
 

A controller for computer internal communication network

Citation for published version (APA):
Sung, C. S. (1978). A controller for computer internal communication network. Technische Hogeschool
Eindhoven.

Document status and date:
Published: 01/01/1978

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/9fa157d8-6600-45a7-a2f9-cc994e345fa4


TECHNISCHE HOGESCHOOL EINDHOVEN

Afdeling der Electrotechniek

Report on the project developped

by C. S. Sung in the period

November 77 till May 78.

NUFFIC adviser: Prof. Ir. A. HEETMAN

A CONTROLLER FOR COMPUTER INTERNAL

COMMUNICATION NETWORK

C. S. SUNG

This project was supervised

by Ir. M"., P. J. STEVENS

May 1978



1

INDEX

ABSTRACT

1. INTRODUCTION

2. COMMUNICATION NETWORK

a. General

b. Functional blocks

3. MATRIX CONTROLLER

a. Specifications

b. Solutions

4. DESCRIPTION OF FUNCTIONAL BLOCKS

a. Line Circuit Interface

b. Console

c. Switching Matrix Interface

5. CPU DESIGN : HARDWARE

a. Microprocessor

b. Microprogram Controller

c. Pipeline

d. Clock

e. Internal Bus

f. Memory

g. Microprogram Store

h. Interrupt Control Unit

i. Lock/Key

j. Condition Selector

k. Mapping PROM and Vector Address

1. Watch Dog Timer

m. D-Register

6. CPU DESIGN : SOFTWARE

a. General System

b. Instruction set

c. Memory Organization

d. Microinstruction

e. Microprogram Store Organization

f. Internal Registers

7. MICROPROGRAMS



2

8. TESTING

9. APPENDICES

a. Microprogram Controller emulation

b. Connectors

c. Signal timing

d. Instruction codes

e. FPLA



3

ABSTRACT

This report deals with a fast controller for a computer

internal communication network. This network should provide

reliable communication among the independent processes within the

computer. The controller, based on bit-slice microprocessors,

besides dictating the actions to be taken by the network, must also

look after the safety of the system. External error sources as well

as internal misfunctionings have to be detected. The time delay to

serve a request for a connection between two processes deeply

affects the total computer performance, and it is supposed to be

minimized.



4

1. INTRODUCTION

As the performance of the new integrated circuits improves

ever more, it increases the advantage of spreading processing power

5 in a number of intelligent nodes performing diverse tasks in

parallel.

On the other hand, the growing volume of information to be

exchanged among the nodes needs a sort of communication network to

link them.

10 This collection of nodes together with its interconnecting

channels can be regarded as one unique system, though complex it

may be. Thus, it may be considered as one computer built up from a

number of functional units which interact with one another. The

performance of such a system is dependent not only upon the power

15 of each of its constituent nodes, but also upon the speed and

reliability of the internal data communication between them.

It was decided at the THE in the group of Uigital

Techniques, to mount such an internal communication network in

order to connect the various microcomputers in use and the

20 different peripherals available, so that any device has access to

all the others. The solution adopted was a duplex switching matrix

to which all the devices are connected like subscribers to a

telephone exchange.

The design of a fast controller for this switching matrix

25 was the object of an effort contrived from November '77 to May

'78. Due to the restricted time available, just part of the

controller has been developed up to this date and it is exposed

in this paper.



2. COMMUNICATION NETWORK

5

(Fig. 1)

a. General

An information exchange involves not only data but commands

as well. Separation between both bit streams may be in time, in

which case we need insert some overhead to make the distinction.

For speed's sake, spatial separation was chosen, implying in the

split of the Communication Network (CNET) in two networks, one for

commands and the second for data transmission. As a consequence, an

extra flexibility was gained, namely the possibility of exchanging

data with a partner, and, simultaneously, commands with another

partner.

This split brings along an improvement in the system's

realiability. A collapse in one network may result in just a

decrease in performance without hindering the working of the whole.

This can be obtained by using the surviving network for both

commands and data transmission using a temporal division. For sure,

the devices should have the capacity to recognize and deal with

such a situation. Since physically both networks are similar, the

difference being merely in the kind of information flowing through

them, they can be equally used should a single network breakdown

occur.

For one network to survive independently of the other, it

is required that their controls be independent, i.e., one

controller for each network. The main units in a reliable system

should always be duplicated, and having only one controller would

expose the system to the risk of complete paralization in case of a

software error.

A major factor affecting the efficiency of the CNET is the

speed with which it can process the messages sent by the devices

and perform the convenient actions. Roughly it can be stated that

the delay for the establishment of a connection ought not to be

larger than the average connection duration time.

The man-machine interface is another task to be tended for

by the CNET, allowing the operator to obtain information on the



b. Functional blocks (Fig. 2)

7

A block diagram of the CNET shows a clear symmetry between

the Command and the Data networks. Each of them consists of 3 types

of functional units: the Line Circuit (LC), the Switching Matrix

(SM), and the Matrix Controller (MC). A Console shared by both

halves completes the system.

Each port to the CNET possesses a LC. It is supposed to

detect requests from the device, which are then signalled to the

MC. Under the control of the MC, it can establish a communication

between device and MC for message exchange or set a link between

device and the SM. Here takes place the conversion from the 4-wire

full-duplex channel with current-mode signalling to the internal

signalling used in the SM and vice-versa. The LC decouples

electrically the channel and the internal circuitry, for safety

purposes.

Furthermore, the LC participates in the testing and

disconnection of the matrix crosspoints.

The LC here proposed differs from the present version

(developped for a single MC system), in that it cares only about

one channel, either the Data or the Command channel, but not both.

Requests for the Command network and for the Data network are sent

through the respective channels, not all through the Command

channel as in the present version. Thus, complete independence

exists between both parts of the CNET.

The SM is a 32 x 32 full-duplex matrix which crosspoints

are thyristors. Connections are accomplished by activating pairs

of thyristors, while disconnection occurs when the pair of LC's

associated to that particular crosspoint is commanded to

disactivate its thyristors. Interchannel crosstalk poses not much

of a problem since digital data tolerates a low SiN ratio without

significant effects on the bit error rate.

Requests detected by the LC are served by the MC according

to a priority scheme and each request is processed and all the

appropriate measures are taken before the next one is served.

Eventual uncoherences and errors found out during this processing



8

are signalled to the Console, and attempts to correct them are

made. For statistics upkeep, the MC informs the Console about all

requests received and the result of the actions performed.

Connections are laid across the 8M's under the control of

the MC which accionates the desired crosspoint establishing a

4-wire full-duplex link between a pair of ports. There is also the

possibility of testing the crosspoint by sending from the MC, via

one of the LC's associated to that crosspoint, a bit pattern which

goes through the 8M and is detected by the other LC associated to

that crosspoint. This LC conveys the received bits back to the MC

which then verifies the integrity of the test pattern.

Network administration, fault detection and diagnosis

constitute the ~ain tasks of the MC.

The operator-CNET interaction is provided by the Console.

It monitors the system's performance thanks to a constantly updated

information received from the MC concerning the network status, the

start and the end of the connections, the faults detected. Besides,

it transmits to the MC any operator's command demanding more

information on the present network status or ordering modifications

in it.

Being under a relatively light load, the Console can store

the story of the CNET for further processing, aiming at statistical

analysis which can help optimize the network utilization and also

help discover the source of sporadic faults happening only under

special or random conditions. Furthermore, preventive maintenance

can also be scheduled by the Console since it can keep track of the

story of the network components.



9

3. MATRIX CONTROLLER

a. ~cifications

The 'intelligent' block of the CNET, the Matrix Controller

(MC), has to satisfy a number of functional as well as safety

requirements.

Initializing the system, testing the network and

updating the internal network maps.

Periodic polling of the LC's to serve device requests

according to a priority scheme. The selected LC is then supposed to

put MC and the requesting device in communication.

Reception and processing of the message from the

device, to check its validity.

If valid and possible to be attended to, the desired

action is carried out and eventually a confirming reply is

transmitted back to the device. Otherwise, a convenient advise is

sent back.

If the desired partner is found already engaged in a

conversation, there must exist the possibility to request a waiting

connection, so that the link will be established as soon as the

other device becomes available •

• Updating of the network maps and status.

Testing, fault detection and correction as far as

possible. The Switching Matrix crosspoints are to be tested; the

integrity of the network must be protected from software errors in

the MC, and if the network system goes astray, causing an excessive

delay in the polling periodicity, this should be detected and self

recovery procedures take place.

Communication with Console to inform about the

occurrences and to perform commands from the Console •

• Waiting time for a device to have its request served

should be minimum.

Interfaces within the functional blocks of the CNET

were quite loosely defined and no requirements were set for the

internal architecture of the MC.



10

• No demands were put forward as to the type of printed

circuit boards and components to be employed. Since it is not a

commercial system. no preferencial component list or bus standard

were imposed. Nevertheless, some practical limitations. as the

excessive delay for the acquisition of certain components and a

sensible commitment to the standard digital logic, did restrain the

choice.

b. Solutions

To speed up the request serving, we distribute the

functions.

A Line Circuit Interface (LCI) takes care of scanning the

LC's and assembling the messages arriving in serial mode into the

parallel format, checking the code and eventually asking for re

transmission, thus saving CPU time. In case of replies to be sent

to the devices, the LCI receives them from the CPU in parallel and

transmits them serially, generating the redundancy bits and, if

necessary, retransmitting the message. Matrix crosspoint testing

and disconnection command& are also channeled through the LCI.

Message processing and map updating are assigned to a

dedicated processor (CPU) with an architecture specially adapted to

its functions. Frequently accessed data is stored in a fast semi

conductor memory while less often used data and programs are in a

slower section of the RAM memory.

Implementation of the 'waiting connection' feature allowing

formation of waiting queues, was limited to only one waiting

partner a for every engaged device b.Should a third device

also try to communicate with ~, the MC will reply with a 'device

~ busy' message. When the device ~ finishes its conversation,

immediately ~ gets a connection with ~, at the same time

freeing the waiting queue for b. Unlimited queueing (up to 30

devices might wait to talk with a certain partner) would require

large queue maps, and time-consuming updating and searching. There

is also a risk that a low priority device might stay indefinitely

in queue.



1 1

The CPU instruction set is tailored for the particular

tasks most often executed but also includes standard general

purpose instructions to enable programming of less critical

functions. This feature requires the possibility to microprogram,

so that powerful instructions, implemented through special

microprograms, deal with the critical functions. They are faster

than the alternative of programming the tasks with standard

instructions, which are not optimized for the specific goal and

require more time since they need more accesses to the program

memory to fetch the instructions.

Error detection and diagnosis are undertaken during the

message processing by the CPU, which tries to verify the coherence

between the memory maps and the message. For instance, a device

requesting a new connection is supposed not to have a 'busy' status

according to the map, but, should this not hold true, an attempt is

carried out to find whether the device has committed a mistake or

the map is incorrect.

In case a failure leads to improper behaviour of the CPU, a

lock-key safety feature limits the access of a program to only

certain parts of the sytem. Thus, eventually, havoc in the network

or in the memory can be avoided. An attempt to violate a forbidden

section causes a branch to a re-initialization procedure that

tries to put the system back to the rails.

A Watch Dog Timer (WDT) looks after that the LCI is polled

periodically. An excessive delay probably means a software error

due to some particular conditions, that resulted in undefined

loops. When too large a span of time elapses since the last

polling, the Console gets a warning and then it ought to command

the Me to enter a reinitialization procedure, and it is hoped that

the special circumstances leading to that error are not going to

repeat. Afterwards, the Console may try to diagnose the error.

Due to the loose definition of the interfaces between the

constituent blocks of the CNET, it was thought better to leave the

LCI and the Console for a further development, when the Console

functions and the LC are clearly settled, lest eventual

modifications in these definitions invalidate the design made.



12

Nevertheless, for the design of the CPU, many assumptions

were taken about the LCI and the Console, and they are presented in

the next chapter.



13

4. DESCRIPTION OF FUNCTIONAL BLOCKS

The CPU was developped based upon certain premises on the

characteristics of the Line Circuit Interface, Console and

Switching Matrix Interface. Due to the lack of time, these blocks

were left aside untackled. For sure, they should be connectable to

the Internal Bus, described in the following chapter.

a. Line Circuit Interface (LCI) (Fig. 4)

On one side, it interfaces with the CPU and on the other,

with up to 32 LC's, which are under its command.

The LCI is connected to the Internal Bus as a peripheral

with fixed address 0 (established for ease of programming). It

communicates only with the CPU, and since it is often contacted by

the CPU, it should have fast buffers for this message exchange. Any

outgoing data, either a device message or a LCI message, is pushed

into the outgoing buffer. It works as a stack that pops one 12-bit

word, writing it on the Internal Bus lines, every time the LCI is

polled. Polling occurs when the CPU addresses the LCI in a read

operation. Commands issued by the CPU to the LCI are sent on the

Internal Bus by means of a write operation and they should be

stacked into the incoming buffer. Speed requirements for these

buffers are given in Appendix £.

The LCI is a finite-state machine initially in the 'idle'

state, ignoring any requests from the LC's.

A normal sequence of events for the LCI is started by the

arrival of a 'Scan' command from the CPU, making it go to the

'scan' state. Then, it has to scan the request lines of the LC's

which correspond to unmasked bits in a Priority Mask. Masked LC's

are not served.

After a device is chosen to be served, the LCI selects the

coresponding LC (which is supposed to lay a two-way connection

between device and the LCI as long as it is selected), acknowledges

the request and expects the device to send the message, which is

serial-to-parallel converted and stored in the outgoing buffer.



14

The LCI holds the LC selected while it waits for the CPU

to poll, upon what the LCI pops the data of the outgoing buffer

onto the internal data bus.

Now, one of four possible commands should come from the

CPU:

'Break Xpoint' - the LCI must order the pair of LC's specified

in the command to break the crosspoint. After this, LCI goes to

the 'idle' state.

'Send message to device' - in which case the message is supposed

to come in the next word sent on the data bus, and it will be

transmitted after parallel-to-serial conversion with redundancy

code generation is performed by the LCI. Then LCI goes to the

'idle' state.

'Test' - LCI must test crosspoint specified by the pair of

addresses in the second word of the command and give the result

with either a 'Test OK' or a 'Test failed' message, before

going to 'idle' state.

'Stop' - and LCI returns to 'idle' state.

After fulfilling the tasks, the LCI always liberates the

selected LC, before going 'idle'.

Should a polling come when no requests at all have been

detected or before a message has been completely received, then the

LCI answers likewise by writing the contents of the outgoing buffer

on the internal data bus, but, since its contents are always

cleared after the last message is transmitted, this is understood

by the CPU as 'No message'.

The CPU has at its disposal two other commands,

'Connection to device a' only accepted by LCI when 'idle'.

Then ~ is selected and the message contained in the second

word of the command is forwarded to this device

'New Priority Mask' - only accepted by an 'idle' LCI, the next

words supply the new Priority Mask.

The state diagram proposed in fig. 4 shows the allowed

combinations, and it would be safe to have the LCI ask for

interruption in case a violation of the permitted sequences is

detected. This interruption should start a CPU procedure to



15

investigate the source of the error.

When its corresponding LC is selected, a device with

physical address ~ may send to the MC one of the following

messages:

'Connect a to b' where b is the logical address of

the desired partner.

'Disconnect ~ and ~' - which may mean that either there is

a connection between both which must now be undone. or there is

a waiting connection requested by 2 (and the desired partner

b was engaged in a connection) but now a does not want to

wait any longer.

'Inoperative' - device a is going out of operation and it is

disabled for any connection from now on. Any remaining

connection is broken.

'Operative' device a is operating normally now.

'LOG = ~ - answer to the command 'Your logical address?'

from the MC.

When the LCI receives a device message, it must add the

physical address a of the requesting device, which is an

information needed by the CPU. Thus, the internal format of a

device message consists of two words, the first for the message

code and the second for the data - physical address a and

logical address ~, which are read by the CPU in two consecutive

read operations.

Besides, there are also messages originated in the LCI

itself to the CPU. Two of them concern the result of a crosspoint

test. The test consists of ordering the pair of LC's associated to

that crosspoint to go into the 'test' state, in which they provide

a duplex link from LCI to the Switching Matrix. So, the test

pattern generated by the LeI goes, via one LC, across the SM and,

via the other LC, it is received by the LCI, which then checks its

integrity. Simultaneously, the inverse path is tested.

The LCI may send to the CPU:

'Test OK' - correct 2-way communication through the crosspoint.

'Test failed' - at least one of the ways does not operate

properly.



16

'No message' - when the outgoing buffer contains no message.

'LC ~ crazy' - a 2-word message, with the LC address a in

the second one. It signals something wrong with that LC.

By means of a 'Send message to device' or a 'Connection to

device a command, the MC may send to the selected device the

following messages:

'You are inoperative' - tells the device that it is disabled to

receive or request connections. It is used as an acknowledgement

to an 'Inoperative' message from the device or as a notice that

due to a command from the Console, it is being put inoperative

now. While in this state, it cannot send a 'Connect ~ to l'
message, though its requests continue being served.

'You are operative' - now it is enabled to receive and request

connections. It is used as an acknowledgement to an 'Operative'

message from the device.

'Xpoint defective' - answer to 'Connect a to b' message

from the device, informing a that the tests made on the cross

point (a,b) have failed and it should temporarily quit trying to

contact ~ directly.

'Device ~ inoperative' reply to a 'Connect a to b'

message in case ~ is inoperative.

'Device ~ busy' same as above, only that now b is

engaged in a connection, and besides,there is already one

device waiting to talk with b. So ~ should repeat later the

attempt to contact ~.

'Connections disabled' - also a reply to 'Connect a to ~',

when the MC is disabled to lay any new connection across the

network.

'You are crazy' - reply to any device message that is deemed by

the MC to be improper for the present situation.

'Your logical address?' - question issued by the MC to update

its internal maps.

These sets of messages above exposed are considered

sufficient to deal with all the situations. In case of error,

either due to an invalid command code or an incorrect sequence of

commands, the LCI resorts to an interrupt request as a means to



1 7

warn the CPU.

A proposed set of codes for the messages is exposed in the

Appendix i.

b. Console

It is connected to the Internal Bus as a peripheral with

fixed address F
16

(for ease of programming). Like the LCI it must

be equipped with fast stack buffers to talk with the MC.

Console commands are polled by the MC in read operations

and information about the network arrives in write operations, as

well as by "bugging" the Internal Bus to overhear the messages sent

by the LCI. Should something go awry and the Console not be polled

after the due interval, it can resort to an interrupt request to

force the acceptance of its command.

A tentative definition of the Console assigns to it two

main statuses, dictated by some key on the Console panel: Disabled

and Enabled.

