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Template Matching via Densities
on the Roto-Translation Group

Erik Johannes Bekkers , Marco Loog, Bart M. ter Haar Romeny , Senior Member, IEEE, and Remco Duits

Abstract—We propose a template matching method for the detection of 2D image objects that are characterized by orientation

patterns. Our method is based on data representations via orientation scores, which are functions on the space of positions and

orientations, and which are obtained via a wavelet-type transform. This new representation allows us to detect orientation patterns

in an intuitive and direct way, namely via cross-correlations. Additionally, we propose a generalized linear regression framework

for the construction of suitable templates using smoothing splines. Here, it is important to recognize a curved geometry on the

position-orientation domain, which we identify with the Lie group SE(2): the roto-translation group. Templates are then optimized in

a B-spline basis, and smoothness is defined with respect to the curved geometry. We achieve state-of-the-art results on three different

applications: detection of the optic nerve head in the retina (99.83 percent success rate on 1,737 images), of the fovea in the retina

(99.32 percent success rate on 1,616 images), and of the pupil in regular camera images (95.86 percent on 1,521 images). The high

performance is due to inclusion of both intensity and orientation features with effective geometric priors in the template matching.

Moreover, our method is fast due to a cross-correlation based matching approach.

Index Terms—Template matching, multi-orientation, invertible orientation scores, optic nerve head, fovea, retina

Ç

1 INTRODUCTION

WE propose a cross-correlation based template match-
ing scheme for the detection of objects characterized

by orientation patterns. As one of the most basic forms of
template matching, cross-correlation is intuitive, easy to
implement, and due to the existence of optimization
schemes for real-time processing a popular method to con-
sider in computer vision tasks [1]. However, as intensity
values alone provide little context, cross-correlation for the
detection of objects has its limitations. More advanced data
representations may be used, e.g., via wavelet transforms or
feature descriptors [2], [3], [4], [5]. However, then standard
cross-correlation can usually no longer be used and one typ-
ically resorts to classifiers, which take the new representa-
tions as input feature vectors. While in these generic
approaches the detection performance often increases with

the choice of a more complex representation, so does the
computation time. In contrast, in this paper we stay in the
framework of template matching via cross-correlation while
working with a contextual representation of the image. To
this end, we lift an image f : R2 ! R to an invertible orienta-
tion score Uf : R2ãS1 ! C via a wavelet-type transform
using certain anisotropic filters [6], [7].

An orientation score is a complex valued function on the
extended domain R2ãS1 � SEð2Þ of positions and orienta-
tions, and provides a comprehensive decomposition of an
image based on local orientations, see Figs. 1 and 2. Cross-
correlation based template matching is then defined via L2

inner-products of a template T 2 L2ðSEð2ÞÞ and an orienta-
tion score Uf 2 L2ðSEð2ÞÞ. In this paper, we learn templates
T by means of generalized linear regression.

In the R2-case (which we later extend to orientation
scores, the SEð2Þ-case), we define templates t 2 L2ðR2Þ via
the optimization of energy functionals of the form

t� ¼ argmin
t2L2ðR2Þ

EðtÞ :¼ SðtÞ þRðtÞf g; (1)

where the energy functional EðtÞ consists of a data term
SðtÞ, and a regularization term RðtÞ. Since the templates
optimized in this form are used in a linear cross-correlation
based framework, we will use inner products in S, in which
case (1) can be regarded as a generalized linear regression
problem with a regularization term. For example, (1)
becomes a regression problem generally known under the
name ridge regression [8], when taking

SðtÞ ¼
XN
i¼1

ðt; fiÞL2ðR2Þ � yi

� �2
; and RðtÞ ¼ mktk2L2ðR2Þ;
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where fi is one of N image patches, yi 2 f0; 1g is the corre-
sponding desired filter response, and where m is a parame-
ter weighting the regularization term. The regression is then
from an input image patch fi to a desired response yi, and
the template t can be regarded as the “set of weights” that
are optimized in the regression problem. In this article we
consider both quadratic (linear regression) and logistic
(logistic regression) losses in S. For regularization we con-
sider terms of the form

RðtÞ ¼ �

Z
R2

krtðxÞk2dxþ mktk2L2ðR2Þ;

and thus combine the classical ridge regression with a
smoothing term (weighted by �).

In our extension of smoothed regression to orientation
scores we employ similar techniques. However, here we
must recognize a curved geometry on the domain R2ãS1,
which we identify with the group of roto-translations: the
Lie group SEð2Þ equipped with group product

g � g0 ¼ ðx; uÞ � ðx0; u0Þ ¼ ðRux
0 þ x; u þ u0Þ: (2)

In this product the orientation u influences the product on
the spatial part. Therefore we write R2ãS1 instead of
R2 � S1, as it is a semi-direct group product (and not a
direct product). Accordingly, we must work with a rotating
derivative frame (instead of axis aligned derivatives) that is
aligned with the group elements ðx; uÞ 2 SEð2Þ, see e.g., the
ð@�; @h; @uÞ-frames in Fig. 2. This derivative frame allows for
(anisotropic) smoothing along oriented structures. As we
will show in this article (Section 3.6), the proposed smooth-
ing scheme has the probabilistic interpretation of time inte-
grated Brownian motion on SEð2Þ [9], [10].

Regression and Group Theory. Regularization in (general-
ized) linear regression generally leads to more robust classi-
fiers/regressions, especially when a low number of training
samples are available. Different types of regularizations in
regression problems have been intensively studied in, e.g.,
[11], [12], [13], [14], [15], and the choice for regularization-
type depends on the problem: E.g., L1-type regularization is
often used to sparsify the regression weights, whereas
L2-type regularization is more generally used to prevent
over-fitting by penalizing outliers (e.g., in ridge regression
[8]). Smoothing of regression coefficients by penalizing the
L2-norm of the derivative along the coefficients is less com-
mon, but it can have a significant effect on performance
[13], [16].

We solve problem (1) in the context of smoothing splines:
We discretize the problem by expanding the templates in a
finite B-spline basis, and optimize over the spline coeffi-
cients. For d-dimensional euclidean spaces, smoothing
splines have been well studied [17], [18], [19], [20]. In this
paper, we extend the concept to the curved space SEð2Þ and
provide explicit forms of the discrete regularization matri-
ces. Furthermore, we show that the extended framework
can be used for time integrated Brownian motions on
SEð2Þ, and show near to perfect comparisons to the exact
solutions found in [9], [10].

In general, statistics and regression on Riemannian mani-
folds are powerful tools in medical imaging and computer
vision [21], [22], [23], [24]. More specifically in pattern
matching and registration problems Lie groups are often
used to describe deformations. E.g., in [25] the authors learn
a regression function Rm ! Að2Þ from a discrete m-dimen-
sional feature vector to a deformation in the affine group
Að2Þ. Their purpose is object tracking in video sequences.
This work is however not concerned with deformation anal-
ysis, we instead learn a regression function L2ðSEð2ÞÞ ! R

from continuous densities on the Lie group SEð2Þ (obtained
via an invertible orientation score transform) to a desired fil-
ter response. Our purpose is object detection in 2D images.
In our regression we impose smoothed regression with a
time-integrated hypo-elliptic Brownian motion prior and
thereby extend least squares regression to smoothed regres-
sion on SE(2) involving first order variation in Sobolev-type
of norms.

Application Area of the Proposed Method. The strength of
our approach is demonstrated with the application to ana-
tomical landmark detection in medical retinal images and
pupil localization in regular camera images. In the retinal
application we consider the problem of detecting the optic
nerve head (ONH) and the fovea. Many image analysis
applications require the robust, accurate and fast detection
of these structures, see e.g., [26], [27], [28], [29]. In all three
detection problems the objects of interest are characterized
by (surrounding) curvilinear structures (blood vessels in
the retina; eyebrow, eyelid, pupil and other contours for
pupil detection), which are conveniently represented in
invertible orientation scores. The invertibility condition
implies that all image data is contained in the orientation
score [7], [30]. With the proposed method we achieve state-
of-the-art results both in terms of detection performance
and speed: high detection performance is achieved by learn-
ing templates that make optimal use of the line patterns in

Fig. 1. A retinal image f of the optic nerve head and a volume rendering
of the orientation score Uf (obtained via a wavelet transformWc).

