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Abstract
A pseudoforest is a graph where each connected component contains at most one cycle, or alterna-
tively, a graph that can be turned into a forest by removing at most one edge from each connected
component. In this paper, we show that the following problem can be solved in O(3knkO(1)) time:
given a graph G and an integer k, can we delete at most k vertices from G such that we obtain a
pseudoforest? The result improves upon an earlier result by Philip et al. [MFCS 2015] who gave
a (nonlinear) 7.56knO(1)-time algorithm both in the exponential factor depending on k as well
as in the polynomial factor depending on n.
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1 Introduction

In this paper, we consider the Pseudoforest Deletion problem. A pseudoforest is an
undirected graph that is obtained from a forest by adding at most one edge to each connected
component. In the Pseudoforest Deletion problem, we are given a graph G = (V,E)
and an integer k, and ask if there is a set of at most k vertices in G, that, when deleted from
G, turns G into a pseudoforest. The Pseudoforest Deletion problem is closely related to
the well known Feedback vertex set problem, where we want to delete at most k vertices
from a graph so that the graph becomes a forest.

The Pseudoforest Deletion problem was first studied by Philip et al. [12], together
with the generalization where each connected component is a tree plus at most ` edges. They
showed that for each `, the problem to delete at most k vertices such that we obtain such an
`-pseudoforest has a kernel with f(`)k2 vertices. For the Pseudoforest Deletion problem,
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7:2 A Faster Parameterized Algorithm for Pseudoforest Deletion

i.e., the case that ` = 1, they give a deterministic algorithm with running time 7.56knO(1).1
In this paper, we improve upon the latter result, both with respect to the exponential factor
in k, as well as in the polynomial factor in n, which is, in our case, linear.

It is easy to see that the Pseudoforest deletion problem belongs to the class of
problems studied by Fomin et al. [9], and thus, by these results, the problem has a constant
factor polynomial time approximation algorithm, a polynomial kernel (improved to quadratic
by the results of Philip et al. [12]), and a randomized algorithm that runs in time O(ckn)
for some constant c. The randomized algorithm is a generalization of an algorithm by
Becker et al. [3] for the Feedback Vertex Set problem and a related problem called
the Loop Cutset problem. Fomin et al. [9] also give deterministic algorithms running
in time O(2O(k)n log2 n) and O(nm) time constant factor approximation algorithms for a
large class of problems that includes Pseudoforest deletion. If one looks closely at the
randomized algorithm by Becker et al. [3] and the generalization by Fomin et al. [9], it follows
that one can solve the Pseudoforest deletion problem with a randomized algorithm in
O(4knkO(1)) time.

Our improvement on these two algorithms is based upon the combination of a few different
insights and techniques, in particular:

Positive instances, i.e., graphs that can be turned into a pseudoforest by deleting at most
k vertices have treewidth at most k + 2.
The notion of pseudoforest has the following local characterization: a graph is a pseudo-
forest if and only if it has an edge orientation such that each vertex has outdegree at
most one.
The local characterization allows us to solve the problem with dynamic programming on a
tree decomposition in time that is linear in the number of vertices and single exponential
in the treewidth, without the need to use advanced techniques like the cut and count
method [8] or the rank based approach [6].
With help of convolutions [15] (see also [4]), the running time of the dynamic programming
algorithm is reduced to O(3tntO(1)) on tree decompositions of width t.
What remains is the need to find an initial tree decomposition to run the dynamic
programming algorithm on. For this, we use a modification of the O(f(t)n) algorithm for
Treewidth by Bodlaender [5]. The modification includes the use of iterative compression
inside one of the subroutines.

It is interesting to contrast our result with the currently best known parameterized
algorithms for Feedback Vertex Set: for the Pseudoforest Deletion problem we
have a deterministic O(3knkO(1)) algorithm, while Feedback Vertex Set can be solved in
O(3knO(1)) time with a randomized algorithm [8] and O(3.63knO(1)) time with a deterministic
algorithm [10]; in both cases, the running time is not linear in n.

