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The Evaluation of Agile Demand Response:
An Applied Methodology

M. Babar, P.H. Nguyen, V. Cuk, I.G. Kamphuis, M. Bongaerts, Z. Hanzelka,

Abstract—This paper formulates an applied methodology for
an agile demand response using mathematical micromodels. The
optimal strategy chosen by an aggregator is the maximization
of social welfare derived from demand flexibility. The notion
of complex demand bidding is already given in the litera-
ture, however heretofore it is formulated as the relationship
of price with both demand elasticity and marginal cost along
with temporal and profit constraints. Although the planning of
flexible demand is already handled by using advance learning
techniques in literature, herein simple Q-learning technique in a
decentralized fashion is proposed. Moreover, trade-offs between
the proposed complex bidding rules are explored in a day-ahead
market context. Due to the given complex bidding rules and
principle of learning, the methodology can be easily applied in
active distribution network. Several number of houses, equipped
with the proposed complex bidding mechanism and decentralized
learning capability, has been simulated, thus illustrating the
application of methodology formulated herein.

Index Terms—Agile methodology, Complex bidding, Demand
response, Multi-agent system, Reinforcement learning.

I. INTRODUCTION

A. Overview

In theory, regulator should try to deliver maximum social
welfare to a society, i.e. electricity supply demand balance
should follow the path of least-cost over long term develop-
ment. Recently, due to inevitable uncertainty on the growth
of the demand and the generation, demand response (DR)
has been introduced as one of the potential solutions to the
electricity markets and network issues. DR generally refers as
shifting of dispatchable loads by the customers in response to
market prices or when network reliability is jeopardized [1].
DR performed by the customers at LV network could be the
main driver to shift demand peaks which usually occur in the
morning and early evening hours of a routine day. Moreover,
DR could enhance the economic efficiency of power systems
and market price volatility, reduce the carbon footprint and
eliminate the need of committed peaking units in the electricity
sector.

To further maximize the social welfare to European so-
ciety by considering DR benefits, Art. 15.8 in EU Directive
2012/27/EU encourages ISOs to accept DR participation al-
ongside supply in the wholesale market [2]. Following the
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Fig. 1. Block diagram of proposed DR Scheme.

directive, many EU member states have implemented multiple
DR programs by adjusting electricity market rules [3].

With this notion, explicit DR has been gaining substantial
focus for the future utilization of DR benefits. In the literature,
the focus on the utilization of DR benefits is limited for
a group of stake-holders, for instance; in [4] and [5] DR
benefits are determined for retailers and aggregators. On the
other hand, [6] and [7] determine DR benefits for distributed
system operator (DSO) and transmission system operator
(TSO). In general, it is inferred that demand flexibility acts
as a social commodity which is a special type of resource
attracted by each stakeholder to consume. In this situation,
each stakeholder should have fair chance to gain benefit from
the demand flexibility. That is why, the concept of agile
DR has been developing which does not require significant
changes in existing functioning of the stakeholders and would
allow fair sharing of DR benefit among all [8]–[10].

Despite the steady stream of market framework for demand
dispatch in DR research, very little attention has been paid to
developing a mechanism for planning the demand flexibility
that also considers fair distribution of DR benefits across the
downstream local customers associated with an aggregator
[11]. Such a mechanism is important because without it,
benefits from demand dispatch may become sub-optimal [10].

Therefore, there is a need for a comprehensive as well
as applied methodology that allocates explicit DR benefits
across each market players including an aggregator, retailers,
DSO, program responsible parties (PRP) and especially the
customers. The scope of this paper is the formulation and
analysis of agile methodology for explicit DR planning, which
ensures the fair distribution of DR benefits to customers and
eventually represents their say in the wholesale market.
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B. Paper Contribution

It has been noted that there are many technical challenges
in explicit demand response such as; (i) an adequate DR in
peak hours will not only reduce high peak but might also the
average day-ahead market price, (ii) overall day-ahead price
may also reduce due to efficient use of distributed generation,
(iii) unscheduled response (in actual hour of use), thus risking
the market players to activate the balancing reserves in that
hour of operation. For this reason, without learning demand
flexibility for DR planning, the day-ahead price in market
may become inappropriate, making the market clearing sub-
optimal.

Heretofore these has been no contribution that mathemati-
cally formulates the applied methodology for explicit demand
response with the concept of agility. In [8], authors presented
a concept that fills in the research gap between market-
driven bidding model of demand flexibility in multi-agent
system and DR planning. For this reason, first time this
work formulates an extensive rules for complex bidding in
agile DR in combination with the principle of decentralized
learning. The mathematical micromodels of multiple type of
agents, learning objectives, bidding rules, observations and
experiences given in the research would benefit the technical
society to explore in the area of agile demand response.