Fig. 2. In orientation scores Uf , constructed from an image f via the ori-
entation score transform Wc, we make use of a left-invariant derivative
frame f@�; @h; @ug that is aligned with the orientation u corresponding to
each layer in the score. Three slices and the corresponding left-invariant
frames are shown separately (at u 2 f0; p4 ; 3p4 g).
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orientation scores; speed is achieved by a simple, yet effec-
tive, cross-correlation template matching approach.

Contribution of this Work. This article builds upon two
published conference papers [31], [32]. In the first we dem-
onstrated that high detection performance could be
achieved by considering cross-correlation based template
matching in SEð2Þ, using only handcrafted templates and
with the application of ONH detection in retinal images
[31]. In the second we then showed on the same application
that better performance could be achieved by training tem-
plates using the optimization of energy functionals of the
form of (1), where then only a (left-invariant) smoothing
regularizer was considered [32]. In this article we provide a
complete framework for training of templates and matching
on SEð2Þ and contribute to literature by:

1) Extending the linear regression SEð2Þ framework
[32] to logistic regression, with clear benefits in pupil
detection using a single template (with an increase
of success rate from 76 to 94 percent).

2) Studying different types of regression priors, now
introducing also a ridge regression prior.

3) We show that the SEð2Þ smoothing prior corre-
sponds to time-integrated hypo-elliptic diffusion on
SEð2Þ, providing a Brownian motion interpretation.

4) We show the generic applicability of our method:
with the exact same settings of our algorithm we
obtain state-of-the-art results on three different
applications (ONH detection, cf. Ch. 4.2 and Table 2,
fovea detection, cf. Section 4.3 and Table 3, and pupil
detection, cf. Section 4.4 and Fig. 5).

5) Improving previous results on ONH detection
(reducing the number of failed detections to 3 out of
1,737 images).

6) Making our code publicly available at http://
erikbekkers.bitbucket.org/TMSE2.html.

Paper Outline. The remainder of this paper is organized as
follows. In Section 2 we provide the theory for template
matching and template construction in the R2-case. The the-
ory is then extended to the SEð2Þ-case in Section 3. Addition-
ally, in Section 3.6 we provide a probabilistic interpretation of
the proposed SEð2Þ prior, and relate it to Brownian motions
on SEð2Þ. In Section 4 we apply the method to retinal images
for ONH (Section 4.2) and fovea detection (Section 4.3), and to
regular camera images for pupil detection (Section 4.4).
Finally, we conclude the paper in Section 5.

2 TEMPLATE MATCHING & REGRESSION ON R2

2.1 Object Detection via Cross-Correlation

We are considering the problem of finding the location of
objects (with specific orientation patterns) in an image.
While in principle an image may contain multiple objects of
interest, the applications discussed in this paper only
require the detection of one object per image. We search for
the most likely location

x� ¼ argmax
x2R2

P ðxÞ; (3)

with P ðxÞ 2 R denoting the objective functional for finding
the object of interest at location x. We define P based on

inner products in a linear regression and logistic regression
context, where we respectively define P by

P ðxÞ ¼ PR2

lin ðxÞ :¼ ðT x t; fÞL2ðR2Þ; (4)

or

P ðxÞ ¼ PR2

log ðxÞ :¼ s ðT x t; fÞL2ðR2Þ

� �
;

with sðxÞ ¼ ex=ð1þ exÞ;
(5)

where T x denotes translation by x via

ðT xtÞð~xÞ ¼ tð~x� xÞ;

and where the L2ðR2Þ inner product is given by

ðt; fÞL2ðR2Þ :¼
Z
R2

tð~xÞfð~xÞd~x; (6)

with associated norm k � kL2ðR2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�; �ÞL2ðR2Þ

q
. Note that the

inner-product based potentials P ðxÞ can be efficiently evalu-
ated for each x using convolutions.

For a generalization of cross-correlation based template
matching to normalized cross correlation, we refer the reader
to the supplementary materials, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2017.2652452. For
speed considerations we will however not use normalized
cross correlation, but instead use a (fast) preprocessing step
to locally normalize the images (cf. Section 4.2.1).

2.2 Optimizing t Using Linear Regression

Our aim is to construct templates t that are “aligned” with
image patches that contain the object of interest, and which
are orthogonal to non-object patches. Hence, template t is
found via the minimization of the following energy

ElinðtÞ ¼
XN
i¼1

ðt; fiÞL2ðR2Þ � yi

� �2

þ �

Z
R2

krtð~xÞk2d~xþ m ktk2L2ðR2Þ;

(7)

with fi one of the N training patches extracted from an
image fx, and yi the corresponding label (yi ¼ 1 for objects
and yi ¼ 0 for non-objects). In (7), the data-term (first term)
aims for alignment of template t with object patches, in

which case the inner product ðt; fiÞL2ðR2Þ is ideally one, and

indeed aims orthogonality to non-object patches (in which

case the inner product is zero). The second term enforces

spatial smoothness of the template by penalizing its gradi-

ent, controlled by �. The third (ridge) term improves stabil-

ity by dampening the L2-norm of t, controlled by m.

2.3 Optimizing t Using Logistic Regression

In object detection we are essentially considering a two-
class classification problem: the object is either present or it
is not. In this respect, the quadratic loss term in (7) might
not be the best choice as it penalizes any deviation from the
desired response yi, regardless of whether or not the

response ðt; fiÞL2ðR2Þ is on the correct side of a decision

boundary. In other words, the aim is not necessarily to
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construct a template that best maps an image patch fi to a
response yi 2 f0; 1g, but rather the aim is to construct a tem-
plate that best makes the separation between object and non-
object patches. With this in mind we resort to the logistic
regression model, in which case we interpret the non-linear
objective functional given in (5) as a probability, and define

p1ðfi ; tÞ ¼ pðfi ; tÞ;
p0ðfi ; tÞ ¼ 1� pðfi ; tÞ;

with pðfi ; tÞ ¼ s ðt; fiÞL2ðR2Þ

� �
;

(8)

with p1ðfi; tÞ and p0ðfi; tÞ denoting respectively the probabil-
ities of a patch fi being an object or non-object patch. Our aim
is now to maximize the likelihood (of each patch fi having
maximum probability pyiðfi; tÞ for correct label yi)

‘ðtÞ ¼
YN
i¼1

pyiðfi; tÞ ¼
YN
i¼1

pðfi; tÞyið1� pðfi; tÞÞ1�yi : (9)

We maximize the log-likelood instead, which is given by

‘logðtÞ :¼ log ð ‘ðtÞ Þ

¼
XN
i¼1

log ð pðfi; tÞyið1� pðfi; tÞÞ1�yi Þ

¼
XN
i¼1

yiðt; fiÞL2ðR2Þ � log 1þ e
ðt;fiÞL2ðR2Þ

� �
:

(10)

Maximizing (10) is known as the problem of logistic regres-
sion. Similar to the linear regression case, we impose addi-
tional regularization and define the following regularized
logistic regression energy, which we aim to maximize

E‘
logðtÞ ¼ ‘logðtÞ � �

Z
R2

krtð~xÞk2d~x� m ktk2L2ðR2Þ: (11)

2.4 Template Optimization in a B-Spline Basis

Templates in a B-Spline Basis. In order to solve the optimiza-
tions (7) and (11), the template is described in a basis of
direct products of nth order B-splines Bn

tðx; yÞ ¼
XNk

k¼1

XNl

l¼1

ck;l B
n x

sk
� k

� �
Bn y

sl
� l

� �
; (12)

with BnðxÞ ¼ 1 �1
2;
1
2½ � �

ðnÞ 1 �1
2;
1
2½ �

� �
ðxÞ a nth order B-spline

obtained by n-fold convolution of the indicator function

1 �1
2;
1
2½ �, and ck;l the coefficients belonging to the shifted B-

splines. Here sk and sl scale the B-splines and typically

depend on the numberNk andNl of B-splines.
Linear Regression. By substitution of (12) in (7), the energy

functional can be expressed in matrix-vector form (see
Section 2 of the supplementary materials, available online)

EB
linðcÞ ¼ kSc� yk2 þ � cyRcþ m cyIc: (13)

Regarding our notations we note that for spatial template t
given by (12) we have ElinðtÞ ¼ EB

linðcÞ, and label ‘B’ indi-
cates finite expansion in the B-spline basis. The minimizer
of (13) is given by