Disabled - the Console just receives information about the CNET,

not being allowed to interfere. All messages issued by the LCI

are to be received by the Console, which detects when the LCI is

being polled by the CPU, and reads the message written by the

LCI on the internal data bus.

Besides, the Me transmits in write operations to the Console,

the results of the message processing - actions taken and

eventual errors found. All the data collected can be processed

by the Console to analyze the CNET traffic to optimize its

performance. Failure may be diagnosed by studying the events'

sequence preceding the error.

The set of one-word mesages issued by the MC comprises:

'Initializing' - sent at the start of the Initialization

program to advise Console that the Watch Dog Timer must be

ignored till the system enters the Network Operation

program.

'Reinitializing' - same as above, only that it is sent at

the start of the Reinitialization program.



18

'Disconnection failed' - the test made on the crosspoint

shows that the disconnection command was not successfully

carried out.

'Connection failed' - idem, but now the connection command

was unsuccessful.

'Waiting connection' - the last connection request is on the

waiting queue.

'Send Status Word' - when (Re)Initialiiation reaches the

last stage, Console is requested to forward a new Status

Word. At the same time, it is informed that after

satisfying the request, the system is ready to go.

'LCI crazy' - results of the test on the crosspoint,

performed by the LCI, are neither OK nor failed.

'Check LCI' - an interrupt request from the LCI implies that

it has detected some fault.

'Check SM' - an interrupt request from the SMI implies that

some fault was found in the SWitching Matrix.

'Error messages' - bits 7,8,9,10 of the message indicate the

number of the error found during a message processing.

See Appendix ~ for all the proposed codes.

When polled by the MC, the Console in Disabled status answers

with a 'No commands' message.

Enabled - Aside from performing the tasks described in the

Disabled status, the Console is able to issue commands to the

Me, which are stacked into the outgoing buffer. The proposed

Console command set consists of:

'Load Memory' - Console wishes to load new data into the Me

Memory.

'Dump Memory' - Console asks for the contents of parts of

the Me Memory. Useful in case of a throrough diagnosis of a

system failure.

'Dump registers' - same as above, now the MC internal

registers are dumped.

'Go to n' MC must start executing instruction in Memory

address n.

'New Priority Mask' - A new Priority Mask for the LeI is



19

given.

'New Status Word' - MC must adopt this new Status Word.

'Device a off' - order for the MC to consider the device ~

as inoperative. Same effect as a device message

'Inoperative'

'Device a on' - orders the MC to put device ~ operative.

'No commands' - there are commands presently.

In the Appendix 2. codes for the commands above are proposed.

c. Switching Matrix Interface (SMI)

The SMI hangs onto the Internal Bus as a peripheral with

a fixed address 1 (for ease of addressing it in a microprogram).

Under the command of the CPU. the SMI takes the measures

necessary to lay the desired connections across the Switching

Matrix. The commands arrive in CPU write operations in which the

data sent on the data bus consists of a pair of 5-bit addresses

specifying the two ports to be linked. Appendix d describes the

command format.

Aside from this function. we propose that it should

request an interruption to the CPU in case any problem happens to

be detected. as for example. the absence of the Switching Matrix.



5 • CPU DESIGN HARDWARE

20

(Fig. 4)

A microprocessor-based design was immediately assumed, in

5 order to provide the processing power required.

a. Microprocessor (Fig. 5)

Three microprocessors were taken in consideration during

the selection phase.

10 Departing from the requirement of microprogrammability, the

range of choice became restricted to two types of bit-slice micro

processors easily available: Advanced Micro Devices Am 2901 (4-bit

slice) and Intel 3002 (2-bit slice).

In our application, the dedicated CPU has few arithmetical

15 tasks, but on the other side, much map accessing, and message

reception and transmission must be performed. Mainly, it is desired

to manipulate bits. The Am 2901 has a more powerful arithmetical

capability than the the 3002, while the latter has 3 inputs and 2

outputs as compared to only 1 input and 1 output for the Am 2901.

20 Due to the stress on the demand for high throughput, the Intel chip

offers a substantial advantage over the other. Address and data

buses need not be multiplexed as it would happen with the Am 2901,

saving microinstruction cycles in read/write operations. Besides,

one of the inputs to the 3002 serves as a mask, facilitating bit

25 manipulation.

The microinstruction execution time is about the same for

both chips. The Am 2901 has 16 internal registers, but the 11

registers at disposal in the 3002 were deemed about enough for our

purpose.

30 The third microprocessor considered in the study was the

Signetics 8X300, a device with high speed - 250 ns instruction

cycle time - , designed for high throughput and endowed with good

bit handling facilities. Though not microprograrnmable, its

instruction set and speed suit the necessities of the application.

35



21

The 8X300 has a 8-bit wide data bus. Since up to 32 devices

may be connected to the CNET, each requires a 5-bit address. As

often enough a device message involves a pair of partners, 10 bits

are needed to specify both of them. Thus, two 8-bit data words

5 would have to be fetched, causing a loss of processing speed.

Furthermore, the need for more data words goes agains the reduced

number - eight - of internal registers making it certain that we

would run short of registers during a device messag 0 processing.

Since part of the data employed cannot be stored internally, more

10 accesses to external memory would take place.

Adding the points, preference fell upon the Intel 3002. The

elected data word length is 12 bits, with room for two 6-bit

addresses, in case of CNET expansion up to 64 devices. Since data

and instruction are not separate, also the same length applies for

15 instruction. An array of six Intel 3002's in parallel, accompanied

by a carry look-ahead generator, the Intel 3003, constitute the

core of the CPU. As it can be seen in the Appendix i, this word

length is about the ideal to accomodate the proposed instruction

set.

20 The 12 D-outputs of the 3002 array were connected to the 12

D-BUS lines. The 11 least significant A-outputs of the array

traverse an Address Logic before they are entitled to control the

11 A-BUS lines. The most significant A-output is left unused.

Normally the Address Logic just inverts the A-outputs

25 before writing them on the corresponding A-BUS lines. However, when

the Network Map is accessed, inversion occurs only for the 5 LSb,

while the 5 MSb are forced LOW and the middle bit selects between

Logical and Physical addresses, as explained further on.

The M-inputs to the 3002's associate one-to-one with the

30 outputs of the D-Register, Le., with the last data word read into

this register. Into the I-inputs, a mix of D-Register outputs and

Mask bits from the microinstruction word come, serving special

purposes described later. Finally, the K-inputs (used for masking)

are connected to the Mask field of the microinstruction.

35 Bit testing possibilities with the 3002 require an external

logic to AND the partial results from each of the bit-slice



22

processors, thus generating the CO signal which is HI if the bits

tested resulted to be all LOW.

b. Microprogram Controller (Fig. 6)

To control the microprogram sequence, between the Intel

3001 and the Am 2910. the latter was reckoned better. due to its

higher flexibility and ease of use. It was not available yet. but.

using a pair of Am 2909's (microprogram sequencers). a PROM to

decode the Am 2910 instruction code and a counter. the needed

features of the Am 2910 were emulated. Four 74508 buffers provide

the capability to drive the Microprogram Store.

The limited microprogram address (only 9 bits). the reduced

event counter capacity (only a 4-bit counter). the elimination of

some microprogram sequence control instructions. simplified the

complexity of the emulation circuit. and it was considered of

little harm for our application. Compatibility remains. as soon as

the Am 2910 takes its place. the old programs need suffer no

modification. and then. its extra features can be used in the new

microprograms.

Appendix a details the emulation circuit.

c • Pipeline (Fig. 8)

The pipeline consists of a bank of registers that. at the

start of every machine cycle. store the microinstruction to be

executed. It possibilitates overlapping the execution of a micro

instruction with the fetch of the next one. since the Microprogram

Controller may already calculate the next address and access the

Microprogram Store while the rest of the machine is still executing

the present microinstruction. Thus. the following one will be ready

at the input of the Pipeline soon enough.

With a pipelined configuration. shorter machine cycles can

be obtained.

d. Clock (Fig. 10)

It consists of a counter. and a NAND buffer that supplies



23

the driving capability needed for the CK signal. The AO signal also

traverses a NAND buffer to ensure a better synchronism between

both clock phases.

There two clock cycles : a slow one (450 ns), in case the

choice of the next microinstruction depends on conditions

generated by the one present presently under execution, and a fast

cycle (300 ns), when we do not need to wait for conditions being

now calculated in order to determine the next microprogram address.

Additionally, the fast and slow cycles are used to provide the

necessary timing for Memory, LCI, SMI and Console read/write

operations. These blocks have a definite specification concerning

read and write cycle times, so a determined sequence of fast and

slow cycles applies for every contact the CPU wishes to establish

with them. In Appendix £, the timing diagrams used for the

calculation of the cycle times and read/write operations are

detailed.

Selection of fast/slow machine cycle is governed by the F

bit in the microinstruction. The heavy load driven by the CK signal

required the use of a buffer.

Nominal oscillator period is 150 ns, corresponding to 6.66

MHz.

e. Internal Bus

For internal communication, it was adopted a bus structure

composed of three parts:

A-BUS 11 address lines commanded by the Address Logic of the

CPU. Since no more than 16 peripherals are considered

necessary, only the 4 LSb of the A-BUS contain a valid

information when addressing peripherals.

D-BUS 12 bidirectional data lines in inverted logic, onto

which tri-state logic outputs are connected.

C-BUS there are 9 control lines,

A-BUS VALID when the CPU writes LOW on this

line, a valid address is present on the A-BUS.
---

• D-OUT CK in a CPU write operation, the D-BUS



24

contents should be stored by the receiving end at the

positive-going edge of this signal.

D-IN CK in a CPU read operation, D-BUS is read

into the D-Register at the positive-going edge of this

signal. Also used by the Console to overhear the LCI

polling.

P/M when HI, it selects a peripheral, implying

that only the 4 LSb of the A-BUS are meaningful. When

LOW, memory is chosen, and all 11 A-BUS lines contain

information.

W/R a write operation occurs when it is HI, and a

read operation when LOW.

INTREQ the Interrupt Control Unit sets it LOW if

an interrupt request with higher priority than the

present interrupt level is present •

• ACK for peripherals with undetermined access delay

this line is used to signal back to the CPU when they

are ready.

WDT when Watch Dog Timer detects a long time

without LCI polling, WDT goes LOW.

LAL when power is turned ON or the Reset button is

pressed, LAL goes LOW. It is a initialization signal

for all units.

The first three control signal are inhibited if an

incorrect read/write attempt happens. The logics for the generation

of these signals is concentrated on a FPLA. See Appendix ~.

f • Memory (Fig. 9)

Constantly demanded data and programs use a fast semi

conductor memory, going from Memory address 0 to 255, while a

slower, and hence cheaper, semiconductor memory stores seldom

accessed information, starting from address 256 onwards. It is

expected that in normal operating mode the CPU will utilize but the

fast portion. Initialization and Reinitialization may fit into this

section, but diagnosis and special-purpose procedures will occupy



25

the other portion.

With 11 A-BUS lines, up to 2K words can be reached, using

memory words of 12 bits with inverted outputs to the D-BUS line

For specifications concerning memory access and write cycle times,

go to Appendix ~.

g. Microprogram Store (Fig. 7)

All microprograms are supposed to fit into a 512 X 36-bit

PROM, called the Microprogram Store. The word length of 36 bits

comes from the size of each microinstruction, as explained in the

next chapter.

It comprehends two sections of 256 36-bit words, which do

not interfere with each other, i.e., there are no cross references

from one section to the other. In the lower half, occupying

positions 0 to 255, one finds the microprograms corresponding to

the 38 standard instruction. The upper half, from 256 to 511,

comprises the microprograms that treat the special instructions

tailored for the message processing and switching functions. Though

fewer in number, these instructions require lengthier execution.

As it concerns the speed, our timing calculations assumed a

maximum access delay time of 70 ns for the PROM's. The next address

comes from the Microprogram Controller early enough for the next

microinstruction to be accessed in the Microprogram Store and to

settle down at the inputs to the Pipeline. When another cycle

starts, the Pipeline stores the data present at its inputs.

h. Interrupt Control Unit (ICU} (Fig. 11)

Based on an Intel 3214 chip, it serves up to 8 interrupt

request lines. The CPU polls the ICU by a write operation, sending

the contents of the Status Word. In fact, the ICU cares only
----about bits 0,1,2,6 of the D-BUS, where the present interrupt

level and the interrupt enable bit are. In the next clock cycle,

the INT~~ line is tested because only in this cycle it will

be valid. Then, at anytime, the new interrupt level may be read on

D-B05 lines 0,1,2 by means of a read operation.



26

INTREQ goes LOW just in case interruptions are enabled

and an interrupt request with higher priority than the present

interrupt level is present.

To address the ICU, we set in the microinstruction, NEXT

ADDRESS field equal to C
16

Load Counter and Continue) and

CCSEL non-zero. This method of addressing takes advantage of the

unfrequent use of these fields , so that no extra machine cycles or

microinstruction bits are specially dedicated to control the ICU.

For a read operation, D-REG is made LOW, while a write

requires D-ENABLE to be LOW. The FPLA takes care of decodi~5

the ICU read, making ICUR LOW. In a leU write operation, the FPl~

makes ICUW go LOW. See Appendix ~ for more explanations.

More details on the timing appear in Appendix ~.

Lock/Key (Fig. 10)

Seven possible locks exist, each protecting determinate

parts of the CPU from an eventual invalid access. Valid operations

are tabulated below:

Lock Network Map Rest of Memory LCI

SM I

Application

1 R,W R,W Message processing

2 R Network Map dump

3 R,W Network Map check

4 R Instruction fetch

5 R,W R,W R,W God's programs

6 R,W Non-switching program

7 R,W R,W Diagnosis programs

R read allowed W write allowed

Peripherals may always be read and written.

The Lock Register updates its contents whenever the micro-



27

instruction contains NEXT ADDRESS equal to E
16

(Continue) and

CCSEL non-zero. Then the CCSEL field is taken as the new value fer

the lock. Some critical microprograms immeadiately load an

appropriate lock to prevent mishaps. When there is an attempt to

perform a disallowed operation, the operation is inhibited so that

no damage occurs, the I/O ERROR bit goes HI forcing a jump to

microprogram address xFF (the MSb is not altered), where Re

initialization procedures start.

A FPLA performs the logics to survey whether such a

violation has been attempted, and it is detailed in Appendix e.

j • Condition Selector (Fig. 10)

It comprises a clocked register to prevent the asynchronous

conditions from being admitted at improper moments, and a

multiplexer, controlled by the CCSEL field in the microinstruction,

to select the desired condition.

CCSEL

o
1

2

3

4

5

6

7

Condition

I/O ERROR

CO

WDT

ACK

TRUE

EV.CNT

INTREQ

Origin

Lock/Key

3002 array

Watch Dog Timer

Asynchronous peripherals

(For unconditional branching)

(Goes HI when Event Counter

Interrupt Control Unit

0)

k. Mapping PROM and Vector Address (Fig. 6 and 10)

Every instruction arriving from the Memory via the D-BUS is

clocked into the D-Register. The 8 MSb constituting the operation

code of the instruction serve as an address to the Mapping PROM

which should output the 9-bit address in the Microprogram Store

where the corresponding microprogram starts. Messages, commands

received from LCI and Console suffer the same decoding, thus being

converted to a 9-bit address pointing to the beginning of the



28

corresponding procedure. Invalid codes cause a branch to a micro

routine that fetches the next instruction, so that they behave j1Jst

like 'No Operation' instructions.

The 4 LSb in a standard instruction specify one of the

internal registers, if it is a register addressing instruction.

Otherwise, they are all LOW.

Register addressing instructions need first branch to the

appropriate routine that loads the working regist~r with the

contents of the desired register and then, at the end, stores back

the result. The addresses of these routines come from the Vector

Address, which in fact consists only of a 74125 tri-state buffer,

since the addresses are directly derived from the 4 LSb of an

instruction code, and from the EV.CNT signal which should be LOW

at the beginning of the instruction and HI at the end.

1. Watch Dog Timer (Fig. 11)

Whenever the LCI undergoes a polling from the CPU, a pulse

ret riggers the Watch Dog Timer. It is basically a monostable

multivibrator with a time setting around 50 to 100 ps. The polling

interval, during normal operation of the system, must not take

longer than this setting or the WDT signal goes LOW and the Console

is warned that the CPU has something wrong. By means of an

interrupt request, the Console should command the CPU to re

nitialize.

m. D-Register (Fig. 10)

In every read operation, the data present on the D-BUS is

clocked into the D-Register by the positive-going edge of the

O-IN CK signal. We can also load this register with a word written

on the D-BUS by the 3002 array, in order to use it either as in

input to the Vector Address (when a branch to a register addressing

routine is desired), or to shift the 5 MSb of the word into the 5

MSb position (due to the way the D-Register outputs connect with

the I-inputs of the 3002 array).



6. CPU DESIGN SOFTWARE

29

a. System (Fig. 14)

There exist four classes of programs: Initialization, Re

initialization, Network Operation and Off-Line programs.

Initialization program (Fig. 15 and 16)

When power is turned on, or the Reset button is pressed,

the CPU is forced to execute the Initialization procedures starting

at position 0 in the Microprogram Store. This base microprogram

fetches from the Memory the first instruction of the Initialization

program. The Console may also trigger execution of this program by

an appropriate 'Go to n' command.

The Initialization program, first sends the Console an

'Initializing' message and then polls the 3 highest priority

interrupt lines, which should normally be HI. A LOW indicates a

major error is being signalled by the unit associated to that

interrupt line, which may be the Console, the LCI or the SMI. In

this case, the Console receives a warning and the MC waits till an

ACK comes from the Console, meaning that it should try again.

After none of the three interrupt requests remains, then

the SM is cleared, i.e., the MC orders the breaking of all

crosspoints, to assure no old connections are left over.

Every device possesses a characteristic address, named the

logical address (LOG), by which it is known to the other. Due to

the device-CNET interface standardization, a device may use any

port of the CNET, implying its physical address (PHY) in the

network, given by the physical position of the port it uses,

independs of its LOG.

So, next in the Initialization program, through every port

a 'Your logical address?' message is tr.ansmitted. In case a device

exists that uses that port, it must answer specifying its LOG with

a 'LOG = a message. If, after a certain delay, no reply comes,

the MC supposes the port is not being used and it goes on to repeat



30

the procedure with the next port. With this information, the

Network Map is initialized.

At this point, the Console is demanded by the MC to 'Send

Status Word'. After meeting this requirement, the Initialization is

completed and the MC stays in a Console polling loop, waiting for

commands. For instance, modifications in the Network Map or in the

Priority Mask can be ordered before a command to go to the Network

Operation program finally allows the system to enter its normal

operating mode. Any of the commands described in Chapter 4, may be

issued by the Console.