The rest of the article is structured as follows. Section
II of the paper provides the analytical description for the
application of agile methodology. Section III formulates the
optimization problem with an objective to maximize the DR
benefit by minimizing the total energy cost of appliance agents
associated with domotic agents. Reinforcement technique as
an optimization tool is used to learn the DR schedule over
day-ahead basis in section IV. Simulation results are given in
section V and section VI summarizes the main contribution of
the paper in the field of demand response.

II. AGILE METHODOLOGY

According to EU Directive 2012/27/EU [2] and the propo-
sed recent amendments in the directive [12], the aggregator
either independently or mutually with program responsible
party(s) can trade demand flexibility to electricity market, as
shown in Fig. 1. Although the directive does not comply the
aggregator to implant any particular type of explicit demand
response for the utilization of demand flexibility at customer
level, the system as a whole should ensure maximization of
social welfare by considering DR benefits [13]. In general,
DR benefit is equal to the difference between the benefit that
consumers derive from the reduction of electrical energy and
the cost of producing this energy. In specific, when the energy
consumption reduces or shifts due to DR during peak hours,
electricity supply demand balances at relatively lower cost than
without DR.

Two facts are important from the point of evaluating social
welfare in traditional demand response. Firstly traditional
DR permits a larger demand to be marketed at the lower
price during off-peak hours. Consequently, consumers would
unquestionably gain from DR. Secondly the net social welfare
is indeterminate due to the absence of real-time magnitude

of the shifts in demand for different prices and the elasticity
of demand. Therefore, in [8], authors proposed agile demand
response as an alternative to traditional demand response sche-
mes, as it endeavors to increase social welfare by branching the
aggregation of DR benefits into two independent hierarchical
nodes, namely domotic and aggregator. As shown in Fig.
1, the former node is capable to respond to unpredictable
environment through incremental learning as well as submits
complex bids, thus systematically reflects resident DR benefits.
Each domotic agent is assumed to be an economic agent that
acts in a greedy manner. This means domotic agents only
attempt to maximize their own benefits by minimizing the
total cost of energy consumed under the economic constraints.
On the other hand, appliance agent is a representation of
smart appliance and based on the assumption in [14], there
is a defined pattern for what appliance agent is willing to
bid during different time of day as well as for different use
of electricity. Accordingly, the price elasticity of demand can
easily be estimated over time for appliances at domotic agent
[15].

The later node acts as an aggregated information agent, who
generates DR price to lead the downstream domotic agents.
DR price is a relative price to an actual sum of network
tariff and day-ahead hourly pricing incentive that may reflect
hourly spot-price (plus taxes, which is not included here for
simplicity). Accordingly, the aggregator with relative elastic
demand and different price offers to the market, results in
demand dispatch that increases net social welfare. Authors in
[16] assessed the agile demand response along with a traditio-
nal demand response (i.e. price based demand response), and
found that for the majority of the domotic agents, agile DR
generates the most social welfare. Moreover, it is also found
that DR prices can reflect the actual situation in the electricity
market, thus demand flexibility by the consumers via the
aggregator would be included in the wholesale market to
improve market responsiveness. Therefore, later in this section,
we provide micromodels for multiple types of agent and rules
for complex bidding. Based on this multi-agent system, later
this paper formulates design optimization problem in section
III. Since this paper mainly focuses on the evaluation of agile
demand response by the aggregator, finding of pareto optimal
market clearing mechanism is out of the scope of this research.

A. Aggregator Agent

Here, an aggregator, as shown in Fig. 1, is a collective
representation of all downstream agents to the wholesale
market. The aggregator sends DR prices to domotic agents and
aggregates the received demand flexibility from each domotic
agent, and then eventually the given demand flexibility is
traded in the market.

B. Domotic Agent

Domotic Agent represents a smart customer who is partici-
pating in demand response program.

Let D denote the set of Domotic Agents (DAs), where
the number of DAs is D , |D|. For each agent-d ∈ D,
let lkd denote the total demand at interval k ∈ K ,
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{1, 2, . . . , k, . . . ,K}, where K = 24. Without the lose of
generality, we assume that an interval is one hour. The daily
total demand of a customer represented by agent-d is denoted
by ld , [l1d, . . . , l

K
d ].

Remember, total demand curve ld is a combination of total
flexible demand xd as well as non-flexible demand bd (referred
as base-load). Although agent-d does not consider base-load
bd for scheduling as it is non-flexible load, it is considered
to build the final aggregated demand curve which is traded in
the market, as shown in Fig. 1.