ðSyS þ �Rþ mIÞc ¼ Syy; (14)

with y denoting the conjugate transpose, and I denoting the
identity matrix. Here S is a ½N �NkNl�matrix given by

S ¼ fðsi1;1; . . . ; si1;Nl
; si2;1; . . . ; s

i
2;Nl

; . . . ; . . . ; siNk;Nl
ÞgNi¼1;

sk;l ¼ ð Bn
sksl

� fi Þðk; lÞ;
(15)

with Bn
sksl

ðx; yÞ ¼ Bn x
sk

� �
Bn y

sl

� �
, for all (x,y) on the discrete

spatial grid on which the input image fD : f1; Nxg�
f1; Nyg ! R is defined. Here Nk and Nl denote the number

of splines in resp. x and y direction, and sk ¼ Nx
Nk

and sl ¼ Ny

Nl

are the corresponding resolution parameters. The ½NkNl � 1�
column vector c contains the B-spline coefficients, and the

½N � 1� column vector y contains the labels, stored in the

following form

c ¼ ðc1;1; . . . ; c1;Nl
; c2;1; . . . ; c2;Nl

; . . . ; . . . ; cNk;Nl
ÞT

y ¼ ðy1; y2; . . . ; yNÞT :
(16)

The ½NkNl �NkNl� regularization matrix R is given by

R ¼ Rsk
x 	Rsl

x þRsk
y 	Rsl

y ; (17)

where 	 denotes the Kronecker product, and with

Rsk
x ðk; k0Þ ¼ � 1

sk

@2B2nþ1

@x2
ðk0 � kÞ;

Rsl
x ðl; l0Þ ¼ slB

2nþ1ðl0 � lÞ;
Rsk

y ðk; k0Þ ¼ skB
2nþ1ðk0 � kÞ;

Rsl
y ðl; l0Þ ¼ � 1

sl

@2B2nþ1

@y2
ðl0 � lÞ;

(18)

with k; k0 ¼ 1; 2; . . . ; Nk and l; l0 ¼ 1; 2; . . . ; Nl. The coeffi-
cients c can then be computed by solving (14) directly, or
via linear system solvers such as conjugate gradient descent.
For a derivation of the regularization matrix R we refer to
supplementary materials, Section 2, available online.

Logistic Regression. The logistic regression log-likelihood
functional (11) can be expressed in matrix-vector notations
as follows:

E‘;B
log ðcÞ ¼ yySc� 1yN log ð1N þ expðScÞÞ

h i

� � cyRc� m cyIc;
(19)

where 1N ¼ f1; 1; . . . ; 1gT 2 RN�1, and where the exponen-
tial and logarithm are evaluated element-wise. We follow a
standard approach for the optimization of (19), see e.g., [11],
and find the minimizer by settings the derivative to c to zero

rcE
‘;B
log ðcÞ ¼ ST ðy� pÞ � � Rc� m Ic ¼ 0; (20)

with p ¼ ðp1; . . . ; pNÞT 2 RN�1, with pi ¼ sððScÞiÞ. To solve
(20), we use a Newton-Raphson optimization scheme. This
requires computation of the Hessian matrix, given by

HðE‘;B
log Þ ¼ �ðSTWS þ � Rþ m IÞ; (21)
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with diagonal matrixW ¼ diag
i2f1;...;Ng

pið1� piÞf g. The Newton-

Raphson update rule is then given by

cnew ¼ cold �HðE‘;D
log Þ

�1ðrcE
‘;D
log ðcÞÞ

¼ ðSTWS þ � Rþ m IÞ�1STWz; (22)

with z ¼ Scold þW�1ðy� pÞ, see e.g., [11, ch. 4.4]. Opti-
mal coefficients found at convergence are denoted with c�.

Summarizing, we obtain the solution of (3) by substitut-
ing the optimized B-spline coefficients c� into (12), and the
resulting t enters (4) or (5). The most likely object location x�

is then found via (3).

3 TEMPLATE MATCHING & REGRESSION ON SEð2Þ
This section starts with details on the representation of
image data in the form of orientation scores (Section 3.1).
Then, we repeat the sections from Section 2 in Sections 3.2,
3.3, 3.4, and 3.5, but now in the context of the extended
domain SEð2Þ.

3.1 Orientation Scores on SEð2Þ
Transformation. An orientation score, constructed from
image f : R2 ! R, is defined as a function Uf : R2ãS1 ! C

and depends on two variables (x; u), where x ¼ ðx; yÞ 2 R2

denotes position and u 2 ½0; 2pÞ denotes the orientation vari-
able. An orientation score Uf of image f can be constructed
by means of correlation with some anisotropic wavelet c via

Ufðx; uÞ ¼ ðWcfÞðx; uÞ ¼
Z
R2

cðR�1
u ð~x� xÞÞfð~xÞd~x; (23)

where c 2 L2ðR2Þ is the correlation kernel, aligned with the
x-axis, where Wc denotes the transformation between
image f and orientation score Uf , cuðxÞ ¼ cðR�1

u xÞ, and Ru

is a counter clockwise rotation over angle u.
In this work we choose cake wavelets [6], [7] for c. While

in general any kind of anisotropic wavelet could be used to
lift the image to SEð2Þ, cake wavelets ensure that no data-
evidence is lost during the transformation: By design the set
of all rotated wavelets uniformly cover the full Fourier
domain of disk-limited functions with zero mean, and have
thereby the advantage over other oriented wavelets (s.a.
Gabor wavelets for specific scales) that they capture all
scales and allow for a stable inverse transformation W�

c

from the score back to the image [6], [10].
Left-Invariant Derivatives. The domain of an orientation

score is essentially the classical euclidean motion group
SEð2Þ of planar translations and rotations, and is equipped
with group product g � g0 ¼ ðx; uÞ � ðx0; u0Þ ¼ ðRux

0 þ x; u þ u0Þ.
Here, we can recognize a curved geometry (cf. Fig. 2),
and it is therefore useful to work in rotating frame of
reference. As such, we use the left invariant derivative
frame [9], [10]

@� :¼ cos u @x þ sin u @y; @h :¼ � sin u @x þ cos u @y; @u
� �

: (24)

Using this derivative frame we will construct in Section 3.3
a regularization term in which we can control the amount of
(anisotropic) smoothness along line structures.

3.2 Object Detection via Cross-Correlation

As in Section 2, we search for the most likely object location
x� via (3), but now we define functional P respectively for
the linear and logistic regression case in SEð2Þ by1

P ðxÞ ¼ P
SEð2Þ
lin ðxÞ :¼ ðT x T; jUf jÞL2ðSEð2ÞÞ; or (25)

P ðxÞ ¼ P
SEð2Þ
log ðxÞ :¼ s ðT x T; jUf jÞL2ðSEð2ÞÞ

� �
; (26)

with ðT xT Þð~x;~uÞ ¼ T ð~x� x;~uÞ. The L2ðSEð2ÞÞ-inner product
is defined by

ðT; jUf jÞL2ðSEð2ÞÞ :¼
Z
R2

Z 2p

0

T ð~x;~uÞjUf jð~x;~uÞd~xd~u; (27)

with norm k � kL2ðSEð2ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�; �ÞL2ðSEð2ÞÞ

q
.

3.3 Optimizing T Using Linear Regression

Following the same reasoning as in Section 2.2 we search for
the template that minimizes

ElinðT Þ ¼
XN
i¼1

ðT; jUfi jÞL2ðSEð2ÞÞ � yi

� �2

þ �

Z
R2

Z 2p

0

krT ð~x;~uÞk2Dd~xd~u þ mkTk2L2ðSEð2ÞÞ;

(28)

with smoothing term

krT ðgÞk2D ¼ D��
@T

@�
ðgÞ

				
				
2

þDhh
@T

@h
ðgÞ

				
				
2

þDuu
@T

@u
ðgÞ

				
				
2

: (29)

Here, rT ¼ ð@T
@� ;

@T
@h
; @T
@u
ÞT denotes the left-invariant gradient.

