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Evaluating performance of multivariable vibration isolators: A
frequency domain identification approach applied to an industrial AVIS

Michiel Beijen1, Marcel Heertjes1,2, Robbert Voorhoeve1, Tom Oomen1

Abstract— Vibration isolation is essential for industrial high-
precision systems in suppressing the influence of external dis-
turbances. The aim of this paper is to develop an identification
method to estimate the transmissibility matrix for such systems.
The transmissibility matrix is a key performance indicator in
vibration isolation, but its identification is severely limited by
the heavy weight and size of many industrial systems. Two non-
parametric system identification methods based on periodic and
spectral analysis are compared. It is shown that spectral analy-
sis can benefit from random floor excitations at low frequencies
and periodic shaker excitations at high frequencies. Using this
method, a transmissibility matrix between 1 and 100 Hz is
successfully measured on an industrial active vibration isolation
system (AVIS), demonstrating that the proposed method is
suitable for identification of these heavy-weight systems.

I. INTRODUCTION

Vibration isolators are widely used in high-precision sys-
tems (e.g. wafer scanners [1], scanning tunneling micro-
scopes [2], [3], measurement systems [4], [5]) to isolate
machinery from disturbances otherwise entering from the
supporting structure or floor [6]. A well-known performance
indicator for such isolators is the transmissibility function.
For single-axis systems, the transmissibility function de-
scribes the transfer from base frame vibrations to payload vi-
brations. For multi-axis systems, the transmissibility function
is extended to a transmissibility matrix, or a scalar function
derived from this transmissibility matrix [7], [8].

An estimation of the transmissibility matrix can be ob-
tained from experimental data by placing e.g. accelerometers
or geophones on both the base frame and the isolated
payload of the machine. In, e.g., [8], [9], several methods for
transmissibility matrix measurements are developed where
external shakers are used to ensure that the base frame is
sufficiently excited. In this case, the measured base frame
excitation can be considered as a noise-free input signal. This
leads in general to an unbiased estimate of the transmissi-
bility matrix with a low variance. However, these methods
are often not applicable to high-precision machines with
industrial vibration isolators, which are usually heavy-weight
systems (in the order of several tons), i.e. too heavy for off-
the-shelf shakers to support and excite the system.

Alternative identification methods using environmental
vibrations, e.g., floor vibrations as base frame excitation
do not need external shakers, given that these vibrations
have sufficient input energy in relevant frequency ranges.
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However, since the excitations are not known beforehand and
are generally non-periodic, available methods are restricted
to those that can deal with random noise. Moreover, sensor
noise on both the base frame and payload measurement
leads to an error-in-variables identification problem [10],
[11], which is well-known to lead to biased estimates [12],
[13]. An example of transmissibility function estimation via
floor vibrations is found in [14], where spectral analysis with
Hanning windows is used to estimate the transmissibility
function of a single air mount, but not for a complete
machine. In [15] an estimation method is applied to a small-
scale multi-axis vibration isolator that assumes the cross-
correlation between all measured inputs to be zero, but
this is often not the case for an industrial environment. In
[16] a multivariable method is presented that uses principal
component analysis to assess the quality of the measurement,
but only uses simulation results for its validation.

Although vibration isolation is essential in high-tech
equipment and a variety of control methods is present, at
present their experimental comparison is hampered by the
lack of a systematic performance identification approach. In
this paper, such an approach is developed that builds upon
standard frequency domain identification methods [17]. In
particular, (a) periodic analysis, and (b) spectral analysis are
considered. The main contribution of this paper is to obtain
a frequency response function of the transmissibility matrix
by combining system identification obtained through floor
excitations (at the lower frequencies) with periodic shaker-
induced excitations (at the higher frequencies). This approach
is validated on an industrial vibration isolation setup in the
(wafer scanner) relevant frequency range between 1–100 Hz.

The paper is organized as follows. Section II describes the
experimental setup and the identification problem. The non-
parametric estimation methods based on periodic and spectral
analysis are summarized in Section III. The experimental
results are presented in Section IV, and the major conclusions
are given in Section V.