C. Appliance Agent

For a residential customer, there are various types of ap-
pliances. Four different types of appliances such as buffer,
time shifter, uncontrollable and unconstraint have been defined
in [17] as an energy flexible platform and interface (EF-Pi).
EF-Pi proposes control spaces that contains general control
model for each type of appliance. Herein, control space of
every appliance is represented by an appliance agent. Hence
for each agent-d ∈ D, let Ad denote the set of appliance agents
as every customer has different mix of appliance agents. Let
Abd denote the set of buffer appliances like plug-in vehicles
and storage. Similarly, Asd denotes the set of time-shifter
appliances like dish-washer or washer. However, Aud denotes
the set of uncontrollable appliances like photvoltaics or wind-
mills andAtd denotes unconstrained appliances like freezers. In
particular, Ad is a family of sets {{Abd}, {Asd}, {Aud}, {Atd}}
which are mutually disjoint. Hence, for every a ∈ Ad, the
vector of demand scheduling xd,a is define as

xd,a , [x1
d,a, . . . , x

k
d,a, . . . , x

K
d,a] (1)

D. Bid Modeling

Authors developed a prioritization model referred as six-
tuple bid model ηd,a for a dispatchable load. Mathematically
it is written as:

ηd,a = 〈αd,a, βd,a, ωd,a, θd,a,γd,a,Λd,a〉

Wherein it is given that appliance agent-a of the dispatcha-
ble load needs to select the beginning αd,a ∈ K and the end
βd,a ∈ K of a time interval such that the dispatchable load can
be scheduled. Moreover, the agent selects the cycle duration
ωd,a ∈ N for which agent-a should remain ”ON” and γd,a
denotes the demand profile of the dispatchable load in “kW”.

Rule 1. Certainly, βd,a > αd,a. Furthermore, the set of time
intervals Kd,a , {αd,a, . . . , βd,a} provided by an agent to
commit dispatch should be greater or equal to cycle duration
ωd,a, required for process. Thus, ωd,a ≤ (βd,a − αd,a + 1).

The model also segregates agents in to two groups by using
a boolean variable θd,a ; first group of agents is referred as
atomic and second group of agents is referred as in-atomic.
The only difference between two groups is that an atomic
agent completes its cycle duration ωd,a once it starts working.
However, an in-atomic agent can distribute its usage through
out the active duration (αd,a, βd,a) for the given cycle duration

ωd,a. Thus, θd,a = 1 if an agent is atomic and θd,a = 0 if an
agent is in-atomic.

Unlike any prioritization modeling in [18], [19], the model
uses bidding strategy which means agent a can propose its
flexible demand xkd,a as a function of an opportunity cost
(referred as bid-price) λkd,a ∈ N for a given interval k ∈ K.
So, as per empirical economics, current bid ¯λkd,a reflects the
marginal cost of invoking a DR services and can be calculated
as:

λkd,a = Γk × (1 +
1

εd,a
) (2)

Thus, Λd,a , [λ1
d,a, . . . , λ

K
d,a] denotes the vector of bids

which are proposed by every agent a for any given day as a
function of demand schedule. Where εd,a is price elasticity
of demand. The existing model of price elasticity of demand
for the evaluation of demand response, as discussed in [20],
is deterministic and usually studied for estimating aggregated
demand response over long term. Therefore, in case of deter-
ministic model, current bid λkd,a would only reflect average
DR effect due to appliance agent but not its marginal cost.
However, price elasticity of demand based on the assessment
in [15] depends on the DR Prices Γk invoked by the aggregator
agent and the current state of the appliance agent , and new
bid is then derived by comparing expected payment when
scheduling a demand with current bid. It implies that the
evaluation of DR by using existing demand elasticity model
falls behind the approach in [15], and thus the incorporation
of the approach in appliance agent would be more realistic
estimation of λkd,a. Although in detail explanation of the
phenomenon is out of the scope of this work, authors argued
it in [21].

Rule 2. For all agent-a ∈ {{Asd}, {Aud}, {Atd}}, θd,a = 1.
However, For all agent-a ∈ {Abd}, θd,a = 0. Given λkd,a ≤ Γk,
agent-a would schedule during interval Kd,a as far as other
constraints in ηd,a are satisfied. However, given λkd,a > Γk,
agent-a would commit dispatch without any delay from k =
αd,a to k = αd,a + ωd,a − 1.

It should not be overlooked that if ωd,a ≤ (βd,a−αd,a+1),
then agent-a has some intervals to shift itself through out Kd,a.
Let τd,a ⊆ Kd,a : |τd,a| = ωd,a denote a set of variables
which presents intervals to outset dispatchable load. Last but
not least, Ud,a , {u1

d,a, . . . , u
K
d,a} is a set which keeps status

of agent-a in three states i.e. {available→ 0, fuctioning →
1, unavailable→∞}.

All these factors impose certain constraints on the vector of
demand scheduling xd,a. In fact, the cycle duration ωd,a for
which agent-a can be scheduled equals to its predetermined
daily consumption Ed,a in “kWh”, that is

βd,a∑
k=αd,a

xkd,a = Ed,a (3)

Rule 3. For all agent-a ∈ {{Asd}, {Abd}}; xkd,a = 0, ukd,a ∈
{0,∞} ∀ k ∈ K \ τd,a . Moreover, for all agent-a ∈ {Aud};
xkd,a = 0, ukd,a ∈ {0,∞} ∀ k ∈ K \ Kd,a, which means
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uncontrolled loads always function between αd,a and βd,a.
On the other hand, for all agent-a ∈ {Atd}, αd,a = 1 and
βd,a = K, which means it has strict energy consumption
pattern.