This paper is organized as follows. In Section 2, we give some preliminary definitions.
Section 3 contains a number of graph theoretic observations; in many cases these are not hard
to observe, from existing literature or folklore. Section 4 discusses how the Pseudoforest
Deletion problem can be solved when a tree decomposition of bounded width is available.
This method is used as a subroutine in the main algorithm, that is given in Section 5. The
paper ends with some conclusions in Section 6.

1 They did not specify the exact dependency in n, which is at least quadratic.
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2 Preliminaries

When not specified otherwise, a graph G = (V,E) is considered to be undirected, but possibly
with selfloops and parallel edges. Allowing selfloops and parallel edges makes the description
of the main algorithm easier. An orientation of a graph G = (V,E) is a directed graph
obtained by giving each edge in G a direction. For a graph G = (V,E) and vertex set W ⊆ V ,
the subgraph of G induced by W is denoted by G[W ] = (W, {e ∈ E | both endpoints of e
belong to W}).

A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈ I}, T = (I, F )) with T a
tree, and {Xi | i ∈ I} a collection of subsets (called bags) of V , such that
1.
⋃

i∈I Xi = V ;
2. for all {v, w} ∈ E, there is an i ∈ I with {v, w} ⊆ Xi

3. for all v ∈ V , the set of nodes {i ∈ I | v ∈ Xi} forms a connected subtree of T .
The width of a tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi|−1. The treewidth
of a graph G is the minimum width over all tree decompositions of G.

For the definition above, if there are parallel edges or selfloops, we can just ignore them,
i.e., a tree decomposition of a graph with parallel edges and selfloops is a tree decomposition
of the associated simple graph (obtained by keeping only one of each set of parallel edges
and removing all selfloops).

In this paper, we also use the related notion of nice tree decomposition. In the literature,
there are a few variants of this notion that differ in details. In this case, we use the variant
with edge introduce nodes and leaf bags of size one.

A nice tree decomposition is a tree decomposition ({Xi | i ∈ I}, T = (I, F )) where T is a
rooted tree, and nodes are of one of the following five different types. With each bag/node
in the tree decomposition, we also associate a subgraph of G; the subgraph associated with
node i is denoted Gi = (Vi, Ei). We give each type together with how the corresponding
subgraph is formed.

Leaf nodes i. i is a leaf of T ; |Xi| = 1, and Gi = ({vi}, ∅) is the graph consisting of the
vertex vi and no edges.
Introduce vertex nodes i. i has one child, say j. There is a vertex v with Xi = Xj∪{v},
v 6∈ Vj , and Gi = (Vj ∪ {vi}, Ej), i.e., Gi is obtained from Gj by adding vi as isolated
vertex.
Introduce edge nodes i. i has one child, say j. There are two vertices v, w ∈ Xi,
Xi = Xj , and Gi = (Vj , Ej ∪ {v, w}). I.e., Gi is obtained from Gj by adding an edge
between two vertices in Xi = Xj . If we have parallel edges, we have one introduce edge
node for each parallel edge. E.g., if there are two edges from v to w, we have two edge
introduce nodes for the pair v, w; typically, one of these can be the parent of the other in
the tree. A selfloop with endpoint v is handled in the same way, i.e., there is an introduce
edge node i with v ∈ Xi, and Gi is obtained by adding the selfloop to Gj .
Forget nodes i. i has one child, say j. There is a vertex v with Xi = Xj − {v}. Gi and
Gj are the same graph.
Join nodes i. i has two children, say j1 and j2. Xi = Xj1 = Xj2 , Vj1 ∩ Vj2 = Xi and
Ej1 ∩ Ej2 = ∅. Gi = (Vj1 ∪ Vj2 , Ej1 ∪ Ej2). I.e., Gi is obtained by taking the union of
Gj1 and Gj2 , where the vertices in Xi are the intersection of these two graphs.

If r is the root of T , then Gr = G.
Restricting a function f to a sub-domain Z is denoted f |Z . With f + v → i we denote

the new function, obtained by adding v to the domain of f , mapping v to i. fv→i denotes
the function, obtaining by changing f by mapping v to i.

IPEC 2016
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A pseudotree is a connected graph that is either a tree or obtained by adding one edge to
a tree. Note that, as we allow selfloops and parallel edges, this edge may be a selfloop or a
parallel edge. A graph is a pseudoforest, if each connected component is a pseudotree.

