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Abstract

We establish mean-field limits for large-scale random-access networks with buffer dynamics
and arbitrary interference graphs. While saturated-buffer scenarios have been widely investi-
gated and yield useful throughput estimates for persistent sessions, they fail to capture the
fluctuations in buffer contents over time, and provide no insight in the delay performance of
flows with intermittent packet arrivals. Motivated by that issue, we explore in the present pa-
per random-access networks with buffer dynamics, where flows with empty buffers refrain from
competition for the medium. The occurrence of empty buffers thus results in a complex dynamic
interaction between activity states and buffer contents, which severely complicates the perfor-
mance analysis. Hence we focus on a many-sources regime where the total number of nodes
grows large, which not only offers mathematical tractability but is also highly relevant with the
densification of wireless networks as the Internet of Things emerges. We exploit time scale sep-
aration properties to prove that the properly scaled buffer occupancy process converges to the
solution of a deterministic initial-value problem, and establish the existence and uniqueness of
the associated fixed point. This approach simplifies the performance analysis of networks with
huge numbers of nodes to a low-dimensional fixed-point calculation. For the case of a complete
interference graph, we demonstrate asymptotic stability, provide a simple closed-form expression
for the fixed point, and prove interchange of the mean-field and steady-state limits. This yields
asymptotically exact approximations for key performance metrics, in particular the stationary
buffer content and packet delay distributions. The methodological framework that we develop
easily extends to various model refinements as will be illustrated by several examples.

1 Introduction

1.1 Background and related work

Wireless networks are already large and complex today, and being at the heart of the so-called
Internet of Things (IoT) [2], are expected to grow even denser in the future [21]. The rapid increase
in wireless applications has led to an increasing demand for scarce wireless spectrum, and hence
it is necessary to make the most efficient use of the limited available capacity. Obviously, when
the number of nodes is large, in the hundreds or even thousands of nodes, a dedicated medium or
channel cannot be assigned to each node, and nodes have to share the medium. Multiple simultaneous
node transmissions on the same channel will however inevitably give rise to interference and loss
of throughput. Medium access control (MAC) mechanisms are crucial to resolve this contention.
However, in large networks, a centralized control mechanism is hard to implement and to maintain
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since it would require constant status updates generating prohibitive communication overhead. For
this reason the design of efficient distributed (local) MAC protocols has attracted a lot of attention.

A very popular distributed MAC mechanism is the CSMA (Carrier-Sense Multiple-Access) pro-
tocol, which is currently at the core of the IEEE 802.11 and 802.15.4 standards. Its popularity is
mostly due to its simplicity and efficiency. The key feature of the CSMA protocol is that each node
waits for a random back-off period before initiating a transmission. Interference is avoided since the
back-off countdown is interrupted whenever potential interference is sensed, and only resumed once
the medium is sensed idle again. This protocol, whilst extremely easy to understand on a local level,
generates complex and interesting macroscopic network dynamics.

In the performance analysis of CSMA networks, a common assumption is the existence of an
underlying graph that represents interference between the various nodes in the network. An edge
between two nodes means that destructive interference is caused by simultaneous transmission. Both
empirical and theoretical support for the notion of an interference graph is provided in [26, 46].

When the nodes always have packets to transmit, the network is said to be saturated and the
macroscopic activity behavior is amenable to analysis under the assumption of an interference graph.
In particular, the activity process has an elegant product-form stationary distribution [9, 29, 40].
The computation of the stationary distribution of the activity process reduces to the identification
of all the subsets of nodes which may transmit simultaneously, namely the independent sets of the
interference graph.

Real-life scenarios however involve unsaturated networks. Packets arrive at the various nodes ac-
cording to exogenous processes, and buffers may drain from time to time as packets are transmitted.
In particular, in IoT applications, sources are likely to generate packets only sporadically, with fairly
tight delay constraints, and often have empty buffers. Since empty nodes temporarily refrain from
the medium competition, the activity process is strictly intertwined with the buffer content process.
In this situation, the product-form solution no longer holds [14, 40] and an exact stationary analysis
does not seem tractable. Furthermore, not even stability conditions for the queueing dynamics in
the nodes’ buffers are known, let alone results for the stationary distribution of the buffer content
process.

The analysis of unsaturated CSMA networks simplifies if certain symmetry conditions amongst
the various nodes hold. An important instance is when there is a substantial number of nodes with
similar traffic and placement in the network, so that the operation of one is equivalent to that of
many others. More generally, nodes can be divided into classes with the symmetry conditions now
applying to nodes of the same class. The asymptotic regime where the number of such nodes in each
class grows to infinity, is often referred to as a mean-field regime. Mean-field theory originated in
physics, where it is still largely used in the study of models involving a large number of interacting
particles. The aggregated effect of all the other particles on any tagged particle is approximated by a
single averaged effect (the mean-field), thus reducing a many-body problem to a tractable one-body
problem. Mean-field analysis has since been exploited in various scientific areas, from epidemic
models to queueing systems and from biology to game theory. In the context of random-access
networks a mean-field regime, not only provides analytical tractability, but is also highly relevant in
the context of the envisioned massive numbers of IoT devices.

A thorough survey of mean-field analysis of random-access protocols is presented in [19]. The
work of Bianchi [6] is a landmark paper which assumed a propagation of chaos property to hold so as
to derive tractable formulae for the key performance measures of the system. The papers surveyed
in [19] mostly use mean-field theory to provide either evidence or objection for the propagation of
chaos assumption of Bianchi. Among these papers, it is worth mentioning [16], where the authors
investigated the existence of a global attractor for the mean-field system and provided sufficient
conditions for its existence, deducing the validity of Bianchi’s assumption. Further papers which
deserve to be mentioned are [10, 36], where the authors exploited mean-field theory so as to obtain
approximations for key performance measures of large systems. In particular [10] focuses on the
characterization of the stability region, while [36] examines the throughput performance of the
system. None of the above-mentioned papers considered scenarios with unsaturated buffers, with
the exception of [10], which however dealt with systems evolving in discrete time and did not consider
performance metrics like packet delays.
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1.2 Key contributions and paper organization

In the present paper we examine the buffer dynamics in large-scale unsaturated random-access
networks. Specifically, we analyze the buffer occupancy processes in a mean-field regime where the
number of nodes grows large. Such a mean-field regime not only furnishes analytical tractability,
but is also particularly relevant in understanding the collective behavior of massive numbers of
interacting IoT sources.

The paper has two main interrelated threads. The first part in Section 4 deals with networks
with general interference graphs. We prove that a suitably scaled version of the buffer occupancy
processes converges in the mean-field limit to a tractable deterministic initial-value problem. We
also establish necessary and sufficient conditions for the existence and uniqueness of a fixed point
of the initial-value problem, and provide a characterization the fixed point as the solution of a
low-dimensional equation.

The second part focuses on scenarios with a complete interference graph. We demonstrate in
Section 5 global asymptotic stability of the initial-value problem, i.e., convergence to the unique
fixed point from any initial state with finite mass, and then proceed to show positive recurrence
of the pre-limit process and tightness. We combine these properties to prove interchange of the
mean-field and steady-state limits. In Section 6 the interchange of limits is then leveraged to es-
tablish that the stationary buffer content distributions at the various nodes converge to geometric
distributions while the stationary distributions of the scaled waiting time and sojourn time converge
to exponential distributions. The parameters of these limiting distributions are directly expressed
in terms of the fixed point of the initial-value problem. These results provide asymptotically exact
approximations for the stationary waiting-time and sojourn time distributions, which in fact turn
out to be remarkably accurate, even for a relatively moderate number of nodes.

Mean-field limits for various model extensions are briefly discussed in Section 7, illustrating the
versatility of the methodology. In Section 8 we present some simulation experiments to illustrate
the analytical results. Finally, in Section 9 we make a few concluding remarks and offer several
suggestions for further research.

2 Model description

We consider a network of N nodes sharing a wireless medium according to a random medium access
protocol. The various nodes may be grouped into a set of classes/clusters C = {1, . . . , C} such that

nodes in the same class have the same statistical characteristics. Denote by N
(N)
c the number of

class-c nodes, with
∑
c∈C N

(N)
c = N and pc,N = N

(N)
c /N .

Interference graph. Given a class-wise interference graph G = (C, E), two nodes interfere when they
belong either to the same class or to two neighboring classes in G. A feasible class activity state can
thus be represented by a vector ω ∈ {0, 1}C , with ωc = 1 if a class-c node is transmitting in state ω
and ωc = 0 otherwise, and ωcωd = 0 if (c, d) ∈ E . Let Ω be the set of all feasible class activity states,
which are in one-to-one correspondence with the independent sets of the graph G. For every class c,
we define the following subsets of Ω:

Ω−c =̇ {ω ∈ Ω : ωc = 0, ωd = 0 ∀ d s.t. (c, d) ∈ E},
Ω+c =̇ {ω ∈ Ω : ωc = 1}.

This means that ω ∈ Ω−c if and only if in the class activity state ω none of the nodes belonging to
class c or to a class interfering with class c are active, while ω ∈ Ω+c if and only if a class-c node is
active. We define the class-capacity region of the network as follows

Γ = {γ ∈ RC+ : ∃ a = (aω)ω∈Ω s.t. aω ≥ 0,
∑
ω∈Ω

aω ≤ 1,
∑
ω∈Ω

aωω = γ}.

As an illustration, Figure 1 shows a square interference graph G with C = 4 classes of nodes.
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Figure 1: A square interference graph with C = 4.

The activity states are

Ω =
{

(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),

(0, 0, 0, 1), (1, 0, 0, 1), (0, 1, 1, 0)
}
,

and the class-capacity region is given by

Γ = {γ ∈ R4
+ : max{γ1, γ4}+ max{γ2, γ3} ≤ 1}.

Taking c = 1 the sets Ω−c,Ω+c ⊂ Ω are

Ω−1 = {(0, 0, 0, 0), (0, 0, 0, 1)}
Ω+1 = {(1, 0, 0, 0), (1, 0, 0, 1)} .

Network dynamics. Packets arrive at the various class-c nodes as independent Poisson processes of

rate λ
(N)
c =̇ λc/N

(N)
c . Once a class-c node obtains access to the medium, it transmits one packet,

which takes an exponentially distributed time with parameter µ
(N)
c =̇ µc. In between two consec-

utive transmissions a class-c node must back-off for an exponentially distributed time period with

parameter ν
(N)
c =̇ νc/N

(N)
c . Note that a node refrains from the back-off competition whenever its

buffer is empty. Also, the back-off period of a class-c node is suspended (frozen) when the medium
is occupied by an interfering node, i.e., the class activity state does not belong to Ω−c.

Define the queue length process Q(N)(t) = (Q
(N)
c,k (t))c∈C,k∈N, where Q

(N)
c,k (t) represents the num-

ber of packets in the buffer of the k-th node belonging to class c at time t excluding any possible
packet in transmission, and define by Y (N)(t) the class activity process on the state space Ω. Ob-

serve that
(
Q(N)(t),Y (N)(t)

)
evolves as a Markov process.

A population process description. To ease the notation we write Nc = N
(N)
c from now on. Due to the

class symmetry, the nodes within a class are statistically exchangeable, and the system state may be
described in terms of the numbers of nodes belonging to the same class and with the same number

of packets in the buffer. In particular, define the population process X̃
(N)

(t) = (X̃
(N)
c,n (t))c∈C,n∈N,

where

X̃(N)
c,n (t) =

1

Nc

Nc∑
k=1

1{Q(N)
c,k (t) = n}.

The process
(
X̃

(N)
(t),Y (N)(t)

)
is itself Markovian with state space E × Ω, where

E =̇ χC , χ = {x = (xn)n∈N : xn ∈ [0, 1], ∀n ∈ N}. (1)

4



Observe that the population process lies in E1 ⊆ E where

E1 = {x = (xc,n)c∈C,n∈N :

∞∑
n=0

xc,n = 1, ∀c ∈ C}. (2)

The possible transitions for the process
(
X̃

(N)
(t),Y (N)(t)

)
may be described as follows:

• A packet arrives at a class-c node having n packets in its buffer: this happens at rate λ
(N)
c times

the number of class-c nodes in state n, i.e., λ
(N)
c NcX̃

(N)
c,n = λcX̃

(N)
c,n , and generates the transition{

X̃
(N)
c,n → X̃

(N)
c,n − 1

Nc

X̃
(N)
c,n+1 → X̃

(N)
c,n+1 + 1

Nc
,

i.e.,

(X̃
(N)

,Y (N))→ (X̃
(N)

+
1

Nc
(ec,n+1 − ec,n),Y (N)),

where ec,n ∈ E1 has all 0 entries except a 1 in position (c, n).

• A transmission is completed by a class-c node: this happens at rate µ
(N)
c = µc and only if a

class-c node is transmitting, i.e., Y (N) ∈ Ω+c. The transition generated is the following

(X̃
(N)

,Y (N))→ (X̃
(N)

,Y (N) − ec).

• A back-off is completed by a class-c node having n > 0 packets in its buffer: this happens only

if the class activity state allows class-c nodes to back-off, i.e., Y (N) ∈ Ω−c, and at rate ν
(N)
c times

the number of class-c nodes in state n, i.e., ν
(N)
c NcX̃

(N)
c,n = νcX̃

(N)
c,n , and generates the transition

Y (N) → Y (N) + ec

X̃
(N)
c,n → X̃

(N)
c,n − 1

Nc

X̃
(N)
c,n−1 → X̃

(N)
c,n−1 + 1

Nc
,

i.e.,

(X̃
(N)

,Y (N))→ (X̃
(N)

+
1

Nc
(ec,n−1 − ec,n),Y (N) + ec).

Preliminary results for saturated scenario. As mentioned earlier, we focus on an unsaturated network
where nodes with empty buffers refrain from competition for the medium. For later purposes, it is
convenient to also consider a related saturated network where each class behaves as a single node
always competing for the medium, and backing-off at rate ηcνc, where η = (ηc)c∈C ∈ RC+. The
transmission times of the node associated with class c are exponentially distributed with parameter
µc.

For compactness, denote σc = νc/µc, and for any η ∈ RC+,

Z(ω;η) =̇
∏
c∈C

(ηcσc)
ωc , ω ∈ Ω,

and
Z(η) =̇

∑
ω∈Ω

Z(ω;η).

The activity process in this fictitious saturated network has a product-form stationary distribution
[9, 40, 42]

π(ω;η) =
Z(ω;η)

Z(η)
, ω ∈ Ω. (3)

Define now the throughput function θ : RC+ → Γ, where

θc(η) =̇
∑
ω∈Ω

ωcπ(ω;η) =
∑

ω∈Ω+c

π(ω;η) = π(Ω+c;η) (4)
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represents the fraction of time that the node associated with class c is active in the saturated network.
As proved in [27, 41], the throughput map θ is globally invertible, i.e., for any achievable through-

put vector γ ∈ int(Γ) there exists a unique vector η(γ) ∈ RC+ such that

θ(η(γ)) = γ. (5)

Intuitively, the c-th coordinate of η(γ) represents by what factor the back-off rate at node c needs
to accelerate/decelerate in order for the target throughput vector γ to be achieved in stationarity.

3 Overview of the main results

In this section we provide an overview of the main results of the paper, along with an interpreta-
tion and high-level discussion of their ramifications, before presenting the proofs in the subsequent
sections.

In the first part, we analyze networks with general class-based interference graphs. We consider

the sequence of population processes X̃
(N)

(t) as the number of nodes in the system increases, and
rigorously establish its weak convergence to x(t), the solution of a tractable deterministic initial-value
problem as stated in the next theorem.

Theorem 1. Assume X̃
(N)

(0)
N→∞−−−−→ x∞ ∈ E and limN→∞ pc,N = pc > 0 for every c ∈ C. Then

the sequence of processes

(X̃
(N)

(Nt)) ∈ DE [0,∞)

has a continuous limit x(t) ∈ CE [0,∞) which is determined by the unique solution of the initial-value
problem

dx(t)

dt
= H(x(t)), x(0) = x∞, (6)

where the function H(·) is defined by

H(x) =
∑
c∈C

1

pc

(
λc

∞∑
n=0

xc,ne
c,n+1
c,n + πx0

(Ω−c)νc

∞∑
n=1

xc,ne
c,n−1
c,n

)
and πx0(Ω−c) =

∑
ω∈Ω−c

πx0(ω).

