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“The greatest danger for most of us is not that our aim is too high and we miss
it, but that it is too low and we reach it.”
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Summary

From understanding fundamental principles behind the world near us, to ad-
vancing state-of-the-art artificial intelligence to solve real-world problems, net-
works have shown to be a very powerful tool. For example, from a physics perspec-
tive, the amazing “structures of networks of networks” at micro and macro-scale,
from the vigintillions of interacting atoms in the observable universe to the billions
of persons who live on Earth, are studied using network science by the means of
complex networks. From a computer science perspective, artificial neural networks
(which are inspired to biological neural networks) represent nowadays the state-
of-the-art in object recognition problems, zero-sum game playing (e.g. Chess and
Go) and so on. Even when successful in real-world problems, it is intuitive that
network algorithms may be affected by various scalability issues. This thesis starts
from considering practical problems from emerging large-scale systems, which pose
hard scientific challenges. Then we extrapolate fundamental challenges, including:
(1) how to reduce computational complexity when assessing the importance of all
the elements of a complex network, i.e. nodes and links; (2) how to reduce the
excessive memory requirements in Artificial Neural Networks (ANNs) when they
perform on-line learning; and (3) how to reduce computational complexity when
training and exploiting artificial neural networks. All of these, with the hard con-
straint of not loosing accuracy when comparing with the traditional algorithms
for the specific problem. These challenges led us to make fundamental theoretical
contributions in the areas of artificial intelligence and network science, building
new bridges between them, as follows.

Polylogarithmic centrality computations in complex networks. To compute the
centrality of all elements (i.e. nodes and links) in a complex network is a difficult
problem due to: (1) the difficulty of unveiling the hidden relations between all
networks elements; (2) the computational time of state-of-the-art methods which
many times are not practical in real-world networks that have in excess of billions of
nodes. Herein, we introduce a new class of fully decentralized stochastic methods,
inspired by swarm intelligence and human behavior, to compute the centralities
of all nodes and links simultaneously in a complex network. The parallel time
complexity of this approach is on the polylogarithmic scale with respect to the
number of nodes in the network, while its accuracy is similar, and many times
even better, than state-of-the-art centrality metrics. To give an impression on
the magnitude of the computational problem at hand, if we were to consider one
trillion Internet of Things devices (each one running the proposed protocol, over an
unloaded network), and a transmission rate of 1 message per millisecond, then the
centrality of all network elements (devices and the relations between them) would
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SUMMARY

be computed in less than 22 seconds. As a comparison, by using other state-of-
the-art centrality metrics for the same problem, one would need (perhaps) months
to compute the results.

Generative Replay: towards memory free online learning with artificial neural
networks. Online learning with artificial neural networks is in many cases difficult
due to the need of storing and relearning large amount of previous experiences.
This limitation can be partially surpassed using a mechanism conceived in the early
1990s, named experience replay. Traditionally, experience replay can be applied
in all types of ANN models to all machine learning paradigms (i.e. unsupervised,
supervised, and reinforcement learning). Recently, it has contributed to improv-
ing the performance of deep reinforcement learning. Yet, its application to many
practical settings is still limited by the excessive memory requirements, necessary
to explicitly store previous observations. From a biological sense of memory, the
human brain does not store all observations explicitly; it dynamically generates
approximate reconstructions of those experiences for recall. Inspired by this biolog-
ical fact, to remedy the experience replay downside, we propose a novel approach,
dubbed generative replay. Generative replay uses the generative capabilities of
restricted Boltzmann machines to generate approximations of past experiences,
instead of recording them, as experience replay does. Thus, the restricted Boltz-
mann machine can be trained online, and does not require the system to store any
of the observed data points. Moreover, generative replay is a generic concept which
may be exploited in many combinations with ANNs to perform on-line learning.

Quadratic parameter reduction in artificial neural networks. Almost all of the
artificial neural networks used nowadays contain fully connected layers which have
a quadratic number of connections with respect to the number of neurons. This
type of fully connected layers contain the most of the neural network connections.
Because the weight corresponding to each connection has to be carefully optimized
during the learning process, this leads to increased computational requirements,
proportionally to the number of connections that need to be optimized. Inspired
by the fact that biological neural networks are sparse, and even more, they usually
have small-world and scale-free topologies, in this thesis we show that a strik-
ing amount of the connections from the fully connected layer in artificial neural
networks is actually redundant. Furthermore, we demonstrate that we can safely
decrease this number of connections from a quadratic relation to a linear relation,
with respect to the number of neurons, at no decrease in accuracy (many times,
even with an increase in accuracy). It is worth highlighting that the connections
reduction is done in the design phase of the neural network, before training. First,
we use a fixed scale-free connectivity pattern. Then, we take this idea further and,
starting from a fixed sparse connectivity pattern and then using an evolutionary
process during the training phase of the ANN model, we are capable to reach
even better performance in terms of accuracy. Our results show that it is possible
to replace the fully connected layers in artificial neural networks with quadrati-
cally faster counterparts in both phases, training and exploitation, and lead to the
possibility of building ANN models with at least billions of neurons.

Thus, by looking at the synergy between network science, artificial intelligence,
and biological neural networks, in this thesis we have been able to push the scal-
ability bounds of various networks algorithms much beyond their state-of-the-art.
Auxiliary, we have pioneered the bidirectional bridge between complex networks
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SUMMARY

and artificial intelligence. While most effort so far was put into trying to solve
complex networks problems using artificial intelligence, we showed for the first
time that artificial intelligence methods can be improved using complex networks
paradigms.
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CHAPTER 1

Introduction

Traditionally science is done using the reductionism paradigm. Artificial in-
telligence does not make an exception and it follows the same strategy. At the
same time, network science tries to study complex systems as a whole. This Ph.D.
thesis takes an alternative approach to the reductionism strategy, with the aim to
advance both fields, advocating that major breakthroughs can be made when these
two are combined.

1.1. Motivation

Most of the science done throughout the human evolution uses the traditional
reductionism paradigm, which attempts to explain the behavior of any type of sys-
tem by zooming in on its constituent elements [11] and by summing their behavior.
Consequently, nowadays we have an abundance of specializations and specialized
people but few scientist study complex systems, which are in fact all around us. In
my work, I do not claim reductionism to be wrong. On the contrary, it has been
the basis of scientific advances throughout centuries of methodic investigation.
Yet, my ambition is to understand the hidden properties that underlie complexity.

The limitations of reductionism were hinted millenniums ago by the ancient
Greeks, Aristotle wrote in Metaphysics that “The whole is more than the sum of
its parts”. At a first thought, the whole should be the sum of its parts. Still, some
times we do not know all the parts and, in many cases, it may even be difficult
to identify all those parts, let alone their mutual interdependencies. For instance,
think about the gravitational waves. Gravity was first postulated by Isaac New-
ton in the 17th century. Yet, the gravitational waves could have not considered
in his theory, since that would have assumed that physical interactions propagate
at infinite speed. Still, it was not until more than two centuries later, that Al-
bert Einstein has intuited and predicted the existence of gravitational waves [56];
and it took about another century of great technological advancements before the
existence of gravitational waves was proven [3].

To overcome the limitations of reductionism, the ‘complex systems’ paradigm
aims to study the systems and their mutual interactions as a whole, which requires
a multidisciplinary research, as depicted in Figure 1.1. This approach was first
pioneered by the Santa Fe institute [112].

A complete theory of complexity is very hard to devise, but Network Science
(NS) offers many of the required mathematical tools (e.g. complex networks) neces-
sary to overpass reductionism [17]. Complex networks are graphs with non-trivial
topological features, which are typical in many real world systems from a variety

This chapter is partly based on: D.C. Mocanu: On the synergy of network science and
artificial intelligence, International Joint Conference on Artificial Intelligence (IJCAI), 2016,

New York, USA.
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Complex Systems 

… 

… 

… 

… 

… 

… … 

… 

… 

Reductionism 

“The whole is more than the sum of its 
parts”, Aristotle, Metaphysics, ≈350 BC 

Figure 1.1 – Illustration of the reductionism and complex systems paradigms. It
may be observed that while in the reductionism paradigm the main idea is to zoom in
onto the various components of a system, the main emphasis in the complex systems
paradigm is on unveiling connections among the various components and grasping
the overall system behavior.

of research fields (e.g. neuroscience, astrophysics, biology, epidemiology, social and
communication networks) [157].

At the same time, while the NS community has been trying to use Artificial
Intelligence (AI) techniques to solve various NS open questions, such as in [169],
the AI community has largely ignored the latest findings in network science. We
argue that AI tends to follow the principles of reductionism and that new break-
throughs will need to go beyond it. In this thesis, we explore the potential arising
from combining NS with AI, with emphasis on artificial neural networks [110] and
evolutionary computation [62]). We set out with two long term research goals:
(1) to better understand the fundamental principles behind the world near us,
which may be modeled in amazing structures of networks of networks at micro
and macro-scale, from the vigintillions of interacting atoms in the observable uni-
verse to the billions of persons in a social network; and (2) to advance the artificial
intelligence field. These will ultimately help improving the general well-being of
the human society, which is increasingly dependent upon intelligent software in
complex systems of systems.

The remainder of this chapter is organized as follows. Sections 1.2 and 1.3
present background knowledge on network science and artificial intelligence, re-
spectively, for the benefit of the non-specialist reader. Section 1.4 briefly intro-
duces some of our novel approaches to solve real-world problems using network
science and artificial intelligence. Section 1.5 discusses some common issues in
state-of-the-art networks algorithms, and details the research questions addressed
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Graph (a mathematical representation of a network) 
Usual notations : G=(N,L)=(V,E) 

Figure 1.2 – Schematic representation of a complex network.

in this thesis. Section 1.6 presents an outline of this thesis contributions. Finally,
Section 1.7 provides a guideline to the reader.

1.2. Network science

Network science is the academic field which studies complex networks [157,
192]. Any real-world network formalized from a graph theoretical perspective is a
complex network. For example, such networks can be found in many domains from
technical to social ones, such as telecommunication networks [8,134], transporta-
tion networks [46], biology [90,224] (e.g. biological neural networks, protein inter-
actions), neuroscience [60,168,191], astrophysics [85], artificial intelligence [144]
(e.g. artificial neural networks), semantic networks, social networks [63, 87], to
mention but a few. In the study of complex networks, network science uses knowl-
edge from many academic fields, such as mathematics (e.g. graph theory), physics
(e.g. statistical mechanics), statistics (e.g. inferential modeling), computer science
(e.g. data visualization, data mining), sociology (e.g. social structure) and so on.

Formally, a complex network is a graph with non-trivial properties, e.g. scale-
free [218] or small-world [19]. It is composed by actors and the interactions
between these actors. In general, the actors are named nodes (or vertices), and the
interactions between them are named links (or edges). A schematic representation
of a complex network is depicted in Figure 1.2. The usual notation for the graph
is G = (N,L) = (V,E), where N (or V ) represents the set of nodes, and L
(or E) represents the set of links. There are many open research questions in
network science some of them coming from graph theory, others coming from the
real-world challenges associated with the complex networks, such as community
detection [61], controlling networks dynamics [44], finding the most influential
nodes in a network using centrality metrics [12], spreading of the information
through a network [120], and so on. What makes it difficult for the state-of-the-
art algorithms to cope with these challenges is the size of complex networks, which
may span from small networks with tens on nodes (e.g. a small dolphin community
from New Zealand [125]), to medium size networks (e.g. Facebook users), up to
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extremely large scales (e.g. the vigintillions of interacting atoms in the observable
universe).

A complete review of the fundamental knowledge from network science and its
open questions is beyond the goals of this thesis. The interested reader is referred
to the specialist literature for a deeper understanding, such as [18,157]. Further
on, the network science background necessary to understand the research done in
this thesis is introduced gradually, where it is needed, in each chapter.

1.3. Artificial intelligence

Artificial intelligence is a subfield of computer science, which uses the concept
of software intelligent agents to incorporate intelligence into machines [88]. The
main research directions addressed by artificial intelligence are, mainly, knowledge
representation, perception, learning, reasoning, and planning. These are, in fact,
inspired to corresponding human cognitive functions. In this thesis, we address in
more details, two subfields of artificial intelligence, namely machine learning and
evolutionary computations.

Machine learning studies how to get machines to learn how to function di-
rectly from the data, rather than explicitly programming each individual instruc-
tions [178]. There are three main paradigms in machine learning:

(1) Supervised learning [78] - aims to build a general function (or model)
based on data input-output pairs. Specifically, the function learns how
to estimate any output based on its corresponding input. This type of
learning assumes the existence of labeled data, where each data point (the
input) has associated a label (the output) generated by expert knowledge.
There are two main types of problems within the supervised learning
paradigm, i.e. classification (where the output has discrete values), and
regression (where the output has continuous values).

(2) Unsupervised learning [78] - aims to build functions (or models) which
are capable by themselves to extract useful information from the input
data, without having its corresponding output. Example of unsupervised
learning problems are: clustering, density estimation, and dimensionality
reduction.

(3) Reinforcement learning [193] - is a special type of learning inspired by
psychology. Herein, an agent interacts dynamically with an environment
having the goal of learning by itself how to take the optimal action in
a specific state (situation) without knowing the ground truth. To learn
the optimal choices, as the agent navigates through the environment it
is provided with positive or negative feedback (also named reward) as a
result of its actions.

Each learning paradigm can perform its own specific models. Among these, in
the scope of this thesis, we explore Artificial Neural Networks (ANNs). ANNs are
mathematical models, inspired by biological neural networks, which can be used in
tandem with all three machine learning paradigms. ANNs are extremely versatile
and powerful, as demonstrated by the remarkable success registered recently, for
instance by Deep Artificial Neural Networks (in short, deep learning), which are
the last generation of ANNs [110]. These have been demonstrated to be able to
perform all three machine learning paradigms in many domains, from computer
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vision [110] to game playing [133, 183]. Briefly, just as their biological coun-
terparts, ANNs comprise neurons and weighted connections between those neu-
rons. Depending upon their purposes and architectures, several models of ANNs
have been introduced, including restricted Boltzmann machines [187], multi layer
perceptron [173], convolutional neural networks [111], and recurrent neural net-
works [74], to mention just a few. In general, working with ANN models involves
two phases: (1) training (or learning), in which the weighted connections between
neurons are optimized using various algorithms (e.g. backpropagation combined
with stochastic gradient descent [27,174] or contrastive divergence [81]) to min-
imize a given loss function; and (2) exploitation, in which the optimized ANN
model is used to fulfill its purpose.

Evolutionary computation [55] represents a class of algorithms inspired by the
principles of biological evolution that tries to solve global optimization problems.
In general, evolutionary algorithms have a metaheuristic or stochastic behavior. In
a very broad sense, the basic idea is that, starting from a random generated initial
population (set) of possible solutions, this population is refined during generations,
mimicking the natural processes of evolution. At each generation the most unfitted
solutions for the goal of the algorithm are removed, while new solutions (which can
either derive from a measure of fitness or be picked randomly), are iteratively added
to the general population. This procedure continues until the population contains
acceptable solutions, aiming towards global optimum convergence. There are many
types of evolutionary computing algorithms, mainly categorized by their biological
counterparts, including genetic algorithms [132] (inspired by natural evolution),
swarm intelligence [22] (inspired by the collective behavior of organisms living in
swarms), ant colony optimization [42] (inspired by ants behavior), and so on.

A full review of artificial intelligence goals and methods is much beyond the
goals of this thesis. The interested reader is referred to specialized books for
more information [21, 78, 193]. For the benefit of the non-specialist reader, the
background knowledge required in this thesis is outlined where needed.

1.4. Real-world challenges

In this section, we consider practical, real-world problems, which pose hard
scientific challenges, explaining how we have addressed them - either through novel
solutions or through novel application of existing methods.

1.4.1. Wireless sensor networks

With the emergence of sensors with wireless capability, most of current sensor
networks consist of a collection of wirelessly interconnected units, each of them
with embedded sensing, computing and communication capabilities [115]. Such
sensor networks are referred to as Wireless Sensor Networks (WSNs) [102]. Due to
their versatility, WSNs have been employed in a wide range of sensing and control
applications [49], such as smart traffic control, environmental monitoring, security
surveillance, and health-care [64]. As a consequence of cost, energy and spectrum
constraints [100] sensors are prone to failure (hardware and transmission), as well
as to data corruption [164]. A typical approach to tackle these issues is through
smart autonomic methods [26,65,118,170,214].

5



CHAPTER 1. INTRODUCTION

1.4.1.1. Redundancy reduction in WSN. The dense, unpredictable deployment
of sensors leads to substantial data and networks [121]. In these situations, iden-
tifying the redundant sources and connections can save considerable resources
(energy, communication spectrum, data processing and storage). In turn, this can
extend the network life-time and scale [69, 86, 119]. Redundancy reduction re-
quires that the network stays fully connected to let the flow of information pass
between any communication points.

In the scope of these arguments, in [148], we take advantage of the latest
theoretical advances in complex networks, introducing a method that simplifies
network topology based on centralized centrality metrics computations [157]. We
can detect the redundant network elements (both nodes and links), which allows
switching them off safely, that is without loss in connectivity. The experiments
performed on a wide variety of network topologies with different sizes (e.g. number
of nodes and links), using different centralized centrality metrics, validate our
approach and recommend it as a solution for the automatic control of WSNs
topologies during the exploitation phase of such networks to optimize, for instance,
their life time.

1.4.1.2. Predictive power control in WSN. Besides that, prompt actions are
necessary to achieve dependable communications and meet quality of service re-
quirements in WSNs. To this end, the reactive algorithms used in the literature
and standards, both centralized and distributed ones, are too slow and prone to
cascading failures, instability and sub-optimality. In [38] we explore the predic-
tive power of machine learning to better exploit the local information available
in the WSN nodes and make sense of global trends. We aimed at predicting the
configuration values that lead to network stability. We adopted Q-learning, a rein-
forcement learning algorithm, to train WSNs to proactively start adapting in face
of changing network conditions, acting on the available transmission power levels.
The results demonstrate that smart nodes lead to better network performance
with the aid of simple reinforcement learning.

1.4.2. Computer security

Computer security [67] handles the protection of IT systems from malicious
attacks. The aim is to avoid the stealing or damaging of their hardware, software,
and of the information which they contain, likewise the misdirection of the services
which they provide. In this area we have only just started to explore the benefits
of artificial intelligence, as outlined below.

1.4.2.1. ABAC Policy Mining from Logs. Different languages may be used
to specify security policies through a number of constructs. These are based on
an underlying access control model that captures the security requirements. In
other words, the selection of the policy language, and thus the model, determine
expressiveness in encoding rules and simplicity in administration. Among the
various models, Attribute-Based Access Control (ABAC) [43] has been shown to
provide very expressive constructs; various tools have been developed to assist
policy specifications with them [202,203]. In order to assist policy administrators
when specifying ABAC policies, a particularly useful approach is to infer access
control rules from existing logs.
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In [146] we started exploring how to merge traditional AI approaches (i.e.
inductive logic programming [226]) with deep learning techniques to infer access
control rules. We take advantage of the excellent generalization capabilities of
restricted Boltzmann machines [187] as density estimators to propose a technique
that can produce a set of suitable candidate rules in a binary vector format, based
on the knowledge extracted by RBMs from the processed logs. Further on, the can-
didate binary rules may be translated to the inductive logic programming format
to take advantage of a human readable format.

1.4.3. Transfer learning

Reinforcement Learning (RL) methods often learn new problems from scratch.
In complex domains, this process of tabula rasa learning can be prohibitively
expensive, requiring extensive interaction with the environment. Transfer learn-
ing [198] provides a possible solution to this problem by enabling reinforcement
learning agents to reuse knowledge from previously learned source tasks when
learning a new target task.

1.4.3.1. What to transfer. In situations where the source tasks are chosen in-
correctly, inappropriate source knowledge can interfere with learning through the
phenomenon of negative transfer. To avoid this drawback, transfer learning agents
must be able to automatically identify source tasks that are most similar to and
helpful for learning a target task. In RL, where tasks are represented by Markov
Decision Processes (MDPs), agents could use an MDP similarity measure to assess
the relatedness of each potential source task to the given target. This measure
should: (1) quantify the similarity between a source and a target task, (2) be ca-
pable of predicting the probability of success after transfer, and (3) be estimated
independently from sampled data.

In [10], we formulate for the first time a mathematical framework to achieve
these goals successfully, proposing a novel similarity measure, based on restricted
Boltzmann machines, dubbed RBDist. This measure works for MDPs within a
domain and it can be used to predict the performance of transfer learning. More-
over, this approach does not require a model of the MDP, but can estimate this
measure from samples gathered through agents interaction with the environment.
We demonstrate that the proposed measure is capable of capturing and clustering
dynamical similarities between MDPs with multiple differences, including different
reward functions and transition probabilities. Our experiments also illustrate that
the initial performance improvement on a target task from transfer is correlated
with the proposed measure - as the measured similarity between MDPs increase,
the initial performance improvement on the target task similarly increases.

1.4.3.2. How to transfer. In transfer learning for RL, the source task and tar-
get task may differ in their formulations. In particular, when these have different
state and/or action spaces, an inter-task mapping [199], which describes the re-
lationship between the two tasks is needed. In [28] we introduce an autonomous
framework for learning inter-task mappings based on three-way restricted Boltz-
mann machines, dubbed FTrRBM. The results demonstrate that FTrRBMs are
capable of: (1) automatically learning an inter-task mapping between different
MDPs, (2) transferring informative samples that reduce the computational com-
plexity of a sample-based RL algorithm, and (3) transferring informative instances
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which reduce the time needed for a sample-based RL algorithm to converge to a
near-optimal behavior.

1.4.4. Computer vision

Computer vision [16] is a broad field which aims at making computers that
extract high-level concepts from images or videos. There are many open research
questions in this area, and in our work we have targeted a few of them, as follows.

1.4.4.1. Human activity recognition. Accurate activity recognition is needed
in many domains [36,228], such as robotic support for elderly people [122,127].
This is a very difficult problem due to the continuous nature of typical activity
scenarios, which makes the task highly similar to time series prediction. In [141]
we propose a novel machine learning model, namely Factored Four Way Condi-
tional Restricted Boltzmann Machine (FFW-CRBM) capable of both classification
and prediction of human activity in one unified framework. An emergent feature
of FFW-CRBM, so called self auto evaluation of the classification performance,
may be very useful in the context of robotic companions. It allows the machine
to autonomously recognize when an activity is undetected, triggering a retraining
procedure. Due to the complexity of the proposed machine, the standard train-
ing method for DL models is unsuited. As a second contribution, in the same
paper, we introduce Sequential Markov chain Contrastive Divergence (SMcCD),
an adaptation of Contrastive Divergence (CD) [81]. We illustrate the efficacy and
effectiveness of the model by presenting results performed on two sets of experi-
ments using real world data originating from: (1) our previous developed smart
companion robotic platform [123], and (2) a benchmark database for activity
recognition [161].

1.4.4.2. 3D trajectories estimation. Estimating and predicting trajectories in
three-dimensional spaces based on two-dimensional projections available from one
camera source is an open problem with wide-ranging applicability including en-
tertainment [182], medicine [171], biology [126], physics [89], etc. Unfortunately,
solving this problem is exceptionally difficult due to a variety of challenges, such
as the variability of states of the trajectories, partial occlusions due to self articu-
lation and layering of objects in the scene, and the loss of 3D information resulting
from observing trajectories through 2D planar image projections.

In [142] we, first, propose the use of FFW-CRBMs to estimate 3D trajectories
from their 2D projections, while at the same time being also capable to classify
those trajectories. To achieve a better performance, we then propose an exten-
sion of FFW-CRBMs, dubbed Disjunctive FFW-CRBMs (DFFW-CRBMs). Our
extension refines the factoring of the four-way weight tensor from FFW-CRBMs.
This yields the sufficiency of a reduced training dataset for DFFW-CRBMs to
reach similar classification performance to state-of-the-art methods while at least
doubling the performance on real-valued predictions. Specifically, DFFW-CRBMs
require limited labeled data (less than 10 % of the overall dataset) for: (1) si-
multaneously classifying and predicting three-dimensional trajectories based on
their two-dimensional projections, and (2) accurately estimating three-dimensional
postures up to an arbitrary number of time-steps in the future. We validate our
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approach in two sets of experiments: (1) predicting and classifying simulated three-
dimensional ball trajectories (based on a real-world physics simulator) thrown from
different initial spins, and (2) human activity recognition.

1.4.5. Quality of experience

Quality of Experience (QoE) [131,222] aims at assessing the quality perceived
by a user, while experiencing a service (e.g. video streaming services, web browsing,
phone or video calls, server based enterprise software at the work environment and
so on). Even though QoE is human centric, in general, due to the exponential
increase of services, it is not practical to employ humans to assess the services
quality. Thus, objective computational methods capable to assess the quality of
those services such as humans do are needed [118].

1.4.5.1. Objective image quality assessment. Objectively measuring the qual-
ity degradation of images yielded by various impairments of the communication
networks during a service is a difficult task, as there is often no original images
to be used for direct comparisons. To address this problem, in [136] we proposed
a novel reduced-reference QoE method, dubbed Restricted Boltzmann Machine
Similarity Measure (RBMSim), that measures the quality degradation of 2D im-
ages, without requiring the original images for comparisons. Moreover, in [137] we
take this work further, proposing a new reduced-reference QoE method to mea-
sure the quality degradation of 3D images using factored third order restricted
Boltzmann machines [130], dubbed Q3D-RBM. What is interesting is that both,
RBMSim and Q3D-RBM, perform just unsupervised learning taking advantage of
RBM performance as density estimator. So, they do not need the ground truth,
this being an important advantage for quality of experience methods. The experi-
ments performed on benchmark datasets demonstrate that both methods achieve
a similar performance to full reference objective metrics when benchmarked with
subjective studies.

1.4.5.2. Objective video quality assessment. For obvious reasons, video qual-
ity assessment, is more difficult and more important than image quality assess-
ment [138, 213]. In [145, 208–210, 212] we take further our work on images,
proposing new no-reference and reduced-reference QoE methods to assess the
quality degradation suffered by videos during streaming services. We use vari-
ous models of artificial neural networks, from restricted Boltzmann machines to
deep neural networks, using both unsupervised and supervised learning. The re-
sults show that, in general, the variants of artificial neural networks used achieve
very good performance, comparable with state-of-the-art objective full-reference
metrics for video quality assessment, while not requiring the original videos for
comparisons. An example on how to use artificial neural networks to perform
objective video quality assessment is described in Appendix A.

1.4.5.3. Objective quality of experience in enterprise and working environ-
ments. While most of the QoE studies aim at understanding the QoE impact
of waiting times in controlled laboratories or in the user’s domestic environment,
the enterprise and working environments have been largely ignored. This happens
due to the IT environment, which is highly complex and hard to analyze, and
incurs high costs. In [23], by using a non-intrusive application monitoring of re-
sponse times and subjective user ratings on the perceived application, we employ
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deep neural networks and other machine learning models to estimate the users
QoE. The results show that we can successfully build machine learning models to
estimate the QoE of specific users, but do not allow us to derive a generic model
for all users.

1.4.6. Smart grid

The smart grid is a broad intensive research area nowadays, which studies the
future of the actual power grid, incorporating knowledge from computer science,
information and communication technologies, and machine learning [152, 153].
The ultimate goal is to improve quality of life, while taking into consideration
several technological, ecological, and social constraints.

1.4.6.1. Real-time energy disaggregation in buildings. Within the smart grid
context, the identification and prediction of building energy flexibility is a difficult
open question [151], paving the way for new optimized behaviors from the demand
side. The latest smart meters developments help us to monitor in real-time the
power consumption level of the home appliances, with the aim of obtaining an
accurate energy disaggregation, as explained next. Due to practical constraints, it
is unrealistic to expect that all home appliances are equipped with smart meters.
In [135] we propose a hybrid approach, which combines sparse smart meters with
artificial neural network methods. Using energy-consumption data collected from
a number of buildings, we created a database on which we trained two deep learn-
ing models, i.e. Factored Four-Way Conditional Restricted Boltzmann Machines
(FFW-CRBMs) [141] and Disjunctive FFW-CRBM [142]. The aim was to show
how these methods could be used to accurately predict and identify the energy
flexibility of buildings unequipped with smart meters, starting from their aggre-
gated energy values. The experiments performed on a real database, namely the
Reference Energy Disaggregation Dataset [98], validated the proposed method,
showing that Disjunctive FFW-CRBM outperformed FFW-CRBMs on the pre-
diction problem; whereas both were comparable on the classification task.

1.4.6.2. On-line building energy optimization. An optimal resource allocation
of end-users patterns based on daily smart electrical devices profiles may be used to
facilitate the demand response, while taking into consideration the future energy
patterns and the supply of variable sources, such as solar and wind. In [150]
we explore for the first time in the smart grid context the benefits of using deep
reinforcement learning, a hybrid type of methods which combines reinforcement
learning with deep learning, to perform on-line optimization of scheduling for
building energy services. Specifically, we extend two methods, Deep Q-learning
and Deep Policy Gradient, to perform optimally multiple actions in the same
time. The proposed approach was validated on the large-scale Pecan Street Inc.
database. The results show that these on-line energy scheduling strategies could
be used to provide real-time feedback to consumers to encourage a more efficient
use of electricity.

1.5. Research questions and objective

Following the study of a range of real-world problems, as outlined in Sec-
tion 1.4, we realized the enormous potential of both network science and machine
learning. In all cases, scalability was the key limiting factors. With the aim of
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increasing the scalability bounds of various networks algorithms, we extrapolate
a number of fundamental challenges, presented below as the theoretical research
questions of this doctoral thesis:

(1) How to reduce the computational complexity when assessing the impor-
tance of all the elements of a complex network, i.e. nodes and links.

(2) How to reduce the excessive memory requirements in artificial neural
networks when they perform on-line learning.

(3) How to reduce the computational complexity when training and exploit-
ing artificial neural networks.

In this thesis, while trying to answer to these three research questions, we
follow one single common objective:

• Any new method, which is to fulfill one of the three research questions
above, will have to be comparably as accurate as its state-of-the-art coun-
terparts.

1.6. Thesis contributions and outline

Overall, we have discovered that the key to addressing the three research
questions stated above lies in methods that combine artificial intelligence with
network science methods, rather than employing them independently [140]. We
elaborate on this claim through a selection of contributions included in Chapters 2
to 5, while Chapter 6 provides a summary and discussion of the main research
findings and presents further research directions. The core thesis contributions
are summarized next.

1.6.1. Chapter 2

Polylogarithmic centrality computations in complex networks [134, 143]. To
compute the centrality of all elements (i.e. nodes and links) in a complex network
is a difficult problem due to: (1) the difficulty of unveiling the hidden relations be-
tween all networks elements; (2) the computational time of state-of-the-art meth-
ods, which many times are not practical in real-world networks that are in excess
of billions of nodes. Herein, we introduce a new class of fully decentralized sto-
chastic methods, inspired by swarm intelligence and human behavior, to compute
the centralities of all nodes and links simultaneously in a complex network. The
parallel time complexity of this approach is on the polylogarithmic scale with re-
spect to the number of nodes in the network, while its accuracy is similar, and
many times even better, than state-of-the-art centrality metrics. To give an im-
pression on the magnitude of the computational problem at hand, if we were to
consider one trillion Internet of Things devices (each one running the proposed
protocol, over an unloaded network), and a transmission rate of 1 message per
millisecond, then the centrality of all network elements (devices and the relations
between them) would be computed in less than 22 seconds. As a comparison, by
using other state-of-the-art centrality metrics for the same problem, one would
need (perhaps) months to compute the results.
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1.6.2. Chapter 3

Generative Replay: towards memory-free online learning with ANNs [147].
Online learning with artificial neural networks is in many cases difficult due to
the need of storing and relearning large amount of previous experiences. This
limitation can be partially surpassed using a mechanism conceived in the early
1990s, named experience replay. Traditionally, experience replay can be applied
in all types of ANN models to all machine learning paradigms (i.e. unsupervised,
supervised, and reinforcement learning). Recently, it has contributed to improving
the performance of deep reinforcement learning. Yet, its application to many
practical settings is still limited by the excessive memory requirements, necessary
to explicitly store previous observations. From a biological sense of memory, the
human brain does not store all observations explicitly, but instead it dynamically
generates approximate reconstructions of those experiences for recall. Inspired
by this biological fact, to remedy the experience replay downside, we propose a
novel approach dubbed generative replay. Generative replay uses the generative
capabilities of restricted Boltzmann machines to generate approximations of past
experiences, instead of recording them, as experience replay does. Thus, the RBM
can be trained online, and does not require the system to store any of the observed
data points. Furthermore, generative replay is a generic concept which may be
used in combination with other types of generative artificial neural network models
to serve dynamic approximations of past experiences to any ANN model that
performs on-line learning.