A pseudoforest deletion set in a graph G = (V,E) is a set of vertices W ⊆ V such that
G[V −W ] is a pseudoforest.

A p-contraction of an edge {v, w} is the operation that identifies v and w, removes the
edge {v, w}, but keeps parallel edges, e.g., if there are edges {v, x} and {w, x} before the
contraction, then x has two parallel edges to the newly formed vertex; if there is an edge
parallel to the contracted edge, then this turns into a selfloop. Note that the number of
edges of a graph drops by exactly one when doing a p-contraction.

The c-improved graph of a graph G = (V,E) is the graph, obtained by adding an edge
between each pair of vertices that have at least c common neighbors of degree at most c+ 1.
(We do not take the closure of this operation.)

A vertex v is simplicial in a graph G = (V,E) if the neighborhood of v is a clique.

3 Graph theoretic observations

In this section, we give some graph theoretic results that are either folklore or easy to see.
The following lemma is a trivial observation.

I Lemma 3.1. Let G = (V,E) be a graph. The following statements are equivalent.
1. G is a pseudoforest.
2. G has an orientation such that each vertex has outdegree at most 1.

While Lemma 3.1 is an easy observation, it is a key point to our result: being a pseudoforest
seems to be a global property, it actually can be expressed by a local property: having an
orientation with outdegree at most one allows a dynamic programming algorithm on tree
decompositions with three states per vertex, i.e., with tables of size bounded by 3t, t being
the width of the tree decomposition.

I Lemma 3.2. Let G = (V,E) be a graph.
1. Suppose that there are four or more parallel edges from v to w. Let G′ be the graph,

obtained from G by removing one parallel edge from v to w. The minimum size of a
pseudoforest deletion set in G equals the minimum size of the pseudoforest deletion set of
G′.

2. Suppose that there are three or more self loops with v as endpoint. Let G′′ be the graph,
obtained from G by removing one selfloop with v as endpoint. The minimum size of a
pseudoforest deletion set in G equals the minimum size of the pseudoforest deletion set of
G′′.

Proof. The result follows by observing that if there are three or more parallel edges from v

to w then any pseudoforest deletion set must contain v or w, and that if there are two or
more selfloops with v as endpoint, then any pseudoforest deletion set contains v. J

The following lemma, used in our algorithm is the main reason why we use p-contractions
and graphs with parallel edges and self-loops: we do not have such a result when we would
use simple graphs and the usual notion of contraction.

I Lemma 3.3. Let G′ be obtained from G by a p-contraction of the edge {v, w}. Let x be
the vertex resulting from the contraction of {v, w}. Suppose W is a pseudoforest deletion set
in G′.
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1. If x 6∈W , then W is a pseudoforest deletion set in G.
2. If x ∈W , then W − {x} ∪ {v, w} is a pseudoforest deletion set in G.

Proof. The result follows by observing that when we contract an edge from a pseudoforest,
we again obtain a pseudoforest. J

The following result is folklore. While the folklore result deals with simple graphs, we
can build a nice tree decomposition for a graph with parallel edges and selfloops by building
a tree decomposition for the underlying simple graph, and then adding the selfloops and
parallel edges in the obvious way.

I Lemma 3.4. Suppose G = (V,E) is given with a tree decomposition of width k with r bags.
Then one can construct a nice tree decomposition of G with O(kr+ |E|) bags in O(k2r+ |E|k)
time.

The following result is a trivial consequence of treewidth folklore. As the construction in
the proof is used in the algorithm, we give the constructive proof here.

I Lemma 3.5. Let G = (V,E) be a graph.
1. If G is a pseudoforest, the treewidth of G is at most 2.
2. If there is a set W ⊆ V such that G[V −W ] is a pseudoforest, the treewidth of G is at

most 2 + |W |. The corresponding tree decomposition can be computed in O(n · |W |) time.

Proof.
1. The treewidth of a tree is 1; the treewidth of a tree plus one edge is 2: add one endpoint

of the new edge to all bags. The treewidth of a graph equals the maximum treewidth of
a connected component, hence the treewidth of a pseudoforest is 2.