II. SYSTEM DESCRIPTION

The system used for evaluation of the transmissibility
matrix is the Active Vibration Isolation System (AVIS)
shown in Fig. 1. The AVIS consists of two main parts: (i)
a movable payload of 290 kg, and (ii) a base frame that
is supported by the floor. The payload and base frame are
connected by four isolator modules. These isolator modules
provide a low stiffness and damping through pneumatically
controlled air mounts to obtain passive vibration isolation.
Three out of four modules are equipped with accelerometers
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base frame

isolated payload

shaker

isolator

Fig. 1. AVIS used for validation of the transmissibility matrix measure-
ments.

for measurement of the absolute payload acceleration in
vertical direction denoted by q̈1(t) ∈ R3. Furthermore, three
accelerometers are attached to the base frame, measuring the
base frame accelerations denoted by q̈0(t) ∈ R3. Both q̈0
and q̈1 are filtered using a second-order high-pass filter at
0.1 Hz and a low-pass filter at 450 Hz to reduce sensor noise,
cross-talk, and drift. Data acquisition is performed by a 16-
bit real-time target running at 2 kHz. To apply base frame
excitations in vertical direction, shakers are attached to three
different locations on the base frame. For more information
regarding the setup description, the reader is referred to [18],
[19].

A. Coordinate transformation

For transmissibility matrices, it is common practice to
define both the inputs and outputs with respect to a
global coordinate system. Therefore, a coordinate transfor-
mation is performed to transform q0 and q1 to respectively
x0(t) = [z0, θx0, θy0]

T and x1(t) = [z1, θx1, θy1]
T . Herein,

z indicates a vertical translation of the payload, and θx, θy
indicate rotations around the two horizontal axes of the
payload. Under the assumption of small displacements, the
coordinate frames are related by

x0(t) = R0q0(t), x1(t) = R1q1(t), (1)

with transformation matrices R0,R1 ∈ R3×3.

B. Problem definition

The problem addressed in this paper is to find a frequency
response function (FRF) of the transmissibility matrix T ,
which is defined by the linear mapping

X1(ω) = T (jω)X0(ω), (2)

with X1(ω),X0(ω) representing frequency-domain repre-
sentations of the signals x1,x0. Since these signals are
measured as sampled signals x1(kTs),x0(kTs) having sam-
pling time Ts and k = 0, 1, ..., N − 1, the Discrete Fourier
Transforms (DFT) of these signals will be used. As such,
X1(ω),X0(ω) are only considered at the N frequencies

ωk = (2πk)/(NTs),

X(ωk) =
1√
N

N−1∑
n=0

x(kTs)e
−jωknTs . (3)

In the remainder of this paper, the abuse of notation ω ≡ ωk

is used in the interest of compactness and readability.
Frequency-domain system identification techniques are

used which need sufficient excitation power for X0 (or its
derivatives) in the frequency range of interest. The problem
is, however, that it is difficult to sufficiently excite the base
frame with shakers due to its heavy weight, in particular in
the lower frequency range. Therefore, the following combi-
nation of excitation signals is proposed:

1. At low frequencies (< 10 Hz), floor vibrations ap-
pear to have an average power of 10−9 (m/s2)2/Hz,
which is significantly above the noise level of the used
accelerometers. This power will be used as excitation
input for the base frame at low frequencies.

2. At high frequencies (> 10 Hz), the excitation power
from floor vibrations rapidly drops, but here it is possi-
ble to inject sufficiently strong excitation signals using
off-the-shelf shakers.

It is expected that combining these two excitation sources
leads to sufficient excitation power in the complete frequency
range of interest, which is typically 1–100 Hz for industrial
precision machines.

III. NON-PARAMETRIC SYSTEM IDENTIFICATION

Gen. Shaker

band-pass filter

T

FFT

r(t) ug(t)

ng(t)

u1(t)

u(nTs)mu(t)

U(ω)

my(t)

np(t)

y1(t)

FFT

y(nTs)

Y (ω)

yp(t)

band-pass filter

Fig. 2. Block diagram for non-parametric system identification methods.