The energy consumption of agent-a may have strict demand
pattern like washing machine or it may have strict scheduling
constraints like refrigerator or PV generation. Therefore, he-
rein γmind,a defines the minimum power level and γmaxd,a defines
the maximum power level for each appliance. However, γstd,a
refers to standby power which is the power consumed while
agent-a is in standby mode. Hence, it can be inferred that γd,a
is a vector that either contains strictly/expected demand pattern
i.e. γd,a , {γ1

d,a . . . γ
ωd,a

d,a } or has possible power levels i.e.
γd,a , {γmind,a , γ

st
d,a, γ

max
d,a }.

Lastly, let xd refer as demand flexibility which is formed
by summing up the vector of demand scheduling xd,a for all
appliance agents corresponding to agent-d ∈ D. Hence, a set
of demand flexibility for agent-d is defined as

Xd = (4)xd |
βd,a∑

k=αd,a

xkd,a = Ed,a,
xkd,a = 0, ∀ k ∈ K \ Kd,a

γmind,a ≤ xkd,a ≤ γmaxd,a , ∀ k ∈ Kd,a


Rule 4. The demand flexibility xd is valid only if xd ∈ Xd.
Moreover, demand flexibility xd is always less than total
demand ld, such that the base load bd = ld − xd.

III. OPTIMIZATION PROBLEM

It has been discussed that there are different types of appli-
ance agents, corresponding to each appliance agent, a domotic
agent should decide the intervals during which a particular
appliance agent has to be committed. Hence, the optimization
problem is formulated as for energy cost minimization by
the agent-d and appliance agents. Thus, the problem could
be formally defined as follows:

A. Players

An aggregator is a software agent presenting energy service
provider, agent-d ∈ D represents smart system at home. Ap-
pliance agents given by the set Ad represents smart appliance
committed for demand response.

B. Bidding Rules

In the giving settings, as discussed in sec. II, an increasing
number of appliance agents run in a multi-agent based system
(MAS). Any large or medium aggregator might run a hundreds
of domotic agents that are composed of few distributed appli-
ance agents. This hierarchical strucuture results in distributed
combinatorial configuration [11], thus a single aggregator can
entail a bottleneck in demand planning. Although many resear-
chers solved the problem at aggregated level (simple centrali-
zed approach) by using complex programming techniques like
batch reinforcement learning [22], mix-integer programming
[23] and deep learning [24], this paper purposes an integration
of intelligence at an intermediate agent-d (simple decentralized

approach). Although advanced learning techniques can also be
implemented at agent-d to increase sensitivity and accuracy,
the main purpose of this study is to mathematically formulate
the comprehensive problem that can be solved by using
different learning techniques easily.

Furthermore, mostly simple bidding rules are applied for
demand dispatch to ensure that the critical loads are served first
with an objective to minimize delay-related costs. That is why,
simple bidding rules can only be optimal for one particular
load (i.e. for any particular type of appliance agent). Therefore,
the case of different types of appliance agents can lead to
very inefficient solutions as low-priority appliance agents (like
time-shifters) are often delayed significantly and avoidable
starvation of demand instances can be observed. Herein a
rules for complex bidding are introduced that automatically
proposes bid to changes in agent environment as well as
changes in demand response. This strategy is considered
market-driven as it aims at minimizing the market impact in
terms of costs resulting from peak demand.

C. Energy Cost

The energy cost of an appliance agent depends on its bid-
model ηd,a, and its daily schedule xd ∈ Xd, thus energy cost
function f(xd) of agent-d is the collection of energy cost
functions of appliance agents, as follows:

f(xd) =

Ad∑
a=1

f(xd,a) =

Ad∑
a=1

βd,a∑
k=αd,a

Γkxkd,a (5)

D. Objective function

The objective of agent-d is to find optimum schedule
∗
xd ,

{∗xd,1, . . . ,
∗
xd,Ad

} . Moreover, it is recalled that Ud,a stores
the status of agent-a, thus for optimum schedule agent-d has
to find the sequence of decisions Ud,a ∀ a ∈ Ad such that
the total energy cost of all appliance agents is minimized.
Mathematically, the objective problem can be stated as

minimum
uk
d,a∈Ud,a ∀ a∈Ad


Ad∑
a=1

βd,a∑
k=αd,a

Γkxkd,au
k
d,a

 (6)

Recall from section I that Λd,a represents the vector of bids
for agent-a per interval. Even though the optimization problem
in this case is similar to the problem described in eq. (6),
the objective function will have an additional term dependent
on bids Λd,a. Let q(λkd,a, u

k
d,a) denote a qualitative function

that captures the bid λkd,a with respect to the availability ukd,a
of agent-a during the given interval k. Moreover, function
q(λkd,a, u

k
d,a) have an indirect relation with a boolean variable

θd,a. Hence, the optimization problem for the proposed setting
can be stated as:

minimum
uk
d,a∈Ud,a ∀ a∈Ad


Ad∑
a=1

βd,a∑
k=αd,a

Γkxkd,au
k
d,a + q(λkd,a, u

k
d,a)


(7)
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Observation 1. It is noticed that the energy cost function
f(xd) is monotonically increasing and strictly convex [0,∞).
Hence, in this case, the existence of best possible schedule
∗
xd , {∗xd,1, . . . ,

∗
xd,Ad

} by each appliance agent denotes the
global optimal solution of the problem (6).