2. Take a tree decomposition of width 2 of G[V −W ], and add W to all bags. J

One ingredient of our algorithm is an approach, first used by Bodlaender [5] to obtain an
algorithm for Treewidth that uses O(f(k)n) time, see Theorem 3.6 below. Perković and
Reed [11] showed that the result can be improved with respect to factors polynomial in k;
for our purposes, the form below suffices.

I Theorem 3.6 (Bodlaender [5]). Let G = (V,E) be a graph and t an integer. At least one
of the following three statements is true.

Any maximal matching of G has 1
O(t8)n edges.

The t-improved graph of G has at least 1
O(t2)n simplicial vertices of degree at most t.

The treewidth of G is at least t+ 1.

I Lemma 3.7. Let G be a graph and let k be an integer. G has a set X ⊆ V (G) of size at
most k such that G−X is a pseudoforest if and only if the k + 3-improved graph of G has a
set X ′ of size at most k such that G−X ′ is a pseudoforest.

Proof. As a subgraph of a pseudoforest is a pseudoforest, the ‘if’-direction is trivial.
Suppose G has a set X of size at most k such that G−X is a pseudoforest. Consider

two vertices v, w, with at least k + 3 common neighbors. We claim that v ∈ X or w ∈ X.
Suppose not. Vertices v and w have at least 3 common neighbors that do not belong to X.
We now have five vertices with at least six edges between them, so for any orientation, at
least one of these five vertices has outdegree two or more, contradiction. As v ∈ X or w ∈ X,
we can safely add the edge {v, w}, as G−X remains a pseudoforest. J

IPEC 2016
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4 Solving Pseudoforest Deletion on tree decompositions

In this section, we will prove the following result.

I Theorem 4.1. Suppose G = (V,E) is given with a tree decomposition of width at most t
with O(n) bags. One can find in O(3tntO(1)) time a minimum size pseudoforest deletion set.

For easier explanation of the algorithm, we will first derive an algorithm that uses
O(4tntO(1)) time and solves the decision problem, i.e., computes the size of the minimum
pseudoforest deletion set. Then, with help of the convolutions technique for tree decompo-
sitions, introduced by van Rooij et al. [15], we obtain a decision problem with O(3tntO(1))
running time. At the end, we discuss how we can compute within the same time bound also
the corresponding minimum size pseudoforest deletion set.

An algorithm that runs in O(4tntO(1)) time

We first transform the tree decomposition to a nice tree decomposition, which has O(tn)
bags.

Recall that we associate a subgraph of G, Gi with each node i in the nice tree decompo-
sition. A partial solution for a node i ∈ I is a pair (Y,Λ), with Y ⊆ Vi a set of vertices and
Λ an orientation of Ei such that each vertex in Vi − Y has at most one outgoing arc in Λ. If
r is the root of the nice tree decomposition, then a partial solution for r is called a solution.
We say a solution (Y,Λ) extends partial solution (Y ′,Λ′) for i if Y ′ = Y ∩ Vi and Λ′ is the
restriction of Λ to Ei.

The characteristic of a partial solution (Y,Λ) for i is the function f : Xi → {X, 0, 1},
such that

For all v ∈ Xi, f(v) = X if and only if v ∈ Y .
If v ∈ Xi and f(v) = 0, then v has no outgoing arcs in Λ.
If v ∈ Xi and f(v) = 1, then v has exactly one outgoing arc in Λ.

The main ingredient of the algorithm is to compute for each node in i a table (function)
Ti, in postorder, i.e., we compute the table for a node after the tables for its children are
known. A table Ti maps each function f : Xi → {0, 1, X} to an nonnegative integer or to ∞,
in the following way.

Suppose i is a bag in a nice tree decomposition, with corresponding set Xi and subgraph
Gi. For a function f : Xi → {0, 1, X}, Ti(f) equals the minimum of |Y | over all partial
solutions (Y,Λ) at i with characteristic f . If no such partial solution exists, then Ti(f) =∞.

The following claim trivially holds by Lemma 3.1, and shows how to obtain the answer
to the decision version of the Pseudoforest Deletion problem given Tr for the root r of
the tree decomposition.