The major difficulty in the analysis of unsaturated networks arises from the correlation between the

population process X̃
(N)

(t) and the activity process Y (N)(t). A key observation in the proof of
Theorem 1 is that these processes evolve on different time scales, i.e., the population process evolves
N times slower than the activity process. Hence, in the mean-field regime, the rapidly changing
activity process “converges to an instantaneous measure on the activity states” determined by the
current fraction of queues which are empty. This is the reason why the initial-value problem (6)
does not involve explicitly the activity process and the evolution of the population process at time
t depends only on x(t). Specifically, fraction of class-c nodes with n ≥ 1 packets in the buffer “in-
creases” at rate λc and “decreases” at rate νcπx0

(Ω−c), where the measure πx0
(Ω−c) represents the

limiting “instantaneous measure” on the activity states that allows class-c nodes to back-off. This
argument based on a “separation of time-scales” is highly flexible and applies to more general and
complicated versions of random-access networks as will be illustrated in Section 7.

The initial-value problem (6) is certainly easier to analyze than the population process in a
network with a finite number of nodes. Theorem 2 states that, under certain necessary and sufficient
conditions, there exists a unique equilibrium point x∗ for the initial-value problem (6), and provides
its characterization in terms of the load of the network.

Theorem 2. If ρ ∈ int(Γ) and ξ = η(ρ) < e, where η(·) is defined in (5), then x∗ = (x∗c,n)c∈C,n∈N,
with

x∗c,n = (1− ξc)ξnc , (7)

is the unique equilibrium point with H(x∗) = 0 in E1 of the initial-value problem (6).
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Figure 2: Diagram for the interchange of limits.

Specifically, the condition ρ ∈ int(Γ) is necessary and ensures the load ρ of the system is sustainable.
On the other hand, the condition ξ = η(ρ) < e ensures that the desired throughput vector ρ can
be achieved by a feasible back-off vector. Although Theorem 2 only concerns the scaled population
process, combined with Theorem 1 it yields that the stationary distribution of the associated class
activity process is given by πx∗0 (·) in the limit. In other words, in the limit the stationary distribution
of the class activity process is the same as in a scenario where the aggregate back-off rate of class c is
a constant fraction ξc of the nominal back-off rate νc. This is consistent with the fact that ξc is the
stationary fraction of class-c nodes that have non-empty buffers and compete for the medium, and
ξ will therefore in the sequel be referred to as the vector of activity factors. The equation ξ = η(ρ)
reflects that the activity factors must be such that each class c is active a fraction ρc of the time.

The second part of the paper focuses on deriving asymptotically exact results for the key per-
formance measures of the system. For a rigorous treatment, we focus on the scenario where all the
classes mutually interfere, i.e., the interference graph G = (C, E) is complete, in which case

Γ = {γ ∈ RC :
∑
c∈C

γc ≤ 1}.

In this framework, the nodes of every class are allowed to back-off only when the activity process is
in the idle state. We will show that the vector of activity factors ξ in Theorem 2 simplifies to

ξc =
λc

νc
(
1−

∑
d∈C

λd
µd

) ,
so that the condition ξ = η(ρ) < e can be expressed in explicit form as

max
c∈C

λc
νc

< 1−
∑
d∈C

λd
µd
, (8)

which forces the right-hand side to be positive, i.e., ρ ∈ int(Γ). When condition (8) applies, Theorem
3 holds and asymptotically characterizes the stationary distribution of the population process as the
equilibrium point of the initial-value problem (6).

Theorem 3. The sequence of stationary distributions (x(N))N∈N ⊆ E1 converges to x∗ ∈ E1, i.e.,

X(N)(t)
t→∞
===⇒ x(N) N→∞

====⇒ x∗. (9)
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In order to prove Theorem 3, we show that the interchange of limits displayed in Figure 2 holds.
Specifically, our methodology reduces the derivation of the stationary distribution of an intractable
N -dimensional Markov process to the computation of the equilibrium point of a low-dimensional
fixed-point equation.

Theorem 3 is exploited so as to obtain approximations for the performance measures of the

system. In particular, denote by Q
(N)
c the stationary queue length at a class-c node, and by W

(N)
c

and S
(N)
c the stationary waiting time and sojourn time of a packet at a class-c node, respectively.

Assume condition (8) holds.

Theorem 4. For every class c,

Q(N)
c ⇒ Q̄c,

λc
Nc

S(N)
c ⇒ S̄c,

λc
Nc

W (N)
c ⇒ W̄c,

where

Q̄c ∼ Geo(ξc), W̄c ∼ S̄c ∼ Exp
(1− ξc

ξc

)
, c ∈ C.

Theorem 5. For every class c,

E[Q(N)
c ]→ E[Q̄c],

λc
Nc

E[W (N)
c ]→ E[W̄c],

λc
Nc

E[S(N)
c ]→ E[S̄c].

These theorems show that, given any node in the system, its stationary queue length converges
in distribution and expectation to a geometric random variable, while the scaled waiting time and
sojourn time of a packet in its buffer converge to exponentially distributed random variables. These
limits can be used as approximations for the performance of finite-node systems, which are provably
exact as the number of nodes in the network grows large, and remain very accurate when the size
of the network is moderate.

4 Mean-field limit in a general framework

In this section we present the proofs of Theorems 1 and 2 as stated in Section 3.

4.1 Derivation of the mean-field limit

Denote

X(N)(t)
.
= X̃

(N)
(Nt)

as the fluid version of the population process. Theorem 1 describes the weak limit of the sequence
of processes {X(N)(t)}N∈N, which is known as the mean-field limit of the population process. In
order to prove Theorem 1, we need to go through various steps which we briefly outline here.

1. In Section 4.1.1, a Poisson representation for the prelimit process(
X(N)(t),Y (N)(t)

)
is provided. This representation allows us to easily derive the dynamics of the process on a
fluid time scale.

2. In Section 4.1.2 a detour is needed in order to ensure the existence of the limiting process.
Specifically, the class activity process Y (N) is replaced by a measure-valued activity process
α(N), so that the evolution of the model on fluid time scale can be equivalently described via
the process (

X(N)(t),α(N)(t)
)
. (10)

Finally, the sequence of processes (10) is shown to weakly converge as N → ∞ to a limiting
process (

x(t),α(t)
)
. (11)

8



3. In Section 4.1.3 we characterize the limiting process (11).

4. As a last step, in Section 4.1.4, we describe how the limiting process α(t) at time t is uniquely
determined by the value x(t). Hence a self-contained deterministic initial-value problem gov-
erning the behavior of x(t) is obtained.

In preparation for the analysis, we briefly recall few useful properties of the topological space
where the population process evolves. The sample paths of X(N)(t) lie in DE [0,∞), i.e., the set of
the cadlag functions from [0,∞) in E = χC , where the space E ⊆

∏
c∈C R∞ is defined in (1). Define

on E the metric ρ(·, ·) such that

ρ
(
(x(1)
c )c∈C , (x

(2)
c )c∈C

)
=
∑
c∈C

ρ1(x(1)
c ,x(2)

c ),

where xc = (xc,n)n∈N and ρ1 is a metric on R∞, i.e.,

ρ1(x(1),x(2)) =
∑
n∈N

2−n
|x(1)
n − x(2)

n |
1 + |x(1)

n − x(2)
n |

.

Note that (R∞, ρ1) is separable and complete, and χ is compact in (R∞, ρ1) as each coordinate lies
in [0, 1], see [7, page 219]. From [8, Section M6, pages 240-241], the following lemma is therefore
obtained.

Lemma 1. The subset E = χC is complete, separable, and compact under the product topology
induced by the metric ρ in the space

∏
c∈C R∞.

In the subsequent analysis we will work with DE [0,∞) using the metric d, an exponentially weighted
version of the Skorohod metric, see [20, page 117]. Under this metric DE [0,∞) is complete and
separable as (E, ρ) is itself complete and separable, see [20, Theorem 5.6, page 121].

4.1.1 Unit Poisson process representation

In this subsection we describe the fluid-time marginals of the prelimit Markov population process(
X̃

(N)
,Y (N)

)
in terms of infinite sequences of unit Poisson processes. For each c ∈ C, and then for

each n ∈ N0, the random quantity NA,c,n(t) determines the class-c arrivals to queues with n packets
in the buffer during the time interval [0, t). We similarly define NB,c,n(t) for each c ∈ C, n ∈ N, to
determine the back-offs and finally NT,c(t) determines the process of transmissions for each c ∈ C.
These processes are supposed mutually independent and defined on a common probability space(
ΩF ,FF ,P

)
. We also define the centered versions of these processes to be ÑA,c,n(s) = NA,c,n(s)−

s, c ∈ C, n ∈ N0, with corresponding definitions for the back-offs and the transmissions. These are
martingales with respect to their natural filtrations.

To obtain the Poisson process representation, we first fix the initial conditions, which are de-
terministic. Realizations of the above unit Poisson processes are then drawn and the (unscaled)
population random variables X̃,Y are obtained as solutions to the following equations, where fluid
time is t. That is,

X̃
(N)

(t) = X̃
(N)

(0) +
∑
c∈C

∞∑
n=0

ec,n+1
c,n

N
(N)
c

Ãc,n(t) +
∑
c∈C

∞∑
n=1

ec,n−1
c,n

N
(N)
c

D̃c,n(t)

Y (N)(t) = Y (N)(0)−
∑
c∈C

ecṼc(t) +
∑
c∈C

∞∑
n=1

ecD̃c,n(t),
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where

Ãc,n(t) = NA,c,n

(
λ(N)
c

∫ t

0

N (N)
c X̃(N)

c,n (s)ds
)
,

D̃c,n(t) =

∫ t

0

1{Y (N)(s−) ∈ Ω−c}dNB,c,n

(
ν(N)
c

∫ s

0

N (N)
c X̃(N)

c,n (u)du
)
,

Ṽc(t) =

∫ t

0

1{Y (N)(s−) ∈ Ω+c}dNT,c

(
µ(N)
c

∫ s

0

du
)
,

and ed,mc,n = ed,m − ec,n with ec,n ∈ E denoting the vector having zero entries everywhere but a 1 in
its (c, n) coordinate.

As in the discussion in [32, Section 2.2], the solutions to these equations can be obtained by
fixing the sample paths of the Poisson processes NA,c,n, NB,c,n, NT,c above. It can then be seen

inductively that the sample paths of the process (X̃
(N)

(t),Y (N)(t)) lie in DE1×Ω. Note that the
total rate of the above Poisson processes is bounded above by

∑
c∈C(λc + νc + µc) < ∞. Hence

there can only be finitely many jumps in any finite interval [0, t] w.p. 1 and the sample paths are
by construction piecewise constant cadlag functions.

To confirm that the distribution corresponds to that of the multi-dimensional process defined in
Section 2, let Gt denote the history up to time t, that is

Gt
.
= σ

((
X̃(s),Y (s)

)
: 0 ≤ s ≤ t

)
.

It is straightforward to show that the infinitesimal transition rates obtained by conditioning on Gt
and the current state, yield those of the multi-dimensional process detailed in Section 2, see also
[32]. But these conditional rates are the defining property of the process and so the representation
follows the same statistical law. Equivalently, as the rates are bounded, the representation could
also be verified by considering the uniformized version of the process and then showing that the
underlying jump chain matches that of Section 2.

We now rewrite these equations in a more compact form, working componentwise. The N
superscript has been omitted for conciseness.

Xc,n(t) = Xc,n(0) +Ac,n−1(t)−Ac,n(t) +Dc,n+1(t)−Dc,n(t), (12)

Yc(Nt) = Yc(0) +Nc

∞∑
n=1

Dc,n(t)− Vc(t), (13)

where

Ac,n(t) =
1

Nc
NA,c,n

(
Nλc

∫ t

0

Xc,n(s)ds
)
, (14)

Dc,n(t) =
1

Nc

∫ t

0

1{Y (Ns−) ∈ Ω−c}dNB,c,n
(
Nνc

∫ s

0

Xc,n(u)du
)
, (15)

Vc(t) =

∫ t

0

1 {Y (Ns−) ∈ Ω+c} dNT,c
(
Nµc

∫ s

0

du
)
, (16)

for each n ∈ N0 and c ∈ C.
Equation (12) expresses the change in the fraction of class-c nodes with n packets, i.e., arrivals

to a queue with n− 1 packets or departures from a queue with n+ 1 packets increment this fraction
whereas arrivals or departures to component n result in a decrement. Equation (13) describes the
dynamics of the class activity process and Yc is incremented whenever there is a back-off from
any non-empty class-c queue, and returns to inactivity when the corresponding packet has been
transmitted. Equation (14) defines the sequence of arrivals by fluid time t, the (stochastic) intensity
is proportional to the fraction of queues for each component, with the convention Ac,−1(t) ≡ 0 for all
t. Equation (15) expresses the back-offs as an integral of a previsible process over a Poisson process,
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again with intensity varying according to the fraction of the corresponding component. Note that
Dc,0(t) = 0 as no back-offs can occur from empty queues. Finally the transmission process (16) is
again an integral of a previsible process over a scaled version of the original Poisson process.

The expressions (12)-(16) are preferably written in the following martingale form:

X(t) =X(0) +
∑
c∈C

∞∑
n=0

ec,n+1
c,n

λc
pc,N

∫ t

0

Xc,n(s)ds

+
∑
c∈C

∞∑
n=1

ec,n−1
c,n

νc
pc,N

∫ t

0

1{Y (Ns−) ∈ Ω−c}Xc,n(s)ds+ Ξ(t), (17)

Yc(Nt) =Yc(0) +Nνc

∫ t

0

1{Y (Ns−) ∈ Ω−c}(1−Xc,0(s))ds

−Nµc
∫ t

0

1
{
Y (Ns−) ∈ Ω+c

}
ds+ ψc(t), (18)

where

Ξc,n(t) =
1

Nc
[MA,c,n−1(t)−MA,c,n(t) +MB,c,n+1(t)−MB,c,n(t)] , (19)

ψc(t) =

∞∑
n=1

MB,c,n(t)−MT,c(t), (20)

MA,c,n(t) =ÑA,c,n

(
Nλc

∫ t

0

Xc,n(s)ds
)
, (21)

MB,c,n(t) =

∫ t

0

1
{
Y (Ns−) ∈ Ω−c

}
dÑB,c,n

(
Nνc

∫ s

0

Xc,n(u)du
)
, (22)

MT,c(t) =

∫ t

0

1
{
Y (Ns−) ∈ Ω+c

}
dÑTc

(
Nµc

∫ s

0

du
)
. (23)

The following technical lemma guarantees that the processes MA,n,MB,n,MT , and Ξ are martin-
gales, a property that we will use throughout the following analysis. The proof of the lemma is given
in Appendix B.1. For ease of exposition we will consider the single-class case only, but the extension
of the argument to the multi-class case is straightforward.

Lemma 2. Given the common probability space
(
ΩF ,FF ,P

)
, there is a filtration F defined on it,

such that MA,n, n ∈ N0 and MB,n, n ∈ N, are sequences of locally square integrable martingales
adapted to F together with MT which is also a locally square integrable F-martingale. In addition Ξ
is a L2-F martingale.

Observe now equations (17) and (18). Note that on a fluid time scale there are order N transitions
in the activity process, which thus evolves much faster than the fluid population process. Hence,
in the mean-field regime, the activity process reaches its stationary distribution before the state
of the population process changes. Intuitively, the stationary distribution of the activity process is
influenced by the current state of the population process, in particular only a fraction (1−xc,0) ∈ [0, 1]
of class-c nodes has packets and so competes for the medium access. Hence, using the notation
introduced in (3), given that the population process is in state x ∈ E, the probability for the
activity process to be in state ω ∈ Ω in stationarity is

πx0
(ω) =̇ π(ω; e− x0).

4.1.2 Representing Y as a random measure

Since the weak limit of the sequence Y (N) does not exist in D, we introduce the cumulative time

process α(N) ∈ CRC+,↑[0,∞), which has components α
(N)
ω (t) for ω ∈ Ω, as the cumulative fluid time
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spent in state ω by the activity process Y (N) in the interval [0, t]. That is, for each ω ∈ Ω, t ≥ 0,

α(N)
ω (t)

.
=

1

N

∫ Nt

0

1{Y (N)(s) = ω}ds. (24)

Observe that
∑
ω α

(N)
ω (t) = t, α

(N)
ω (0) = 0, and α

(N)
ω (t) is a continuous, increasing and unit Lipschitz

function for every ω ∈ Ω. Indeed, α(N) is unit Lipschitz under the sup norm metric.
Thus Y(N) induces a sequence of random measures γ(N), as determined by α(N) ∈ CRC+,↑[0,∞),

on the space of increasing, nonnegative functions with initial value 0. This holds since the mapping
from DΩ[0,∞) → CRC+,↑[0,∞) as defined by (24) is continuous. For any realization, α(N) the

measure on B([0,∞) × Ω) is obtained by integrating the derivatives of α(N). In fact, α
(N)
ω (t) has

left and right derivatives everywhere taking values in {0, 1}. Note that α
(N)
ω (t) increases at rate 1 if

Y (N)(t) = ω, and 0 otherwise. Taking left derivatives along a sample path, it follows that

α̇(N)
ω (t) =

{
1{Y (N)(Nt) = ω}, if Y (N)(Nt) is continuous at Nt,

1{Y (N)(Nt−) = ω}, otherwise.