Consider the block diagram in Fig. 2. In this block
diagram, the transmissibility matrix is represented by the
linear time-invariant transfer function T having base frame
disturbances u1 as input and resulting payload motions y1 as
output. Both u1 and y1 are estimated by the measurements
u = ẍ0 and y = ẍ1, respectively, where the measure-
ments contain additive measurement noise mu and my ,
respectively. Signal u1 consists of two parts, namely ug

containing the shaker-induced excitations, and ng containing
the floor vibrations. The shaker block represents the transfer
function from reference r to ug . The output signal y1

consists of yp representing payload accelerations due to base
frame vibrations, and process noise np representing payload
accelerations due to direct payload disturbances (e.g. acoustic
waves).
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Two direct estimation approaches are presented in this
section to address the identification problem. This means that
estimation of T is based on measurement data of u and y
only. An alternative is to use indirect methods, which also
use data of r and therefore can provide unbiased estimates
for T even if there is a significant contribution of noise.
However, the drawback of indirect methods is that r must
be known, which is infeasible if one wants to estimate the
transmissibility matrix based on floor excitations. Therefore,
indirect methods are not considered in this paper. For more
information regarding the two direct methods, the reader is
referred to [17].

A. Periodic analysis

To avoid leakage effects the input signal U0 is assumed
to be Np-periodic, and an integer number of periods M of
the steady-state response is collected, giving N = MNp

samples per experiment. By doing so, the measurement data
of one experiment can be split into M periods which (ideally)
contain identical data for Y ,U in every period. Neglecting
transient effects, the measured output can be written in the
frequency domain as

Y (ω) = Y0(ω) +NY (ω), (4)

with corresponding noise-free output

Y0(ω) = T (jω)U0(ω), U0 = UG, (5)

and output noise

NY (ω) = MY (ω) +NP (ω) + T (jω)NG(ω). (6)

Note that, although NG can possibly provide useful informa-
tion about T , it is considered as noise in this method because
it is generally non-periodic. Similar to Y , the measured input
U can be written as

U(ω) = UG(ω) +NU (ω), (7)

with input noise

NU (ω) = MU (ω) +NG(ω). (8)

The following assumptions are introduced regarding the
noise:

Assumption 1 (Disturbances). The noise signals NU ,NY

satisfy

E [NU (ω)] = 0, E [NY (ω)] = 0,

E
[
NU (ω)NT

U (ω)
]
= 0, E

[
NY (ω)NT

Y (ω)
]
= 0,

E
[
NY (ω)NT

U (ω)
]
= 0,

E
[
NU (ω)NH

U (ω)
]
= CU(ω),

E
[
NY (ω)NH

Y (ω)
]
= CY(ω),

E
[
NY (ω)NH

U (ω)
]
= CYU(ω).

(9)

Assumption 2 (Disturbances - continued). The noise signals
NU ,NY are independent of the signals U0,Y0.

The influence of noise can be reduced by averaging Y ,U
over multiple periods. Define Y [i]{l} as the lth measured
period in the ith experiment. Under Assumptions 1 and 2,

Ŷ
[i]
0 (ω) =

1

M

M∑
l=1

Y [i]{l}(ω), (10)

gives an unbiased estimate of Y0 in experiment [i]. By
conducting as many independent experiments as inputs nu,
i = 1, ..., nu, the following matrix is constructed:

Ŷmat(ω) =
[
Ŷ

[1]
0 (ω) Ŷ

[2]
0 (ω) ... Ŷ

[nu]
0 (ω)

]
.

(11)

Similar to (10) and (11), Û
[i]
0 and Umat can be defined.

Given periodic data, the input-output relation can be written
as

Ŷmat(ω) = T̂ (jω)Ûmat(ω). (12)

Then, an estimate of the transmissibility matrix is given by

T̂ (jω) = Ŷmat(ω)Û
−1
mat(ω). (13)

for all frequencies ω where det(Ûmat(ω)) 6= 0.

Remark 3. The condition det(Ûmat(ω)) 6= 0 ensures that
Umat(ω) is invertible. This requires suitable experiment
design, i.e. nu independent experiments. To realize this, the
reference r consists of random-phase multi-sine signals that
are used to excite the base frame at different locations using
shakers.