I Claim 4.2. Let r be the root of a nice tree decomposition of G = (V,E). The minimum size
of a pseudoforest deletion set in G equals the minimum of Tr(f) over all f : Xr → {0, 1, X}.

We will now discuss for each of the types of nodes in a nice tree decomposition how to
compute the table Ti, given the tables of the children of the node.

Leaf nodes. Let i be a leaf node, with Xi = {v}. Now, if f(v) = 0, then Ti(f) = 0; if
f(v) = 1, then Ti(f) =∞, and if f(v) = X, then Ti(f) = 1.
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Introduce vertex nodes. Suppose i is an introduce vertex node i with child j with Xi =
Xj ∪ {v}.

As the degree of v in Gi is 0, for each f with f(v) = 1, we have Ti(f) =∞, as there are
no partial solutions with v having outdegree 1.

For a function f with f(v) = 0, we have Ti(f) = Ti(f |Xi
); and for functions f with

f(v) = X, we have Ti(f) = Ti(f |Xi
) + 1 — we can just extend any partial solution for Gj

by either not placing v in the pseudoforest deletion set, in which case v has outdegree 0; or
placing v in the pseudoforest deletion set, in which case v is mapped to X and the size of
the set is increased by one.

Introduce edge nodes. Consider an introduce edge node i with child j, where we introduce
an edge with endpoints v and w. Note that we allow parallel edges and selfloops; the
subroutine below is also correct in case the introduced edge is parallel to an existing edge or
is a selfloop (i.e., v = w.)

For each f : Xi → {0, 1, X}, we consider the two cases in which {v, w} can be oriented.
We then obtain the following cases; for brevity, we omit the isomorphic cases with the roles
of v and w switched.

If f(v) = X and f(w) = X, then Ti(f) = Tj(f).
If f(v) = X and f(w) = 0, then Ti(f) = Tj(f). (We must orient the edge from v to w.)
If f(v) = X and f(w) = 1, then Ti(f) = min{Tj(f), Tj(fw→0)}.
If f(v) = 1 and f(w) = 1, then Ti(f) = min{Tj(fv→0), Tj(fw→0)}.
If f(v) = 1 and f(w) = 0, then Ti(f) = Tj(fv→0). (We must orient the edge from v to w,
and thus v has outdegree 0 in the corresponding orientation of Gj .)
If f(v) = 0 and f(w) = 0, then Ti(f) =∞. (No orientation with both v and w having
outdegree 0 is possible.)

Forget nodes. Let i be a forget node with child j with Xj = Xi ∪ {v}. Then Ti(f) =
min{Tj(f + v → 0), Tj(f + v → 1), Tj(f + v → X)}.

Join nodes. Suppose i is a join node with children j1 and j2. The following claim gives
that we can compute Ti, given Tj1 and Tj2 in time O(4ttO(1)). As said, we later will improve
the exponential factor to 3t with help of convolutions.

I Lemma 4.3. Ti(f) is the minimum over all f1 and f2 of Tj1(f1) + Tj2(f2)− α, where
For all v ∈ Xi, f(v) = X ⇔ f1(v) = X ⇔ f2(v) = X.
For all v ∈ Xi, f(v) = 0⇔ f1(v) = 0⇔ f2(v) = 0.
For all v ∈ Xi, if f(v) = 1 then either f1(v) = 1 and f2(v) = 0, or f1(v) = 0 and
f2(v) = 1.
α = |{v ∈ Xi | f(v) = X}|.

Proof. The proof follows standard techniques for dynamic programming on tree decompo-
sitions. The number of elements in the vertex deletion set Z in Gi equals the number of
elements in Z in Gj1 plus the number of elements in Z in Gj2 , minus the number of elements
in Z in both — the latter number is α; we thus have to subtract α once to prevent counting
vertices in Z ∩Xi twice. J

The claim above shows that we can compute Ti given Tj1 and Tj2 in O(4ttO(1)) time: for
each v ∈ Xi, there are four combinations to consider: f1(v) = f2(v) = X; f1(v) = f2(v) = 0;
f1(v) = 1 and f2(v) = 0; f1(v) = 0 and f2(v) = 1. This gives 4|Xi| combinations in total;

IPEC 2016



7:8 A Faster Parameterized Algorithm for Pseudoforest Deletion

for each, look up the table entries in Tj1 and Tj2 , compute the value which arrives when we
combine these entries. We initialize each value in Ti to ∞, and for each computed value, we
set the value of the corresponding entry in Ti to the minimum of its current value and the
just computed value.

