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ABSTRACT
It has long been recognized that the bullwhip effect in real life depends on a behavioral component. How-
ever, non-experimental research typically considers only structural causes in its analysis. In this article,
we study the impact of behavioral biases on the performance of inventory/production systems modeled
through an APVIOBPCS (Automatic Pipeline, Variable Inventory, Order-Based Production Control System)
design using linear control theory. To explicitly model managerial behavior, we allow independent adjust-
ments to inventory and pipeline feedback loops. We consider the biases of smoothing/over-reaction to
inventory and pipeline mismatches and the under-/over-estimation of the pipeline. To quantify the per-
formance of the system, we first develop a new procedure to determine the exact stability region of the
system and we derive an asymptotic stability region that is independent of the lead time. Afterwards, we
analyze the effect of different demand signals on order and inventory variations. Our findings suggest that
normative policy recommendations must take demand structure explicitly into account. Finally, through
extensive numerical experiments, we find that the performance of the systemdepends on the combination
of the behavioral biases and the structure of the demand stream.

1. Introduction

The bullwhip effect is a major problem in today’s supply chains;
it is receiving considerable research attention. Lee et al. (1997b)
define it as the observed propensity for material orders to be
more variable than demand signals and for this variability to
increase the further upstream a company is in a supply chain.
It is a dynamic phenomenon that has sparked a vast body of
research from a wide array of methodologies. Empirical, exper-
imental, and analytic studies of the bullwhip exist of both a
descriptive and a normative nature. The causes for the bullwhip
effect can be broadly separated into operational (such as order
batching and price fluctuations) and behavioral categories (such
as artificially inflating orders and pipeline under-estimation). In
this article, we use control theory as a modelingmethodology to
study behavioral causes of the bullwhip effect.

Regarding behavior, it has long been understood that deci-
sion makers do not operate under the paradigm of complete
rationality (Su, 2008). Both in real-life and in experiments,
humans operate in ways that deviate from theoretical predic-
tions. We make mistakes. We exhibit psychological biases that
affect our decisions. In operations research, heuristics contain-
ing feedback structures are commonly used to model human
behavior: decisions bring about changes that affect future deci-
sions. The modeling of feedback structures in a supply chain
context can be traced back to Forrester (1958) and the intro-
duction of system dynamics. Such modeling makes it possible
to understand the dynamics of the system under study and

CONTACT Maximiliano Udenio m.udenio@tue.nl
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uiie.

how they are affected by non-observable parameters and their
interactions. In particular, anchor and adjustment heuristics
(Tversky and Kahneman, 1974) are used to model the feedback
loops introduced by decisions pertaining to the generation of
material orders. In these heuristics, forecasts act as an anchor to
orders and deviations from inventory and pipeline targets drive
order adjustments up or down (Sterman, 1989). Behavioral
research on the bullwhip effect is primarily descriptive, linking
deviations from optimal adjustments to human biases. Experi-
mental work shows that people consistently under-estimate the
pipeline inventory when making ordering decisions (Sterman,
1989; Rong et al., 2008; Croson et al., 2014). These biases, linked
to the appearance of the bullwhip effect, were also observed in
empirical data (Udenio et al., 2015).

On the analytical front, however, these behavioral biases and
their connection to the bullwhip effect have not been explicitly
studied. In this article, we do so by investigating the influence of
a number of behavioral biases on the performance of Automatic
Pipeline, Variable Inventory, Order Based Production Systems
(APVIOBPCS). We offer three distinct contributions to the
literature. First, we derive a series of exact conditions for the
stability of a general APVIOBPCS design with arbitrary lead
time and find an asymptotic region for the stability of the system
for all lead times. Second, we perform an extensive numerical
study where we explicitly model behavioral biases through the
independent adjustment of inventory and pipeline feedback
loops. In particular, we consider the biases of smoothing/over-
reaction to inventory and pipeline mismatches and the

© Maximiliano Udenio, Eleni Vatamidou, Jan C. Fransoo, and Nico Dellaert. Published with license by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/./), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

D
ow

nl
oa

de
d 

by
 [

E
in

dh
ov

en
 U

ni
ve

rs
ity

 o
f 

T
ec

hn
ol

og
y]

 a
t 0

1:
00

 0
4 

O
ct

ob
er

 2
01

7 

https://doi.org/10.1080/24725854.2017.1325026
https://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2017.1325026&domain=pdf&date_stamp=2017-08-18
mailto:m.udenio@tue.nl
http://www.tandfonline.com/uiie
http://creativecommons.org/licenses/by/3.0/


IISE TRANSACTIONS 981

under/over-estimation of the pipeline requirements.We investi-
gate different performance dimensions (i.e., stationary bullwhip,
worst-case amplification, and integral time-weighted absolute
error) and analyze their tradeoffs. Third, we present manage-
rial insights linking the results of our study to their potential
application on behavioral research as well as industrial practice.
We highlight the influence of the structure of demand on the
impact of behavior and the ensuing consequences that this
has with regards to the implementation of specific results in
practical applications.