1.6.3. Chapters 4 and 5

Quadratic parameter reduction in artificial neural networks [139, 144]. Al-
most all of the artificial neural networks used nowadays contain fully connected
layers, which have a quadratic number of connections with respect to the number
of neurons. This type of fully connected layers contain the most of the neural
network connections. Because the weight corresponding to each connection has
to be carefully optimized during the learning process, this leads to increased com-
putational requirements, proportionally to the number of connections that need
to be optimized. Inspired by the fact that biological neural networks are sparse,
and even more, they usually have small-world and scale-free topologies, in these
two chapters we show that a striking amount of the connections from the fully
connected layer in artificial neural networks is actually redundant. Furthermore,
we demonstrate that we can safely decrease the number of connections from a
quadratic relation to a linear relation, with respect to the number of neurons, at
no decrease in accuracy (many times, even with an increase in accuracy). It is
worth highlighting that the connections reduction is done in the design phase of
the neural network, i.e. before training. In Chapter 4 [144], we use a fixed scale-
free connectivity pattern. Furthermore, in Chapter 5 [139], we take this idea
further and, starting with a random sparse connectivity pattern and adding an
evolutionary process during the training phase of the ANN model, we are capable
to reach even better performance. Our results show that it is possible to replace
the fully connected layers in artificial neural networks with quadratically faster
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Figure 1.3 – Thesis storyline.

counterparts in both phases, training and exploitation, and lead to the possibility
of building ANN models in excess of billions of neurons.

1.7. How to read this thesis

We tried to make as much as possible the chapters of this thesis self-contained.
Thus, it is not necessary to read them in a strict succession, although this will lead
to a more gradual introduction to the proposed concepts. An outlook to the thesis
is depicted in Figure 1.3.
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CHAPTER 2

Polylogarithmic centrality computations in
complex networks

In this chapter we present the first core contribution of this thesis, showing how
artificial intelligence can be used to improve network science algorithms. Specif-
ically, we tackle the difficult problem of understanding and controlling complex
networks. This is due to the very large number of elements in such networks, on
the order of billions and higher, which makes it impossible to use conventional
network analysis methods. Herein, we employ artificial intelligence (specifically
swarm computing), to compute centrality metrics in a completely decentralized
fashion. More exactly, we show that by overlaying a homogeneous artificial system
(inspired by swarm intelligence) over a complex network (which is a heterogeneous
system), and playing a game in the fused system, the changes in the homogeneous
system will reflect perfectly the complex network properties. Our method, dubbed
Game of Thieves (GOT), computes the importance of all network elements (both
nodes and edges) in polylogarithmic time with respect to the total number of nodes.
Contrary, the state-of-the-art methods need at least a quadratic time. Moreover,
the excellent capabilities of our proposed approach, it terms of speed, accuracy,
and functionality, open the path for better ways of understanding and controlling
complex networks.

2.1. Introduction

In any real-world system, at micro and macro-scale, from the vigintillions of
interacting atoms in the observable universe, to the billions of persons who live
on Earth, there are amazing structures of networks of networks. These networks
can be studied, understood, and controlled by the means of network science and
complex networks [192], leading to advances in many domains, including neuro-
science [60,168,191], astrophysics [85], biology [90,224] epidemiology [97], social
networks [63,87], transportation networks [46], communication networks [8,134],
and artificial intelligence [144] (to mention but a few). Yet, unveiling the com-
plex networks hidden patterns and computing even their most basic properties
is far from trivial, due to the massive number of node entangles that interact in
non-obvious ways, evolving and unfolding continuously [32].

This chapter is integrally based on:

D.C. Mocanu, G. Exarchakos, A. Liotta: Node Centrality Awareness via Swarming Effects, Proc.
of IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2014, San Diego,

USA.

D.C. Mocanu, G. Exarchakos, A. Liotta: Decentralized dynamic understanding of hidden rela-
tions in complex networks, 2017 (submitted for journal publication).
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Among all these network properties, the centrality (or importance) of nodes
and links is fundamental to understanding things such as: biological neural net-
works [60,168,191], cosmic structures [85], biological networks [90], how viruses
spread or can be contained [167]; which people or news are influencing opin-
ions and decisions the most [12]; how to protect computer systems from cyber-
attacks [217]; or how to relay data packets in the one-trillion Internet-of-Things
network of the future. While there is ample literature on node centrality computa-
tion [108], the existing methods do not scale to the size and dynamics of practical
complex networks, which operate at the tunes of millions to trillions nodes. Be-
sides that, the state-of-the-art centrality metrics are designed for specific goals,
and one metric which performs well for one goal is suboptimal for another [24].
Furthermore, existing methods focus on finding the most important network el-
ements (i.e. nodes or links), but fail to capture the hidden relations across the
whole network links and nodes. The centralized algorithms consider the topology
as a whole, overlooking many of the local features [108].

Per contra, the decentralized methods are usually based on local computations
to construct statistics of network elements (as in [219]), but fail to capture the
overall network structure. In fact, the most effective decentralized methods nowa-
days still fail to capture all the relations between the networks elements, and this is
our main target. In addition, current methods have technological constraints that
have to be surpassed. To tackle the scale as well as dynamics of real-world net-
works, we need to compute centrality metrics not only accurately but also timely,
based on the existing computational capabilities.

To tackle all of the above constraints and limitations, in this chapter we pro-
pose a new viewpoint to model and understand complex networks. The basic idea
is fairly simple. First, we overlay a homogeneous artificial system (a system cre-
ated in such a way that all its elements ponder equally) over a complex network,
which is a heterogeneous system - its level of heterogeneity being given by its topol-
ogy. We then start a gaming process, whereby the artificial system entities start
interacting with the network. What’s interesting is the artificial system evolves in
different ways, depending on the features of the complex network. In turn, net-
work features, specifically the centrality metrics, start emerging. Our viewpoint is
inspired to a basic principle of physics. If one would like to measure the volume of
an irregular-shape object then one solution would be analytical, by measuring its
dimensions and by solving some complicated triple integrals. An alternative much
faster and ingenious solution, which needs just middle school knowledge, is the
water displacement method coming from the Ancient Greeks, i.e. Archimedes of
Syracuse. One would need just to submerge that irregular object in a graduated
cylinder filled with water and to measure the water displacement. Further on, this
easy to obtain volume can be used to measure other properties of the object, e.g.
density.

Keeping the proportion, in the case of complex networks, the artificial homo-
geneous system represents the water, and the centrality represents the volume,
while the game represents the action of submerging the irregular object. With the
complex networks constraints in mind, our proposed homogeneous system follows
four stratagems:

(1) completely decentralized computations, so that all nodes contribute si-
multaneously to the calculation of centrality;
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(2) computational simplicity, so that the algorithm may be executed in thin
nodes, such as the low-resources sensors of the Internet of Things;

(3) nature-inspired, swarm computations [22], to pursue global convergence
through localized, stochastic actions;

(4) human-behaviour like computations [179](namely, egoistic behaviour),
to gain an insight on the topological features of the network.

Altogether, the above four stratagems are confined in a novel algorithm, dubbed
Game of Thieves (GOT).

The remaining of this chapter is organized as follows. Section 2.2 presents
background knowledge on complex networks. Section 2.3 presents the intuition
behind our proposed method and its mathematical formulation. Section 2.4 makes
an analysis of GOT in terms of scalability and optimal parameters choice. Sec-
tion 2.5 describes the experiments performed and analyzes the results. Finally,
Section 2.7 concludes the chapter and presents directions of future research.

2.2. Background

In this section we briefly introduce some background information about com-
plex networks, for the benefit of the non-specialist reader.

2.2.1. Complex networks

Complex networks [157] are graphs characterized by non-trivial features. For-
mally, any arbitrary network is an object which contains nodes (or vertices) and
directed or undirected links (or edges) between nodes. Mainly, based on their
properties, there are three classes of networks, as presented next.

2.2.1.1. Erdös-Rényi random graphs. In this type of networks, any node pair
is connected with the same probability, p ∈ [0, 1], by an edge [57]. By using this
property, and creating the Erdös-Rényi Random Graphs dynamically, one may
obtain a graph that has no particular structures. Due to the assumption that
each edge is independent, it might be inappropriate to model real-world phenom-
ena with Erdös-Rényi Random Graphs, and they are usually used for theoretical
demonstrations of graph properties. Hence, the “Scale-Free” and “Small-World”
models, discussed next, are more widely used in real networks modeling.

2.2.1.2. Scale-Free networks. In these networks the degree distribution follows
a power law [19]. For instance, in addition to World Wide Web, electric power
grids, transportation networks, many other networks have been found to be scale-
free topologies [157]. An algorithm to build scale-free graphs (based on preferential
attachment) has been proposed in [19]. In short, this means that the nodes with
high degree, commonly referred to as “hubs” in the literature, are favored to obtain
new connections when a new node is added to the graph.

2.2.1.3. Small-World networks. These are graphs in which each node can be
reached from any other node in a small number of steps [218]. Typically, the
shortest path between any two nodes has a length of ∝ log(n).
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2.2.2. Centrality in complex networks

Centrality is a measure to assess how important individual nodes (or links)
are in a network and how they can affect their neighborhood or even the whole
network. However, there is no clear way to define “centrality” in graphs. In
the literature, there are several methods to calculate node’s centrality, each one
focused on specific features. Broadly, there are two main approaches: centralized
and decentralized methods. We exemplify these approaches, through four state-
of-the-art centrality metrics, as summarized in Table 2.1.

2.2.2.1. Betweenness Centrality (BC). BC and its variants are among the
most utilized metrics to assess the nodes’ importance [30]. It quantifies how a
node lies on the path between other nodes. Formally, for a node n ∈ V, where V
is the set of all nodes, this can be written as:

Cbe(n) =
∑

w,u∈V

σw,u(n)

σw,u
(2.1)

where σw,u(n) represents the number of shortest paths from node w to node u
which pass through the node n, and σw,u represents the total amount of shortest
paths from w to u. The computational complexity of the original algorithm is
O(n3), making it unsuitable for large networks. For this reason, in the last period,
several BC approximations have been proposed (see [29] and references therein).

2.2.2.2. Current Flow Betweenness Centrality (CFBC). It was proposed in [159],
and is inspired to how the electric current flows into an electric network. In com-
parison to BC, CFBC does not make the assumption that only the shortest paths
are important to compute the node centralities. It considers all the possible paths
in a network, by making use of random walks. In general, CFBC is considered to
reflect centrality more accurately than BC, but it is slower.

2.2.2.3. Second Order Centrality (SOC). It is a novel form of node’s centrality
metric, calculated in a decentralized way, and proposed by Kermarrec et al. in [96].
The algorithm is based on a random walk in the graph, which starts from a random
chosen node, and runs continuously. After the random walk has visited all nodes
at least three times, the standard deviation of the number of steps required to
reach each of the nodes is computed. The authors demonstrate why this value
reflects the centrality of nodes.

2.2.2.4. DACCER. It is a decentralized algorithm to measure the centrality of
nodes in networks, proposed by Wehmuth and Ziviani in [219]. The main idea is
that each node is computing its own centrality, based on the information acquired
from its vicinity. The authors showed that a two-hop vicinity reflects well the
closeness centrality.

2.3. Game of Thieves (GOT)

2.3.1. Intuition

Intuitively, GOT mimics the egoistic behaviour of a multitude of thieves faced
with the prospect of easy-to-steal diamonds - from here comes its name. Our ho-
mogeneous artificial system has two virtual elements: a group of wandering thieves
(in game theory: the actors) and a set of virtual diamonds or vdiamonds (in game
theory: the resources). At start, each node is artificially endowed with vdiamonds
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which are nomadic, reusable and non-replicable virtual resources, generalizing and
virtualizing the concept from [59, 134]. Likewise, each node is endowed with
wandering thieves, mobile actors which act stochastic (they wander in search of
vdiamonds to steal) and egoistic (as soon as they have an opportunity, they steal
vdiamonds and take them back to their home node).

A thief has two states: “empty” (i.e. it does not carry any vdiamond) and
“loaded” (i.e. it carries one vdiamond). Besides that, he has three functionalities:
he wanders from one node to a neighbour, picked randomly (chaotic behaviour),
to search for vdiamonds; when he finds vdiamonds, the thief fetches one (egoistic
behaviour); he brings it to his home node by following back the same path pre-
viously used to find the vdiamond. Like any other vdiamond, this newly homed
vdiamond becomes immediately available for the other wandering thieves to steal
it. When GOT starts, all nodes host the same given number of thieves and vdia-
monds. Then the game proceeds in epochs. At each epoch, all thieves hop from
their current location to the next one, changing state when they find or deposit a
new vdiamond.

Comparing with classical swarm computational methods, in GOT the thieves
do not communicate directly among them - they are independent actors in the
game. Nodes, links and thieves perform just local actions, while the interactions
at global level are ensured by the vdiamonds migration. In turn, the vdiamonds
migration is driven by the network topology (a heterogeneous system), since the
resources tend to be drawn more rapidly from the better connected nodes and
tend to be accumulated in the less connected nodes. It is through this migration
process that the network elements strengths (node and link centralities) gradually
emerge from the vdiamonds distribution.

2.3.2. Formalism

Let us consider G = (V,E) to be an undirected graph (G) containing a set of
nodes (V ) and a set of edges (E). Φn0 is the initial amount of vdiamonds in node
n ∈ V (at time zero). Similarly, ΦnT denotes the number of vdiamonds in node
n ∈ V at time T (i.e. after the game has run for T epochs). ΦlT is the number
of “loaded” thieves traversing link l ∈ E at epoch T . The average number of
vdiamonds present at a node (n), after the game has run for a duration of T
epochs, can be computed as:

Φ̄nT =
1

T

T∑
e=0

Φne (2.2)

The average number of “loaded” thieves passing through link (l) after T epochs
will be:

Ψ̄l
T =

1

T

T∑
e=0

Ψl
e (2.3)

Counterintuitively, a smaller Φ̄nT value reflects a more important node, while a
higher Φ̄nT value indicates a less important one, as the more central nodes have
higher chances to be visited by thieves and they will be depleted first. Intuitively,
higher Ψ̄l

T values reflect more important links, while lower Ψ̄l
T values point to the

less important links.
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2.3.3. Thieves behaviour

A key ingredient in the success of GOT is the behavior of thieves (the agents)
within the network. Before going into details, let us add the following notations:
Γn is the set of nodes that are connected by a link with node n, ∀n ∈ V ; with
Ωnm ≥ 0 the weight of the link which connects the nodes n ∈ V and m ∈ V ; and
with Υa a dynamic list with the nodes visited by thief a, useful to keep the path
of a in his search for vdiamonds.

So, a thief a in the “empty” state will always perform successively the following
operations in any epoch e:

• It randomly picks a node m ∈ Γn, where n is its actual location, with
the following probability pnma = Ωnm∑

v∈Γn Ωnv ; and it moves to node m. It

is clear that unweighted networks are just a particular case of weighted
networks, by setting the weights of all links from the networks to 1.
• If m ∈ Υa then all the nodes situated after m in the list are removed

from Υa, to avoid the apparition of cycles in the list.
• If m /∈ Υa then m is added to the end of Υa.
• If node m has vdiamonds then the thief a takes one and it changes his

state to “loaded”, while node m decreases Φme by one vdiamond.

At the same time, a thief a in the “loaded” state will always perform successively
the following operations in any epoch e:

• It moves from the last node n from Υa, which is his actual location, to
the last but one node m from Υa, and after that it removes n from Υa.
• Link l from n to m increases Ψl

e by one.
• If m is the home node of a, the thief unloads the vdiamond, and sets his

state to “empty”, while node m increases Φme by one vdiamond.

2.3.4. Algorithm and functionality illustration

GOT is presented in Appendix B, Algorithm B.1, while Figure 2.1 shows
snapshots of GOT in operation at eight different times, on a simplistic 10-node
network. Notably, after just 5 exchanges the Φ̄nT values already reflect the nodes
centrality. Being a purely stochastic process, GOT rapidly leads to well-organized
patterns in the resource distribution, as visible from the evolution of the colour
codes over the eight epochs. This behaviour agrees with diffusion-limited aggre-
gation processes [223] and ensures that the most connected (central) nodes lose
their resources first, while the least connected nodes (e.g. leaves) will tend to ac-
cumulate resources more rapidly (Figures 2.1g and 2.1h). This also follows the
intuition that nodes with higher centrality have higher chances of being visited by
thieves. This observation is also compatible with a similar phenomenon discovered
by Saavedra et al. in the context of real-world biological and economical networks,
whereby the strongest network contributors were found to be the most prone to
extinction [175].
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Figure 2.1 – Thieves in action. Snapshots with the illustration of GOT behavior
over epochs on a simple unweighted network with 10 nodes. Initially, we set Φn

0 = 10
vdiamonds and three thieves per node, and we let the game to run for 1000 epochs.
For each node n the colors symbolize: 0 ≤ Φ̄n

T ≤ 2 (dark red); 3 ≤ Φ̄n
T ≤ 6 (red);

7 ≤ Φ̄n
T ≤ 13 (green); 14 ≤ Φ̄n

T ≤ 18 (blue); 18 ≤ Φ̄n
T ≤ 100 (dark blue), while he

numbers on the side of each node show Φ̄n
T , where T=1, 5, 10, 15, 50, 100, 500, and

1000 epochs in subplots a, b, c, d, e, f, g, and h respectively.

2.3.5. Stopping criterion

The algorithm stopping criterion of GOT is reached when just a small number
of nodes still changes their rank of importance from one epoch to the next succes-
sive ones using the scores assigned by the GOT algorithm. Formally, let us define
a vector Λe for any epoch e. Each element Λe,n ∈ Λe is the rank of importance
given by GOT to node n ∈ V . Note that all elements of Λe are unique natural
numbers between 1 and |V |. Thus, a general stopping criterion for GOT can be
expressed as:

1

H

( T∑
e=T−H

√√√√ |V |∑
n=1

(Λe,n − Λe−1,n)2
)
< ε|V | (2.4)

where T is the actual epoch, H is the number of past epochs taken into consid-
eration, and ε ∈ (0, 1) is a subunitary real number. In practice, we found that
satisfactory results are achieved by setting H = 10, and ε = 0.02.

In other words, the aforementioned settings mean that a maximum 2% of the
nodes change their rank over 10 consecutive epochs (SC2), and we validate this
stopping criterion throughout the chapter. Furthermore, Figure 2.2 reflects GOT
stopping criterion for networks with 100 nodes and H = 10 over 1000 epochs.
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Figure 2.2 – GOT visualization. Nodes rank assigned by GOT in each epoch, while
it runs for 1000 epochs in random generated networks with 100 nodes and between
500 and 1000 links. The results are averaged on 10 different networks for each network
type. The dash lines show GOT stopping criteria as a percentage of the total number
of nodes, at any epoch T.

2.4. GOT analysis

2.4.1. Visualization

To begin with, we have tested GOT in small scale simulations, mainly to vi-
sualise its operation. We simulated ten Erdős-Rényi Random Graphs [57], ten
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Figure 2.3 – GOT scalability. The plot shows the number of epochs needed by GOT
to converge. For each network used, the number of edges is between 5 and 10 times
bigger than the number of nodes. Independently of the network model, or the number
of agents used per node (i.e. 1, 3, or 10), GOT convergences in a number of epochs
empirically lower-bounded by log2|V | and upper-bounded by log3|V |, which is on the
polylogarithmic scale with respect to the total number of nodes in the network, |V |.

Scale-Free networks [19], and ten Small-World networks [218], each being un-
weighted, and including 100 nodes and 500 to 1,000 links. The game started with
1 thief and 100 vdiamonds per node and run for 1,000 epochs. At that point
we averaged the results on each network type. Figure 2.2 shows both the node
ranking (following a colour scheme) and GOT’s convergence level (dotted line).
Remarkably, after just a few hundred epochs GOT stabilizes, indicating that the
striking majority of node ranks have been established. It is interesting to see that
scale-free networks stabilize significantly faster (in just a few epochs), as it was
expectable by the peculiar node degree distribution on such network types.

2.4.2. Scalability

To study the ability of GOT to scale, we have conducted extensive simula-
tions on a variety of networks, up to one million nodes. We consider three types
of randomly generated networks, Erdős-Rényi Random Graphs, Scale-Free and
Small-World networks, both weighted and unweighted. Simulations are random-
ized, repeated and averaged to ensure statistical significance. We look at the
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Table 2.1 – Comparison of five centrality algorithms using different performance
criteria (i.e. functional, computational efficiency, and accuracy). The bold values
represent the best performer for specific performance criteria.

Algorithm Functional Computational Efficiency Performance Accuracy
Performance Architecture Time complexity Performance

GOT with SC2 Nodes and Links Fully Distributed O(log2|V|) < O(GOT) < O(log3|V|) 83.4 %
CFBC [159] Nodes or Links Centralized O(I(|V | − 1) + |V ||E|log|V |) 8.3 %
BC [29] Nodes or Links Centralized O(|V ||E|) 8.3 %

SOC [96] Nodes Partially Distributed O(|V |2) < O(SOC) < O(|V |3) 0 %
DACCER [219] Nodes Fully Distributed n/a 0 %

number of epochs required for GOT to converge, using the stopping criterion de-
scribed in Section 2.3.5, dubbed SC2 (i.e. maximum 2% of the nodes change their
rank from one epoch to another in the last 10 epochs). Therein we shall also
discuss why SC2 is satisfactory for the assessment of node and link centrality. We
simulate networks ranging from 10 to 106 nodes, having a number of links com-
prised between six and ten times the number of nodes. We also tried different
starting conditions, with 1, 3 and 10 thieves per node, setting Φn0 = |V |.

Empirically, we found that the number of epochs needed for convergence is on
the polylogarithmic scale of the network size. Figure 2.3 depicts this sub-linearly
relation for each network type. More exactly, the parallel time complexity of
GOT convergence, O(GOT ), is bounded by log2|V | < O(GOT ) < log3|V |. To
our best knowledge, this represents a breakthrough compared to the state-of-the-
art centrality algorithms which have at least a quadratic time complexity (see
Table 2.1).

2.4.3. Optimal parameter choice

In total, GOT has three parameters: i.e. the number of epochs to run the
game, the initial amount of vdiamonds which have to be set in each node, and
the number of thieves in each node. In terms of accuracy, these parameters do
not affect the algorithm performance, if the game is ran until the SC2 criteria
is fulfilled. Thus, we studied them just in term of computational efficiency and
how they affect the SC2 criteria. Previously, we demonstrated that independently
of the network size GOT converges to SC2 in a bounded number of epochs. So,
we consider a safe practice to set the number of epochs to run the game to the
lower bound of SC2, O(log2|V |), if one needs the results faster, or to the upper
bound, O(log3|V |), if a better accuracy is needed. To find the best value for the
initial amount of vdiamonds per node, we performed extra experiments on different
network types and sizes. We found that this parameter does not significantly affect
the convergence time of the algorithm if it is set to non trivial values, e.g. 1, 2, 3
vdiamonds per node. Our experiments showed us that best practice is to set this
parameter to the total number of nodes in the network. We should, in fact, mention
that the initial value of vdiamonds is not the crucial one, since it has negligible
computational costs. Finally, we have analyzed how the number of thieves per node
influences the number of epochs needed by the algorithm to converge considering
different network types and sizes. In all cases, independently on the number of
thieves, the game converged within the bounds of SC2. To conclude, we consider
that by setting just one thief per node is enough, due to the fact that it achieves
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Figure 2.4 – NRP procedure - nodes. Snapshots during the NRP procedure for nodes
in a random generated network with 500 nodes. At the bottom of each subplot, the
number of connected components (CC) and the size of the giant component (GC) are
shown.

fast convergence time, independently of the cases studied, while being the fastest
option in terms of the total number of messages exchanged in the network.

2.5. Experiments and results

2.5.1. Evaluation method

We have assessed GOT both on simulated and real-world networks, against
state-of-the-art centrality metrics, i.e. Betweenness Centrality (BC) [29], Current
Flow Betweenness Centrality [159] (CFBC), DACCER [219], and Second Order
Centrality [96] (SOC), as detailed further.

2.5.1.1. Evaluation metric. In the experiments, we have used a standard pro-
cedure to assess the accuracy of the nodes centrality metrics, namely the Node
Removal Procedure (NRP) [96], as described next. After a centrality metric as-
signs scores for each node of the graph, all the nodes are sorted according to their
scores, starting with the most important one, and ending with the less important
one. Furthermore, the nodes from this sorted list are removed one by one from
the graph, and after each removal the size of the Giant Component (GC) and the
number of Connected Components (CC) in the remaining graph are measured.
A node centrality metric is considered to be better if the number of connected
components is as big as possible, while the size of the giant component is as small
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Figure 2.5 – NRP procedure - links. Snapshots during the NRP procedure for links
in a random generated network with 100 nodes. At the bottom of each subplot, the
number of connected components (CC) and the size of the giant component (GC) are
shown.

as possible, during this NRP procedure. Similarly, NRP can be applied for links,
if the links are sorted according with their importance and after that they are
removed one by one. In Figure 2.4, we have illustrated some snapshots during the
NRP procedure for nodes in a random network with 500 vertices. In Figure 2.5
we have illustrated the NRP procedure for links in a random network with 100
vertices.

2.5.1.2. Implementation. For all the experiments performed in this chapter we
used Python and the NetworkX library [75]. Furthermore, for BC and CFBC we
used the standard implementations offered by the aforementioned library, while
GOT, DACCER and SOC were fully implemented by us. Moreover, we used Net-
workX to generate the simulated networks, to work with the real-world networks
under scrutiny, and to compute the size of the giant component and the num-
ber of connected components during the NRP procedure. The hardware platform
utilized was a typical desktop computer (i.e. Intel Core i7, 32 GB RAM).

2.5.2. Performance on simulated networks

To assess GOT’s accuracy in identifying the correct node centrality (while val-
idating SC2), we used three classes of simulated networks: Erdős-Rényi Random
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Figure 2.6 – GOT accuracy - random generated unweighted networks. The evolution
of the size of the giant component and of the number of connected components with
mean (the straight line) and standard deviation (the shadow area) in unweighted
networks during the NRP procedure, averaged over 100 networks in each subplot.
The y-axes give figure of merit, while the x-axes represent percentage of node and
links removals, respectively. In the top subplots, nodes centrality is assessed, while
in the bottom subplots, the links centrality is evaluated.

Graphs, Scale-Free and Small-World networks. For each class, we randomly gen-
erated 100 weighted networks with weights generated randomly between 1 and 10,
and 100 unweighted networks. Each network had 1,000 nodes and between 4,500
and 5,500 links. Comparing GOT to the literature was tricky, because nobody
so far has managed to compute node and link centrality rankings simultaneously,

27



CHAPTER 2. POLYLOGARITHMIC CENTRALITY COMPUTATIONS

0 20 40 60 80 100

Nodes removed [%]

0

20

40

60

80

100

Si
ze

 o
f t

he
 g

ia
nt

 c
om

po
ne

nt
 [%

]
a) Weighted Erdos-Renyi random graphs

SOC
DACCER (n/a)
BC
CFBC ∗ ∗

GOT ∗

0 20 40 60 80 100

Nodes removed [%]

0

20

40

60

80

100
b) Weighted Scale-Free networks

SOC
DACCER (n/a)
BC
CFBC ∗ ∗

GOT ∗

0 20 40 60 80 100

Nodes removed [%]

0

20

40

60

80

100
c) Weighted Small-World networks

SOC
DACCER (n/a)
BC
CFBC ∗ ∗

GOT ∗

0 20 40 60 80 100

Nodes removed [%]

0

20

40

60

80

100

N
um

be
r o

f c
on

ne
ct

ed
 c

om
po

ne
nt

s 
[%

] d) Weighted Erdos-Renyi random graphs

SOC
DACCER (n/a)
BC
CFBC ∗ ∗

GOT ∗

0 20 40 60 80 100

Nodes removed [%]

0

20

40

60

80

100
e) Weighted Scale-Free networks

SOC
DACCER (n/a)
BC
CFBC ∗ ∗

GOT ∗

0 20 40 60 80 100

Nodes removed [%]

0

20

40

60

80

100
f) Weighted Small-World networks

SOC
DACCER (n/a)
BC
CFBC ∗ ∗

GOT ∗

0 20 40 60 80 100

Links removed [%]

0

20

40

60

80

100

Si
ze

 o
f t

he
 g

ia
nt

 c
om

po
ne

nt
 [%

]

g) Weighted Erdos-Renyi random graphs

BC
CFBC ∗ ∗

GOT ∗

0 20 40 60 80 100

Links removed [%]

0

20

40

60

80

100
h) Weighted Scale-Free networks

BC ∗ ∗

CFBC
GOT ∗

0 20 40 60 80 100

Links removed [%]

0

20

40

60

80

100
i) Weighted Small-World networks

BC ∗

CFBC ∗ ∗

GOT

0 20 40 60 80 100

Links removed [%]

0

20

40

60

80

100

N
um

be
r o

f c
on

ne
ct

ed
 c

om
po

ne
nt

s 
[%

] j) Weighted Erdos-Renyi random graphs

BC ∗ ∗

CFBC
GOT ∗

0 20 40 60 80 100

Links removed [%]

0

20

40

60

80

100
k) Weighted Scale-Free networks

BC ∗ ∗

CFBC
GOT ∗

0 20 40 60 80 100

Links removed [%]

0

20

40

60

80

100
l) Weighted Small-World networks

BC ∗

CFBC
GOT ∗ ∗

Figure 2.7 – GOT accuracy - random generated weighted networks. The evolution of
the size of the giant component and of the number of connected components with mean
(the straight line) and standard deviation (the shadow area) in weighted networks
during the NRP procedure, averaged over 100 networks in each subplot. The y-axes
give figure of merit, while the x-axes represent percentage of node and links removals,
respectively. In the top subplots, nodes centrality is assessed, while in the bottom
subplots, the links centrality is evaluated.

as we do. We compared to two centralized methods, Brandes’ algorithm [29] for
Betweenness centrality and Current flow betweenness centrality [159], which have
variants for vertices and edges. We ran these multiple times to allow the com-
parison with GOT. Also, we compared GOT with two decentralized algorithms,
DACCER [219] and Second order centrality [96], for nodes centrality. DACCER
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and SOC do not have variants for links centrality, and DACCER is not capable
to assess nodes centrality in weighted networks. For GOT, we set 1 thief and
Φn0 = 1000 vdiamonds per node and we ran the algorithm until SC2 convergence
was achieved. To assess the accuracy of all metrics used, we used the NRP pro-
cedure [96]. Figure 2.6 and 2.7 depict the generality of GOT, which has a better
accuracy than all the other centrality metrics for nodes, while for links it outper-
forms its competitors in 8 of 12 scenarios, staying very close to the best performer
(BC or CFBC) in the remaining 4 scenarios. But we should note that BC and
CFBC are only used to compare centrality accuracies - these are centralized algo-
rithms and would not scale in massive-scale networks (which is the ultimate goal
of GOT). In all scenarios, SC2 was fulfilled on average after 274± 45 epochs, this
being within the previous discussed bounds. More than that, in both figures, it can
be observed that GOT performs better because it is capable to discover well the
centrality of the medium important nodes and links, while the other algorithms
fail to do that.

2.5.3. Performance on real-world networks

We have validated GOT using three real-world networks (from different do-
mains): the “Dolphins social network”, an undirected social network of the most
frequent associations between a community of 62 dolphins living in Doubtful
Sound, New Zealand [125]; the “Internet”, a symmetrized snapshot of the struc-
ture of the Internet created by Mark Newman from BGP tables posted by the
University of Oregon in 2006 ; and the “High Energy theory collaborations, a
weighted disconnected network with the co-authorships between scientists posting
preprints on the High-Energy Theory E-Print Archive between 1 January 1995
and 31 December 1999 [156]. For GOT, we set 1 thief and Φn0 = |V | vdiamonds
per node and we ran it for log2|V | epochs (i.e. the lower bound of GOT with SC2)
to avoid the overhead introduced by the SC2 computing. By using the same NRP
procedure as before, Figure 2.8 shows that GOT achieves a better accuracy than
the other approaches in 10 out of 12 situations, while in the other 2 cases it stays
very close to the best performer (CFBC) - again, CFBC is used only for com-
parison, being a centralized algorithm which would not be usable in massive-scale
networks.

We emphasize that in the case of the “Internet” network, which was the biggest
real-world network used in this chapter (i.e. 22,963 nodes, 48,436 links) a Python
sequential implementation of GOT ran in 88 seconds and assessed both, nodes
and links centrality, at the same time, while the cumulative times for the next
two performers, BC and CFBC using their NetworkX [75] implementations, were
6,322 seconds and 66,977 seconds, respectively. These running times are at least
two orders of magnitude larger than GOT. DACCER and SOC, using our own
Python implementation, were a bit faster than BC and CFBC, and ran in 574 and
3,213 seconds, respectively, but their accuracy was much lower. Besides that, they
were able to compute just nodes centrality.

The “High Energy” network was particularly interesting to show another sin-
gular feature of GOT: its ability to compute centrality in disconnected networks.
This is not possible with existing distributed methods, so we use the centralized
algorithm BC for the sake of performance comparison.
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Figure 2.8 – GOT accuracy - real-world networks. The evolution of the size of
the giant component and of the number of connected components during the NRP
procedure in three real-world networks: Dolphins (62 nodes, 159 links, unweighted),
Internet (22963 nodes, 48436 links, unweighted), and High Energy (8361 nodes, 15751
links, weighted, disconnected). The y-axes give figure of merit, while the x-axes
represent percentage of node and links removals, respectively. The top subplots depict
the performance of nodes centrality metrics. The bottom subplots show the links
centrality metrics.