Pseudoforest Deletion is finite integer index

We now discuss a small modification, that deletes some table entries which will never lead
to an optimal solution. The modification shows that Pseudoforest Deletion is finite
integer index (see [7]), and in fact, has the de Fluiter property, as defined by van Rooij [14,
Chapter 11.2]. We do not give the formal definition of this property, but state the elements
that are needed for our algorithm.

I Lemma 4.4. Let i be a bag, and let fX be the function, that maps each element of Xi

to X.
1. For all f : Xi → {0, 1, X}, Ti(fX) ≤ Ti(f) + |Xi|.
2. Let f : Xi → {0, 1, X}. If Ti(f) > Ti(fX), then no partial solution at i with characteristic

f will extend to an optimal solution.

As a result, we have that we can ignore in our computations, all values for Ti that are
larger than Ti(fX) without affecting the correctness of the algorithm. In the implementation,
we just delete these entries from the tables or set there values to Ti(fX) + 1. As a result, all
values in a table Ti are in the range Ti(fX)− |Xi|, . . . , Ti(fX).

Using convolutions for Join Nodes

In order to speed up the dynamic programming algorithm, we use convolutions. The use of
this technique in the setting of dynamic programming on tree decompositions was introduced
by van Rooij et al. [15, 14].

Obtaining a constructive algorithm

As for many dynamic programming algorithms, constructing an optimal solution is done
after computing its value, by traversing the tree top-down. We first select an entry
from the root table Tr with minimum value, i.e., a function f : Xr → {0, 1, X} with
Tr(f) = minf ′:Xr→{0,1,X} Tr(f ′). We construct a solution corresponding to f by finding (a)
‘corresponding’ table entries in the child nodes, constructing partial solutions corresponding
to these nodes, and placing the vertices in Xr with f(v) = X in the pseudoforest deletion
set. What are ‘corresponding’ table entries is different for the different types of nodes of a
nice tree decompositions; e.g., for a forget node an entry corresponding to f is where the
minimum in min{Tj(f + v → 0), Tj(f + v → 1), Tj(f + v → X)} is attained. Obtaining these
entries is trivial, except for join nodes.

For a join node i, we must solve the following problem: we are given an f : Xi → {0, 1, X},
and must find f1 and f2 as in Lemma 4.3. It is easy to see, and for our purposes sufficient to
notice that we can try all combinations f1 and f2, such that for all v ∈ Xi:

If f(v) = X, then f1(v) = f2(v) = X.
If f(v) = 0, then f1(v) = f2(v) = 0.
If f(v) = 1, then (f1(v) = 1 and f2(v) = 0) or (f1(v) = 0 and f2(v) = 1).

These are at most 2t+1 different combinations to try; for each, we can see if these combine to
f as in Lemma 4.3 in O(tO(1)) time. With O(n) nodes in the tree decomposition, the time
to construct a solution after all tables Ti have been computed is bounded by O(n2ttO(1)).
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(As a side remark, using self reduction (see [14, Chapter 12]) it is possible to avoid the factor
exponential in t here and perform this step in O(ntO(1)) time, but as the asymptotic running
time is not dominated by this step, we prefer to give the simpler argument.)

Note that the algorithm remains correct when we run it on multigraphs with possible
parallel edges and selfloops. This ends the proof of Theorem 4.1.

5 Main algorithm

In this section, we give the main algorithm and prove that it attains the O(3knkO(1)) time
bound. We first give the general outline of the algorithm (Section 5.1); then discuss two
subroutines for two cases in Sections 5.2 and 5.3. Some implementation details and the time
analysis will be discussed in Section 5.4.

5.1 Outline
We now give the overall outline of the algorithm. We have a recursive algorithm, that follows
the cases of Theorem 3.6. In addition, we have a base case: if we have a graph G = (V,E)
with at most k vertices, we can just return V and are done. So suppose |V | > k. Let
t = k + 2.