A common way to investigate feedback-ridden dynamic
inventory models is with the aid of linear control theory. Its use
in inventory models traces back to Simon (1952), who stud-
ied a continuous-time system through the Laplace transform
method, in which inventory targets are used to derive mate-
rial orders. Vassian (1955) studied the equivalent discrete-time
system using the Z-transform, and Deziel and Eilon (1967)
extended the discrete case by adding a smoothing parameter to
control the variance of the response. Towill (1982) extended and
formalized these ideas with the introduction of the Inventory
and Order-Based Production Control System (IOBPCS) design
framework, the predecessor of the models studied in this article.
In an IOBPCS design, replenishment orders are generated as the
sum of an exponentially smoothed demand forecast and a frac-
tion of the inventory discrepancy (the gap between a constant
target inventory and the actual value), which acts as a feedback
loop. His work, by representing an inventory/production system
in block diagram form, allowed for the straightforward applica-
tion of linear control theory methodologies to study its struc-
tural and dynamic properties.

A first extension to IOBPCS is VIOBPCS (Variable Inven-
tory and Order-Based Production Control System), where the
inventory target is no longer constant but rather is calculated
each period as a multiple of the demand forecast. Edghill and
Towill (1990) studied this system and found that, in compari-
son with IOBPCS, the variable inventory targets of VIOBPCS
designs introduce interesting tradeoffs between the “marketing”
and “production” sides of a firm and increased service levels
through a better correlation of inventory and demand, at the cost
of increased variability in orders. A powerful extension, API-
OBPCS (Automatic Pipeline Inventory and Order Based Pro-
duction Control System), adds a second feedback loop in the
form of a pipeline adjustment (John et al., 1994). The order-
ing logic of this design is a direct equivalent to the anchor and
adjustment heuristic commonly used to model beer-game play-
ing behavior (Sterman, 1989; Croson et al., 2014).

Discrete APIOBPCS and its Variable Inventory exten-
sion, APVIOBPCS have been extensively studied through the
Z-transform method in the two decades since the work of
John et al. (1994)). Dejonckheere et al. (2003) showed that
APVIOBPCS designs with full adjustments (inventory and
pipeline discrepancies are filled every period) are equivalent
to Order-Up-To (OUT) policies. Such policies are often imple-
mented in practice with inflated lead times used to represent
the safety stock (i.e., a safety lead time). Hoberg et al. (2007a)
used this design (which we denote as APVIOBPCS-OUT) to
compare the stationary and transient responses of echelon
and installation stock policies in a two-echelon supply chain.
Hoberg et al. (2007b) used the same system design but focused
instead on quantifying the effect of the forecasting smoothing

parameter α. They found that both echelon stock policies and
values of α close to zero contribute to a reduction of inventory
and order amplification. In a recent study, Hoberg and Thone-
mann (2014) extended the above setup to allow for information
delays in addition to material delays. They found that echelon
stock policies are severely hampered by such delays and thus
proposed a compensated echelon policy to counteract this effect.