We may therefore rewrite (17) by substituting the left derivatives of α(N) in the intensity function
(compensator),

X(N)(t) = X(N)(0) +
∑
c∈C

∞∑
n=0

ec,n+1
c,n

λc
pc,N

∫ t

0

X(N)
c,n (s)ds

+
∑
c∈C

∞∑
n=1

ec,n−1
c,n

νc
pc,N

∫ t

0

∑
ω∈Ω−c

α̇ω(s)X(N)
c,n (s)ds+ Ξ(N)(t). (25)

We now proceed to show that a weak limit for the sequence of joint processes(
X(N)(t),α(N)(t)

)
exists. This follows from Proposition 1, whose proof is given in Appendix B.2.

Proposition 1. The sequence of joint measures
(
X(N)(t),α(N)(t)

)
is relatively compact.

Observe that, as a consequence of [20, Theorem 2.4, page 107] (see also [7, Exercise 6, page
41]), in order to prove Proposition 1 it suffices to show the tightness for the marginals, i.e., the

tightness of α(N) and of X(N). The proof of the tightness of α(N) is quite simple, but establishing
the tightness of X(N) requires substantial effort. In particular, the argument in Appendix B.2 relies
on Lemma 1 and on the sequence of processes X(N) being asymptotically Lipschitz in probability,
an easy-to-verify property which we detail separately in Appendix A.

4.1.3 Mean-field limit characterization

We just established the existence of (x(t),α(t)), i.e., a weak limit for the sequence
(
X(N)(t),α(N)(t)

)
.

In this section, as a further step towards Theorem 1 we prove an intermediate mean-field limit, which
will be further developed in the next section. Specifically we describe the steps needed to obtain the
following result.

Proposition 2. Given (x,α) a weak limit for the sequence (X(N),α(N)) then x and α satisfy the
differential equation

x(t) =x(0) +
∑
c∈C

λc
pc

∞∑
n=0

ec,n+1
c,n

∫ t

0

xc,n(s)ds

+
∑
c∈C

νc
pc

∞∑
n=1

ec,n−1
c,n

∫ t

0

xc,n(s)
∑

ω∈Ω−c

α̇ω(s)ds.
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Observe that Equation (25) determines X(N)(t) as in the following sum, of an initial term plus
sample paths lying in D:

X(N)(t) = X(N)(0) + I
(N)
A (t) + I

(N)
B (t) + Ξ(N)(t), (26)

where

I
(N)
A (t)

.
=

∑
c∈C

λc
pc,N

∞∑
n=0

ec,n+1
c,n

∫ t

0

X(N)
c,n (s)ds

I
(N)
B (t)

.
=

∑
c∈C

νc
pc,N

∞∑
n=1

ec,n−1
c,n

∫ t

0

∑
ω∈Ω−c

α̇ω(s)X(N)
c,n (s)ds.

Furthermore if x,α are weak limits ofX(N),α(N) then we make corresponding definitions for IA, IB .

Further define I(N)(t)
.
= X(N)(0) + I

(N)
A (t) + I

(N)
B (t) and let I be the corresponding limit.

In order to prove Proposition 2, we need to go through the following steps:

(a) Show that the weak limits of X(N)(t) and I(N)(t) coincide. This is established through Propo-
sition 3 and the following remark.

(b) Derive the weak limit of I(N)(t) as in Proposition 4 and Lemma 3.

Focus on step (a), we apply the Continuous Mapping Theorem, see [7, Theorem 5.1, page 30] to
the weak limits for the terms on the right hand side of (26) as follows. First recall [8, Theorem 3.1,

page 27] which states that if
(
I(N),X(N)

)
are random elements of DE [0,∞)×DE [0,∞) (defined on

some common probability space) and taking values in a metric space with metric d then if I(N) ⇒ I

and it also holds that d(I(N),X(N))⇒ 0, then it follows that X(N) ⇒ I. To apply the above result
to (26), we will take d to be the Skorohod metric on DE [0,∞) as defined in [20, Section 3.5]. In

order to show that X(N) and I(N) have the same weak limit, it will be enough to establish the
following proposition which is proved in Appendix B.3.

Proposition 3. Given any η > 0 and T > 0,

lim
N→∞

P
{

sup
t∈[0,T ]

ρ(Ξ(N)(t),0) > η
}

= 0.

To see that Proposition 3 implies that d(X(N), I(N))⇒ 0, first note that we may choose λ(s) to be
ι(s) the identity map in [20, Equation (5.2), page 117]. In this case the term on the right hand side
of [20, Equation (5.3)] becomes

q(X(N)(t ∧ u), I(N)(t ∧ u)) ≤ sup
t≤u

ρ(Ξ(N)(t),0),

where q(·, ·) .
= ρ(·, ·) ∧ 1. Finally, given ζ > 0, choose Tζ so that e−Tζ < ζ/2 and set u := Tζ in the

above upper bound which then shows the required result.
We now continue with step (b). Observe that I(N)(t) is a sequence of continuous paths. We

will establish convergence of this latter sequence in CE [0,∞) under the uniform metric using the
Continuous Mapping Theorem. This establishes convergence in D (the Skorohod topology relativized
to C coincides with the uniform topology).

Given a subsequence (X(Nm),α(Nm)) ⇒ (x,α) (without loss of generality we will take this

subsequence to be the whole sequence), we obtain the corresponding weak limit of I(N) provided
that the given mapping is continuous.

Proposition 4. Consider a sequence
(
X(N),α(N)

)
∈ DE [0,∞)×L[0,∞) such that

(
X(N),α(N)

)
→

(x,α) in the product topology. Then for all t > 0,∫ t

0

X(N)
c,n (s)ds→

∫ t

0

xc,n(s)ds, (27)
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and ∑
ω∈Ω−c

∫ t

0

X(N)
c,n (s)α̇(N)

ω (s)ds→
∑

ω∈Ω−c

∫ t

0

xc,n(s)α̇ω(s)ds. (28)

The proof of Proposition 4 is given in Appendix B.4. Note that X
(N)
c,n (s) ∈ DR[0,∞) is Lebesgue

integrable over any finite interval and so the first integral is well-defined. Since the α
(N)
ω are unit

Lipschitz and increasing, the integrals in (28) also exist. Proposition 4 only establishes pointwise
convergence to the continuous functions on the right hand side of (27) and of (28). However since
these functions are non-negative, non-decreasing as well as unit Lipschitz continuous, then given any
fixed T > 0 it follows that convergence is uniform in the interval [0, T ], for each component (c, n) as
a consequence of the following lemma which is proved in Appendix B.5.

Lemma 3. Suppose that u(N), u ∈ L↑[0, T ] with a common Lipschitz constant, which we take to be
unity. Suppose that ∀t ∈ [0, T ], u(N)(t) → u(t) i.e. the sequence of functions converges pointwise.
Then convergence is uniform, i.e. given ε > 0,∃Nε such that supt∈[0,T ]|u(N)(t)−u(t)| < ε, ∀N ≥ Nε.

However uniform convergence of the components implies the same for the sequence so that

sup
t∈[0,T ]

ρ(I
(N)
A (t), IA(t))→ 0,

sup
t∈[0,T ]

ρ(I
(N)
B (t), IB(t))→ 0.

But since T is arbitrary this implies convergence in CE [0,∞) and hence in DE [0,∞). This yields

I(N)(t)⇒ I(t).

4.1.4 Weak limit characterization of α

Proposition 2 determines any weak limit x as the solution to a differential equation for which the
corresponding limit occupancy measure α is given. We now proceed to characterize this latter limit
in terms of the stationary measure of the activity process.

Recall the properties satisfied by the processes α
(N)
ω . In particular, for every t ≥ 0,∑

ω∈Ω

α(N)
ω (t) = t,

∑
ω∈Ω

α̇(N)
ω (t) = 1. (29)

We begin by substituting α into (18) to obtain that

Y (N)
c (Nt)− Y (N)

c (0) +Nµc
∑

ω∈Ω+c

∫ t

0

α̇(N)
ω (s)ds

−Nνc
∑

ω∈Ω−c

∫ t

0

α̇(N)
ω (s)

(
1−X(N)

c,0 (s)
)
ds

is an F-martingale. Dividing by N and taking weak limits for (x,α), we obtain that∫ t

0

νc(1−X(N)
c,0 (s))

∑
ω∈Ω−c

α̇(N)
ω (s)ds−

∫ t

0

µc
∑

ω∈Ω+c

α̇(N)
ω (s)ds⇒ 0, (30)

for every t ≥ 0.
We apply to (30) the Continuous Mapping Theorem as explained in the discussion before Propo-

sition 3, and use the limits established in Proposition 4, to obtain

0 =

∫ t

0

νc(1− xc,0(s))
∑

ω∈Ω−c

α̇ω(s)ds−
∫ t

0

µc
∑

ω∈Ω+c

α̇ω(s)ds, (31)

for every t ≥ 0.
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Corollary 1. The function αω(t) ∈ C[0,∞) is differentiable almost everywhere and

α̇ω(t) =

∏
c∈C
(νc(1−xc,0)

µc

)ωc∑
ω′∈Ω

∏
c∈C
(νc(1−xc,0)

µc

)ω′c . (32)

Proof. Thanks to the fundamental theorem of calculus applied to (31), it holds that

0 = νc(1− xc,0(t))
∑

ω∈Ω−c

α̇ω(t)− µc
∑

ω∈Ω+c

α̇ω(t), a.e. (33)

Hence, at every time t, we have to look for (ztω)ω∈Ω, solutions of

νc(1− xc,0(t))
∑

ω∈Ω−c

ztω = µc
∑

ω∈Ω+c

ztω, ∀c ∈ C, (34)

where in view of (29) ∑
ω∈Ω

ztω = 1, ztω ≥ 0.

Observe that, ztω corresponds to the stationary fraction of time spent by the activity process in state
ω ∈ Ω in the saturated network where node c transmits at rate µc and back-offs at rate νc(1−xc,0(t)),
i.e.,

α̇ω(t) = ztω = π(ω; e− x0(t)) = πx0(t)(ω) =
Z(ω; e− x0(t))

Z(e− x0(t))
,

which is equivalent to (32). In particular, existence and uniqueness of the stationary distribution
πx0(t)(ω) is ensured whenever x0(t) ≤ e.

Hence, α̇ω(t) = ztω is well-defined and, since an increasing unit Lipschitz function starting from 0
is determined by its derivatives, the equality holds for all t, determining αω. Observe that αω exists
everywhere since it coincides with the integral of a continuous function.

Having characterized the weak limit of α, we obtain Theorem 1 by substituting (32) in Propo-
sition 2.

4.2 Analysis of the mean-field limit

In the previous section we proved Theorem 1, establishing the convergence of X(N)(t) to x(t) ∈
CE [0,∞), the solution of the initial-value problem (6). In this section we present the proof of The-
orem 2. Specifically, we show that a solution to (6) exists and is unique. Moreover, we provide a
general condition yielding the existence of a unique equilibrium point x∗.

Transient behavior. Observe that by definition X(N)(t) ∈ E1 for every N ∈ N and t ≥ 0. Such
property is carried over as N →∞, indeed if x(0) ∈ E1, then x(t) ∈ E1 for every t ≥ 0. Hence, the
set E1 is positive invariant for the initial-value problem (6). It is easy to show that the function H(·)
defined in (6) is Lipschitz continuous in the metric space (E1, ρ), so that uniqueness and existence
of the solution of (6) follows.

Limiting behavior. In order to prove Theorem 2, we observe that given that an equilibrium point
x∗ exists, it must satisfy the relation H(x∗) = 0 component-wise, i.e., for every c ∈ C

λc(x
∗
c,n−1 − x∗c,n) + νcπx∗0 (Ω−c)(x

∗
c,n+1 − x∗c,n) = 0,

for all n > 0, and
−λcx∗c,0 + νcπx∗0 (Ω−c)x

∗
c,1 = 0.

Thus
λcx
∗
c,n = νcπx∗0 (Ω−c)x

∗
c,n+1, ∀ n ∈ N,
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yielding

x∗c,n = ξnc x
∗
c,0, ξc =

λc
νcπx∗0 (Ω−c)

(35)

for every n ∈ N. In other words, any equilibrium point x∗ must satisfy the above geometric relation.
In addition, such an equilibrium point x∗ lies in E1 if and only if ξc = 1− x∗c,0 < 1 for every c ∈ C,
i.e., ξ = e− x∗0 < e. Hence, thanks to (35), the uniqueness of ξ yields the same for x∗.

According to the product-form solution in (3) and the definition of throughput (4), it holds that

θc(ξ) = πx∗0 (Ω+c) =
∑

ω∈Ω+c

π(ω; ξ).

In order for x∗ to be an equilibrium point, ξ must solve

θc(ξ) = ρc, ∀ c ∈ C,

i.e., the fraction of time that class c is active in equilibrium must be equal to its load. Noting that
ρ ∈ int(Γ), the global invertibility of the throughput map (5) implies that ξ has to satisfy

ξ = η(ρ).

Observe that the existence and uniqueness of ξ follows from the global invertibility property of
the map θ(·). We conclude that x∗ as in (7) is the unique equilibrium point of the initial-value
problem (6), and that x∗ ∈ E1 if and only if η(ρ) < e. (As a side-remark, we mention that the
initial-value problem would not have any equilibrium point, if the assumption ρ ∈ int(Γ) were not
satisfied. This makes sense since the latter condition is necessary for the queue lengths to be stable.)

As an example, consider the square network displayed in Figure 1 and assume that

max{ρ1, ρ4}+ max{ρ2, ρ3} < 1,

i.e., ρ ∈ int(Γ). In order to identify the unique equilibrium point of the initial-value problem (6),
the following system of equations has to be solved:

ξc =
λc

νcπx∗0 (Ω−c)
, c = 1, 2, 3, 4, (36)

where

πx∗0 (Ω−1) =
1

Z(ξ)

(
1 + σ4ξ4

)
, πx∗0 (Ω−2) =

1

Z(ξ)

(
1 + σ3ξ3

)
,

πx∗0 (Ω−3) =
1

Z(ξ)

(
1 + σ2ξ2

)
, πx∗0 (Ω−4) =

1

Z(ξ)

(
1 + σ1ξ1

)
,

and

Z(ξ) = 1 +

4∑
c=1

σcξc + σ1σ4ξ1ξ4 + σ2σ3ξ2ξ3.

The equilibrium point exists if and only if ξ < e. Methods for solving these kinds of equations are
discussed more extensively in [15, 41].

In this section, we proved the convergence of the population process towards the solution of
a deterministic initial-value problem. Necessary and sufficient conditions for the existence and
uniqueness of an equilibrium point have been established. In the following section we aim to exploit
the equilibrium point so as to obtain an asymptotically exact approximation for the stationary
performance measures of the system. The analysis will focus on the case of a complete interference
graph where all classes mutually interfere.
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5 The complete interference graph case

The second part of the paper focuses on the analysis of important stationary performance measures
such as the queue length, the waiting-time, and the sojourn-time distributions. In particular, we
will build upon the equilibrium point x∗ described in Theorem 2 to obtain approximations which
are asymptotically exact in the mean-field regime for the case of a complete interference graph and
accurate even in moderately large networks. Specifically, we will prove Theorem 3, i.e., we will show
that for any initial state x∞ ∈ E1 with finite mass the solution x(t) of the initial value problem
satisfies x(t)→ x∗ as t→∞, which implies

lim
N→∞

lim
t→∞

P{ρ(X(N)(t),x∗) > ε} = 0, ∀ ε > 0. (37)

Due to the class symmetry, relation (37) implies that

lim
N→∞

lim
t→∞

P{Q(N)
c,k (t) = n} = x∗c,n, ∀ c ∈ C, k = 1, . . . , Nc.

In order to establish (37), we need several steps.

• In Section 5.1 we will show that

lim
t→∞

lim
N→∞

P{ρ(X(N)(t),x∗) > ε} = 0, ∀ ε > 0.

• Equation (37) is well-posed only if the population process in the finite system possesses a
stationary distribution, hence conditions for the positive recurrence of the prelimit processes
are established in Section 5.2.

• In Section 5.3 the interchange of limits is then proved so that (37) follows.

Throughout Sections 5 and 6 we assume the interference graphG to be complete and condition (8)
to hold. Simulation results suggest that (37) remains valid even in the case of a general interference
graph. In the course of the analysis we will point out the difficulties that would need to be resolved
in order to obtain a rigorous proof in that case.

For a complete interference graph, it holds that

θc(ξ) = π(ec; ξ) =
ξcσc

1 +
∑
d∈C ξdσd

.

Thus the equilibrium point x∗ has the following closed-form expression, and (8) is indeed necessary
and sufficient so as to guarantee ξ < e.

