3 % can be achieved.

Validation on a high-fidelity vehicle model: Prediction of the disturbances

is essential for DEMPC. The propulsion power needed for driving and the en-

gine speed have been predicted by assuming that the vehicle follows a reference

speed set by the cruise control or the downhill speed control, which is valid for

high-way driving. This has allowed the vehicle speed to be predicted over a tra-

jectory with a road slope predicted by an e-horizon sensor, e.g., ADASIS, leading

to a prediction of the propulsion power and engine speed. The prediction algo-

rithm has been validated with measured ADASIS information on a public road

around Eindhoven, which demonstrated that sufficiently accurate prediction of

the propulsion power and engine speed is feasible if the vehicle follows the most

probable path.

The fuel reduction for the DEMPC approach to CVEM has been validated

for a PAN European driving cycle. A fuel reduction of 0.58 % can be obtained

compared to the best default control strategy and 0.98 % compared with the

worst default control strategy. This is indeed lower than estimated with the

low-fidelity vehicle model, which can partly be related to the 25 % less braking

energy that is recovered in the high-fidelity vehicle model and the absolute fuel

consumption of the default control strategy is 10 % higher.

The DEMPC approach uses first a dual decomposition that allows the opti-

mization problem related to each subsystem to be solved separately, e.g., on a

separate electronic control unit. To avoid a heavy-communication load, all sub-

problems have been solved on the same platform and flexibility is obtained in the

software, where subsystems can be added without redefining the optimal control

problem. This type of implementation has been demonstrated by implement-

ing the DEMPC approach on a dSpace Autobox. This has shown a maximum

computation time is 3.2 ms per iteration, which demonstrates that real-time im-

plementation is feasible.



6.2. Recommendations for Future Research 135

6.2 Recommendations for Future Research

This thesis has presented a distributed optimization approach to CVEM for a

hybrid heavy-duty vehicle with a refrigerated semi-trailer, an air supply system,

an alternator, a DCDC converter, a low-voltage battery and a climate control

system and is validated by simulation on a low-fidelity and high-fidelity vehicle

model. Extensions for further research are summarized below.

Validation on the prototype vehicle: The online solution strategy proposed

in this thesis is validated by simulation, the prediction algorithm is validated

with real measurements and the solution strategy is successfully implemented

on a dSpace Autobox. The next step is to validate the solution strategy on the

prototype vehicle.

Online parameter estimation: Validation in the prototype vehicle requires

estimating the disturbances that were known in the high-fidelity vehicle model,

e.g., the ambient temperature. An interesting extension is to use online parameter

estimation to update the parameters that are used to predict and optimize the

decisions and states of each subsystem.

Eco-driving: An interesting extension to the optimal control problem amounts

to taking into account the largest energy buffer in the vehicle, i.e., the vehicle

mass. The energy in the vehicle mass consists of the sum of the kinetic energy

and the potential energy of the vehicle. The potential energy is fixed by the

elevation of the road, but the kinetic energy depends on the mass and velocity. An

intuitive example is to increase the velocity when driving down hill to store some

of the potential energy as kinetic energy. Finding the optimal reference velocity

is not straightforward as the road slope is given as function of distance while

the distance driven by the vehicle is depends on the vehicle speed. Moreover,

constraints need to be taken into account, e.g., safety, comfort, traffic lights and

gear selection. Still, the optimal control concepts presented in Chapter 3 and

Chapter 4 demonstrated that by taking a distributed optimization approach, the

optimization problems related to each subsystem are smaller and can be solved

with different solution methods. This allows the vehicle mass to be considered as
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another subsystem in the vehicle in which power can be stored as kinetic energy

and the energy losses through air drag are minimized.

Continuous control of subsystems: A very strong trade-off between fuel

consumption and switching frequency exists for subsystems that can only be

turned on or off. These subsystems can be modified to be continuous controlled,

e.g., with an electric motor that runs at variable speeds. This avoids a compro-

mise between the number of switches and the fuel reduction for these components

and fuel efficiency can be further improved.