An extension to the APVIOBPCS-OUT design is the general
APVIOBPCS design, where the inventory and pipeline feedback
loops can be adjusted to fine-tune the response of the system,
thus controlling the desired speed to adjust the inventory and
pipeline toward their targets. Disney and Towill (2006) studied
a particular subset of parameter settings: DE-APVIOBPCS
designs, christened after the work of Deziel and Eilon. In these
designs, the adjustments for inventory and pipeline are always
equal and fractional, which is equivalent to a Generalized-OUT
policy with smoothing of the inventory position adjustment.
This constraint in the model parameters has very attractive
properties. From an optimal design perspective, DE-designs
always produce stable and aperiodic responses; from a math-
ematical perspective, DE-designs produce tractable, elegant
expressions. General APVIOBPCS designs with independent
parameters for inventory and pipeline adjustments, on the
contrary, enable the modeling of a larger number of policies
but exhibit none of these desirable characteristics. The value of
the feedback controller parameters determines whether or not
the system is stable. The complexity introduced by independent
parameters is such that a substantial number of studies is ded-
icated to characterizing the stability of APVIOBPCS designs.
Disney andTowill (2002) found a general expression for stability
boundaries by modeling lead times as a third-order lag instead
of a pure delay. Warburton et al. (2004) defined stability bound-
aries for an equivalent continuous-time system by finding the
exact solution to its characteristic equation. Disney, Towill, and
Warburton (2006) derived a stability criterion through a con-
tinuous, time domain, differential equation approach. The latter
also showed that, although quantitatively different, the various
continuous lead time approximations share many qualitative
interpretations with their discrete-time counterparts. In the
discrete domain, Disney (2008) demonstrated the use of “Jury’s
Inners” (Jury, 1964, p. 85) to derive stability conditions for a
given lead time and, finally, Wei et al. (2013) found conditions
for stability through the analysis of the difference equation
representation of the system.

In addition to the above discussion on stability, there is a
large body of literature dedicated to the analysis of other aspects
of the APVIOBPCS design and its variants. Table 1 shows a
summary of the main research objectives and design setup
of the papers closest to this study. For a more comprehensive
literature review on the application of control theory to inven-
tory/production systems, we refer the reader to Ortega and Lin
(2004) and Sarimveis et al. (2008). The former centers in the
application of classic control, whereas the latter pays special
attention to advanced control methodologies. For a different
perspective on the application of APVIOBPCS designs, Zhou
et al. (2010) reviewed the literature considering the “prag-
matic role” of these designs and how they can aid in the
decision-making process for different production situa-
tions. In a recent study, Disney et al. (2013) described how
Lexmark implemented an APVIOBPCS design into their
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planning activities to eliminate the bullwhip from their toner
operations.

In terms of model assumptions, we allow for indepen-
dent pipeline and inventory adjustments, consistent with
Dejonckheere et al. (2004) and Disney and Towill (2006). In
terms of performance metrics, we adopt the stationary and
dynamic measures of Hoberg et al. (2007b) and Hoberg and
Thonemann (2015). Conceptually, however, our objective is to
relate parameter combinations to different behavioral biases.
In particular, we use the inventory and pipeline feedback loops
to explicitly model smoothing and over-reaction to inventory
and pipeline mismatches and the under- and over-estimation of
the pipeline. Hence, our experimental setup is informed by the
behavioral operations literature, in particular beer-game-based
bullwhip effect research (Sterman, 1989; Croson et al., 2014).
We find a mixed picture regarding the impact of behavioral
biases. Behavioral biases do not consistently deteriorate perfor-
mance; their influence depends on the structure of the demand
stream. Thus, a behavior that increases the performance of the
system under independent and identically distributed (i.i.d.)
normal demand (e.g., order smoothing) can be detrimental
in the presence of a shock. This implies that a comprehensive
analysis of the influence of behavior on the bullwhip effect must
take demand assumptions explicitly into account.

The same also holds true for the structural causes of the bull-
whip. Demand forecast updating is a known structural cause
of the bullwhip (Lee et al., 1997a; Dejonckheere et al., 2003),
and a substantial body of literature relates specific forecasting
methodologies to the bullwhip effect. Authors consistently
report that, whereas forecasting itself induces it, the measured
bullwhip depends on the combination of forecasting methodol-
ogy, ordering policy, and demand distribution; see, for example,
the analytical work of Chen, Drezner, Ryan, and Simchi-Levi
(2000) and Zhang (2004); system dynamics simulations by
Wright and Yuan (2008); and control-theoretic analysis of the
topic by Dejonckheere et al. (2002). With regards to the specific
forecasting methodologies adopted in this article, we refer the
reader to Chen, Ryan, and Simchi-Levi (2000) and Hoberg et al.
(2007b) for explicit analyses of the effect of the exponential
smoothing parameter α on the magnitude of the bullwhip effect
under APVIOBPCS-OUT policies and Hoberg and Thone-
mann (2015) for the effect of α on DE-APVIOBPCS policies.
We analyze the influence of α on general APVIOBPCS policies
in a series of numerical experiments presented in Appendix A.