Corollary 2. The unique equilibrium point in E1 of the initial-value problem (6) is given by x∗ =
(x∗c,n)c∈C,n∈N, where

x∗c,n = (1− ξc)ξnc , ξc =
λc

νc
(
1−

∑
d∈C

λd
µd

) . (38)

5.1 Global stability of x∗

We begin by observing that, when the interference graph is complete, Theorem 1 specializes as
follows.

Corollary 3. Assume G = (C, E) to be complete, X(N)(0)
N→∞−−−−→ x∞ ∈ E1 and limN→∞ pc,N =

pc > 0 for every c ∈ C. Then the sequence of Markov processes (X(N)(Nt))N≥1 ∈ DE1 [0,∞) has
a continuous limit x(t) ∈ CE1 [0,∞) which is determined by the unique solution of the initial-value
problem

dx(t)

dt
= H(x(t)), x(0) = x∞, (39)
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where the function H(·) is defined by

H(x) =
∑
c∈C

1

pc

(
λc

∞∑
n=0

xc,ne
c,n+1
c,n + πbx0

νc

∞∑
n=1

xc,ne
c,n−1
c,n

)
,

and πbx0
= 1

1+
∑
c∈C

νc
µc

(1−xc,0)
.

In this section we will show that for any initial state x∞ ∈ E1 with finite mass the solution x(t)
of the initial value problem satisfies x(t)→ x∗ as t→∞, which implies

lim
t→∞

lim
N→∞

P{ρ(X(N)(t),x∗) > ε} = 0, ∀ ε > 0, (40)

i.e., the fixed point x∗ ∈ E1 as described in Corollary 2 is a stable equilibrium point of the initial-
value problem described in Corollary 3.

Denote by B(x∗) ⊆ E1 the basin of attraction of x∗, where x ∈ B(x∗) if and only if for any open
neighborhood N(x∗) of x∗, there exists a finite time T such that the solution of the initial-value
problem (39) starting from x hits N(x∗) and remains there for every t > T . Of course x∗ ∈ B(x∗).
Moreover we say that x∗ is locally stable if and only if {x∗} 6= B(x∗). In this section we explicitly
characterize B(x∗), and we show that it contains a nonempty open subset of E1.

Here we briefly outline the steps necessary in order to prove (40):

• In Section 5.1.1 we introduce the concept of mass of a population vector as the average number
of packets in the buffer of the various nodes. Observe that the mass of the equilibrium point
x∗ is finite and the mass of a solution x(t) of (39) is a continuous Lipschitz function.

• Then, in Section 5.1.2, we show that stochastic dominance is an invariant property for the
initial-value problem (39), see Proposition 5. This property allows us to couple different
solutions of (39) and will play a key role in the proof of (40).

• We leverage the previous steps in Section 5.1.3 so as to show that, if x(0) has finite mass,
x(t) → x∗. This is proved in Proposition 6 and implies that x(0) ∈ B(x∗). We will say that
x∗ is a globally stable equilibrium point.

5.1.1 The concept of mass

Definition 1. Given x ∈ E1, we define the class-c mass of x as

mc(x) =

∞∑
n=0

nxc,n,

and the total mass as m(x) =
∑
c∈Cmc(x). Denote m(x) = (mc(x))c∈C.

Given a solution x(t) ∈ CE1 [0,∞) of (39) such that mc(x(0)) <∞, we observe that mc(x(t)) is
differentiable in t and the following differential equation holds

ṁc(x(t)) =
1

pc

∞∑
n=1

n
(
λc
(
xc,n−1(t)− xc,n(t)

)
− νcπbx0(t)

(
xc,n(s)− xc,n+1(t)

))
=

1

pc

(
λc

∞∑
n=0

xc,n(t)− νcπbx0(t)

∞∑
n=1

xc,n(t)
)

=
1

pc

(
λc − νc(1− xc,0(t))πbx0(t)

)
. (41)

Hence, the evolution of m(x(t)) is governed only by the value of x0(t), i.e., by the fraction of nodes
with empty buffers. Moreover, observe that ṁ(x(t)) = 0 if and only if

πbx0(t) =
λc

νc(1− xc,0(t))
, ∀ c ∈ C.
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In particular, if x0 = x∗0, i.e., xc,0 = 1− ξc, then, by definition of ξc (see (35)), x is an equilibrium
point for m(x(t)).

Furthermore, observe that ṁc(x(t)) is increasing in xc,0 (at least as long as x ∈ E1). In fact

∂

∂xc,0
ṁc(x(t)) =

νc
pc
πbx0

(
1 + (1− xc,0)

νc
µc
πbx0

)
> 0.

Therefore, given two solutions xL(t) and xU (t) such that xL0 (t) ≥ xU0 (t) (where the inequality is
componentwise), we have

ṁc

(
xL(t)

)
≥ ṁc

(
xU (t)

)
, ∀ c ∈ C,

and consequently, if xL0 (t) ≥ x∗0 ≥ xU0 (t),

ṁc

(
xL(t)

)
≥ 0 ≥ ṁc

(
xU (t)

)
, ∀ c ∈ C.

5.1.2 Stochastic dominance

The set E1 ⊆ E may be partially ordered via the stochastic dominance relation.

Definition 2. Given xL,xU ∈ E1, then xL is stochastically dominated by xU if

m∑
n=0

xLc,n ≥
m∑
n=0

xUc,n, for every m ∈ N0, c ∈ C.

We denote this relation by xL ≤s xU .

This relation allows us to couple different solutions of the initial-value problem governed by (39)
as stated in the following proposition, whose proof is provided in Appendix B.6.

Proposition 5. The stochastic dominance is a positive invariant relation for the initial-value prob-
lem governed by (39). In particular, given solutions xL(t),xU (t) ∈ CE1 [0,∞) of (39), and t0 ≥ 0
such that xL(t0) ≤s xU (t0), we have xL(t) ≤s xU (t) for every t ≥ t0.

Hence, by exploiting that if x(0) = x∗ then x(t) = x∗ for every t ≥ 0, we identify the following
invariant sets.

Corollary 4. The sets

D = {x ∈ E1 : x ≤s x∗}, D = {x ∈ E1 : x ≥s x∗}

are positive invariant for the initial-value problem (39).

Moreover, stochastic dominance provides valuable information about how the mass of a certain
solution evolves.

Corollary 5. Consider solutions xL(t),xU (t) ∈ CE1 [0,∞) of (39) such that xL(t) ≤s xU (t). Then

mc(x
L(t)) ≤ mc(x

U (t)), ṁL
c (x(t)) ≥ ṁc(x

U (t)), (42)

for every c ∈ C.

The first relation is a direct consequence of the mass definition, the second follows from the
formula for the mass derivative (41) and from xLc,0(t) ≥ xUc,0(t) for c ∈ C, which is a direct implication

of the stochastic dominance property. In particular, observe that if x(0) ∈ D (resp. x(0) ∈ D) then
mc(x(t)) ≤ mc(x

∗) (resp. mc(x(t)) ≥ mc(x
∗)) and ṁc(x(t)) ≥ 0 (resp. ṁc(x(t)) ≤ 0) for every

c ∈ C and t ≥ 0.
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5.1.3 Characterization of B(x∗)

Consider a solution x(t) of (39) with x(0) ∈ E1. Observe that if x(t) → x∗, then x(0) ∈ B(x∗).
The following proposition, whose proof is provided in Appendix B.7, characterizes B(x∗).

Proposition 6. The basin of attraction B(x∗) of x∗ coincides with the set E1
<∞ ⊆ E1, where

E1
<∞ = {x ∈ E1 : m(x) <∞},

i.e., x(0) ∈ E1
<∞ implies that x(t)→ x∗.

Observe that the stated condition is necessary, indeed m(x∗) is finite and a solution of (39) cannot
hit E1

<∞ in finite time starting from an infinite-mass state. However, apart from this necessary
exclusion, all the other solutions are attracted by the equilibrium point x∗ ∈ E1, which is therefore
globally stable in E1

<∞.
The same argument, without the assumption for the interference graph to be complete, would

not lead to the proof of Proposition 6. Indeed the argument relies on Proposition 5 which is not
true in general, i.e, given solutions xL(t),xU (t) of the initial-value problem governed by (6) for
general class-interference graphs xL(t0) ≤s xU (t0) does not imply that xL(t) ≤s xU (t) for all t ≥ t0.
However, in the inductive argument used in the proof of Proposition 6, we rely on the invariance
of the stochastic dominance only in the basic step, i.e., Lemma 5 in Appendix B.7, where we show
that x0(t)→ x∗0. Hence the following proposition holds.

Proposition 7. Given a general class-interference graph, and assume the existence of an equilibrium
point for the initial-value problem (6). Then, if a solution x(t) of (6) is such that

x(0) ∈ E1
<∞, x0(t)→ x∗0,

it holds that x(0) ∈ B(x∗).

Propagation of chaos and consequences of Proposition 6. In dealing with many-particle interaction
problems, a common assumption is the propagation of chaos, i.e., the assumption that the particles
become pairwise independent when their number grows and their evolution is influenced only by
an aggregated averaged effect of the entire population state. Mean-field theory provides a powerful
machinery by which the propagation of chaos assumption can be validated. In our setting, the
particles are the nodes and their state is given by the number of packets in their buffer. Consider
a chaotic initial condition, i.e., the initial number of packets in the buffers of the various nodes are
mutually independent, then the multi-exchangeability property [25, Section 5] and the convergence
towards the initial-value problem presented in Theorem 1 suffice to guarantee that the independence
propagates over any finite horizon, see [3, 39]. However, as described in [3], in order for the inde-
pendence to hold in the limit (as the time grows to infinity), it is necessary that the solution of
the initial-value problem (39) converges to an equilibrium point. We conclude that, in a complete
interference graph setting, the queues of the various nodes in the system behave independently and
undergo a common averaged effect depending on the equilibrium configuration of the network.

In the case of slotted CSMA networks, Bianchi in [6] assumed chaos propagates provided the
network is large enough, and so obtained an analytical expression for the network throughput. Many
papers discuss this assumption, including [16], which validated the propagation of chaos under certain
assumptions via a mean-field approach. Here we just provided another supporting argument for the
case of a complete interference graph.

5.2 Positive recurrence

As mentioned earlier, the final objective of this section is to obtain an approximation for the station-
ary distribution of the queue length processes at the various nodes in large systems. In particular,
we will show that x∗ ∈ E1 provides an approximation for the stationary distribution x(N) of the
system with N nodes when N is large. First, however, it must be ensured that the population
process has a stationary distribution x(N) under condition (8) for each system with a finite number
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of N nodes. Hence, we will establish the positive recurrence of the queue length process Q(N), from
which the positive recurrence of X(N) follows.

The complete interference graph assumption plays an important role in this analysis. Indeed,
since at every moment in time at most one node can be active, the CSMA model can be described as
a single-server polling system with random routing. Specifically, the switchover periods of the server
correspond to the idle-state of the activity process, i.e., the intervals in which each node is allowed
to back-off. When a node completes its back-off period, the server visits that node and serves a
packet, when present. Specifically, consider the polling system with the following features:

• Single server and N nodes. The nodes are partitioned in N
(N)
1 + . . . + N

(N)
C nodes with

class-dependent features;

• Packets arrive at the k-th node belonging to class c as a Poisson process of rate λ
(N)
c .

• The service policy is 1−limited. In particular, a single packet is served if present, otherwise
the server leaves the node immediately;

• When a class-c node is visited and its buffer is nonempty, a packet is served for an exponentially

distributed time with parameter µ
(N)
c ;

• The switchover time of the server between two consecutive visits is exponentially distributed

with parameter ν :=
∑
c∈C N

(N)
c ν

(N)
c =

∑
c∈C νc;

• At the end of a switchover period, the probability for the server to pick the k-th node belonging

to class c is equal to pc,k = ν
(N)
c /ν.

Observe that the above-described polling system behaves exactly as the CSMA model with complete
interference and that the latter property is crucial in establishing this connection.

Polling systems have been extensively studied in the literature. In particular, the condition for
the positive recurrence of the above-described model has already been investigated. In [17, 18, 22],
the authors provide positive recurrence conditions for general classes of polling systems via the fluid
limit analysis of the queue length processes [17, 18] and via a direct approach [22]. The following
result is a special case of Theorem 2.3 in [18], and in Appendix B.8 we adapted our notation to the
setting in [18], so as to further illuminate the connection.

Proposition 8 (Theorem 2.3 [18]). Define

% =̇
∑
d∈C

λd
µd

+ max
c∈C

λc
νc
.

(i) If % < 1, then the queue length process Q(N) is positive recurrent for every N ∈ N.

(ii) If % > 1, then the queue length process Q(N) is transient for every N ∈ N.

The proof in [18, Theorem 2.3] consists of analyzing the fluid limit of a polling system, and we
can conclude the positive recurrence of the CSMA model due to the above-described equivalence.

Remark: Observe that condition % < 1 is not dependent on N , and is equivalent to condition
(8), i.e.,

% < 1 ⇐⇒ ξc < 1, for every c ∈ C.

In Appendix B.9 we provide an alternative and constructive proof of Proposition 8 for the single-
class case. The proof consists in exhibiting explicitly a quadratic Lyapunov function.

When the interference graph is not complete, the connection with polling systems does not apply,
and an explicit condition for positive recurrence is an open problem.
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5.3 Tightness and interchange of limits

In Section 5.2 we showed that the queue length process Q(N)(t) has a stationary distribution if
condition (8) is satisfied. Denote it by the probability measure π(N), i.e.,

lim
t→∞

P{Q(N)(t) = q} = π(N)(q), q ∈ NN0 .

For finite N the process Q(N)(t) completely characterizes X(N)(t), hence the population process

X(N)(t) also has a stationary distribution. In particular, define x(N) ∈ E1 as

x(N) =
∑
q∈NN0

π(N)(q)e(q),

where e(q) ∈ E1 is such that

(e(q))c,n =
1

Nc

Nc∑
k=1

1{qc,k=n}.

Then we know that
lim
t→∞

P
(
ρ(X(N)(t),x(N)) > ε

)
= 0, ∀ ε > 0.

At this point we are close to the target we set at the start of this section, that is proving equation
(37). Indeed, in Section 5.1 we characterized x∗ ∈ E1, and thanks to Proposition 8, we proved the
existence of the sequence of limiting distributions {x(N)}N∈N ∈ E1.

Two further steps are needed in order to show (37). First, we need to actually show that the
sequence (x(N))N∈N ⊆ E1 has at least one limiting point. Then we need to show that each possible
limiting point necessarily coincides with x∗. Once we settle these issues, we can finally state that
the limits can indeed be interchanged and that equation (37) holds.

The proof of the following proposition is given in Appendix B.10.

Proposition 9. The sequence (x(N))N∈N ∈ E1 is tight.

At this point, via Prohorov’s theorem [7, Theorem 6.2, page 37] we deduce that the sequence
(x(N))N∈N ⊆ E1 possesses converging subsequences. In order to complete the proof of Theorem 3,
it suffices to show that these subsequences all converge to x∗ ∈ E1.

Given any of the converging subsequences (x(Nm))m>0, denote by d its limit. The elements
of the sequence (x(Nm))m>0 may be interpreted as a sequence of initial values for the mean-field
limit described in Theorem 1. Consider the sequence of solutions of (39) along this sequence of
initial-values. Observe that, as Nm →∞, such a solution has to converge to the solution x(t) of the
differential equation (39) with initial condition d. However, d is a stationary distribution for the
system with N →∞ nodes, and therefore d must be a stationary point of the initial value problem
(39). Due to Theorem 2, the only possibility is d = x∗. We conclude that the sequence (x(N))N∈N
converges to x∗.

The above argument is well-known in the literature, and has been detailed in [4]. It has been
applied in many contexts, see for instance [23, 31, 38]. Observe that, apart from the tightness of
the sequence (x(N))N∈N, we relied only on the fact that there exists a unique equilibrium point for
(6) (stability of x∗ is not required). In [28, Section 7.2] the authors provide an example where it is
shown that if multiple limiting points exist, then the interchange of limits may lead to drastically
different results.

6 Performance measures

In this section, we leverage the asymptotic results of Section 5 for the population process to obtain
various performance measures of interest. In particular, we derive approximations for the stationary
distribution and expectation of the queue length of a node, the sojourn time and waiting time of a

packet in the system. Denote by Q
(N)
c the stationary queue length at a class-c node, and by W

(N)
c

and S
(N)
c the stationary waiting time and sojourn time of a packet at a class-c node. For ease of

notation we denote Nc = N
(N)
c .
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6.1 Convergence in distribution

Consider a tagged class-c node. In order to obtain an approximation for the stationary performance
measures, we rely on the symmetry of the class-c nodes and we leverage the results established in
the previous section. In particular, for N sufficiently large, we use the approximation

lim
t→∞

P{Q(N)
c,1 (t) = k} ≈ lim

N→∞
lim
t→∞

P{Q(N)
c,1 (t) = k}, (43)

and similar approximations for the waiting time and the sojourn time, and derive exact expressions
for the limit on the right-hand side as stated in Theorem 4.