Reinitialization program (Fig. 17)

In case of 1/0 ERROR going HI, the microprogram control is

handed over to the microinstruction at position OFF
16

(for

standard instructions attempting to violate the LOCK) or postion

IFF 16 (for special instruction conflicting with the LOCK). At these

positions starts the reinitialization procedure which loads a

proper LOCK and orders fetch and execution of the first instruction

of the Reinitialization program.

Reinitialization may also be provoked by an appropriate

'Go to n' command from the Console.

Differing from the Initialization, here the SM is not

cleared and neither is the Network Map updated. Supposedly no

damage has been inflicted upon the network, and we let it continue

working and ignoring that a software error in the MC has happened.

Any error message still stored in the MC is forwarded to

the Console before the latter receives a 'Reinitializing' message.

The three highest priority interrupts are checked, if any is LOW,

the Console is warned and a wait for ACK loop is executed. When

everything is cleared up, a 'Stop' command is issued to the LCI and

a 'Send Status Word' message to the Console. After this last

message is answered, Reinitialization ends and the system stays in

a Console polling loop, expecting for a command.

Network Operation program (Fig. 18)

The Network Operation program comprehends a few instructions



31

stored in the fast portion of the Memory. Basically, it is a loop

that successively polls the LCI and the Console, looking for

me s sag e san d cO mm and s t 0 be pro c e sse d • Inn 0 r ma lop era t i on , the

system should stay in this loop, though it may temporarily deviate

to some external procedures to serve some more complex Console

commands. Only when explicitly commanded by the Console, or forced

by special circumstances like 1/0 ERROR going HI and Reset button

being pressed, it may leave the Network Operation program.

Since the performance of the CNET relies heavily on the

efficiency of the Network Operation program, special instructions,

corresponding to powerful dedicated microprograms, are implemented

to optimize the speed.

During the LCI polling, either device messages or LeI

messages may appear, since both types are stacked into the LCI

outgoing buffer.

In normal operation, the valid messages that a requesting

device with physical address ~ may forward to the LCI are:

'Connect a to b'

'Disconnect a and b'

'Inoperative'

'Operative'

and the messages that may be originated in the LCI are:

'No message'

'Test OK'

'Test failed'

'LC .2. crazy'

occur after a test is performed on a

Xpoint. So they don't appear in the

1
st

polling made by LCI MESS instr.

Different procedures are in charge of processing each

message, confronting it agains the Network Map to verify any

logical discrepancy. Should it be the case, an appropriate error

number is written in the Status Word, and at the end of the

processing, the Console is informed. The Network Map always

undergoes the necessary updatings.

The message processing may generate one of the following

commands, issued by the CPU to the LeI:

'Test'

'Break Xpoint'



32

'Send message to device', which is followed by the proper

reply to the device:

'You are inoperative'

'You are operative'

'Xpoint defective'

'Device b inoperative'

'Device b busy'

'Connections disabled'

'You are crazy'

Besides, the Console gets a warning on the outcome of the

device message processing in case not all goes smoothly. Otherwise,

no message is generated by the MC, and it is assumed that the

operation was carried out without problem. Since the Console

overhears the messages transmitted by the LCI when it is polled by

the CPU, no need to inform about the operation or the devices

involved. The possible warnings are:

'Disconnection failed'

'Connection failed'

'Waiting connection'

'LCI crazy'

'Error message n', where n = 1,2, ••• ,16

After the message processing is over, in the next

instruction, the ,Console undergoes a polling and any of the nine

possible Console commands may appear.

Aside from the 'Go to n' command, all the other commands

lead to convenient procedures which, after performing their due

tasks, finally provoke a return to the Network Operation program.

Off-Line programs

Off-Line programs may include diagnosis and administration

programs. Due to their non-critical character, they occupy the

slower part of Memory, and execution only occurs through a

'Go to n' command from the Console, which should be aware that the

network stays paralyzed as long as the Off-Line programs are

running.

Diagnosis procedures might simulate various events and



33

analyze the behaviour of the system, in an attempt to debug it.

b. Instruction set

We can distinguish two classes of instructions: standard

and special instructions.

Standard instructions

They are meant for non-critical tasks as the Off-Line

programs, and seldom used functions as the Initialization program.

The addressing modes available

accumulator addressing (1- or 2-word instruction) - the

internal register ACC is taken as the operand.

register addressing (I-word instruction) - one of ten

internal registers is the operand, according to the

value asssumed by the 4 LSb of the instruction.

immediate addressing (2-word instruction) - the operand

is in the second word of the instruction.

absolute addressing (2-word instruction) if no

indirection or indexation are indicated, the second word

contains the operand address. Indirection is indicated

by the MSb of the second word. Due to the dedicated

purpose of the MC, only one-level deep indirection was

considered sufficient.

Indexation is made possible by inserting the INDX

instruction just before an absolute addressing instruction, which

will then have an absolute indexed addressing. The index is given

by the 6 LSb of the internal register specified in the INDX

instruction.

This solution, though requiring one more instruction every

time indexation is desired, enabled using any register as indeA.

Besides, if we dedicated one bit in the operation code to signal

indexation, it would be hard to fit all codes needed. For

simplicity, the index takes only the 6 LSb of the addressed

register, allowing a value ranging from 0 to 63, which is

enough for our applications.



34

Post-indexation is the rule for an absolute indirect

indexed addressing mode.

Mnemonics Addr.
mode

Operation !No. Comments
I wo r ds,

LOAD

STORE

INP,n

OUTP,n

XCH

AND

lOR

XOR

ANDM

lORM

XORM

ADD

I SZ

DSZ

CLEAR

R

A

I

A

ACC

A

ACC

A

R

A

R

A

I

R

R

A

I

R

R

R

R' - R

ACC - M

ACC.... I

M- ACC

ACC" lIn

M - lIn

lIn .. ACC

lIn - M

ACC - R

ACC - M

ACC.ACC8R

ACC·ACC8M

ACC·ACC+R

ACC·ACC+M

ACC+ACC + i

R .. R - 1

R ... 0

2

2

2

1

2

1

2

I ~

I ~
2

2

1

2

2

1

1

1

Loads register R (or ACC) with

I contents of the specified

I operand.

Stores ACC into operand.

"Peripheral n is read and the

I data stored in the operand.

IPeripheral n is written with

I contents of the operand.

I
', Exchanges contents of ACC

and the operand.

Performs logical AND,OR,

Exclusive-OR between the

specified operands.

Same as above, but operation

affects only the positions

corresponding to HI mask bits.

Sum of the specified operands

is stored in register ACC.

Increments/decrements R, skips

if result is zero.

Register R is cleared

SET R R- all l's 1 Register R is set all HI

CMPL

RTR,n

JSBC,c

JMPC,c

RETC,c

INDX

LOCK,n

HALT

R

R

A

A

R

R

R .... R

R .. R rot.

PC .. Ad

PC .. Ad

PC ... Ret.

Index - R

LOCK .. n

PC .... PC

1

1

2

2

1

1

1

1

Register R is complemented

R is rotated right n positions

Condit. branch to subroutine

Condit. branch to address Ad

Condit. return from subroutine

6 LSb of R taken as index.

LOCK gets new value = n

Halt till ACK = LOW comes



35

R, R' = one of ten internal registers - ACC,Rl, ••• ,R9

PC = Program Counter register

M = operand in the Memory

I = immediate operand

Ad address calculated, after indirection, indexation

Ret subroutine return address

#n = peripheral Q

In the Addr. mode column, ACC accumulator addressing

R register addressing

A absolute addressing

I immediate addressing

The condition tested by the JMPC, JSBC, RETC instructions

depends on the value of c:

c condition

a TRUE

1 ACC a
2 ACC ~ a
3 ACC > a
4 ACC < a
5 ACK LOW

6 WDT LOW

When the condition is TRUE, branch occurs. Otherwise, next

instruction is executed.

If a branch to subroutine takes place, Program Counter and

Status Word are saved in the Stack, as the Stack Pointer increases

by two. In a return from subroutine, Program Counter and Status

Word are restored, Stack Pointer is decreased by two.

ANDM, IORM, XORM are meant to endow bit handling

capability, because the second word of the instruction is the mask.

The logical AND, OR, XOR operation is performed only at the bit

positions corresponding to HI bits in the mask. Bit positions

corresponding to LOW bits in the mask suffer no modification.

In RTR,n instruction, the number of positions rotated

varies from 1 to 8. In LOCK,n, the value of n goes from 1 to 7, the

existing lock values.



36

When using registers~ care must be taken with those used

for special purposes, as detailed further on.

See Appendix d for proposed instruction codes.

Special instructions

Designed to optimize speed in the critical section of the

system, namely the Network Operation program, the special

instructions have very specific tasks.

Inspecting the Network Operation block diagram (fig. 18),

two clearcut functions appear: LCI polling followed by the message

processing, and then the Console polling with the command

processing. Thus, two special instructions exist, each tackling one

of these functions:

LCI MESS - checks the Status Word to see whether

scanning is allowed. If so, it polls the LCI and processes any of

the four legal device messages or the 'No message' message. It

orders the necessary actions and verifies coherence between Network

Map and the message. It updates the Network Map, informs the

Console about any misgoing. Then next instruction is executed,

unless an interrupt request causes a branch to an interrupt

subroutine.

CONS COMM - Polls Console and carries out any valid

command. Next instruction follows on, except if 'Go to n' was

commanded. Also an interrupt request may deviate the program from

the normal sequence.

Appendix i shows instruction codes.

The microprograms performing these special instructions are

rather long but still they can execute the function faster than a

program consisting of standard instructions.

c. Memory organization (F i g. 19

Within the fast portion of Memory (address a to 255), the

follOWing divisions exist:

Addresses 000 to 063 Network Map



064 to

096 to

104

105

106 to

095

103

255

37

Subroutine Stack

Interrupt Vectors

I/O Error Vector

Initial Vector

Initialization +

o to 7

Reinitialization programs

When a device requests a connection, it specifies the LOG

address of the desired partner, but the MC needs the corresponding

PHY address to know to which port the called partner is connected.

Thus, a LOG-to-PHY conversion table occupies the second half of the

Network Map, positions 032 to 063, corresponding to LOG addresses

00 to 31 respectively. Thus, by adding 32 to the LOG address we

have the address into the LOG-to-PHY table. Besides the 5-bit PHY

address, each word contains information about the present state of

this device:

WAITING (l bit) if HI, this device has requested a

connection that has not been completed, but it is on the

waiting queue of the desired partner.

QUEUE (1 bit) if HI, there is a device in its waiting

queue wishing to talk with it as soon as it becomes free.

WA I TIN G PART (5 bit s ) if QUE UE '" HI, t his fie 1d

contains the LOG address of the partner which is waiting

in its queue.

11 7 6 5 .4 ¢

(r-~-'A-'-T-IN-G-'P-'A-1':-:-r--~r---P-H-'1------'1

Conversely, when the MC knows PHY, a PHY-to-LOG table

provides the inverse conversion. This table goes from position 0 to

31 of the Network Map and the PHY address is directly used as the

entry point to this table. Aside from the LOG address, the word has

some information on the device's present state:

ON (l bit) if LOW, the device is operative. Otherwise,

it is inoperative.

FREE (1 bit) if HI, it is not engaged presently in any

connection. If LOW, it is either already talking or it is



38

in the waiting queue to talk with someone.

PARTNER (5 bits) if FREE = LOW, it contains the LOG

address of its partner. In case this device is in the

waiting queue of some other, this field has the LOG of the

desired partner.

'1 7 6 5 4 0

'PARTNE"R ~1 L-_O_6 1

The Subroutine Stack permits up to 16 levels of subroutine

nesting. The Stack Pointer (SP) in the CPU always points to the

next free position. A subroutine branch saves in the first free

word the Status Word and in the next cell the Program Counter (PC).

Thus 2 stack words go for every level of nesting. A subroutine

return restores the PC and the Status Word, the SP is decreased by

two.

Each interrupt level has a corresponding Interrupt Vector,

which content is the address of the appropriate interrupt sub

routine. Similarly, the I/O Error Vector supplies the address of

the Reinitialization program and the Initial Vector is the starting

address of the Initialization program.

Initialization and Reinitialization programs are expected

to fit within the allotted space. Otherwise, the slower Memory may

be used.

d. Microinstruction

The length of a microinstruction may vary widely. Aside

from the compulsorily fixed fields, some othe~ may vary in length

or may even be omitted. The larger the number of bits, the easier

is the control over all the parts of the CPU. But, on the other

hand, more memory goes to store the microprograms.

Only one microinstruction format was adopted, because of

the impossibility to multiplex fields which are not simultaneously

used.

Compulsory fields (always needed)



39

· FUNCTION (7 bits) - it is the instruction for the 3002's.

· A-ENABLE (l bit) - enables the A-outputs of the 3002's.

· D-ENABLE (l bit) - enables the D-outputs of the 3002's

to write on the D-BUS.

• CI (1 bit) - carry-in for the 3002's, connected to the

CI-input of the least significant 3002.

• NEXT ADDRESS (4 bits) - instruction for the Microprogram

Controller.

• MASK (5 bits) - connected to the K-inputs of the 3002's.

Though 12 bits would endow more flexibility, a 5-bit MASK

fulfills the needs.

F (1 bit) dictates whether the clock cycle is slow

(F = LOW) or fast (F = HI).

• D-REG (1 bit) - enables loading the D-Register with the

contents of the D-BUS.

Non-compulsory fields (needed in some microinstructions) :

• PL ADDRESS (8 bits) - only necessary to specify branch

address or the value to be loaded into the event counter.

• CCSEL (3 bits) - required in conditional branching micro

instructions to select the condition. Also used as the new

value for LOCK in a load lock operation, and to address the

ICU. Normally it must be all LOW.

• MAP (1 bit) - normally LOW, it goes HI only when we address

the Network Map, the LCI and the SMI. It zeroes the 5 MSb

of the A-BUS and makes bit 5 follow the L/P bit of the

microinstruction, in order to facilitate addressing the

Map. It also indicates to the Lock/Key unit when LCI, SMI

and Network Map are being addressed.

• M (1 bit) - in read/write operations, together with the F

bit, it determines the pattern for the C-BUS signa's

involved in the operation.

• L/P (1bit) - by controlling bit 5 of the A-BUS, it selects

between the LOG address (L/P HI) and the PHY address

(L/P = LOW) when the Network Map is accessed. Also intended

to facilitate accessing the Map. Normally it must stay LOW.



40

• P/M (1 bit) - for read/write operations, distinction is

made between Memory (P/M = LOW) and a peripheral CP/M =Hl).

Controls directly the P/M line of the C-BUS.

The MASK is so connected to the K-inputs of the 3002 array

that,

MASK
4

masks the 5 MSb of the data

MASK
3 " just the 6 th MSb of the data

MASK
2 " " " 7

th
" " II II

MASK
1 " II II 8 th

" II " II

MASK
O

II the 4 LSb of the data

Besides, the 5 MASK lines also go the 5 MSb of the I-inputs

to the 3002 array in order to generate the warning messages sent

to the Console if a mistake happens to appear during a message

processing.

As shown already, the Microprogram Store is divided in two

halves of 256 positions, such that a microprogram in one section

needsd not to access the other half. Thus, an 8-bit PL ADDRESS

suffices for any jump within a microprogram, while the MSb (bit 8)

of the microprogram address remains unchanged.

The CCSEL field is zero when the next microinstruction

address does not depend on any condition. This arises from the fact

that CCSEL ~ 0 and NEXT ADDRESS = C
16

or E
16

provoke lCU

addressing or Lock Register loading, respectively.

The fields occupy the following positions within the micro

instruction:

Field Bit ositions

MASK 0 to 4 00 to 04

FUNCTION 0 to 6 05 to 11

CI 12

CCSEL 0 to 2 13 to 15

D-ENABLE 16

A-BNABL£ 17

18D-REG

P/M 19



41

L/P 20

MAP 21

M 22

F 23

NEXT ADDRESS o to 3 24 to 27

PL ADDRESS 0 to 7 28 to 35

Field values in various circumstances;

A-ENABLE D-ENABLE D-REG Comment s

Read operation 0 1 0 MAP,L/P,P/M,F,M assume

Write operation 0 0 1 the convenient values.

D-Reg. 4- Working 1 0 0 M = LOW

register AC

MAP L/P P/M M Comments

LCI/SMI address. 1 0 1 0 4 LSb of A-BUS 0/1.

Console address. 0 0 1 0 4 LSb of A-BUS F
16

Netw. Map addr. 1 0 0 L/P,A-BUS assume desired value.

Rest of Memory 0 0 0 A-BUS contains ll-bit address.

CCSEL NEXT ADDR.I D-ENABLE D-REG Comments

Lock loading n E
16

x x LOCK-- n (n=1, ••• ,

ICU write F 0 C
16

0 1 A-ENABLE = HI-_.._-

ICU read F 0 C16 1 0

7)

e. Microprogram Store Organization (Fig. 19)

It comprises two sections, one for the microprograms

corresponding to the standard instructions and the other for the

special instructions. The initialization base microprogram starts

at address O. It must load a proper lock and next, fetch the first

Initialization program instruction from the Memory and start

executing it.

When I/O ERROR goes HI, a branch occurs to the micro

instruction address OFF
16

(for standard instructions trying to



42

violate the Lock/Key scheme) or 1FF
16

(for special instruction

conflicting with the Lock). Thus, these positions are supposed to

contain the start of the reinitialization microprocedure, that

similarly hands over the control to the first instruction of the

Reinitialization program.

Furthermore, addresses OE0
16

to OFS
16

contain the

routines dealing with the register addressing instruction. They

load the internal working register AC with the contents of the

addressed register, at the beginning of the instruction execution.

At the end, if necessary, these routines store the result back

into the desired register.

Excepting these special positions, the microprograms may

occupy any other position.

f • Internal registers (Fig. 19)

The Intel 3002 offers 11 internal registers: AC, T, R1,

R2, ••• , R8, R9.

AC commands the D-outputs and it is an implicit operation

in many 3002 microinstructions. So, it cannot be used to store

information, and it is our internal working register, not directly

accessible by the instructions.

T is the accumulator ACC as far as the instructions are

concerned.

R9 contains th e Status Word and the Er ro r Number.

Bits 0 to 3 Present Interrupt Level
---------4 Scan Enable
---------

5 Conn Ena ble Status Word
---------6 Int. Ena ble

7 to 11 - Error Number

Present Interr. Level occupies 4 bits foreseeing a possib'e

expansion to accomodate 16 interrupt lines. Higher priority

corresponds to higher level

Scan Enable, ~hen LOW, LCI may be polled. Conn Enable

when LOW, connection requests from devices may be carried out.