It can be noted that the optimization problem in (7) focuses
in particular on the minimization of total energy cost of all
appliances’ agents. However, other demand response benefits
like reducing risk of system outages (reliability benefits),
congestion and over-voltage network issues, avoided (or de-
ferred) T&D infrastructure upgrades, reduced greenhouse gas
emission etc. can be included into (7) . These other benefits
will also increase the ”social welfare”. Moreover, it could be
noted that objective function is formulated in terms of energy
cost, so all other DR benefits should be formulated in terms
of energy cost before adding therein.

IV. LEARNING MECHANISM

Recalled from section I, agent-d should decide the schedule
of the corresponding appliance agents. For this reason, agent-
d has a learning capability to make a sequence of decisions.
This section provides an algorithm to be implemented in
each domotic agent to reach optimum solution and achieve
optimal system performance. Later in the section, proof for
convergence and optimality of the proposed algorithm are
shown.

A. Principle of the Learning

It can be noticed that problem (6) and (7) have the same
objective functions. However, the problem (7) has some local
constraints for each appliance agent corresponding to agent-
d. Hence, problem in Eq. (7) can be viewed as multi-stage
decision making problem. As, the next state of the system
depends on the current state and the current decision, it can
be solved by reinforcement learning technique. Moreover,
if each appliance agent is scheduled for best response in
an asynchronous fashion, then there will be no coupling
constraints and problem (7) could be reordered as:

Ad∑
a=1

minimum
uk
d,a∈Ud,a


βd,a∑

k=αd,a

Γkxkd,au
k
d,a + q(λkd,a, u

k
d,a)

 (8)

Agent-d can solve problem (8) as long as it knows price
Γk for all k ∈ K as well as η̂d,, the vector containing the
bid-model for all corresponding appliance agents. In order
to solve problem (8) by using reinforcement learning (RL)
technique, agent-d should define its state space, action space,
state transition function and the reward function. Following
are the definitions of parameters for the proposed RL based
control algorithm.

B. State Space and Action Space

The state of the agent captures the information that depends
on the energy cost as per time of use and the cycle time
ωd,a of the appliance agent. Hence, the state is represented

by two dimensional vector ŝa = (s1, s2) ; where s1 is current
interval and s2 is the number of intervals in which agent-a is
functioning, as stated in rule 3. Mathematically it is written
as:

Sa =
{
ŝ1
a, ŝ

2
a, . . . | ŝia = (s1, s2)

} ∀ s1 ∈ {αd,a, . . . , βd,a}
∀ s2 ∈ {0, 1, . . . , ωd,a}

(9)
It can be implied the number of pairs of state space I for

each appliance agent consists of (βd,a−αd,a)×ωd,a elements.
Moreover, an action δa to be taken by agent-a at each state is
either to be ON (i.e. committed) or OFF, simply δa ∈ {0, 1}

Observation 2. If rules 1 and 2 hold, then the process of
learning by the domotic agent for each appliance agent always
starts at ŝ1

a = (αd,a, 0) and terminates at ŝia = (βd,a, ωd,a).

C. State Transition Function

Since the state of an agent in is the representation of time,
thus the agent obtains next state from the current state as per
following state transition function:

(sk+1
1 , sk+1

2 ) = (sk1 + 1, sk2 + δka) ∀ δka ∈ {0, 1} (10)

D. Reward Function

As per the problem (8), the objective is to find a sequence
of actions δ̂a = {δ1

a, δ
2
a, . . . , δ

k
a , . . . , δ

K
a } such that the total

energy cost is minimized while meeting the constraints and
reducing the delay in dispatch depending on bids Λd,a. Thus,
the reward function should be designed in such a way that
the agent-d learns best sequence of actions for each appliance
agent without violating constraints defined in bid-model ηd,a.
Suppose all the constraints are satisfied, then reward function
is equal to the objective function in (8) for a particular
sequence of actions δ̂a. Mathematically it is written as;

βd,a∑
k=αd,a

g(ŝka, δ
k
a , ŝ

k+1
a ) =

βd,a∑
k=αd,a

Γkxkd,au
k
d,a + q(λkd,a, u

k
d,a)

(11)
Let for all k ∈ K,

g(ŝka, δ
k
a , ŝ

k+1
a ) = Γkxkd,au

k
d,a + q(λkd,a, u

k
d,a), ∀ a ∈ Ad

Given observation 3 and 4 hold, then the formal definition
of g function to capture all the objectives and constraints can
be stated as:
g(ŝka, δ

k
a , ŝ

k+1
a ) =

Γkxkd,au
k
d,a, if λkd,a = 0

∞, if (ŝk+1
1 = βd,a) ∧ (ŝk+1

2 = ωd,a)