In order to prove Theorem 4, we begin with the queue length distribution. Theorem 3 implies
that

lim
N→∞

lim
t→∞

P{Q(N)
c,1 (t) = k} = lim

t→∞
lim
N→∞

P{Q(N)
c,1 (t) = k},

and in turn, via the mean-field limit in Theorem 1, we argue that

lim
t→∞

lim
N→∞

P{Q(N)
c,1 (t) = k} = lim

t→∞
xc,k(t),

while Proposition 6 implies
lim
t→∞

xc,k(t) = x∗c,k = (1− ξc)ξkc .

Hence,
Q(N)
c ⇒ Q̄c, Q̄c ∼ Geo(ξc), c ∈ C.

We now continue with the waiting-time distribution. Denote by φX(·) and FX(·) the Laplace-
Stieltjes transform and the probability generating function of a random variable X. Define the

random variable W̄
(N)
c = λc

Nc
W

(N)
c . Observe that the Laplace-Stieltjes transform φ

W
(N)
c

and the

probability generating function F
Q

(N)
c

(z) satisfy the distributional form of Little’s law, i.e.

φ
W̄

(N)
c

(z) = φ λc
Nc
W

(N)
c

(z) = F
Q

(N)
c

(1− z), z ∈ [0, 1], (44)

see [5]. Moreover, we already proved that

F
Q

(N)
c

(1− z)→ 1− ξc
1− ξc(1− z)

, z ∈ [0, 1].

Hence, it only remains to be shown that the sequence of random variables {W̄ (N)
c }N converges.

We state the following proposition, which is a consequence of Little’s law.

Proposition 10. The sequence of random variables {W̄ (N)
c }N is tight.

Then, it follows from Prohorov’s theorem, that the sequence {W̄ (N)
c }N is relatively compact. Let

W̄c be a limit random variable for an arbitrary convergent subsequence. It follows from (44) that

φW̄c
(z) =

1− ξc
1− ξc(1− z)

, z ∈ [0, 1]. (45)

However it is known that the Laplace-Stieltjes transform of a non-negative random variable is ana-
lytic in the positive open half plane (excluding the imaginary axis) [45, Chapter 8]. Moreover, from
(45), it coincides with the Laplace-Stieltjes transform of a exponential random variable on a line
segment. It is known that two analytic functions agreeing on a line segment must be the same on
the entire domain, that is the non-negative half plane, see [1], so

φW̄c
(s) =

1− ξc
1− ξc(1− s)

, Re(s) ≥ 0.
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Therefore, we have shown that

λc
Nc

W (N)
c ⇒ W̄c, W̄c ∼ Exp

(1− ξc
ξc

)
, c ∈ C.

We now conclude with the sojourn time distribution. Define the random variable S̄
(N)
c = λc

Nc
S

(N)
c ,

and observe that

S̄(N)
c ∼ W̄ (N)

c +
λc
Nc

U (N)
c , c ∈ C,

where U
(N)
c ∼ Exp(µ

(N)
c ) ∼ Exp(µc) denotes the transmission time of a class-c packet. Therefore

λc
Nc

S(N)
c ⇒ S̄c, S̄c ∼ Exp

(1− ξc
ξc

)
, c ∈ C.

Combining (43) and Theorem 4 we obtain an approximation for the stationary distribution of
the queue length at a tagged class-c node given by

lim
t→∞

P{Q(N)
c,1 (t) = k} ≈ (1− ξc)ξkc ,

i.e., a geometric distribution with parameter ξc, for N sufficiently large, and similar approximations
are obtained for the waiting and sojourn time distributions.

6.2 Convergence in expectation

In the previous subsection, we proved Theorem 4 obtaining the limiting distributions of the stationary
queue length, waiting-time, and sojourn time distributions of the various classes. Such convergence
results do not allow any immediate conclusions for the corresponding expectations as stated in
Theorem 5. Here we show the convergence of the stationary expected waiting time from which the
convergence of the stationary expected sojourn time and queue length will follow easily.

Thanks to Theorem 4, we know that the rescaled stationary waiting time of a packet at a class-c
node converges in distribution to W̄c ∼ Exp

(
1−ξc
ξc

)
. It is well-known [8] that

E[W̄c] ≤ lim inf
N→∞

λc
Nc

E[W (N)
c ], (46)

and we want to show that

E[W̄c] = lim
N→∞

λc
Nc

E[W (N)
c ].

In order to prove that, we will exploit again the equivalence with a 1-limited polling system with
random routing described in Section 5.2.

Specifically, the following formula is the pseudo-conservation law proved in [12, Eqn. (5.34)]

specialized to a CSMA setting, i.e., pc,k = ν
(N)
c /ν and σc,k = ν, with ν =

∑C
c=1 νc:∑

c∈C

Nc∑
k=1

λc
Ncµc

(
1− λc

νc

1

1− ρ
)
E[W (N)

c ]

=
ρ

1− ρ
∑
c∈C

Nc∑
k=1

λc
Ncµ2

c

+
1

1− ρ
∑
c∈C

Nc∑
k=1

λc
µcνc

−
∑
c∈C

Nc∑
k=1

λc
νNcµc

+
ρ

ν
, (47)

where ρ =
∑N
c=1 ρc. The above pseudo-conservation law is valid as long as the stationary expecta-

tions of the waiting times are finite, which is granted by [17, Theorem 5.5] as long as the stability
condition (8) is satisfied.

We will show that there exist a sequence of constants Kc,N > 0 for c ∈ C, N > 0 converging to
Kc > 0, such that ∑

c∈C
KcE[W̄c] = lim sup

N→∞

∑
c∈C

Kc,N
λc
Nc

E[W (N)
c ]. (48)
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Since Kc,Kc,N > 0 for every c ∈ C, N > 0, (46) and (48) imply

lim
N→∞

λc
Nc

E[W (N)
c ] = E[W̄c], c ∈ C.

It remains to show that (48) holds. As the pseudo-conservation law (47) suggests, we consider

Kc,N =
pc,N
µc

(
1− λc

νc

1

1− ρ
)
,

and consequently Kc = pc
µc

(
1− λc

νc
1

1−ρ
)
. In fact,

lim sup
N→∞

∑
c∈C

pc,N
µc

(
1− λc

νc

1

1− ρ
) λc
Nc

E[W (N)
c ]

= lim sup
N→∞

1

N

∑
c∈C

λc
µc

(
1− λc

νc

1

1− ρ
)
E[W (N)

c ]

= lim sup
N→∞

1

N

( ρ

1− ρ
∑
c∈C

λc
µ2
c

+
1

1− ρ
∑
c∈C

Ncλc
µcνc

−
∑
c∈C

λc
νµc

+
ρ

ν

)
=

1

1− ρ
∑
c∈C

pcλc
µcνc

,

where the second equality is due to (47). On the other hand,∑
c∈C

pc
µc

(
1− λc

νc

1

1− ρ
)
E[W̄c] =

∑
c∈C

pc
µc

(
1− λc

νc

1

1− ρ
) ξc

1− ξc

=
∑
c∈C

pc
µc

νc(1− ρ)− λc
νc

1

1− ρ
λc

νc(1− ρ)− λc

=
1

1− ρ
∑
c∈C

pcλc
µcνc

,

hence (48) holds, and we just showed

λc
Nc

E[W (N)
c ]→ E[W̄c].

The result for the sojourn time follows immediately since

W (N)
c = S(N)

c − U (N)
c , U (N)

c ∼ Exp(µc).

The argument we just presented implies that the sequence of random variables { λcNcW
(N)
c }N is

uniformly integrable. Via the conventional Little’s law we can then deduce that, for every c ∈ C,
the sequence {Q(N)

c }N is itself uniformly integrable. Hence, it holds that

E[Q(N)
c ]→ E[Q̄c].

7 Model extensions

The theoretical machinery for the derivation of mean-field limits developed in Section 4 is highly
flexible and may be applied to a wide range of models. In order to illustrate that, we outline in
this section some possible extensions of the model described in Section 2, and state the associated
mean-field limits. The proof of these limit results resembles that for the original model, and the
arguments are not repeated. In particular, the time-scale separation between the activity process
and the population process plays a key role once again. However, the expression for the stationary
distribution of the activity process with a fixed population is model-dependent and this is reflected
in the corresponding limiting initial-value problems which differ only in the expression for πx(Ω−c).
We recall that πx(Ω−c) may obtained from the product-form solution for the stationary distribution
of the activity process of saturated CSMA models.
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7.1 Models with multiple transmission rates

In this model, the transmission of the packets may occur via different modes, which are associated
with different distributions of the transmission times. Denote the set of modes which a class-c node
may use by Mc = {mc

1, . . . ,m
c
nc}. In particular, mode mc

l is picked with probability p̃cl and the
transmission time with that mode is phase-type distributed with mean (µlc)

−1 > 0.
Observe that a weighted sum of phase-type distributions is itself phase-type. This extension

influences our original analysis only in Section 4.1.4, where we characterize the limit of α
(N)
ω , yielding

a more complicated version of the system of equations (34). However, it is shown in [40] that such
a system can be uniquely solved and its solution only depends on the mean of the phase-type
distributions involved, due to an insensitivity property for the stationary distribution of the activity
process in saturated networks.

Hence, the mean-field limit of this generalized model turns out to be very similar to Theorem 1,
and we only need to characterize the counterpart of πx(Ω−c). Denote by Uc the expected value of
the transmission time of a class-c node, i.e.,

Uc =

nc∑
l=1

p̃lc
1

µlc
.

Theorem 6. Assume X̃
(N)

(0)
N→∞−−−−→ x∞ ∈ E and limN→∞ pc,N = pc > 0 for every c ∈ C. Then

the sequence of processes

(X̃
(N)

(Nt)) ∈ DE [0,∞)

has a continuous limit x(t) ∈ CE [0,∞) which is determined by the unique solution of the initial-value
problem

dx(t)

dt
= Hmtr(x(t)), x(0) = x∞,

where the function Hmtr(·) is defined by

Hmtr(x) =
∑
c∈C

1

pc

(
λc

∞∑
n=0

xc,ne
c,n+1
c,n + πmtrx0

(Ω−c)νc

∞∑
n=1

xc,ne
c,n−1
c,n

)
and πmtrx0

(Ω−c) =
∑
ω∈Ω−c

πmtrx0
(ω) with

πmtrx0
(ω) =

1

Zmtr

∏
c∈C

(
Ucνc(1− xc,0)

)ωc
and Zmtr a normalizing constant.

Note that in the original case we have only one rate per class, yielding Uc = 1/µc for every c ∈ C,
in which case Theorem 6 reduces to Theorem 1.

Observe that all the results in Sections 4.2 and 5 may be extended to the model with multiple
transmission rates, by replacing µc with 1/Uc. Moreover, since phase-type distributions approximate
any nonnegative distribution, we deduce that the mean-field limit is insensitive with respect to the
transmission time distribution.

7.2 Models with queue-based back-off rates

In the basic model, nodes with nonempty buffers back-off at a rate that depends only on their
class. However, in [24, 35], the authors showed that CSMA networks with suitable queue-based
back-off rates are maximally stable without any explicit knowledge of the arrival rates in arbitrary
interference graphs.

Consider the model described in Section 2, where the back-off rate of a node is a function of the
number of packets in its buffer, i.e., the back-off rate of a class-c node having n packets in the buffer
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is ν
(N)
c (n) = νc(n)/Nc, see [11]. Note that when νc(n) = νc for every n we recover the basic model.

The system dynamics are very similar to those of the original model. Specifically, we only have to
replace the back-off transitions, as follows:

A back-off is completed by a class-c node having n > 0 packets in its buffer: this happens
only if the class activity state allows class-c nodes to back off, i.e., Y (N) ∈ Ω−c, and at rate

ν
(N)
c (n)NcX̃

(N)
c,n = νc(n)X̃

(N)
c,n , i.e., ν

(N)
c times the number of class-c nodes in state n, and generates

the transition 
Y (N) → Y (N) + ec

X̃
(N)
c,n → X̃

(N)
c,n − 1

Nc

X̃
(N)
c,n−1 → X̃

(N)
c,n−1 + 1

Nc
,

i.e.,

(X̃
(N)

,Y (N))→ (X̃
(N)

+
1

Nc
ec,n−1
c,n ,Y (N) + ec).

In accordance with the basic framework, the following theorem provides a description for the
mean-field limit of the CSMA model with queue-based back-off rates.

Theorem 7. Assume X̃
(N)

(0)
N→∞−−−−→ x∞ ∈ E1 and limN→∞ pc,N = pc > 0 for every c ∈ C. Then

the sequence of processes

(X̃
(N)

(Nt)) ∈ DE [0,∞)

has a continuous limit x(t) ∈ CE [0,∞) which is determined by the unique solution of the initial-value
problem

dx(t)

dt
= Hqb(x(t)), x(0) = x∞, (49)

where the function H(·) is defined by

Hqb(x) =
∑
c∈C

1

pc

(
λc

∞∑
n=0

xc,ne
c,n+1
c,n + πqbx (Ω−c)

∞∑
n=1

νc(n)xc,ne
c,n−1
c,n

)
and πqbx (Ω−c) =

∑
ω∈Ω−c

πqbx (ω) with

πqbx (ω) =
1

Zqb

∏
c∈C

(∑∞
n=1 νc(n)xc,n

µc

)ωc
and Zqb a normalizing constant.

Note that if νc(n) = νc for every n ∈ N, then

∞∑
n=1

νc(n)xc,n = νc

∞∑
n=1

xc,n = νc(1− xc,0)

and the original mean-field limit in Theorem 1 may be interpreted as a special case of Theorem 7.
In order to understand the formula for πqbx (ω), consider a fictitious saturated CSMA model, with

C nodes and the original class-interference graph and a time-invariant population x ∈ E. The time
required to transmit a packet originating from node c is exponentially distributed with parameter
µc, while the length of a back-off period of node c is captured by the population-dependent random
variable Vc(x), where

Vc(x) ∼ min
n∈N

Vc,n(x), Vc,n(x) ∼ Exp(xc,nνc(n)),

and therefore Vc(x) ∼ Exp(
∑∞
n=1 νc(n)xc,n). In [40] the authors proved the insensitivity of the

stationary distribution of the activity process for saturated CSMA networks with respect to the
back-off distribution. Hence, we know that the expression for the stationary probability of the
activity process to be in state ω corresponds to πqbx (ω). Intuitively, the cumulative back-off time
needed by class-c nodes is given by the minimum of the back-off time required by each node in the
class, whose distribution depends on the number of packets in their buffer.
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Theorem 8. If ρ ∈ int(Γ) and

∞∑
m=0

ν̃c

m∏
n=1

1

νc(n)
= Lc <∞, ∀ c ∈ C,

where ν̃c = νcη(ρ)c, then there exists a unique equilibrium point x∗ = (x∗c,n)c∈C,n∈N ∈ E for the
initial-value problem (49). In particular

x∗c,0 =
1

Lc
, x∗c,n =

ν̃c
νc(n)

x∗c,n−1. (50)

We now briefly sketch the main argument needed to prove Theorem 8. The relation Hqb(x∗) = 0
must be satisfied component-wise, i.e.,

x∗c,n = ξc(n)x∗c,n−1, ξc(n) =̇
λc

νc(n)πqbx∗(Ω−c)

for every c ∈ C and n > 0. Hence we only need to show that necessarily ξc(n) = ν̃c/νc(n).
Given x ∈ S, define the vector of effective class-back-off rates ν̃(x) ∈ RC+ as follows

ν̃c(x) =̇

∞∑
k=1

νc(k)xc,k, c ∈ C.

Observe that

πqbx (Ω+c) =
ν̃c(x)

µc
πqbx (Ω−c),

and x∗ ∈ E is an equilibrium point only if ν̃(x∗) = ν̃ where ν̃c = η(ρ)c with σc = 1/µc for every
c ∈ C. Hence, the uniqueness of ν̃ is ensured by the global invertibility of the map θ(·) over Γ.
Therefore, if x∗ is such that Hqb(x∗) = 0, then

πqbx∗(Ω−c) =
µc
ν̃c
πqbx∗(Ω+c) =

λc
ν̃c
,

and consequently

ξc(n) =
ν̃c

νc(n)
.

As a simple example, consider the case with a single class and ν(n) = nν. Observe that ν̃ must
solve

λ

µ
=

ν̃/µ

1 + ν̃/µ

and therefore

ν̃ =
λ

1− λ
µ

.