If Int. Enable is LOW, ICU attends interrupt requests.



43

Error number equal to 0 means no error has been detected.

R8 is used as the II-bit Program Counter (PC). The MSb is

not used.

R7 contains the II-bit Stack Pointer (SP). MSb not used.

5 R6 saves the last message received from the LCI during the

Network Operation program.

R5 has in bits: 0 to 5 - Index (ranging from 0 to 63)

6 - Condition: HI = TRUE

LOW = FALSE

10 7 to 11 - all LOW = no indexation

all HI = Index must be added

to the absolute addr.

An INDX instruction provokes the Index field in R5 to be

loaded with the 6 LSb of the register addressed while bits 7 to 11

15 in R5 are set HI. After an absolute addressing instruction appears,

these latter bits are cleared.

Finally, there is an internal register MAR which only use

is to command the A-outputs of the 3002. So, it should contain the

desired address in a read/write operation.



44

7. MICROPROGRAMS

Attention was focused on the microprogram performing the

special instruction LCI MESS.

LCI messages have the message code in the first word and the

addresses of the devices involved, in the second.

If Scan Enable is HI, a branch to the microroutine

Next Instruction occurs. If LOW, LCI is polled and the first word

suffers decoding by the Mapping PROM, generating the address in the

Microprogram Store where the convenient procedure for that message

begins.

The LOG-to-PHY conversion word of the requesting device ~'

indicated as (LOG-a), is loaded into register R5. The PHY-to-LOG

conversion word, (PHY-a), goes into R4. If another device b is

involved, (LOG-b) goes into R3, and R2 gets (PHY-b). Thus, during

processing, all data needed is available internally, saving

accesses to the Network Map.

The philosophy of the consistency verifications made on

message and Map is that, in case of doubt, it is better not to

connect. Otherwise, as the errors accumulate, we may end up with a

congested network, full of wrong connections that stay there

permanently. Whenever doubtful connections may exist, disconnection

is ordered. Thus, degradation of the CNET due to an eventual series

of errors is avoided.

At the end of the procedure, Network Map is updated, and

the Next Instruction microroutine is executed. In this routine, an

eventual error message is forwarded to the Console, if there is an

error number stored in register R9. Interrupt requests are polled

and if no branch to an interrupt subroutine is forced, then the

next instruction is fetched.

The convention for the flow diagrams in fig. 20 to 28 , is:

LOG-x LOG address of device x

PHY-x = PHY address of device x

~ = requesting device

b = device with whom a is talking or wants to talk. LOG-b

is given either in the device message or by the PARTNER



45

field of (PHY-a).

c device that is waiting to be connected to a. LOG-c is

given by the WAITING PART field of (LOG-a).

The CONS COMM special instruction was not developped since

the Console is yet unclearly defined and modifications ~ay

invalidate most of the effort.

The standard instructions, due to the want of time, were

only partly developped. Three phases exist in an instruction:

fetch, addressing and execution.

The instruction fetch microroutine, which brings to the

n-Register the instruction pointed at by the PC, and the addressing

micro routine, fetches the desired operand at the start of the

instruction and stores the result at the end (if necessary), are

detailed in fig. 29. Both routines are common to most of the

instructions.

Most of the execution microprograms are more or less

straightforward, requiring few microinstructions. There is a kind

of standardization in that the working register AC contains the

needed operand at the start of the execution phase, and the result

of this phase is left also in AC.



46

8. TESTING (Fig. 30,31,32)

As stated before, only the CPU came to be implemented.

Some difficulties were met in trying to get the components,

and in fitting the odd-sized wire-wrap boards available in the

group EB into a double Euroformat rack.

The CPU was wirewrapped instead of soldered because of the

limited time avilable. Though the high crosstalk found in

wirewrapped circuits prevents a high frequency clock to be

employed, nevertheless, the idea can be tested. A printed circuit

board version may be developped in case the CPU is found to perform

satisfactorily.

Furthermore, all PROM's were substituted by 2708 uv
erasable PROM's with 450 ns. access time, far more than the 70 ns.

access time specified for the MMI 6301 which should be employed in

the final version. Since speed does not constitute the present

goal, the advantage of reprogrammability is invaluable in the

prototype development.

To help debugging, a panel was added, where the main

signals can be visualized by means of LED's. A burning LED means

the corresponding bit is '1', in positive logic. Due to the absence

of a CPU internal oscillator, an external oscillator input as well

as a single step switch are provided. Data may be input through the
---

switches directly connected to the D-BUS. See fig. 12 and 13.

Up to date, the hardware units have been tested separately,

but the CPU as a whole has not been submitted to test. It is

expected that the CPU, viewed from the hardware point of view

will not present major troubles. Also the microprograms

corresponding to the standard instructions are rather

straightforward.

Microprogram allocation in the Microprogram Store presents

no difficulty since the Microprogram Controller offers much

flexibility.

The main task consists in implementing the lengthy micro

programs that perform the special instructions. After this, the

next step is to develop the Initialization, Reinitialization



47

programs and then, some diagnosis programs. The Network Operation

program is reduced to about three instructions, since the load is

assumed by the microprograms.

To whoever, if anyone, comes to continue the project, I

wish much success.



48

APPENDIX a: Am 2910 Microprogram Controller Emulation (Fig. 6)

The PROM used for decoding the Am2910 instructions has as

inputs:

NEXT ADDRESS, CC, I/O ERROR connected to the address liues.

Initially a Harris HPROM 0512 with 64x8-bit words was

supposed to be used, but due to lack of a proper programmer, an

Intel 2708 took its place and only 64 of the 1K words contain

information. The contents of the PROM are in the table next page.

1/0 ERROR = HI sets HI all the outputs of the Am 2909's and

provokes an unconditional JUMP PL. This feature can only be

implemented in the Am29!0 by connecting 1/0 ERROR to its OE

input. When the signal goes HI, all the Am 2910 outputs go to a

high impedance state, which causes the 74508 buffers to go all HI,

thus having a similar final effect, i.e., to force execution of

microinstruction at address xFF
16

•

The Am 2910 features not present in the emulator are

THREE-WAY BRANCH intruction (code F
16

) was in fact

substituted by a REPEAT LOOP, CNTR'O.

JMP ZERO does not clear internal stack because the Am2909

possesses no such facility.

In COND JSB R/PL and COND JUMP R/PL, if Register is selected,

it always gives 00 address.

The 4-bit event counter employed has much smaller counting

capability than the 12-bit counter present in the Am2910.

The Am 2910 is supposed to be connected as below:

HI0\

el'

FULL

'PL.A~~R.. {VEcToR.--------'~541>21

Am 2910

III

~l

NEXT AOJ)2ESS '"

110 EltrtoR..

CC



49

ADDRESS INPUTS OUTPUTS IN STRU CTION for

I/O -
S1 SOCC NEXT ADDR. LD EN PL- MAP- PUP FE MICll.OPRO"'~AM-- - - - CONTROLLER.ERROR 3 2 1 0 CNT CNT EN EN

0 0 0 0 0 0 1 1 0 1 1 1 0 1 JUMP ZERO

0 0 0 0 0 1 1 1 0 1 1 1 0 0 COND JSB PL

0 0 0 0 1 0 1 1 1 0 1 1 1 1 JUMP MAP

0 0 0 0 1 1 1 1 0 1 1 1 0 0 COND JUMP PL

0 0 0 1 0 0 1 1 0 1 1 0 0 0 PUSH/COND LD CNTR

0 0 0 1 0 1 1 1 0 1 1 0 0 1 COND JSB R/PL

0 0 0 1 1 0 1 1 1 1 1 1 0 0 COND JUMP VECTOR

0 0 0 1 1 1 1 1 0 1 1 1 0 1 COND JUMP R/PL

0 0 1 0 0 0 1 0 0 1 1 1 1 0 REPEAT LOOP,CNTfO

0 0 1 0 0 1 1 0 0 1 1 1 1 1 REPEAT PL, CNTfO

0 0 1 0 1 0 1 1 0 1 1 1 0 0 COND RTN

0 0 1 0 1 1 1 1 0 1 1 1 0 0 COND JUMP PL&POP

0 0 1 1 0 0 0 0 0 1 1 1 0 0 LD CNTR&CONTINUE

0 0 1 1 0 1 1 1 0 1 1 1 1 0 TEST END LOOP

0 0 1 1 1 0 1 1 0 1 1 1 0 0 CONTINUE

0 0 1 1 1 1 1 0 0 1 1 1 1 0 REPEAT LOOP,CNTfO

0 1 0 0 0 0 1 1 0 1 1 1 0 1 JUMP ZERO

0 1 0 0 0 1 1 1 0 1 1 0 1 1 COND JSB PL

0 1 0 0 1 0 1 1 1 0 1 1 1 1 JUMP MAP

0 1 0 0 1 1 1 1 0 1 1 1 1 1 COND JUMP PL

0 1 0 1 0 0 0 0 0 1 1 0 0 0 PUSH/COND LD CNTR
0 1 0 1 0 1 1 1 0 1 1 0 1 1 COND JSB R/PL

0 1 0 1 1 0 1 1 1 1 1 1 1 1 COND JUMP VECTOR
0 1 0 1 1 1 1 1 0 1 1 1 1 1 COND JUMP R/PL

0 1 1 0 0 0 1 1 0 1 0 0 0 0 REPEAT LOOP,CNT/O

0 1 1 0 0 1 1 1 0 1 1 1 0 0 REPEAT PL,CNTfO

0 1 1 0 1 0 1 1 0 1 0 0 1 0 COND RTN
0 1 1 0 1 1 1 1 0 1 0 0 1 1 COND JUMP PL&POP
0 1 1 1 0 0 0 0 0 1 1 1 0 0 LD CNTR&CONTINUE
0 1 1 1 0 1 1 1 0 1 0 0 0 0 TEST END LOOP
0 1 1 1 1 0 1 1 0 1 1 1 0 0 CONTINUE
0 1 1 1 1 1 1 1 0 1 0 0 0 0 REPEAT LOOP,CNT/O
1 x x x x x 1 1 0 1 1 1 1 1 I/O ERROR



APPENDIX b: Connectors

50

The connections between the wirewrapped boards go through

two 70-pin connectors. As we look at the components' side of the

board, we have the Left connector and the Right connector. ~ach

connector possesses two rows of 35 pins: row ~ on the connections'

face and row b on the components' face. Pins are numbered 1 to

35 starting from the right end of the connector as we face the

components' side of the board.

The table on the next page shows the pin assignment.



51

PIN LEFT a· .~., -. LEFT b RIGHT a RIGHT b

1 CK CK +12 V

2 RESET WDT +12 V

3 FRESH ICUW MASK 0 FUNCTION 0

4 CK ICUR MASK 1 FUNCTION 1

5 MASK 2 FUNCTION 2
;;,

36 DB 0 DB 6 MASK 3 FUNCTION

7 DB 1 DB 7 MASK 4 FUNCTION 4

8 DB2 DB 8 CI FUNCTION 5

9 DB3 DB 9 D-ENABLE FUNCTION 6

10 DB4 DB 10 A-ENABLE L/P

11 DB5 DB 11 MAP

12 -5 V

13 LAL LAL D-BUS 0 D-BUS 6

14 D-BUS 1 D-BUS 7

15 INT.LINE 0 INTo LINE 4 D-BUS 2 D-BUS 8

16 INT.LINE 1 INT. LINE 5 D-BUS 3 D-BUS 9

17 INT.LINE 2 INTo LINE 6 D-BUS 4 D-BUS 10

18 INT.LINE 3 INT.LINE 7 D-BUS 5 D-BUS 11

19

20 OSC R/W INTREQ

21 D-OUT CK CO

22 pA 0 }lA 4 A-BUS VALID D-IN CK

23 pA 1 pA 5 ACK

24 pA 2 pA 6 A-BUS 0 A-BUS 6

25 }JA 3 pA 7 A-BUS 1 A-BUS 7

26 pA 8 A-BUS 2 A-BUS 8

27 A-BUS 3 A-BUS 9

28 A-BUS 4 A-BUS 10

29 A-BUS 5 P/M

30

31 LAL LAL

32 CC I/O ERROR

1

33

+ 5 V GND
1

34

135 + 5 V GND



52

APPENDIX c: Signal timing

Clock cycle

Depending on the microinstruction, different rou~es are

followed by the signals and diverse delays are involved.

The emulation circuit delays were used in the calculations,

since specifications on the Am29l0 are yet unknown. It is expected

that the Am29l0 will improve the speed, allowing shorter cycles.

For the clock cycle time determination, the worst cases

must be taken into account. The delays employed in the calculations

consider the case if the desired PROM's were in the circuit in

place of the 2708 EPROM's. When data available in the manuals does

not take in account power supply and temperature variations, as it

is the case with the 74 TTL series manuals, the times used in the

diagrams are at least 50% larger than the maximum specified for

nominal conditions (V = +5 V, Temp. = 25 0 C).
cc

The clock cycle time consists of an initial HI semicycle

lasting t HI and followed by a LOW semicycle t
LOW

• The total

cycle is indicated by t
CY

•

Considering the most critical cases, we find the maximum

clock frequency possible in the circuit.

Non read/write operation, next address not depending on

condition now being generated:

t
CY

> 253 ns.

,
",,,eLI"'£' 1S~t.-u.\, +i'YNL-

CK.

2.5
~ IPE I.INE. dl.Io.'t

2,5

CON1>. S£l-. MUX

"5

HO!512- Q"C:Ce~$ h-m~

",0 .. \5

(:a.l\oq + 'o~) d-L1o.'1

"f0

)l-?lt. $Top..E o.a.es.S

'>. l'!Ins



53

read/write operation violating lock:

tal> 90 ns t
LoW

> 139 ns

CI(. ,
2.5'+ 60 ~'5.. ~

1410.15
se.t.-<Af

lio VAl-II> ( 'PII'EL. + ~l'L.A') dc.lo.'f1\

~ CONb. ~el-. 'l'-~ (i4~,'5) ~'A .<!«.IaA-j

12.0"* \I (:2.cW~ .y 1o~)1!~ :;>, Pta.. ~..t -~f

I
"I~-

70
.u."P12.06 $To~ e::tcGe55

_1_c '"_'S t Ho5.2 ......"'=

arithmetic operation, condit. branch depending on CO:

t
LOW

> 268 ns
t HI > 129 ns (addition)

t
HI

> 133 ns (for CO generation before end of HI semicycle)

U-f)

CI(.
J

25 (tooz. ("t. ~et;-"i')

~E.o

J l'P I.. "'&'\O.'j
(14517S6C."'l' )

(,5 +?>O ~l?l_

(CO ol&tf\ + toj") d.do.~ tu pl"oc1&Aa. co

r-52 ...>oJ

l(,Y.1tO 04-
I I CI i"n'!' ••<.t..~(~2.)

I 25' ~21

( ~oo~ cllL~

b ~~.21
(Ll"',~~ GON~ . '6EL.. F-~ d-II.D>J

I ~ oo"'t>. MU)(.

~65_

\2.'1
A1l1l1TION '{ H 0512. CUGC6$

# 104 ILoTATlL • ~
95 otl\e.r . .,1.. A'lll)R.. otd:l' ,<.TVl"'C

If>; co~.""'Rl~ ~
(2.'loq+b~)

~I?> (111'1.. 6c.t-

70
}iPIlOG, SToll.E



54

arithmetic operation on data just read into D-Register

t
HI

> 129 ns (addition)

t
HI

> 133 ns (for CO generation before end of HI semicycle)

Cl( 1/

~(,---------------
(1)....... ~c.tll.l' ' 'll002)

1+------ ~ 50 ------..to'l

(".'15 ~~!l1u';1
~---S5~ ~_--l04r-_":>'.:..":.::I'!>:....~ _

II co (co",,+ ~) .:l-lJJ'j---+----------'1
1....1-----42.

conditional branch if event counter = 0, supposing it

was decremented in the previous microinstruction.

t CY > 282 ns

~

f+--"~ --~'1,..-----------------------4--

~I""------

_b5~_________ H 05'12 ol.lJ:t' .

......-=2.:..;":.-..1.- _
1'1.. . A bD~. 0 uq. . e"l"lOobl<1k

:20+ .1

(2QO'\ ... bl.'fft"f") 6.uo.y ,.....--1- (~~l. ~b.q> )

i'C--~I~~
\4----10

______JI p'PRo6.S.,.O!l-f:



55

jump to address given by Mapping PROM

t
HI

> 98 ns

t
LOW

> 106 ns

14---4 70 .1;=----------1 j.L 'PIlOw. STORE

foo-I5 '74~74 (jJ.

cl<
,

---J
\0

ll-IN c,,"

25
J)- RE40'STn. ou-tV'

70
1II/""PPINw I'QOeII

~P.A'~
c :2<5 E "." I (ZqOq-t~) ou.tp .

» 'PI: ~u:tVu.k..

65--

(J40512) MAll-EN

~

1l\A1'I 1M" 'P lloM ou.t'P' ~no:ablc

J...,
II 74'514 Cloa., 11'\9ut.

III) 8CAI:-p•. ~
I- 'Pl'l. 1O~t

~\~ --'I

,.

Thus, to satisfy all possible cases, t HI was set as 150

ns., while t
LOW

may be either 150 ns. (fast clock cycle), or

300 ns. (slow clock cycle), when there is a conditional branch on

CO. Consequently, t
CY

is either 300 ns. or 450 ns.

Read/write Operations

Fast and slow clock cycles also find use in read/write

operations, where the addressed unit is known to satisfy certain

speed requirements. They provide timing for the C-BUS signals:

A-BUS VALID and D-OUT CK (in case of a write) or D-IN CK( if

it is a read). The positive-going edge of D-OUT CK and D-IN CK

is used to clock the data into the receiving register. So, these

-------signals should rise before A-BUS VALID goes HI, to guarao e e

the data on D-BUS is still valid.



56

According to the value assumed by the F and M bits in the

microinstruction, the following patterns are generated:

F=HI

M= LOW

fAST CLOC.K
300 "'" .

$iJ \

Ck: \
1"4t.al~ ~

'to.'2.
A-~US VAL.IJ)

I~

t:d.~ \. J)-C"-

"I----+---~R.1-~ ..'..
bocK .. HI

45o-ns

"1:4

CK.
t ClI

I
~

%0.'1
A-aU

I t

-----------H~--------'

SLO" CLO CK.

~ :.l.oW

M:. HI

tal (Pipeline + FPLA) propag. delays < 25 + 50 = 75 ns

t
d1

t
a2

= FPLA propag. delay < 50 ns

t
d2

74S00 propag. delay < 8 ns

Taking in consideration the worst cases, we have calculated

the requirements

address to output

concernin g_ the_access time tACCE55 (from

onto the D-BUS) and the write cycle pulse

width twp. From the tACCESS we must deduct 15 ns for the data

set-up time of a 745174 register (taken as the standard receiving

register on the bus lines). These requirements are to be met by the

addressed units in case the CPU uses one of the patterns above to

read or write it.