As a curiosity, looking at the High Energy network we found that prof. Jan
Ambjorn was the most important researcher. Considering that this database was
16 years old, we found a strong correlation of GOT results with a recent Google
scholar profile of prof. Jan Ambjorn (i.e. 15,664 citations, 67 h-index) on 18th
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December 2016. We can then speculate that centrality algorithms may even be
used to make future extrapolations on networks.

2.6. Discussion

GOT is a new approach to profiling complex networks using a fully decen-
tralized method. It outperforms state-of-the art algorithms on three different
performance criteria (i.e. functional, accuracy, and computational efficiency), as
summarized in Table 2.1. Functionally, it is capable of assessing at the same time
nodes and links importance in weighted, unweighted or disconnected networks.
More than that, it outperforms state-of-the art algorithms in terms of accuracy,
being capable to accurately capture the underlying relations between the network
elements and to detect well all shades of centrality, including the most difficult
entities - i.e. the one of medium importance. All of these are detailed in Table 2.2,
which summarizes all the accuracy experiments by computing the area under the
curve for each metric from each subplot of Figures 2.6, 2.7, and 2.8. Overall, GOT
was the best performer in terms of accuracy in 30 out of 36 scenarios, while in the
remaining 6 it was the second best performer or very close to the best performers
- but these are centralized, thus unscalable methods.

Besides that, in terms of computational complexity, GOT is much faster and
scalable (in terms of both number of nodes and number of links) compared to exist-
ing methods. The worst-case implementation of GOT is sequential (i.e. it emulates
all network actions in sequence in a single computer). Yet this is bounded up by
O(|V |log3|V |), which is much faster than the next three followers in terms of accu-
racy BC, CFBC, and SOC. These have computational complexity of O(|V ||E|) [29]
, O(I|V | − 1) + |V ||E|log|V | (where O(I|V | − 1) is the time necessary to compute
the inverse Laplacian) [31], and at least O(|V |2) [96], respectively.

Even more strikingly, when GOT is implemented in distributed systems, its
execution will proceed in parallel across all nodes. This natively decentralized
version of GOT has a parallel time complexity on the polylogarithmic scale with
respect to the number of nodes in a network. This makes it suitable to perform real-
time analysis of very large-scale networks with billions of nodes, easily identifiable
in the big data era, such as Facebook (in the range of 1.280.000.000 nodes) or the
Internet of Things (expected to expand to an order of 1 trillion of nodes within
the next few years).

To give an impression of the significance of the computational capability at
hand, let us consider what GOT could achieve in a 1 trillion Internet of Things
network of the near future. Assuming that each device would run GOT and would
be able to transmit one message per millisecond. The scalability figures given
above, would lead to a complete computation of all node and link ranks in a
timespan comprised between 0.8 seconds (given by the lower bound of GOT with
SC2) and up to 22 seconds (given by the upper bound of GOT with SC2). By
comparison, if we were to use the state-of-the-art parallel processing algorithms of
today on powerful computers, it would take at least several weeks of continuous
computation to achieve comparable results. This places GOT in a much better
position in terms of performing real-time centrality computations on massive-scale
networks, being able to tackle not only scale but also network dynamics.
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Table 2.2 – Experiments summary. Area under the curve (AUC), rounded to the
nearest integer, computed for each metric from each subplot from Figures 2.6, 2.7,
and 2.8. The bold values represent the best performer for that specific scenario, while
n/a means that the metric is not suitable for that specific scenario.

SOC DACCER BC CFBC GOT

Random Erdos Nodes Giant size 4293 4625 4348 4237 4086

generated centrality Components number 486 267 453 530 668
unweighted Links Giant size n/a n/a 8185 6843 6853

networks centrality Components number n/a n/a 1574 3129 3141

(Figure 2.6) Scale- Nodes Giant size 2960 4167 2987 2823 2794
free centrality Components number 1386 571 1433 1569 1620

Links Giant size n/a n/a 8308 6888 6362
centrality Components number n/a n/a 1277 3042 3633

Small- Nodes Giant size 4447 4655 4472 4312 4257
World centrality Components number 272 167 252 306 365

Links Giant size n/a n/a 6038 7001 7645

centrality Components number n/a n/a 1484 1127 2322

Random Erdos Nodes Giant size 4501 n/a 4659 4360 4219
generated centrality Components number 354 n/a 258 453 566
weighted Links Giant size n/a n/a 8413 8358 8287

networks centrality Components number n/a n/a 1262 1257 1340
(Figure 2.7) Scale- Nodes Giant size 3204 n/a 3803 2974 2917

free centrality Components number 1199 n/a 841 1392 1479

Links Giant size n/a n/a 8301 8380 8073
centrality Components number n/a n/a 1547 1444 1837

Small- Nodes Giant size 4636 n/a 4732 4511 4456

World centrality Components number 191 n/a 162 244 280
Links Giant size n/a n/a 7907 8231 8263
centrality Components number n/a n/a 1208 1177 1187

Real-World Dolphins Nodes Giant size 3643 3527 2490 2400 2272

networks centrality Components number 1030 1228 1875 1971 2344

(Figure 2.8) Links Giant size n/a n/a 5094 4172 5625
centrality Components number n/a n/a 3691 3946 4244

Internet Nodes Giant size 179 1020 180 163 179

centrality Components number 4217 3034 4631 4577 4641
Links Giant size n/a n/a 5164 4111 4027
centrality Components number n/a n/a 4289 3685 5972

High Nodes Giant size n/a n/a 654 n/a 649

Energy centrality Components number n/a n/a 2789 n/a 3291
Links Giant size n/a n/a 3390 n/a 3299
centrality Components number n/a n/a 4645 n/a 6458

2.7. Conclusion

In this chapter we introduce a new viewpoint to understand and model com-
plex networks, which overlays a homogeneous artificial system over a network
to unveil its hidden properties. We propose a novel algorithm to compute cen-
trality in networks, dubbed GOT. We show that GOT can compute all node
and link centralities, treated together, in a polylogarithmic time with respect to
the number of nodes in the network. GOT has the computational simplicity of
nature-inspired swarm algorithms, while performing human-behaviour like com-
putations [179] (namely, egoistic behaviour). We demonstrate on thousands of
simulated networks with different types of topologies, and on real-world networks,
that GOT can compute the whole range of link and node strengths of any complex

32



2.7. CONCLUSION

network, while being more accurate, much faster, scalable and technologically vi-
able than the state-of-the-art centrality metrics. Moreover, we have also used it
to confirm well-established findings about a non-obvious behaviour of natural net-
works [175]. Natively, GOT permits to investigate much larger networks, which
are not tractable with current algorithms - for instance GOT would require less
than 9 seconds to compute the centrality of the one-billion network formed by all
Facebook user devices.

Hence, we anticipate that our approach may lead to advances in various re-
search fields for which nodes and links centrality is of crucial importance [8,46,60,
63,85,87,90,97,134,168,191,224]. Thus, we consider that our viewpoint will
start a novel class of methods in network science which natively incorporate the
primordial property of real-world networks, i.e. decentralization, and which may
change our understanding about the natural and human-made complex systems
modelled by networks.
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CHAPTER 3

Generative replay: towards memory-free online
learning with artificial neural networks

In the previous chapter we saw how artificial intelligence can be used to im-
prove network science algorithms. In this chapter, we start studying the opposite
link. We show how network science can be used to improve artificial intelligence,
by taking inspiration from biological neural network functional behavior to improve
the functionality of Artificial Neural Networks (ANNs). More exactly, we tackle
the complex problem of online learning with ANNs, which is in many cases diffi-
cult due to the need of storing and relearning large amount of previous experiences.
This limitation can be partially surpassed using a mechanism conceived in the early
1990s, named experience replay. Traditionally, experience replay can be applied to
all machine learning paradigms (i.e. unsupervised, supervised, and reinforcement
learning). Recently, it has contributed to improving the performance of deep rein-
forcement learning. Yet, its application to many practical settings is still limited
by the excessive memory requirements, necessary to explicitly store previous ob-
servations. From a biological sense of memory, the human brain does not store
all observations explicitly, but instead it dynamically generates approximate recon-
structions of those experiences for recall. In this chapter, inspired by this biological
fact, we remedy the experience replay downside, by proposing a novel approach,
dubbed Generative Replay (GR). Generative replay uses the sampling capabilities
of generative models to generate approximations of past experiences, instead of
recording them, as experience replay does. We demonstrate our approach using Re-
stricted Boltzmann Machines (RBMs). Herein, we propose a novel method to train
RBMs, dubbed Online Contrastive Divergence with Generative Replay (OCDGR).
Thus, the RBM can be trained online and does not require the system to store any
of the observed data points. We highlight that generative replay is a broad con-
cept, which, further on, may be used in combination with other types of generative
artificial neural network models.

3.1. Introduction

Experience Replay (ER) [116] (dubbed interleaved learning in [129]) has been
shown to be a successful mechanism in helping online learning algorithms to reuse
past experiences. In ER, the data acquired during the online learning process is
stored explicitly and presented repeatedly to the online learning algorithm, such
as Reinforcement Learning (RL) [5], Deep Reinforcement Learning (DRL) [133],
or supervised learning [129]. The ER process enables the learner to achieve good

This chapter is integrally based on: D.C. Mocanu, M. Torres Vega, E. Eaton, P. Stone, A.
Liotta: Online contrastive divergence with generative replay: Experience replay without storing

data, CoRR, 2016 (to be submitted for journal publication).
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performance from limited training data, and helps to break temporal correlations
in the observations which go against the independent and identically distributed
(i.i.d) assumptions of many stochastic gradient-based algorithms [180]. Since ER
uses recorded data in chunks, it has sometimes been deemed a batch learning
approach [94]. In general, ER focuses on the reuse of observed data in its raw
form as stored in memory, replaying it to the online learner. However, this causes
ER to scale poorly, since the memory requirements increase as the environment
and system requirements increase. One common practice is to limit the available
memory of the ER mechanism and to either 1) discard the oldest experiences as
the memory buffer becomes full and/or 2) prioritize the experiences [180].

From a biological sense of memory (i.e. hippocampal replay in [129]), the
human brain does not store all observations explicitly, but instead it dynamically
generates approximate reconstructions of those experiences for recall. This idea
has also been applied to online learning through model-based learning as an alter-
native to ER. Such approaches indirectly reuse experiences by first modeling the
environment, and then using that model to generate new data. This procedure is
used by Dyna and other model-based learning approaches [194]. Building a model
will generally require less memory than storing the raw data, and can diminish
the effects of noise in the observations. However, model learning incurs additional
computational costs and, more importantly, will introduce modeling errors that
can significantly decrease performance [194]. For this reason, it is necessary to
look for alternatives that are able to scale effectively (which is one of the biggest is-
sues in ER) and yield performance results that are comparable with those obtained
under ER, without its increased computational complexity.

At the same time, Restricted Boltzmann Machines (RBMs) [187], the original
building blocks in deep learning models [20], besides providing (in an unsupervised
manner) accurate weights for the deep belief networks initialization [110], have
been shown to be very good density estimators and to have powerful generative
capabilities [144,177]. Due to these capabilities, RBMs and models derived from
them have been successfully applied to various problems also as standalone models.
Examples of these applications are: modeling human choice [163], collaborative
filtering [176], information retrieval [70], transfer learning [28], or multi-class
classification [104]. However, in all of the above settings RBMs have been used
offline, i.e. using offline training algorithms. This reduces drastically their capabil-
ities to tackle real-world problems which can not be handled on server clouds using
Graphic Processing Unit (GPU) computing, and require fast training algorithms
capable of continuous learning when the environment is changing. For example,
in the world of wireless sensor networks, which is by definition an environment
with low-resources (e.g. memory, computational power, low energy), it would be
extremely useful if lightweight devices could perform tasks such as anomaly de-
tection on the observed time series, as exemplified in [25]. Recently, RBMs have
been used to estimate the similarity between data distributions in various domains
(e.g. image quality assessment [137], Markov decision processes [10]). We then
hypothesize that due to these density estimation capabilities, RBMs could be used
to perform anomaly detection directly on any wireless node if they could rely on an
online training algorithm having low memory requirements (the best case would be
to store none of the historical data). Still, to our knowledge, there are no dedicated
algorithms to train RBMs in a fully online manner. The only currently available
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solution is to employ ER mechanisms with memory, by following the successful
examples from other deep learning models (e.g. [133]).

In this chapter, we combine the generative capabilities of RBMs with the bi-
ological inspiration behind experience replay, yielding a novel algorithm to train
RBMs in online settings, which we call Online Contrastive Divergence with Genera-
tive Replay (OCDGR). In comparison with state-of-the-art ER techniques, OCDGR

acts more like the experience replay concept in a biological sense. Instead of explic-
itly storing past observations in memory, it generates new training data dynami-
cally to represent historical observations, using the generative capabilities of the
RBM itself. In contrast to model-based learning approaches, which learn models
from the environment [194], OCDGR relies on the underlying RBM, which models
only the observed data distribution—a substantially easier problem. OCDGR de-
rived methods may have a wide applicability to a variety of tasks (e.g. regression,
classification, reinforcement learning, anomaly detection), but in this chapter we
focus on demonstrating the benefits of OCDGR over current ER approaches on
the RBMs main task (i.e. distribution estimation), this being a must-have for any
further developments. Thus, using 9 real-world datasets we show how OCDGR

outperforms ER in training RBMs, while having reduced memory requirements
and an equivalent time complexity.

The remainder of this chapter is organized as follows. Section 3.2 presents
background knowledge about experience replay and restricted Boltzmann ma-
chines, for the benefit of the non-specialist reader. Section 3.3 introduces our
proposed method, while Section 3.4 describes the experiments performed and as-
sesses the results. Finally, Section 3.5 concludes the chapter and presents further
research directions.

3.2. Background and related work

In this section, we first discuss related work on ER. Next, background infor-
mations on RBMs and their offline training methods are presented.

3.2.1. Experience replay

Experience replay was first introduced for reinforcement learning in [116] and
for supervised learning in [129]. Schematically, its functionality is depicted in
Figure 3.2a for the specific case of RBMs. In short, the basic idea behind ER for
any type of online learning model is to update the model parameters at discrete
time steps t. To perform this update we start from the latest values of the model
parameters, and we use the batch of data points observed in the environment
between t−1 and t, together with same randomly chosen data points from the data
stored in the memory and observed before t− 1. Then, this procedure is repeated
continuously, the termination criteria being specific to the type of problem under
scrutiny.

A number of methods have subsequently been proposed to improve ER, aim-
ing to model the environment and to optimize the performance of online learning.
A complete review of ER applicability does not constitute a goal of this chap-
ter. It can be found in [94], were it was shown how standard RL and batch
approaches (ER) lead to comparable performance. Recently, ER and its variants
have contributed to improving DRL [133]. In [155] the authors propose a form
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of re-sampling in the context of DRL, which separates the learner experience into
two parts: one for the positive rewards and for the negative ones, respectively.
Further on, an online semi-supervised learning algorithm using deep hybrid Boltz-
mann machines and denoising autoencoders is proposed in [162]. However, all of
these approaches require memory to explicitly store past observations for recall,
making them less suitable to the online learning setting.

3.2.2. Restricted Boltzmann Machines (RBMs)

In this chapter, we use the generative capabilities of restricted Boltzmann ma-
chines to dynamically generate new training data during the online learning pro-
cess, instead of explicitly storing and recalling past observations. We next review
the mathematical details of RBMs. They were introduced in [187] as a powerful
model to learn a probability distribution over its inputs. Formally, RBMs are
generative stochastic neural networks with two binary layers: the hidden layer
h = [h1, h2, .., hnh ] ∈ {0, 1}nh , and the visible layer v = [v1, v2, .., vnv ] ∈ {0, 1}nv ,
where nh and nv are the numbers of hidden neurons and visible neurons, respec-
tively. In comparison with the original Boltzmann machine [4], the RBM archi-
tecture (Figure 3.1) is restricted to be a complete bipartite graph between the
hidden and visible layers, disallowing intra-layer connections between the units.
The energy function of an RBM for any state {v,h} is computed by summing over
all possible interactions between neurons, weights, and biases as follows:

E(v,h) = −aTv − bTh− hTWv , (3.1)

where W ∈ Rnh×nv is the weighted adjacency matrix for the bipartite connections
between the visible and hidden layers, and a ∈ Rnv and b ∈ Rnh are vectors
containing the biases for the visible and hidden neurons, respectively. For conve-
nience, we can bundle the RBM’s free parameters together into Θ = {W,a,b}.
Functionally, the visible layer encodes the data, while the hidden layer increases
the learning capacity of the RBM model by enlarging the class of distributions
that can be represented to an arbitrary complexity [197]. Due the binary state of
the neurons, the free energy of the visible units may be computed as [20]:

F(v) = −aTv −
∑

j
log(1 + exp (bj + Wj:v)) , (3.2)

where Wj: represents the jth row of the matrix W. The activations of the hidden
or visible layers are generated by sampling from a sigmoid S(·) according to:
P (h = 1|v,Θ) = S(b + Wv) and P (v = 1|h,Θ) = S(a + WTh) .

3.2.3. Offline RBM training via contrastive divergence

The RBM parameters can be learned effectively by following the log-likelihood
gradient computed over a training set D, with nv-dimensional binary instances.
The log-likelihood gradient is given by:

EP̂
[∂(logP (v))

∂θ

]
= −EP̂

[∂F(v)

∂θ

]
+ EP

[∂F(v)

∂θ

]
, (3.3)

38



3.3. ONLINE CONTRASTIVE DIVERGENCE WITH GENERATIVE REPLAY

Figure 3.1 – Restricted Boltzmann Machine architecture.

where P̂ represents the empirical distribution of D and EP is the expectation
computed under the model distribution [20]. However, sampling from P to com-
pute the free energy and running long Monte-Carlo Markov Chains (MCMC) to
obtain an estimator of the log-likelihood gradient is usually intractable. Due to
this intractability, Hinton proposed an approximation method called Contrastive
Divergence (CD) [81], which solves the above problem by making two approxima-
tions. The first approximation is to replace the average over all possible inputs
from the second term of Equation 3.3 by a single sample. The second approxi-
mation is to run each MCMC chain for only a specific number of steps (nCD),
starting from a data point v0 ∈ D, as follows:

v0 P (h|v0)7−→ h0 P (v|h0)7−→ v1 P (h|v1)7−→ h1 799K vnCD 7−→ hnCD .

The free parameters can then be updated afterwards via:

∆Θ =
∂F(v0)

∂θ
− ∂F(vnCD )

∂θ
, (3.4)

yielding the following update rules for the free parameters of binary RBMs:

∆Wji ∝ v0
i h

0
j − v

nCD
i hnCD

j for 1 ≤ i ≤ nv, 1 ≤ j ≤ nh
∆ai ∝ v0

i − v
nCD
i for 1 ≤ i ≤ nv (3.5)

∆bj ∝ h0
j − h

nCD
j for 1 ≤ j ≤ nh .

Several other variants of contrastive divergence have been proposed to train RBMs
offline. Examples of these are: persistent contrastive divergence [200], fast persis-
tent contrastive divergence [201], parallel tempering [52], and the replace of the
Gibbs sampling with a transition operator to obtain a faster mixing rate and an
improved learning accuracy without affecting the computational costs [33]. Yet,
in this chapter we use the original CD [81], as it is easily adaptable to online
settings, and at the same time it is widely used and allows for a direct comparison
with other results reported in the literature.

3.3. Online contrastive divergence with generative replay

This section presents our novel algorithm to train RBMs online: Online Con-
trastive Divergence with Generative Replay. Our approach adapts the standard
CD algorithm (see Section 3.2.3) to the online learning setting, and uses dynamic
generation of data as a replay mechanism. We show how an RBM trained via
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Figure 3.2 – A comparison of ER with memory (a) and OCDGR (b) for training
RBMs online. Each subscript ·t represents a discrete time step t. Bt represents a

batch of observed data between t− 1 and t, while B̂t represents samples generated by
the RBM model using the free parameters Θt−1 (i.e. the parameters values at time
t− 1).

OCDGR can have the same functionality as training via ER. However, OCDGR

provides the significant advantage of not needing to explicitly store past observa-
tions in memory, substantially reducing its space complexity. To our knowledge,
this capability is unique, since the state-of-the-art experience replay mechanisms
require a memory dataset to store all historical data, or at least a part of them.

3.3.1. Intuition and formalism

Our algorithm is motivated by the fact that hippocampal replay [129] in
the human brain does not recall previous observations explicitly, but instead it
generates approximate reconstructions of those past experiences for recall. At the
same time, RBMs can generate good samples of the incorporated data distribution
via Gibbs sampling [20]. Intuitively, by using those generated samples (instead
of previous observations from stored memory as in ER) during the online training
process, any RBM model can retain knowledge of past observations while learning
new ones.

Before entering into the technical details of our proposed method, we mention
that further on we use the following notations: Bt represents a batch of observed
data between time t−1 and t, while B̂t represents samples generated by the RBM
model using the free parameters Θt−1 (i.e. the parameters values at time t − 1).
Figure 3.2 summarizes the main differences between the OCDGR (Figure 3.2b) and
ER mechanisms (Figure 3.2a) for training RBMs online, showing how ER explic-
itly stores previous observations in memory for recall, while OCDGR dynamically
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generates samples from its current model of the input data distribution. Clearly,
the memory used by ER increases linearly with the amount of data observed (up
to a fixed limit for memory-bounded ER methods), while by contrast, OCDGR

maintains the same memory footprint throughout the training process. Also, note
that the ER mechanism with memory does not have the Markov property, since
for ER, P (Θt) is dependent upon {Θt−1,B1,B2, . . . ,Bt}, while OCDGR has the
Markov property that P (Θt) depends only upon Θt−1 and Bt. This is an important
aspect for an algorithm which runs for an indefinite amount of time, as may occur
in many real-time systems. Formally, OCDGR is a continuous-time Markov chain
with finite (countable) state space X , given by a family {RBM t = RBM (t)}t>0 of
X such that:

(1) t 7→ RBM (t) are right-continuous step functions, and
(2) ∀s, s1, ..., sk ∈ X , and every sequence of times t1 < t2 < ... < tk < tk+1,

it holds that:

P
(
RBM (tk+1) = s | RBM (tk) = sk, ...,RBM (t1) = s1

)
= P

(
RBM (tk+1) = s | RBM (tk) = sk

)
.

The second condition is the natural continuous-time analogue of the Markov
property, and it requires that the future is conditionally independent of the past
given the present RBM. A continuous time Markov chain is a non-lattice semi-
Markov model, so it has no concept of periodicity. Consequently, the long-runtime
averages equals the limiting probabilities, and it has an equilibrium distribution.

3.3.2. Algorithm

OCDGR is presented in Appendix B as Algorithm B.2. As input, the algorithm
accepts various meta-parameters, two of them being specific for OCDGR, while the
others are common to all RBM models (Algorithm B.2, line 2). The two meta-
parameters specific for OCDGR are the number of Gibbs sampling steps for the
generation of the new training data points (nGs), and the number of new data
points generated by the RBM with Gibbs sampling (nB̂). The common RBMs
meta-parameters include the number of hidden neurons (nh), the number of visible
neurons (nv) (which is given by the dimensionality of the data), the number of CD
steps (nCD), the number of training epochs (nE), the number of data points stored
in a mini-batch before the RBM parameters are updated (nB), the learning rate
(α), the momentum (ρ), and the weight decay (ξ). Except for the two OCDGR

specific parameters, the settings for the others are discussed in [83].
The algorithm first initializes the RBM’s free parameters Θ and the discrete

time step t (lines 3–5). Each time step, the algorithm observes a new data instance,
collecting nB new data points into a mini-batch Bt (lines 8–10). After observing
nB new data points, OCDGR updates the RBM’s parameters (line 11–41). The
update procedure proceeds in two phases:
Dynamic generation of historical data (lines 14–22) As it has been shown
in [52] and in [39] that RBMs can sample uniformly from the state space, we
generate nB̂ new training data points to represent past observations based on the
data distribution modeled by the RBM at time t− 1; these generated data points
are collected into the set B̂t. To obtain good data points with high representational
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power, we perform Gibbs sampling starting from random values of the hidden
neurons drawn from a uniform distribution U(0, 1).
CD update with generative replay (lines 26–41) In the second phase, we
update the RBM’s weights and biases (Θ) using standard CD for a number of
epochs, computing the update only over the most recent mini-batch composed
by the union of Bt and B̂t. This most recent mini-batch consists of (1) the data
points observed between time t− 1 and time t and (2) the data points generated
by the RBM at time t. Note that line 39 of Algorithm B.2 contains the general
form of the update equation, in which Ψ+ (statistics collected from the data) and
Ψ− (statistics collected from the model) can be computed for each free parameter
type using Equation 3.5. Finally, the data points observed between t − 1 and t,
and the data points generated with the RBM at time t are deleted from memory,
and OCDGR advances to the next discrete time step t+ 1 (lines 42–46).

It is easy to observe that an RBM trained with OCDGR acts at any time step
t as a generative replay mechanism to provide repetition of approximated past
experiences, providing a memory-free alternative to ER. In our experiments, we
demonstrate empirically that OCDGR can be used successfully to train RBMs in
an online setting.

3.3.3. Computational complexity

The primary difference between ER and OCDGR at each discrete time step
t is that ER has to recall random data from memory, while OCDGR generates
the data via Gibbs sampling. For ER, the memory recall time depends upon the
hardware platform and the programming environment (e.g. Matlab, C++), and
so is not easily quantifiable. For OCDGR, the dynamic generation of historical
data phase using Gibbs sampling requires, on one side, a small number of matrix
multiplication (which may be parallelized) and are linearly dependent by nGs and,
on the other side, the computation of the sigmoid functions for the visible and
hidden neurons. This yields a per-update time of O(2nGsnvnh +nGsnh +nGsnv),
which in the typical case of nGs = 1, reduces to O(nvnh).

3.4. Experiments and results

3.4.1. Evaluation method

Firstly, we considered a toy scenario (i.e. an artificially generated dataset) to
illustrate the OCDGR behavior. Secondly, we evaluated OCDGR performance on
the MNIST dataset1 of handwritten digits, and on the UCI evaluation suite [72].
Thus, overall, the evaluation was performed on 9 datasets coming from different
domains, which are detailed in Table 3.1.

To simulate the online learning setting, each training instance was fed to the
RBM training algorithm only once in a sequential manner in one of two orders:
1) a worst-case scenario, in which the data instances are presented in order of
the classes, and 2) a more realistic scenario, in which the instances are ordered
randomly.

1http://yann.lecun.com/exdb/mnist/. Last visit on 26 September 2016.
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Table 3.1 – Datasets characteristics.

Dataset Dataset Properties
Domain Features [#] Train samples [#] Test samples[#]

MNIST digits 784 60000 10000

ADULT households 123 5000 26147

Connect4 games 126 16000 47557
DNA biology 180 1400 1186

UCI Mushrooms biology 112 2000 5624

evaluation NIPS-0-12 documents 500 400 1240
suite OCR-letters letters 128 32152 10000

RCV1 documents 150 40000 150000

Web Internet 300 14000 32561

The update procedure of the RBM’s free parameters was triggered each time
after the system had observed and collected 100 data points (i.e. nB = 100). To
find the best meta-parameters specific for OCDGR (i.e. nB̂ , nGs) we conducted a
random search. Based on this small experiment, before each update procedure took
place, we generated another nB̂ = 300 data points according with Algorithm B.2,
lines 14–22, with nGs set to 1. Moreover, another reason to set a small number
of steps for Gibbs sampling when new data points are generated (i.e. nGs = 1) is
given by the fact that if we use samples from the model for both components of
the gradient (i.e. Equation 3.3), these will cancel out in expectation. Except when
specified otherwise, the other meta-parameters used usually in the RBM training
process were set to typically values, such as nE = 10, nCD = 1, α = 0.05, ρ = 0.9
(except the first 5 training epochs in which ρ = 0.5), and ξ = 0.0002, following [83].
Please note that even a higher number of contrastive divergence steps (i.e. nCD)
may lead to a better performance on some specific datasets, i.e. MNIST, it leads
also to an increasing amount of computations. As our goal was to propose a
fast algorithm to train RBMs in an online manner also on low-resources devices,
we preferred to perform most of our experiments using just 1 step contrastive
divergence.

3.4.2. Behavior illustration (toy scenario)

To easy visualize the quality of the samples generated by RBMs trained with
OCDGR (RBMOCD) we have considered a toy scenario with artificially generated
data and an RBM with 100 visible neurons and 50 hidden neurons. For training
we have created 10000 data points (each data point being a binary vector of 100
elements) split in 10 classes of 1000 data points each, as following. For Class 1
p(vi = 1) = 0.3⇔ 1 ≤ i ≤ 10 and p(vi = 1) = 0⇔ 11 ≤ i ≤ 100, and so on up to
Class 10 for which p(vi = 1) = 0.3 ⇔ 91 ≤ i ≤ 100 and p(vi = 1) = 0 ⇔ 1 ≤ i ≤
90. During training, we have firstly observed all data instances belonging to Class
1, and after that we have generated 1000 samples with the trained RBMOCD.
Next, we have continued the training procedure using all data points belonging
to Class 2, and then we have generated another 1000 samples, and further on we
repeated this procedure until all 10 classes have been considered. To classify the
samples generated by RBMOCD we used k-nearest neighbors. Figure 3.3 shows
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Figure 3.3 – Illustration of the OCDGR’s behavior (toy scenario). At any time, the
samples generated by RBMOCD are distributed equally among all observed classes.
The y-axis uses the log-scale.

that OCDGR behaves as expected: as new classes are observed the RBMOCD

enlarges its encoded distribution.

3.4.3. Comparative evaluation

We compared our proposed method, RBMOCD, against 1) RBMs trained us-
ing Experience Replay with a Memory Limit (RBMER-ML) and 2) RBMs trained
using Experience Replay with Infinite Memory (RBMER-IM ). For a fair compar-
ison, in the case of RBMER-ML we limited the number of data points stored in
memory to occupy approximately the same number of bytes as the parameters of
RBMOCD. We highlight that by allowing RBMER-ML to have an experiences mem-
ory of the same size as the RBMOCD parameters means that, in fact, RBMER-ML

needs twice the memory size of RBMOCD, as it needs also some memory to store
its own parameters. In contrast, we allow RBMER-IM to store all observed data
points in memory. To train both experience replay models, i.e. RBMER-ML and
RBMER-IM , we use a similar algorithm to Algorithm B.2. The only main differ-
ence is that instead of generating new samples using the RBM models themselves
(Algorithm B.2, lines 11-23), we retrieve those samples from the replay memory.
For both models, RBMER-ML and RBMER-IM , we used 300 randomly chosen data
points from the memory of past experiences and the same meta-parameters values
as for RBMOCD. To quantify the generative performance of the trained networks,
we used Annealed Importance Sampling (AIS) with the same parameters as in the
original study [177] to estimate the partition function of the RBMs and to cal-
culate their log probabilities. On each dataset, after all training data points were
given to the learner, we computed the average log probabilities on the entire test
set. As the RBM’s training objective is to maximize the expected log probabilities
on the training data, we may expect that also on the testing data the average log
probabilities of the scrutinized RBMs to be as high as possible.

3.4.3.1. Worst case scenario: sorted order. In the first scenario, we have used
the binarized MNIST dataset. During training, the data instances were ordered
sequentially in ascending order of the digits (0, 1, . . . , 9), making it a difficult sce-
nario for online learning. For each algorithm, we considered various numbers of
hidden neurons (nh ∈ {25, 250, 500}), and 784 visible neurons (i.e. 28 × 28 bi-
nary image). Figure 3.4a shows that RBMOCD outperforms RBMER-ML in all
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(a) Worst case scenario, with instances
in ascending order by digit.
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(b) Realistic scenario, where the in-
stances are ordered randomly.

Figure 3.4 – Performance on the MNIST dataset. For each model, we plot the
average log probabilities computed on the entire test set, with error bars representing
the standard deviation of the average log probabilities computed on each digit class.

cases, regardless of the number of hidden neurons. Moreover, it outperforms even
RBMER-IM when it has enough representational power (i.e. 250 and 500 hidden
neurons). It is interesting to see that while the generative power of RBMOCD

increases with the number of hidden neurons, RBMER-IM is not significantly af-
fected when given more hidden neurons. Further, the RBMER-ML model loses its
generative power when the number of hidden neurons is increased. These results
may be explained by the fact that having more hidden neurons helps RBMOCD

to better model the data distribution. In contrast, in the case of experience re-
play mechanisms with memory, a larger RBM would need more past-experience
training data to avoid forgetting the distribution of the first observed data points,
especially in the case of RBMER-ML. This situation does not occur for RBMOCD,
due to the fact the data points generated randomly by the RBM itself using Gibbs
sampling approximate well the distribution of the past-experience data. For the
sake of clarification, we mention that even if at a first look an inter-class standard
deviation of 30 − 40 nats for all online trained models is striking, this is, in fact
the same as the one obtained on offline trained RBMs.

3.4.3.2. Realistic scenario: random order. In the second more realistic sce-
nario, the training instances were presented sequentially in random order. As this
is an usually encountered situation, herein, besides the MNIST dataset, we have
used also the UCI evaluation suite [72]. The latter one contains 8 real-world bi-
nary datasets from various domains, specially selected to evaluate the performance
of density estimation models.