Note that @� gives the spatial derivative in the direction
alignedwith the orientation score kernel used at layer u, recall
Fig. 2. The parameters D��, Dhh and Duu 
 0 are then used to
balance the regularization in the three directions. Similar to
this problem, first order Tikhonov-regularization on SEð2Þ is
related, via temporal Laplace transforms, to left–invariant dif-
fusions on the group SEð2Þ (Section 3.6), in which case D��,
Dhh andDuu denote the diffusion constants in �, h and u direc-
tion. Here we set D�� ¼ 1, Dhh ¼ 0, and thereby we get Lap-
lace transforms of hypo-elliptic diffusion processes [10], [33].
Parameter Duu can be used to tune between isotropic (large
Duu) and anisotropic (lowDuu) diffusion (see e.g., [32, Fig. 3]).
Note that anisotropic diffusion, via a low Duu, is preferred as
wewant tomaintain line structures in orientation scores.

3.4 Optimizing T Using Logistic Regression

Similarly to what is done in Section 2.3 we can change the
quadratic loss of (28) to a logistic loss, yielding the following
energy functional

ElogðT Þ ¼ L logðT Þ � �

Z
R2

Z 2p

0

krT ð~x;~uÞk2Dd~xd~u

�mkTk2L2ðSEð2ÞÞ;

(30)

1. Since both the inner product and the construction of orientation
scores Uf from images f are linear, template matching might as well be
performed directly on the 2D images (likewise (4) and (5)). Hence, here
we take the modulus of the score as a non-linear intermediate step [32].
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with log-likelihood (akin to (10) for the R2 case)

L logðT Þ ¼
XN
i¼1

yiðT; jUfi jÞL2ðSEð2ÞÞ

� log 1þ eðT;jUfi
jÞL2ðSEð2ÞÞ

� �
:

(31)

The optimization of (28) and (30) follows quite closely the
procedure as described in Section 2 for the 2D case. In fact,
when T is expanded in a B-spline basis, the exact same
matrix-vector formulation can be used.

3.5 Template Optimization in a B-Spline Basis

Templates in a B-Spline Basis. The template T is expanded in a
B-spline basis as follows:

T ðx; y; uÞ ¼
XNk

k¼1

XNl

l¼1

XNm

m¼1

ck;l;m�

Bn x

sk
� k

� �
Bn y

sl
� l

� �
Bn umod 2p

sm
�m

� �
;

(32)

with Nk, Nl and Nm the number of B-splines in respectively
the x, y and u direction, ck;l;m the corresponding basis coeffi-
cients, and with angular resolution parameter sm ¼ 2p=Nm.

Linear Regression. The shape of the minimizer of energy
functional ElinðT Þ in the SEð2Þ case is the same as for ElinðtÞ
in the R2 case, and is again of the form given in (13). How-
ever, now the definitions of S, R and c are different. Now, S
is a ½N �NkNlNm�matrix given by

S ¼ fðsi1;1;1; . . . ; si1;1;Nm
; . . . ; s1;Nl;Nm; . . . ; s

i
Nk;Nl;Nm

ÞgNi¼1;

sk;l;m ¼ ð Bn
skslsm

� Ufi Þðk; l;mÞ;
(33)

with Bn
skslsm

ðx; y; uÞ ¼ Bnð xskÞB
nðyslÞB

nðumod2p
sm

Þ. Vector c is a
½NkNlNm � 1� column vector containing the B-spline coeffi-
cients and is stored as follows:

c ¼ ðc1;1;1; . . . ; c1;1;Nm; . . . ; c1;Nl;Nm ; . . . ; cNk;Nl;NmÞ
T : (34)

The explicit expression and the derivation of ½NkNlNm�
NkNlNm� matrix R, which encodes the left invariant deriva-
tives, can be found in the supplementary materials Section 2,
available online.

Logistic Regression. Also for the logistic regression case
we optimize energy functional (30) in the same form as
(11) in the R2 case, by using the corresponding expres-
sions for S, R, and c in Eq. (19). These expressions can be
inserted in the functional (19) and again the same techni-
ques (as presented in Section 2.4) can be used to minimize
this cost on SEð2Þ.

3.6 Probabilistic Interpretation of the SEð2Þ
Smoothing Prior

In this section we only provide a brief introduction to the
probabilistic interpretation of the SEð2Þ smoothing prior,
and refer the interested reader to the supplementary materi-
als for full details, available online. Consider the classic
approach to noise suppression in images via diffusion regu-
larizations with PDE’s of the form

@
@t
u ¼ Du;

ujt¼0 ¼ u0;



(35)

where D denotes the Laplace operator. Solving (35) for any
diffusion time t > 0 gives a smoothed version of the input
u0. The time-resolvent process of the PDE is defined by the
Laplace transform with respect to t; time t is integrated out
using a memoryless negative exponential distribution
P ðT ¼ tÞ ¼ ae�at . Then, the time integrated solutions

tðxÞ ¼ a

Z 1

0

uðx; tÞe�atdt;

with decay parameter a, are in fact the solutions [34]

t ¼ argmin
t2L2ðR2Þ

kt� t0k2L2ðR2Þ þ �

Z
R2

krtð~xÞk2 d~x
� �

; (36)

with � ¼ a�1. Such time integrated diffusions (Eq. (36)) can
also be obtained by optimization of the linear regression
functionals given by Eqs. (7) and (25) for the R2 and SEð2Þ
case respectively.

In the supplementary materials, available online, we
establish this connection for the SEð2Þ case, and show how
the smoothing regularizer in (28) and (30) relates to Laplace
transforms of hypo-elliptic diffusions on the group SEð2Þ
[9], [10]. More precisely, we formulate a special case of our
problem (the single patch problem) which involves only a sin-
gle training sample Uf1 , and show in a formal theorem that
the solution is up to scalar multiplication the same as the
resolvent hypo-elliptic diffusion kernel. The underlying
probabilistic interpretation is that of Brownian motions on
SEð2Þ, where the resolvent hypo-elliptic diffusion kernel
gives a probability density of finding a random brush stroke
at location x with orientation u, given that a ‘drunkman’s
pencil’ starts at the origin at time zero.

In the supplementary materials, available online, we
demonstrate the high accuracy of our discrete numeric
regression method using B-spline expansions with near to
perfect comparisons to the continuous exact solutions of the
single patch problem. In fact, we have established an effi-
cient B-spline finite element implementation of hypo-elliptic
Brownian motions on SEð2Þ, in addition to other numerical
approaches in [9].

4 APPLICATIONS

Our applications of interest are in retinal image analysis. In
this section we establish and validate an algorithm pipeline
for the detection of the optic nerve head (Section 4.2)
and fovea (Section 4.3) in retinal images, and the pupil
(Section 4.4) in regular camera images. Before we proceed to
the application sections, we first describe the experimental
set-up (Section 4.1). All experiments discussed in this section
are reproducible; the data (with annotations) as well as the
full code (WolframMathematicanotebooks) used in the experi-
ments are made available at: http://erikbekkers.bitbucket.
org/TMSE2.html. In the upcoming sections we only report
the most relevant experimental results. More details on each
application (examples of training samples, implementation
details, a discussion on parameter settings, computation
times, and examples of successful/failed detections) are pro-
vided in the supplementarymaterials, available online.

4.1 The Experimental Set-Up

Templates. In our experiments we compare the performance
of different template types, which we label as follows:
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A: Templates obtained by taking the average of all positive
patches (yi ¼ 1) in the training set, then normalized to
zero mean and unit standard deviation.

B: Templates optimized without any regularization.
C: Templates optimized with an optimal m, and with � ¼ 0.
D: Templates optimized with an optimal � and with m ¼ 0.
E: Templates optimized with optimal m and �.

The trained templates (B-E) are obtained either via linear
or logistic regression in the R2 setting (see Sections 2.4 and
2.4), or in the SEð2Þ setting (see Sections 3.5 and 3.5). In
both the R2 and SEð2Þ case, linear regression based tem-
plates are indicated with subscript lin, and logistic regres-
sion based templates with log. Optimality of parameter
values is defined using generalized cross validation (GCV),
which we soon explain in this section. We generally found
that (via optimization using GCV) the optimal settings for
template E were m � 0:5m�, and � � 0:5��, with m� and ��

respectively the optimal parameters for template C andD.
Matching with Multiple Templates. When performing tem-

plate matching, we use Eqs. (4) and (25) for respectively the
R2 and SEð2Þ case for templates obtained via linear regres-
sion and for template A. For templates obtained via logistic
regression we use respectively Eqs. (5) and (26). When we
combine multiple templates we simply add the objective
functionals. E.g, when combining template Clin:R2 and
Dlog:SEð2Þ we solve the problem

x� ¼ argmax
x2R2

PR2

Clin
ðxÞ þ P

SEð2Þ
Dlog

ðxÞ;

where PR2

Clin
ðxÞ is the objective functional (see Eq. (4))

obtained with template Clin:R2 , and P
SEð2Þ
Dlog

ðxÞ (see Eq. (26)) is
obtained with templateDlog:SEð2Þ.