The algorithm first computes an arbitrary maximal matching M . If this matching M
is large enough, i.e., has size 1

O(t8)n = 1
O(k8)n as in the first case of Theorem 3.6, then we

proceed with the subroutine discussed in Section 5.2. If this matching is not of this size, we
compute the k + 3-improved graph, and then find the set of simplicial vertices S of degree at
most k + 3. If set S is large enough, i.e., has size 1

O(t2)n = 1
O(k2)n as in the second case of

Theorem 3.6, then we proceed with the subroutine discussed in Section 5.3. If neither M
nor S is large enough, we halt and reject: by Theorem 3.6, we know that G has treewidth
at least t+ 1 = k + 3, and hence G has no pseudoforest deletion set of size at most k; see
Lemma 3.5.

We will discuss how each of the subroutines solves the problem when the corresponding
case holds, and how this leads to an algorithm with the stated time bounds below.

5.2 Graphs with a large maximal matching
In this section, we suppose that we have a (maximal) matching M in G = (V,E) with size

1
O(k8)n. We give a subroutine that either gives a pseudoforest deletion set of size at most k,
or decides that G has no such set.

Let GM = (VM , EM ) be the graph obtained by p-contracting all edges in M , i.e., we
contract the edges but keep parallel edges and selfloops.

Now, recursively solve the problem on GM . From Lemma 3.3, we have:

I Lemma 5.1. Suppose G has a pseudoforest deletion set X. Let XM be the set of vertices
in GM obtained from X by the p-contraction of edges. Then XM is a pseudoforest deletion
set of G.

From Lemma 5.1, it follows that if our recursive call to GM tells us that GM has no
pseudoforest deletion set of size at most k, then also G has no pseudoforest deletion set of
size at most k, and thus we say ‘no’ and halt.

So, now assume that our recursive call gives us a pseudoforest deletion set S of GM of
size at most k. Let S′ be the set of vertices that are contracted to S; i.e., if a vertex v ∈ S is
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the result of contracting an edge from x to y, then we have x, y ∈ S′; if a vertex v ∈ S is not
the result of a contraction, then we place v in S′.

I Claim 5.2. S′ is a pseudoforest deletion set of size at most 2k.

We thus build S′, and now we apply iterative improvement. Number the vertices in S′,
i.e., write S′ = {v1, v2, . . . , vr}; we have r ≤ 2k. Write Vi = (V − S′) ∪ {v1, v2, . . . , vi}, and
Gi = G[Vi]. Note that {v1, . . . , vk} is a pseudoforest deletion set of Gk. SetW = {v1, . . . , vk}.

Now, for i = k + 1 to r, do iteratively the following steps.
Set S = {vi} ∪W .
An invariant of the algorithm is that S is a pseudoforest deletion set of size at most k+ 1
of Gi.
Compute a tree decomposition of Gi of width at most k + 3:
Gi − S is a pseudoforest, so we can build a tree decomposition of Gi − S of width at
most 2 in linear time.
Add S to all bags of this tree decomposition.

Run the algorithm of Theorem 4.1 and solve the Pseudoforest Deletion problem on
Gi with parameter k.
If this algorithm returns that Gi has no pseudoforest deletion set of size at most k, then
G has no pseudoforest deletion set of size at most k, and we say ‘no’ and halt.
Otherwise, let W be the pseudoforest deletion set of Gi that was obtained.

When we are done, we either have decided that G has no pseudoforest deletion set of size
k, or we obtained a pseudoforest deletion set W of Gr = G of size at most k.

5.3 Improved graphs with many simplicial vertices
We now suppose that we have the k+3-improved graph G′, and a set Z with 1

O(t2)n = 1
O(k2)n

simplicial vertices of degree at most k + 3.
We recursively run the algorithm on G′−Z. If G′−Z has no pseudoforest deletion set of

size at most k, then G′ has none, and hence, by Lemma 3.7 G has no pseudoforest deletion
set of size at most k; we can halt and answer ‘no’.