1) Bias and variance: The signals NY ,NU could lead
to a non-zero bias and variance in T̂ . Under Assumptions 1
and 2, it is derived in [17, Sec. 2.7] that the FRF estimate
is asymptotically unbiased, i.e.

a.s. lim
M→∞

T̂ (jω) = T (jω), (14)

and the covariance of the FRF [17, Sec. 2.7] is estimated as

Cov(vec(T̂ (jω))) ≈ (Ûmat(ω)ÛH
mat(ω))

−1⊗(
V(ω)Ĉz(ω)V

H(ω)
)
,

V(ω) = [Iny
− T̂ (jω)],

Ĉz(ω) =

[
ĈY(ω) ĈYU(ω)

ĈH
YU(ω) ĈU(ω)

]
.

(15)

In (15), ⊗ is the Kronecker product, the overbar denotes a
complex conjugate, and ĈU(ω), ĈY(ω), and ĈYU(ω) are
the input-output noise covariance matrices of one experiment
(one column of Ŷmat(ω) and Ûmat(ω)). For sufficient
large M , and a good input signal-to-noise ratio (SNR),
the covariance asymptotically decreases to zero [17]. An
estimate for the covariance is given by

Ĉ
[i]
YU(ω) =

1

M

1

(M − 1)

M∑
l=1

(
Y [i]{l}(ω)− Ŷ

[i]
0 (ω)

)
(
U [i]{l}(ω)− Û

[i]
0 (ω)

)H
,
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Note that in (15) it is assumed that Ĉ[i]
Y = ĈY, Ĉ[i]

U = ĈU,
Ĉ

[i]
YU = ĈYU.

B. Spectral analysis

In this method, the measured output is written as

Y (ω) = Y0(ω) +NY (ω), (16)

with corresponding noise-free output

Y0(ω) = T (jω)U0(ω), (17)

having noise-free input U0(ω) = UG(ω) + NG(ω), and
output noise

NY (ω) = MY (ω) +NP (ω). (18)

Note that, in contrast to periodic analysis in Section III-A,
this method uses both UG and NG in U0, i.e. both signals
provide useful information to estimate T . The measured
input U can be written as

U(ω) = UG(ω) +NU (ω), (19)

with input noise NU (ω) = MU (ω).
Using random excitations to identify multiple-input

multiple-output (MIMO) systems, a full record of data y,u
is measured for a sufficiently long time. The full record is
subsequently split into M subrecords of equal length denoted
y[l], u[l] with l = 1, ...,M . Then, y[l] and u[l] are multiplied
with a Hanning window to reduce the effects of leakage
[17], and the DFTs Y [l](ω) and U [l](ω) are calculated for
all l. Having calculated all Y [l](ω) and U [l](ω), estimates
for the auto-spectrum matrix ŜUU(ω) ∈ Cnu×nu and cross-
spectrum matrix ŜYU(ω) ∈ Cnu×nu are obtained by aver-
aging over the M blocks, i.e.

ŜYU(ω) =
1

M

M∑
l=1

Y [l](ω)(U [l](ω))H , (20)

ŜUU(ω) =
1

M

M∑
l=1

U [l](ω)(U [l](ω))H . (21)

The so-called H1 estimator for T can be defined (see e.g.
[17], [20], [21]):

T̂ (jω) = ŜYU(ω)Ŝ−1UU(ω). (22)

The H1 estimator is a good choice when the output noise
on y is large compared to the input noise on u. When
there is no output noise but significant input noise, the H2

estimator should be used [21]. When there is both input and
output noise, and there is a priori knowledge about the noise
spectra, more advanced estimators can be defined that result
in less bias, see e.g. [16]. However, in the context of vibration
isolation, it is fair to assume that the SNR of u is much better
than the SNR of y, at least beyond the suspension frequency
where isolation occurs. Therefore, it makes sense to use the
H1 estimator in this context.

1) Bias and variance: An expression for the FRF estimate
using the H1 estimator is derived in Appendix A, and reads

T̂ (jω) ≈
(
I+CYU(ω)(E[Y0(ω)U

H
0 (ω)])−1

)
T (jω)(

I+CU(ω)(E[U0(ω)U
H
0 (ω)])−1

)−1
.

(23)

Eq. (23) shows that the FRF estimate is unbiased if the input
noise is zero. However, if there is input noise such that CU 6=
0, (23) shows that bias appears.