57

FO is used when the 3002 internal register MAR already

contains the desired address:

tACCESS < 225 - 15 = 210 ns t wP < 100 ns

SO applies for write operations when either register MAR or

AC are going to be loaded with the desired value during

the present microinstruction. In read, of course, it can

only be register MAR that is being now loaded:

tACCESS < 250 - 15 = 235 ns t wP < 100 ns

F1 followed by Sl gives a long A-BUS VALID signal. Regise r

MAR, and also AC if it is a write, should be loaded

before the Sl pattern microinstruction.

tACCESS < 550 - 15 = 535 ns t wP < 250 ns

To possibilitate quicker read/write operations, i.e., the

ones using FO and SO patterns, the fast section of the Memory, the

LeI, the SMI and the Console must stay within the limits:

tACCESS < 210 ns

The slower section of the Memory

t
wP

< 100 ns

is supposed to be

read/written by a sequence of two microinstructions, a Fl pattern

followed by a S1. Therefore, it has:

tACCESS < 535 ns t wP < 250 ns

For peripherals with unknown timing, a wait for ACK loop

may be used. The peripheral, when ready, pulls LOW the ACK line,

notifying the CPU.

It is recommended that different sources do not write on

the D-BUS in two consecutive clock cycles, because one may ena~ e

its output before the previous source has had time to disable. For

some instants, two enabled outputs may be short-circuited.

Some examples of read/write operations, where only the

microinstruction fields involved in the operation are shown. The

'3002 task' means that FUNCTION, MASK and CI fields must havea

proper value so that the desired task is performed by the 3002

array.

Ex. a

Ex. b

PHY-to-LOG conversion table (in Network Map) read

operation. Register MAR was not yet loaded with the

desired PHY address.

LOG-to-PHY conversion table (Network Map) write operation.



Ex. c

Ex. d

Ex. e

58

Register MAR was beforehand loaded with LOG address.

LCI write operation. The 4 LSb of MAR = 0 already,but

register AC not yet loaded with the command to be sent.

Slow Memory write. Position 'Ad' loaded with data 'Data'.

Slow Memory read. AC loaded with contents of position 'Ad'

F M MAP LIp plM D-REG A-ENABLE D-ENABLE 3002 task Ex.

0 0 1 0 0 0 0 1 MAR - PHY a

1 x 0 0 x 1 1 1 AC "*' D-Register

1 0 1 1 0 1 0 0 AC .. Data b

1 0 1 0 1 1 0 0 AC .. command c

1 1 0 0 0 1 0 0 MAR .. Ad d

0 1 0 0 0 1 0 0 AC + Data

1 1 0 0 0 0 0 1 MAR c,. Ad

0 1 0 0 0 0 0 1 - e

1 x 0 0 x 1 1 1 AC Co D-Register

ICU polling

To poll the ICU, a two-step sequence applies. First, the

Status Word is sent to ICU in a SO pattern write operation (FO

would not give time enough for the Intel 3214). In the next clock

cycle, the ICU writes a LOW on the INTREQ line of the C-BUS if it

decides that an interruption should be requested. This line is

valid during only one clock cycle, so that it must ,be tested in the

second microinstruction. The requesting interrupt level may be read

in a FO pattern operation at any time after the polling.



APPENDIX d

59

Instruction Codes

All instruction. LCI messages. Console commands are decoded

by the Mapping PROM. implying different codes must be allocated to

them.

Due to the way in which we have implemented the division of

the Microprogram Store in two independent sections. the device

messages. the LCI messages. Console commands and the two special

instructions. all of which have their microprograms in the upper

half of the Microprogram Store. are supposed to have the 2 MSb of

their codes both HI.

The codes proposed are complemented to the way as they

appear on the D-BUS lines. due to the fac t that those lines a re i n

inverted logic. So. logical '1' represents a HI. but on the D-BUS

a LOW will be written.

1s t word 2
nd

word

Special instructions

LCI MESS 1111 0101 xxxx

CONS COMM 1100 1100 xxxx

Device messages

'Connect a to b' 1110 1110 xxxx LOG-b xx PHY-a

'Disconnect a and b' 1110 1101 xxxx LOG-b xx PHY-a

, Inoperative' 1110 1011 xxxx xxxxx xx PHY-a

'Operative' 1110 0111 xxxx xxxxx xx PHY-a

'LOG -- a
,

1110 0001 xxxx LOG-a xx PHY-a

LCI messages

'No messages' 1111 1111 xxxx

'Test OK' 1111 0110 xxxx

'Test faile d' 1111 0000 xxxx

'LC a crazy
,

1111 1010 PHY-axxxx xxxxx xx



60

Console commands

'Load Memory
,

1100 0000 xxxx

'Dump Memory
,

1100 0110 xxxx

'Dump Registers
,

1100 1010 xxxx

'Go to
,

1100 1111 xxxxn

'New Priority Mask' 1101 0001 xxxx

'New Status Word' 1101 0111 xxxx

'Device a off' 1101 1011 xxxx xxxxx xx LOG-a

'Device a on
,

1101 1101 xxxxx xx LOG-axxxx

'No commands
,

1111 1111 xxxx

LOG-a

PHY-a =
logical address of device ~

physical address of device a

x doesn't matter

The Console command codes are proposed above, but many of

them need some more words of information, and these following words

are left open for further definition.

The codes above are arranged in order to keep a Hamming

distance of at least 2 between any two codes, to guarantee further

safety.

Note that 'No commands' and 'No messages' share the same

code, since both lead to the microroutine that fetches the next

instruction. Like the invalid codes, they behave as a NOP

instruction.

The standard instructions occupy the lower part of the

Microprogram Store and must not have the 2 MSb of their code both

HI. In register addressing mode, the 4 LSb of the code select the

register:

Register 4 LSb

Rl 1110

R2 1101

R3 1100

R4 1011

R5 1010



61

R6

R7

R8

R9

ACC (T)

1001

1000

0111

0110

0101

In all other addressing modes, the 4 LSb are all HI.

Immediate addressing requires the operand to be in the second word.

In absolute addressing, the MSb of the second word indicates

indirection is it is HI, and an II-bit address occupies the rest of

the word.

The table on the page after the next shows the codes

assigned to the standard instructions. In this table,

rrrr assumes the appropriate value for the register R

r r r'r
,

" " " " " " " R'

ccc " II II II to select a condition

pppp is the address of the peripheral.

LLL is the new LOCK value

Now, the different messages and commands originated in the

CPU may repeat the codes above, since they are not decoded by the

Mapping PROM.

MC messages to device

'You are operative'

'You are inoperative'

'Xpoint defective'

'You are crazy'

'Device b inoperative'

'Device b busy'

'Connections disabled'

'Your logical address?'

CPU commands to LCI

, Break Xpoi nt'

'Scan'

'Test'

, Stop'

'New Priority Mask'

00000 01 00000

11111 01 00000

00000 11 00000

1111101 10000

00000 01 10000

11111 11 10000

00000 11 10000

11111 11 00000

11111 00 00000

00000 00 10000

00000 00 11111

11111 00 10000

11111 10 10000

PH Y-a xx PHY-b

PH Y-a xx PHY-b



62

'Send Message to device
,

00000 10 10000

'Connection to device a
,

00000 10 01111 xxxxx xx PHY-a

MC messages to Console

'Initializing
,

00000 01 01111

, Reini t iali zing' 00000 10 01111

'Disconnection failed' 00000 11 01111

'Connection failed' 11111 00 01111

'Waiting Connection' 11111 10 01111

'Send Status Word' 00000 00 11111

'LCI crazy
,

00000 01 11111

'Check LCI' 00000 10 11111

'Check SM' 00000 11 11111

'Error message
,

1eeee 11 11111

eeee Error Number

CPU command to SMI

The only command is the order to accionate a crosspoint

(a,b). So, no command code is needed, just the addresses are sent

in a write operation:

Make Xpoint PHY-a xx PHY-b

The codes chosen for these messages and commands produced

by the CPU are intended to be easily generated within a micro

instruction, by using the MASK field to form these bit patterns.



63

STANDARD INSTRUCTION CODES

Mnemonics Addr.mode Instruct. code

LOAD R 1011 ' , , , rrrrr r r r

A 1011 0011 1111

I 1011 0000 11 11

STORE A 1010 1111 1111

INP,n ACC 1001 pppp 1111

A 1000 pppp 1111

OUTP,n ACC 0101 pppp 1111

A 0100 pppp 1111

XCH R 1010 1001 rrrr

A 1010 1000 1111

AND R 0111 1111 rrrr

A 0111 1101 1111

I 0111 1100 1111

lOR R 0111 1011 rrrr

A 0111 1001 1111

I 0111 1000 1111

XOR R 0111 0011 rrrr

A 0111 0001 1111

I 0111 0000 11 11

ANDM R 0111 1110 rrrr

IORM R 0111 1010 rrrr

XORM R 0111 0010 rrrr

ADD R 0110 1111 rrrr

A 0110 1110 1111

I 0110 1101 1111

ISZ R 0110 0111 rrrr

DSZ R 0110 0011 rrrr

CLEAR R 1010 0111 rrrr

SET R 1010 0101 rrrr

CMPL R 1010 0011 rr rr

RTR,n R 0001 Onnn rrrr

JSBC,c A 0011 Occc 1111

JMPC,c A 0011 1 ccc 1111

RETC,c R 0010 Occc 1111



INDX

LOCK,n

HALT

R

64

0000 1111 rrrr

0001 1LLL 1111

0000 0000 1111



APPENDIX e FPLA

65

A Signetics 82S100 16x48x8 FPLA concentrated most of the

logics, keeping down the chip count.

Fifteen inputs were occupied by signals coming from:

Clock : CK, AO

Pipeline

Lock/Key

D-ENABLE, A-ENABLE, D-REG, F, M, P/M, MAP,

NEXT ADDRESS 1

CC-OR, IDENT, LOCK (indicated as LO,Ll,L2)

CC-OR goes LOW when CCSEL # O.

IDENT goes HI when NEXT ADDRESS

The FPLA generates seven outputs:

ICUW

It goes LOW in a ICU write operation, during the HI period

of CK.

ICUW = IDENT • NEXT ADRESS 1 • CC-OR • D-ENABLE • CK
'- V""" ~

NEXT ADDRESS = C
16

ICUR

LOW in a ICU read operation, during the whole clock cycle.

ICUR = IDENT • NEXT ADDRESS I • CC-OR • D-REG

I/O VALID

LOW if there is an attempt to read/write conflicting with

the present value of LOCK.

I/O VALID = APROVED. A-ENABLE

The internal auxiliary function APROVED goes HI when the

address and operation intended do not fit the lock. But I/O VALID

only goes HI if the operation is really attempted, i.e., if

A-ENABLE is HI.

APROVED Lo.LT.LI + MAP.L2.LO + P/M.MAP.LI + P/M.MAP.L2 +

P/M.D-REG.Ll.LO + MAP. D-REG.LO

L-LOAD

At its positive-going edge, the Lock Register loads the

CCSEL field as the new LOCK.

L-LOAD = IDENT NEXT ADDRESS 1
'---------'V -
NEXT ADDRESS = E 16

CC-OR CK



66

A-BUS VALID

LOW only in a valid read/write operation. Its shape depends

on the chosen pattern (dictated by F, M bits).

A-BUS VALID = I/O + APROVED + SHAPE

The internal auxiliary function I/O is LOW when eith~r a

read or a write operation takes place.

I/O = A-ENABLE + D-ENABLE. D-REG + D-ENABLE.D-REG

SHAPE forces the desired waveform.

SHAPE = CK.AO + F.M.CK + AO.F.M + CK.AO.F

D-OUT CONTR

D-OUT CK goes LOW only in a valid write operation.

Depending on F,M, it follows the desired pattern. Since its

positive-going edge clocks the addressed unit to store the contents

of the D-BUS, it must go HI soon after the end of the clock

cycle, because the data may suffer modification in the next cycle.

Due to the long propagation delay in the FPLA, the logical product

that produces this positive edge is performed by a 74S00, while the

rest of the logic needed for the D-OUT CK is handled by the FPLA,

resulting in D-OUT CONTR.

D-OUT CK = APROVED + I/O + D-ENABLE + AUX'-----v ~
LOW in write

The auxiliary function AUX gives the shape to the signal,

according to the pattern.

AUX = M.AO + F.M + CK

D-OUT CK (APROVED + A-ENABLE + D-ENABLE + D-REG +

M.AO + F.M ) + CK

= D-OUT CONTR + CK

D-IN CONTR

D-IN CK goes LOW only in a valid read operation, or in a

D-Register loading with the contents of internal working register

AC, or in a ICU read. For similar reasons as above, the critical

product occurs in a 74S00 and the rest of the logic results in

D-IN CONTR.

D-IN CK (APROVED + I/O + D-REG + AUX).(SWAP + AUX) •

• ( ICUR + AUX )



where

67

SWAP = A-ENABLE + D-ENABLE + D-REG

Fumbling with the formula, we get:

D-IN CK = APROVED + (A-ENABLE.D-ENABLE +
.............+ A-ENABLE.D-ENABLE).(IDENT + NEXT ADDR.l + CC-OR) +

+ D-REG + M.AD + F.M + CK

D-IN CK = D-IN CONTR + CK

The contents of the FPLA are shown in the next page. Due to

corrections introduced, it is not optimally utilized, but it is

logically correct.



68

INPUTS OUTPUTS

NO

PRODUCT TERM' ACTIVt U:\'U
- -~ --" - II - ri - Ti - T T____ It::!PUT VARIABLE __ LL:.L~LkL\-:Idj.J.~ll..::-

111111 __ -y ,- __ ,- 9J,!IP_lT_f~Jl'J'UY~. _
5 4 :3 2 1 0 9 B I 7 f) S 4 J 2 1 ° 7 6 b 4 j '] '-J. .1__

o L L L A'A
1--;.l-4--+-4--1~L=+H"""'+'H:.....:..t-H.,..+!-~-4---+-----+--+----..,I--+--+--+-~r---Ir--+--+--+--+--+~fu~

t--l::-::>t-+--t--+:L--t~f-L-+-L-t-;--~-;+--t--+H:-:-+_Lr-+-+-H-+----I I--.,~-+--+--+---+----+M
t----'~.;---+--+L:-+---;-I--+-+-.....IH-r+.H:-:4___;~H....::..t-=-H-4--+-+---4 r---+--+--+--+-+-+ill-~
t-:-9~H....,.:-7t----'I--+--+--+--+---+-;-H...;..+-:H:....r+--+--II--+-+--t--t 1-~_+----+--+--+--4---+-cA·
r:--10-'-+---1I-'-H-'+:c--+_r-+--+--+-+[.;....l.lH...;..H-4----t_r-+--+--+---I 1---+-.-4-+--+--+----I---.-A-.
....-..:..1.;..1+-,:-+--+lL!=4_r-+--+--+-+~L::...j...=L=+---t_J.-4-_+_-+--l I----+----t-+--~-+- t--+A"

12 H L L --r---tA
13 H L..' L A

/---'-14:-+---1f-'-'-+--+--+-+---11--+--i-!=~=+:1H......+-J.-+--+--+----I I----+----t-+--~+--+--- A-
15 H A A .
16 H A

~17:::-+---1r--+--+--+--+---1I--~+----l--:--...,..+:L==:-+-f--+--+-_+_---I 1---+----1-+-+--+-+7;.. 
t-:-18"-+---1r--+--+--+--+---1I--+-+--+:-H~H~-f__+--+-_+_---I 1---+-----+-1--+--- ~A .- --- I

19 L L-

L IH L IHi r-
I

L L H L
L L- H L H A

L L.. L- IH
L 1- L
L H IH

H H H -
I

L L rL
L H H
L L- L L H



CONSOLE

JJATA

MATRI)(

SWITCHING

MATRI)(

I" - - - - - - - - - - COMMANO- MA-m,;(- coMTiO~£R: - - ~

: J
.----<-----..--7-

1
---1 COM""''''tl co..,........!) INTElUIAI- "B~

I ~.....)L- --,
I LCI

r--+-...........:,,-; I
I IL , I

I I

: I
I I
I I
I I
I 5YlITtlill'l(, I. COO-'.....NI>

~ .....- L.r--' I
SWITCHING ~ t'lATlt.I)( C1'Ll I

I IIlfERFACE I
I I
I I
I I
I I
I I

~- -- ------------ - - - - - --I
I I
I I
I I

I :
I I
I I
I SWITCHING ll....TA I
~ I

~ .....ATRIX "- M CPU :
, IKfElU'I££. I
I I
I 1
I I
I I

I I
I I, J I

J I
I I

1-----'---1 1lIIIT.... I
I

'-- , -; LC' ]>ATA INT£Il.NAI..US

I I
, 1
L ~:!.-~ ~~...!.)(_C~N.!'!...O!::L~~ .....I

LC
¢J

I
I
I

LC

31

..-
LC

¢

I
I
I

LC

31

51-........+-----1

u -
llEVlC€ I "t>"TA,

1 r---
,

N~O~

---I.
I

-
CO_ANII

I
~IC.E I

t !'IETW()fl.IC

"1'\ L:

P£VIC£

1

, CO,","'UHIC.., ,
I

, NETWOIlK

~VIC£

."

fl6.2 - MATRIX coNTROL.LER (BLOCK 1>IA6RAM)



• CO"'MANDS NOT AI-LOWED fOil THE LG

STATE 5HOUi-1) CAUSE A Lei

INTERRUllT ~EQ.UEST.

TR.AN SITIONS WITHOUT ~AME OcCUR

AUTOMATI CALL" AFT£1l TA,sJ<.