∞, if (1 ≤ ŝk2 ≤ ωd,a) ∧ (δka = 1)

λkd,ax
k
d,au

k
d,a, if δka = 0

(12)

Observation 3. Let the unique DR price Γk and λkd,a as
per observation 2 is the optimal solution of energy cost
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ALGO 1: Executed by each agent-d ∈ D forall interval k ∈ K
Receive bid ηd,a from all a ∈ Ad

Repeat (for each appliance agent a ∈ Ad)
Initialize Q(ŝ, δ) arbitrarily
Initialize ε
Repeat (for each iteration)

Initialize i = 1, such that ŝia ← ŝ1a
Repeat (for each pair of state space)
Choose δka using ε-greedy selection action.
Obtain Γk and ŝi+1

a by using (10)
Take action δia, observe g(ŝia, δ

i
a, ŝ

i+1
a ) by using (12)

Update Q(ŝia, δ
i
a) by using (14)

ŝia ← ŝi+1
a

Until ŝia ← ŝIa is terminated
Update ε
Until iteration is terminated
Observe

∗
xd,a

Until a is terminated

minimization problem (8). Then, it is concluded from (12) that
the domotic agent will learn to schedule the appliance agent
without any delay provided its bid λkd,a > Γk, otherwise the
appliance agent can contribute more flexibility in scheduling
i.e. xd,a.

Agent-d can simply achieve the objective problem (8)
through replacing the given reward function by the formulated
reward function (12). One of the most important breakthrough
in the solution of multi-stage problem is advancement in
Reinforcement Learning technique, which is a model free ap-
proach for optimization. Reinforcement learning that involves
learning of state-action function i.e. Q(ŝ, δ), referred as Q-
value. In general, state-action function Q(ŝ, δ) corresponds to
an optimal solution is the one that holds an action δ∗ with
minimal Q-value for all ŝ ∈ S, such as

δ∗ = arg min
δ
Q(ŝ, δ) (13)

Hence, the overall idea is to learn the schedule Q(ŝk, δk)
repeatedly over time by taking the old schedule and then makes
an update based on new information. Mathematically it is
written as;
Q(ŝk, δk)← Q(ŝk, δk) + σ [ g(ŝk, δk, ŝk+1)

+ min
δ′
Q(ŝk+1, δ

′
)−Q(ŝk, δk) ], ∀ a ∈ Ad (14)

For an explanation of (14), let Qi(ŝk, δk) be the initial
guess, such that during a time interval k, the process is in
state ŝk and agent-d takes an action δk for agent-a based on
the current estimate Q(ŝk, δk). Remember, agent-d randomly
explores an action δ

′
with ε-greedy action selection, ε = 0.1.

Moreover, any ε-greedy action selection with respect to state-
action function is an improvement over any further selection
as it determines which state-action pair (ŝk, δk) are visited and
updated. Moreover, σ is a learning co-efficient that modifies
Q-values in each iteration. Under the assumptions of usual
stochastic approximation conditions throughout the learning
process, state-action function will converge to optimal state-
action function Q∗.

In model-based value iteration, and more generally in mix-
integer programming [23] and DP [25], an algorithm is said
to be accurate, consistent and convergence is guaranteed for

offline. However, for online, the approximate value function
converges to the optimal one as the accuracy of approximation
technique increases, correspondingly increases cost of compu-
tation aggressively to the number of appliances and iterations
[26]. In model-free value iteration, and more generally in
Reinforcement Learning, accuracy is sometimes understood
as the convergence to a well-defined solution, means stron-
ger convergence results in accurate, consistent and optimal
solution. In the area of online approximate value iteration,
the approximation technique increases accuracy and conver-
gence [27], correspondingly increases cost of computation as
well as care must be taken when selecting approximation
parameters to prevent possible expansion and divergence.
So, if the learning agent is independent and distributed, it
is difficult to adjust the approximation parameters of each
agent-a, which closely depends on its local decision problem.
Therefore, besides the advanced techniques in [22] and [24],
an uncomplicated Q-learning technique that typically rely on
non-expansive approximation, as shown in procedural form in
ALGO 1, is considered for the illustration of the methodology.
Hence, the given algorithm for each domotic agent-d is found
suitable in the light of literature, as it takes relatively less
computation time as well as handles problem of decision-
making for demand dispatch in distributed fashion.

E. Convergence and Optimality

In this section,the convergence and optimality properties
of the proposed algorithm is proved by policy improvement
theorem that states “ for any non-optimal state-action function
Q(ŝ, δ), the state-action function Q(ŝ, δ

′
) should be a strict

improvement such that the action δ
′

optimizes the given state-
action function” [28]. Suppose, (ŝ, δ) and (ŝ, δ

′
) be any pair

of deterministic state-action functions, then for all ŝ ∈ S.