An estimate for the covariance of T̂ is given by [17, Sec.
7.2.3]

Cov(vec(T̂ (jω))) = 1

M
(S−1UU(ω))T ⊗ ĈY(ω) (24)

where the output noise covariance is estimated as

ĈY(ω) =
M

q

(
ŜYY(ω)− ŜYU(ω)Ŝ−1UU(ω)ŜH

YU(ω)
)
,

(25)

with q = M − nu the number of the degrees of freedom in
the residual.

Remark 4. The estimates (23) for bias, and (24) for the
covariance, might become inaccurate due to input noise.
This is because the H1 estimator assumes that the input
noise is zero. This assumption is necessary to estimate the
output noise covariance as in (25) in this direct identification
method.

IV. EXPERIMENTAL RESULTS

Identification experiments are presented in this section to
estimate the transmissibility matrix. Bode plots are used to
show T̂ , and σ(T̂ ) which denotes the standard deviation
of T̂ . Expressions for T̂ are given in (13) and (22) for
periodic and spectral analysis, respectively. Expressions for
σ(T̂ ) are obtained by taking the square roots of the variances
as defined in (15) and (24) for periodic and spectral analysis,
respectively.

For ease of presentation, and given the fact that the
floor mostly provides vibrations in Z-direction, This section
only presents measurement results for this direction. The
following measurement sets are analyzed in the subsections:
(A) Shaker excitation is turned off, so the base frame is only

excited by floor vibrations. Since there is no periodic
excitation, this measurement set is only analyzed using
spectral analysis.

(B) The shaker provides a periodic multi-sine signal with a
length of 10 s. The grid of excited frequencies ranges
from 10 to 100 Hz with a resolution of 0.1 Hz. All
excited frequencies have equal power. Periodic analysis
is used, which means that floor excitations will be
averaged out from the data.

(C) The same data as in (B) is used but now spectral analysis
is applied. By doing so, both floor and shaker excitations
are considered as useful excitation source.

All measurement sets have a total measurement time of
six minutes. To prevent drift of the sensor signals during
measuring, analogue high-pass filters are applied at 0.1 Hz

3515



for the accelerometers, recall Section II. The power spectral
densities in Z-direction for all measurement sets are shown
in Fig. 3. This figure clearly shows the benefit of combining
the excitation power from the floor and the shakers. The
power from the floor rapidly drops for frequencies beyond
10 Hz, while the shakers only provide reasonable high-
frequency excitation due to the positive slope of the spectral
plot.

10 0 10 1 10 2

Frequency (Hz)

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

M
ag
n
it
u
d
e
(m

/s
2
)2
/H

z

power spectral density (Z0 direction)

(A) Shaker OFF (spectral analysis)

(B) Shaker ON (periodic analysis)

(C) Shaker ON (spectral analysis)

Fig. 3. Measured power spectral density plots on the base frame in
Z0-direction. Note that spectral analysis with shaker ON combines floor
excitations at low frequencies with shaker excitations at high frequencies,
leading to good excitation conditions from 1–100 Hz.

A. Measurement with only floor excitations

In this measurement, a data sequence of u and y is
recorded for six minutes. The measurement sequence is split
in 36 subrecords of 10 seconds each, to which spectral
analysis (Section III-B) is applied. To compensate for data
loss due to windowing, a 67% overlap factor is used. Fig. 4(a)
shows the estimated transmissibility function in Z-direction.
At low frequencies, the magnitude converges to 0 dB, which

is as expected because below the suspension frequency the
base frame and payload behave as a single rigid-body having
the same motion in the same coordinate frame. Furthermore,
two suspension modes are visible around 3-4 Hz. The FRF
shows a desired roll-off until 20 Hz, clearly showing the
benefit of vibration isolation. Beyond 20 Hz, both the FRF
and the standard deviation suddenly increase. This is due to
the fact that the excitation power from the floor is low with
respect to the sensor noise level, see Fig. 3, leading to a poor
SNR. As a consequence, the plot is believed to be inaccurate
beyond 20 Hz in view of Remark 4.