IS ~l'L..E:TED

TEST STATE

'STO?' COMMAND AL'lJA'tS FoRceS

locI TO 60 'IDt.E \. IT WAS

OMITTED IN THE" 'DIA6RA""

FOR SIMPL..1CITY'S SAt'E".

i-CI~~;

'TEST FAli-En'

•

•

FI6.~- Lel S'TATE'1)IA&R.AM



FIG.4

It-:= tt~L5b

}~ De 4>'\11\

11
VECTOI2..

~
ADORE"SS 10-- 1'2

V
J--.+" / '2

MA"Pl' I>JG MICll.ol'lWGi<At-II ~Ai ,)LAS
I

ffi.0fV\ I I MICROl'IO.06".»,'" $T01<..E" <. "j)-1l.E"6IS"E:lt
5EQ.U~NC~

I
\! \l ,

clC.
!,Aq,"'7

r 4~ -tt.G
M...~-el

I
" M f,N 35 (}J- IN<To.UGT'ON)

I I/oElt""'- ~'l'2..
Ev·CNoi C"- / 12

1'1..-'E!lol
'P\PE LIN~

ii 4>""

~
~

M W::~1'llDbRAM

EVE"T
~

cot-Jlltou-~ 0 45 5" ii,~11
I)l-IH

cDu NT E II. ~R.O"'"
--7

Ci2

h-+t4 (, 2

if ') 6 1"2-

/".Y Is ~ eltR:lfL""El> 1 ..
CK i - 7

'( l: "PM
, C, K I MTHE l'PLA -' 'L-o,ce ''=::,0'

D
~ LIP« i:l ~F

r--""
.i ... "i&:z. P- i II I~IO ElI'IUL.A"f10N ClltCUlT ~

p 2
~OO2 ARII.AY..

MI~l'ttobR"""\ 5E.Q..UEN.cER. CONDITION ~ ..
!o1.1 CIZD'P'R... CONT'Q..Qu..ER. VloM.

,--~ 300~!>El-ECTOIl. CK cK 2

EVENT couN,.e- R.. ... D

EV,cNT t r CO H" :--A- 12

!'lAp .I ADDRESS , - -
UP 2 ., L.06\C lI-aus

D-BUS F

rrt..OS tI,1,2,G
CLOCK.

5 ±:til
A-9US.

CK, c"-
Z Ad< :2 Fl'LA kIll/!. f>"'3

+,R
_T

INTIO!tR.uP"
leu

l~
"iiiiUQ. tl:,Aj,

u....!> <p"7
'!> 1 ~ATcH ~ I

'il I/O VAUD T 1 w/ll. TIME\(.

4 l)-OUTCK

I~TRE'G.
~_IN. ct:.
A:'ti~ VAll!> ...-eu~VAL~2. WD,.

I
p/N\

c-:&us



til

1 3003 (K1)

I(l <t'l<t'l '<T 1~
..,

~ '" '" N N~ ; '9 'G
1(3 .,. X Ii) 1O XI{j .,.

X \ti >: )0- X

I(l " .n '" _ "G-

13 \3 18 \8 \8 18

!~ ~ log I~ If li Ii IcQ 'G.-
~ I~ I~

I,::. l~
-g.

~~ ../'-

-------- /'- ~ '" ./"-- /--- /'-- ./"--

--------- l~ .....----...... Ii=: 2 .... m '<T 0- <1' N .... '<T r- .., ~ I~ «:-m lI'l-t ~:: <:'1- rl'l <i~o- -000r-

F1G.5 - ""c1l.0PIl.OCE5S0R

cK

kAt> ---__--+----------r+--t-+----------.--I-_-+---------,

(13 )



LAL."r-------------o--l~---------J

t
,~

"
74>00 .3

~
(EIO)

N')

r-- ~ .
V 3

q 74G<o
CKI

CK
I---

~I'
, )1

li ~ '" DI

])81 5 7-427

(E:i)

VEcT

EIO)
740;00

•

I

_i
E'I. eNT

HfROM - ¢512

(0)

---r,s I~ 117
El7 &.6 &.5

~ E"I

7 £2

I I

I
I
I

I
I
I
I
I
I
I
I
I
I

I
I
I

I
I
I
I
I
I
I

I
I

HI I
I
I
I
I
I
I
I
I

I
I
I,

14574
(~II) Q.i ~-.> ,uAll

let iSH

11 ~I
I HI

,....,CI!.O~611A'" CO/JTltOl..I..ER.

MAPPIN6 PROM

F16.6 -

II 10

'5j I J
Al A6

I II

I I
I I
I I

l I
j

Al />06



Ci(

fIG., - M' C.1i.Q1'R.06011.A"" STOllE
g

>-+--
II W 1I 1 1I fI fI tl II

\l

Ai> "'7 A0"'7 A¢-v7 ""1>"7 A"''''. A"'''7 A¢N7 Af>"" Arh""

~ EI - - - - -- -'>- ----- - --.". ---------... ------ --+ - - ------~ - - - -- - --> --------......,. ---- - ---,.~

"11-11 E,~01 MMl ~oOI MMI E,<!>01 "IMI 6301 MMI E,'!>CI tvIMI 6'101 MMI 6?-01 MM\ 6,0
' I-IMI 6~1

14 5-------> ---------? -------.. -------~ ~-------~ ------~ --- --- --- ----------'P

04 O~ 02- 0\ 04 0.3 02- 0\ 04 ~ 02- 0' 04 03 02- 0\ 04 03 02- 01 04 O~ 0"- 01 04 "" 02- 01 04 o'!> 02 0' 04 00 0"- of
q '0 'I Il q '0 1\ \2 q 10 " 12 9 10 " 1 q 10 II 12- 9 '0 " Il q ,.

"
IZ 9 10 " , q '0 II I

>I 5 'I~M~ Mil
'" ~ M

~M ~t1~ M ~7 M 26 .. 25 M 14
"-::" H z"f Zl .. 20 fi Iq M li " -, M '6 M 15 M ,~ M I~ M 1:2 'Ill M 10 ~~ Mfl "'1 ,,~ ... 5' M[4 '" l'> ... 2- M 1 ",d>

q 10 II II 9 lO II 12 q /0 " II q ,0 " '2- q 10 " '2 'I to ., \l ~ 10 II .2- q 10 " 12- 9 10 " 12

04 ~ 02- 01 04 03 02 0' 04 03 o:z. 01 04 03 o:z. 01 04 (}3 O;l. 01 04 03 02- 01 04 03 02- 01 04 m 02 01 04 o~ 02- 0\

14
E?:------~ €i---- ----+ -------- --------'" ----- --....-.... --- -----.-. ---~---~-- ----- ..

1-\..,1 6<001 "''''160.01 IllMI 6~O' MM' ~301 MMI6301 toll'll 6~OI M..,' 6~1 MMI6:lOi ..,101' 6301

¥ Ei------_ --------~--------~- ---- ----' --- ---- ...... - ---------> ----- ----'" ~------- E2

Atw7 A,p"'-, Ad>"" "'''''\/7 "'fiN 7 ~"'. A1>"'7 AfJ-J-' A0 N 7

~ 9 II 9 'il 8 <i! 9 s
-->---->

~ "I '" .. '" .. '" ... '" '" .. ... .. '" .. M .. '" '" M M M M '" ... l-\ M .. tJI M ,... M /VI tJI M ~

~7 2{, 25 24 :l~ U J.I,,'! :r j ~r
" 10 " W ., 6

JIJ lOrJ~i J ~[
/4

S
12-

~r
¥ 31-

T
31 ~o 2'1 2lf

~l J,,16L131 ~l,~l "[61 ~131 121 11 121 41 lsI 121 41 ,1
P6 1>5 \l4 1>3 ~l- ])1 llb~l>4J)'!>n1>' pC; 'J5 JlII P!> b2 ])1 1>~ 1>5 1>4 1); P2 PI )l'!> Jl:). )\ ll¢ tl? 02 DI D~ J>3 tlL PI P«i

'I
CI'-- --- --- .. - ---- ----., -------- .... CO: 'I ---------'0 ----- -----'> eI<

74S \74 746 174 74 S 1,4 .4 S i7A I>.-m 2".'" A-rr> 2q,~ "',.." 2'11g
I - - -(.!'~)--- .. ___ .s~!.. ___.. ___ _ (.E~) _ __ ... a (Pi) ...J. Iai- - - S!'~ - - ~ ____ V'Z-)___ .. O£ ("1>6)

HI

Q6 Q5 G4 ~ &2. QJ Q6 Q6 &A I).?> &.2 QI &b C>5 "" ~ "2 &.1 Q(,1l.51lA~Q>. &, Y3 '12 yl YO )'1. )'2 )'1 yo Y3 Y2- VI VO &.3 &.2 Qt a/l

~1"1'111 51
21 15

111 7rl. ~1 111 ?l 51 '1 '111 ?t 1'1 '1
10

1 'I jl I~l ~l '1
~,

~1'~1 '1 31~1 "1 51 2

1l ~
~ :l I 0 F M i ~ fl~ ~ )i ~5432.1 lIS 4 3 ;l. t 0 7- f q5 C\ 7 ~ 'S 4 ~ 2. \ 16 " 2. 1 0

------ -------- ---- ~ \2 ------ --------- ----u uJ
"'EX T A1>PQ.£S6 '" 1M ... FUNCTiON ~ ~ cc &EL l'L LOOP. , l'L AI>l>~ESS

q "

F16·8 - "pll'ELINE



1.O
r--

(:no)
~,

W/R'>---~

:J-i>US II

FI6.Q MEIo10R"{ (ONL"{ THE" FA&-r SECTlON\

MM\ 653 \ (16)

_________Wl·2 ~OUTC"-

PI

(3'1)

ll-BuS 6

rlMI (,5:'.1 (HE,)
E2
_________ -WE: <2

ft



,oj

,5
s41"---j

CI(

1'5

,0
D3 &3 f---

5 (~~) 7

b2 &2h
74 L-S175 I ~

L- ..1 L2 L-1 L-I/J

"

"fLA

F4
I,

(£4)

I
~ L-LOAD >>------.---'

S25 lao

/6

1':2

CCSE"L..-(, I :2

f,p FI

,i '7

At - --5 1"- I~

1>\ ])2 1>3 1)4
1

CL- .....-

~ CK
7,45 \75

(FS)

I!> I &,2 (!l.; S4
2 7 '0 '4

'--t----------<!lOVAL-lll <:- --1'--_-1-_+-_+_-1
~

l~
5r 4 lq \0

~ r·74 $00 "l500

'-- -< D-'N c" .., . -"br i r
D -OUT CK..-..- ...J

I____ ....J

5
\I!

4

HI ~

.2

r-
W

FIG. 10 - D-REGISTER, , VECTOR A'PtlR£S~, CLOCK.

CONDITION SEL.ECTOR I L.OC¥.fi'E'I , Ff'LA

OSc



-"/M WIlT LAL i.E,e;T ~ OFF
Jff",

...5V
2 3 ON

,>US(;
~1 IB ,a

(I<.g) 13
Q1 2" 74S74~1 7L\LS \2=,7<\L532. ,

(~11 )( ..~l ( L'l)
... 4}1 74 LS 32. WD'

2.51:,.CI<(1<.9) C.,."
74LS32 4 .1 10

(1<.9) "5A-l!.US VALID
74LS~2 ~l

+5V

22.."
10K1l..

'WATCH DOG TIMER. POWER. -ON RESET CIR£UIT

uPT

Il.()L lJN IT

, 6 '0 I,
7 YO Y1 '/2. '13

liE:

A-m 2'Wil
0: ( L7)q INTER1l..

5V 00 1)\ b2. 113 CONT

~I 4 ,Z IS

~
~KI

--0
V q 10 I~ \ 2- ?>

,.........2, ll;O Ai Ai EiLG 1!0 !>\ !>2. /I t:1';£ lELI/.

II r
~ ECS 13214 (La) S65

Il<n

~ co: - - iA'S -eJ--
IlO "if iU i3 i4 1<5 £6 ~

151 1(,1 <71 IiI Iqr 201 2'1 221
s,.,\ Lei CONS

CK

r
r-

INTER.I/ Ul'T LINES F16. 11 WDT leu I 1'OWEll-ON ll£sEI CIA-CUlT



q

A0N~

'270'0 (~)

(C1)

Of, 05 04

16j 15 141
t-t3 "12 M~ M(>

(c4) (C3)

0$

q

07 06 c>5 OJ:

21
'A---<t-"~}P, - - - - -- - -- - - - ---
7

2/0~ (4 '> 270~ (~)

2D CS -------- --- -----
(C7) (c6)

,u.A )---f-'---_---------__---------_---------_----------"'1¢",9 'q-

A7 0"
\"1 LfiNT

AG Of, " E~ CNT

lIoroo~--3 A5 05 15 ~
4

~CC A4 04 M.a.'P-E"~

5 210<g
'PU'P

(
A:; 03

NH.\ 2
,

(E7) 02 II FE.f>.2
A1>I>RESS ~

,
A1 II> S101

AtA s¢
A'\ !'fJ C6

l'L .A1>llltE5S f. VECTOR
MA1>-EtJ

I 07 1'7.---. fA? ...
~ Ab 06 "
~ AS 05 15

~ A4 04 t4

-t A"?J
270ca

O~
la

~ A2
(Eq) 02 .1

-: A'\ 0' ID

--l At/> _ OrjJlf
...... Ag CS

2~

~
20

//
7 b 5 4 3~-

co 1\
r--.

10

q
~

I~ 7

"S
4



A-E,Us D-e.uS

P/1Vi 7 6 :; II

f;

74 LS 05 7tl ~s 05 ,41~6 74."3b 741~b

( ~6! (1'-7! (1<.3 ) ( 1<2) (? \ )

I. ~
If/

74 L<; oS

(RIO!
74 LS 05

Cl:. \ \ )
"74\3C

(M)

A ...... O.C.OU"TPOTS ,",0 TO

lIll," E: A LEb.

"1 +5'1

l-
S

--1?' I,)
rt
U

.J
220ft W----, Z

I 4:
I ~
I

I
I
I t<'lI ....
I
I I.D,
I U.

----~

LEt> CONNECTION TO a.c. OOTPuT

2

lI-lIUS Tl

~
-- SWITC14 CO,..NEe.TlcN

1>-BUS 5wrrCI1 -n ,. -- --,
I I 1Kll. TO V-&OS

: ~ ~~+5V\J;--_JEX.-r. 05C.



80

'PROGRAM

NE:TWOR.K

O'PEAATION

"PR,Oe.RAM

110

leslT ~INIT'AL'2ATIOt-l

FiE;. i4

OFF' - L.INE

SYSTEM



81

o l'T\itio..h·1,O.tion Y0o,ra:m

USf-S only stando.r<i..

·rn6-n-Uc.t io'l'\S .

BASE MICRQ}'ROEi.

INT. L£~EL" 6

foliC -+ CONS:

, CH Eel<. LC 1\

Ul»OATE

STATUS WOR.l>

i ....\TIALI'2.E
aEEoL$TEIl.&,
'PR.iOI!.ITY MA&IC.

bR£AI( ALL.

crtOSSl'QINTS

CONSOLE

1'0111"'9

r---t----.-- e.l:.c:.

'6() TOn'

'Dl!VI



82

BASE IIIICRO'PR.oErIlAI'1

t----- _.-.. ----
+

'INIT/ALIZIN6'

CPU -+ I-CI:

'SiO? '

6 TATUS WORb:
'PRESENT /HT. Uive:I.~4

INT. EWA6L.E. i

o \-nic1o.l'2.0--no'\') yrOC3rll-m
u..se.s OTlI'{ S-\a..,..~("Gl

i""'i>~.u.et\Ol'\S .

o CONSOL.E It.N)W~ S'fs-km

if, l"rl itio.ll:2.I""~ a.....d. it

''''0 uld. "nOt t'e.~e.6t

m1(,(-,..u.?~.

ON+F
FIl&E'" ,.

t-lETWORt<. MA1I:

:!!~: ~"'i
YUE ...T
IDe'" !!l

0'
I



83

l"(\itlCllize

iTlierno.l res i.-t.trs

COIIIsoLE

'Poll i"f\ 9

Updo..+e
STATUS WOQ.b

COtlSOL.E

?0'''''''9



84

• Re.i'Y\iti~\i1.o.t\on ,.~rQ.m

use.S oToI~ $ta.'I'Idard.

i "(\$'lrue't1'oY\S ,

o CONSOI...E (I~T. I...EVe l. • '7)
la.'I'\oWS 5'fS+c.l"t\ l'!o re.
i1\ii:lo.li1.l" , &0 it most
"'t\dt rl1u&St interrupt,

F

U1'dQ.te.

STATUS WOR-I>

L-----...J...---...-~~-.,.--~-T---. 0*'4.1'" com"'R')o'Y\d..l:> .

lElllllTIALIZATION

?R.OGRA~

MIC~()'PR.06QA""

6t<1rtl~ p.A· '" 'fF'6

t
---- ----- ----- - ------
~

T. TRUE

l= .. 'FALSE

'TO
f11
Z-
""-»
r-tJ
'>
-l
o
Z
.."
'TOo
Q\

~
3 '11I£" 'T~ ~OJ.D'



0AR
"

>',,"

~e.cei"e and 4!J(ec.Ute

-m~.'l1A3~ f4'0Tn \.CI

Me -+ c.ot4S :

Even-tuo.l Error~.

. ,

'i!..e.c.e.I"e and 4llt41cul-~
'--

CO"f'lsole col1'1'MCl1'\d

tio
,

TOn

F16. lea - ...&li 'TWO 5l\'.
01'e.a~:noH
?lLoElMt'\

r
o

8
z
l/I

I
L
o
U

III
2o
\I

VI
VI
hi
r
U
.l

8
--~---

-- ..,---- ------- ----- ----
I

SUfIIl Ell. f= I
T I

I
I.el fulll"l'tlj I

I
! lIfO IillUSAA[ I'nISCO/oll'l6GT j 'OOMNEC'T Q.102' 'INO"elAATIVE' 'Ol'ea.;!TIV£'~ 4l'Cl. ~' I

1)1SCONNECTIOl'l [II>101"ERA,TI'iE O'PEItATI \/£
I

CClNNEC;TlOl'l I
Vrocedure 'Pf'"0ce40re lIf'"ocedure 1>roc.e.dure. I

\It W J, J, I

I~F ~c+~Ull.oR, NlI .;, .('Eb.OIl ",0$.'
I

T -+-.__--.J I

~C.~I-CI : 'SCAN'
I

\ I
..-' -- ---- --- ---- ----- ,I, ----- ---- -- ---- I

cONS 0 L.E I
'011''''9 I

'MO~ft'

TO .,..' ~ 0Ff" 'P£'II«:£ g, Oil' 'NUl !aT~T"$ ~OR,)
'LOl'll ~oa.y' I

'IIElIJ 1'lllolll"TY 'DE....lce ')UI"\l0 MEMo&Y' IMASI(' '»OM, Il£Cilsreu'

9llIolIJ"tY wusK IKOt'EiVlTI\lE N£T~K MA1': STATU!O 'A!OIJ) cri~f'" In
?rocechJl"'e 'Proclldure ~: Ot.l~T l'roce.duf'"~ l'roceduA.S. I

I
I
1

- -- - - - - - - - - - - - - - - - - - - - - --- -- _________ -.J



~"TA""US WO~, - ....- -

£~O£ II~ Ii III '~$eN"T

,.,~ i 1"'"1'. LE"II£L

l( 'P~06R.. COUI'JTE~

x STAC\o( POINTER

O'PERA.TION CODE

I-~IMDSV.TIDt( ~ 2 IN'OEI\
St-

GLOCumulo;tor Ace

WOf"ja. i"rY3 rcqi'SiCr"

lH

AC

R.2.