MNIST dataset. Figure 3.4b shows that RBMOCD outperforms both mod-
els, RBMER-ML and RBMER-IM , when it has enough representational power (i.e.
250 and 500 hidden neurons). As in the previous experiment, the generative per-
formance of RBMOCD increases as the number of hidden neurons increases, but
the gain in performance is even higher in this situation, culminating with −114.53
nats in the case of an RBM with 500 hidden neurons. Thus, RBMOCD outper-
forms RBMER-IM by 35.39 nats at the same number of hidden neurons. In fact,
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Figure 3.5 – Model performance over time on the realistic scenario using the MNIST
dataset. The lines represent the average log probabilities computed on the entire test
set, while the shadowed areas represent the standard deviation of the average log
probabilities computed on each digit class.

RBMOCD with 500 hidden neurons outperforms by 11.01 nats even the state-of-
the-art results reported by Salakhutdinov and Murray [177] (see Table 3.2, third
row) for an RBM with 500 hidden neurons trained completely offline with standard
one-step contrastive divergence. Besides the improved average performance on the
entire test set, also observe that as the number of hidden neurons increases in the
case of RBMOCD, the standard deviation (computed on the average log probabil-
ities from each digit class) decreases. The smaller standard deviation implies that
the model represents all classes well, without imbalance.

To better understand RBMOCD’s behavior, we performed an additional ex-
periment. We again trained RBMOCD, RBMER-ML, and RBMER-IM models, each
with 500 hidden neurons. However, in this experiment, we measured the perfor-
mance on the MNIST test set during the training phase at intervals of 1,000 ob-
served data points. Figure 3.5 shows an interesting behavior for all three models.
The RBMOCD has a very stable learning curve which increases over time. In con-
trast, RBMER-ML and RBMER-IM show unstable learning curves. This behavior
can be explained by the fact that when the probability of selecting for replay any
past observed data point decreases below a certain threshold, then the subset of
the selected data points for replay no longer represents well the distribution of the
past-experience data, and the models become over-fitted. To avoid this situation,
the number of selected data points from the replay memory would need to increase
linearly with the number of observations. However, this solution is infeasible as it
would induce a linear increase in the computational complexity of RBMER-ML and
RBMER-IM over time, leading to unviable online learning algorithms. In contrast,
RBMOCD is a Markov chain and it is not affected by this situation, explaining why
RBMOCD outperforms RBMER-ML and RBMER-IM after observing approximately
8,000 instances. Thus, the reduced memory requirements and stable learning be-
havior make RBMOCD a viable model in online learning settings, where data may
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Table 3.2 – Realistic scenario. The results are given for RBMs with nh = 500 and
nCD = 1. On the MNIST dataset the offline RBM results are taken from [177], while
on the UCI evaluation suite the offline RBMs results are taken from [72].

Dataset Online models Offline model

RBMOCD RBMER-IM RBMER-ML RBM

MNIST -114.52 -151.67 -167.11 -125.53

ADULT -19.64 -18.08 -17.28 -16.26

Connect4 -16.28 -16.03 -17.64 -22.66
DNA -103.14 -111.81 -114.84 -96.74

UCI Mushrooms -16.64 -20.38 -17.58 -15.15
evaluation NIPS-0-12 -290.06 -365.03 -339.82 -277.37

suite OCR-letters -47.61 -51.35 -53.85 -43.05
RCV1 -53.28 -56.34 -79.06 -48.88
Web -33.47 -32.58 -35.07 -29.38

come continuously for an indefinite period of time, even if its initial learning curve
grows slower than the ones of RBMER-ML and RBMER-IM .

In our final experiment on the MNIST dataset, we varied the number of con-
trastive divergence steps, training an RBMOCD with 500 hidden neurons using
3 steps and 10 steps of contrastive divergence. Similarly to the RBM’s behavior
reported by Salakhutdinov and Murray [177], further CD steps improved the gen-
erative performance of these models. In the case when nCD = 3, the average log
probabilities on the MNIST test set was -108.96; for nCD = 10, it was -104.31.

UCI evaluation suite. In this case, we have trained RBMOCD, RBMER-ML,
and RBMER-IM with nh = 500, and nv set to the number of features of each
dataset. The results reflected in Table 3.2 show that RBMOCD outperforms
RBMER-ML and RBMER-IM on 5 out of 8 datasets, while on the other 3 it has a
very close generative performance to the top performer. Overall, we may observe
that as the size of the dataset increases, or as the data distribution becomes more
complex, RBMOCD has a clear advantage over RBMER-ML or RBMER-IM .

In all experiments performed, we observed that our MATLAB implementa-
tions of all algorithms completed in approximately the same time. Given the same
RBM configuration, RBMER-IM was slightly slower than RBMOCD, which was
slightly slower than RBMER-ML. However, the differences were on the order of
few milliseconds. In RBMER-IM , the difference increased slightly with the number
of data points saved in memory, but still it was on the milliseconds order.

3.5. Conclusion

We have proposed a novel method, OCDGR, to train RBMs in online set-
tings. Unlike current experience replay methods which directly recall recorded
observations from memory, OCDGR uses the generative capabilities of RBMs to
dynamically simulate past experiences. As a consequence, it does not need to store
past observations in memory, substantially reducing memory requirements. We
demonstrated that RBMs trained online with OCDGR outperform RBMs trained
online using experience replay with memory. In few exceptions, the performance
was comparable. We highlight that in some cases RBMOCD even outperforms
conventional RBMs trained offline with standard contrastive divergence.
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In future work, we intend to better understand the effect that the various
OCDGR meta-parameters (especially the relation between the number of gener-
ated samples and the number of observed samples) have on the RBM’s generative
performance. Also, we intend to extend the generative replay concept to other
suitable generative models, e.g. deep Boltzmann machines, autoencoders. Other
interesting research directions, would be to use RBMs trained with OCDGR as
follows: (1) to perform anomaly detection in low-resources devices; (2) to control
DRL algorithms by generating RL atomic operations instead of using experience
replay mechanisms with memory to store them; and (3) to perform online su-
pervised learning by generating input-output pairs for the online training of deep
artificial neural networks.

48



CHAPTER 4

Scale-free restricted Boltzmann machines

While in the previous chapter we introduced the generative replay concept to
decrease the memory requirements of online learning with Restricted Boltzmann
Machines (RBMs), herein we tackle the computational time needed for training and
exploiting RBMs. We employ techniques from network science aiming to reduce
their number of parameters (i.e. weighted connections between neurons). In turn,
this reduction leads to significant improvements in computational time. Thus, our
main contribution in this chapter is to look at RBMs from a topological perspective,
bringing insights from network science. Firstly, here we show that RBMs and
Gaussian RBMs (GRBMs) are bipartite graphs which naturally have a small-world
topology. Secondly, we demonstrate both on synthetic and real-world datasets that
by constraining RBMs and GRBMs to a scale-free topology (while still considering
local neighborhoods and data distribution), we reduce the number of weights that
need to be computed by a few orders of magnitude, at virtually no loss in generative
performance. Thirdly, we show that, for a fixed number of weights, our proposed
sparse models (which by design have a higher number of hidden neurons) achieve
better generative capabilities than standard fully connected RBMs and GRBMs
(which by design have a smaller number of hidden neurons), at no additional
computational costs.

4.1. Introduction

Since its conception, deep learning [20] has been a subject of intensive study
due to its broad set of applications. It has been applied to different real-world ma-
chine learning problems such as audio recognition [114], activity recognition [141],
image understanding [110], or to theoretical research areas such as reinforcement
learning [133], transfer learning [28]. Deep learning models are artificial neu-
ral networks with multiple layers of hidden neurons, which have connections only
among neurons belonging to consecutive layers, but have no connections within the
same layers. In general, these models are composed by basic building blocks, such
as Restricted Boltzmann Machines (RBMs) [187]. In turn, RBMs have proven to
be successful not just in providing good initialization weights in deep architectures
(in both supervised and unsupervised learning), but also as standalone models in
other types of applications. Examples are density estimation to model human
choice [163], collaborative filtering [176], information retrieval [70], or multi-class
classification [104]. Thus, an important research direction is to improve the per-
formance of RBMs on any component (e.g. computational time, generative and
discriminative capabilities).

This chapter is integrally based on: D.C. Mocanu, E. Mocanu, P. Nguyen, M. Gibescu, A.
Liotta: A topological insight into restricted Boltzmann machines, Machine Learning 104 (2016),
no. 2, 243-270.
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The main contribution of this chapter is to look at the deep learning basic
building blocks, i.e. RBMs and Gaussian RBMs (GRBMs) [80], from a topological
perspective, bringing insights from network science. This is an extension of graph
theory which analyzes real world complex networks [192]. Firstly, we study the
topological characteristics of typical fully connected RBMs and GRBMs, finding
that these exhibit a small-world topology [218]. We then hypothesize that by
constraining the topology to be also scale-free [19] it is possible to reduce the size
of fully connected RBMs and GRBMs models, as it has been shown by [51] that
the networks with scale-free topology are sparse. We introduce a method to make
small-world, scale-free topologies while still considering local neighborhoods and
data distribution. We dub the resulting models as compleX Boltzmann Machine
(XBM) and Gaussian compleX Boltzmann Machine (GXBM), respectively.

An interesting finding is that constraining such XBM and GXBM topologies
at their inception leads to intrinsically sparse networks. This brings consider-
able advantages compared to typical state-of-the-art methods in which sparsity is
enforced as an aftermath, that is during testing (exploitation) phase [113, 124,
172,195,216]. In turn, XBM and GXBM have a considerably smaller number of
weights, which further on contributes to considerably faster computational times
(proportional to the number of weights in the model), both in the training and
testing phases. What is more, we found that the proposed topology imposes an in-
ductive bias on XBMs and GXBMs, which leads to better statistical performance
than RBMs and GRBMs.

Our comparative study is based on both simulated and real-world data, in-
cluding the Geographical origin of music dataset [229], the MNIST digits dataset,
CalTech 101 Silhouettes dataset [128], and the 8 datasets from the UCI evaluation
suite [105]. We show that, given the same number of hidden neurons, XBM and
GXBM have similar or relatively close capabilities to RBM and GRBM, but are
considerably faster, thanks to their reduced amount of weights. For instance, in
a network of 100 visible and 100 hidden neurons, the reduction in weights was by
one order of magnitude. A network with 1000 visible and 1000 hidden neurons led
to a reduction in weights by two orders of magnitude. Additionally, given the same
amount of weights to XBMs/GXBMs and to RBMs/GRBMs, XBMs/GXBMs have
a higher amount of hidden neurons than RBMs/GRBMs, due to their designed
sparse connectivity. In this context, we show that XBMs/GXBMs achieve better
generative capabilities than the fully-connected RBMs/GRBMs.

The remaining of this chapter is organized as follows. Section 4.2 presents
background knowledge about Boltzmann machines and complex networks for the
benefit of the non-specialist reader and highlights the key motivations of our work.
Section 4.3 discusses the relation between deep leaning and network science and
details the mathematical models of our proposed methods. Section 4.4 describes
the experiments performed and analyzes the results. Finally, Section 4.5 concludes
the chapter and presents directions of future research.
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4.2. Background and motivations

4.2.1. Boltzmann machines

Originally derived in [4], a Boltzmann machine is a network of symmetrically
connected stochastic binary units (or neurons). To formalize a Boltzmann ma-
chine, and its variants, three main ingredients are required, namely an energy
function providing scalar values for a given configuration of the network, the prob-
abilistic inference and the learning rules required for fitting the free parameters.
This bidirectional connected network with stochastic nodes has no unit connected
with itself. However, Boltzmann machines with unconstrained connectivity are
unfeasible in practical problems due to the intractable inference. A critical step
in taming computational complexity is to add constraints to the connectivity net-
work, which is what makes Boltzmann machines applicable to real world problems.

In 1987, Smolensky presented restricted Boltzmann machine that could learn
a probability distribution over its set of inputs [187]. The model architecture was
restricted by not allowing intra-layer connections between the units, as depicted
in Figure 4.2 (left). Since their conception, different types of Boltzmann machines
have been developed and successfully applied. Yet most of these variations preserve
some fundamental characteristics. RBMs are generative stochastic neural networks
consisting of two binary layers, the visible layer, v = [v1, v2, .., vnv ], and the hidden
layer, h = [h1, h2, .., hnh ], with nv being the number of visible neurons and nh the
number of the hidden ones. Formally, the energy function of RBMs for any state
{v,h} is computed by summing over all possible interactions between neurons,
weights and biases, as follows:

E(v, h) = −
∑
i,j

vihjWij −
∑
i

viai −
∑
j

hjbj (4.1)

where Wij denotes the connection between the visible neuron i and the hidden
neuron j, ai is the bias for visible neuron i and bj is the bias for hidden neuron j.
The term

∑
i,j vihjWij represents the total energy between neurons from different

layers,
∑
i viai represents the energy of the visible layer and

∑
j hjbj the energy

of the hidden layer. The inference in RBMs is stochastic. For any hidden neuron
j the conditional probability is given by p(hj |v) = S(bj +

∑
i viWij), and for any

visible unit i it is given by p(vi|h) = S(ai +
∑
j hjWij), where S(·) is a sigmoid

function.
Later on, Hinton and Salakhutdinov [80] have extended the RBMs models to

make them suitable for a large number of applications with real-valued feature
vectors. They used exponential family harmoniums results from [220] and de-
veloped the Gaussian Restricted Boltzmann Machine (GRBM) model that, like
RBMs, forms a symmetrical bipartite graph. However, the binary units from the
visible layer v are replaced by linear units with Gaussian noise. The hidden units
h remain binary. Therein, the total energy function for a state {v,h} of GRBMs is
calculated in a similar manner to RBMs, but includes a slight change to take into
consideration the Gaussian noise of the visible neurons, as defined in Equation 4.2.

E(v, h) = −
∑
i,j

vi
σi
hjWij −

∑
i

(vi − ai)2

2σ2
i

−
∑
j

hjbj (4.2)
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where, the term
∑
i,j

vi
σi
hjWij gives the total energy between neurons from dif-

ferent layers,
∑
i

(vi−ai)2

2σ2
i

is the energy of the visible layer, and σi represents the

standard deviation of the visible neuron i. The stochastic inference for any hidden
neuron j can be done as for RBMs, while for any visible unit i is made by sampling
from a Gaussian distribution, defined as N (ai +

∑
j hjWij , σ

2
i ).

Parameters of RBM and GRBM models are fitted by maximizing the likelihood
function. In order to maximize the likelihood of the model, the gradients of the
energy function with respect to the weights have to be calculated. Because of the
difficulty in computing the derivative of the log-likelihood gradients, Hinton [81]
proposed an approximation method called Contrastive Divergence (CD). In maxi-
mum likelihood, the learning phase actually minimizes the Kullback-Leibler (KL)
measure between the input data distribution and the model approximation. Thus,
in CD, learning follows the gradient of:

CDn ∝ DKL(p0(x)||p∞(x))−DKL(pn(x)||p∞(x)) (4.3)

where, pn(.) is the resulting distribution of a Markov chain running for n steps.
Besides that, other methods have been proposed to train RBMs (e.g. persistent
contrastive divergence [200], fast persistent contrastive divergence [201], paral-
lel tempering [52]), or to replace the Gibbs sampling with a transition operator
for a faster mixing rate and to improve the learning accuracy without affecting
computational costs [33].

4.2.2. Sparsity in restricted Boltzmann machines

In general and for the purposes of machine learning, obtaining a sparse version
of a given model, leads to a reduction in parameters, which, in turns helps in
addressing problems such as overfitting and excessive computational complexity.
The sparsity issue in RBMs is so important that considerable attention is given
to it in the literature. Hereafter we point to the most relevant works but will not
attempt to provide a comprehensive overview. It is worth mentioning that in [53]
and [227] it has been shown how the histogram of the RBM weights changes shape
during the training process, going from a Gaussian shape (initially) to a shape
that peaks around zero (which provides a further motivation towards sparsity
enforcement). Also, in our own work [145], we have hinted a similar behavior, as
it is depicted in Figure A.7 from Appendix A.

One of the most common methods to obtain sparse representations is by
encouraging it during the training phase using different variants of a sparsity
penalty function, as done for instance, in [113] and [172]. However, performing
this process during the learning phase does not guarantee sparsity in the test-
ing phase [195]. To overcome this limitation, Cardinality-RBM (Ca-RBM) was
proposed in [195] to ensure sparsity in the hidden representation by introduc-
ing cardinality potentials into the RBMs energy function. Moreover, Wan et al.
(2015) [216] have proposed Gaussian Ca-RBM, in which they replace the univer-
sal threshold for hidden units activation from Ca-RBM with adaptable thresholds.
These thresholds are sampled from a certain distribution which takes into consid-
eration the input data. Recently, Han et al. (2015) [77] introduced one of the
most efficient methods to obtain weights sparsity in deep neural network. They
successfully obtained up to 10 times less weights in deep neural networks with no
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loss in accuracy. Their method assumes three simple steps: (1) the network is
trained to learn the most important connections; (2) the unimportant connections
are pruned; (3) the network is retrained to fine tune the weights of the remain-
ing connections. To achieve the best performance the steps 2 and 3 have to be
repeated iteratively which makes this a computationally expensive and unscalable
method.

Thus, to the best of our knowledge, all of the state-of-the-art methods impose
a sparsity regularization target during the learning process, which makes them
impractical with large datasets having millions (or even billions) of input features.
This is because the training process is excessively slow in such situations. Our so-
lution to overcome this problem is to ensure weight sparsity from the initial design
of an RBM using relevant findings from the field of network science (Section 4.3).

4.2.3. Complex networks

Complex networks (e.g. biological neural networks, actors and movies, power
grids, transportation networks) are everywhere, in different forms and different
fields, from neurobiology to statistical physics [192], and they are studied in net-
work science. Formally, a complex network is a graph with non trivial topological
features, human or nature made. The most two well-known and deeply stud-
ied types of topological features in complex networks are the scale-free and the
small-world concepts, due to the fact that a wide range of real-world complex net-
works have these topologies. A network with a scale-free topology [19] is a sparse
graph [51] that approximately has a power-law degree distribution P (k) ∼ k−γ ,
where the fraction P (k) from the total nodes of the network has k connections to
other nodes, and the parameter γ ∈ (2, 3) usually.

At the same time, a network model with the small-world topological fea-
ture [218] is defined to be a graph in which the typical distance (L) between two
randomly chosen nodes (the number of hops required to reach one node from the
other) is very small, approximately on the logarithmic scale with respect to the to-
tal number of nodes (N) in the network, while at the same time being characterized
by a clustering coefficient that is significantly higher than may appear by random
chance. More formally, a graph sequence (GN )N≥1 has a small-world topology, if
there is a constant 0 < K < ∞ such that limN→∞p(LN ≤ KlogN) = 1, where
LN is the typical shortest path of GN [205]. As an example, Figure 4.1 roughly
illustrates a small-world topology, and a scale-free one, in two small randomly
generated graphs. Both types of topologies are studied below in the context of
restricted Boltzmann machines, leading to our proposal of sparse Boltzmann ma-
chine models.

4.3. Complex networks and Boltzmann machines

In this section, we firstly discuss the relation between complex networks on
one side and restricted Boltzmann machines and Gaussian restricted Boltzmann
machine on the other side. Secondly, we introduce an algorithm to generate sparse
topologies for bipartite graphs which have both properties (i.e. scale-free and small-
world) that also considers the distribution of the training data. Finally, we make
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Figure 4.1 – Examples of complex networks topologies: (left) small-world; (right)
scale-free.

use of the previous mentioned topology generator algorithm to present the mathe-
matical details of two novel types of Boltzmann machines, dubbed compleX Boltz-
mann Machines (XBMs) and Gaussian compleX Boltzmann Machines (GXBMs).

4.3.1. Topological insight into RBMs and GRBMs

Lately, the neural networks of the human brain have started to be studied
using tools from network science [168]. It has been found that these exhibit both
a small-world topology (i.e. the shortest path between any two nodes or neurons
is very small, approximately equal to the logarithm of the total number of nodes)
and a scale-free topology (i.e their degree distribution follows a power law). At
the same time, by making small steps towards mimicking the architecture and the
functionality of the brain, deep learning methods have emerged as a promising
solution in computer science to develop automated learning systems [91, 133].
Here we argue that there is a clear relation between network science and deep
learning. In the scope of these arguments, we introduce the following proposition:

Proposition 1. Both restricted Boltzmann machines and Gaussian restricted
Boltzmann machines are bipartite graphs which have a small-world topology.

Proof. The diameter (i.e. the longest shortest path between any two neurons)
of RBMs or GRBMs is 2, independently on the number of hidden or visible neurons,
due to the fact that both models have all the possible interlayer connections, but
no intralayer connections. This yields that L is bounded up by 2 for any RBM
or GRBM. By replacing L in the small-world definition from Subsection 4.2.3, we
obtain limN→∞p(2 ≤ KlogN) = 1, which is true for any constantK, 0 < K <∞1.
Similarly as RBMs and GRBMs are complete bipartite graphs, their clustering
coefficient [107] is 1, being higher than any other possible cluster coefficient2.
Thus, it is clear that any RBMs or GRBMs have a small-world topology. �

Following the same line, our intuition is that by preserving the small-world
property of RBMs or GRBMs, while introducing also the scale-free property in
their topology, we can obtain new sparse Boltzmann machines derived models
which may have similar performance to RBMs or GRBMs, but with fewer free
parameters (i.e. the weights between the visible and the hidden neurons). Thus,

1Please note that according to the definitions from [205], this reflects even a particular

subset of small-worlds, namely ultra small-worlds.
2Please note that the clustering coefficient takes values between 0 and 1.
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further on, we introduce the complex Boltzmann machine and the Gaussian com-
plex Boltzmann machine (i.e. the derivatives of RBM and GRBM, respectively)
which exhibit both scale-free and small-world topological properties.

4.3.2. Topology generation algorithm for XBM and GXBM

To generate a sparse topology in XBM and GXBM, we have devised a three
stages heuristic method, detailed in Appendix B, Algorithm B.3. In the first stage,
a scale-free bipartite graph is generated; in the second one, the graph is adjusted
to be also small-world; and in the third stage, the graph topology is fitted to the
data distribution. Below, this method is thoroughly discussed.

First we generate a power-law degree sequence with nv + nh elements, using
P (k) = k−γ , ∀k ∈ N, 1 ≤ k ≤ nv+nh , with minimum degree equal to four to favor
the small-world topology, and we sort it in descending order (i.e. Algorithm B.3,
lines 8-9). Each element from the sequence represents a node in the network
and the actual value of that element (i.e. the degree) represents the number of
connections for that specific node. After that, we split the degree sequence in two,
by alternatively picking the nodes starting from those with the highest degree and
proceeding until the smallest degree nodes are reached. In this way we populate
two separate lists, for the hidden layer and for the visible layer, respectively (i.e.
Algorithm B.3, lines 10-16). Once the list having the smallest number of elements
is completed, we add all the remaining elements of the original sequence to the
bigger list (i.e. Algorithm B.3, lines 17-22). In an undirected bipartite graph both
layers need to have an equal number of connections. Due to the fact that the sum
of the elements from one list might not be equal to the sum of the elements from
the other list, we add some more degrees to the elements of the list with lower
degrees (proportionally to its initial degree distribution) to equalize the two lists
(i.e. Algorithm B.3, lines 23-28). Next, starting from these two lists, we create a
bipartite graph G using a Havel-Hakimi procedure [76] (i.e. Algorithm B.3, line
29). Further on, we add few more connections to each node in G with the aim to
achieve the optimal clustering coefficient as required in small-world topologies (i.e.
Algorithm B.3, lines 30-49). This ensures also a dense local connectivity useful,
by example, to take local neighborhoods of neurons into consideration. To clarify
how this is done, note that in Algorithm B.3 (line 33), when parameter σneigh is
increased the nodes local neighborhoods gradually turn into larger neighborhoods
(or even the graph as a whole). In turn, when parameter φ is increased, the
neighborhoods tend to become denser. The whole algorithm proceeds iteratively
until the bipartite graph meets the criteria of small-worldness (i.e. Algorithm B.3,
line 51). We should mention, though, that during our whole study we observed
that this property was usually achieved after just one iteration. To take the data
distribution into consideration, as a final stage, the algorithm re-arranges the
order of the visible nodes in G such that the nodes having more connections end
up corresponding to the training data features with a higher standard deviation
(i.e. Algorithm B.3, line 53). The resulting bipartite graph G can then be used

3In this chapter, we have varied σneigh and φ between 4 and 6 to favor the emergence of

local medium connected neighborhoods.
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Figure 4.2 – Exemplification of RBM topology (left) and XBM topology (right).
The layer with visible neurons (half gray, half black) is at the bottom of the plots,
the layer with hidden neurons (half white, half black) is on the top of the plots, while
in the middle we have the connections between the two layers.

as the topology of our XBM or GXBM models (i.e. Algorithm B.3, line 55-57), as
detailed next.

4.3.3. CompleX Boltzmann Machines (XBMs)

Just like restricted Boltzmann machines, complex Boltzmann machines are
made up by two layers of neurons, with connections only in between different
layers and no connections within the same layer. The bottom layer (i.e. the visible
one) is denoted further with a binary vector v = [v1, v2, .., vnv ], in which each unit
vi is a binary unit, and where nv is the size of v (i.e. the number of neurons of
the visible layer). The top layer (i.e. the hidden one) is represented further by the
binary vector h = [h1, h2, .., hnh ], in which each element hj is binary, and where nh
is the size of h. Furthermore, each neuron from the visible layer has associated one
bias. The biases of the visible neurons are collected in a vector a = [a1, a2, .., anv ].
Similarly, hidden layer neurons have biases, collected in vector b = [b1, b2, .., bnh ].

The difference between RBM and XBM consists in how the neurons from the
different layers are connected between them. RBMs form a full undirected mesh
between all the neurons on the hidden layer and all the neurons on the visible layer.
By contrast, in XBMs the connections between the two layers are still undirected
but sparse, as generated by Algorithm B.3. Thus, XBMs have both scale-free and
small-world topological properties. These connections are defined in a sparse adja-
cency weights matrix W = [[w11, w12, ..., w1nh ], .., [wnv1, wnv2, ..., wnvnh ]] in which
the elements are either null (wij = 0) when there is no connection between the vis-
ible neuron i and the hidden neuron j or have a connection weight (wij 6= 0) when
the connection between i and j exists. The high level architectures of RBMs and
XBMs are depicted in Figure 4.2. The sparse topology of XBMs leads to a much
smaller number of connections, which further on leads to faster computational
times than RBMs.

The energy function of an XBM is defined as:

E(v, h) = −
nv∑
i=1

∑
j∈Γhi

vihjwij −
nv∑
i=1

viai −
nh∑
j=1

hjbj (4.4)

where, Γhi is the set of all hidden neurons connected to the visible neuron i (i.e.
Γhi = {j|1 ≤ j ≤ nh,∀j ∈ N ∧ wij 6= 0}).
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Due to the fact that there are no links between the neurons on the same layer,
inference in XBM can be performed in parallel for any visible neuron i or any
hidden neuron j, as below:

p(hj = 1|v,Θ) = S
(
bj +

∑
i∈Γvj

viwij

)
(4.5)

p(vi = 1|h,Θ) = S
(
ai +

∑
j∈Γhi

hjwij

)
(4.6)

where, Γvj is the set of all visible neurons connected to the hidden neuron j (i.e.
Γvj = {i|1 ≤ i ≤ nv,∀i ∈ N ∧ wij 6= 0}), S(·) is the sigmoid function, and Θ
represents the free parameters of the model (i.e. W, a, b).

The general update rule for the free parameters Θ of the XBM model is given
by:

∆Θτ+1 = ρ∆Θτ + α(∇Θτ+1 − ξΘτ ) (4.7)

where τ , ρ, α, and ξ represent the update number, momentum, learning rate, and
weights decay, respectively. For a thorough discussion on the optimal choice of
these parameters the interested reader is referred to [83]. Furthermore, ∇Θτ+1 for
each of the free parameters can be computed by using contrastive divergence [81]
and deriving the energy function from Equation 4.4 with respect to that parameter,
yielding:

∇wij ∝ 〈vihj〉0 − 〈vihj〉n;∀i ∈ N, 1 ≤ i ≤ nv,∀j ∈ Γhi ; (4.8)

∇ai ∝ 〈vi〉0 − 〈vi〉n;∀i ∈ N, 1 ≤ i ≤ nv; (4.9)

∇bj ∝ 〈hj〉0 − 〈hj〉n;∀j ∈ N, 1 ≤ j ≤ nh; (4.10)

with 〈·〉n being the distribution of the model obtained after n steps of Gibbs
sampling in a Markov Chain which starts from the original data distribution 〈·〉0.
We must note that in this chapter we have chosen to train our proposed models
using the original contrastive divergence method [81], which is widely used and
allows for a direct comparison to the results reported in the literature. It may well
be that other training methods would offer better performance; yet, overall, we do
not expect particular training methods to significantly affect our findings.

4.3.4. Gaussian compleX Boltzmann Machines (GXBMs)

Just like in GRBMs and RBMs, the only differences between GXBMs and
XBMs is that in the case of GXBMs the visible layer v = [v1, v2, .., vnv ] has real
values and each vi is a linear unit with Gaussian noise [80]. Thus, the total energy
equation of GXBMs is slightly changed to reflect the real visible layer, as follows:

E(v, h) = −
nv∑
i=1

∑
j∈Γhi

vi
σi
hjwij −

nv∑
i=1

(vi − ai)2

2σ2
i

−
nh∑
j=1

hjbj (4.11)

where, σi represents the standard deviation of the visible neuron i. We note that
in the remainder we adopt the same notations used in XBM modeling, unless
specified otherwise.
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Furthermore, the inference in GXBMs can be performed in parallel for any
visible neuron i or any hidden neuron j, as below:

p(hj = 1|v,Θ) = S
(
bj +

∑
i∈Γvj

vi
σi
wij

)
(4.12)

p(vi = x|h,Θ) = N
(
ai +

∑
j∈Γhi

hjwij , σ
2
i

)
(4.13)

where, N (·, ·) represents a Gaussian distribution. Finally, the learning in GXBM
can be done using the same procedure as for XBM (Section 4.3.3).

4.4. Experimental results

4.4.1. Evaluation method

To assess the performance of XBM and GXBM we have conducted three sets
of experiments in a step-wise fashion. In the first one, we study the behavior
of XBM, GXBM and their topology generation algorithm. In the second one,
we analyze the reconstruction error obtained by GXBM on random generated
data and on a real world dataset, more exactly on the Geographical Origin of
Music dataset [229]. Thirdly, we assess the statistical performance of XBM on the
MNIST digits dataset, CalTech 101 Silhouettes dataset [128], and the 8 datasets
from UCI evaluation suite [105] using Annealed Importance Sampling (AIS) [177].

Furthermore, in the last two sets of experiments, we compare GXBM/XBM
against three other methods, as follows:

(1) the standard fully connected GRBM/RBM;
(2) sparse GRBM/RBM models, denoted with GRBMFixProb (Fixed Probability)

/ RBMFixProb, in which the probability for any possible connection to
exist is set to the number of weights of the counterpart GXBM/XBM
model divided by the total number of possible connection for that spe-
cific configuration of hidden and visible neurons4;

(3) sparse GRBM/RBM models, denoted with GRBMTrPrTr (Train Prune Train)

/ RBMTrPrTr, in which the sparsity is obtained using the algorithm intro-
duced in [77] with L2 regularization, and in which the weights sparsity
target is set to the number of weights of the counterpart GXBM/XBM
model. Please note that in all experiments if the weights sparsity tar-
get was not reached after 50 pruning iterations, we stopped the training
algorithm and we used the obtained GRBMTrPrTr/RBMTrPrTr model.

For each evaluated case, we analyze two scenarios when: (1) the number of connec-
tions is the same for the sparse and the full connected models, while the number of
hidden neurons is different; (2) the number of hidden neurons is the same for the
sparse and the full connected models, while the number of connections is different.

4Please note that this procedure yields approximately the same number of connections in

GRBMFixProb/RBMFixProb as in GXBM/XBM to ensure a fair comparison.
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4.4.2. Scrutinizing XBM and GXBM topologies

In this set of experiments, we analyze the characteristics of the XBM sparse
topology. For the sake of brevity, we refer just to the XBM - RBM relation,
since the GXBM - GRBM is identical from the topological point of view. To
perform the various operations on the bipartite graph we have used the NetworkX
library [75], setting the power law coefficient γ to 2, a typical value in various
real-world networks [41]. Firstly, we verified the output of the topology-generation
algorithm (i.e. Algorithm B.3). Being one of the algorithm constraints, the small-
world property is preserved in XBM. At the same time, due to the fact that
the neurons from different layers are connected starting from a power law degree
sequence, the scale-free property is also preserved. As example, Figure 4.3a depicts
the weights distribution for an XBM having 784 visible and 1000 hidden neurons,
while Figure 4.3b shows the degree distribution of an XBM with 100 visible and
1000 hidden neurons on the loglog scale. Figure 4.3b exhibits evidently a scale-
free degree distribution. All other experiments exhibited the required scale-free
distribution. Furthermore, we analyzed the number of connections in XBM in
comparison with the number of connections in RBMs, given the same number
of hidden (nh) and visible (nv) neurons. Figure 4.3c depicts how many times
the number of connections in RBM is bigger than the number of connections in
XBM for various configurations (the number of hidden and visible neurons varies
from 10 to 1000). The actual values in the heat map are computed using the
following formula nRBMw /nXBMw , where nXBMw is obtained after counting the links
given by the topology generation algorithm for XBM, and nRBMw = nvnh. It
can be observed that as the number of hidden and visible neurons increases, the
number of weights in XBM becomes smaller and smaller than the one in RBM.
For instance, we achieve around 14 times less weights in XBM for 100 visible and
100 hidden neurons, and approximatively 95 times less weights in XBM for 1000
visible and 1000 hidden neurons.