The rest of this article is structured as follows. In the next
section, we introduce our discrete-time model and the perfor-
mancemetrics.We continue, in Section 3, with a comprehensive
analysis of the stability of the system, deriving exact expressions
for the general stability boundaries. In Section 4, we analyze the
stationary and dynamic responses of the system as a function
of the behavioral biases and identify the tradeoffs among them.
We provide our conclusions in Section 5. Finally, we present
additional numerical experiments and all mathematical proofs
in Appendix B.

2. Model description and performancemetrics

In this section, we analyze a discrete-time, periodic-
review, single-echelon, general APVIOBPCS design with an

exponentially smoothed forecast of demand. The structural
parameters of the system are the inventory coverage (C ∈ R

+),
the delivery lead time (L ∈ N), and the forecast smoothing
parameter α ∈ [0, 2]. The system maintains a target inventory
(î) equal to the expected demand over C periods and a target
pipeline ( p̂) equal to the expected lead time demand. The
lead time is assumed deterministic and defined as the time
elapsed between the placement and receipt of a replenishment
order. Replenishment orders (o) depend on the actual values
of the inventory (i) and pipeline (p). The behavioral param-
eters of the system are the inventory (γI ∈ R) and pipeline
(γP ∈ R) adjustment factors. The behavioral parameters specify
the fraction of the gap between target and actual values that
are taken into account to calculate orders: γI is the fraction of
the inventory gap to be closed, and γP is the fraction of the
pipeline gap to be closed. For instance, a systemwith γI = 1 and
γP = 0 completely closes the inventory gap with every order,
whereas it ignores the pipeline entirely.

Formally, the sequence of events and the equations in
the model are as follows: at the beginning of each period (t), a
replenishment order (ot ) based on the previous period’s demand
forecast ( ft−1) is placed with the supplier. Following this, the
orders that were placed L periods prior are received. Next,
the demand for the period (dt ) is observed and served. Excess
demand is back-ordered. Then, the demand forecast is updated
according to the formula ft = αdt + (1 − α) ft−1. The forecast
represents the expected demand and is used to compute the
target levels of both inventory, ît = C ft , and pipeline, p̂t = L ft .
In such a policy, the target inventory level plays a role analogous
to the safety stock in OUT policies (Dejonckheere et al., 2003).
This concept is widely applied in practice, where C can be
computed to hedge against lead time and forecast variability
to satisfy any arbitrary service level (Hoberg and Thonemann,
2014). For example, we can compute C using the traditional
safety stock definition based on the standard deviation of the
forecast error; i.e., setting Cd̂ = kσ̂ L

t , where d̂ is an estimate
of the mean demand, k is a constant chosen to meet a desired
service level, and σ̂ L

t an estimate of the standard deviation of
the L period forecast error (see Eppen and Martin (1988) and
Chen, Ryan, and Simchi-Levi (2000)) for approximate and exact
methods to determine this parameter). Note that the target
inventory defined by this policy is equal in expectation to the
safety stock computed through the traditional calculation.How-
ever, at any given period, the target inventory computed by the
APVIOBPCSdesignwill under-estimate (over-estimate) the tra-
ditional safety stockwhen the period’s forecast is smaller (larger)
than the estimate of the mean demand. The magnitude of the
under-/over-estimation depends on the ratio ft/d̂ and, thus,
on the coefficient of variation of the demand and the smooth-
ing parameter of the forecast. We refer the reader to Disney,
Farasyn, and Lambrecht (2006) for an in-depth study regarding
the customer service implications of the APVIOBPCS design.

The orders that will be placed in the following period (ot+1)
are generated according to an anchor and adjustment-type
procedure, ot+1 = γI(ît − it ) + γP( p̂t − pt ) + ft . The balance
equations for inventory (i) and pipeline (p) are it = it−1 +
ot−l − dt and pt = pt−1 + ot − ot−l . Note that the assumptions
that orders and inventories can be negative are necessary to
maintain the linearity of the model.
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984 M. UDENIO ET AL.