Rotation and Scale Invariance. The proposed template
matching scheme can adapted for rotation-scale invariant
matching, this is discussed in Section 5 of the supplemen-
tary materials, available online. For a generic object recogni-
tion task, however, global rotation or scale invariance are
not necessarily desired properties. Datasets often contain
objects in a human environment context, in which some
objects tend to appear in specific orientations (e.g., eye-
brows are often horizontal above the eye and vascular trees
in the retina depart the ONH typically along a vertical axis).
Discarding such knowledge by introducing rotation/scale
invariance is likely to have an adversary effect on the per-
formance, while increasing computational load. In Section 5
of the supplementary materials, available online, we tested
a rotation/scale invariant adaptation of our method and
show that in the three discussed applications this did
indeed not lead to improved results, but in fact worsened
the results slightly.

Automatic Parameter Selection via Generalized Cross Vali-
dation. An ideal template generalizes well to new data
samples, meaning that it has low prediction error on
independent data samples. One method to predict how
well the system generalizes to new data is via generalized
cross validation (GCV), which is essentially an approxi-
mation of leave-one-out cross validation [35]. The vector
containing all predictions is given by ~y ¼ Scm;�, in
which we can substitute the solution for cm;� (from
Eq. (14)) to obtain

~y ¼ Am;�y; with

Am;� ¼ SðSyS þ �Rþ mIÞ�1Sy;
(37)

where Am;� is the so-called smoother matrix. Then the gen-
eralized cross validation value [35] is defined as

GCV ðm; �Þ �
1
N kVðI �Am;�Þyk2

1� traceðAm;�Þ=N
 �2 : (38)

In the retinal imaging applications we set V ¼ I. In the

pupil detection application we set V ¼ diag
i2f1;...;Ng

fyig. As

such, we do not penalize errors on negative samples as here

the diversity of negative patches is too large for parameter

optimization via GCV. Parameter settings are considered
optimal when they minimize the GCV value.

In literature various extensions of GCV are proposed for
generalized linear models [36], [37], [38]. For logistic regres-
sion we use the approach by O’Sullivan et al. [36]: we iterate
the Newton-Raphson algorithm until convergence, then, at
the final iteration we compute the GCV value on the qua-
dratic approximation (Eq. (22)).

Success Rates. Performance of the templates is evaluated
using success rates. The success rate of a template is the per-
centage of images in which the target object was success-
fully localized. In both optic nerve head (Section 4.2) and
fovea (Section 4.3) detection experiments, a successful
detection is defined as such if the detected location x�

(Eq. (3)) lies within one optic disk radius distance to the
actual location. For pupil detection both the left and right
eye need to be detected and we therefore use the following
normalized error metric

e ¼ maxðdleft; drightÞ
w

; (39)

in which w is the (ground truth) distance between the left
and right eye, and dleft and dright are respectively the distan-
ces of detection locations to the left and right eye.

k-Fold Cross Validation. For correct unbiased evaluation,
none of the test images are used for training of the tem-
plates, nor are they used for parameter optimization. We
perform k-fold cross validation: The complete dataset is ran-
domly partitioned into k subsets. Training (patch extraction,
parameter optimization and template construction) is done
using the data from k� 1 subsets. Template matching is
then performed on the remaining subset. This is done for all
k configurations with k� 1 training subsets and one test
subset, allowing us to compute the average performance
(success rate) and standard deviation. We set k ¼ 5.

4.2 Optic Nerve Head Detection in Retinal Images

Our first application to retinal images is optic nerve head
detection. The ONH is one of the key anatomical landmarks
in the retina, and its location is often used as a reference
point to define regions of interest for the analysis of the ret-
ina. The detection hereof is therefore an essential step in
many automated retinal image analysis pipelines.

The ONH has two main characteristics: 1) it often
appears as a bright disk-like structure on color fundus (CF)
images (dark on SLO images), and 2) it is the place from
which blood vessels leave the retina. Traditionally, methods
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have mainly focused on the first characteristic [39], [40],
[41]. However, in case of bad contrast of the optic disk, or in
the presence of pathology (especially bright lesions, see e.g.,
Fig. 3), these methods typically fail. Most of the recent ONH
detection methods therefore also include the vessel patterns
in the analysis; either via explicit vessel segmentation [42],
[43], vessel density measures [44], [45], or via additional ori-
entation pattern matching steps [46]. In our method, both
the appearance and vessel characteristics are addressed in
an efficient integrated template matching approach, result-
ing in state-of-the-art performance both in terms of success
rates and computation time. We target the first characteris-
tic with template matching on R2. The second is targeted
with template matching on SEð2Þ.

4.2.1 Processing Pipeline & Data

Processing Pipeline. First, the images are rescaled to a working
resolution of 40mm/pix. In our experiments the average reso-
lution per dataset was determined using the average optic
disk diameter (which is on average 1:84 mm). The images are
normalized for contrast and illumination variations using
the method from [47]. Finally, in order to put more emphasis
on contextual/shape information, rather than pixel intensi-
ties, we apply a soft binarization to the locally normalized
(cf. Eq. (31) in Ch. 3 of the supplementarymaterials, available
online) image f via themapping erfð8fÞ.

For the orientation score transform we use Nu ¼ 12 uni-
formly sampled orientations from 0 to p and lift the image
using cake wavelets [6], [7]. For phase-invariant, nonlinear,
left-invariant [10], and contractive [48] processing on SE(2),
we work with the modulus of the complex valued orientation
scores rather thanwith the complex-valued scores themselves
(taking the modulus of quadrature filter responses is an effec-
tive technique for line detection, see e.g., Freeman et al. [49]).

Due to differences in image characteristics, training and
matching is done separately for the SLO and the color fun-
dus images. For SLO images we use the near infrared chan-
nel, for RGB fundus images we use the green channel.

Positive training samples fi are defined as Nx �Ny

patches, with Nx ¼ Ny ¼ 251, centered around true ONH
location in each image. For every image, a negative sample
is defined as an image patch centered around random loca-
tion in the image that does not lie within one optic disk
radius distance to the true ONH location. An exemplary
ONH patch is given in Fig. 1. For the B-spline expansion of
the templates we setNk ¼ Nl ¼ 51 and Nm ¼ 12.

Data. In our experiments we made use of both publicly
available data, and a private database. The private database
consists of 208 SLO images taken with an EasyScan fundus
camera (i-Optics B.V., the Netherlands) and 208 CF images
taken with a Topcon NW200 (Topcon Corp., Japan). Both
cameras were used to image both eyes of the same patient,
taking an ONH centered image, and a fovea centered image
per eye. The two sets of images are labeled as “ES” and “TC”
respectively. The following (widely used) public databases
are also used: MESSIDOR (http://messidor.crihan.fr/
index-en.php), DRIVE (http://www.isi.uu.nl/Research/
Databases/DRIVE) and STARE (http://www.ces.clemson.
edu/�ahoover/stare), consisting of 1,200, 40 and 81 images
respectively. For each image, the circumference of the ONH
was annotated, and parameterized by an ellipse. The annota-
tions for the MESSIDOR dataset were kindly made available
by the authors of [50] (http://www.uhu.es/retinopathy).
The ONH contour in the remaining images were manually
outlined by ourselves. The annotations are made available
on our website. The images in the databases contain a mix of
good quality healthy images, and challenging diabetic reti-
nopathy cases. Especially MESSIDOR and STARE contain
challenging images.