4.4.3. GXBM evaluation

In the second set of experiments, we assess the performance of GXBM against
GRBM, GRBMFixProb, and GRBMTrPrTr on randomly generated as well as on the
real-world dataset Geographical Origin of Music [229].

Settings and implementations. For all experiments performed in this set we
have used Python implementations of the four models under scrutiny. In all mod-
els, the momentum was set to 0.5, the learning rate to 0.001, and the number of
Gibbs sampling in contrastive divergence to 1, as discussed in [83]. The weights
decay was 0.0002 for GXBM, GRBM, and GRBMFixProb, while for GRBMTrPrTr

we used the L2 regularization. The number of neurons in the visible layer was
set to the dimension of the input data, while the number of hidden neurons was
varied for a better comparison. In the learning phase, we stopped the models after
100 training epochs to ensure full convergence. In fact, convergence was much
faster, as exemplified in Figure 4.3d which shows the case of GXBM with 100
visible and 1000 hidden neurons trained on random generated data. In the case
of GRBMTrPrTr, we have repeated the training procedure for a maximum of 50
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Figure 4.3 – Scrutinizing XBM and GXBM topologies and learning behavior.

pruning iterations trying to reach the same amount of weights as in GXBM, but
this target was impossible to reach in all situations.

Performance metrics. To quantify the performance of the models, we used a
variety of standard metrics. We have used: the Root Mean Square Error (RMSE)
to estimate the distance between the reconstructed inputs and the ground truth;
the Pearson Correlation Coefficient (PCC) to reflect the correlations between the
estimated inputs and the ground truth; and the P-value to arrive at a statistically
significant reconstruction level during the learning phase.

4.4.3.1. GXBM performance on random generated data. Firstly, we analyze
how well GXBM is capable to reconstruct random generated data. To this end,
we have generated 1000 data points, each one having 100 dimensions, and each
dimension being sampled from a Gaussian distribution with 0 mean and standard
deviation equal to 1, i.e. N (0, 1). Due to the fact that these are random generated
data, there was no reason to use cross validation. Thus, we have used 70% of
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Figure 4.4 – Reconstruction capability on random generated data of GRBM,
GRBMFixProb, GRBMTrPrTr and GXBM with: (left) the same number of weights;
(right) the same number of hidden neurons. The straight line represents the mean;
the shadowed area shows the standard deviation. The number of learned parameters
for GRBMTrPrTr is given in green after the last pruning iteration, while above the
green color the alternating gray and purple colors represent the number of learned
parameters at each pruning iteration starting with the first one from the top.

data to train the models, and the remaining 30% to test the models. Firstly, we
analyzed the reconstruction capabilities of GXBM, GRBMFixProb, GRBMTrPrTr,
and GRBM, given the the same number of weights. Figure 4.4 (left) depicts this
situation, while the number of weights were varied from 700 up to approximately
7000. Clearly, GXBM outperforms GRBM in both, RMSE and PCC, while its
internal topology permits it to have a higher number of hidden neurons. Remark-
ably, with approximately 1000 weights, the mean RMSE for GXBM is already
very low, around 0.3, while the mean PCC is almost perfect, over 0.95. By con-
trast, GRBM with 1000 weights performed poorly. Furthermore, it is clear that
the GRBM performance increases with the number of weights, yet it can be ob-
served that even at approximately 7000 weights GRBM is not capable to reach the
same level of performance of the GXBM with 1000 weights. Besides that, GXBM
outperforms also the other sparse models, GRBMFixProb and GRBMTrPrTr, but
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not so drastically. In fact, GRBMFixProb has very close performance to GXBM.
GRBMTrPrTr is not so close, while having also a very high computational cost as
depicted in the fourth row of Figure 4.4.

To better understand these differences, we proceed to the next scenario, ana-
lyzing GRBM, GRBMFixProb, GRBMTrPrTr, and GXBM having the same number
of hidden neurons. This is reflected in Figure 4.4 (right) in which the number of
hidden neurons is varied from 100 to 1000. Surprising, even though the number
of free parameters (i.e. weights) was smaller by at least one order of magnitude
in GXBM (as it can be seen in the bottom-right plot of Figure 4.4), GXBM
performs similarly to GRBM in terms of PCC and RMSE, while GRBMFixProb

and GRBMTrPrTr reach almost a similar performance. Still, GRBMTrPrTr has the
downside of not being capable to reach the same number of weights as GXBM
or GRBMFiXProb even after 50 prunning iterations, as reflected on the fourth and
fifth rows of Figure 4.4. Interestingly, for this specific dataset, all models seem to
reach their maximum learning capacity when they have approximately 400 hidden
neurons, showing no further improvement after this point.

4.4.3.2. GXBM performance on geographical ethnomusicology data. We have
then assessed the reconstruction capabilities of GXBM on a real world dataset.
We have used the Geographical Origin of Music dataset [229]. This contains 1059
tracks from different countries, each track having 70 dimensions (i.e. the first 68
represent audio features, while the last ones are latitude and longitude of each
specific song), already normalized to have mean 0 and standard deviation equal
to 1. We performed a 10-fold cross validation. The averaged results depicted in
Figure 4.5 confirm the same findings obtained on the random generated dataset
(Section 4.4.3.1). Given the same number of weights, GXBM outperforms clearly
GRBM, and outperforms slightly GRBMFixProb and GRBMTrPrTr, while the four
perform similarly when the number of hidden neurons is comparable. By ana-
lyzing the reconstruction performance metrics (i.e. RMSE and PCC) reported in
Figure 4.5 and Figure 4.4 it is interesting to observe that GXBM and GRBMFixProb

are more stable, independently if the data are random or non-random. By contrast,
GRBM and GRBMTrPrTr performance depend more on the data type.

To assess GXBM from a different perspective, we performed a small regression
experiment on the geographical ethnomusicology dataset, even though the regres-
sion task does not constitute one of the goals of this chapter. Thus, we compared
the ability of GRBM and GXBM in predicting the latitude and the longitude
corresponding to the 68 audio features across all the tracks. We can see from Fig-
ure 4.5 that the dataset is well represented with just about 400 hidden neurons;
thus we have used this value in both models. In addition, in GXBM we have set
the visible neurons corresponding to latitude and longitude to the first two visible
neurons having the largest number of connections. We then performed a 10-fold
cross validation to obtain the average distance error between the predicted lati-
tude and longitude and their true value counterparts. The resulting predictions
were 3258 ± 175 kilometers (GRBM) and 3252 ± 176 kilometers (GXBM) which
are comparable to the top performers found in [229], even if it is well known that
GRBMs and RBMs are not best performers on classification and regression tasks,
when used as standalone models - best performance would pursued by stacking
these models in deep architectures [20].

62



4.4. EXPERIMENTAL RESULTS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
M

SE

GRBM
GRBMFixProb

GRBMTrPrTr

GXBM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

PC
C

1000 2000 3000 4000 5000 6000
Number of weights

0

200

400

600

800

1000

1200

N
um

be
r o

f 
 h

id
de

n 
ne

ur
on

s

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e 

 s
ho

rte
st

 p
at

h

102

103

104

105

106

107

N
um

be
r o

f l
ea

rn
ed

 
 p

ar
am

et
er

s 
(lo

g 
sc

al
e)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
M

SE

GRBM
GRBMFixProb

GRBMTrPrTr

GXBM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

PC
C

100 200 300 400 500 600 700 800 900 1000
Number of hidden neurons

0
10000
20000
30000
40000
50000
60000
70000

N
um

be
r o

f 
 w

ei
gh

ts

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e 

 s
ho

rte
st

 p
at

h

102

103

104

105

106

107

N
um

be
r o

f l
ea

rn
ed

 
 p

ar
am

et
er

s 
(lo

g 
sc

al
e)

Figure 4.5 – Reconstruction capabilities on the geographical ethnomusicology
dataset of GRBM, GRBMFixProb, GRBMTrPrTr, and GXBM with: (left) the same
number of weights; (right) the same number of hidden neurons. The straight line
represents the mean; the shadowed area shows the standard deviation. The number
of learned parameters for GRBMTrPrTr is given in green after the last pruning itera-
tion, while above the green color the alternating gray and purple colors represent the
number of learned parameters at each pruning iteration starting with the first one
from the top.

From the third row of Figures 4.4 and 4.5, it is very interesting to observe that,
even if it was not a target, the random generated connections of GRBMFixProb

exhibit a very small average shortest path. This observation may explain the good
performance of GRBMFixProb close to the one of GXBM in this set of experiments,
while having a similar computational time (i.e. the same number of weights to be
computed). Even more, the GRBMTrPrTr models end up still having a small-world
topology after the iterative pruning process. Still, the better performance obtained
by GXBM is given by, all-together, its scale-free topology, the local neighborhoods
connections, and the consideration of data distribution in the topology.
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4.4.4. XBM evaluation

In the third set of experiments, we have assessed the performance of XBM
on the MNIST digits dataset5, CalTech 101 Silhouettes dataset [128], and the 8
datasets from the UCI evaluation suite [105].

Settings, implementations, and performance metrics. To allow for a direct
comparison, we have adopted the same settings for all datasets. This time, all
the models were implemented and the experiments were performed using the
MATLAB R© environment, partially to facilitate the comparisons with the results
reported on the MNIST dataset in [177]. For each RBM model, we have trained
two XBM, two RBMFixProb, and two RBMTrPrTr models, as follows: (1) one having
the same number of hidden neurons, but with much fewer weights; (2) the other
with approximatively the same number of weights but with a higher number of
hidden neurons. Just as in [177], we have used a fixed learning rate (i.e. 0.05) for
all datasets, with the exception of the MNIST dataset when a decreasing learning
rate was used for the situation in which the number of contrastive divergence steps
was gradually increased from 1 up to 25, as suggested in [35]. In all cases, the
number of training epochs was set to 259 and the training and testing data were
split in mini-batches of 100 samples. Finally, to assess the performance of XBM,
RBMFixProb, and RBMTrPrTr, we have used AIS (adopting the very same settings
as in [177]) to estimate the average log-probabilities on the training and testing
data of the datasets.

4.4.4.1. XBM performance on the MNIST digits dataset. The MNIST digits
dataset is widely used to assess the performance of novel machine learning al-
gorithms. The dataset contains 60000 images for training and 10000 images for
testing, each image being a variant of a digit represented by a 28x28 binary matrix.

The results depicted in Table 4.16 confirm the findings from the previous set
of experiments (i.e. GXBM - GRBM case). We see that: (1) given the same
number of hidden neurons an XBM model has a generative performance close to
an RBM, yet having the significant benefit of much fewer weights (i.e. this offers
much smaller computational time); (2) given approximatively the same number
of weights (i.e. at comparable computational time) an XBM model has a better
generative performance than an RBM model. The results suggest that XBM
models can achieve good generative performance already with one step contrastive
divergence and a fix learning rate. This is because the performance gain obtained
by increasing the number of contrastive divergence steps is smaller than in the case
of RBMs. This may be considered also an advantage for XBMs as it is a common
practice to use just one step contrastive divergence to decrease the learning time.
It is worth highlighting, that an XBM with 15702 weights reaches 36.02 nats better
than an RBM with 15680 weights and 20 hidden neurons. Similarly to the GXBM
behaviour, as the models increase in size, we observe that the difference between
XBMs and RBMs gets smaller. For instance, an XBM with 387955 weights is 10.89
nats better than an RBM with 392000 weights, which, further on, is just 6.99 nats
better than an XBM having the same number of hidden neurons (i.e. 500) but
with approximately 40 times fewer weights (i.e. 10790). Also worth noting that

5http://yann.lecun.com/exdb/mnist/, Last visit on October 18th 2015.
6The average cluster coefficient was computed using the method proposed for bipartite

graphs in [107].
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Table 4.1 – Estimation of the average log-probabilities (log-prob) on the training
and testing data obtained from the MNIST digits dataset using AIS. The results for
RBMs are taken from [177].

No. of CD No. of Model No. of Average Average No. of Average Average
steps during weights hidden shortest cluster pruning train test

learning units path coefficient iterations log-prob log-prob

1 (fixed)

15680 RBM 20 1.94 1 0 -164.87 -164.50
15702 XBM 1000 2.70 0.089 0 -130.26 -128.48
15730 RBMFixProb 1000 3.19 0.034 0 -143.32 -142.34
65583 RBMTrPrTr 1000 2.45 0.060 50 -146.51 -147.47
4954 XBM 20 2.01 0.396 0 -167.36 -166.60
4896 RBMFixProb 20 2.25 0.209 0 -169.55 -169.10
6119 RBMTrPrTr 20 2.22 0.276 50 -176.50 -176.20

19600 RBM 25 1.93 1 -153.46 -152.68
19527 XBM 1500 2.70 0.071 0 -126.74 -126.07
19875 RBMFixProb 1500 3.28 0.037 0 -143.83 -142.91

103395 RBMTrPrTr 1500 2.38 0.059 50 -148.49 -151.08
6358 XBM 25 2.01 0.350 0 -163.39 -161.09
6389 RBMFixProb 25 2.12 0.205 0 -162.66 -162.02
6593 RBMTrPrTr 25 2.25 0.234 23 -170.29 -169.68

392000 RBM 500 1.52 1 0 -122.86 -125.53
387955 XBM 27000 2.05 0.156 0 -115.28 -114.64
391170 RBMFixProb 27000 2.87 0.053 0 -140.97 -140.30

2204393 RBMTrPrTr 27000 2.10 0.071 50 -602.94 -652.21
10790 XBM 500 2.44 0.082 0 -134.06 -132.52
10846 RBMFixProb 500 3.12 0.039 0 -149.27 -148.42
29616 RBMTrPrTr 500 2.62 0.064 50 -131.48 -131.34

3 (fixed)

19600 RBM 25 1.93 1 0 -144.11 -143.20
19527 XBM 1500 2.70 0.071 0 -122.19 -121.59
19875 RBMFixProb 1500 3.28 0.037 0 -139.89 -138.86

142237 RBMTrPrTr 1500 2.34 0.074 50 -116.11 -120.50
6358 XBM 25 2.01 0.350 0 -158.67 -157.69
6389 RBMFixProb 25 2.12 0.205 0 -161.35 -160.69
7715 RBMTrPrTr 25 2.14 0.259 50 -159.05 -158.39

392000 RBM 500 1.52 1 0 -102.81 -105.50
387955 XBM 27000 2.05 0.156 0 -103.66 -101.93
391170 RBMFixProb 27000 2.87 0.053 0 -125.51 -125.03

2827787 RBMTrPrTr 27000 2.05 0.087 5 -488.07 -512.56
10790 XBM 500 2.44 0.082 0 -128.07 -127.41
10846 RBMFixProb 500 3.12 0.039 0 -145.11 -144.08
38991 RBMTrPrTr 500 2.46 0.069 50 -112.27 -112.45

from 1 to 25

392000 RBM 500 1.52 1 0 -83.10 -86.34
387955 XBM 27000 2.05 0.156 0 -86.12 -85.21
391170 RBMFixProb 27000 2.87 0.053 0 -107.23 -106.78

3262957 RBMTrPrTr 27000 2.18 0.076 50 -349.87 -376.92
(variable) 10790 XBM 500 2.44 0.082 0 -121.26 -120.43

10846 RBMFixProb 500 3.12 0.039 0 -136.27 -135.89
36674 RBMTrPrTr 500 2.35 0.071 50 -134.25 -135.76

when the CD learning steps were gradually increased from 1 to 25 the XBM model
with 387955 weights slightly outperformed (i.e. 1.13 nats) the RBM model having
500 hidden neurons and 392000 weights trained in [177]. We should note that the
latter is considered to be one of the best generative RBM models reported in the
literature, to the best of our knowledge.

Finally, we would like to highlight that in 5 out of the 6 cases considered, XBMs
outperform all the other models including the sparse ones, while in the remaining
case, the best performer is not the fully connected RBM as expected, but still
a sparse model,i.e. RBMTrPrTr. Yet, the latter one, same as in Subsection 4.4.3,
shows some robustness issues as it performs very badly for a large number of hidden
neurons (i.e. 27000), while its computational time is much higher than for all the
other models considered. Remarkably, RBMFixProb obtains very good results in
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Table 4.2 – Estimation of the average log-probabilities (log-prob) on the training
and testing data obtained from the CalTech 101 Silhouettes dataset using 1 step CD
and AIS.

Dataset No. of Model No. of Average Average No. of Average Average
weights hidden shortest cluster pruning train test

units path coefficient iterations log-prob log-prob
19600 RBM 25 1.93 1 0 -329.74 -315.22
19201 XBM 1500 2.91 0.099 0 -146.97 -142.96
19979 RBMFixProb 1500 3.28 0.037 0 -164.84 -162.41

414478 RBMTrPrTr 1500 2.13 0.223 50 -141.77 -360.24
6423 XBM 25 2.02 0.47 0 -330.37 -323.01
6341 RBMFixProb 25 2.14 0.20 0 -356.68 -353.25

28x28 6531 RBMTrPrTr 25 2.04 0.316 13 -350.66 -339.94
image size 392000 RBM 500 1.52 1 0 -161.05 -261.44

392464 XBM 27000 2.05 0.136 0 -178.16 -187.49
381228 RBMFixProb 27000 3.51 0.040 0 -277.06 -283.15
390410 RBMTrPrTr 27000 3.02 0.017 13 -145.38 -307.14
11077 XBM 500 2.46 0.094 0 -169.56 -164.07
11350 RBMFixProb 500 3.09 0.038 0 -196.24 -191.71
34479 RBMTrPrTr 500 2.15 0.212 50 -240.09 -403.63

6400 RBM 25 1.83 1 0 -102.87 -94.88
6359 XBM 500 2.40 0.095 0 -74.60 -69.95
6364 RBMFixProb 500 2.93 0.048 0 -94.68 -89.93

44573 RBMTrPrTr 500 2.13 0.211 50 -121.19 -166.37
2296 XBM 25 2.04 0.400 0 -99.78 -93.64
2321 RBMFixProb 25 2.09 0.226 0 -100.18 -92.89

16x16 2084 RBMTrPrTr 25 2.03 0.350 3 -114.54 -106.69
image size 128000 RBM 500 1.54 1 0 -70.89 -98.64

123580 XBM 10000 2.04 0.191 0 -77.96 -78.43
122841 RBMFixProb 10000 3.09 0.055 0 -104.06 -102.90
609307 RBMTrPrTr 10000 2.09 0.114 50 -102.48 -101.16

6721 XBM 500 2.70 0.147 0 -73.83 -69.29
6407 RBMFixProb 500 2.92 0.048 0 -83.37 -78.48

44573 RBMTrPrTr 500 2.13 0.211 50 -121.19 -166.37

all cases, being behind XBM just from few up to a maximum of approximately 25
nats in the worst case.

4.4.4.2. XBM performance on the CalTech 101 Silhouettes dataset. To con-
firm the previous results on a different (more complicated) dataset, further on we
assess XBMs generative performance on the CalTech 101 Silhouettes dataset [128].
This dataset contains silhouettes of objects extracted from the CalTech 101 image
dataset. In total it has 101 classes and two datasets. One with binary images
of 28x28 pixels split in a training set of 4100 samples and a testing set of 2307
samples, and one with binary images of 16x16 pixels split in a training set of 4082
samples and a testing set of 2302 samples. As our goal was not to fine tune the four
models, but to have a clear direct comparison between them, for each dataset we
have used 1 CD step and we considered two evaluation cases, a small RBM (i.e. 25
hidden neurons) and a large one (i.e. 500 hidden neurons). Table 4.2 confirms our
previous findings and shows that XBMs are still the best performers outperforming
clearly all the other models, with a striking difference of 118.48 nats against fully
connected RBMs (which are subject to over-fitting) on the dataset of 28x28 image
size. On both datasets, it is interesting to see that the best XBMs performers are
not the largest models (i.e. 27000 and 10000 hidden neurons, respectively), but
the average size ones (i.e. 1500 and 500 hidden neurons, respectively).

4.4.4.3. XBM performance on the UCI evaluation suite. Up to now all the
datasets used to evaluate the XBMs were binarized images. In this last subset of
experiments, we use the UCI evaluation suite, which contains 8 binary datasets
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Table 4.3 – The characteristics of the UCI evaluation suite datasets.

Dataset No. of inputs Training set size Testing set size
Adult 123 5000 26147

Connect4 126 16000 47557
DNA 180 1400 1186

Mushrooms 112 2000 5624
NIPS-0-12 500 400 1240

OCR-letters 128 32152 10000
RCV1 150 40000 150000

Web 300 14000 32561

coming from various domains. These datasets are carefully selected by [105] to
assess the performance of generative and density estimation models. Their charac-
teristics are well described in [72] and are summarized in Table 4.3. As before, to
have a clear direct comparisons of all sparse models we have compared them with
baseline fully connected RBMs with 100 hidden neurons using standard 1 CD step.
Table 4.4 summarizes the results. XBMs outperform all the other models, includ-
ing the fully connected RBMs, on 7 out of the 8 datasets. As usual, RBMFixProb

shows a good performance overall, being even the best performer on one dataset,
i.e. Connect4. By contrast, RBMTrPrTr has robustness issues, sometimes show-
ing good generative capabilities and sometimes not. Even if it was not in our
goal to outperform the best results from the literature and, as a consequence, we
did not fine tune any parameter and we did not try other training algorithms,
XBMs reach on all datasets very good performances close to the ones of the best
generative models carefully optimized in [72].

To summarize this set of experiments performed on 10 binary datasets (i.e.
MNIST digits, CalTech 101 Silhouettes, and UCI evaluation suite), we report
that XBMs outperform all the other models in 16 out of 18 cases considered.
In the other two cases, the winner is once RBMFixProb, and once RBMTrPrTr.
Besides that, a very interesting finding is that in all cases RBMTrPrTr models
end up having a small-world topology, as reflected by their average shortest path
and cluster coefficient. Similarly, RBMFixProb models reach a very small average
shortest path (suitable to be qualified as small-worlds), but we can not consider
them to be purely small-worlds as their average cluster coefficient represents the
one obtained by random chance. Still, the better overall performance obtained by
XBMs may be explain by the fact that its small-world topology is supplemented by
its other designed topological features, i.e. scale-free property, the consideration of
local neighborhoods and data distribution. As reflected by experiments (including
the ones with real-valued data for GXBMs) these features complements each other,
while helping XBMs to model well very different data types.

4.5. Conclusion

In this chapter we look at the deep learning basic building blocks from a topo-
logical perspective, bringing insights from network science. Firstly, we point out
that RBMs and GRBMs are small-world bipartite networks. Secondly, by intro-
ducing scale-free constraints in RBMs and GRBMs, while still considering some lo-
cal neighborhoods of visible neurons, and fitting the most connected visible neurons
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Table 4.4 – Estimation of the average log-probabilities (log-prob) on the training
and testing data obtained from the UCI evaluation suite datasets using using 1 step
CD and AIS.

Dataset No. of Model No. of Average Average No. of Average Average
weights hidden shortest cluster pruning train test

units path coefficient iterations log-prob log-prob

Adult

12300 RBM 100 1.49 1 0 -17.56 -17.86
12911 XBM 1200 2.35 0.154 0 -15.51 -15.89
12692 RBMFixProb 1200 2.80 0.072 0 -17.31 -17.56
11211 RBMTrPrTr 1200 2.56 0.071 4 -135.29 -135.98
1617 XBM 100 2.36 0.129 0 -17.92 -17.97
1641 RBMFixProb 100 2.50 0.082 0 -18.95 -19.04
2089 RBMTrPrTr 100 2.28 0.348 2 -100.20 -100.40

Connect4

12600 RBM 100 1.49 1 0 -16.80 -17.00
12481 XBM 1200 2.14 0.142 0 -17.27 -17.37
12498 RBMFixProb 1200 2.83 0.072 0 -15.13 -15.23
51412 RBMTrPrTr 1200 2.10 0.211 50 -17.63 -18.11
1692 XBM 100 2.36 0.164 0 -25.63 -25.68
1722 RBMFixProb 100 2.48 0.083 0 -32.01 -32.03
1922 RBMTrPrTr 100 2.43 0.188 6 -41.43 -41.52

DNA

18000 RBM 100 1.53 1 0 -94.75 -99.52
17801 XBM 1600 2.71 0.157 0 -79.05 -83.17
18314 RBMFixProb 1600 2.93 0.060 0 -78.57 -85.53
17597 RBMTrPrTr 1600 3.26 0.087 13 -143.77 -155.75
2267 XBM 100 2.41 0.133 0 -89.31 -90.31
2291 RBMFixProb 100 2.51 0.079 0 -91.53 -92.98
2231 RBMTrPrTr 100 2.44 0.177 4 -111.45 -114.17

Mushrooms

11200 RBM 100 1.49 1 0 -24.77 -25.60
10830 XBM 1000 2.14 0.156 0 -14.21 -14.71
10639 RBMFixProb 1000 2.73 0.075 0 -15.29 -15.82
22376 RBMTrPrTr 1000 2.26 2.26 50 -21.76 -23.09
1515 XBM 100 2.39 0.11 0 -17.14 -17.54
1451 RBMFixProb 100 2.54 0.083 0 -19.97 -20.21
2017 RBMTrPrTr 100 2.35 0.155 31 -21.52 -22.05

NIPS-0-12

50000 RBM 100 1.71 1 0 -251.44 -300.89
50977 XBM 4500 2.17 0.127 0 -284.59 -289.47
50609 RBMFixProb 4500 3.43 0.048 0 -226.90 -293.74
43569 RBMTrPrTr 4500 3.00 0.040 7 -309.68 -525.63
5144 XBM 100 2.22 0.113 0 -274.07 -287.43
4966 RBMFixProb 100 2.74 0.078 0 -272.95 -286.77
5220 RBMTrPrTr 100 2.29 0.164 41 -253.09 -289.62

OCR-letters

12800 RBM 100 1.49 1 0 -39.40 -39.58
13053 XBM 1200 2.14 0.190 0 -33.07 -33.08
12957 RBMFixProb 1200 2.80 0.070 0 -40.03 -40.16
14139 RBMTrPrTr 1200 2.83 0.075 12 -44.17 -45.15
1710 XBM 100 2.36 0.154 0 -45.70 -45.68
1743 RBMFixProb 100 2.49 0.083 0 -49.20 -49.10
1960 RBMTrPrTr 100 2.58 0.127 4 -63.72 -63.69

RCV1

15000 RBM 100 1.51 1 0 -52.04 -52.50
14797 XBM 1400 2.15 0.162 0 -49.22 -49.68
15003 RBMFixProb 1400 2.90 0.066 0 -50.06 -50.59
27555 RBMTrPrTr 1400 2.58 0.081 50 -57.05 -59.47
1992 XBM 100 2.35 0.151 0 -52.15 -52.30
1994 RBMFixProb 100 2.49 0.081 0 -52.01 -52.17
2999 RBMTrPrTr 100 2.33 0.147 15 -54.68 -54.94

Web

30000 RBM 100 1.62 1 0 -35.46 -35.43
29893 XBM 2600 2.17 0.123 0 -30.00 -30.62
29780 RBMFixProb 2600 3.20 0.052 0 -45.52 -46.09
34041 RBMTrPrTr 2600 3.33 0.070 50 -1114.93 -1118.98
3433 XBM 100 2.28 0.149 0 -33.99 -33.97
3333 RBMFixProb 100 2.62 0.076 0 -38.40 -38.30
1302 RBMTrPrTr 100 2.42 0.360 2 -252.90 -252.88
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to the most important data features, we propose two novel types of Boltzmann ma-
chine models, dubbed complex Boltzmann machine and Gaussian complex Boltz-
mann machine. Looking at both artificial and real-world datasets (i.e. Geograph-
ical Origin of Music, MNIST digits, CalTech 101 Silhouettes, and UCI evaluation
suite) we show that XBM and GXBM obtain better performance than other two
sparse models (i.e. RBMFixProb/GRBMFixProb and RBMTrPrTr/GRBMTrPrTr) and
we illustrate how they outperform even the fully connected RBM and GRBM,
respectively:

(1) Given the same number of hidden neurons, our proposed models exhibit
much faster computational time thanks to a smaller number of parame-
ters which have to be computed (up to a few orders of magnitude smaller
than in RBM and GRBM) and comparable reconstruction capabilities.

(2) Given the same number of weights, or implicitly a much higher number
of hidden neurons for XBM and GXBM, they significantly outperform
RBM and GRBM, respectively.

It is worth noting that as the number of neurons increases the order of mag-
nitude between the number of weights in XBM/GXBM and in RBM/GRBM also
increases (e.g. one order of magnitude fewer weights in a XBM/GXBM with 100
visible and 100 hidden neurons, and two orders reduction in a XBM/GXBM with
1000 visible and 1000 hidden neurons). This relation will help increasing the typ-
ical number of neurons in deep artificial neural networks from the few hundred
thousands of today [13, 101] to even billions in the near-future. In turn this
will lead to the ability to tackle problems having much higher dimensional data -
something that is today unfeasible without performing dimensionality reduction.
For instance, when working on ordinary images7 today is still a common prac-
tice to first extract features using standard image processing techniques, and just
those features can be served as inputs to deep models - an example can be found
in [189]. We speculate that another significant benefit of using sparse topolo-
gies, as in XBM/GXBM, would be the ability to better disentangle the features
extracted automatically by the hidden layer.

To conclude, in this chapter, we have shown empirically on 12 datasets that
our proposed models, i.e. XBMs and GXBMs, achieve a very good performance
as generative models. We mention that more research has to be done in order
to understand why their proposed topology (e.g. the scale-free constraints) makes
them to perform so well. Further on, we intend to investigate all these directions
and to study analytically how the various parameters of the topology-generation
algorithm (implicitly the bipartite graph properties) may increase or decrease the
generative and discriminative capabilities of XBMs and GXBMs, respectively.

7Please note that a normal RGB image of 1000 by 1000 pixels has 3000000 dimensions.
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CHAPTER 5

Quadratic parameter reduction in artificial neural
networks

In the previous chapter we pioneered the use of formalized sparse topologies
encountered in real-world complex networks, i.e. scale-free and small-world, to
improve the performance of restricted Boltzmann machines and reduce their pa-
rameters. Here, we take that work to the next level. Taking inspiration from the
networks properties of biological neural networks (e.g. sparsity, scale-freeness), we
argue that (contrary to general practice) Artificial Neural Networks (ANN), too,
should not have fully-connected layers. We show how ANNs perform perfectly well
on sparsely-connected layers. Following a Darwinian evolutionary approach, we
propose a novel algorithm which evolves an initial random sparse topology (i.e. an
Erdős-Rényi random graph) of two consecutive layers of neurons into a scale-free
topology, during the ANN training process. The resulted sparse layers can safely
replace the corresponding fully-connected layers. Our method allows to quadrat-
ically reduce the number of parameters in ANNs, yielding to quadratically faster
computational times in both phases (i.e. training and exploitation), at no decrease
in accuracy. We demonstrate our claims on two popular ANN types (i.e. restricted
Boltzmann machine and multi-layer perceptron), on two types of tasks (i.e. super-
vised and unsupervised learning), and on 14 benchmark datasets. We anticipate
that our approach will enable ANNs having billions of neurons and evolutionary
topologies capable of handling complex real-world tasks that are intractable by state-
of-the-art methods.

5.1. Introduction

Through the success of deep learning [110], Artificial Neural Networks (ANNs)
are among the most used artificial intelligence methods nowadays. ANNs have led
to major breakthroughs in various domains, such as particle physics [15], rein-
forcement learning [133], speech recognition, and so on [110]. Typically, ANNs
have layers of fully-connected neurons [110], which contain most of the network
parameters (i.e. the weighted connections), leading to a quadratic number of con-
nections with respect to their number of neurons. In turn, the network size is
severely limited, due to obvious computational limitations.

By the very contrast to ANNs, biological neural networks have been demon-
strated to have a sparse (rather than dense) topology [168, 192], and also hold
other important properties that are instrumental to learning efficiency. These

This chapter is integrally based on: D.C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M.
Gibescu, A. Liotta: Evolutionary Training of Sparse Artificial Neural Networks: A Network

Science Perspective, 2017 (submitted for journal publication).
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have been extensively studied in [34] and include scale-freeness [19] and small-
worldness [218]. Nevertheless, ANNs have not evolved to mimic these topological
features [140, 144], which is why in practice they lead to extremely large mod-
els. Previous studies have demonstrated that, following the training phase, ANN
models end up with weights histograms that peak around zero [53,77,227]. More-
over, in our previous work [145], we have hinted a similar fact, as it is depicted in
Figure A.7 from Appendix A. Yet, in the machine learning state-of-the-art, sparse
topological connectivity is pursued only as an aftermath of the training phase [77],
which bears benefits only to the exploitation phase.