This sequence of events is identical to the one described in
Hoberg et al. (2007a) with the difference being that our study
introduces the fractional behavioral parameters γI and γP. Other
studies of APVIOBPCS designs use a different order of events;
e.g., in Dejonckheere et al. (2003) and Disney (2008), orders
are placed at the end of each period. Such differences in the
sequence of events introduce extra unit delays in the equations.
However, these differences only affect the mathematical rep-
resentation of the system; the structure of the system and the
results remain the same. The model we introduce completely
describes the relationships between the parameters of a gen-
eral APVIOBPCS design. However, due to time dependencies,
we cannot find a clear relationship between the inputs and the
outputs of the system. For this reason, we turn from the time
domain to the frequency domain (where these relationships
become simply algebraic), by taking the Z-transform of the sys-
tem’s set of equations. The Z-transform is defined as

Z {xt} = X (z) =
∞∑
t=0

xtz−t , (1)

where z is a complex variable and xt is the value of a time series
at time t . We refer the reader to Jury (1964) and Nise (2011)
for a comprehensive background on discrete systems and the
Z-transform method and to Dejonckheere et al. (2003) and
Hoberg et al. (2007a) for an introduction to their application on
inventory modeling.

Using the following properties of the Z-transform:

Z {a1xt + a2yt} = a1X (z) + a2Y (z) (linearity), (2)

Z {xt−T } = z−TX (z) (time delay), (3)

we canwrite all systemparameters in the frequency domain. The
equation for orders (see two paragraphs back in this section) is
re-written in the frequency domain as

O(z) = γI(Î(z) − I(z)) + γP(P̂(z) − P(z)) + F(z)
z

. (4)

In control theory, the response of a system is completely charac-
terized by its transfer functionG(z) = N(z)/C(z), which repre-
sents the change in outputN(z)with regards to a change in input
C(z) in the frequency domain. In this article, we are interested
in studying the response of orders O(z) and inventories I(z) to
changes in customer demandD(z). Therefore, we are interested
in the transfer function of orders (GO(z) = O(z)/D(z)) and the
transfer function of inventories (GI(z) = I(z)/D(z)). We can
then write the transfer function of orders in terms of the system
parameters as

GO(z) = O(z)
D(z)

= [γI(Î(z) − I(z)) + γP(P̂(z) − P(z)) + F(z)] 1z
D(z)

= [α(γIC + γPL + 1)(z − 1) + γI(z − 1 + α)] zL

(z − 1 + α)(zL(z − 1 + γP) + (γI − γP))
. (5)

Analogously, we write the transfer function of inventories:

GI(z) = I(z)
D(z)

=
z

z−1 [O(z)z−L − D(z)]
D(z)

= zα(γIC + γPL + 1)(z − 1) + z(z − 1 + α)(γP − zL(z − 1 + γP))

(z − 1)(z − 1 + α)(zL(z − 1 + γP) + (γI − γP))
. (6)

In the following sections, we use the above transfer functions to
analyze the stability and calculate the performance metrics for
the system under consideration.

2.1. Stationary performancemetrics

In this section, we use concepts from control theory to derive
stationary performance metrics for an APVIOBPCS design
through the lens of order and inventory variability. Order and
inventory variability are intimately linked to the notion of the
bullwhip effect—i.e., the propensity of orders to be more vari-
able than demand signals—and for this variability to increase the
further upstream a firm is in a supply chain (Lee et al., 1997a).
We define three different measures to quantify the amplifica-
tion of variability according to the characteristics of the demand:
the amplification ratio, the bullwhip measure, and the worst-
case amplification. The amplification ratio describes the order
and inventory behavior of the system as a response to a station-
ary demand of an arbitrary frequency. The bullwhip measure
quantifies the behavior as a response to a normally distributed
demand. The worst-case amplification quantifies the maximum
amplification ratio of the system as a response to any possible
demand.

... Amplification ratio
A sinusoidal input to a linear system produces a sinusoidal out-
put of the same frequency but of a different magnitude and
phase. For a given linear system, the ratio between the ampli-
tudes of the input and output at a given frequency is constant and
is calculated as the modulus of its transfer function evaluated at
that frequency (Dejonckheere et al., 2003). Thus, for any input
sinusoid, the steady-state amplification ratio of an APVIOBPCS
design can be calculated directly from its transfer functions. Fur-
thermore, it can be shown that for sinusoidal inputs, the ampli-
fication ratio value is exactly the same as the ratio of the standard
deviations of input over output (Jakšič and Rusjan, 2008). For-
mally, for our system, we define AO,ω as the amplification ratio
of orders for a sinusoidal demand of frequency ω and AI,ω as
the amplification ratio of inventory for a sinusoidal demand of
frequency ω, where

AO,ω = |GO(eiω)|, and (7)

AI,ω = |GI(eiω)|, (8)

where |G(eiω)| is the modulus of the transfer function evaluated
at the frequency ω. It is important to note that our interest in
the steady-state performance is not restricted to the expectation
of a sinusoidal demand. Since any demand stream can be
decomposed into a sum of sinusoids, analyzing the relevant fre-
quency response plots (i.e., the graphical representation of the
amplification ratio as a function of the demand harmonics with
frequencies between zero and π) provides intuition about the
performance of a system with regards to any arbitrary demand
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IISE TRANSACTIONS 985

pattern based on the amplitude of its constituent harmonics
(Dejonckheere et al., 2003).