4.2.2 Results and Discussion

The Templates. The different templates for ONH detection are
visualized in Fig. 3. The SEð2Þ templates are visualized using
maximum intensity projections over u. In this figure we have
also shown template responses to an example image. Visu-
ally one can clearly recognize the typical disk shape in theR2

Fig. 3. Overview of trained templates for ONH detection, and their responses to a challenging retinal image. (a) The example input image with true
ONH location in blue. (b) TheR2-type templates (top row) and their responses to the input image (bottom row). (c) The maximum intensity projections
(over u) of the SEð2Þ-type templates (top row) and their responses to the input image (bottom row). Detected ONH locations are indicated with col-
ored circles (green = correct, red = incorrect).

BEKKERS ET AL.: TEMPLATE MATCHING VIA DENSITIES ON THE ROTO-TRANSLATION GROUP 459

http://messidor.crihan.fr/index-en.php
http://messidor.crihan.fr/index-en.php
http://www.isi.uu.nl/Research/Databases/DRIVE
http://www.isi.uu.nl/Research/Databases/DRIVE
http://www.ces.clemson.edu/~ahoover/stare
http://www.ces.clemson.edu/~ahoover/stare
http://www.ces.clemson.edu/~ahoover/stare
http://www.uhu.es/retinopathy


templates, whereas the SEð2Þ templates also seem to capture
the typical pattern of outward radiating blood vessels (com-
pare, e.g.,AR2 withASEð2Þ). Indeed, when applied to a retinal
image, where we took an example with an optic disk like
pathology, we see that the R2 templates respond well to the
disk shape, but also (more strongly) to the pathology. In con-
trast, the SEð2Þ templates respond mainly to vessel pattern
and ignore the pathology. We also see, as expected, a
smoothing effect of gradient based regularization (D and E)
in comparison to standard L2-norm regularization (C) and
no regularization (B). Finally, in comparison to linear regres-
sion templates, the logistic regression templates have a more
binary response due to the logistic sigmoidmapping.

Detection Results. Table 1 gives a breakdown of the quan-
titative results for the different databases used in the experi-
ments. The templates are grouped in R2 templates, SEð2Þ
templates, and combination of templates. Within these
groups, they are further divided in average, linear regres-
sion, and logistic regression templates. The best overall per-
formance within each group is highlighted in gray.

Overall, we see that the SEð2Þ templates out-perform
their R2 equivalents, and that combinations of the two types
of templates give best results. The two types are nicely

complementary to each other due to disk-like sensitivity of
the R2 templates and the vessel pattern sensitivity of the
SEð2Þ templates. If one of the two ONH characteristics is
less obvious (as is, e.g., for the disk-shape in Fig. 3), the
other can still be detected. Also, the failures of R2 templates
are mainly due to either distracting pathologies in the ret-
ina, or poor contrast of the optic disk. As reflected by the
increased performance of SEð2Þ templates over R2 tem-
plates, a more stable pattern seems to be the vessel pattern.

From Table 1 we also deduce that the individual per-
formances of the linear regression templates outperform the
logistic regression templates. Moreover, the average tem-
plates give best individual performance, which indicates
that with our effective template matching framework good
performance can already be achieved with basic templates.
However, we also see that low performing individual tem-
plates can prove useful when combining templates. In fact,
we see that combinations with all linear R2 templates
are highly ranked, and for the SEð2Þ templates it is mainly
the logistic regression templates. This can be explained by
the binary nature of the logistic templates: even when the
maximum response of the templates is at an incorrect loca-
tion, the difference with the correct location is often small.

TABLE 1
Average Template Matching Results ( Standard Deviation) for Optic Nerve Head Detection

in Five-Fold Cross Validation, Number of Failed Detections in Parentheses

Template

ID

ES (SLO)

208

TC

208

MESSIDOR

1,200

DRIVE

40

STARE

81

All Images

1,737

R2 templates

AR2 100.0%  0.00% (0) 99.49%  1.15% (1) 98.83% 0.56% (14) 96.36%  4.98% (2) 74.94% 9.42% (20) 97.87%  0.52% (37)

Blin:R2 99.09%  2.03% (2) 20.35%  5.99% (165) 9.67%  2.69% (1,084) 9.09%  12.86% (35) 3.56%  3.28% (78) 21.48%  2.16% (1,364)

Clin:R2 99.55%  1.02% (1) 99.57%  0.97% (1) 98.33% 0.41% (20) 94.55%  8.13% (3) 66.96% 16.65% (26) 97.07%  0.76% (51)

Dlin:R2 99.55%  1.02% (1) 99.57%  0.97% (1) 98.42% 0.45% (19) 96.36%  4.98% (2) 67.53% 17.80% (25) 97.24%  0.72% (48)

Elin:R2 99.55%  1.02% (1) 99.57%  0.97% (1) 98.33% 0.29% (20) 96.36%  4.98% (2) 66.90% 19.25% (26) 97.12%  0.84% (50)

Blog:R2 4.36%  3.21% (199) 4.59%  6.41% (199) 3.17%  0.86% (1,162) 1.82%  4.07% (39) 3.64%  8.13% (79) 3.40%  0.74% (1,678)

Clog:R2 68.69%  6.24% (65) 98.10%  2.00% (4) 97.75% 1.01% (27) 96.36%  4.98% (2) 66.94% 16.43% (28) 92.74%  0.65% (126)

Dlog:R2 41.87%  6.81% (121) 97.60%  1.82% (5) 96.00% 1.59% (48) 91.01%  8.46% (4) 65.30% 10.05% (28) 88.14%  1.21% (206)

Elog:R2 58.68%  4.48% (86) 97.59%  2.48% (5) 97.33% 0.96% (32) 93.51%  9.00% (3) 67.88% 12.61% (27) 91.20%  0.95% (153)

SEð2Þ templates

ASEð2Þ 98.57%  2.16% (3) 98.95%  2.35% (2) 99.58%  0.30% (5) 98.18%  4.07% (1) 94.22%  9.64% (5) 99.08%  0.75% (16)

Blin:SEð2Þ 99.06%  1.29% (2) 94.75%  2.48% (11) 93.74%  1.80% (75) 92.05%  7.95% (4) 85.63%  10.97% (12) 94.01%  0.89% (104)

Clin:SEð2Þ 99.06%  1.29% (2) 100.0%  0.00% (0) 100.0%  0.00% (0) 97.50%  5.59% (1) 94.00%  6.17% (5) 99.54%  0.39% (8)

Dlin:SEð2Þ 98.60%  2.05% (3) 100.0%  0.00% (0) 99.67%  0.46% (4) 100.0%  0.00% (0) 94.00%  6.17% (5) 99.31%  0.44% (12)

Elin:SEð2Þ 98.60%  2.05% (3) 100.0%  0.00% (0) 99.67%  0.46% (4) 97.50%  5.59% (1) 95.11%  5.48% (4) 99.31%  0.33% (12)

Blog:SEð2Þ 87.06%  4.20% (27) 77.68%  5.36% (46) 84.17%  2.25% (190) 80.19%  14.87% (9) 75.10%  9.81% (21) 83.14%  1.78% (293)

Clog:SEð2Þ 97.66%  2.79% (5) 99.52%  1.06% (1) 99.58%  0.42% (5) 98.18%  4.07% (1) 95.33%  7.30% (4) 99.08%  0.13% (16)

Dlog:SEð2Þ 95.22%  3.78% (10) 98.50%  2.27% (3) 99.25%  0.19% (9) 98.18%  4.07% (1) 95.33%  4.74% (4) 98.45%  0.38% (27)

Elog:SEð2Þ 97.14%  2.61% (6) 99.52%  1.06% (1) 99.50%  0.35% (6) 98.18%  4.07% (1) 94.22%  6.82% (5) 98.90%  0.48% (19)

Template combinations (sorted on performance)

AR2 þ Clog:SEð2Þ 100.0%  0.00% (0) 100.0%  0.00% (0) 99.92%  0.19% (1) 98.18%  4.07% (1) 98.67%  2.98% (1) 99.83%  0.26% (3)

AR2 þ Elog:SEð2Þ 100.0%  0.00% (0) 100.0%  0.00% (0) 99.83%  0.23% (2) 98.18%  4.07% (1) 98.67%  2.98% (1) 99.77%  0.24% (4)

AR2 þDlog:SEð2Þ 100.0%  0.00% (0) 100.0%  0.00% (0) 99.83%  0.23% (2) 98.18%  4.07% (1) 98.67%  2.98% (1) 99.77%  0.24% (4)

Clin:SEð2Þ þElog:SEð2Þ 99.55%  1.02% (1) 100.0%  0.00% (0) 99.83%  0.23% (2) 100.0%  0.00% (0) 96.44%  3.28% (3) 99.65%  0.13% (6)

Clin:SEð2Þ þ Clog:SEð2Þ 99.55%  1.02% (1) 100.0%  0.00% (0) 99.92%  0.19% (1) 98.18%  4.07% (1) 96.44%  3.28% (3) 99.65%  0.13% (6)

... ... ...
�ASEð2Þ þ Clin:SEð2Þ 99.55%  1.02% (1) 100.0%  0.00% (0) 100.0%  0.00% (0) 98.18%  4.07% (1) 94.22%  6.82% (5) 99.60%  0.26% (7)

... ... ...
yAR2 þASEð2Þ 100.0%  0.00% (0) 100.0%  0.00% (0) 99.66%  0.35% (4) 98.18%  4.07% (1) 88.42% 11.23% (9) 99.19%  0.63% (14)

... ... ...