We claim that topological sparsity must be pursued since the ANN design
phase, which leads to a substantial reduction in connections and, in turn, to mem-
ory and computational efficiency. At the same time, to be able to make use of
standard training algorithms, e.g. Stochastic Gradient Descent (SGD), the struc-
tured multi-layer architecture of ANNs has to be preserved. Otherwise we would
not be able to train large ANNs with a complete random sparse topology, due to
the difficulty of finding suitable optimization algorithms.

In a recent paper, we introduced compleX Boltzmann Machines (XBMs), a
sparse variant of Restricted Boltzmann Machines (RBMs), conceived with a sparse
scale-free topology [144]. XBMs outperform their fully-connected RBMs counter-
parts and are much faster, both in the training and the exploitation phases. Yet,
being based on a fixed sparsity pattern, XBMs may fail to properly model the data
distribution. To overcome this limitation, in this chapter we introduce a Sparse
Evolutionary Training (SET) procedure, which takes into consideration data dis-
tributions and creates sparse bipartite layers suitable to replace the fully-connected
bipartite layers in any type of ANNs.

SET follows the natural simplicity of the Darwinian evolutionary approach,
which was explored successfully in our previous work on evolutionary function ap-
proximation [221]. The bipartite ANN layers start from a random sparse topology
(i.e. Erdős-Rényi random graph [57]), evolving through a random process during
the training phase into a scale-free topology. Remarkably, this process does not
have to incorporate any constraints to force the scale-free topology. But our evo-
lutionary algorithm is not arbitrary: it follows a phenomenon that takes place
in real-world complex networks (such as biological neural networks, and protein
interaction networks). Starting from an Erdős-Rényi random graph topology and
throughout millenniums of natural evolution, networks end-up with a more struc-
tured connectivity, i.e. scale-free [19] or small-world [218] topologies.

The remainder of this chapter is organized as follows. Section 5.2 presents
background knowledge mainly for the benefit of the less specialist reader. Sec-
tion 5.3 introduces the proposed method, SET. Section 5.4 describes the exper-
iments performed and discusses the results. Finally, Section 5.5 concludes the
chapter and proposes future research directions.

5.2. Background

5.2.1. Artificial neural networks

Artificial Neural Networks [21] are mathematical models, inspired by biolog-
ical neural networks, which can be used in all three machine learning paradigms
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(i.e. supervised learning [78], unsupervised learning [78], and reinforcement learn-
ing [193]). These make them very versatile and powerful, as quantifiable by the
remarkable success registered recently by the last generation of ANNs (also known
as deep artificial neural networks or deep learning [110]) in many fields from com-
puter vision [110] to gaming [133, 183]. Just like their biological counterparts,
ANNs are composed by neurons and weighted connections between these neurons.
Based on their purposes and architectures, there are many models of ANNs, such
as restricted Boltzmann machines [187], multi layer perceptron [173], convolu-
tional neural networks [111], recurrent neural networks [74], and so on. Many
of these ANN models contain fully-connected layers. A fully-connected layer of
neurons means that all its neurons are connected to all the neurons belonging to
its adjacent layer in the ANN architecture. For the purpose of this chapter, in
this section we briefly describe two models that contain fully-connected layers, i.e.
Restricted Boltzmann Machines [187] and multi layer perceptron [173].

A restricted Boltzmann machine is a two-layer, generative, stochastic neural
network that is capable to learn a probability distribution over a set of inputs [187]
in an unsupervised manner. From a topological perspective, it allows only inter-
layer connections. Its two layers are: the visible layer, in which the neurons
represent the input data; and the hidden layer, in which the neurons represent the
features automatically extracted by the RBM model from the input data. Each
visible neuron is connected to all hidden neurons through a weighted undirected
connection, leading to a fully-connected topology between the two layers. Thus,
the flow of information is bidirectional in RBMs, from the visible layer to the
hidden layer, and from the hidden layer to the visible layer, respectively. RBMs,
beside being very successful in providing very good initialization weights to the su-
pervised training of deep artificial neural network architectures [82], are also very
successful as stand alone models in a variety of tasks, such as density estimation to
model human choice [163], collaborative filtering [176], information retrieval [70],
multi-class classification [104], and so on.

Multi Layer Perceptron [173] (MLP) is a classical feed-forward ANN model
that maps a set of input data to the corresponding set of output data. Thus, it
is used for supervised learning. It is composed by an input layer in which the
neurons represent the input data, an output layer in which the neurons repre-
sent the output data, and an arbitrary number of hidden layers in between, with
neurons representing the hidden features of the input data (to be automatically
discovered). The flow of information in MLPs is unidirectional, starting from
the input layer towards the output layer. Thus, the connections are unidirectional
and exist just between consecutive layers. Any two consecutive layers in MLPs are
fully-connected. There are no connections between the neurons belonging to the
same layer, or between the neurons belonging to layers which are not consecutive.
In [47], it has been demonstrated that MLPs are universal function approximators,
so they can be used to model any type of regression or classification problems.

In general, working with ANN models involves two phases: (1) training (or
learning), in which the weighted connections between neurons are optimized using
various algorithms (e.g. backpropagation procedure combined with stochastic gra-
dient descent [27,174] used in MLPs, contrastive divergence [81] used in RBMs)
to minimize a loss function defined by their purpose; and (2) exploitation, in which
the optimized ANN model is used to fulfill its purpose.
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SCk 

hk-1 

hk 

+ + .  .  . 

Figure 5.1 – An illustration of the SET procedure. For each Sparse Connected layer,
SCk (left plot), of an ANN at the end of a training epoch a fraction of the weights,
the ones closest to zero, are removed (top middle plot). Then, new weighs are added
randomly in the same amount as the ones previously removed (bottom middle plot).
Further on, a new training epoch is performed (right plot), and the procedure to
remove and add weights is repeated. The process continues for a finite number of
training epochs, as usual in the ANNs training.

5.2.2. Scale-free complex networks

Complex networks (e.g. biological neural networks, actors and movies, power
grids, transportation networks) are everywhere, in different forms, and different
fields (from neurobiology to statistical physics [192]). Formally, a complex network
is a graph with non-trivial topological features, human- or nature-made. One of
the most well-known and deeply studied type of topological features in complex
networks is scale-freeness, due to the fact that a wide range of real-world complex
networks have this topology. A network with a scale-free topology [19] is a sparse
graph [51] that approximately has a power-law degree distribution P (d) ∼ d−γ ,
where the fraction P (d) from the total nodes of the network has d connections to
other nodes, and the parameter γ usually stays in the range γ ∈ (2, 3).

5.3. Sparse Evolutionary Training (SET)

SET is detailed in Appendix B, Algorithm B.4, and exemplified in Figure 5.1.
Formally, let us defined a Sparse Connected (SCk) layer in an ANN. This layer
has nk neurons, collected in a vector hk = [hk1 , h

k
2 , ..., h

k
nk ]. Any neuron from hk

is connected to an arbitrary number of neurons belonging to layer below hk−1.
The connections between the two layers are collected in a sparse weight matrix

Wk ∈ Rnk−1×nk . Initially, Wk is a Erdős-Rényi random graph, in which the
probability of the connection between the neuron hki and hk−1

j to exist is given by:

p(W k
ij) =

ε(nk + nk−1)

nknk−1
(5.1)

whereby ε ∈ R+ is a parameter of SET controlling the sparsity level. If ε� nk and
ε � nk+1 then there is a linear number of connections (i.e. non-zero elements),
nW = |Wk| = ε(nk + nk−1), with respect to the number of neurons in the sparse
layers. In the case of fully-connected layers the number of connections is quadratic,
i.e. nknk−1.

However, it may be that this random generated topology is not suited to the
particularities of the data that the ANN model tries to learn. To overcome this
situation, during the training process, after each training epoch, a fraction ζ of the
smallest positive weights and of the highest negative weights of SCk is removed.
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These removed weights are the ones closest to zero, thus we do not expect that their
removal will notably change the model performance [77]. Next, to let the topology
of SCk to evolve so as to fit the data, an amount of new random connections, equal
to the amount of weights removed previously, is added to SCk. In this way, the
number of connections in SCk remains constant during the training process. After
the training ends, we keep the topology of SCk as the one obtained after the last
weight removal step, without adding new random connections.

It is worth highlighting that in the initial phase of conceiving the SET proce-
dure, the weight-removal and weight-addition steps after each training epoch were
introduced intuitively. Still, in the last phases of preparing this chapter we have
found that there is a similarity between SET and a phenomenon which takes place
in biological brains, named synaptic shrinking during sleep. This phenomenon has
been demonstrated recently in two papers published in the Science journal in Feb-
ruary 2017 [50,54]. In short, it was found that during sleep the weakest synapses
in the brain shrink, while the strongest synapses remain unaltered, supporting the
hypothesis that one of the core functions of sleeping is to renormalize the overall
synaptic strength increased while awake [50]. By keeping the analogy, this is - in
a way - what happens also with the ANNs during the SET procedure.

5.4. Experiments and results

5.4.1. Evaluation method

We evaluate SET in two types of ANNs, i.e. restricted Boltzmann machine [187],
and Multi Layer Perceptron (MLP) [110], to experiment with both unsupervised
and supervised learning. In total, we evaluate SET on 14 benchmark datasets, as
detailed in Table 5.1, covering a wide range of fields in which ANNs are employed,
such as biology, physics, computer vision, data mining, and economics. We also
assess SET in combination with two different training methods, i.e. contrastive
divergence [81] and stochastic gradient descent [110].

5.4.2. SET performance on restricted Boltzmann machines

First, we have analyzed the performance of SET on a bipartite undirected
stochastic ANN model, i.e. restricted Boltzmann machine [187], which is popular
for its unsupervised learning capability [20] and high performance as a feature
extractor and density estimator [163]. The new model derived from the SET
procedure was dubbed SET-RBM. In all experiments, we set ε = 11, and ζ = 0.3,
performing a small random search.

There are few studies on RBM connectivity sparsity [144]. Still, to get a good
estimation of SET-RBM capabilities we compared it against RBMFixProb [144]
(a sparse RBM model with a fixed Erdős-Rényi topology), fully-connected RBMs,
and with the state-of-the-art results of XBMs from [144]. We performed exper-
iments on 11 benchmark datasets coming from various domains, as depicted in
Table 5.1, using the same splitting for training and testing data as in [144]. All
models were trained for 5000 epochs using Contrastive Divergence [81] (CD) with
1, 3, and 10 CD steps, a learning rate of 0.01, a momentum of 0.9, and a weight de-
cay of 0.0002, as discussed in [83]. We evaluated the generative performance of the
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Figure 5.2 – Experiments with RBM variants using 11 benchmark datasets. For
each model studied we have considered three cases for the number of Contrastive
Divergence steps nCD = {1, 3, 10}, and three cases for the number of hidden neurons
(nh). For the first 8 datasets (from top to bottom) we have used nh = {100, 250, 500},
and for the last three datasets we have used nh = {500, 2500, 5000}. The x-axes show
the training epochs; the left y-axes show the average log-probabilities computed on
the test data with AIS [177]; and the right y-axes (the stacked bar on the right part
of the plots) reflect the fraction given by the nW of each model over the sum of the
nW of all three models. Overall, SET-RBM outperforms the other two models in
most of the cases. Also, it is interesting to see that SET-RBM and RBMFixProb are
much more stable and do not present the over-fitting problems of RBM.
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Figure 5.3 – SET-RBM evolution towards a scale-free topology. We have considered
three cases for the number of Contrastive Divergence steps nCD = {1, 3, 10}, and
three cases for the number of hidden neurons (nh). For the first 8 datasets (from top
to bottom) we have used nh = {100, 250, 500}, and for the last three datasets we have
used nh = {500, 2500, 5000}. The x-axes show the training epochs; the left y-axes
(red color) show the average log-probabilities computed for SET-RBMs on the test
data with AIS [177]; and the right y-axes (cyan color) show the p-values computed
between the degree distribution of the hidden neurons in SET-RBM and a power-law
distribution. We may observe that for models with a high enough number of hidden
neurons, the SET-RBM topology always tends to become scale-free.
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scrutinized models by computing the log-probabilities on the test data using An-
nealed Importance Sampling (AIS) [177], setting all parameters as in [144,177].
We have used MATLAB for this set of experiments. We implemented SET-RBM
and RBMFixProb ourselves; while for RBM and AIS we have adapted the code
provided by [177].

Figure 5.2 depicts the models performance on all datasets, using various
amounts of hidden neurons; while Table 5.2 summarizes the results, presenting the
best performer for each type of model for each dataset. In 7 out of 11 datasets,
SET-RBM outperforms the fully-connected RBMs, while reducing the parameters
by a few orders of magnitude. For instance, on the MNIST dataset, SET-RBM
reaches -86.41 nats, with a 5.29-fold improvement over the fully-connected RBM,
and a parameters reduction down to 2%. In 10 out of 11 datasets, SET-RBM
outperforms XBM, which represents the state-of-the-art results on these datasets
for sparse variants of RBM [144].

Figure 5.2 shows striking results on stability. While fully-connected RBMs
show instability and over-fitting issues, the SET procedure stabilizes SET-RBMs
and avoids over-fitting. This situation can be observed more often when a high
number of hidden neurons is chosen (columns 2, 3, 5, 6, 8, and 9 of Figure 5.2).
For instance, if we look at the DNA dataset, independently on the values of nh and
nCD (Figure 5.2, third row), we may observe that SET-RBMs are very stable after
they reach around -85 nats, having almost a flat learning behavior after that point.
Contrary, on the same dataset, the fully-connected RBMs have a very short initial
good learning behavior (for few epochs) and, after that, they go up and down
during the 5000 epochs analyzed, reaching the minimum performance of -160 nats
(Figure 5.2, third row, last column). We have to mention that these good stability
and over-fitting avoidance capacity, are induced not just by the SET procedure,
but also by the sparsity itself, as RBMFixProb, too, has a stable behavior in almost
all the cases.

We finally verified our initial hypothesis about sparse connectivity in SET-
RBM. Figure 5.3 shows how the connectivity naturally evolves towards a scale-free
topology. To assess this fact, we have used the null hypothesis from statistics [58],
which assumes that there is no relation between two measured phenomena. To
see if the null hypothesis between the degree distribution of the hidden neurons
and a power-law distribution can be rejected, we have computed the p-value [160]
between them. To reject the null hypothesis the p-value has to be lower than
a statistically significant threshold of 0.05. In all cases (all plots of Figure 5.3),
looking at the p-values (y-axes to the right of the plots), we can see that at the
beginning of the learning phase the null hypothesis is not rejected. This was to be
expected, as the initial degree distribution of the hidden neurons is binomial due
to the randomness of the Erdős-Rényi random graphs [158] used to initialize the
SET-RBMs topology.

Subsequently, during the learning phase, we can see that, in many cases, the
p-values decrease considerably under the 0.05 threshold during training. When
these situations occur, it means that the degree distribution of the hidden neurons
in SET-RBM starts to approximate a power-law distribution. As to be expected,
the cases with fewer neurons (e.g. Figure 5.3, fifth row, first column) fail to evolve
to scale-free topologies, while the cases with more neurons always evolve towards
a scale-free topology (Figure 5.3, columns 3, 6, and 9). To summarize, in 70 out
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of 99 cases studied, the SET-RBMs topology evolves clearly during the learning
phase from an Erdős-Rényi topology towards a scale-free one.

We can conclude that the SET procedure is coherent with real-world complex
networks, whereby nodes connections tend to evolve into scale-free topologies [18].
This feature has important implications in ANNs: we could envision a computa-
tional time reduction by reducing the number of training epochs, if we would use
for instance preferential attachment algorithms [9] to evolve faster the topology
of the bipartite ANN layers towards a scale-free one. Of course, this possible im-
provement has to be treated carefully, as forcing the model topology to evolve
unnaturally faster into a scale-free topology may be prone to errors - for instance,
the data distribution may not be perfectly matched.

5.4.3. SET performance on multi layer perceptron

To better explore the capabilities of SET, we have also assessed its performance
on classifications tasks based on supervised learning. We developed a variant
of Multi Layer Perceptron (MLP) [110], dubbed SET-MLP, in which the fully-
connected layers have been replaced with sparse layers obtained through the SET
procedure, with ε = 20, and ζ = 0.3. We kept the ζ parameter as in the previous
case of SET-RBMs, while for the ε parameter we performed a small random search.
We compared SET-MLP to a standard fully-connected MLP, and to a sparse vari-
ant of MLP having a fixed Erdős-Rényi topology, dubbed MLPFixProb. For the
assessment, we have used three benchmark datasets (Table 5.1), two coming from
the computer vision domain (MNIST and CIFAR10), and one from particle physics
(the HIGGS dataset [15]). In all cases, we have used the same data processing
techniques, network architecture, training method (i.e. Stochastic Gradient De-
scent [110] with fixed learning rate of 0.01, momentum of 0.9, and weight decay of
0.0002), and a dropout rate of 0.3 (Table 5.3). The only difference between MLP,
MLPFixProb, and SET-MLP, consisted in their topological connectivity. We have
used Python and the Keras library [40] with Theano back-end [7] for this set of
experiments. For MLP we have used the standard Keras implementation, while we
implemented ourselves SET-MLP and MLPFixProb on top of the standard Keras
libraries.

The results depicted in Figure 5.4 show how SET-MLP outperforms MLPFixProb.
Moreover, SET-MLP always outperforms MLP, while having two orders of magni-
tude fewer parameters. Looking at the CIFAR10 dataset, we can see that with only
just 1% of the weights of MLP, SET-MLP leads to significant gains. At the same
time, SET-MLP has comparable results with state-of-the-art MLP models after
these have been carefully fine-tuned. To quantify, the second best MLP model in
the literature on CIFAR10 reaches about 74.1% classification accuracy [204] and
has 31 million parameters: while SET-MLP reaches a better accuracy (74.84%)
having just about 0.3 million parameters. Moreover, the best MLP model in the
literature on CIFAR10 has 78.62% accuracy [117], with about 12 million param-
eters, while also benefiting from a pre-training phase [80,82]. Although we have
not pre-trained the MLP models studied here, we should mention that SET-RBM
can be easily used to pre-train a SET-MLP model to further improve performance.
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Figure 5.4 – Experiments with MLP variants using 3 benchmark datasets. The plots
on the left side reflect models performance in terms of classification accuracy (left y-
axes) over training epochs (x-axes); the right y-axes of the left plots give the p-values
computed between the degree distribution of the hidden neurons of the SET-MLP
models and a power-law distribution, showing how the SET-MLP topology becomes
scale-free over training epochs. The bar plots on the right side depict the number
of weights of the three models on each dataset. The most striking situation hap-
pens for the CIFAR10 dataset (second row) where the SET-MLP model outperforms
drastically the MLP model, while having approximately 100 times fewer parameters.

81



CHAPTER 5. QUADRATIC PARAMETER REDUCTION IN ANN

T
a
b
le

5
.2

–
S
u
m

m
a
ri

za
ti

o
n

o
f

th
e

ex
p

er
im

en
ts

w
it

h
R

B
M

va
ri

a
n
ts

.
O

n
ea

ch
d
a
ta

se
t,

w
e

re
p

o
rt

th
e

b
es

t
av

er
a
g
e

lo
g
-p

ro
b
a
b
il
it

ie
s

o
b
ta

in
ed

w
it

h
A

IS
o
n

th
e

te
st

d
a
ta

fo
r

ea
ch

m
o
d
el

.
n
h

re
p
re

se
n
ts

th
e

n
u
m

b
er

o
f

h
id

d
en

n
eu

ro
n
s,
n
C
D

th
e

n
u
m

b
er

o
f

C
D

st
ep

s,
a
n
d
n
W

th
e

n
u
m

b
er

o
f

w
ei

g
h
ts

in
th

e
m

o
d
el

.

D
a
ta

se
t

R
B

M
R

B
M

F
ix

P
r
o
b

S
E

T
-R

B
M

X
B

M
lo

g
-p

r
o
b

.
n
h

n
W

n
C
D

lo
g
-p

r
o
b

.
n
h

n
W

n
C
D

lo
g
-p

r
o
b

.
n
h

n
W

n
C
D

lo
g
-p

r
o
b

.
n
h

n
W

n
C
D

A
D

U
L
T

-1
4
.9

1
1
0
0

1
2
3
0
0

1
0

-1
4
.7

9
5
0
0

4
9
8
4

1
0

-1
3
.8

5
5
0
0

4
7
9
7

3
-1

5
.8

9
1
2
0
0

1
2
9
1
1

1

C
o
n

n
ec

t4
-5

.0
1

5
0
0

6
3
0
0
0

1
0

-1
5
.0

1
5
0
0

5
0
0
8

1
0

-1
3
.1

2
5
0
0

4
8
2
0

1
0

-1
7
.3

7
1
2
0
0

1
2
4
8
1

1
D

N
A

-8
5
.9

7
5
0
0

9
0
0
0
0

1
0

-8
6
.9

0
5
0
0

5
4
4
0

1
0

-8
2
.5

1
2
5
0

3
3
1
1

3
-8

3
.1

7
1
6
0
0

1
7
8
0
1

1
U

C
I

M
u

sh
ro

o
m

s
-1

1
.3

5
1
0
0

1
1
2
0
0

1
0

-1
1
.3

6
5
0
0

4
8
9
6

1
0

-1
0
.6

3
2
5
0

2
7
8
7

1
0

-1
4
.7

1
1
0
0
0

1
0
8
3
0

1

ev
a
lu

a
ti

o
n

N
IP

S
-0

-1
2

-2
7
4
.6

0
2
5
0

1
2
5
0
0
0

3
-2

8
2
.6

7
5
0
0

8
0
0
0

1
0

-2
7
6
.6

2
5
0
0

7
7
0
0

3
-2

8
7
.4

3
1
0
0

5
1
4
4

1
su

it
e

O
C

R
-l

et
te

rs
-2

9
.3

3
5
0
0

6
4
0
0
0

1
0

-3
8
.5

8
5
0
0

5
0
2
4

1
0

-2
8
.6

9
5
0
0

4
8
3
5

1
0

-3
3
.0

8
1
2
0
0

1
3
0
5
3

1
R

C
V

1
-4

7
.2

4
5
0
0

7
5
0
0
0

3
-5

0
.3

4
5
0
0

5
2
0
0

1
0

-4
7
.6

0
5
0
0

5
0
0
5

1
0

-4
9
.6

8
1
4
0
0

1
4
7
9
7

1
W

eb
-3

1
.7

4
5
0
0

1
5
0
0
0
0

1
-3

1
.3

2
5
0
0

6
4
0
0

1
0

-2
8
.7

4
5
0
0

6
1
6
0

1
0

-3
0
.6

2
2
6
0
0

2
9
8
9
3

1

C
a
lT

ec
h

1
0
1

1
6
x
1
6

-2
8
.4

1
2
5
0
0

6
4
0
0
0
0

1
0

-5
3
.2

5
5
0
0
0

4
2
0
4
8

1
0

-4
6
.0

8
5
0
0
0

4
0
7
4
1

1
0

-6
9
.2

9
5
0
0

6
7
2
1

1

S
il
h

o
u

et
te

s
2
8
x
2
8

-1
5
9
.5

1
5
0
0
0

3
9
2
0
0
0
0

3
-1

2
6
.6

9
5
0
0
0

4
6
2
7
2

1
0

-1
0
4
.8

9
2
5
0
0

2
5
2
8
6

1
0

-1
4
2
.9

6
1
5
0
0

1
9
2
0
1

1

M
N

IS
T

-9
1
.7

0
2
5
0
0

1
9
6
0
0
0
0

1
0

-1
1
7
.5

5
5
0
0
0

4
6
2
7
2

1
0

-8
6
.4

1
5
0
0
0

4
4
5
3
6

1
0

-8
5
.2

1
2
7
0
0
0

3
8
7
9
5
5

1
:2

5

T
a
b
le

5
.3

–
S
u
m

m
a
ri

za
ti

o
n

o
f

th
e

ex
p

er
im

en
ts

w
it

h
M

L
P

va
ri

a
n
ts

.
O

n
ea

ch
d
a
ta

se
t,

w
e

re
p

o
rt

th
e

b
es

t
cl

a
ss

ifi
ca

ti
o
n

a
cc

u
ra

cy
o
b
ta

in
ed

b
y

ea
ch

m
o
d
el

o
n

th
e

te
st

d
a
ta

.
n
W

re
p
re

se
n
ts

th
e

n
u
m

b
er

o
f

w
ei

g
h
ts

in
th

e
m

o
d
el

.

D
a
ta

se
t

D
a
ta

A
r
c
h

it
e
c
tu

r
e

A
c
ti

v
a
ti

o
n

M
L

P
M

L
P

F
ix

P
r
o
b

S
E

T
-M

L
P

a
u

g
m

e
n
ta

ti
o
n

A
c
c
u

r
a
c
y

[%
]

n
W

A
c
c
u

r
a
c
y

[%
]

n
W

A
c
c
u

r
a
c
y

[%
]

n
W

M
N

IS
T

n
o

7
8
4
-1

0
0
0
-1

0
0
0
-1

0
0
0
-1

0
S

R
eL

u
9
8
.5

5
2
7
9
4
0
0
0

9
7
.6

8
8
9
7
9
7

9
8
.7

4
8
9
7
9
7

C
IF

A
R

1
0

y
es

3
0
7
2
-4

0
0
0
-1

0
0
0
-4

0
0
0
-1

0
S

R
eL

u
6
8
.7

0
2
0
3
2
8
0
0
0

6
2
.1

9
2
7
8
6
3
0

7
4
.8

4
2
7
8
6
3
0

H
IG

G
S

n
o

2
8
-1

0
0
0
-1

0
0
0
-1

0
0
0
-2

S
R

eL
u

7
8
.4

4
2
0
3
8
0
0
0

7
6
.6

9
8
0
6
1
4

7
8
.4

7
8
0
6
1
4

82



5.5. CONCLUSION

Regarding the topological features, we can see from Figure 5.4 that, similarly
to what was found in the SET-RBM experiments (Figure 5.3), the hidden neuron
connections in SET-MLP rapidly evolve towards a power-law distribution.

Considering the different datasets under scrutiny, we should stress that we
have assessed both image-intensive and non-image sets. On image datasets, Con-
volutional Neural Networks (CNNs) [110] typically outperform MLPs. These, in
fact, matches perfectly with the SET procedure. For instance, SET may be used to
replace all CNNs fully connected layers with sparse evolutionary counterparts. The
benefit would be two-fold: to reduce the total number of parameters in CNNs, and
to permit the use of larger CNN models. However, CNNs are not viable on other
types of high-dimensional data, such as biological data (e.g. [48]), or theoretical
physics data (e.g. [15]). In those cases, MLPs will be a better choice. This is in fact
the case of the HIGGS dataset (Figure 5.4, last row), where SET-MLP achieves
78.47% classification accuracy and has about 90000 parameters. Whereas, one
of the best MLP models in the literature achieved a 78.54% accuracy with three
many times as many parameters [117].

5.5. Conclusion

In this chapter we have introduced SET, a simple procedure to replace ANNs
fully-connected bipartite layers with sparse layers. We have validated our approach
on 14 datasets (from different domains) and on two widely used ANN models, i.e.
RBMs and MLPs. We have evaluated SET in combination with two different
training methods, i.e. contrastive divergence and stochastic gradient descent. We
showed that SET is capable to quadratically reduce the number of parameters of
bipartite neural networks layers, at no decrease in accuracy. In most of the cases,
SET-RBMs and SET-MLPs outperform their fully-connected counterparts.

SET can be widely adopted to reduce the fully-connected layers into sparse
topologies in other types of ANNs, e.g. convolutional neural networks [110], re-
current neural networks [110], deep reinforcement learning networks [133, 183],
and so on. SET may prove to be the basis of much larger ANNs, possibly on a
billion-node scale. This will be enabled by the linear relation between the number
of neurons and the amount of connections between them. These networks will
have much more representational power, and better adaptive capabilities than the
current state-of-the-art ANNs, and will push artificial intelligence well beyond its
current boundaries.
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CHAPTER 6

Conclusions and discussions

This chapter, summarizes the thesis contributions and discusses possible future
research directions.

6.1. Conclusions

In this thesis, we followed a multidisciplinary approach inspired by the com-
plex systems paradigm. First, as briefly discussed in Section 1.4, we addressed
real-world challenges by proposing novel methods that were either purely based
on network science or purely based on artificial intelligence algorithms or new
applications of existing algorithms. Although we were successful in addressing
specific challenges, our solutions were still confined by scalability bounds. Further
on, these made us to define some fundamental research questions (Section 1.5) to
help increasing the various scalability bounds of the used algorithms, i.e. centrality
metrics in complex networks and artificial neural networks, as follows.

6.1.1. Thesis contributions

In Chapter 2, we introduced a new viewpoint to understand and model com-
plex networks, whereby we overlay an artificial homogeneous system over a network
to unveil the network’s hidden properties. We could then propose a novel algorithm
to compute centrality in complex networks, dubbed GOT. GOT can compute all
nodes and links centralities, treated together, in a polylogarithmic time with re-
spect to the number of nodes in the network. It has the computational simplicity
of nature-inspired swarm algorithms, while performing human-behaviour like com-
putations [179] (namely, an egoistic behaviour). We demonstrated on thousands
of simulated networks with different types of topologies, as well as on real-world
networks, that GOT can compute the whole range of link and node strengths of
any complex network, while being more accurate, much faster, scalable and tech-
nologically viable than the state-of-the-art centrality metrics. Moreover, we have
also used it to confirm well-established findings about a non-obvious behaviour of
natural networks [175]. Natively, GOT permits to investigate much larger net-
works, which are not tractable with current algorithms - for instance GOT would
require less than 9 seconds to compute the centrality of the one-billion network
formed by Facebook user devices.

In Chapter 3, we have proposed generative replay, a memory-less, brain-
inspired approach capable to replace experience replay, a standard procedure used

This chapter is partly based on: D.C. Mocanu: On the synergy of network science and
artificial intelligence, International Joint Conference on Artificial Intelligence (IJCAI), 2016,

New York, USA.
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to train ANNs on-line. Generative replay uses the generative capabilities of re-
stricted Boltzmann machines to generate approximations of past experiences, in-
stead of recording them, as experience replay does. Thus, the RBM can be trained
online, and does not require the system to store any of the observed data points.
In the experiments performed, we showed that generative replay outperforms ex-
perience replay on RBMs trained on-line, reaching a performance which is even
comparable to RBMs trained off-line. Furthermore, the generative replay concept
may be used in combination with generative artificial neural network models to
serve dynamic approximations of past experiences to any ANN model that per-
forms on-line learning.

In Chapter 4, we looked at the building block of deep learning, i.e. restricted
Boltzmann machines, from a topological perspective, bringing insights from net-
work science. Firstly, we proved that RBMs and GRBMs are small-world bipar-
tite networks. Secondly, we proposed a novel algorithm to generate scale-free and
small-world topologies in sparse variants of RBMs and GRBMs. We dubbed the
novel obtained models, complex Boltzmann machine and Gaussian complex Boltz-
mann machine, respectively. To achieve a good performance, in the topology of
these models we also considered some local neighborhoods of visible neurons, and
we fit the most connected visible neurons to the most important data features.

Looking at both artificial and real-world datasets (i.e. Geographical Origin
of Music, MNIST digits, CalTech 101 Silhouettes, and UCI evaluation suite) we
showed that XBM and GXBM obtain better performance than other two sparse
models (i.e. RBMFixProb/GRBMFixProb and RBMTrPrTr/GRBMTrPrTr) and we il-
lustrated how they outperform even the fully connected RBM and GRBM, respec-
tively. We found that: (1) given the same number of hidden neurons, our models
exhibit much faster computational time, thanks to a smaller number of parame-
ters which have to be computed (up to a few orders of magnitude smaller than
in RBM and GRBM) and a comparable reconstruction capabilities; (2) given the
same number of weights, or implicitly a much higher number of hidden neurons for
XBM and GXBM, they significantly outperform RBM and GRBM, respectively.

In Chapter 5, taking the work from Chapter 4 further, we have introduced
the Sparse Evolutionary Training (SET) procedure. SET is a simple, yet effective
procedure that reduces an ANN fully-connected bipartite topology to sparse con-
nected topology, before the training phase. We have validated our approach on
data coming from various domains, on 14 datasets and on two widely used ANN
models, i.e. RBMs and MLPs, using two different optimization methods, i.e. con-
trastive divergence and stochastic gradient descent. We demonstrated that SET
is capable to quadratically reduce the number of parameters of bipartite neural
networks layers, at no decrease in accuracy. We highlight that, in most of the
cases, SET-RBMs and SET-MLPs outperform their fully connected counterparts.
We advocate that SET will be widely adopted to replace the fully connected layers
with sparse ones in other types of ANNs, e.g. convolutional neural networks [110],
recurrent neural networks [110], deep reinforcement learning networks [133,183],
and so on. Further on, SET may prove to be the base of a new generation of ANNs
(much larger than the state-of-the-art ANN models) with billions of neurons and
sparse connectivity, thanks their linear relation between neurons and connections.
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Such networks would have much more representational power, and better adap-
tive capabilities than the current state-of-the-art ANNs, and will push artificial
intelligence well beyond its current boundaries.