We now need to verify that L <∞,

L =

∞∑
m=0

ν̃

m∏
n=1

1

ν(n)
=
ν̃

ν

∞∑
m=0

1

m!
=

λe

ν
(
1− λ

µ

) .
Hence, we conclude that

x∗0 =
ν
(
1− λ

µ

)
λe

, x∗n =
λ

νn
(
1− λ

µ

)x∗n−1.
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7.3 Models with finite capacity

A practical constraint in the implementation of CSMA is that the number of packets stored in the
buffer of a node must not exceed a certain capacity. In this section, we assume that the buffer
capacity of every node in class c is limited to be no more than a certain value Kc ∈ N. In particular,
this feature yields immediately

X(N)
c,n = 0, ∀ n > Kc, c ∈ C.

Theorem 9. Assume X̃
(N)

(0)
N→∞−−−−→ x∞ ∈ E1 and limN→∞ pc,N = pc > 0 for every c ∈ C. Then

the sequence of Markov processes

(X̃
(N)

(Nt)) ∈ DE [0,∞)

has a continuous limit x(t) ∈ CE [0,∞) which is determined by the unique solution of the initial-value
problem

dx(t)

dt
= Hfb(x(t)), x(0) = x∞, (51)

where the function Hfb(·) is defined by

Hfb(x) =
∑
c∈C

1

pc

(
λc

Kc−1∑
n=0

xc,ne
c,n+1
c,n + πx(Ω−c)νc

Kc∑
n=1

xc,ne
c,n−1
c,n

)
.

Observe that when Kc =∞ for every c ∈ C we recover Theorem 1 as a special case of Theorem
9.

Focus now on the analysis of the equilibrium points for (51). For any x ∈ E1, denote

ξxc =
λc

νcπ
fb
x0(Ω−c)

.

Consider an equilibrium point x∗ ∈ E1 for (51), i.e., Hfb(x∗) = 0, then

x∗c,n = (ξx
∗

c )nx∗c,0, ∀ n = 0, . . . ,Kc, c ∈ C,

and x∗c,n for every n > Kc. Hence, x∗ ∈ E1 is an equilibrium point, if and only if

x∗c,0 =
1∑K

n=0(ξx∗c )n
, x∗c,n = (ξx

∗

c )nx∗c,01{n≤Kc}, ∀ n = 0, . . . ,Kc, c ∈ C.

We now identify sufficient and necessary conditions on ξ ∈ RC+ such that the population vector
xξ ∈ E1 is an equilibrium point for (51), where

xξc,0 =
1∑Kc

n=1 ξ
n
c

, xξc,n = ξnc x
ξ
c,01{n≤Kc}.

Assume the population vector xξ ∈ E1 to remain constant over time, i.e., xξ is an equilibrium point
for (51). Then, the fraction of time allocated to the activity of class-c nodes is given by

θ̃c(ξ) =
1

Zfb

∑
ω∈Ω+c

∏
c′∈C

(νc′(1− xξc′,0)

µc′

)ωc′
= θc(e− xξ0).

On the other hand, the effective stationary load of class-c nodes is given by

ρ̃c(ξ) =
λc(1− xξc,Kc)

µc
,
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i.e., a packet arriving at a class-c node with a full buffer is lost and does not enter the system so
that the effective arrival rate at class-c nodes is λc(1 − xξc,Kc). We conclude that xξ ∈ E1 is an
equilibrium point for (51) if and only if

θ̃(ξ) = ρ̃(ξ). (52)

Consider the single-class case, i.e., C = 1, and drop the c subscript. Observe that

θ̃(ξ) =

ν
µ

(
1− 1∑K

n=0 ξ
n

)
1 + ν

µ

(
1− 1∑K

n=0 ξ
n

) ,
so that θ̃(0) = 0, limξ→∞ θ̃(ξ) = (ν/µ)/(1 + ν/µ) > 0, and ∂

∂ξ θ̃(ξ) > 0. On the other hand,

ρ̃(ξ) =
λ

µ
(1− ξK∑K

n=0 ξ
n

),

and ρ̃(0) = λ/µ > 0, limξ→∞ ρ̃(ξ) = 0, and ∂
∂ξ ρ̃(ξ) < 0. Hence, the uniqueness of ξ satisfying (52)

is ensured for every λ, µ, ν,K, and in turn yields the uniqueness of the equilibrium point for the
initial-value problem (51).

8 Numerical experiments

In this section we perform numerical experiments in order to complement the analytical results
obtained in the previous sections. In particular, we provide evidence that the results proved in
Sections 5-7 for complete interference graphs in fact extend to more general graphs.

Throughout this section we focus on the square network displayed in Figure 1 and considered at
the end of Section 4 with the following parameters:

λ = (0.4, 0.2, 0.3, 0.4), ν = (4, 3, 3, 5), µ = (1, 1, 1, 1),

and an equal number of nodes in each class, i.e., pc = 1/4 for c = 1, 2, 3, 4. First of all, we verify
that ξ = η(ρ) < e to ensure that a unique equilibrium point x∗ of (6) exists, by virtue of Theorem
2. In view of (36), we need to solve the system of equations

ξcνc(1 + ξ5−cν5−c) = λcZ(ξ) c = 1, 2, 3, 4,

where

Z(ξ) = 1 +

4∑
c=1

ξcνc +

2∑
c=1

ξcξ5−cνcν5−c.

Observe that the above system of equations cannot be solved explicitly in general. Hence, we use
the numerical algorithm described in [15], which is an adaptation of the algorithm presented in [41],
and obtain

ξ ≈ (0.4302, 0.2635, 0.6537, 0.3442).

Theorem 2 thus yields that
x∗ = (x∗c,n), x∗c,n = (1− ξc)ξnc ,

is the unique equilibrium point.

Convergence of population process. In Theorem 1 we proved the convergence of the properly scaled
population process {X(N)(Nt)} to the solution x(t) of (6) for arbitrary interference graphs. In
Proposition 6 we showed global stability of x∗, the unique fixed point of (6), for complete interfer-
ence graphs. In Figure 3 we display a numerical solution of (6) and observe that x(t) → x∗. This
supports the hypothesis that the solution x(t) of (6) converges to x∗ even when the interference
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Figure 3: Plot of the solution xc,n(t) of (6) for n = 0, 1, 2, 3.
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graph is not complete.

Convergence of the stationary distribution of the population and the queue length process. In Theorem
3 we proved that limN→∞ x

(N)(∞) = x∗, where x(N)(∞) is a random variable with the stationary

distribution of X(N)(t) as t→∞, for complete interference graphs. Also, in Theorem 5, we showed
that

lim
N→∞

P{Q(N)
c (∞) = n} = x∗c,n,

where Q
(N)
c (∞) is a random variable with the stationary distribution of the queue-length Q

(N)
c at

a class-c node as t→∞. In order to examine these two properties, we conducted 10000 simulation
runs and collected 10000 observations (x̃(N),h

c )h=1,...,10000 of the population process for large t and
values N = 2l for l = 2, . . . , 9. We use the average observed distribution of the population process
for large t in a network with N nodes, i.e.,

x̃(N) =
1

10000

10000∑
h=1

x̃(N),h

as an empirical estimate for x(N), and

CDF (N)
c (n) =

∞∑
m=n

x̃(N)
c,m

as a proxy for

lim
t→∞

P
∞∑
k=m

{Q(N)
c (t) = k}.

In Figure 4 we display in the bar plot the euclidean distance dc(x
∗
c , x̃

(N)
c ) between the asymptotic

approximation x∗c and the empirical estimate x̃(N)
c for values N = 2l with l = 2, . . . , 9, where

dc(x
∗
c , x̃

(N)
c ) =

√√√√ ∞∑
n=0

(x∗c,n − x̃
(N)
c,n )2.

The different colors in the plot correspond to the various classes. Observe that the distance is
small even for moderate values of N . In the plot on the right we display the empirical estimate

CDF
(N)
1 (n) along with the asymptotic value (ξ∗1)n for n = 0, . . . , 12 and N = 2l with l = 2, . . . , 9.

Observe that as N increases, the accuracy of the asymptotic approximation (ξ∗1)n for the tail proba-

bility P{Q(N)
1 (∞) ≥ n} (in red) improves, and the difference becomes almost indiscernible. In order

to save space, we do not display the tail distribution convergence for the classes c = 2, 3, 4 which
show similar behavior. These observations suggest that the convergence of the stationary distribu-
tion of the population process and the queue length holds in non-complete interference graphs as
well, and that the asymptotic values provide accurate approximations even for moderate values of N .

Convergence of mean waiting time. In Theorem 5 we proved that a properly scaled version of the

mean waiting time λcE[W
(N)
c ]/Nc converges to ξc/(1 − ξc) as N → ∞ for complete interference

graphs. In order to obtain an empirical estimate for the mean waiting time from the simulation
runs, we invoke Little’s law

λcE[W̃ (N)
c ]/Nc = Ỹ (N)

c =
1

10000

10000∑
h=1

∞∑
n=0

nx̃(N),h
c .

In Figure 5 we display the empirical estimates E[W̃
(N)
c ]/Nc, c = 1, 2, 3, 4, along with the asymptotic

approximations ξ∗c/λc(1 − ξ∗c ) for values N = 2l with l = 2, . . . , 9. The asymptotic approximations
turn out to be extremely accurate even for N = 26 = 64, i.e., Nc = 16. The results in Figure 5
support the conjecture that the mean waiting-time approximations in Theorem 5 extend to non-
complete interference graphs, and are accurate even for moderate values of N .
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9 Conclusion

We analyzed distributed random-access networks in a many-sources regime with buffer-dynamics.
The difficulty in the analysis is the complex interaction between the medium activity state and the
buffer content process. However, in the mean-field regime, these processes are shown to decouple
and a tractable initial-value problem describing the buffer content process is obtained. As illustrated
through several examples, the methodological framework that we developed is fairly generic, and
expected to be applicable to a broader range of problems where a similar decoupling occurs.

In the second part of the paper we focus on the analysis of the key performance measures for
the case of a complete interference graph. The stationary buffer content and the packet waiting
and sojourn time are shown to converge in distribution and expectation to random variables whose
parameters depend on the unique equilibrium point of the initial-value problem and are explicitly
provided. These results are obtained via an interchange of limits approach which ensures that
the resulting approximations are asymptotically exact. Numerical experiments suggest that these
results extend to general interference graphs, but a rigorous proof remains as a challenging problem
for further research.

It would be of interest to develop a mean-field analysis for random-access networks in different
regimes. In this work we assumed both arrival and back-off rates to scale as the number of nodes
increases. Such scaling allows analytical tractability thanks to the decoupling between the medium
activity state and the buffer content process. However, the back-off rate scaling entails a degradation
in the delay performance which scales with the number of nodes as well. The study of large networks
where only the arrival rate scales would be important since we expect this degradation would not
happen. However, different analytical tools are required and we will investigate this problem in
future work.

A Asymptotically Lipschitz in probability

In the course of obtaining the mean-field limit, we will use the property of a sequence in DE [0,∞)
of being asymptotically Lipschitz in probability and its relation with the relative compactness of
a sequence of processes taking values in a metric space E with metric ρ and sample paths in D.
Various versions of this property have been described in the literature, e.g., [13, 37], and we will use
the following definition.

Definition 3. A sequence of random paths X(N) ∈ DE [0,∞) is asymptotically Lipschitz in proba-
bility for a given T > 0 if there exists K ≥ 0 such that for every t1, t2 ∈ [0, T ] and for every ε > 0
the following is satisfied:

P{X(N) : ρ(X(N)(t1),X(N)(t2)) ≤ K|t2 − t1|+ ε} N→∞−−−−→ 1.
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We now reproduce [20, Theorem 3.7.2], and also refer to [8, Theorem 16.4], and the subsequent
discussion.

Theorem 10 ([20] Theorem 3.7.2). Let (E, ρ) be complete and separable, and let {X(N)} be a family

of processes with sample paths in DE [0,∞). Then {X(N)} is relatively compact if and only if the
following two conditions hold:

(a) For every η ∈ R>0 and b ∈ Q≥0, there exists a compact set Γη,b ⊂ E such that

inf
N

P{X(N)(b) ∈ Γη,b} ≥ 1− η.

(b) For every η ∈ R>0 and T ∈ R>0, there exists δ ∈ R>0 such that

sup
N

P{w′(X(N), δ, T ) ≥ η} ≤ η,

where w′(X(N), δ, T ) represents the modulus of continuity, i.e.,

w′(X(N), δ, T ) = inf
{ti}ni=0

max
i

sup
s,t∈[ti−1,ti)

ρ(X(N)(s),X(N)(t))

and the sequence {ti}ni=0 is nondecreasing and such that tn−1 < T .

Remark: In order to show relative compactness in the space DE [0,∞) we therefore need to show
tightness in DE [0, T ] for each T . However, in many cases the space E is itself compact so that only
condition (b) of Theorem 10 has to be shown. ([20, Theorem 6.3] characterizes the compact closure
in DE [0,∞).)

This leaves us with condition (b) and we therefore proceed to show the next proposition.

Proposition 11. If X(N) ∈ DE [0,∞) is asymptotically Lipschitz in probability, then X(N) ∈
DE [0,∞) satisfies condition (b) in Theorem 10.

Proof. Recall the definition of the modulus of continuity for paths in D. see [7, pages 109-110], and
also [20, page 122]. Given δ > 0, T > 0,

w′x(δ)=̇ inf
Π

max
0<i≤nΠ

wx[tΠi−1, t
Π
i ),

where Π is a partition of [0, T ] such that 0 = tΠ0 < tΠ1 < . . . < tΠnΠ
= T with |tΠi − tΠi−1| > δ for every

i = 1, . . . , nΠ, and
wx[s, t)=̇ sup

u,v∈[s,t)

(
ρ(x(u),x(v))

)
.

Consider condition (b) in Theorem 10 and assume η and T given. Note that it suffices to verify
this condition for N ≥ N0, as [20, Lemma 6.2 (a)] shows that w′ is right continuous and therefore
we may choose δ < δN0

to ensure (b) holds for the first n ≤ N0 cases.
Fix ε < η/2. Now choose N0(ε, η) such that

P{X(N) : ρ(X(N)(s1),X(N)(s2)) ≤ K|s2 − s1|+ ε, ∀ s1, s2 ∈ [0, T ]} > 1− η

for every N > N0(ε, η). Observe that N0(ε, η) exists due to Definition 3. Now choose a uniform and
sufficiently fine partition so that the spacing is δ1 where δ1K < η/2 and denote this partition as
Πδ1 . Observe that for N > N0(ε, η),

P{X(N) : wX(N) [t
Πδ1
i−1 , t

Πδ1
i ) ≤ Kδ1 + ε︸ ︷︷ ︸

<η

} > 1− η

for every i = 1, . . . , nΠδ1 . We now choose δ = δ1/2 and observe that by definition of w′(X(N), δ, T ),

P{X(N) : w′(X(N), δ, T ) ≤ η} > 1− η.
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Indeed, w′(X(N), δ, T ) is given by the infimum over the suitable partitions and therefore is certainly
lower than the outcome obtained by considering the suitable partition Πδ1 , hence

P{X(N) : w′(X(N), δ, T ) ≥ η} < η.

For the remaining n < N0 make δ smaller as described above to obtain the required result as w′ is
non-decreasing in δ.

B Extended proofs

B.1 Proof of Lemma 2

As previously stated, we consider the single-class case only. The following arguments are along
the same lines as given in [30]. First observe that the unit Poisson processes for the arrivals, the
back-offs, and the transmissions are all mutually independent and by assumption are defined on a
common probability space which satisfies the usual conditions. Moreover, the arrival rates, back-off
rates and the transmission rate are all bounded. In particular, the natural filtrations

HAn (t)
.
= σ (NA,n(u), 0 ≤ u ≤ t) ,∀n ∈ N0, (53)

are defined with the σ-algebra generated by NA,n(u) for all 0 ≤ u ≤ t. We make corresponding
definitions for the back-offs HBn (t), n ∈ N, and for the transmission process denoted by HT (t).

Given a multi-parameter time s = (s0, s1, s2, . . .) ∈ [0,∞)∞, define H(s) to be the σ-algebra

H(s)
.
=
[ ∨
n∈N0

HAn (s2n+1)
]
∨
[ ∨
n∈N
HBn (s2n)

]
∨HT (s0) ∨ σ

(
NC

Null

)
,

where NC
Null is the collection of all null sets in FC . With this construction we thus obtain the

multi-parameter filtration
H .