�Best template combination that does not rely on logistic regression.
yBest template combination that does not rely on template optimization.
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The R2 template then adds to the sensitivity and precision.
The best results obtained with untrained templates was a
99.19 percent success rate (14 fails), and with the overall
best template combination we obtained a 99.83 percent
success rate (3 fails).

State of the Art. In Table 2 we compare our results on the
publicly available benchmark databases MESSIDOR, DRIVE
and STARE,with themost recentmethods for ONHdetection
(sorted fromoldest to newest from top to bottom). In this com-
parison, our best performing method (AR2 þ Clog:SEð2Þ) per-
forms better than or equally well as the best methods from
literature. We have also listed the computation times, and see
that our method is also ranked as one of the fastest methods
for ONH detection. The average computation time, using our
experimental implementation in Wolfram Mathematica 10.4,
was 0.5 seconds per image on a computer with an Intel Core
i703612QMCPU and 8 GBmemory. A full breakdown of tim-
ings of the processing pipeline is given in the supplementary
materials Section 4, available online.

4.3 Fovea Detection in Retinal Images

Our second application to retinal images is for the detection
of the fovea. The fovea is the location in the retina which is

responsible for sharp central vision. It is characterized by a
small depression in thickness of the retina, and on healthy
retinal images it often appears as a darkened area. Since the
foveal area is responsible for detailed vision, this area is
weighted most heavily in grading schemes that describe the
severity of a disease. Therefore, correct localization of the
fovea is essential in automatic grading systems [52].

Methods for the detection of the fovea heavily rely on
contextual features in the retina [28], [45], [53], [54], [55],
and take into account the prior knowledge that 1) the fovea
is located approximately 2.5 optic disk diameters lateral to
the ONH center, that 2) it lies within an avascular zone,
and that 3) it is surrounded by the main vessel arcades. All
of these methods restrict their search region for the fovea
location to a region relative to the (automatically detected)
ONH location. To the best of our knowledge, the proposed
detection pipeline is the first that is completely independent
of vessel segmentations and ONH detection. This is made
possible due to the fact that anatomical reference patterns,
in particular the vessel structures, are generically incorpo-
rated in the learned templates via data representations in
orientation scores.

4.3.1 Processing Pipeline & Data

Processing Pipeline. The proposed fovea detection pipeline is
the same as for ONH detection, however, now the positive
training samples fi are centered around the fovea.

Data. The proposed fovea detection method is validated
on our (annotated) databases “ES” and “TC”, each consist-
ing of 208 SLO and 208 color fundus images respectively (cf.
Section 4.2.1). We further test our method on the most used
publicly available benchmark dataset MESSIDOR (1,200
images). Success rates were computed based on the fovea
annotations kindly made available by the authors of [28].

4.3.2 Results and Discussion

The Templates. Akin to Fig. 3, in Fig. 4 the trained fovea tem-
plates and their responses to an input image are visualized.
The R2 templates seem to be more tuned towards the dark

TABLE 2
Comparison to State of the Art: Optic Nerve Head Detection

Success Rates, the Number of Fails (in Parentheses),
and Computation Times

Method MESSIDOR DRIVE STARE Time (s)

Lu [51] 99.8% (3) 98.8% (1) 5.0
Lu et al. [39] 97.5% (1) 96.3% (3) 40.0
Yu et al. [44] 99.1% (11) 4.7
Aquino et al. [40] 99.8% (14) 1.7
Giachetti et al. [45] 99.7% (4) 5.0
Ramakanth et al. [27] 99.4% (7) 100% (0) 93.83% (5) 0.2
Marin et al. [43] 99.8% (3) 5.4y

Dashtbozorg et al. [41] 99.8% (3) 10.6y

Proposed 99.9% (1) 97.8% (1) 98.8% (1) 0.5

yTimings include simultaneous disk segmentation.

Fig. 4. Overview of trained templates for fovea detection, and their responses to a challenging retinal image. (a) The example input image with true
fovea location in blue. (b) The R2-type templates (top row) and their responses to the input image (bottom row). (c) The maximum intensity projec-
tions (over u) of the SEð2Þ-type templates (top row) and their responses to the input image (bottom row). Detected fovea locations are indicated with
colored circles (green = correct, red = incorrect).
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(isotropic) blob like appearance of the fovea, whereas in the
SEð2Þ templates one can also recognize the pattern of ves-
sels surrounding the fovea (compare AR2 with ASEð2Þ). To
illustrate the difference between these type of templates, we
selected an image in which the fovea location is occluded
with bright lesions. In this case the method has to rely on
contextual information (e.g., the blood vessels). Indeed, we
see that the R2 templates fail due to the absence of a clear
foveal blob shape, and that the SEð2Þ templates correctly
identify the fovea location. The effect of regularization is
also clearly visible; no regularization (B) results in noisy
templates, standard L2 regularization (C) results in more
stable templates, and smoothed regularization (D and E)
results in smooth templates. In templates DSEð2Þ and ESEð2Þ
we see that more emphasis is put on line structures.

Detection Results. A full overview of individual and com-
bined template performance is discussed in the supplemen-
tary materials, available online, here we only provide a
summary. Again there is an improvement using SEð2Þ tem-
plates over R2 templates, although the difference is smaller
than in the ONH application. Apparently both the dark blob-
like appearance (R2 templates) and vessel patterns (SEð2Þ
templates) are equally reliable features of the fovea. A combi-
nation of templates leads to improved results andwe conclude
that the templates are again complementary to each other. Fur-
thermore, again linear regression performs better than logistic
regression. In fovea detection we do observe a large improve-
ment of template training over basic averaging: 1,529 of 1,616
(94.6 percent) successful detections with Clin:SEð2Þ versus 1,488
(92.1 percent) with ASEð2Þ. The best performing R2 template
was AR2 (65.6 percent), the best SEð2Þ template was Clin:SEð2Þ
(94.6 percent). The best combination of templates was
Clin:R2 þ Clog:SEð2Þ with 1,605 (99.3 percent) detections. When
using non-optimized templates 1,588 (98.3 percent) successful
detectionswere achieved (withAR2 þASEð2Þ).

State of the Art. In Table 3 we compared our results on the
publicly available benchmark database MESSIDOR with the
most recent methods for fovea detection (sorted from oldest
to newest from top to bottom). In this comparison, our best
performing method (Clin:R2 þ Clog:SEð2Þ) quite significantly
outperforms the best methods from literature. Furthermore,
our detection pipeline is also the most efficient one; the com-
putation time for fovea detection is the same as for ONH
detection, which is 0.5 seconds.

4.4 Pupil Detection

Our third application is that of pupil localization in regular
camera images, which is relevant in many applications as

they provide important visual cues for face detection, face
recognition, and understanding of facial expressions. In par-
ticular in gaze estimation the accurate localization of the
pupil is essential. Eye detection and tracking is however
challenging due to, amongst others: occlusion by the eyelids
and variability in size, shape, reflectivity or head pose.

Many pupil localization algorithms are designed to work
on periocular images, these are close-up views of the eyes.
Such images can be acquired by dedicated eye imaging
devices, or by means of cropping a full facial image (see
Fig. 5a). We will consider both the problem of detection
pupils in periocular images and the more difficult problem
of detection in full images.