Q(ŝ, δ
′
) ≤ Q(ŝ, δ) (15)

Together, from observations 1 and 3, the best response
from each appliance agent would be equivalent to solving
optimization problem 7. Hence, if agent-d finds the best state-
action function Q(ŝ, δ∗) for agent-a subsequently through
running algorithm in a asynchronous fashion, the total energy
cost either decrease or remained unchanged every time agent-a
updates its bid-model ηd,a.

Observation 4. If the updates of the bid-model ηd,a of
an appliance agent are asynchronous among the appliance
agents, then the algorithm takes an action starting from any
randomly selected initial condition that looks best in the short
term according to its current state-action function. In this way,
the algorithm always converges to its best response due to the
optimal convergence policy (15).

From observations 2 and 4, if all the bid-model ηd,a of appli-
ance agents remains unchanged within the given constraints,
then algorithm schedules appliance agents over a day-ahead
basis. Otherwise, if agents change their needs frequently, the
algorithm schedules agents in a more real-time fashion [29]
by predicting expected future prices. In this paper, the focus
will remain on DR scheduling over day-ahead basis, although
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by coupling the concept given in [29] would transform it into
real-time scheduling.

V. ILLUSTRATIVE STUDY

Artificial problem sets consist of
{5, 10, 25, 50, 100, 250, 500, 1000} houses are constructed
based on specifications (in section II) for the scheduling
problem in (8). Each house is represented by a domotic
agent, which has maximum upto ten appliance agents. In
each experimentation, the scheduling problem is solved
for 100 days in an object oriented way using MATLAB.
Herein, each agent-a is implemented by using proposed
complex bid model in sec II. Furthermore, the agent-a offers
flexibility within 24 hours sliding window depending over its
defined bid-model ηd,a, with a granularity of an hour. On the
other hand, other parameters are generated randomly within
boundaries of operating specifications in [30] throughout the
experimentation. Moreover, for aggregator and its agent-d,
it is assumed that DR Prices strictly follows the local retail
day-ahead market price.

A. Experimentation For Q-iteration

In this experiment, an approximate policy iteration (pre-
sented in (14)) is applied at every agent-d. As per (2) and
discussed in [29], two scenarios are simulated. First self-elastic
case which can be referred as open-loop case of bid strategy
because herein appliance agent only uses self-elasticity of
demand for bid generation. Second, cross-elastic case which
can be referred as close-loop case of bid strategy because
herein appliance agent also uses cross-elasticity of demand
for bid generation.

Both cases perform policy improvement and explore the
best policy, thus the solutions by both the cases are of a
similar quality. Specifically, it was observed in Fig. 2, 3 and
4 that exploration in self-elastic case is more than cross-
elastic case which is obvious because cross-elastic case drives
new bid by comparing expected payment when scheduling a
demand with current bid. Moreover, it was also observed that
the convergence to an optimal schedule in self-elastic case is
guaranteed by the theory of improvement. On the other hand,
for cross-elastic case the optimal schedule might not be similar
as self-elastic case, however the optimal schedule will be the
best response for the cluster under given constraints, thus
providing numerical proof of observation 1 and observation
2.

B. Convergence Simulation

This section illustrates the convergence of algorithm. As, the
convergence is given by (12) which depends on bid λkd,a, so
five different scenarios are simulated such that elasticities of
demand are increased during each respective scenarion. For an
explanation purposes, an artificial set of five houses (agents-
d) in selected, such that d = 1 → {|Ab1|, |As1|, |Au1 |, |At1|} =
{1, 2, 4, 0}. Similarly, 2 → {0, 2, 2, 0}, 3 → {1, 3, 2, 0},
4 → {0, 3, 1, 0}, 5 → {1, 3, 2, 0}. Thus, in total 27 appliance
agents are under consideration. For sake of simplicity, consider

demand elastic factor Fr =
λk
d,a

Γk ; where Fr = 0 means
appliance agents are unit elastic, Fr < 1 means agents-a are
elastic, Fr = 1 means agents-a are relatively elastic, however
Fr > 1 means agents-a are relatively inelastic.

1) Offline Learning: Fig. 2 represents the impact of offline
learning for 100 days on the convergence of reward function,
as shown in (12), under different Fr. Impact is illustrated
by considering the concept of resource dilation factor (RDF),
given in [31]. Herein RDF is a ratio of exploration over
exploitation, that it simply an aggregated ratio between the
final decisions over first estimations during a learning process
for every day by all agents. Moreover, if RDF is found equal
to unity, there is no or little exploration that implies agents
have deterministic behavior and thus algorithm has learned it
absolutely.