... The bullwhipmeasure
Disney and Towill (2003) defined the bullwhip measure as
the ratio between input variance to output variance (BW =
σ 2
out/σ

2
in) and showed that if the mean of the input is zero and

its variance is unity, the bullwhip of a system is proportional to
the “noise bandwidth” metric commonly used in communica-
tions engineering. This measure has the intuitive representation
of the square of the area below the frequency response plots.
If the input to our system is a stationary i.i.d. normal demand
stream, then the bullwhip of orders (BWO) can be calculated
through

BWO = σ 2
O

σ 2
D

= 1
π

∫ π

0
|GO(eiω)|2dω, (9)

and the bullwhip of inventories (BWI ) is defined analogously:

BWI = σ 2
I

σ 2
D

= 1
π

∫ π

0
|GI(eiω)|2dω. (10)

The assumption of an i.i.d. normal input ensures that all fre-
quencies are equally represented in any given demand stream.
Ouyang and Daganzo (2006) argued that, in a multi-echelon
context, this assumption is too restrictive and results in a
measure that is not robust. They showed that the only way to
predict the appearance of the bullwhip effect under arbitrary
multi-echelon chains is to study the worst-case amplification
ratio of the system.

... Worst-case amplification
Insights from the single-echelon bullwhip measures defined
above cannot be extrapolated to the multi-echelon case. If the
amplification ratio for any given frequency is larger than one,
then a supply chain of identical echelons will always result in
a bullwhip N stages upstream, even if the bullwhip measure
is smaller than one and the demand is normally distributed
(the number of stages N required to see this effect depends on
the particular policy and demand stream). To make up for this
limitation, researchers have proposed the use of the worst-case
amplification as a complementary performancemetric (Ouyang
and Daganzo, 2006; Hoberg et al., 2007b). Intuitively, the worst-
case amplification corresponds to the maximum amplification
ratio across all frequency components ω ∈ [0, π ). We denote
theworst-case amplification for orders asA∞

O and theworst-case
amplification for inventories asA∞

I .Wedefine them formally as

A∞
O = sup

∀ω∈[0,π )

|GO(eiω)| (11)

and

A∞
I = sup

∀ω∈[0,π )

|GI(eiω)|. (12)

This performance metric is robust. In other words, under any
arbitrary demand, a supply chain constructed from N sys-
tems each with A∞

O < 1 (A∞
I < 1) will not amplify orders

(inventories).

2.2. Dynamic performance

To study the dynamic performance of the system, we consider
its behavior in the time domain after experiencing a shock. We
quantify the system’s dynamic performance through the Integral
Time-Weighted Absolute Error (ITAE), a measure of the perfor-
mance of the system in terms of time-weighted deviations from
the ideal response (Hoberg et al., 2007a). We introduce a shock
in the system in the form of a one-time step change in demand.
Formally, the ITAE is defined as

ITAE =
∞∑
t=0

t|εt |, (13)

where εt represents the absolute error between the actual
response at time t and the steady-state response. This measure
penalizes deviations from the new (target) steady state and
introduces a linear penalty for longer-lasting deviations. Thus,
both the amplification (i.e., how large the error is) and the
settling time (i.e., how long it takes for the actual response to
converge to the steady state response) of the system play a role
in its determination. For our system, we define the ITAEO for
orders and ITAEI for inventories. Formally,

ITAEO =
∞∑
t=0

t|ot − dt |, (14)

ITAEI =
∞∑
t=0

t|it − (Cdt )|. (15)

Taken together, the different (stationary and dynamic) metrics
discussed above give an overall impression of the perfor-
mance of a particular system under a large number of demand
assumptions. However, before studying the performance of
any given system, we must define a necessary condition for its
feasibility/stability. In Section 3, we derive analytic conditions
for the stability of the system as a function of structural and
behavioral parameters. Then, in Section 4, we use the stationary
and dynamic metrics to study the influence of different behav-
ioral biases on the overall performance of an APVIOBPCS
system.