'R4

itS

&7

5\ I

510

s~a.rl of R.EINITIALlZ.{sPEeI...L)

S 'PE C I A\.. )'-PR.06R.j\Ms.

~+Ort. of RE'IN\TIAU~.{STl\IIIAQj

P.E61~TEIl RbOTINE'S

STAN'DAR'D P.1'lI.O,"Il.AMS

~ASe ,,",1(;R.OP~6jiAM

(~('"t.~ INITIAoLIUTION)

,.6MOa.Y
01.6AN\2ATlO~

r

CNO<':."'AT'O" J
it.EIN IT&ALI 'l.A'fI.ON

"fA.06~AMS

INITI AL v£CT01l..

1(0 ev.RoR .... eC-ToR- -~-

",TE"'un YO<TOll.n
SU~Q.OOT. S'fAQC'.

1-0'" - b> - VW'i

C'OI'lV€v..S\ ON TA&""E'

,~y-to -LOe;

CCN..eUI~ TAt>l-E



GETLSW(o.) /GET?S'I/(o.) : AC $~oulclC'Q"IT'Ie wi*,

Lo6 J ,\,H'I ~~S oT ou'C"ccl. cl.a.tJia. In iN. 5M~b

GETL (0..) I 6ETl' (0.\ : Lo&/~~Y ~'jS ~ hs'rcO...
c:Lt.VIC:c. (-n +hL S LS.b of AC .

Fie. 20 - LeI MESS

u ~

TO N.EX"T IN!>"'ilUC.TIO'" }J. IlPUTINE

(-toC"' ~~.:oJ iT\Stt".u.etlO'f"\)

LCI MESS



• LC, NIESS

IJ=. SCAN. ENA~LE Hl ( SCAN. ENA~LE" is THE i!>'T 4 01"- THE" STATUS wcR..l> )

THe:N

\
L.OeK ... ( N€TWOIUC:. MA'P SMI I

L.ct ""rY'O. 'J b(l. lead. OYld writt-e'l1 )

p'i: M€~S AGe WOR..~ 'FItOM Lei IS R.EAD ANt> A ~UMl'

TO THe: A :PP'Z.o1>R.1 AT E l>R.ocE D UR.I:. OCCU~G

AC IS ~El2-0ED

o

STAT()~ WOjLD

-rHE ZT'ld. MEssAGE INOIZ..D

I2..6"GIS,TER.s

co
co

1:
AC = ¢ IS. ASSuME!> AT -rH l:i

( "P H'Y - 0.)
( LOG - G\.)

STA'O!.T 00:- THE

o
..J

eETL (a.) G~TL~W (0.) SubroU+ine.So

AC SHOUL'D CONTAIN LOG- 0.., r IN

IN

THE"

THE:

5 LSb

5 1v\5b
(for 6ETL (n) sllbrouh"-nc.)
(I' GETLSW (0) ,,)

d
o
C'4

(1'HY-o..)
(LOG -0.)

• 6ETP (a.) , 6ETP~W Co.)

AC 'SHOULD <:-oNTAIN PHY- a.. { IN THE 5" LSb ( 10' 6ETP(a) subrol.Tt-f'ne.)

IN -rHE 5 M5b ( '1 &ETPSW (0.) " )

I R4 ~ (l'HY-o.;

~5 ~ ( L06 - 0-..)



p.A 'PL... Al,.I:>RJ::0S NE'l<"T ADDll..ESS

[ - CONTINUE 1 - 0 0 - 0 o I (R9) 111 11

NEXT INST. FET COND JMP PL o - 0 0 1 SI II (AC) 111 01
ti: CONTINUE 0 0 0 0 0 1 I (AC) 11 11 1(:

II)

ta
(AC)~ 0 JMP MAP 1 - o 0 0 Sill 111 11

~
.J

AC + R9

AC,CO + SCAN.ENABLE

LOCK-1 ; MAR· O(~CI addr);

D-REG4o 1st Mess .word

Go to proper procedure;

AC. 0

f CONTI NU E o 0 1 0 0 0 0 1 (AC) 111 11 MAR" AC (=0) (LCI addr.)
nd

~"_.;o; D-REG + 2 Mess. word
:l ndVI CONTINUE 1 - 0 0 0 0 II (AC) 00000 AC" 2 Mess. word
trl GETP(a) 4 (R6) nd wordf!l COND JSB PL 1 - 0 0 0 2 00000 R6 + 2 Mess.

(j\ lit
4 (R9) ERROR N2 -+ 0co III COND RTN 1 - 0 0 S 10000X

,.......... CONTINUE- 1 0 0 0 - 0 0 0 0 2 I (AC) 00000 D-REG" AC
~ CONTINUE 1 - 0 0 0 0 2111 (AC) 00000 AC is swapped(SLSb -SMSb)
\ItSr CONTINUE 0 0 0 0 0 0 (AC) 1111 I MAR -AC; D-REG.... (LOG-a)
:. ..: CONT INUE 1 - 0 0 1 0 1 II (AC) 11 11 1 AC,MAR-+ (LOG-a)Ii' .D
~ ~t 'II CONTINUE 0 0 0 0 0 0 0 2 (R3) 00000 R3 .. (LOG-a); D-REG+(PHY-a)\DCi'..... CONTINUE 1 - 0 0 - 0 II (AC) 11 111 AC -+ (PHY-a).J..

lis COND RTN 1 - 0 0 4 0 2 (R2) 00000 R2 -+ (PHY-a)(J)

'FIG. 20 b - LeI MESS )J.~OEra.AMS



a
0"1

MAIl.+ll.'2

NO MES5 A6 ES

1>roced..u.r.e..

U'PDATE 1 IlJ~J>ATE' 2 ~l).ffose (L.O&-o.) i~ i"T\ 1'"~Si«" R.5/R~

(1)I-IY-o.)'' •. " R4/R.2

0-"1'\0.. "'~~ (-.H'{-d.) a.,-,d,. (La6-a.) il'\-to ,..,e:"{WOR.l< MAl'

F16. 21 L.el I'oI\ESS



• UPDATE 1 U'PDATE. 2 Subrout ine.-s

I.,. I~ THAT r (1..06 - (l.) IS IN R.eE;I'5TER.
~e:.Q.oUi. U?tlATE 1

UPDATe: 2
NE TWO~K. fv'IAP IS L'?OA"T~'D

" " ,.
I- h

It "

R. 5 Q-nd RA (u"VDATe 1)

R~ ~~ R.'3 (UPDATE" 2)

• NO I14ES5AGE 1» ('"oce du('"Q.

WO 5!.:l;>

~IG. 21 0... Lei MESS



92

l>ISCONNE::CnON

:Pf'oced '-<roe

F

;rs&

6ETL~W(c)

~:

PAll,TNE.R. + L06-(.
&UI.UE" F

WAITlN6 PAllT .. tP

FF

.:rS'B

ME'SREC

• b~lovJ +tI~ dC1"I'U:~ I ..on(. •

is 1tu.. I"Oot\"nc, #la.t serv&S
eIteonw.oI wcr.ioft,.,. cUvCcas
t\'lo.t mo.~ now to.IIt. l,Ulth

th~ de-vIce. iu,t:. dCs
CO'n"l'\ecA«.c:L •

D
C
en
C

'"

r---

R,5+ R1
PA'" Rq,

:rSB
U1'VATE"~

~:

FR.EE+T

PART~eR+(j)



1>ISCONNEC"TION 'Procedure

D ISCoIJ!'J£CT10N. OF THE Cl2.0S$1'OINT IS OFZ-b£~D I ex.c€l'T IF b - ON 1\ F-eEE: 1\ (PARTNE. It = LOG -a.)

wA ITI ~6 Q. ue lJe 'FOlt. b It; SE2.\I€ l> q:..

a. ON 1\ QueuE ~
C - ON f\ ~ f\ (PA~iNel2.. -= LOt.-a.)

b ON A GU€U€ ~
c' ON 1\ FR.EE 1\ (l'A~TNEIL ~ '-06 -b )

NETWOt.K MAP Ul''DAT~J>

)2.E:615 Terz..s

Me - 4#= ~

Moll IFIED (

I DEVIC£ b f>uSY' b

)

ON 1\ ~ A ('PAItTNEI2.. = LOG-a..)

QUe.ue. ~ou+i"nc...

'1l15CONNECTION FAI/....El) \

I I..C I CQ.A 2"'1 I

LC I o.~oo~n; 'TEST FA ILED \

Lei o."'I1SUlC-'S T\~i+h.&1 'TeST FAILE"D'"l\C)( 'TEST 01<;1

e-r 2.

IJ: a. -

b

ON /\ Q UELJE 1\ F~e:£ 0...,..,0.-
ON 1\ &. u€.ue: 1\ F 2.€E o.-nd.

c - ONI\~ 1\ (l'All.:t"Ne2.:L06-Q )

C'ON " ~ 1\ ~1l..TNe:Q.=L06~)

FIG. 22 CL L.CI MESS



l:>TAI2.T OF- TH g ltOUi 11I..l€ a.rd. a. --- - ON f\ F1(.E t " CUE. IJ£ ,

THEN [('PHY-a..'\ f (1..06-0.), (1)H'I-C) I (LOG-c.) A~e LJPbATED

At-lD A GONNEc,loN \~ e~TJl-~LI$HE:O llETwee:1.J Q: AND ~.

r\"?H'f - b) \ L06 -b),("~Y- c.'), (LOG - c') Af1.£. l.)PI>A.€1>

L M-JD p" c.orJI'JEC-T10toJ IS MADE:" :bE-TWeEN bAN]) C'

THEN AL""O

2 AT TH e: STAR-T Dl'- ~UT,t-·1"e. o""l'\d.. b - ON " FQ..Eg 1\ ~IJEU€ ,

o

,HeN

o ~ (~) - ON 1\ F12.€€ "Q,ueue o--nd oN" f'REe " ("VA~TNe£.. = L¢G _ a. (b))

-4"
(1£) OUE:\JE + ~ J Ree- +'-, l>JI,R.TNe£. + ¢0'\ THeN d Ae.e l)\\l>~.a WITH : j WArrfNe "PAItT +-¢

0
(l C~) - ON " F~ee: 1\ Q.UEUe: GRnd. 2:.. (~\) ( 1'AR.TI-JeR- -= LO& - a.. (b))

It:: l
a ( £') ON I\~ £ (~\) l>lll>A'"el> WI"TH W""'N& + r ; l=lLEE~F i MR.-rNE::R.~ Lc:>6-c:x(b)

C ( £') ON "~E Q (£') L)1>DAI"e7> wrn-t WAIlING~ ;:: i F~E -+ T j "pAIl.INER...~ ¢ i

o

'FIG. 22 b LeI MESS



95

.2.'
o,uEtJl: .. F

J,/AITIH6 l'A~T...q)

T

~:

~UEUe:"1=

WAITING 'PAIaT+ '"

. ,J'SB

GETl.SW'"

g,~:

"alOE .. T
'PA_TNI£Il+ tIJ

Lei ~hould...

brc.ok, XlOlTft
(G.,b)

a.n6..1C4t' it.

:rS'8

IJPPATE 2

<1:

J=ll.EE .-T
1>AllTfliEll" rp

L.el:

'PoIIIT'lf':J

J'SB

Ul'l1ATE i

Me+ CONS:
'Lei ctt.A2. Y \



• to 0 b r 0 utiY\ e.

~T THE STAR..T OF THE SUBROUTINE • THE tNTeltr-JAL RE:6ISTElt.S

(1)H'f- 0.')
('PHY-a.)
( LOG -a.)

o Q is. Ali- WAYS V"PJ)ATED WITH

o

o

\~

IF

b -

b

('Ml:2.TN6R.. =- L06 - a) b UP1>A,e:t> WITH ~\2.€E + T " WAITING .. F'

b

b

ON f\.~ " (WAITING llAR..T = 1-06-0..)

ON f\ ~ 1\ (WAIT/Nt,;. l'AQ..T =- L.Q5-a.)

b b U?t>A.TE]) WITH

l)l>t>ATEl> WITH \ GUEO€ -+ F . ?12.e:E ~ T i ~AII' ~G .;:. F j

Ll>A\L,NER ~ ep WAIT/N6 "PAR.T ~ ¢

E\lE'NT c.CUNTER.. AT1+-IE: END IS LOA.'t>E!> WITH t .i. 11= b oN 1\ FRee
2 I~ b \ON "~ )

Me. ~ CONS t '])ISc..DNNeCTION ;=AILED \ I~ Lei T<.EroQ..,S TE"ST ON K PoIN"T WAS 'TE:'SI FAILE1)'

I Lei ClLA2Y' 11= LC,I AN~ lJJER.'5 W\,H !J6ITH€R.. 'Tt~T t:="AIL£I>' !'-:lOR.. I TEST oK I

I;:' b

Queue. IS ON1>O"-lE. 11= b - ON 1\ 'J!R.E:.E" f\. (WAITING 1>AlZ..I oz.. LOG-a) 1\ (l>AR..TN6R. = LOG-a..)

MC - -:{f a. I~ b ON 1\ F5!.EE " ('PAR.TNER. = L06 _ 0.)
FIG. 23 C1. LeI ME'SS



• Tnt.. frocedore TnO.llc.s
1T\Q.1\~ h.t.\'6 i"/\ ardf.(' to

ddtd' uT\coherenc.e'.
It. cou\4 bQ &im?U feed.. ,
6ca.c:('\·~(el~ &~ct~.

-n-CI\

~
.,tl.

I
r-
n

X

m
CI\ .B

c

b·

0.:

WAITI/oI6+T
t.oSY + T

~Aa.T~E~~ Lorb

97

MC~ .#!!:
'you A~e: C1i..Al.y'

b·
-"

WAITING" F
IIOIV. Ue: .- F

WAITINt; 'tAll.T" f/)

ER.ROR.
jIlp..--; N!+2

J'S&

UVIlAT£ 1



"T1
(j).
~
P
I

r
o

;rs:e.
6liTLSW (d.)

d.'-'
QUEUE +F

WAITING> 'PNif,.T.'P

g,:
WAITlN&+F

98

T :TSB

GETLSvJ (C)

F

~:

QUE0£+F

W"\TI~6"Av:T+c;6

EIlROR.

N!+~

• d. = ~c.I/Ic:e who..e LOG

CLc:ld.rc'5 i-r. in ttu- 1>AIlT/lIE:R.

tic1c:l ~ (PHY- ~)



• "Proc.edure.

Q IF

b

a..

ON

[
g is

b "

UVIlATE.t> NI TH

"
ON" T i ~R.€E: - T j ..... AITING ... F" I l'AQ..IN€/t. 4- if>
WAITING ... 1=- Q.UEU!S ..... 'F WAITING ~A2.T ~ ep

b ON " ~ 1\ Q.\)€uE

L~
GETS FR.€E ~ ~ WAilING ~ T l'A2.TNER. .. L06- b
IOE.T 5 f'1tE.E; + 4= cveue; + T wAITIN6 1>AIt.T + L.06-a...

b ON 1\ ~ A Q.A.)EuE:

[~
6ETS Fllee; ~ "'{' ; 'NAIliNG +l=- 1>AilTNER ~ ¢

,
Su~~e.~s NO M01)11='1 cATIoN

b ON " FREE [ ~ 6Ets F~E.€' ~ F WAITING .- F' ; 'PAR.TNER.. .... L06-b
b II J:l2..EE ~ F WAI.,..ING .... ;:: ; 1>M!..TNE.R., ~ LOE; - Cl.

IF a. WJ-\\TIN6 OYld.. a. - {ltJAI,.IN6 "PA2..T = 1-06 - 0..)

THeN 0- 6~TS ~U£UE" ~ ~ WAITING 1>Alti 4- c/J
obs .. d- is +h«. del/ree. whoSQ 1.06 a J-dress is iT) +hQ.. 'PAO-TNeR.. fCeld.. Ci (1)HY- (1.)

a*:. "1t\c.. sto.c-t. Of -th~ -pro CD-<lu.r -e... •

Me "* 'CONNECTIONS 'llSAbL6b
\

IF STATv~ ltJolLl) +l~S ~Il 5 HI
0 .. a.

'YOU AR..E IN(YPER.ATI\lE \
ll= a. ON

, 'You A~E' C.~A2-Y \
ll= ON "~~

I 'bE.\IlcE b INO l>e",A.TI \IE: \ IF Cl. ON " ritE€' a.-nd.. b -oN
~\. ' 1>E\lI c.e: b '!oUSY' IF a. ON 1\ l==RE~ ~"nd.. b - ON "~E I\. Q.ueue

I )( '{'OINT bEl"ECT' \Ie. \ I~

[~
Of'.J 1\ 'Fl:l.ee a."a b - ON " +:2EE' o-nd..

L.CI RellO~TS THAT TH~ ITEST FAIL.E])'
CONl'lecTlOt-J OF XpO/NT (a.,b) I~ OR.J)€R.eD I;: a - 0l\1 " ~i1.E £ GTld.. b - ON 1\ "F2.EE

1= IG • 24b Lei f"1 t:ss



ON 1\ ~ReE

THAT THE I TEST FAIL.E:D'

NEITHER.. 'Te6T FAIL-ED \ NOR. 'TE~T

b

Lei

"
IFFP'/ LE;P',

I;:'

'CONNECTION

'1..0\ cR.AZ'I

,... DONE

-Me

WAITIN IS

• subroutine

NETIIJOR.K 15 U1'DATED

a.
b

6E.TS
L06 - b

L06 - a... WAIT/No

EveNT co UI'JT6R OUT v.JITH <t> I 1 OR. 2

OF X "POINT (a I b) IS ALWA'iS

Cl
a

Mc _
'X 'POINT 1JE;::eCT1VE' IF Let ltEl'OQ...T5 THAT THE" 'T€ST 'PAILEb \

[

I CONNECTION FAILE:D'

, I..C I c'R.A2'1'
"
.. "

" "
"

N€ITH E~ 'TEST FAIL-eD\ NO'R. 'Te~T OK. '

Fl6. 24 c L.CoI MESS



101

SMIl'\C1-$~

,."aIu. XpoiTlo\; (A,b)
LGI ho. to -to tQt

)( yol"Y1t (a, b)

b"
-,t -"- e.uf,"I 4-"

CI\ PA1l."NEIl.+L06°Cl.
WAITIN6+F

t-)
til

g,:

r
FRIlE 4- F

0 PAa"~£Ii!+ LQ6-a

3
(1\ J.5&
CI\ UPl>A'TE2
f/\

Lei
Poll ""H-]



r
(')

102

F

F

:r..~
Gl:TLSW (e)

~:

Q.ueus ~ F
v.lAITlt./6 ''''11., ~ ¢

2.:

o "'C .... :#!: : t l C"6t. CPO

5CTld.5 'S&T\cl. """,. to
ch.I/(c&.' +0~ Lei ",'nd.,

tn&l\ CO"mU 1\o\A. clt..SiM

1V\&~e +0 tAa""CL ~ •



o INO':PE a.ATI 'IE froce.d ure.