To conclude, this thesis addresses a range of topics around the common theme
of network efficiency. We explore the fascinating opportunities that arise when
AI is employed to master network complexity, and vice versa. The applicabil-
ity of such fundamental concepts is vast, with the possibility to make impact
on virtually any domain whereby problems can be modeled as networks. We
have explored examples in communication networks [23], wireless sensor net-
works [38,100,134,148], smart grids [135,150], computer vision [141,142,149],
computer security [146], transfer learning [10,28], and multimedia quality of ex-
perience [136,137,145,207–212].

There is also enormous potential in employing scalable artificial neural net-
works onto other problems that cannot yet be tackled due to the scalability bound-
aries of current methods, e.g. understanding of the brain, understanding of very
high resolution images and videos, online learning in low-resources devices, etc.

Looking at the synergy between network science, artificial intelligence, and
biological neural networks, we have been able to push the scalability bounds of
various networks algorithms much beyond their state-of-the-art. Our combined
approach to complexity and AI goes beyond the current methods, which tend to
focus on either of the two, independently.

6.1.2. Limitations

Although the proposed approach, to study the synergy between network sci-
ence and artificial intelligence, has proven to be very successful, its broadness
makes it very difficult to be tackled in just one PhD research. To avoid having the
contributions lost among lofty goals of connecting two fields, we had to narrow
the focus down and to focus just on the scalability issues of various networks algo-
rithms. Even here, we had to narrow even more and to address just few intriguing
aspects, as described in Chapters 2-5. Thus, we had to let aside very challenging
research directions such as communities and robustness in complex networks [18],
deep reinforcement learning [133], and so on. Moreover, each of the contributions
proposed in Chapter 2-5 suffer from their own limitations, as follows.

In Chapter 2, the analysis of the parallel capabilities of the GOT algorithm
assumes ideal conditions. In reality, its parallel implementation on a single (super)
computer would be prone to the parallel programming limitations (e.g. synchro-
nization problems, memory utilization, expensive communication between pro-
cesses). Alternatively, its parallel implementation in an Internet of Things like
scenario may be affected by the communication network problems (e.g. network
load, network impairments, packet losses).

Further on, the main flaw of the RBMOCD model presented in Chapter 3 is
the sensitivity to the meta-parameters choice, as in the case of many other ANN
models. Specifically, this sensitivity is given by the meta-parameters common to
any RBM model, but also by the two meta-parameters specific to the RBMOCD

model, i.e. the number of Gibbs sampling steps for the generation of the new
training data points, and the number of new data points generated in each epoch
with the RBMOCD model using Gibbs sampling.
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The main limitations of the XBM and GXBM models, proposed in Chapter 4,
have been successfully addressed by the SET procedure, proposed in Chapter 5.
Even so, the fact that most of the deep learning optimized hardware (e.g. GPUs)
has implemented just optimized multiplications for dense matrices may influence
the time until the XBM, GXBM, and SET based ANN models may start to be
used in the production environment. However, we hope that our research will
trigger the developing of new hardware and software for deep learning which have
incorporated optimizations also for operations with sparse matrices. Moreover, all
of the above limitations represent virtually possibilities for future research.

6.2. Future research directions

This research may be expanded in many directions. Let us group them into the
two main categories of ’applied research’ and ’fundamental research’. The applied
research direction is straightforward and assumes applying the novel algorithms
proposed in the research chapters of this thesis to real-world challenges, as we de-
scribed in Section 1.4 where we tackled domains such as, wireless sensor networks,
computer security, transfer learning, computer vision, quality of experience, and
smart grid. At the end of each research chapters, we exemplified how the specific
algorithm proposed there could be used in the real-world. The fundamental re-
search direction could be furthered by continuing to explore the synergy between
network science, artificial intelligence, and biological principles of nature. We can
foresee two time horizons, as follows.

Short term horizon. Key open research directions are:

(1) An important goal of SET is to train ANNs (Chapter 5) by identify-
ing the most important connections of the neural network to remove
topological redundancy. In Chapter 5, we have used just a very simple
technique to determine the connections importance, by considering that
the connections which have the weights closest to zero are not important.
Further improvements may be achieved using centrality metrics, for in-
stance using GOT to establish the relative importance of nodes and links
(Chapter 2) prior to training the ANN.

(2) SET tends to end-up with scale-free ANN topologies, but these are not
enforced (they are achieved as part of the natural evolution of the pro-
cedure). It would be interesting to see if training time can be further re-
duced, using specialized algorithms, such as preferential attachment [9],
to enforce scale-freeness during training.

(3) Combining generative replay, reinforcement learning, and the sparse ar-
tificial neural networks created with SET may permit to create scalable
deep reinforcement learning models. On one side, these may be small
enough to run properly in low-resources devices such as the one belong-
ing to the Internet of Things. On the other hand, it will be possible to
master much larger learning systems.

Longer term horizon. An interesting research direction would be to try to
combine traditional AI techniques (i.e. knowledge representation, logic reasoning)
with deep learning. This represents an important problem and an active research
area, as highlighted by a recent paper [103]. One possibility to tackle it would be
to follow our incipient approach, as proposed in [146], using restricted Boltzmann
machines as density estimators for the inductive logic rules.
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Figure 6.1 – Thesis storyline. The newly added red question marks in comparison
with Figure 1.3 point out where to look for future research directions.

Another possibility, would be to study two of the most important challenges
in artificial neural networks. The first one relates to the high number of examples
that ANNs need to rely upon for learning. The second one is the slow learning
curve of gradient based optimization methods. These do not follow the strat-
egy of human learning, which have a much higher generalization power and can
learn new concepts using just few labeled examples or even purely unsupervised.
Furthermore, the learning curve in humans is sigmodal, which is not the case of
gradient based learning. Intuitively, one would hypothesize that if we could more
accurately follow the laws of nature we would make new breakthroughs in machine
learning, particularly in generalization capability, evolutionary and continuously
learning. That would require achieving further insights into the dynamics of bio-
logical neural networks, looking from a network science perspective, while trying
to find out how to answer to the red question marks sketched in Figure 6.1.
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der centrality: Distributed assessment of nodes criticity in complex networks, Computer
Communications 34 (2011), no. 5, 619–628, Special Issue: Complex Networks.

97. M. Kitsak, L. K. L. K. Gallos, S. Havlin, F. Liljeros, L. H. Muchnik, E. Stanley, and H. A.

Makse, Identification of influential spreaders in complex networks, Nature Physics 6 (2010),
888–893.

98. J. Zico Kolter and Matthew J. Johnson, Redd: A public data set for energy disaggregation

research, in SustKDD, 2011.
99. B. Konuk, E. Zerman, G. Nur, and G.B. Akar, A spatiotemporal no-reference video quality

assessment model, Image Processing (ICIP), 2013 20th IEEE International Conference on,

Sept 2013, pp. 54–58.
100. Roshan Kotian, Georgios Exarchakos, Decebal Constantin Mocanu, and Antonio Liotta,

Predicting battery depletion of neighboring wireless sensor nodes, Algorithms and Archi-
tectures for Parallel Processing, Lecture Notes in Computer Science, vol. 8286, Springer,
2013, pp. 276–284 (English).

101. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, Imagenet classification with deep
convolutional neural networks, Advances in Neural Information Processing Systems 25,
2012, pp. 1097–1105.

102. S. Kumar Singh, M. P. Singh, and D. K. Singh, Routing Protocols in Wireless Sensor
Networks - A Survey, International Journal of Computer Science & Engineering Survey

(IJCSES) 1 (2010), no. 2.
103. Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman,

Building machines that learn and think like people, Behavioral and Brain Sciences (2016),

1–101.

104. Hugo Larochelle and Yoshua Bengio, Classification using discriminative restricted boltz-
mann machines, Proceedings of the 25th International Conference on Machine Learning

(New York, NY, USA), ICML ’08, ACM, 2008, pp. 536–543.
105. Hugo Larochelle and Iain Murray, The neural autoregressive distribution estimator., AIS-

TATS, JMLR Proceedings, vol. 15, JMLR.org, 2011, pp. 29–37.

106. Jonathan Laserson, From neural networks to deep learning: Zeroing in on the human brain,
XRDS 18 (2011), no. 1, 29–34.

107. Matthieu Latapy, Clmence Magnien, and Nathalie Del Vecchio, Basic notions for the anal-

ysis of large two-mode networks, Social Networks 30 (2008), no. 1, 31 – 48.
108. Glenn Lawyer, Understanding the influence of all nodes in a network, Scientific Reports 5

(2015).

95



BIBLIOGRAPHY

109. P. Le Callet, C. Viard-Gaudin, and D. Barba, A convolutional neural network approach

for objective video quality assessment, Neural Networks, IEEE Transactions on 17 (2006),

no. 5, 1316–1327.
110. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, Deep learning, Nature 521 (2015),

no. 7553, 436–444.
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APPENDIX A

Sparsity in deep neural networks: a video quality
assessment study case

Besides offering a practical example on how artificial intelligence methods can
be used to solve real-world problems, this appendix serves two purposes:

(1) To exemplify the need of scalable Artificial Neural Networks (ANNs) in a
difficult practical scenario, such as estimating the video quality perceived
by the user during video broadcast transmissions over Digital Terrestrial
Television (DTT). In this context, we are not able to directly use the video
frames pixels as inputs to the ANN model, because these are too many
(i.e. millions for each frame). To overcome this situation we utilize an
alternative solution, well known in the machine learning community, and
we manually select some features to represent the videos. On one side,
this feature selection procedure has the disadvantage of being difficult to
be automated as it needs the knowledge of human experts. On the other
hand, it loses some important properties of the videos which in the end
leads to lower performance.

(2) To highlight that the fully connected ANNs reach an interesting sparsity
pattern of neurons connectivity after the training process, as it can be seen
in Figure A.7 and briefly discussed in Section A.5.3. This sparse con-
nectivity obtained after the training process, made us to question: “Why
should we not try to create ANN models which are initialized with a
sparse connectivity to be able to create larger ANN models with faster
training and exploitation computational times?”. This question led us to
breakthroughs presented in Chapters 4 and 5.

A.1. Introduction

With the ever increasing demand for video services and applications, real-time
video processing is one of the central issues in multimedia processing systems.
Given the practical limitations in terms of resources (bandwidth, computational
power, memory etc.), video signals need to be appropriately processed (e.g. com-
pressed) to make them more suitable for transmission, storage and subsequent
rendering. However, most of the mentioned processing will degrade the visual
quality to varying extents. As a consequence, the end user may view a significantly
modified video signal in comparison to the original source content. It is, therefore,
important to measure the quality of the processed video signal and benchmark

This appendix is integrally based on: D.C. Mocanu, J. Pokhrel, J. Pablo Garella, J.
Seppänen, E. Liotou, M. Narwaria: No-reference Video Quality Measurement: Added Value

of Machine Learning, Journal of Electronic Imaging 24 (2015), no. 6, 061208.
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APPENDIX A. VIDEO QUALITY ASSESSMENT STUDY CASE

Table A.1 – Description of video QoE objective estimation categories.

Full-Reference (FR) Reduced-Reference (RR) No-Reference (NR)

Reference The reference video Only some information (e.g. No information from

video is available. metrics) extracted from the reference video

the reference video are is required.

required

The quality is estimated The quality is estimated based The quality is estimated

Methodology based on a comparison based on the information just on some information

between the reference extracted from the reference extracted from a processed

and a processed video. video and a processed video. video.

Accuracy Higher than RR and NR. Higher than NR. Lower than FR and RR.

(in general) Lower than FR.

the performance of different video processing algorithms in terms of video qual-
ity assessment. Video quality is essentially a component of the larger concept of
Quality of Experience (QoE). It is therefore an intrinsically subjective measure
and can depend on multiple factors including degree of annoyance (related to ar-
tifact visibility), aesthetics, emotions, past experience etc. [2]. Thus, subjective
viewing tests remain the most reliable and accurate methods, given appropriate
laboratory conditions and a sufficiently large subject panel. However, subjective
assessment may not be feasible in certain situations (e.g. real-time video compres-
sion, transmission), and an objective approach is more suitable in such scenarios.
While the performance of objective approaches may not accurately mimic the sub-
jective opinion, it can still potentially provide approximate and relative estimates
of video quality, in a given application.

Objective quality estimation can be classified into three groups, i.e. Full-
Reference (FR), Reduced-Reference (RR) and No-Reference (NR) [37] , as detailed
in Table A.1. Among them, NR estimation is more challenging since it relies only
on the processed signal. As a result, it is more related to detection and quantifica-
tion of certain irregularities or absence of specific features which would be typically
found in the reference video. It can also exploit application-specific features (e.g.
bit rate) from the video bit stream in order to quantify quality, and there are
existing works to this end, as discussed in the next section. Subjective estimation
of video quality, on the other hand, involves a number of human observers rating
the video quality on a fixed pre-defined scale, typically in controlled laboratory
conditions. Excellent treatment of the various factors in video quality assessment
is readily available in the form of standards and recommended practices [1].

An important aspect of any subjective study is the underlying variability in
the collected ratings. This happens because the same stimuli typically do not
receive the same rating by all the observers. This is of course expected since the
notion of video quality is highly subjective, and this injects certain variability or
inter-observer differences in the stimuli rating. While these are generally reported
in subjective studies (in the form of standard deviations, confidence intervals etc.),
a survey of literature reveals that they are not typically accounted for in objective
quality prediction. As a result, a majority of works on objective quality estimation
focus only on predicting a single score that may represent an average of all the
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A.2. BACKGROUND AND MOTIVATION

ratings per stimuli. Further, the prediction accuracies of objective methods are
generally based on how close the objective scores are to the averaged subjective
ratings (this is generally quantified by correlation coefficients, mean square error,
scatter plots, etc.). However, the inherent subjective variability and its impact are
not directly taken into account. This may potentially reduce the reliability of the
objective estimates especially when there is larger disagreement (high variability)
among subjects on the quality of a certain stimuli. Therefore, the aim of this
appendix is to analyze this issue in more details, and subsequently present a NR
video quality assessment method based on that. The presented approach is based
on defining a reasonable measure of subjective data diversity and modeling it
through the paradigm of machine learning.

The remainder appendix is organized as follows. Section A.2 first provides
a brief review of machine learning based NR video quality measurement meth-
ods, and also outlines their limitations. We also present our contributions in this
section. An analysis of the importance of diversity in subjective rating processes
is presented in Section A.3. The proposed method and its application within a
practical scenario are explained in Section A.4, and experimental verified in Sec-
tion A.5. The next section presents relevant discussions about the results, while
section A.7 draws conclusions.

A.2. Background and motivation

A.2.1. Previous work

Even though the research in NR video quality assessment is more than a
decade old, we are still far from a general purpose NR quality indicator that can
accurately predict video quality in all situations. The authors in [68] presented
one of the first comprehensive method for estimating video quality based on neural
networks. In this work, a methodology using Circular Back Propagation (CBP)
neural networks is used for the objective quality assessment of motion picture ex-
pert group (MPEG) video streams. The work in [109] employed Convolutional
Neural Networks (CNN) in order to estimate video quality. It differs from con-
ventional neural network approach since it relies on the use of CNNs that allows a
continuous time scoring of the video. A NR method was presented in [225], which
is based on mapping frame level features into a spatial quality score followed by
temporal pooling. The method developed in [230] is based on features extracted
from the analysis of discrete cosine transform (DCT) coefficients of each decoded
frame in a video sequence, and objective video quality was predicted using a neu-
ral network. Another NR video quality estimator was presented in [190], where
symbolic regression based framework was trained on a set of features extracted
from the received video bit-stream. Another recent method in [188] works on the
similar principle of analyzing several features. These are based on distinguishing
the type of codec used (MPEG or H.264/AVC), analysis of DCT coefficients, es-
timation of the level of quantization used in the I-frames etc. The next step is
to apply Support Vector Regression (SVR) to predict video quality in NR fash-
ion. The NR method proposed in [99] was based on polynomial regression model,
where the independent variables (or features) were based on spatial and temporal
quantities derived from video spatio-temporal complexity, bit rate and packet loss
measurements. The works mentioned here by no means constitute the entire list
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of contributions on the topic of NR video quality measurement but merely repre-
sent the most recent and relevant for the purpose of this appendix. The reader is
encouraged to refer to survey papers, for example [181].

A.2.2. Limitations of existing methods

As mentioned, there has already been significant research work on NR video
quality estimation especially for video compression applications. However, most
of these methods share three common limitations related to their design and vali-
dation as enlisted below:

• Most of these methods rely only on mean opinion scores (MOS) or degra-
dation MOS (DMOS) both for training and validation. This, to our mind
is problematic since the MOS or DMOS (obtained by averaging raw scores
for each observer) tend to neglect the variability inherently present in the
subjective rating process.
• Most of these methods have been validated only on limited set of videos

and lacked a comprehensive method evaluation from the viewpoint of its
robustness to untrained content.
• Lastly, a majority of existing work focus only on video compression.

Thus, they would be limited in their applicability to other applications
(e.g. video transmission) where the fully decoded video content may not
be available and so quality must be predicted only from the bit stream
information.

A.2.3. Our contributions

In this appendix, we aim to address the limitations mentioned above. Thus,
our main contribution is to perform statistical analysis on the performance of
various machine learning methods (e.g. linear regression [78], decision trees for
regression [78], random neural networks [154], deep belief networks [20]) in pre-
dicting video quality on a real-world database [66]. More specifically, in contrast
to most of the existing works on NR video quality estimation, we focus on three
aspects that have been largely ignored.

First, we model the diversity that inevitably exists in any subjective rating
process, and we analyze statistically its relation with MOS. Thus, we attempt to
take into account inter-observer differences since it will help in a better interpre-
tation of how reliable the objective quality score is and what it conveys about the
user satisfaction levels. Such an approach also adds significant value from a busi-
ness perspective when it comes to telecom operators or internet service providers
(ISPs), as will be further analyzed in the next section. Thus, in the proposed
approach, we do not just train our method in an effort to maximize correlations
with the average ground truth, but simultaneously allow the algorithm to learn
the associated data variability. To our knowledge, this is the first work towards
the design of an application-specific NR video quality estimator, which can pro-
vide additional output that can help to understand the meaning of the objective
score under a given application scenario. The presented analysis will be therefore
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of interest to the QoE community, which has largely focused only on MOS as the
indicator of subjective video quality.

Secondly, we exploit the promising deep learning framework in our method and
demonstrate its suitability for the said task, while we assess its prediction perfor-
mance against three widely used machine learning algorithms and two statistical
methods. Specifically, deep networks can benefit from unsupervised learning thus
requiring less training data in comparison to the traditional learning methods. An
analysis pertaining to the training of the deep networks weights is also presented
to provide insights into the training process.

Finally, we focus on meaningful verification of the proposed method on several
challenging video clips within the practical framework of DTT, which help to
evaluate the proposed method against diverse content and distortion severities.
We highlight that half of the video clips used for experiments (i.e. 200) come
from a real-world video delivery chain with impairments produced by a real video
transmission system and not produced by noise added artificially, thus representing
a realistic scenario.

A.3. Exploring diversity in subjective viewing tests

It can be seen that a vast majority of objective studies rely only on the mean
or average (MOS or DMOS) of the individual observer ratings. As we know, sim-
ple arithmetic mean is a measure of the central tendency but it tends to ignore
the dispersion of the data. Expectedly, simple averaged based ratings have been
contested in literature as they result in an information loss of how opinions of sub-
jective assessment participants deviate from each other. The authors of [95] argue
against averaging subjective judgments and suggest that taking into account the
diversity of subjective views increases the information extracted from the given
dataset. Authors of [84] apply this principle in their QoE study, where in addition
to MOS a standard deviation of opinion scores (SOS) is studied. The mathemat-
ical relation between MOS and SOS is defined, and several databases for various
applications are analyzed using SOS in addition to average user ratings.

A.3.1. Scattering of subjective opinions

The subjective tests remain the most reliable1 approach to assess human fac-
tors such as degree of enjoyment (video quality). Still, expectedly some amount
of inherent subjectivity will always be injected into the data collected from such
studies. This can be attributed to several factors including the viewing strategy
(some observers make decisions instinctively based on abstract video features while
others may base their decision on more detailed scene analysis), emotions, past
experience etc. For video quality evaluation, this means that while the individ-
ual observer ratings may indicate a general trend about perceived quality, they
may still differ/disagree on the magnitude of such an agreement. Such diversity
can provide valuable information that can be exploited for specific applications.

1Assuming these tests are conducted in proper viewing conditions (controlled lighting, well
defined viewing distance/angles etc. for the considered application ) and with a sufficiently large

subject panel.
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However, before that, it is necessary to quantify the said diversity (scattering)
meaningfully and not merely rely on averaged measures such as MOS.

The deviation of individual ratings from the mean can for instance provide a
measure of the spread i.e. standard deviation (SOS). Another related measure is
the confidence interval which is derived from standard deviation and also depends
on the number of observers. These have been often reported in subjective studies
involving video quality measurement. But using these measures to supplement for
objective quality prediction is not always interpretable in a stand alone fashion.
For example, simply providing a standard deviation along with a predicted objec-
tive score does not allow a clear interpretation of what it may mean in the context
of an application. This is partly due to the mathematical relation between MOS
and standard deviation (high or low MOS always results in small deviation), and
also because standard deviation does not indicate skewness of opinions scattered
around the average value. Hence, it may be desirable to devise a more interpretable
measure of quantifying the diversity of subjective opinion and more importantly
what it may mean in the context of a particular application.

A.3.2. A new measure to quantify subjective uncertainty

It is known that low MOS for a given service indicates bad quality and there-
fore disappointment to the service, but even if MOS is high, we cannot know
from this single value how many users are actually dissatisfied with the service.
Moreover, not only do negative experiences affect customers more than positive
experiences, but customers are also prone to share their negative experiences more
likely than positive ones. Therefore we could see a negative experience of a single
user to have a risk of avalanche where the negative experience is spread to several
other current/potential customers who will see the service in a more negative light
than before, without actually having bad experience with the service. As already
highlighted, a majority of objective methods simply ignore the diversity of user
opinions, and instead focus only on average ratings as their target. To overcome
this, we first need to define a plausible way in order to exploit data uncertainty
so that it adds value to the objective quality prediction. To that end, we studied
various methods for expressing the diversity, and considering a business-oriented
application, we found that an appropriate measure of profitability (which is of
course the key goal of any business) can be derived from the answer to question
“how many users are unsatisfied with the service”. From service management and
business point, satisfied users are less interesting than dissatisfied users. This is
due to the fact that, from quality perspective, satisfied users require no quality
management for their service (although this is not to say that satisfied users should
not be considered at all in overall service marketing).

MOS is a straightforward indicator for expressing the opinion of a majority
of users, but as discussed, this is hardly enough if we want to maintain service
reputation and hold on to the current customer base. Therefore we introduce a
new indicator along with MOS - Percentage of Dissatisfied Users (PDU) against
MOS. It indicates the percentage of users who would give an opinion score less
than certain threshold given a certain MOS score, i.e.
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Table A.2 – MOS scores provided by 25 observers to a particular video clip.

2 5 4 4 4
4 3 3 2 2
3 2 4 2 4
3 5 3 5 4
4 3 5 2 5

PDU =
#(OS < th)

N
× 100 (A.1)

where OS denotes the opinion score from an individual observer, th is the user-
defined threshold, N is the total number of observers evaluating the given condition
(service quality).

As an example, let us consider that 3 independent and random observers
evaluated a sample (video stimulus) and gave scores 2, 5, and 5 (on a scale from
1 to 5, 5 denotes excellent quality). We can quickly calculate the MOS for this
sample as 4, which is a fairly good score considering the defined scale of evaluation
in this case. But we note that one individual gave a score of 2, which is very
poor. Consequently, we can conclude that 33% of users were not satisfied (i.e.
PDU = 33%) with this sample, despite the MOS being high. It is therefore easy
to realize the limitation of average based ratings (even with this somewhat limited
example) where the MOS would conceal the fact that not all users were happy
with the sample (despite a high MOS). We can also observe such effects on real
subjective data shown in Table A.2. It represents the individual subjective opinion
scores of 25 observers (this was as part of a subjective study conducted in our lab)
for a processed video. We note that the mean of these individual ratings is 3.48
which is in the higher range (the scale of rating was from 1 to 5), and may lead to
conclude that the video quality would be generally at least acceptable. Still, we
note that PDU = 24% (when mean is considered as th) meaning that almost one-
fourth of the customers/observers were dissatisfied with the video quality. This
information should then be used to devise corrective actions. It can also be seen
that the definition of PDU depends on the free parameter th, and hence it can be
set by the service provider. This would depend on what quality level is considered
intolerable and the actions required to avoid customer churn. In this appendix,
we selected a value of 3, i.e. th = 3 (assuming a scale from 1 to 5), but especially
for commercial applications where customers pay a monthly fee or pay per view,
this number could be even higher. Hence, it can be customized.

Before we conclude this section, it is important to mention that the proposed
measure PDU may not always be a function of MOS nor it may be directly
related to standard deviation of the individual subjective ratings. So one cannot
assume that a higher MOS will imply lower PDU or a lower MOS always implies a
larger PDU . The reason is that different quality degradations may have different
impacts on the consistency of user opinions. We can easily understand this with our
previous example, where scores 2, 5, and 5 lead to a MOS of 4. However, we may
have the same MOS in another situation. For instance if the scores were 4, 4, and
4, the resultant MOS would still be 4 but PDU = 0 in this case. Also, standard
deviation may not be a substitute for PDU for two reasons. First, as already
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stated the former may not be interpretable in a stand alone manner. Second,
standard deviation can be similar for two very different MOSs in which case it
does not provide any information on possible corrective measures. In contrast,
similar PDU for two different MOSs may indicate a course correction (if PDU is
high) irrespective of the MOS.

A.4. Application in no reference video quality estimation

In this section we demonstrate the practical utility of the proposed method in a
NR scenario, within the framework of Digital Terrestrial Television. The proposed
method follows similar design philosophy as some of the existing methods but there
are some important differences that add value to our proposal. First, we exploit
the framework of deep learning methods, which to our knowledge has not been
exploited towards NR video quality measurement. Specifically, in the considered
application, it is assumed that source video data is not available and quality needs
to be predicted only from coded stream information. Secondly, our method is
trained to provide PDU values in addition to objective quality. This allows the
user to better interpret the reliability of the objective prediction especially from
the viewpoint of satisfied/dissatisfied user percentage.

A block diagram of the proposed approach is shown in Figure A.1. Note
that in the DTT scenario there can be multiple TV channels broadcasting signals
over the air and these signals are pre-processed (source and channel coded) be-
fore transmission. Also the wireless channel (air) is ideally not transparent and
hence will introduce errors in the relayed bitstream. All these will show up as
spatio-temporal artifacts in the video that will be rendered to the end user. In
order to model what the end user perceives regarding the quality of the rendered
videos, we first extract features from channel streams and then develop a model
based on machine learning, in order to provide objective scores as well as PDU .
However, such system development will first require training data to set the model
parameters. Therefore, we developed a simulated video database in which video
quality was rated by human observers. In order to train the proposed method for
a wide range of situations, video clips with different content, encoding settings and
simulation of transmission errors were included in the said database. We also used
videos captured from ISDB-T broadcast transmissions to validate and benchmark
the proposed model. Hence, the model can be built from simulated data and ap-
plied in practice by extracting features from the code stream and obtain predicted
MOS (i.e. objective quality score) as well as predicted PDU (i.e. % of dissatisfied
users as predicted by the objective model).

We now describe the video database, features employed and the machine learn-
ing techniques employed for feature pooling.

A.4.1. Datasets

We used a recently published database with video clips and raw subjective
scores of subjective video quality within the context of DTT. The database is
extracted from [66] and is suitable to train, verify and validate video quality
objective models in multimedia broadband and broadcasting operations, under the
ISDB-T standard. Specifically under the Brazilian version of the standard, known
as ISDB-Tb that uses H.264/AVC for video compression, Advanced Audio Coding
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Figure A.1 – An overview of the proposed idea in practical video transmission
network.

(AAC) for audio compression and MPEG-2 Transport Stream (TS) for packaging
and multiplexing video, audio and data signals in the digital broadcasting system.
The subjective tests in this database were conducted following the recommendation
ITU-R BT.500-13 [1] using the Absolute Category Rating with Hidden Reference
(ACR-HR) method. Subjective score collection was automated by employing a
software based system [93]. The database includes two datasets with video clips
that are 9 to 12 seconds in duration.

The first dataset consists of videos distorted by simulation of the video delivery
chain. For this dataset, five High Definition (HD, resolution being 1920 × 1080)
source (reference) sequences were used2, namely “Concert”, “Football”, “Golf”,
“Foxbird” and “Voile”. Each source video has undergone an encoding process with
different encoding settings according to the ISDB-Tb standard using H.264/AVC
and MPEG 2-TS for packaging. Then, a process of individual TS packet extraction
was performed in order to simulate transmission errors. A total of 20 encoding and
packet loss pattern conditions were generated for each source sequence providing
5 × 20 = 100 HD distorted video sequences. Since resolution is an important
aspect in video quality, the same process was applied to down-sampled source
video sequences, thus providing another 100 SD resolution (720 × 576) distorted
sequences. Thus, the first dataset has 200 (100 HD and 100 SD) distorted video
sequences. The encoding settings that have been imposed on the videos are: for
SD (HD) videos: Profile = Main (High), Level = 3.1 (4.1), GOP length = 33,
frame rate = 50fps and bit rate from 0.7 to 4 Mbps (3.5 to 14 Mbps). As for
the different packet loss patterns, it was used 0% (no losses), 0.3% of losses with
uniform distribution and 0.1% or 10% of packet losses within zero, one, two or
three burst errors. For more details on the creation of this dataset, the interested
reader can refer to [66].

2These were taken from http://www.cdvl.org and IRCCyN IVC 1080i Video Quality Data-

base [165].

111



APPENDIX A. VIDEO QUALITY ASSESSMENT STUDY CASE

The second dataset, generated for validation purposes, includes only real
recorded video clips from air from two different DTT Broadcast Channels. In
this dataset, different encoding impairments and real packet losses patterns can
be found in both HD and SD resolution (thus, there are 200 sequences, 100 HD
and 100 SD). Each of the 200 video versions were evaluated by a human panel
consisting of at least 18 viewers (27 for any HD video and 18 for any SD video)
in a controlled environment. The MOS scale was used for these evaluations. All
results were recorded in the database of [66] that is used here as well.

In this appendix, both datasets were used, i.e. a total of 400 video sequences
distorted by encoding impairments and transmission errors. Also note that the
content types (i.e. source sequences) in both datasets were different.

A.4.2. Feature set

In DTT the video signal is typically coded in H264/AVC or MPEG-2 and pack-
etized in small packets of 188 bytes (TS packets) prior to being modulated and
transmitted. In MPEG-2 compression the compressed video frames are grouped
into Group of Pictures (GoP). Each GoP usually uses three types of frames, named:
I-intra , P-predictive, and B-bidirectional. I frames are encoded with Intra-frame
compression techniques while P and B frames use motion estimation and compen-
sation techniques. I frames are used as reference frames for the prediction of P and
B frames. The GoP size is given by the number of frames existing between two I
frames. In the case of H264/AVC each frame can be split into multiple slices: I,
P or B. Both compression techniques can be packaged in Transport Stream (TS)
packets. Each TS packet contains 4 bytes of header and 184 of payload. The
header contains, among other fields, a 4-bit long Continuity Counter that can be
used to count the amount of packet losses in the received bit stream.

Our approach to select the features was based on previous no-reference meth-
ods such as the one described in [92]. For our method, the selected features are
the following:

• Bit rate: The obtained video bit rate due to the encoding process (H.264/AVC)
and the MPEG-2 TS packaging.

• Percentage of I-frames lost: The I-frames carry the most reliable and im-
portant information, compared to P and B frames. Also I frames help decode
non I frames, therefore their partial or total loss due to transmission errors is a
key quality degrading factor.

• Percentage of I,P,B frames lost: In addition to the most crucial I frames, we
also use this metric to account for P and B frames directly hit by transmission
errors (without any further distinctions though).

• SAD (Sum of Absolute Differences): The SAD of Residual Blocks is a
spatio-temporal metric that for instance addresses the degree of complexity of
a sequence of images to be compressed.

• Number of bursts: Transmission errors normally affect groups of frames.
The amount of bursts was selected in order to quantify the number of sequential
frames directly hit by transmission errors in a video transmission (e.g. first a
IIBPP frames are directly hit by transmission errors and then a PBPIPIBBB),
we employ the number of bursts as a factor for objective quality prediction.
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These features are used as input to the ML algorithm, as depicted in Fig-
ure A.1. Otherwise put, they constitute the key QoE influence factors that we
have identified, which will be used to build the ML-based QoE prediction model.
Once a QoE model is built and put into practice, these features will be extracted
from data streams and used as input for the QoE prediction. Of course, additional
or different features can be used and hence the described method is scalable in
terms of feature selection.

A.4.3. Feature pooling

We employed a number of feature pooling methods. These include both lin-
ear and non-linear models namely Linear Regression (LR), Decision Tree based
Regression (DTR), Artificial Neural Networks (ANNs), and Deep Belief Networks
(DBN).