We compare our method against the seven most recent
pupil detection methods from literature, for a full overview
see [56] and [57]. A method similar to our R2 approach in
the sense that it is also based on 2D linear filtering is the
method by Kroon et al. [58]. In their paper templates are
obtained via linear discriminant analysis of pupil images.
Asteriada et al. [59] detect the pupil by matching templates
using features that are based on distances to the nearest
strong (facial) edges in the image. Campadelli et al. [60] use
a supervised approach with a SVM classifier and Haar
wavelet features. The method by Timm et al. [61] is based
on searching for gradient fields with a circular symmetry.
Valenti et al. [62] use a similar approach but additionally
include information of isophote curvature, with supervised
refinement. Markus et al. [57] employ a supervised
approach using an ensemble of randomized regression
trees. Leo et al. [56] employ a completely unsupervised
approach similar to those in [61], [62], but additionally
include analysis of self-similarity.

A relevant remark is that all of the abovementionedmeth-
ods rely on prior face detection, and restrict their search
region to periocular images. Our method works completely
stand alone, and can be used on full images.

4.4.1 Processing Pipeline & Data

Processing Pipeline. Interestingly, we could again employ the
same processing pipeline (including local normalization via
[47]) which was used for ONH and fovea detection. In our
experiments we train templates for the left and right eye
separately.

Data. We validated our pupil detection approach on the
publicly available BioID database (http://www.bioid.com),
which is generally considered as one of the most challenging
and realistic databases for pupil detection in facial images.
The database consists of 1,521 frontal face grayscale images
with significant variation in illumination, scale and pose.

4.4.2 Results and Discussion

The Templates. Figs. 5b and 5c show respectively the trained
R2 and SEð2Þ templates for pupil detection of the right eye,
and their filtering response to the input image in Fig. 5a.
Here the trained R2 templates seemed to capture the pupil
as a small blob in the center of the template, but apart from
that no real structure can be observed. In the average tem-
plate we do however clearly see structure in the form of an
“average face”. The SEð2Þ templates reveal structures that
resemble the eyelids in nearly all templates. The linear
regression templates look sharper and seem to contain more

TABLE 3
Comparison to State of the Art: Fovea Detection Success Rates,
the Number of Fails (in Parentheses), and Computation Times

Method MESSIDOR Time (s)

Niemeijer et al. [28], [55] 97.9% (25) 7.6y

Yu et al. [54] 95.0%� (60) 3.9y

Gegundez-Arias et al. [28] 96.9% (37) 0.9
Giachetti et al. [45] 99.1% (11) 5.0y

Aquino [53] 98.2% (21) 10.9y

Proposed 99.7% (3) 0.5

�Success-criterion based on half optic radius.
yTiming includes ONH detection.
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detail than the average template, and the logistic regression
templates seem to take a good compromise between course
features and details.

Detection Results. We again refer to the supplementary
materials, available online, for a full benchmarking analysis,
in summary we observed the following. In terms of success
rates we see a similar pattern as with the ONH and fovea
application, however, here we see that the learned templates
(C;D andE) significantly outperform the average templates,
and that logistic regression leads to better templates than
using linear regression (94.0 percent success rate for Clog:SEð2Þ
versus 87.2 percent for Dlin:SEð2Þ). Overall, the SEð2Þ tem-
plates outperform the R2 templates, linear regression tem-
plates outperform the average template, and logistic
regression templates outperform linear regression templates.
The best R2 template was Dlin:R2 with 1,151 of 1,521 detec-
tions (75:7%), the best SEð2Þ template was Clog:SEð2Þ (94:0%).
The best combination of templates was Dlin:R2 with Elin:SEð2Þ
(95.6 percent). Without template training (i.e., using average
templatesA) the performance was only 68.2 percent. Success
rates using the best template combination are given in
Figs. 5d and 5e. The processing time for detecting both pupils
simultaneously was on average 0.4 seconds per image.

State of the Art. In Fig. 5d we compared our approach
to the two most recent pupil detection methods from

literature for several normalized error thresholds. Here
we see that with allowed errors of 0.1 (blue circles
Fig. 5a) and higher our method competes very well with
the state of the art, despite the fact that our generic
method is not adapted to the application. Further applica-
tion specific tuning and preprocessing could be applied
to improve precision (for e � 0:1), but this is beyond the
scope of this article. Moreover, we see that our method
can be used on full images instead of the periocular
images without much loss in performance. The fact that
our method is still very accurate on full image processing
shows that it can be used as a preprocessing step for
other applications.

If Fig. 5e we compared our approach to the seven most
recent methods from literature (sorted from old to new).
Here we see that the only method outperforming our
method, at standard accuracy requirements (e � 0:1), is the
method by Markus et al. [57]. Even when considering proc-
essing of the full images the only other method that outper-
forms ours is the method by Timm et al. [61], whose
performance is measured using periocular images.

4.5 General Observations

The application of our method to the three problems (ONH,
fovea and pupil detection) showed the following:

Fig. 5. Overview of trained templates for right-eye pupil detection, and their responses to a challenging image from the BioID database. (a) The
example input image with true pupil locations (blue circle with a radius that corresponds to a normalized error threshold of 0.1, see Eq. 39. The white
square indicates the periocular image region for the right eye. (b) The R2-type templates (top row) and their responses to the input image (bottom
row). (c) The maximum intensity projections (over u) of the SEð2Þ-type templates (top row) and their responses to the input image (bottom row).
Detected pupil locations are indicated with colored circles (green = correct, red = incorrect, based on a normalized error threshold of 0.1). (d) Accu-
racy curves generated by varying thresholds on the normalized error, in comparison with the two most recent methods from literature. (e) Accuracy
(at a normalized error threshold of 0.1) comparison with pupil detection methods from literature.
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1) State-of-the-art performance was achieved on three
different applications, using a single (generic) detec-
tion framework and without application specific
parameter adaptations.

2) Cross correlation based template matching via data
representations on SEð2Þ improves results over stan-
dard R2 filtering.

3) Trained templates, obtained using energy function-
als of the form (1), often perform better than basic
average templates. In particular in pupil detection
the optimization of templates proved to be essential.

4) Our newly introduced logistic regression approach
leads to improved results in pupil detection via sin-
gle templates. When combining templates we
observe only a small improvement of choosing logis-
tic regression (instead of linear regression) for the
application of ONH and fovea detection.

5) Regularization in both linear and logistic regression
is important. Here both ridge and smoothing regu-
larization priors have complementary benefits.

6) Our method does not rely on any other detection sys-
tems (such as ONH detection in the fovea applica-
tion, or face detection in the pupil detection), and
still performs well compared to methods that do.

7) Our method is fast and parallelizable as it is based on
inner products, as such it could be efficiently imple-
mented using convolutions.

5 CONCLUSION

In this paper we have presented an efficient cross-correlation
based template matching scheme for the detection of com-
bined orientation and blob patterns. Furthermore, we have
provided a generalized regression framework for the con-
struction of templates. Themethod relies on data representa-
tions in orientation scores, which are functions on the Lie
group SEð2Þ, and we have provided the tools for proper
smoothing priors via resolvent hypo-elliptic diffusion pro-
cesses on SEð2Þ (solving time-integrated hypo-elliptic
Brownian motions on SEð2Þ). The strength of the method
was demonstrated with two applications in retinal image
analysis (the detection of the optic nerve head, and the detec-
tion of the fovea) and additional experiments for pupil detec-
tion in regular camera images. In the retinal applications we
achieved state-of-the-art results with an average detection
rate of 99.83 percent on 1,737 images for ONH detection,
and 99.32 percent on 1,616 images for fovea detection. Also
on pupil detection we obtained state-of-the-art performance
with a 95.86 percent success rate on 1,521 images. We
showed that the success of themethod is due to the inclusion
of both intensity and orientation features in template match-
ing. The method is also computationally efficient as it is
entirely based on a sequence of convolutions (which can be
efficiently done using fast Fourier transforms). These convo-
lutions are parallelizable, which can further speed up our
already fast experimental Mathematica implementations that
are publicly available at http://erikbekkers.bitbucket.org/
TMSE2.html. In future work we plan to investigate the
applicability of smoothing on SEð2Þ in variational settings,
as this could also be used in (sparse) line enhancement and
segmentation problems.
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