3. Stability and aperiodicity

A stable dynamic system yields a finite output for any finite
input. In our model, the customer demand is the input, and
orders and inventory are outputs. Hence, in this context, sta-
bility guarantees finite orders and inventories as a response to
changes in demand—a pre-condition for any real-life system.
We have the following formal definition for the stability of a
system.

Definition 1. (Nise, 2011, p. 302). A system is stable if every
bounded input yields a bounded output and unstable if at least
one bounded input yields an unbounded output.

Although Definition 1 formally describes the stability of the
system, it does not specify mathematical conditions necessary
to test whether a given system is stable or not. An alternative
definition-condition that connects the stability of a system with
its transfer function is the following.
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986 M. UDENIO ET AL.

Definition 2. (Jury, 1964, p. 80). Suppose that G(z) =
N(z)/C(z) is the transfer function of a linear, time-invariant
system and that the denominator C(z) has exactly n roots pi,
namely, C(pi) = 0, i = 1, . . . , n. We call the roots pi poles
of the transfer function, and we say that a system is stable
if all poles pi are within the unit circle of the complex plane
(|pi| < 1), marginally stable if at least one pole is on the unit
circle (|pi| = 1), and unstable if at least one pole resides outside
the unit circle (|pi| > 1).

Consequently, judging the stability of a system is equivalent to
finding the solutions to the characteristic equationC(z) = 0.

Remark 1. Suppose that P with |P| ≥ 1 is a root of C(z)
with multiplicity m, namely, C(i)(P) = 0, ∀ i = 0, . . . ,m − 1.
If N(i)(P) = 0, ∀ i = 0, . . . ,m − 1, and if all other roots of
C(z) are inside the unit circle, then the system is called stabi-
lizable. However, this is sometimes used alternatively as a defi-
nition for a stable system (Wunsch, 2005, p. 482). This is not the
case here.

In the next section, following Definition 2, we derive sufficient
conditions for the stability of the system through an analysis
of the structure of the involved characteristic polynomials. We
then introduce the aperiodicity of the system, a characterization
of the dynamic response of a stable system. We begin our
analysis with the response of orders to changes in demand,
Equation (5), and follow with the analysis of the inventory
response to changes in demand, Equation (6).

3.1. Stability boundaries

By comparing Equations (5) and (6), we see that the characteris-
tic polynomials of orders and inventories are almost equal except
for the extra factor (z − 1) that appears in the latter. The pole
z = 1 would render the inventory responsemarginally unstable,
unless this is also a root of the numerator of GI(z) (see Equa-
tion (6) andRemark 1). To this effect, we use the geometric series
identity zL+1 − 1 = (z − 1)

∑L
i=0 z

i to rewrite Equation (6) as

GI(z) = zα(γIC + γPL + 1) − zL+2 − zL+1(α + γP − 1) + γPz + αγP(1 − ∑L
i=0 z

i)

(z − 1 + α)(zL(z − 1 + γP) + (γI − γP))
. (16)

Thus, in an APVIOBPCS design, the stability of both orders and
inventories is defined by the same characteristic polynomial:

C(z) = (z − 1 + α)(zL(z − 1 + γP) + (γI − γP)). (17)

Being a polynomial in z of degree L + 2 with real coefficients,
C(z) has exactly L + 2 roots. This polynomial is transcendental:
it is impossible to find its roots independently of L. Furthermore,
exact solutions for C(z) = 0 can only be found for values of
L ≤ 2. Thus, we study structural properties of C(z) to derive a
set of sufficient conditions that define an exact stability region
for the general APVIOBPCS design. The proofs of all theorems,
lemmas, and propositions are found in Appendix B.

It can be shown that APIOBPCS and APVIOBPCS policies
share the same characteristic polynomial (Disney and Towill,
2006). Thus, the insights and conclusions derived from the
analysis of C(z) hold for APVIOBPCS designs. Therefore, we
formulate our results for APVIOBPCS systems.

Proposition 1. The stability of a general APVIOBPCS system
with smoothing parameter α ∈ [0, 2) can be determined by ana-
lyzing the poles of the reduced characteristic polynomial:

Ĉ(z) := zL(z − 1 + γP) + (γI − γP). (18)

An APVIOBPCS is stable if all the roots of Ĉ(z) are located inside
the unit circle.