IS UPDATED IN THE: f'OU.O WING CASES;

a.

IF

A I..WAYS GETS

'FREE V

ON + F

WAITING

WAil/NEt +- F "PA"R.TNER. ... ¢

b ( 'PAI2-TNER. L.OG - 0..) b GETS WAITING

\..bG-o.) I

WA1T/NE. 1'AR.T

b

("PA~TNE~ LOE> - a.") 1\ ON A -l'R.EE "THEN b GETS

( 1'A~TNe'L = loG - a.) A ON A t=l2.t:€ /\

THEN b SUFFE1LS

(~.AR.TNER. .... L06 - a..) " ON 1\ FREe

(WAITING l'ARoT =:

CueUE .. 'F

(WAITING "'PAR.i ::: 1..06 - 0..)
NO Mti1>l~ Ie A"TION

<-if;

WALTING -+ ;:

h b GETS : [ nEE -+ T i WAI"1'"'N6 <- F i QUEUE ~ oF i
"PARTNER. <- ¢ WAITING "PARI '+ ¢

I~ QueuE ~ ~ ('PARTNeR.

,THEN c 6 ETS

LOG - a..)
FR.EE ~ T

1!'1011€1tATI\fE '

1!>uS'I '
Me

J'l\C _ ::if: C

DISCONNEC,iION OF

(

X 'POiNT (a.,b) IS O~llERED

Ac...WA'fS

IF ( ~ RreE V WAITING ~

b ON " ~ " ('PARTNER. :=, LOG - a.)

It=. a QueuE a:Tld e - (l'A'R.TNER =- LOG -a.)

11=

l~
F~EE: V WAITING ~
( 0"1 " fi:EE 1\ (t'All-TNEtl.. - LOG -(1) )

obS .. b
c

I~ -th~ device

1=/6. 26 (L

WhOSe. wG o.dciress \5 '" -tr,~ ~AR.TNER.. fl'eld... ~ C1'HY -0.)
WAITING 1>AR.T field.. of (LOG - a..)

LeI MESS



104

I I
O"PERATiVE
"Proce-dure

e:R.tlO~

Ill! ~'2

11-(J\

f-,)
....,J

ERaoR

r N!~ U
0

irS~

1: 9:: '&R.E:AIC. )(Ct'I
U\ "?A1tTNE1i. • ¢
(/\

O..a + 'T' 2::
OH+T

auz.oR.
~-~ HI! -4- 15 ~-"'"""'"'1

EV9IT ctlT+1

sst>
U'PI>ATE 1

J'SB &uEU£

T" TRUE.

F ,. FAI-S£

o Me -+ 4; : T'Ilco.Y\S frst. 0.

~e:nclme.66Cl~e. -to d4vic;LI

me.S5Q3e. to LeI,

-fo 1\Q we. d.. "':I -thA
~&~frc.c:i. m&SS«~e.

+0 +ha. cl.r.viet. .



• OPE?ATIVE llroce dure

Ui'PATED IN THE f'ol-LDWltJG CAses

o I;::: a ON A ~ NOTHINl; IS

o IF 0"1 " ~Jl,.EE

wAITING ~ 'F

WAI,/NG "A'Q..,

a. ON V FR.EE

1=lZ.EE ~ "'T WAITIN 6 .... 1=

.... ¢ WAITING "PA~, ~ ¢
QUEUe: ~ 1=-

I~

b GeTS : &oeoe + J: j WAITIN6 l't>JJ:r ... ¢

£ IS NDT N\o)IFfEl)ON 1\ 1=R.E€ " (WAITIN£, 'PAIL, ... L06-a.)

T~E"" b GETS( \>AIlTNElt. =- LeE> -a..)

("p,A.R."Tht~ = 1-06 -0.) "
Lt\
o

ON 1\ ~~e.e:

b 66TS
[
~2E€ ~ T . QUEUE .... ;:. WAITING- +- F

1>A$tTNI:.R ~ I c/> WAITING 1>AR.T ... c:b

o a.

f:
( ON V n.Eie:) " OO~LlE

(1)A~TNe.R... == LoOEs - 0.) ,,[

( "PAR..TNeR.. = LOo -a.') C 15

£. GETS

C GETS

NOT !VI 0]) IFIEl1

WAITII\.lG -+ 1= i 'PARTNER.'" L06-tt.

\NAITING ~ ~ ; lA2.TNE2. ~ ¢

F16. 27 <1. Lei MESS



CONNIC e,ION OF X l'OINT (a, c\ \~ eo> 11-"Dtll.IS1) IF

~ (ON v H.E.E) " Q.u€UE o..'Y'd.. c ON " 1='"12-E6 " (1lA,R.Tf-olER.. = I-OG- a)

DISC:ON~E"C.TlcN OF )( ""DIN, (o.,b) I~ o~DER.eD 1'1='

Q. (~""2.eE " WAITING) V (ON " f'1t€€) o.-na.. b ON (\ F2:EE " ("l>AIlTNe"R. ~ LOG-a)

WAITING cu€v€" \~ uNDoNE. IF

0.- (+l2..EE f\ WAITING) V ( ON " +l2.eE.) o."J'Cl b - ON I\~ " (llA12..ThlEl2..-'LC6-o..) A (~rr. t>AItT=- Lo~

Me. ~ :IF 0- r
l yOU A12..E: cv..A2.Y \ IF a. ON " 1=REE

''1ov Allo£ o:pe P..A.\Vel
IF <b- ON v "FR.6E

\.D
a

obS. b

c
i~

"

in -the "MitnleR. fft'd. of- (PH'I- a.)
WAITIN6 t>A1'.T fidei. 0t (LOG -a)

FIe. 2.7 b - Lei MESS



107

• Thi$ routine, lI1U6'l

b ~ i-n *'t. \A:pper hoJf
~ *'~ )J- ~I,,:m s+ore,

NE)(T INST'Ii'.v~' ,';01<1
~E,CH {l:O,3TIlJE

(foe- li>l'eelAL li'olSTli.)

EVJloltt.l!~

."
<i\

N
CO

l.OCIl::+-4

Z
.-.. ~
" -'0
10 ,-
1/1 Z
~

~ C\)U+MeM:\11 FC' 'to NtlCt IN&TRU
~ Cr

S 'PC+ 1lC+ I
Z -IJ\ 0~

(ioC" &P€QAL1J Z I.OCk+6
c ."'S"TllUC1.)C'
-i 11
0 ~Z So.v~ (niO
I/l 0

SU&~.S~CIl::...... :r.
'PC,ST.",_

~ St'P +SP-+ 2
10
0
C
-i-Z
"l

1.oCl'+4

C'PU40 MInil:
+ 114"T. ViCl'

IIoIT. ItE'GToR+1



• NE)<T .foISTR..OC.TION ~ETCH It.outine.

IT I~ A~SUN\Et:l THAT THE: STACK "POINTER l'OINTS AT THE: FlR.E,'" F'~EE:' "PLAcE. IN THE SU!>l2.OUTINE

'STACK"

IF INT RE.Q.. " ( ObS" ". IN\". E;"-JA~LE: IS THE 1!>IT b 1"1 THE STATUS WOR:P)

1NTE:R.I2.0?T \lECTOR. (-n')THEN -pf 06l2-A\V\ CO liN TER.

STACK.. VOlNTER..
SUi!>l2.ouTINE: STA c..K.

('R..'ir)
(~7) +- S,AC.K llDlI'JTE"J;L

1
l>~ITION (Sp + 64) ~

" (~'? + 6'5 ') ..

old.
old.

+ 1
+ 2
STATUS WO!2-:D

1>~bRA"" CCVNTER.

STATUS W01Z.1)
[

INTE.R.RUPT L-EVe L

E It R.O R.. N U M 2>e1il <- ¢

co
o

ob6. '. "Y'I 16 +he 1"\~W iYl~u.ttt r~u.e~t\~ leve I

l~ fNT2.EQ. " I"lTE~R.<..rPT e-NA~Le.

THeN

I
"PR..o6R-Al\I\ COUNTER. ~ "Pl2.OGR..Ar.-'\ c.oUNTE"R. + {

STACk. "POINTER.. UNcHANe.e:n

SUt:J9-0UTIN€ fO,TACK. II

$"TATUe. WOR..'D E1l-~ I'JUM~eR. - ¢

LOCK ~ 4 ( ONLY

Me CONS

LeI

'el2...~12- Iv1eSSAGE \ (<.Ud-h

-+h'l.. ~TATuG WORoI»

'SCA'N'

ERR.oR. NUMJ!>E'R,. ~ille.'n 10'1

IF E"Rl2.OR.. p,JUM1!>E~ =F
E~IU>R. NUMeel<. f·te'd.. in
¢ et.~ i+\'i!. ~-to..rl:. of -+h~ \Cx,rtine.

FIG. 2.8 a. NEx.T IN6TR.UCTION '::~TCH ltoUTINE



~ CONTINUE 1 - 0 0 0 o I (R9) 11111 AC + R9 (STATUS WORD)

l ERROR COND JSB PL o - 0 0 1 5111 (AC) o1111 AC,CO ~ ERROR N2

~
CONTINUE 0 0 0 0 0 0 1 I (AC) 111 01 MAR 4- 0 (LCI addr);

LCI + 'SCAN 1

LI1
U. - -
d. CONTINUE - 0 0 - 4 0 (R9) 111 11 AC .. R9 ; LOCK +- 4

to F
'6

LO CNTR&CONTIN o - 0 0 0 0 2 " (AC) 00000 ICU 4- INT.ENABLE+INT.LEVEL
~
I- PROCHAIN COND JMP PL 1 0 0 0 1 0 0 7 (R8) 11111 MAR + R8
')lC.
lU (R8) R8 +R8 +'Z CONTINUE 0 0 0 0 0 0 0 0 0 11 111 1; D-REG +next i nstr.

JMP MAP 1 - 0 0 1 0 5111 (AC) 111 11 AC +0; Go to next instr'}Jprog

r CONT INUE 1 - 0 0 1 6 0 1 I (Rl) 11111 MAR-R7(SP.);R7 40 R7 + 1

Q""I CONTINUE 0 0 0 0 0 0 0 0 0 (R9) 1111 1 AC,Subr.Stack ~ R9(STAT.WO)
a "2- F

'6
LD CNTR&CONTINUE 0 0 0 0 0 (Rl) 11 111 MAR4R7 ; R7" R7 + 1-.t j

::t:
u D-REG + new Interr. Level
0

~ CONT INUE 0 0 0 0 0 0 0 0 0 (R8 11111 AC,Subr.Stack. R8 (P.C.)

CONTINUE 1 - 0 0 1 1 4 5 (R9 00001 LOCK" 4; INTERR.LEVEL·O

CONTINUE 1 - 0 0 0 5 II (AC 11 11 0 AC • new Interr. Level

CONTINUE 1 - 0 0 1 0 3 (R9 1111 0 INTERR.LEVEL .new Interr.Leva

CONTINUE 0 0 0 0 0 0 0 0 (AC 10011 MAR +- INT .LEVEL + 96 j

D-REG-+ Interr. Vector

CONT INUE 1 1 o 0 0 0 0 0 0 1 II (AC 1111 1 MAR of< Interr.Vector j

AC" Interr.Vector + 1

CONTINUE 01 o 0 0 0 0 0 2 I (~8 00000 R8 + st
0 AC jO-REG+1 Instr.

t=\ G . 29b - NE~T /NSTR. FETCH )J- ll.OUTIN£



)J- A "PI-. AbDll.£sS

(:)

JMP MAP 1 - 0 0 0 5111 (AC) 11 11 1 AC "0 ;Go to 1
st

i nst ....prog.

i CONTINUE 1 - 0 0 0 1 I (AC) 10000 MAR-F
16

(CONS addr.) ;

d AC - I ERROR MESSAGE I

0
0 (R9) ERROR N2.0 ;d. CONTINUE 1 0 o 0 0 0 5 I 10000rJ.

\U
CONS - I ERROR MESSAGE'

COND RTN 1 - o 0 4 51 II (AC) 11111 AC +0 ;Return



Nel(TINSTR.

Th;5 roUTiTle leaves

UJor~i~ l"e.9 isiCr ,o\C

loo.de.d with th~ ('~

9i 6.i<r ~ye.c:.Ifid.. "~

+he.. 4 Lf,b of -the.. ope
code.. of 1't1c. neLO i-nlirtr.

o

!>o....e. iT\~

suU. STACK.

1l.C. ,ST. \l!0llJ)

au ~ IC.U:

INT. vEC'rCtl

STANt> . lNSTR. t=ETcH

"ROUTINE ({or ~.i

Pc ... INT, YE'C-T.+ 1

"Ole.o."n~ 0.. bra""'l'"\Ch -to \
STAND. LNS"'R. FETCH rOu+in~)

5TAN'bAR-l> INST2.UCTlON :

II: IT OOES NO. HA"E.

To €.ToR.E I IN R.-o
I
I

®

ton = ~1 I 11..2, -00 I ttq I Ace (T)
If -the. 4 LSb I"J"' 1ha... op.eoOc. or #"\~ s+o'""c*o.rd.

i"1"'s-tf"ue:tioY\ are all 1-\1 "!tTl =- AC I SCI tha.t

.,...,e+hi-ng ho-ppeY\5, jv~t a. bro."nc.h.

ll£&ISTE'l IlOJ"TINE

( f:1/. COON"I'El. +~ )

( Ob$.;

g'ND OF MICRoPRQ6R.AM of A

IF rT NE5llS .s.TO~ llE&ULT

tlACAC. I INTo lZ.-n
I
I



~A "P I- . A t>PRESS NE)(T At>P~S5 F M MAl' LIP ll/", D-iE6 W. D-EN ce. SE"t.. Ci FUNCTIDN ~ CON'lMEN'-S

OEO JMP MAP 1 - a a a 5111 (AC) 00000 registers unchanged

aE1 STAND. INST. FE COND JMP PL 1 - a a 4 (TRUE 5111 (AC) 00000 II II

OE2 JMP MAP 1 - 0 0 a 0 (R 1) 11 111 AC • R1

OE3 STAND. INST . FE COND JMP PL 1 - 0 0 4 0 2 (R 1) 00000 R1 + AC

OE4 JMP MAP 1 - 0 0 0 1 0 (R2) 1111 1 AC 4- R2

OE5 STAND.INST.FE COND Jr-1p PL 1 - 0 a 4 0 2 (R2) 00000 R2 .. AC

OE6 JMP MAP 1 - a 0 a a (R3) 11111 AC 4- R3

OE7 STAND. INST . FE COND JMP PL 1 - a 0 4 0 2 (R3) 00000 R3 .. AC

N OF2 JMP MAP 1 - 0 0 0 0 (R9) 11 11 1 AC .- R9

OF3 STAND.INST.FE COND JUMP PL 1 - 0 a 4 a 2 (R9) 00000 R9 ... AC

OF4 JMP MAP 1 - a 0 0 1 a (T) 11 111 AC .. ACC (T)

OF5 STAND.INST.FE COND JMP PL 1 - a 0 4 0 2 (T) 00000 ACC (T) .. AC

1Z.E6\STER.. 'R.O\JTINES



1\ 3

+5'1 R.AILS

GN'D METALI2.E:b iR.AOK5

4114R CONTA''''~ 1KCl. 2.EiOl$TOIt6 TO + 5V.

!74S 1741 ~2 5100':J.7oq 1>\

Cl i EI

174~ 1741 pi
D2 0

270~ l-
Ll

,14 LS ':1 UJ
C3 IAYn 2ql~ I ~

Z

D?I
2

"3 0
U

270~

174S'7~1 \74 LS27 I r fA $00 I I-
:I

C4 E4 F4 \l)

tt:

(7451741 ~ 174~ 1751:2.7 O<r. »5 E5 ~5

C6

IAm 2~~1 74 L<;, 161

~ ~
Eb Fb ...-

270g

c, IAm 2ql~1D7 '2.70'0 I---

£7

~Dt'

ri

174~O~ I 1
745

oi I Am :zqOC\ ! 270'J 0
\-

Aq aq e:q I..l

1)'\ I W
z
Z

174508 J 17450~ 1 174600 I 174500 I 8
Ale BID £10 FlO

t-
Ii

Am 2Q09 III

1745741 174160 I ...I

p,,, DII FII

~IG. ~O - CIII.CUIT BOAR.]) :I COMt>ONENTS' SI'DE



11 4

..... 5\1

• GND
4114R.

~AII..S

ME:'ALL.12£D TR.ACK~(.

CONiAINS f K.Q \l.ESISTO\l.S 1'0 ... 5V

[

I
I

~oo'2.

?,o02

13-..,
?loO'2.

L

?JOO';

;002

1

K4

174504 I
L\

~
L-:.:J

~
~

ClIg
~
Z
z
8

c/.
~
u
U1
2
Z

8

1745174,
L5

r-::I
~

Kb

~
~

3002

Q
Q
Q

~
L-.d

~
~

~
~

~
~

'FIG. 31 Co\A-CUlT COMllONEt-JTS I 51DE'



• +5V WHIT!:: RAIL.S

115

o GN"J) 'BAR.E ~AIL';

• 4114R CONTAINS 2.20.n. c.oNtJ~C1"e;p f>e,WE:IiN LED

AND O!'EN COI-Lec..TOIZ. OU,1' UT .

~12.1

E::J 17413~1 r:I
Q2 0

r
~

141\4~1 17AI;~1
z
z
0
u

17413~1
l-
I
I.!l

~

tsJ ~Q,5 R.S

~ 174L50S1 lJ')
rl)

Q6 ~6

[5J I 74LS05

1Q"7 R.7

(,9n.
-0-

til

174LS~1
0
I-
U
III
Z
Z
0

74L~05
()

~Qlo \2.10 l-
LL
W
...J

~
741.'$05

Q.\\ 12.1\

FIG. 32 - CIRCUI" boARD JI[. COM"ONENT5' SID£


	Voorblad
	Index
	Abstract
	1. Introduction
	2. Communication Network
	3. Matrix Controller
	4. Description of Functional Blocks
	5. CPU Design : Hardware
	6. CPU Design : Software
	7. Microprograms
	8. Testing
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