Firstly it can be observed that in general the learning
behavior of agents under all Fr is exponential. Secondly for
Fr > 1, RDF moves faster toward unity which means every
agent has too defined scheduling routine and economic con-
straints, consequently algorithm performs exploitation more
than exploration around the state space which satisfies the
fact that agents are tightly constrained. Moreover, even in this
case RDF never found to be unity because of ε-greedy action
selection that always maintain some form of exploration.
Thirdly when Fr = 1 agents are loosely constrained, so agents
converged faster towards better initial estimations but did not
moves towards unity. It is also because of ε-greedy action
selection maintaining balance between the exploration and the
exploitation of actions across the state-space through out the
learning process. Lastly, for Fr within the flexible range each
agent continuously finds the balance between the exploration
and exploitation of actions. Although it mostly appears higher
than Fr = 0, it satisfies the fact that the bid constraint makes
reward function more stochastic in nature, thus requires more
exploration.

Hence, the discussion provides the numerical proof of
observation 3 and onservation 4, such that for all λkd,a ≤ Γ̄k

DR appears to be the best response.
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RDF(Fr=0.1)
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RDF(Fr=1.0)
RDF(Fr=1.5)

Fig. 2. Resource dilation factor calculated over 100 days of simulation.

2) Online Learning: Fig. 3 shows the convergence of
reward function for a day during online excution of algorithm
after offline learning for 100days. As shown in Fig. 3(b) ,
when Fr is either less than or equal to 1, average reward is
almost equal to average reward obtained when Fr = 0. On
the other hand, Fr greater than 1 causes the reward to diverge
from its optimal point which satisfies the fact that agents are
least flexible.
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It can also be inferred from Fig. 3(c) that for all Fr ≤ 1, i.e.
referred as flexible range, convergence happens relatively close
to each other. Moreover, Fr = 0 is counted as most flexible
scenario, because therein agent-d has maximum freedom to
schedule with least economic constraints. Average reward
found to be the most optimal solution, however it takes most
time to converge that is evident due to the fact that therein
agent-d has relatively broader state space to explore. On the
other hand, Fr > 1 is counted as limiting case for demand
flexibility because therein agent-a somehow limits the sche-
duling towards its starting time. Thus, convergence happens
fast but way far from an optimal point. Furthermore, for all
Fr between 0.1 and 1 convergence happens relatively faster
than Fr = 0 and slower than Fr > 1, it is also due to the
fact that by increase in Fr each agent-a limits its scheduling
window along with economic constraints. Optimum Fr in
flexible range is between 0.5 and 1, because it converges faster
than rest as well as closest to optimal solution.
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Fig. 3. Convergence of reward function for an initial day while learning
process

C. Performance Results

This section presents results for self-elastic and cross-elastic
scenarios with similar initial conditions. The performance
measure is average cost per allocation decision summed over
all appliance agents associated with particular domotic agent.
For a variety of policy learning, we compare the policy per-
formance of two scenarios with increasing number of domotic
agents per aggregator.

Our general observations regarding the experiments in Fig.
4 are as follows. First, the RL approach to policy improvement
clearly works quite well for scalability. Second, the results are
generally in accordance with prior studies of policy iteration,
where one typically finds large improvement starting from
weak initial policies, and progressively smaller improvement
starting from stronger initial policies. Third, the average re-
venue remains slightly higher in case of cross-elasticity than
self-elasticity as explained earlier. Lastly, it has been inferred
that the increase in cost for the cross-elastic scenario in given
model due to sub-optimal allocations, however the RL trained
for self-elastic sets are able to do better due to more flexibility
as per theorem 4.
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Fig. 4. Performance of various number of domotic agents in self-elastic as
well as cross-elastic scenarios.

VI. CONCLUSION

This paper contributes to the technical literature as follows:
• A comprehensive applied methodology for agile demand

response. The methodology taps the potential demand
flexibility from the participating customers and maxi-
mizes social welfare of the society in an unbundled
electricity market.

• The DR services by the agents are explicitly modeled in
terms of complex bid model ηd,a. The proposed complex
bidding rules integrates appliance characteristics and pre-
ferences into the decisions for DR planning. Moreover,
the deployment of the proposed micromodels of multiple
agents would enable the system to monitor, learn and
schedule the demand flexibility with more precision, as
well as optimize and customize it for DR prices.

• The proposed micromodels outperforms the existing price
elasticity based models, thus the proposed methodology is
of high practical relevance in modern Multi-agent system.

• The principle of distributed learning, instead of centra-
lized, introduces a procedure to automatically align the
bid to state changes and adjust maximum DR services to
mitigate model inefficiencies during state transition.

• Due to distributed learning, an agent does not require
deep and complex learning techniques for DR planning
of even heterogeneous appliances. Thus, it saves com-
putation time, agent processing requirements, results in
simple theoretical approach as well as require reasonable
amount of data for learning.

Lastly, simulation results evaluate in detail the methodology
and conclude the fact that an aggregators applying this metho-
dology for DR planning would have more stability in trading
of demand flexibility in the day-ahead market. Moreover, the
DR scheduling is verified by measuring the demand dispatch
of the number of agents for couple of days by assessing actual
load shift and curtailment quantities at individual appliance
agent.
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