Optimal sizing and topology design: The fuel consumption of a vehicle is

strongly related to size of the components and the topology of the vehicle. The

optimal size of the components often results in a trade-off, e.g., a larger battery

allows more energy to be stored, but also adds more weight to the vehicle. At

the same time, many different topologies exists, e.g., a (super) capacitor can

be added to the high-voltage network to store temporary peak powers or the air

supply system can be connected to the mechanical or low-voltage network instead

of the high-voltage network. The flexibility and scalability of the optimal control

concepts presented in Chapter 3 allows the topology to be changed easily so

that many different topologies can be automatically generated and their optimal

fuel consumption can be calculated. The results can be used to select the best

topology for each application.

Optimal traffic management: In this thesis, the fuel consumption of a heavy-

duty vehicle is reduced by optimally distribute the energy flows on vehicle level.

The same ideas can be applied to a higher level, i.e., on the level of multiple

vehicles that collaborate together to achieve on average a lower fuel consumption.

Ultimately, this will lead to a joint control of all vehicles where braking at, e.g.,

road junctions is not necessary anymore.

Convergence properties of the computational schemes: All algorithms

presented in this thesis converged within an acceptable computation time for

energy management. The convergence, however, is not formally proven and no

upper bounds on the convergence speed are given for the dual decomposition,

the alternating direction method of multipliers and for the Lagrangian method.
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An interesting problem is to formally prove the convergence of these methods for

the general optimization problem and to find upper bounds on the convergence

speed.

6.3 Implications

The contributions of this thesis can be a start for future research, possibly along

the lines of the recommendations given above. The optimal control concepts in

this thesis are presented in the context of smart control of all energy flows in the

vehicle. In particular, smart control of the auxiliaries, e.g., the refrigerate semi-

trailer received most attention. The fuel reduction potential for these auxiliaries

can be limited compared to e.g., the fuel reduction potential of a hybrid system.

Still, the main contribution of this thesis is not the fuel reduction for these

auxiliaries, but the step that is taken towards a flexible and scalable framework

that can handle the growing complexity of energy management systems that

take into account more than just the power split between an internal combustion

engine and electric machine. This will ultimately lead to close to optimal fuel

consumption for the complete vehicle.
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A
State Trajectories

A.1 Optimal state trajectories with continuous control

The optimal offline state trajectories over the full PAN European driving cycle are

given in Figure A.1 which requires solving the CVEM problem with over 500.000

input constraints, 300.000 state constraints and 150.000 quadratic constraints.

Here, x̃hvb = xhvb

Ehvb
is the high-voltage battery energy normalized with respect

to the maximum battery capacity Ehvb, x̃lvb = xlvb

Elvb
is the low-voltage battery

energy normalized with respect to the maximum battery capacity Elvb, Trst is

the air temperature in the refrigerated trailer, pas is the air pressure in the air

supply system and Tccs is the wall temperature of the climate control system.

This figure shows that all state constraints are met.

A.2 State trajectories for the low-fidelity vehicle model

The online state trajectories for the low-fidelity vehicle model for the full PAN

European driving cycle are given in Figure A.2. This requires solving the reced-
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ing horizon optimal control problem with distributed economic model predictive

control (DEMPC) approach. Here, x̃hvb =
xhvb

Ehvb
is the high-voltage battery energy

normalized with respect to the maximum battery capacity Ehvb, x̃lvb = xlvb

Elvb
is

the low-voltage battery energy normalized with respect to the maximum battery

capacity Elvb, Trst is the air temperature in the refrigerated trailer, pas is the air

pressure in the air supply system and Tccs is the wall temperature of the climate

control system. This figure shows that all state constraints are met.

A.3 State trajectories for the high-fidelity vehicle model

The online state trajectories for the high-fidelity vehicle model for the full PAN

European driving cycle are given in Figure A.3. This requires solving the reced-

ing horizon optimal control problem with distributed economic model predictive

control (DEMPC) approach. Here, x̃hvb =
xhvb

Ehvb
is the high-voltage battery energy

normalized with respect to the maximum battery capacity Ehvb, x̃lvb = xlvb

Elvb
is

the low-voltage battery energy normalized with respect to the maximum battery

capacity Elvb, Trst is the air temperature in the refrigerated trailer, pas is the air

pressure in the air supply system and Tccs is the wall temperature of the climate

control system. This figure shows that all state constraints are met.
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Figure A.1: Optimal state trajectories over the complete PAN European driving
cycle.
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Figure A.2: State trajectories for the low-fidelity vehicle model over the complete
PAN European driving cycle.
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Figure A.3: State trajectories for the high-fidelity vehicle model over the complete
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