A.4.3.1. Random Neural Networks (RNN). The first model under scrutiny is
Random Neural Network (RNN), which combines classical ANNs with queuing
networks. Similar to ANN, RNN is composed of different layers of interconnected
processing elements (i.e. neurons/nodes) that cooperate to resolve a specific prob-
lem by instantaneously exchanging signals between each other and from/to the
environment. RNN is well adapted for QoS/QoE learning [154] since it takes
short training time as compared to ANN, is less sensitive to selection of hidden
nodes as compared to ANN and can capture QoS/QoE mapping functions in a
more robust and accurate way. The success of the use of RNN for learning is
suggested in a number of works [6,14,45,71,154,184,185].

A.4.3.2. Deep Belief Networks (DBN). The second model studied in this ap-
pendix is inspired from Deep Learning (DL) [20], which makes small steps towards
the mimicking of the human brain [91]. Technically, DL can be seen as the natu-
ral evolution of ANN [106]. Besides that, DL methods achieve very good results
outperforming state-of-the-art algorithms, including classical ANN models (e.g.
Multi Layer Perceptron), in different real-world problems such as multi-class clas-
sification [104], collaborative filtering [176], transfer learning [28], people detec-
tion [149], information retrieval [70], activity recognition [141] and so on. Hence,
our goal was to investigate to what extent DL can be applied to the problem of
NR video quality prediction. While some prior work of applying DL for image
quality evaluation exists [73, 136, 137, 196], a study of its effectiveness for NR
video quality estimation especially in a multi-output scenario, as considered in
this appendix, has not been reported in literature.

Specifically, in this appendix, we employed Deep Belief Networks (DBN) which
are stochastic neural networks with more hidden layers and high generalization
capabilities. They are composed by many, much simpler, two-layers stochastic
neural networks, namely Restricted Boltzmann Machines (RBMs) [186] which are
stacked one above the other in a deep architecture as depicted in Figure A.2. More
precisely, a DBN consists of an input layer with real values (i.e. x), a number of n
hidden binary layers (i.e h1,...,hn), and an output layer (i.e. y) with real-values.
The neurons from different layers are connected by weights (i.e. W1, ..., Wn,
Wo). Formally, a DBN models the joint distribution between the input layer x
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Figure A.2 – General architecture of DBN.

and the n hidden layers, as it is shown next:

P (x,h1, ...,hn) =
(
P (x|h1)

n−2∏
k=1

P (hk|hk+1)
)
P (hn−1,hn) (A.2)

, where P (hk|hk+1) is a conditional distribution of the input units conditioned
on the hidden units of the RBMk+1, ∀1 ≤ k < n− 1, given by:

P (hk|hk+1) =
∏
j

P (hkj |hk+1) (A.3)

P (hkj = 1|hk+1) =
1

1 + e−
∑
lW

k+1
jl hk+1

l

(A.4)

, and P (hn−1,hn) is the joint distribution of the two layers composing RBMn,
computed as:

P (hn−1,hn) =
1

Z(Wn)
e
∑
j,lW

n
jlh

n−1
j hnl (A.5)

, with Z(Wn) being the partition function of RBMn. For RBM1, P (x|h1) can
be computed in a similar manner with P (hk|hk+1).

The learning of DBNs parameters (e.g. Wk) is made in two phases, as de-
scribed in [82]. The first one is the unsupervised training phase. Herein, the
weights W1, ..., Wn are considered to be bidirectional and the model is trained in
an unsupervised way to learn to reconstruct probabilistically the inputs as well as
possible, by using just the input data. As it is shown in Figure A.2, in this phase
just the neurons from the input and the hidden layers are involved. After this
training phase, the hidden layers may perform automatically features extraction
on inputs (i.e. the neurons which compose the hidden layers turn on or off when
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some specific values in a subset of the input neurons set occur). The second phase
is the supervised training and the neurons from all the layers are involved in it.
Herein, the model learns to perform classification or regression. More exactly, the
previous learned DBN model is transformed in a directed neural network from
bottom to top. The weights W1, ..., Wn are initialized with the previous learned
values, while Wo are randomly initialized. After that, the DBN model is trained
to fit pairs of input and output data points, as best as possible, by using a stan-
dard neural network training algorithm, such as back-propagation [174]. However,
the above represents just a high level description of the DBNs formalism with the
scope of providing to the non-specialist reader an intuition about the mechanisms
behind DBNs. The overview of the deep learning complete mathematical details
do not constitute one of the goals of this appendix and the interested reader is
referred to [20] for a thorough discussion.

A.5. Experimental results and analysis

This section presents experimental evaluation, and related analysis of the re-
sults obtained.

A.5.1. Test method setup

To assess the performance of our proposed method, we have considered two
scenarios. First, we performed content-independent within dataset cross validation
using the first video dataset (recall there are two datasets used in this study as
discussed in the previous section). Since there are 5 different types of content,
we performed a 5 fold cross-validation, where each fold represents one video type.
In total, we repeated the experiments five times, each time choosing a different
video to test the models, and the other four to train them. In the second scenario,
we employed cross dataset validation: one dataset was used as training set and
the other one as testing set. Hence we ensured that in both scenarios, train and
test sets were content independent. In both scenarios, for all the machine learning
algorithms analyzed, the inputs consist of features described in Section A.4.2.

A distinct advantage that DBN offers over other competing methods is that
they can be effectively initialized with unlabeled data in the unsupervised learning
phase, and the second phase involves labeled data. As a result, they would require
much less labeled training data to achieve similar or better prediction performance.
Clearly, this is desirable in the context of video quality estimation where the
availability of labeled data (i.e. subjective video quality ratings) is limited for
obvious reasons. Thus, we have used two DBN models which employed less labeled
training data (i.e. pairs inputs-outputs) in the supervised learning phase, while in
the unsupervised learning phase they were trained with all the data but without
the need of the corresponding label. Besides that, we have analyzed DBN and
RNN models with one output (i.e. the model is specialized to predict just MOS or
just PDU) or with two outputs (i.e. the model is capable to predict both, MOS
and PDU). More specifically, in all sets of experiments performed, we have used
the following DBN and RNN models: DBN1

100 (it used 100% of the labeled training
data and it had 1 output), DBN2

100 (it used 100% of the labeled training data and it
had 2 outputs), DBN1

40 (it used 40% of the labeled training data chosen randomly
and it had 1 output), DBN2

40 (it used 40% of the labeled training data chosen
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randomly and it had 2 outputs), DBN1
10 (it used 10% of the labeled training data

chosen randomly and it had 1 output), DBN2
10 (it used 10% of the labeled training

data chosen randomly and it had 2 outputs), RNN1 (it had 1 output), and RNN2

(it had 2 outputs).
For the DBN models, we used 3 hidden layers with 10 hidden neurons on each

of them. The learning rate (i.e. the factor which applies a greater or lesser portion
of the weights adjustments computed in a specific epoch to the older weights
computed in the previous epochs) was set to 10−3, momentum (i.e. the factor which
allows to the weights adjustments made in a specific epoch to persist for a number
of epochs with the final goal to increase the learning speed) to 0.5, the weight
decay (i.e. the factor which reduces overfitting to the training data, and shrinks
the useless weights) to 0.0002, and the weights were initialized with N (0, 0.01) (i.e.
Gaussian distribution). The number of training epochs in the unsupervised training
phase was set to 200, while the number of training epochs in the supervised training
phase using back-propagation was set to 1600. To ensure a smooth training, the
data have been normalized to have zero mean and one unit variance as discussed
in [79]. For the RNN models we used the implementation offered by Changlin Liu
and Luca Muscariello3. For the LR and DTR implementations we have used the
scikit-learn library [166].

Besides that, to assess the quality of the PDU predictions using the various
machine learning techniques under scrutiny (which are applied directly on the
features extracted from the videos), we tried to estimate also the PDU values by
using two simpler statistical approaches in which we have exploited the sigmoid-
like relation between MOS and PDU . Formally, for each video i from the testing

set, we have estimated its PDU value, P̂DUi, from a Gaussian probability density
function, as follows:

P̂DUi = P (1 ≤ x ≤ th) =

∫ th

1

1

σi
√

2π
e
−(x−µi)

2

2σ2
i (A.6)

, where th represents the selected threshold for PDU4, µi represents the MOS for
the video i, and σi means the standard deviation of all individual subjective scores
associated with video i. However, due to the fact that in a real video service it is
impossible to obtain µi and σi in real-time, in our experiments we set µi to the
MOS value predicted for the video i by the best performer among the machine
learning techniques used. At the same time, we have estimated σi considering
two cases: (1) a fixed value given by the mean value of all standard deviations,
computed each of them on the individual subjective scores associated with each
video from the training set (method dubbed further FixSig); (2) a variable value
given by a Gaussian curve fitted on the MOS values of the videos from the training
set and their corresponding standard deviation (method dubbed further FitSig)
and the previous discussed µi.

The performance was assessed using Pearson (PCC) and Spearman (SRCC)
correlation coefficients, and the root mean squared error (RMSE) values. Note
that we employed the mentioned performance measures for both MOS and PDU
prediction accuracies. To serve as a benchmark, we also computed the results
using peak-signal-to-noise (PSNR), which is still a popular FR method. The results

3https://code.google.com/p/qoe-rnn/, Accessed on March 7th, 2015.
4Please recall that in this appendix th is set to 3.
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Figure A.3 – Cross-validation results snapshot. The real MOS and PDU values plot-
ted against the predicted MOS and PDU values using DBN2

10 on the best performers
(i.e “Concert” videos) and on the worst performers (i.e. “Voile” videos). Each point
represents an impaired video.

(correlations, RMSE) for PSNR were computed after the non-linear transformation
recommended in [215]. The reader will however recall that in the considered
application, decoded video data is assumed to be unavailable, and hence objective
methods that require pixel data cannot be employed in practice.

A.5.2. Test results

The results for the first scenario i.e. 5-fold cross validation are presented in
Table A.3, in which we have reported the RMSE and correlation values for each fold
as well as the average over the 5 folds. We can observe that while all the methods
achieve statistically similar performances for MOS prediction accuracies, DBNs
perform better in predicting PDU . To obtain further insights, we have plotted in
Figure A.3 the outcomes of DBN2

10 on two content types namely “Concert” and
“Voile”. In these plots, the blue dots show the locations of subjective MOS vs the
predicted MOS (obviously they will lie on the 45◦ in case of perfect prediction)
while the error bars represent PDU . We have shown the results only for DBN2

10

due to the fact that it is probably the most interesting model because it uses only
10% labeled training data and hence is practically more robust against the amount
of labeled training data available. Moreover, recall that DBN2

10 outputs both MOS
and PDU simultaneously from single training unlike other models which need to
be trained twice on subjective MOS and actual PDU . Hence, it is able to predict
both values at the same time. It can be observed in both plots that the blue dots
lie close to the main diagonals (which represent the perfect predictions for the
MOS values). Moreover, predicted PDU is close to the actual PDU , although the
accuracy is less in case of “Voile” sequence at higher subjective MOS.

The results for the second test scenario (cross-dataset validation) are presented
in Tables A.4 and A.5. One can again see that DBNs tend to perform better
considering both MOS and PDU predictions. Note that PSNR results cannot
be computed in case of Table A.4 because the videos were registered from air
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Figure A.4 – Results for the second dataset (note that the system was trained using
only the first dataset). The real MOS and PDU values plotted against the predicted
MOS and PDU values using DBN2

10. Each point represents an impaired video.

Table A.4 – Cross dataset validation. The system was trained with sequences from
the first dataset (200 sequences, 100 HD and 100 SD), and the test set consisted of
200 videos taken from air (the second dataset).

Metrics
MOS PDU

RMSE PCC SRCC RMSE PCC SRCC

LR 0.70 0.82 0.81 0.24 0.81 0.82

DTR 0.62 0.83 0.80 0.24 0.80 0.81

RNN2 0.77 0.84 0.85 0.18 0.90 0.84

DBN2
100 0.58 0.87 0.85 0.20 0.87 0.83

DBN2
40 0.61 0.88 0.83 0.19 0.90 0.84

DBN2
10 0.60 0.86 0.82 0.19 0.88 0.83

FixSig n/a n/a n/a 0.27 0.83 0.81

FitSig n/a n/a n/a 0.28 0.84 0.81

and hence the source (reference) video is unavailable. Hence, these results are
relevant for a practical end-to-end video delivery chain where FR methods cannot
be employed. Finally, the MOS-PDU plot for the scenario considered in Table A.4
is shown in Figure A.4 (for DBN2

10). This allows the reader to judge the scatter
around the diagonal as well as compare the actual and predicted PDU values.

In both test scenarios, we may observe that DBNs perform better for PDU
predictions that any other methods in terms of the all evaluation metrics. Besides
that, it is interesting to note that even the two simpler statistical methods performs
quite well, being able to predict PDUs with a good correlation factors, but having
some flaws in the case of the RMSE metric. Moreover, we would like to highlight
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Table A.5 – Cross dataset validation. The system was trained with 200 videos taken
from air (second dataset), and the test set consisted of 200 sequences (100 HD and
100 SD) from the first dataset.

Metrics
MOS PDU

RMSE PCC SRCC RMSE PCC SRCC

LR 0.75 0.75 0.77 0.27 0.72 0.77

DTR 0.77 0.69 0.65 0.31 0.66 0.68

RNN2 1.25 0.78 0.76 0.24 0.77 0.77

DBN2
100 0.60 0.81 0.81 0.23 0.76 0.80

DBN2
40 0.63 0.79 0.78 0.25 0.74 0.77

DBN2
10 0.65 0.80 0.78 0.24 0.76 0.79

FixSig n/a n/a n/a 0.29 0.62 0.71

FitSig n/a n/a n/a 0.29 0.75 0.77

Figure A.5 – Comparison of the real PDU with the predictions made by DBN2
10

and FitSig. Each PDU bar represents the mean values of the PDUs situated in the
light gray or in the white areas, respectively. In the left plot, the system was trained
with the 200 sequences (100 HD and 100 SD) from the first dataset, and the test set
consisted of the 200 videos taken from air (second dataset), while in the right plot
the training and the testing sets were reversed.

that in our experiments FitSig proven to be more robust than its counterpart
FixSig, especially when the subjective studies came from different datasets, due
to its better representational power given by a better fitted standard deviation
σi. For a better insight into the differences between DBNs and the statistical
approaches in Figure A.5 we plot the results of DBN2

10 and FitSig in the case of
the cross dataset validation scenario. Herein, it is interesting to see that at small
MOS values FitSig performs better than DBN2

10, while at MOS values usually
higher than 2.5, DBNs perform much better. Similarly, we have observed the
same behavior also for the other DBN models on one side and FixSig and FitSig
on the other side in both test scenarios, the 5-fold cross validation and the cross
dataset validation. These, corroborated with the fact that FixSig and FitSig still
need an external prediction method to estimate µi, make DBNs the most suitable
method to predict PDU .
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Figure A.6 – The behavior of DBN2
10 during the training on the first video dataset.

The first three plots depict the unsupervised training phase for each RBM belonging
to the DBN2

10, while the last one presents the supervised training phase in which the
DBN2

10 was trained using back-propagation. The straight lines represent the mean
and the shaded areas reflect the standard deviation computed for all the data points.

Table A.6 – Analytic study of the relations between the DBNs weights in different
learning phases. The assessment metrics are computed between the weights of the
DBN under scrutiny after the supervised learning phase and their corresponding values
obtained after unsupervised learning phase and before the supervised one.

Training Set Model
W1 W2 W3

RMSE PCC SRCC RMSE PCC SRCC RMSE PCC SRCC

First Dataset
DBN2

100 0.17 0.98 0.96 0.49 0.93 0.93 0.30 0.97 0.98
DBN2

40 0.20 0.97 0.95 0.54 0.92 0.91 0.36 0.96 0.97
DBN2

10 0.22 0.96 0.94 0.56 0.91 0.90 0.38 0.96 0.96

Second Dataset
DBN2

100 0.11 0.99 0.99 0.23 0.99 0.98 0.26 0.98 0.98
DBN2

40 0.15 0.99 0.98 0.26 0.98 0.98 0.29 0.98 0.97
DBN2

10 0.14 0.99 0.98 0.26 0.98 0.97 0.27 0.98 0.98

A.5.3. Learning of weights in deep belief networks

To understand better how deep learning works, in Figure A.6, the behavior
of DBN2

10 during the training on the first video dataset is plotted. It can be ob-
served that in the unsupervised learning phase the model learns to reconstruct the
inputs well after approximately 50 training epochs, and after roughly 100 train-
ing epochs it reconstructs them very precisely, independently of the RBM under
scrutiny (RBM1,RBM2,RBM3). More than that, the same plot suggests a clear
correlation between the three performance metrics used over the training epochs
to assess the learning process, such that when the averaged RMSE and P-value
tends to get closer to zero, the averaged PCC value tends to get closer to one,
showing overall a perfect correlation between them. Further on, in the supervised
learning phase, DBN2

10 learns with back-propagation to predict the training out-
puts with a very small error after about 800 training epochs. We would like to
highlight, that all the DBN models discussed in this appendix, independently on
the scenario, had a similar behavior as the one described previously for DBN2

10.
Furthermore, we have analyzed the most important free parameters (i.e. the

weights W1, W2, W3, and Wo) of the DBN models used in this experiment.
The relations between these parameters are exemplified visually in Figure A.7, and
presented in Table A.6. In both, it can be observed, that practically the weights
learned during the unsupervised training phase do not change too much after the
supervised training phase, independently if we study DBN2

100, DBN2
40, or DBN2

10.
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This probably explains why in the literature, the latter one is called “fine tuning”.
At the same time, the fact that the weights of the three fine tuned DBNs end up
in a region very close to the one discovered by the initial unsupervised learning
procedure reflects also why a DBN which uses just 10% of the labeled data for the
back propagation training has a similar performance with one which uses 100% of
the labeled data. Besides that, the sparsity patterns of the weights reflect which
input neurons contribute more to any hidden neurons. As an example, we can
observe that the neuron number 8 from h1 is affected just by neurons 3 (i.e. %
of total frames lost) and 5 (i.e. # of bursts) from x, or in other words the DBNs
models automatically find a correlation between % of total frames lost and # of
bursts. Similarly, we can deduce that the 10th hidden neuron from h1 represents a
relation between all the 5 input features used. It is worth highlighting, that using
similar cascade deductions, one might discover why the neuron number 9 from h3

has such a strong impact on both neurons (i.e. MOS and PDU) from the output
layer y.

A.6. Discussion

One of the main aims of this appendix has been to demonstrate how objective
quality prediction can be augmented by considering variability of subjective data.
Particularly, we have shown how machine learning can add value to objective video
quality estimation by considering a two-output DBN model. Hence, we train the
model not only to predict MOS but also to put subjective variability into obser-
vation. Consequently, we are able to deepen our understanding of the service in
question from two perspectives: overall service quality and the satisfaction of the
customer base. Utilizing percentage below threshold instead of standard devia-
tion or other typical mathematical scattering indicators unveils the answer to the
question “how many users are not happy with the service” instead of “are users on
average happy with the service”. These two perspectives have a profound differ-
ence when it comes to quality management, as quality does not translate directly
into business success: slightly bad quality does not mean slightly decreased market
share. In some cases it can be the differentiating factor between success and fail-
ure. Meeting the needs of all customers and detecting and dealing with customer
dissatisfaction are key components in service quality management, especially when
we consider things of high abstraction level such as quality of experience.

During the course of the study we learned that there is a rough sigmoid-like
correlation between MOS and uncertainty of MOS for this dataset. This ob-
servation cannot be generalized for all datasets and selected features, but it is
nonetheless notable that when MOS drops around the selected threshold of sat-
isfaction, the number of dissatisfied users increases the fastest. Different features
may pose different kind of relations depending on how opinions of subjects vary due
to particular feature. This phenomenon becomes more apparent if participants of
subjective assessment are selected from different regions, age groups, cultures and
backgrounds. This was noted for example in [206] where authors studied website
aesthetics and discovered a major difference between Asian and non-Asian users
in perception of website visual appeal. We propose that this may also apply to
certain quality aspects where some user groups perceive some quality degradation
as much worse than other users.
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Figure A.7 – The values of the weights in the DBNs models when the training was
done on the first data set. The values on the x-axis and y-axis represent the index of
neurons from that specific layer. The neurons from the input layer x represent the
following features: real bit rates (i.e. 1st neuron), % of I-frames lost (i.e. 2nd neuron),
% of total frames lost (i.e. 3rd neuron), SAD (i.e. 4th neuron), # of bursts (i.e. 5th

neuron). The first column reflects the weights of the DBN2
unsupervised obtained after

the unsupervised training phase, while the last three columns represent the weights
of the DBNs obtained after the supervised training phase. Moreover, on rows, the
bottom one represents the DBNs inputs, while the top one represents the DBNs
outputs. The dark red in the heat maps represents weights values closer to -11, while
the white depicts weights values around 0, and the dark blue shows weights values
towards 6. It is interesting to see that after the training process many of the weights
become very close to 0.
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APPENDIX A. VIDEO QUALITY ASSESSMENT STUDY CASE

User dissatisfaction information can be utilized in many ways in practice.
Traditional management mechanisms such as traffic shaping, admission control
or handovers can be further enhanced to also include a “risk threshold” for user
dissatisfaction in addition to MOS threshold. For instance, let us assume a QoE
managed service where a provider is able to automatically monitor the service per-
user level. The provider uses a machine-learning model which outputs two values,
objective MOS and probability that the user is not satisfied. The management
mechanism can step in to improve the user experience if either the estimated MOS
drops below a certain threshold, or if the estimated dissatisfaction level rises above
a certain value (for example, MOS is required to remain above 3 and risk that the
user opinion is below 3 must be less than 5%).

But what may be even more useful for the service provider is the overall MOS
and dissatisfaction percentage throughout the service. This also helps providers to
reflect how the service is doing competition-wise and if they can expect user churn
in the near future. Holistic, real-time monitoring may also help to indicate serious
faults and problems either with the service or the transfer network and help to act
accordingly. Operators can therefore react to user dissatisfaction before customers
either terminate their service subscription or burden customer service.

A.7. Concluding thoughts

While the problem of objective video quality assessment has received con-
siderable research attention, most existing works tend to focus only on averaged
ratings. As a result, valuable information generated as a result of inter-observer
differences (i.e. subjective variability) is simply lost in objective quality predic-
tion. This appendix attempted to introduce and analyze one such instance of how
the scattering of subjective opinions can be exploited for business-oriented video
broadcasting applications. This was accomplished by first analyzing and formulat-
ing interpretable measure of user dissatisfaction which may not always be reflected
in averaged scores. To put the idea into practice, we then explored the deep learn-
ing framework and jointly modeled the averaged scores and user dissatisfaction
levels so that the predicted objective video quality score is supplemented by user
satisfaction information. At the same time we showed that by using deep belief
networks the amount of subjective studies required to learn to make accurate pre-
dictions, which outperform clearly the other machine learning models considered
for comparison in this appendix (i.e. linear regression, regression trees, and ran-
dom neural networks), may be reduced up to 90%. This will be useful in a typical
video broadcasting system where customer (user) churn needs to be continuously
monitored. We also demonstrated a practical implementation of our ideas in the
context of video transmission. We designed the system so that video quality and
user dissatisfaction can be predicted from data bit stream without the need of the
fully decoded signal. This greatly facilitates real time video quality monitoring
since objective quality can be predicted from the code stream.
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APPENDIX B

Algorithms

This appendix lists the main algorithms proposed in this thesis.

1 % Initialization;

2 set graph G = (V,E);

3 set Φn
0 for each node n ∈ V , number of thieves per node;

4 set T = log2|V |; % the number of epochs to stop the algorithm;

5 % Run the game;

6 for each epoch e = 1 : T do
7 Set Ψl

e = 0, for each link l;

8 for each thief a do

9 if a in ’empty’ state then

10 set n to the actual position of a;

11 a moves to next node m, given by the probability pnm
a ;

12 if m ∈ Υa then
13 Eliminate cycle from Υa;

14 else
15 Add m to the end of Υa;

16 end

17 if m has vdiamonds then
18 a set state to ’loaded’;

19 Φm
e = Φm

e − 1;

20 end

21 end

22 if a in ’loaded’ state then
23 set n to the actual position of a; % the last node from Υa;

24 a moves to last but one node m from Υa;

25 a removes node n from Υa;

26 set Ψl
e = Ψl

e + 1 where l is the link between n and m;

27 if m is the home node of a then
28 Φm

e = Φm
e + 1;

29 a set state to ’empty’;

30 end

31 end

32 end

33 end

34 % Computes centralities;

35 Computes the centrality of each node n, Φ̄n
T = 1

T

∑T
e=0 Φn

e ;

36 Computes the centrality of each link l, Ψ̄l
T = 1

T

∑T
e=0 Ψl

e ;

Algorithm B.1: Game of Thieves (GOT) algorithm. For more details please
see Chapter 2.
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APPENDIX B. ALGORITHMS

1 %% Initialization of the various parameters

2 Set nh, nv , nGs, nCD , nE , nB , nB̂ , α, ρ, ξ

3 Initialize RBM parameters Θ0(i.e., W0, a0, b0)∼ N (0, σ)

4 Set ∆Θ
nE
0 = 0

5 Set t = 1, Bt = ∅
6 %% A continuous loop to handle sequential incoming data

7 while system is running do

8 Observe a new data point d

9 Add d to Bt

10 if Bt contains nB observed data points then

11 Set B̂t = ∅
12 %% Generate new data points with the RBM

13 if t > 1 then
14 for i = 1 : nB̂ do

15 %% Run Gibbs sampling

16 Initialize h ∼ U(0, 1)

17 for k = 1 : nGs do

18 Infer P (v = 1|h,Θt−1)

19 Infer P (h = 1|v,Θt−1)

20 end

21 Add v to B̂t

22 end

23 end

24 %% Update parameters

25 Set Θ0
t = Θt−1 and ∆Θ0

t = ∆Θ
nE
t−1

26 for e(epoch) = 1 : nE do

27 %% Create a training batch from Bt and B̂t

28 Set V = Bt ∪ B̂t

29 Infer P (H = 1|V,Θe−1
t )

30 %% Collect positive statistics Ψ+

31 Compute Ψ+ from V and H

32 for k = 1 : nnCD do

33 Infer P (V = 1|H,Θe−1
t )

34 Infer P (H = 1|V,Θe−1
t )

35 end

36 %% Collect negative statistics Ψ−

37 Compute Ψ− from V and H

38 %% Perform parameters update

39 ∆Θe
t = ρ∆Θe−1

t + α[(Ψ+ −Ψ−)/(nB + nB̂)− ξΘe−1
t ]

40 Θe
t = Θe−1

t + ∆Θe
t

41 end

42 Set Θt = Θ
nE
t

43 %% Clean the memory

44 Delete B̂t, Bt from memory

45 %% Advance to the next time step

46 Set t = t+ 1, Bt = ∅
47 end

48 end

Algorithm B.2: Online Contrastive Divergence with Generative Replay. Note
that OCDGR only stores the last variant of Θe

t and ∆Θe
t in memory. Still,

we notate them as being indexed by t for a better illustration of the time and
training epochs dimensions. For more details please see Chapter 3.
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APPENDIX B. ALGORITHMS

1 %% define nv, nh (number of visible and hidden neurons, respectively);

2 %% assumptions: nv > 4 and nh > 4 (we consider non trivial cases);

3 %% define σneigh, φ (parameters to control the nodes local connectivity);

4 %% initialization;

5 set Lth = log(nv + nh);%% set a threshold for the small-world topology;

6 %% topology generation;

7 repeat

8 generate randomly SPL, a power law degree sequence of size nv + nh with the minimum

degree of 4;

9 sort SPL in descending order;

10 set Sv=[] and Sh=[]; %% sequences to store the degree of the visible and hidden

nodes,respectively;

11 i=1;

12 while i ≤ 2×min(nv, nh) do

13 Sv .append(SPL[i]);

14 Sh.append(SPL[i+ 1]);

15 i=i+2;

16 end

17 if (nv > nh) then

18 Sv .append(SPL[2× nh : end]);

19 end

20 else

21 Sh.append(SPL[2× nv : end]);

22 end

23 if sum(Sv) < sum(Sh) then

24 add sum(Sh)− sum(Sv) degrees equally distributed among the visible nodes;

25 end

26 else

27 add sum(Sv)− sum(Sh) degrees equally distributed among the hidden nodes;

28 end

29 G =createBipartiteGraphUsingHavelHakimiProcedure(Sv, Sh) [76];

30 for o=1:φ do
31 for i=1:nv do
32 while a finite number of trials do

33 j = dN ((i× nh)/nv, σ
neigh)e;%% sampled from a Gaussian distribution;

34 if 0 ≤ j ≤ nh then
35 addEdge (i, j) to G;

36 break;

37 end

38 end

39 end

40 for j=1:nh do
41 while a finite number of trials do

42 i = dN ((j × nv)/nh, σ
neigh)e;%% sampled from a Gaussian distribution;

43 if 0 ≤ i ≤ nv then
44 addEdge (i, j) to G;

45 break;

46 end

47 end

48 end

49 end

50 L =computeAverageShorthestPath(G);

51 until L ≤ Lth;

52 %% fit the topology to the data;

53 re-arrange the visible nodes in G s.t. the ones with higher degree correspond to data features

with higher std. dev.;

54 %% topology utilization;

55 use the visible nodes from G as the visible layer in XBM (or GXBM);

56 use the hidden nodes from G as the hidden layer in XBM (or GXBM);

57 use the edges from G as the weights in XBM (or GXBM);

Algorithm B.3: Pseudo-code of the algorithm used to generate the topology
of the XBM and GXBM models. For more details please see Chapter 4.
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APPENDIX B. ALGORITHMS

1 %Initialization;

2 initialize ANN model;

3 set ε and ζ;

4 for each bipartite fully-connected (FC) layer of the ANN do
5 replace FC with a Sparse Connected (SC) layer having a Erdős-Rényi

topology given by ε and Eq.5.1;

6 end

7 initialize training algorithm parameters;

8 %Training ;

9 for each training epoch e do
10 perform standard training procedure;

11 perform weights update;

12 for each bipartite SC layer of the ANN do
13 remove a fraction ζ of the smallest positive weights;

14 remove a fraction ζ of the highest negative weights;

15 if e is not the last training epoch then
16 add randomly new weights (connections) in the same amount as the

ones removed previously;

17 end

18 end

19 end

Algorithm B.4: Sparse Evoluationary Training (SET) pseudocode. For more
details please see Chapter 5.
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Abbreviations

Abbreviation Description
ABAC Attribute-Based Access Control
AI Artificial Intelligence
AIS Annealed Importance Sampling
ANN Artificial Neural Network
AUC Area under the curve
BC Betweenness Centrality
BGP Border Gateway Protocol
Ca-RBM Cardinality Restricted Boltzmann Machine
CC Connected Components
CBP Circular Back Propagation
CD Contrastive Divergence
CNN Convolutional Neural Network
CFBC Current Flow Betweenness Centrality
DBN Deep Belief Network
DCT Discrete Cosine Transformation
DFFW-CRBM Disjunctive Factored Four Way Conditional Restricted

Boltzmann Machine
DL Deep Learning
DMOS Degradation Mean Opinion Scores
DRL Deep Reinforcement Learning
DTR Decision Tree based Regression
DTT Digital Terrestrial Television
ER Experience Replay
FFW-CRBM Factored Four Way Conditional Restricted Boltzmann

Machine
FixProb Fixed Probability
FR Full-Reference
FTrRBM Factored Transfer Restricted Boltzmann Machine
GC Giant Component
GoP Group of Pictures
GOT Game of Thieves
GRBM Gaussian Restricted Boltzmann Machine
GXBM Gaussian compleX Boltzmann Machine
GR Generative Replay
GPU Graphics processing unit
HD High Definition
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ABBREVIATIONS

IOT Internet of Things
ISP Internet Service Provider
LR Linear Regression
MCMC Monte-Carlo Markov Chain
MDP Markov Decision Process
ML Machine Learning
MLP Multi Layer Perceptron
MOS Mean Opinion Score
MPEG Motion Picture Expert Group
NR No-Reference
NRP Node Removal Procedure
NS Network Science
OCDGR Online Contrastive Divergence with Generative Replay
PCC Pearson Correlation Coefficient
PDU Percentage of Dissatisfied Users
PSNR Peak Signal to Noise Ratio
QoE Quality of Experience
RBM Restricted Boltzmann Machine
RBMOCD RBM trained with OCDGR

RBMER−ML RBM trained using Experience Replay with a Memory Limit
RBMER−IM RBM trained using Experience Replay with Infinite Memory
RBMSim Restricted Boltzmann Machine Similarity Measure
RGB Red Green Blue
RL Reinforcement Learning
RMSE Root-mean-square error
RNN Random Neural Network
RR Reduced-Reference
SAD Sum of Absolute Differences
SC Sparse Connected layer
SD Standard Definition
SET Sparse Evolutionary Training
SET-RBM Restricted Boltzmann Machine with Sparse Evolutionary Training
SET-MLP Multi Layer Perceptron with Sparse Evolutionary Training
SGD Stochastic Gradient Descent
SOC Second Order Centrality
SOS Standard deviation of Opinion Scores
SMcCD Sequential Markov chain Contrastive Divergence
SRCC Spearman Correlation Coefficient
SVR Support Vector Regression
TL Transfer Learning
TrPrTr Train Prune Train
TS Transport Stream
WSN Wireless Sensor Networks
XBM compleX Boltzmann Machine
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