Otherwise, we obtain a pseudoforest deletion set of size at most k of G′ − Z. We can
thus build a tree decomposition of width at most k + 2 of G′ − Z, as in Lemma 3.5. Build a
tree decomposition of width at most k+ 2 of G′, by adding a bag with vertex set N [z] for all
z ∈ Z; making this bag adjacent to a bag that contains the clique N(z). This is identical
to an operation from the algorithm in [5]. As G is a subgraph of G′, we now have a tree
decomposition of G of width at most k + 2, and thus can run the dynamic programming
algorithm from Theorem 4.1 on this latter tree decomposition. Return the answer of this
algorithm.

5.4 Implementation and time analysis
We discuss here some implementation details. Each of the steps except for the recursive
calls and the call to the dynamic programming algorithm of Theorem 4.1 can be done in
O(nkO(1)) time: finding a maximal matching and contracting a maximal matching is trivially
within this time bound; how to find the improved graph, the simplicial vertices of bounded
degree, and how to transform a tree decomposition of the graph without these simplicial
vertices to one with the simplicial vertices (the main steps from Sections 5.2 and 5.3) in
O(nkO(1)) time is shown in [5]; we can use the same procedures as in [5] here. We call the
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O(n3kkO(1)) dynamic programming algorithm O(k) times, and thus the time per recursive
call is bounded by O(n3kkO(1)). One call of the procedure makes one recursive call on a
graph where we lost a fraction of 1

O(k8) of the vertices, and thus our running time satisfies
the following recurrence:

T (n) = T

(
n− 1

O(k8)n
)

+O(n3kkO(1)).

This resolves to T (n) = O(n3kkO(1)), which shows our main result Theorem 4.1.

I Theorem 5.3. The problem, given a graph G and integer k, to decide if G has a pseudoforest
deletion set of size at most k, and if so, find one, can be solved in O(n3kkO(1)) time.

6 Concluding remarks

In this paper, we gave a fast parameterized algorithm for the Pseudoforest Deletion
problem, with a running time with the currently best known factor depending on the
parameter k, and a factor, linear in the number of vertices.

It is an interesting open problem whether this is (up to factors, polynomial in k) optimal,
assuming the (Strong) Exponential Time Hypothesis, or whether a result similar to the lower
bound proofs by Cygan et al. [8] can show that there is no O((3− ε)tnO(1)) algorithm for
Pseudoforest Deletion on graphs given with a tree (or path) decomposition of width t;
compare the similar result for Feedback Vertex Set in [8].

A generalization of the Pseudoforest Deletion problem is the `-Pseudoforest
Deletion problem; a graph is an `-pseudoforest, if it can be obtained from a forest by
adding at most ` edges to each tree. It seems that the problem is harder when ` > 1,
as there is no apparent ‘local formulation’, whereas for ` = 1, we have the formulation
from Lemma 3.1. Thus, we wonder whether there exist deterministic algorithms for `-
Pseudoforest Deletion that run in O(ck

`n) time for constant c` depending on `. Philip et
al. [13] show that for every `, `-Pseudoforest Deletion has a kernel with O(k2) vertices.
Given the local nature of Pseudoforest Deletion, it is interesting to see if there exists a
kernel for it with a linear number of vertices.

Our result also implies a 2-approximation algorithm for Feedback Vertex Set, see
below. There exist polynomial-time2 2-approximation algorithms for this problem [2, 1]; our
algorithm uses linear time at the cost of a factor, exponential in k. The result can possibly
be used as a first step in an fpt algorithm for Feedback Vertex Set using iterative
compression, aiming at an algorithm that is efficient both in the term depending on k as
well as in the term depending on n.

I Corollary 6.1. There is a 2-approximation algorithm for Feedback Vertex Set that
runs in O(n3kkO(1)) time.

Proof. Run the algorithm of Theorem 5.3. If G has no pseudoforest deletion set of size at
most k, then G also has no feedback vertex set of size at most k. Otherwise, let X be a
pseudoforest deletion set of size at most k. If G−X contains more than k cycles, then G−X
has no feedback vertex set of size k; otherwise, choose a set Y with one vertex per cycle in
G−X; X ∪ Y is a feedback vertex set in G of size at most 2k. J

2 O(m + n log n)-time [2] and O(min{n2, m log n})-time [1].
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