=
{
H(s) : s ∈ R∞+

}
,

see [20, page 85], where the metric space for the index set is R∞+ with the usual metric. (We may
suppose that this filtration is right continuous as otherwise we may work with its right continuous
augmentation, see [34, Lemma 67.4] for example.) Also the process

ÑT, ÑA,0, ÑA,1, ÑB,1, . . .

is a right continuous multi-parameter martingale adapted to the filtration H.
Since X, Y are the unique solutions to (12)-(16), it follows that we can apply [20, Theorem 2.2,

page 313], to show that τ is a multi-parameter H-stopping time, where

τAn (t)
.
=

∫ t

0

NλXn(s)ds, n ∈ N0

τBn (t)
.
=

∫ t

0

NνXn(s)ds, n ∈ N

τT (t)
.
=

∫ t

0

Nµds,

see [20, Chapter 2, Section 8] for the definition.
As in [20, Proposition 8.6, page 87], define F(t)

.
= H(τ (t)) where τ is the above H stopping time.

Since τ (t) is a right continuous function of t and H(s) is a right continuous filtration, it follows that
if η is a F(t) stopping time, then so is τ (η).

It follows from the Optional Sampling Theorem for martingales on a metric lattice [20, Theorem
8.7, page 87] that MA is a right continuous F multi-parameter martingale. This martingale is locally
square integrable, because the rates are uniformly bounded over time. In particular if T > 0 the
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version of these martingales stopped at T is a L2 F-martingale. The same arguments show that the
vector back-off process, (

ÑB,n

(
Nν

∫ t

0

Xn(s)ds
))

n∈N

is also a locally square integrable F-martingale as of course is the process ÑT

(
Nµ

∫ t
0
ds
)

. However

Y ∈ mF(t) which implies that MB is also a locally square integrable F-martingale as the integrand
is previsible and similarly for MT . Finally Ξ is adapted, being a countable sum of F martingales,
and it is straightforward to show that it is bounded in L2 and thus a L2 martingale.

B.2 Proof of Proposition 1

Observe that α(N)(t) lies in the space of unit, increasing Lipschitz functions L[0, T ], where

L[0, T ] =
{
l : [0, T ]→ R|Ω|+ , ||l(t1)− l(t2)|| ≤ |t1 − t2|

}
,

so that |l(t)| ≤ t. It follows from the Arzela-Ascoli theorem [7, page 221], that L[0, T ] has compact
closure restricted to [0, T ], since the space L[0, T ] is compact within the topology of C[0, T ]. It
follows from [43, Lemma 2.1], (see also [44]) that we may extend this result to deduce that L[0,∞)
is compact within CRC+,↑[0,∞). Therefore a sample path of α(N) lies in a compact set within

CRC+,↑[0,∞). This implies that the sequence of measures on α(N) is tight.

We turn to the sequence of population processesX(N). First observe that the space E is compact
as a consequence of Tychonoff’s Theorem as it is a finite product of compact spaces, see Lemma 1
and the preceding discussion. In Appendix A the concept of asymptotically Lipschitz in probability
is introduced and its relation with relatively compactness is stated in Proposition 11. Lemma 4,
which is stated and proved below implies that the sequence of population processes is asymptotically
Lipschitz in probability.

Lemma 4. The sequence of processes (X(N))N is asymptotically Lipschitz in probability.

However since the space (E, ρ) is complete and separable, it follows from the converse half of

Prohorov’s Theorem that the sequence X(N) is tight, [7, Theorem 6.2, page 37]. It follows, as

already stated, that the sequence of measures (X(N),α(N)) is therefore tight. Hence, the sequence

(X(N),α(N)) is relatively compact, again as a consequence of Prohorov’s Theorem, [7, Theorem 6.2,
page 37].

Proof. (of Lemma 4) Recall that E = χC and C <∞, see (1). Focus on (25), and observe that its
(c, n) component can be written as

X(N)
c,n (t) =X(N)

c,n (0)− 1

Nc
ÑA,c,n

(
Nλc

∫ t

0

X(N)
c,n (s)ds

)
+

1

Nc
ÑA,c,n−1

(
Nλc

∫ t

0

X
(N)
c,n−1(s)ds

)
− 1

Nc
ÑB,c,n

(
Nνc

∫ t

0

X(N)
c,n (s)1{Y (N)

c (Ns) ∈ Ω−c}ds
)

+
1

Nc
ÑB,c,n+1

(
Nνc

∫ t

0

X
(N)
c,n+1(s)1{Y (N)

c (Ns) ∈ Ω−c}ds
)

+
1

pc,N

(
λc

∫ t

0

X
(N)
c,n−1(s)ds+ νc

∫ t

0

X
(N)
c,n+1(s)1{Y (N)

c (Ns) ∈ Ω−c}ds

− λc
∫ t

0

X(N)
c,n (s)ds+ νc

∫ t

0

X(N)
c,n (s)1{Y (N)

c (Ns) ∈ Ω−c}ds
)
, (54)
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where the centered Poisson processes are martingales bounded in L2. We recall that Doob’s sub-
martingale inequality, see [33, Theorem 1.7], yields that

P{ sup
t∈[0,T ]

|Ñ·,c,n(t)| ≥ Nη} ≤
E[Ñ 2

·,c,n(T )]

N2η2
, (55)

and it follows that Ñ·,c,n are non-negative submartingales. Also,

E
[
NA,c,n

(
Nλc

∫ t

0

X(N)
c,n (s)ds

)
|Ft
]

= Nλc

∫ t

0

X(N)
c,n (s)ds,

and

E
[
N 2
A,c,n

(
Nλc

∫ t

0

X(N)
c,n (s)ds

)
|Ft
]

=
(
Nλc

∫ t

0

X(N)
c,n (s)ds

)2
+Nλc

∫ t

0

X(N)
c,n (s)ds,

yielding that

E[Ñ 2
A,c,n

(
Nλc

∫ t

0

X(N)
c,n (s)ds

)
|Ft] = Nλc

∫ t

0

X(N)
c,n (s)ds ≤ Nλct,

and a similar argument applies for NB,c,n.
From (54) we obtain that

|X(N)
c,n (t)−X(N)

c,n (u)|

≤ |Z(N)
c,n + Z

(N)
c,n−1|+ |V (N)

c,n + V
(N)
c,n+1|+

2

pc,N
(λc + νc)|t− u| (56)

for every t, u ∈ [0, T ], where Z
(N)
c,n and V

(N)
c,n are the maximum values of the martingales in magnitude

over [0, T ]. Observe that (55) yields

P{Z(N)
c,n (T ) > η} ≤ λcT

Nη2
, P{V (N)

c,n (T ) > η} ≤ νcT

Nη2
. (57)

Denote T
(N)
c,n = |Z(N)

c,n + Z
(N)
c,n−1|+ |V

(N)
c,n + V

(N)
c,n+1|.

Now, fix ε > 0 and choose n(ε) so that

∞∑
n=n(ε)+1

2−n <
ε

2C
.

From (56), we obtain

ρ(X(N)(t),X(N)(u)) ≤
∑
c∈C

( n(ε)∑
n=0

2−n|T (N)
c,n |+

4

pc,N
(λc + νc)|t− u|+

ε

2C

)
for every t, u ∈ [0, T ]. Observe that, thanks to (57), it holds that

P{|T (N)
c,n | > ε/2n(ε)} N→∞−−−−→ 0.

Hence,

lim
N→∞

P{X(N) : ρ(X(N)(t),X(N)(u)) ≤ ε+ 4
∑
c∈C

1

pc
(λc + νc)|t− u|} → 1

for every t, u ∈ [0, T ].
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B.3 Proof of Proposition 3

As shown in Lemma 2, the process Ξ is a multi-parameter martingale adapted to F. Since C is
finite, there exists Kη such that

∑
c∈C

∑
n>Kη

|Ξ(N)
c,n |

1 + |Ξ(N)
c,n |

< η/2.

For each c ∈ C, n ≤ Kη, Ξ
(N)
c,n (t) is a L2 F martingale so that

(
Ξ(N)(t)

)2
is a L1 F submartingale.

Applying Doob’s submartingale inequality with p = 1 (see [33]), we obtain

P

{
sup
t∈[0,T ]

|Ξ(N)
c,n (t)|2 > ε

}
≤

E
{
|Ξ(N)
c,n (T )|2

}
ε

, c ∈ C, n ≤ Kη. (58)

However E
{
|Ξ(N)
c,n (T )|2

}
= O(1/N) from which the result follows.

B.4 Proof of Proposition 4

Consider
X(N) → x, α

(N)
0 → α0,

in DE [0,∞) and C[0,∞) respectively. Note that x
(N)
c,n ∈ D[0,1][0,∞) has only countably many

jumps in a finite interval [0, t], see [20, Lemma 5.1, page 116], and is bounded by definition. Hence,∫ t
0
x

(N)
c,n (s)ds exists for all t ≥ 0. Moreover, at all points of continuity of xc,n(s) we have that

x
(N)
c,n (s)→ xc,n(s). Therefore, for every t ≥ 0∫ t

0

x(N)
c,n (s)ds→

∫ t

0

xc,n(s)ds

by dominated convergence, since x
(N)
c,n is bounded to be in [0, 1].

Now we show that for every t ≥ 0∫ t

0

x(N)
c,n (s)α̇(N)

ω (s)ds→
∫ t

0

xc,n(s)α̇ω(s)ds.

First of all, these integrals exist since x
(N)
c,n (s) may be approximated by step functions h(m)(s) on

[0, t] converging to x
(N)
c,n (s) almost everywhere. Then∫ t

0

h(m)(s)α̇(N)
ω (s)ds

exists, so that the existence of ∫ t

0

x(N)
c,n (s)α̇(N)

ω (s)ds

follows by dominated convergence. We can conclude similarly that∫ t

0

xc,n(s)α̇ω(s)ds

exists.
Consider the difference∫ t

0

x(N)
c,n (s)α̇(N)

ω (s)ds−
∫ t

0

xc,n(s)α̇ω(s)ds

=

∫ t

0

(x(N)
c,n (s)− xc,n(s))α̇(N)

ω (s)ds+

∫ t

0

xc,n(s)α̇(N)
ω (s)ds−

∫ t

0

xc,n(s)α̇ω(s)ds.
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Then the first term∣∣∣ ∫ t

0

(x(N)
c,n (s)− xc,n(s))α̇(N)

ω (s)ds
∣∣∣ ≤ ∫ t

0

∣∣x(N)
c,n (s)− xc,n(s)

∣∣α̇(N)
ω (s)ds

≤
∫ t

0

∣∣x(N)
c,n (s)− xc,n(s)

∣∣ds→ 0

by dominated convergence since x
(N)
c,n (s) → xc,n(s) at all but countably many points. As for the

second term ∣∣∣ ∫ t

0

xc,n(s)α̇(N)
ω (s)ds−

∫ t

0

xc,n(s)α̇ω(s)ds
∣∣∣,

observe that for any step function h(s),∣∣∣ ∫ t

0

h(s)α̇(N)
ω (s)ds−

∫ t

0

h(s)α̇ω(s)ds
∣∣∣→ 0,

since |α(N)
ω (s)−αω(s)| → 0 uniformly in [0, t]. Now choose a step function hε(s) such that |xc,n(s)−

hε(s)| < ε for every s ∈ [0, t] (hε(s) exists as shown by [7, page 110]). Hence,∣∣∣ ∫ t

0

xc,n(s)α̇(N)
ω (s)ds−

∫ t

0

xc,n(s)α̇ω(s)ds
∣∣∣

≤
∣∣∣ ∫ t

0

hε(s)α̇
(N)
ω (s)ds−

∫ t

0

hε(s)α̇ω(s)ds
∣∣∣+ 2

∫ t

0

|xc,n(s)− hε(s)|ds,

and taking limits as N →∞, we obtain

lim
N→∞

∣∣∣ ∫ t

0

xc,n(s)α̇(N)
ω (s)ds−

∫ t

0

xc,n(s)α̇ω(s)ds
∣∣∣ ≤ 2tε.

However, t is fixed and ε is arbitrary, hence

lim
N→∞

∣∣∣ ∫ t

0

xc,n(s)α̇(N)
ω (s)ds−

∫ t

0

xc,n(s)α̇ω(s)ds
∣∣∣→ 0.

It follows that for every t ≥ 0∫ t

0

x(N)
c,n (s)α̇(N)

ω (s)ds→
∫ t

0

xc,n(s)α̇ω(s)ds.

B.5 Proof of Lemma 3

Given ε > 0, we may find a partition of [0, T ], t0 = 0 < t1 < · · · < tK = T such that,

0 ≤ u(tk)− u(tk−1) ≤ ε/2, k = 1, · · · ,K,

since u is Lipschitz continuous by assumption.
Next given any t ∈ (0, T ) the following inequality holds, for some k < K,

|u(N)(t)− u(t)| ≤ |u(N)(tk)− u(tk+1)| ∨ |u(N)(tk+1)− u(tk)|,

since if on the one hand, u(N)(t) ≤ u(t), then the first term on the right is a bound and on the other
hand if the inequality is reversed then the second term is a bound. Using the triangle inequality on
each respective term, we obtain

|u(N)(t)− u(t)|

≤
(
|u(N)(tk)− u(tk)| ∨ |u(N)(tk+1)− u(tk+1)|

)
+ u(tk+1)− u(tk).

Since the partition is fixed, we can find Nε so that the right hand side is smaller than ε using
pointwise convergence and the properties of the partition. Clearly, this Nε can be taken to cover the
case t = 0, T as well and the result is proved.
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B.6 Proof of Proposition 5

For notational convenience, the proof is only presented for the single-class case, but the arguments
easily extend to the multi-class case.

Consider solutions xL(t) and xU (t) of the initial-value problem (39). These solutions are con-
tinuous and differentiable in t, therefore it is sufficient to show that, when the solutions are on the
boundary of the stochastic dominance region, the solutions are forced to remain inside such region.
Specifically, consider a time t ≥ t0 such that the stochastic dominance relation xL(t) ≤s xU (t) holds,
i.e., the solutions are inside the stochastic dominance region, and there exists k̄ ∈ N0 such that

k̄∑
n=0

xLn(t) =

k̄∑
n=0

xUn (t), (59)

i.e., the solutions are on the boundary of the region, then we need to show that

∂

∂t

( k̄∑
n=0

xLn(t)−
k̄∑

n=0

xUn (t)
)
≥ 0,

i.e., the solutions are forced to remain inside the stochastic dominance region.
From (39) we obtain

∂

∂t

( k̄∑
n=0

xLn(t)−
k̄∑

n=0

xUn (t)
)

=− λxLk̄ (t) + νπxL0 (t)(0)xLk̄+1(t) + λxUk̄ (t)− νπxU0 (t)(0)xUk̄+1(t)

≥− λxLk̄ (t) + νπxU0 (t)(0)xLk̄+1(t) + λxUk̄ (t)− νπxU0 (t)(0)xUk̄+1(t)

=λ(xUk̄ (t)− xLk̄ (t)) + νπxU0 (t)(0)(xLk̄+1(t)− xUk̄+1(t)), (60)

and in fact πxL0 (t)(0) ≥ πxU0 (t)(0) since xL0 (t)) ≥ xU0 (t).

Observe that the stochastic dominance property and (59) yield
∑k̄−1
n=0 x

L
n(t) ≥

∑k̄−1
n=0 x

U
n (t),∑k̄

n=0 x
L
n(t) =

∑k̄
n=0 x

U
n (t),∑k̄+1

n=0 x
L
n(t) ≥

∑k̄+1
n=0 x

U
n (t),

and therefore
xLk̄+1(t)− xUk̄+1(t) ≥ 0, xLk̄ (t)− xUk̄ (t) ≤ 0.

Hence, the nonnegativity of (60) follows.

B.7 Proof of Proposition 6

For notational convenience, the proof is only presented for the single-class case, but the arguments
easily extend to the multi-class case.

Define x0(t) as the solution of the initial-value problem (39) with an empty initial state, i.e.,
x0

0(0) = 1 and x0
n(0) = 0 for every n ∈ N. Proposition 5 implies that x0(t) ≤s x(t) for any solution

x(t) of (39).
Assume now that x(0) ∈ E1

<∞, we will prove that the solution x(t) of the initial-value problem
(39) is then such that xn(t) → x∗n for every n ∈ N0. The proof relies on induction on n, and the
base case is proved in the following lemma.

Lemma 5. Consider a solution x(t) =
(
xn(t)

)
n≥0

of (39) with x(0) ∈ E1
<∞. It holds that x0(t)→

x∗0.
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Proof. Define ∆(t) =̇m(x(t))−m(x0(t)), and observe that ∆(0) <∞ because x(0) ∈ E1
<∞. Thanks

to the fundamental theorem of calculus,

∆(T ) = ∆(0)−
∫ T

0

(
ṁ(x0(t))− ṁ(x(t))

)
dt = ∆(0)−∆(0, T ),

where

∆(t1, t2) =

∫ t2

t1

(
ṁ(x0(t))− ṁ(x(t))

)
dt.

Observe that, according to (42), ∆(t) ≥ 0 and ṁ(x0(t))− ṁ(x(t)) ≥ 0 for every t ≥ 0, therefore
limT→∞∆(0, T ) ≤ ∆(0). By means of a contradiction argument, we deduce that

ṁ(x(t))→ ṁ(x0(t)).