B. Measurement with floor and shaker excitations (periodic
analysis)

In this measurement, the base frame is excited three times
150 seconds using shakers that are attached to three different
locations on the base frame. This leads to three times 15
periods with a length of 10 s having identical multi-sine
shaker excitation inputs. To reduce transient effects, the first
three periods of each experiment are discarded. Apart from
periodic shaker excitations, random floor vibrations will also
excite the base frame, but these excitations are considered as
random noise in periodic analysis. Assuming that the shaker
excitations are dominant, see Fig. 3 for the validity of this
assumption, three independent experiments are performed,
recall Remark 3. Using periodic analysis (Section III-A),
the random floor vibrations are considered as undesired
noise that should be removed from the measurement data
by averaging over the periods. The resulting FRF and its
standard deviation are shown in Fig. 4(B). The relatively
high standard deviation at frequencies below 30 Hz illustrates
a high uncertainty in the measurements. For frequencies
beyond 30 Hz the standard deviation becomes significantly
lower than the estimated FRF such that for high frequencies
the FRF estimate is assumed to be accurate.
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(A) Shaker OFF, spectral an.
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σ̂(T̂ )
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(B) Shaker ON, periodic an.

T̂
σ̂(T̂ )
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(C) Shaker ON, spectral an.

T̂
σ̂(T̂ )

Fig. 4. Bode magnitude plots of the estimated transmissibility function (T̂ , blue/yellow/red), and corresponding standard deviation (σ(T̂ ), black) for the
measurements (A) without shaker excitation and spectral analysis, (B) with shaker excitation and periodic analysis, and (C) with shaker excitation and
spectral analysis. In plot (A), the standard deviation might be inaccurate beyond 20 Hz in view of Remark 4. Plot (B) only shows results from 10–100 Hz
because this is the range of excited frequencies in the multi-sine signal provided to the shaker. Plot (C) gives the best results, because it combines floor
excitation at low frequencies with shaker excitations at high frequencies.
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C. Measurement with floor and shaker excitations (spectral
analysis)

Using the measurement data from Section IV-B for spec-
tral analysis (Section III-B), both shaker and floor vibrations
are treated as useful excitation input for the base frame.
Similar to (A), the data is split into sub-records of 10 seconds
each, and an overlap factor of 67% is used. The results are
shown in Fig. 4(C). Comparing this figure to the results in
Figs. 4(A,B), it follows that this approach nicely combines
the benefits of floor excitations at low frequencies and
shaker excitations at high frequencies, thus estimating the
transmissibility function for the complete frequency range
from 1 to 100 Hz. However, compared to (A), the plot of T̂
in (C) does not longer converge to 0 dB below the suspension
mode due to shaker-induced noise at very low frequencies
(< 2 Hz) , see Fig. 3.

V. CONCLUSIONS

Non-parametric identification methods based on periodic
analysis and spectral analysis are used to estimate the
transmissibility matrix of an industrial vibration isolator
from different measurement sets. The measurements without
shaker excitation can only provide a good FRF estimate for
the Z0 input direction at low frequencies. The measurements
with shaker excitation and periodic analysis can provide
reliable measurements for frequencies >10 Hz. For lower
frequencies, the shaker is unable to sufficiently excite the
base frame. The measurement with shaker excitation and
spectral analysis combines the advantages of both excitation
sources, leading to a good non-parametric identification in
the complete frequency range.
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APPENDIX A: BIAS FOR H1 ESTIMATOR

Recall the expression for ŜYU in (20). Substitution of (16)
and (19) in (20), and with M → ∞, (20) asymptotically
approximates to

ŜYU(ω) = E[Y0(ω)U
H
0 (ω)] + E[NY (ω)UH

0 (ω)]

+ E[Y0(ω)N
H
U (ω)] + E[NY (ω)NH

U (ω)].
(26)

Under Assumptions 1 and 2, (26) reduces to

ŜYU(ω) = E[Y0(ω)U
H
0 (ω)] +CYU(ω). (27)

In a similar fashion, an expression for ŜUU is obtained,

ŜUU(ω) = E[U0(ω)U
H
0 (ω)] +CU(ω). (28)

Neglecting leakage effects, and substitution of (26) and (28)
in (22), the FRF is estimated as

T̂ (jω) ≈
(
I+CYU(ω)(E[Y0(ω)U

H
0 (ω)])−1

)
T (jω)(

I+CU(ω)(E[U0(ω)U
H
0 (ω)])−1

)−1
.
(29)
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