In fact, assume there exist ε > 0 and two intertwined sequences {tεn}n∈N, {t̄εn}n∈N, where t̄εn ∈
[tεn, t

ε
n+1], such that for every n ∈ N

1. ṁ(x0(tεn))− ṁ(x(tεn)) > ε,

2. ṁ(x0(t̄εn))− ṁ(x(t̄εn)) = ε/2,

3. ṁ(x0(t))− ṁ(x(t)) ≥ ε/2, for every t ∈ [tεn, t̄
ε
n].

Since ṁ(x0(t))− ṁ(x(t)) ≥ 0 for every t ≥ 0, we have that

lim
T→∞

∆(0, T ) ≥
∞∑
n=0

∆(tεn, t̄
ε
n).

Note that each term of the sum is strictly positive. In fact, since the function ṁ(·) taking values in
E1 is Lipschitz continuous,

∆(tεn, t̄
ε
n) ≥ ε

2
(t̄εn − tεn) > 0.

Hence,
lim
T→∞

∆(0, T ) =∞ > ∆(0),

which is a contradiction. By letting ε ↓ 0, we conclude that ṁ(x0(t))→ ṁ(x(t)).
Since ṁ(x0(t))→ ṁ(x(t)), no matter the choice of x(0) ∈ E1

≤∞, it is legitimate to pick x(0) =

x∗ ∈ E1
≤∞. In this way,

ṁ(x0(t))→ ṁ(x∗) = 0,

and due to the transitive property of the convergence relation,

ṁ(x(t))→ 0

for every solution x(t) such that x(0) ∈ E1
≤∞.

Now, due to (41), we may write ṁ(x(t)) explicitly, so that

λ− ν(1− x0(t))πx0(t)(0))→ 0,

or equivalently,

x0(t)→ 1− λ

νπx0(t)(0)
. (61)

Plugging πx0(t)(0) = 1
1+ ν

µ (1−x0(t)) in (61), we then conclude that

x0(t)→ 1− λ

ν
(
1− λ

µ

) = 1− ξ = x∗0.
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The inductive step is proved in the following lemma.

Lemma 6. Consider a solution x(t) =
(
xn(t)

)
n≥0

of (39) with x(0) ∈ E1
<∞ and such that xm(t)→

x∗m for every m ≤ n− 1. It holds that xn(t)→ x∗n.

Proof. According to (6),

ẋ0(t) = −R1(t), ẋm−1(t) = Rm−1(t)−Rm(t), for m ≥ 2,

where
Rm(t) = λxm−1(t)− νπx0(t)(0)xm(t).

The fact that xm(t) → x∗m for every m ≤ n− 1 implies that there exists Tε such that for every
t ≥ Tε, we have that |πx0(t)(0) − πx∗0 (0)| ≤ ε and |xm(t) − x∗m| ≤ ε for every m = 0, . . . , n − 1.
Consider now t ≥ Tε, then there exist functions (g̃m(ε))m=2,...,n such that

|Rm−1(t)| ≤ g̃m(ε),

and limε→0 g̃m(ε) = 0. Define g̃1(ε) = 0.
Recall that the fundamental theorem of calculus yields

xm−1(t+ h)− xm−1(t) =

∫ t+h

t

ẋm−1(s)ds.

Now consider t ≥ Tε, and note that

−2ε− g̃m(ε) ≤
∫ t+h

t

Rm(s)ds ≤ 2ε+ g̃m(ε),

for every m = 1, . . . , n. Therefore, for m = n, we obtain that

−2ε− g̃n(ε) + λ(x∗n−1 − ε)h
ν(πx∗0 (0) + ε)

≤
∫ t+h

t

xn(s)ds ≤
2ε+ g̃n(ε) + λ(x∗n−1 + ε)h

ν(πx∗0 (0)− ε)
,

which may be rewritten as

h
λx∗n−1

νπx∗0 (0)
− L1(ε, h) ≤

∫ t+h

t

xn(s)ds ≤ h
λx∗n−1

νπx∗0 (0)
+ U1(ε, h),

where L1(ε, h), U1(ε, h)
ε→0−−−→ 0. At this point, observe that

λx∗n−1

νπx∗0
(0) = x∗n due to the definition of x∗

in Corollary 2. Since these inequalities hold for every h > 0, thanks to the Lipschitz continuity of
xn(t), we conclude that

xn(t)→ x∗n.

In order to complete the proof of Proposition 6, we have to show that given any solution x(t)
of (6) with initial-value x(0) ∈ E1 \ E1

<∞ it holds that x(t) 9 x∗. Note that a necessary condition
for x(t) → x∗ is the convergence of the masses, i.e., m(x(t)) → m(x∗). Note that m(x(0)) = ∞
and m(x∗) <∞. Hence, since the function m(x(·)) is Lipschitz continuous, the convergence of the
masses cannot happen in finite time, and in turn x(0) /∈ B(x∗).

B.8 Proof of Proposition 8

Here we relate the notation in our framework with the notation in [18], so as to make the proof of
Proposition 8 as transparent as possible. For ease of notation we omit the superscript N .
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The N queues in [18] are identified in our framework by (c, k) for c ∈ C and k = 1, . . . , Nc. The

load of queue (c, k) is ρc,k =
λc,k
µc,k

, where λc,k = λc/Nc and µc,k = µc. In our framework when the

server visits a queue with m packets in the buffer S(m) packets are served, where

S(m) =

{
0, if m = 0,

1, if m > 0.

Hence S̄ = limm→∞ S(m) = 1. Denote by r(c,k)(d,h) the probability that the server visits queue
(d, h) after having visited queue (c, k). In our case, the queue visited by a server is not dependent
on the past visits, so that

r(c,k)(d,h) = r(d,h) =
νd
Ndν

,

where ν =
∑
c∈C νc. Also, the switchover times {δ(c,k)(d,h)(n)}n≥0, i.e., the time the server needs for

switching from queue (c, k) to (d, h) at the n-th occurrence of such a switch, are independent of the
queue just left. More explicitly, the random variables δ(c,k)(d,h)(n) are i.i.d. copies of the random
variable

δ(c,k)(d,h) ∼ Exp
(
ν
)
.

In particular, δ(c,k)(d,h) is distributed as the minimum of N exponential random variables each
corresponding to the back-off time of a different node whose parameter depends on the class in
which it belongs. The routing probabilities r(c,k)(d,h) define a Markov chain on the state space
{(c, k) : c ∈ C, k = 1, . . . , Nc}. Let p(c,k) be its unique invariant distribution. In our framework, due
to the independence of r(c,k)(d,h) from (c, k), it holds that

p(c,k) =
νc
Ncν

.

Lastly, define

δ∗ =̇
∑

(c,k),(d,h)

p(c,k)r(c,k)(d,h)E[δ(c,k)(d,h)],

which in our framework yields

δ∗ =
∑
(c,k)

∑
(d,h)

νc
Ncν

νd
Ndν

1

ν
=

1

ν3

∑
(c,k)

∑
(d,h)

νc
Nc

νd
Nd

=
1

ν3

∑
(c,k)

νc
Nc

∑
(d,h)

νd
Nd

=
1

ν3

∑
(c,k)

νc
Nc

ν

=
1

ν2

∑
(c,k)

νc
Nc

=
1

ν
.

At this point, in [18, Theorem 2.3], the condition for positive recurrence of the polling system is
proved to be the following ∑

(c,k)

ρc,k + max
(c,k)

λ(c,k)

p(c,k)S̄
δ∗ < 1. (62)

Observe that in our framework
λ(c,k)

p(c,k)S̄
=
λc
Nc

Ncν

νc
= ν

λc
νc
.

Hence, (62) can be rewritten as

max
(c,k)

ν
λc
νc

1

ν
< 1−

∑
c∈C

λc
µc
,

which yields Proposition 8.
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B.9 Alternative proof for Proposition 8 - Single-class case

Fix the number of nodes N . For every node k, define a Poisson process of rate ν/N , which represents
the back-off opportunities. By opportunity, we mean that the corresponding event (back-off in this

case) happens if the condition of the system allows for it. Denote by b
(k,N)
n a realization of the back-

off opportunity process at node k, i.e., at time b
(k,N)
n , a back-off is accomplished if Q

(N)
k (b

(k,N)
n ) ≥ 1

and Y (b
(k,N)
n ) = 0. In parallel, define a Poisson process of rate µ, which identifies the transmission

opportunities. In particular, denote by s
(N)
n a realization of the transmission opportunities process.

At time s
(N)
n , a transmission is completed if Y (N)(s

(N)
n ) = 1. The arrivals at node k are governed

by a Poisson process of rate λ/N , and in this case we do not need to consider opportunities. Indeed
at every realization of the process a new packet arrives, no matter the state of the system. These
processes are sufficient for describing the stationary behavior in the single-class case with N nodes,
a special case of the model described in Section 2.

Consider now the following random sets of times

B(N) =

N⋃
k=1

⋃
n∈N
{b(k,N)
n }, S(N) =

⋃
n∈N
{s(N)
n },

and define the subset T (N) ⊆ B(N) such that t̄ ∈ T (N) if and only if there exists s
(N)
n ∈ S(N) such

that
t̄ = inf

t∈B(N)
{t > s(N)

n }.

Observe that different elements of S(N) may identify the same element in T (N). Basically, the back-
off opportunities in T (N) are the only opportunities taken by nodes which are not blocked by the
activity process. Observe that the absence of packets in their buffer might still prevent them from
initiating a transmission.

Drop the superscript (N), and denote the sequence of elements of T (N) = T by {tn}n∈N. We
want to analyze the embedded queue length Markov chain (Qn)n∈N on the state space NN where

Qn = Q(tn),

and Qk(t) is the length of the k-th queue at time t.
Define the following random variables

• Tn = tn+1−tn represents the length of the n-th time slot. Observe that (Tn)n∈N is a sequence of
i.i.d. random variables whose distribution is given by the sum of two exponentially distributed
random variables of rate µ and ν. Observe that E[Tn] = T̄ = 1

µ + 1
ν .

• An = (Ank )k=1,...,N counts the number of packets arriving at the various queues during the
n-th time slot. Observe that Ank |Tn=s ∼ Poisson( λN s) for every k = 1, . . . , N .

• Dn = (Dn
k )k=1,...,N counts the number of packets leaving the various queues during the n-th

time slot. Note that Dn
k ∈ {0, 1} and

∑
kD

n
k ≤ 1.

Proposition 12. If λ
µ + λ

ν < 1, then the queue length Markov process (Q(N)(t))t≥0 is positive
recurrent for every N > 0.

Define L(Qn) =
∑N
k=1(Qnk )2. We will show that L(·) is a Lyapunov function for the embedded

queue length Markov chain (Qn)n∈N. In order to prove that, it suffices to show that E[L(Qn+1)|Qn]−
L(Qn) < 0 unless Qn ∈ K, where K ∈ RN+ is a compact set.

Since
Qn+1
k = Qnk +Ank −Dn

k ,
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it holds that

E[L(Qn+1)|Qn]− L(Qn)

=L(Qn) + 2

N∑
k=1

QnkE[
(
Ank −Dn

k

)
|Qn] +

N∑
k=1

E[
(
Ank −Dn

k

)2|Qn]− L(Qn)

= 2

N∑
k=1

QnkE[
(
Ank −Dn

k

)
|Qn]︸ ︷︷ ︸

S1

+

N∑
k=1

E[
(
Ank −Dn

k

)2|Qn]︸ ︷︷ ︸
S2

.

Consider S1, and observe its terms individually. As for the first term, it holds that

2

N∑
k=1

QnkE[Ank |Q
n] = 2

N∑
k=1

QnkE[Ank ] = 2

N∑
k=1

Qnk
λ

N
T̄ = 2λ

( 1

µ
+

1

ν

)
Q̄n,

where Q̄n = 1
N

∑N
k=1Q

n
k . Focus now on E[Dn

k |Q
n] for a generic node k ∈ {1, . . . , N}. Denote by

Cnj the random variable indicating the node associated with the j-th back-off opportunity during the
n-th time slot, i.e., in [tn, tn+1). Denote by Jn the random variable counting the number of back-off
opportunities during the n-th time slot. Observe that Jn ≥ 1 due to the time-slot definition. Finally,
define the random variables

C̄nj =

{
1, if the j-th back-off opportunity is successful,

0, otherwise.

It holds that

E[Dn
i |Q

n] =

Jn∑
j=1

P[Cnj = i, C̄nj = 1|Qn]

≥ P[Cn1 = i, C̄n1 = 1|Qn]

= P[C̄n1 = 1|Cn1 = i,Qn]P[Cn1 = i]

≥ 1{Qni >0}
1

N
.

Thus

S1 ≤ 2λ
( 1

µ
+

1

ν

)
Q̄n − 2

N∑
k=1

Qnk
1

N
= 2Q̄n

(λ
µ

+
λ

ν
− 1
)
. (63)

Consider now S2, and observe that its value is bounded by a constant. Indeed,

S2 ≤
N∑
i=1

E[(Ani )2] + 1 =

N∑
i=1

E[E[(Ani )2|Tn]] + 1

=

N∑
i=1

E[E[(
λ

N
Tn)2 +

λ

N
Tn]] + 1

=
λ2

N
E[T 2

n ] + λE[Tn] + 1

=
λ2

N

2(µ2 + µν + ν2)

µ2ν2
+ λ
( 1

µ
+

1

ν

)
+ 1 = cN,λ,µ,ν <∞. (64)

Combining (63) and (64) we obtain

E[L(Qn+1)|Qn]− L(Qn) ≤ 2Q̄n
(λ
µ

+
λ

ν
− 1
)

+ cN,λ,µ,ν . (65)

Since λ/µ + λ/ν < 1, there exists a compact set of the form of K = {Q : 1
N

∑N
i=1Qi < c} such

that if Q /∈ K then
E[L(Qn+1)|Qn]− L(Qn) < 0.
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B.10 Proof of Proposition 9

Recall that, given x(N), the stationary distribution of the population process, we would like the
following property to hold for every class c ∈ C: for every ε > 0, there exist nε, Nε > 0 such that

nε∑
n=0

x(N)
c,n > 1− ε, ∀N > Nε.

Observe that this property would be implied by: for every class c ∈ C there exists a constant Kc <∞
such that mc(x

(N)) < Kc for every N > Nε, where

mc(x
(N)) =

∞∑
n=0

nx(N)
c,n .

We would like to relate mc(x
(N)) with E[Ŵ

(N)
c ], i.e., the expected waiting time at a class-c node

in stationarity in a system with N nodes. For the sake of notation we write Nc in place of N
(N)
c .

Observe that

E[Ŵ (N)
c ] ≥

( 1

µc
+
Nc
νc

)
E[Q(N)

c ]

=
( 1

µc
+
Nc
νc

) ∞∑
n=0

nP(Q(N)
c (∞) = n)

=
( 1

µc
+
Nc
νc

) ∞∑
n=0

nx(N)
c (n),

where Q
(N)
c is the random variable denoting the number of packets waiting in the buffer of a class-c

node in stationarity. Therefore

mc(x
(N)) ≤ µcνc

νc +Ncµc
E[Ŵ (N)

c ] ≤ νc
Nc

E[Ŵ (N)
c ].

Thus it suffices to show that E[Ŵ
(N)
c ] grows at most linearly in N as N →∞.

The following formula is the pseudo-conservation law proved in [12, Eqn. (5.34)] specialized to a

CSMA setting, i.e., pc,k =
ν(N)
c

ν and σc,k = ν, with ν =
∑N
c=1 νc. Hence, equation [12, Eqn. (5.34)]

becomes equation (47) which can be further reduced to∑
c∈C

λc
µc

(
1− λc

νc

1

1− ρ
)
E[Ŵ (N)

c ]

=
ρ

1− ρ
∑
c∈C

λc
µ2
c

+
1

1− ρ
∑
c∈C

Ncλc
µcνc

−
∑
c∈C

λc
νµc

+
ρ

ν
, (66)

where ρ =
∑N
c=1 ρc. The above pseudo-conservation law is valid as long as the stationary expecta-

tions of the waiting times are finite, which is granted by [17, Theorem 5.5] as long as the stability
condition (8) is satisfied.

From (66) we can deduce that

νd
Nd

E[Ŵ
(N)
d ] ≤ νd

Nd

ρ
1−ρ

∑
c∈C

λc
µ2
c

+ 1
1−ρ

∑
c∈C

Ncλc
µcνc

−
∑
c∈C

λc
νµc

+ ρ
ν

λd
µd

(
1− λd

νd
1

1−ρ
)

=

νd
1−ρ

∑
c∈C

pcλc
pdµcνc

λd
µd

(
1− λd

νd
1

1−ρ
) +KN ,

where limN→∞KN = 0.
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