From the above proposition, we deduce that the stability of a
general APVIOBPCS systemwith the commonly used exponen-
tial smoothing parameter range of [0, 2) is completely deter-
mined by the values of L, γI , and γP. For α = 2, z = −1 is a
root of the characteristic polynomial C(z) (see Equation (17)),
which means that the system will be marginally stable unless
z = −1 is also a root of the numerator of the transfer func-
tion. Therefore, if α = 2, Proposition 1 holds when γIC + γP
L = 1. In the following theorem, we specify the stability region
of a general APVIOBPCS system in terms of a set of boundary
conditions.

Theorem 1. For each value of L, stability is guaranteed when γI
and γP satisfy the following L + 1 conditions:

(i) |γI − γP| < 1, (19)

(ii) (1 − (γI − γP)
2) |γP − 1|(n−1)Un−1

(
X

) − |γP − 1|n
Un−2

(
X

)
> 0, n = 2, . . . , L, (20)

where Un(X ) is the Chevyshev polynomial of the second
kind, defined by

Un(X ) =
(
X + √

X2 − 1
)n+1 − (

X − √
X2 − 1

)n+1

2
√
X2 − 1

,

(21)

with

X = 1 − (γI − γP)
2 + (γP − 1)2

2 |γP − 1| , (22)

and
(iii) ((1 − (γI − γP)

2)2 − ((γI − γP)(γP − 1))2)
× |γP − 1|L−1UL−1(X )

− 2(1 − (γI − γP)
2) |γP − 1|L UL−2(X )

+ |γP − 1|L+1UL−3(X )

+ 2(−1)L+1(γI − γP)(γP − 1)L+1 > 0. (23)
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IISE TRANSACTIONS 987

Figure . Stability and aperiodicity conditions.

Figure 1 shows a plot of all conditions defined by Theorem 1
for a number of different lead times. The three plots on the
left correspond to odd lead times and the three plots on the
right correspond to even lead times. The boundaries of each
condition defined by Equations (19) to (23) are indicated by
thin black lines. The area that satisfies all conditions simulta-
neously is clearly demarcated by a thick black line and a (red)
mesh. The additional areas (yellow) in Figures 1(a) and 1(b) con-
cern aperiodicity, which we define in Section 3.2. Note that the
axes in Figure 1(a) are extended to show the entire region of
stability.

Remark 2. It can be seen that the L conditions defined by
Equations (19) and (20) describe regions of convergence
decreasing in L. We observe that the intersection of all regions
that are defined by the conditions in Equation (20) is equal to
the region that is defined in Equation (20) for n = L. Moreover,
the last condition can be simplified, as it produces the exact same
region for all even (similarly for odd) lead times. This allows us
to pose the following conjecture.

Conjecture 1. For each value of L, stability is guaranteed when
γI and γP satisfy the following conditions:
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988 M. UDENIO ET AL.

(i) |γI − γP| < 1.
(ii) (1 − (γI − γP)

2) |γP − 1|(L−1)UL−1(X ) − |γP − 1|L
UL−2(X ) > 0.

(iii) If the lead time of the system, L, is odd, then the third
condition simplifies to γI > max{0, 2(γP − 1)}, and if
the lead time of the system, L, is even, then the third con-
dition simplifies to 0 < γI < 2.

This conjecture has been verified numerically for L =
2, . . . , 200. Furthermore, the stability region appears to con-
verge asymptotically. Given this, we can define a region of
stability independent of the lead time. Formally, this asymptotic
stability condition is defined by,

Lemma 1. For all values of lead times L ∈ N, stability is guaran-
teed within the region that is bounded by the lines γI = 0, γI = 2,
γI = 2(γP − 1), and γI = 2γP .

This region is equivalent to that derived in Wei et al. ((2013),
Proposition 4.3) through the analysis of the difference equations
of the system. Moreover, it is independent of the parity of the
lead time; i.e., whether it is odd or even. However, note that
the difference we observe between odd and even lead times is
a consequence of the mathematical analysis behind the results.
To explain how this difference emerges in our model, we ser-
vice Conjecture 1. Unlike conditions (i) and (ii), only condi-
tion (iii) depends on the parity of the lead time. In particular,
as per the proof of Theorem 1, condition (iii) stems from the
inequality (−1)L+1	L+1 > 0, which involves the evaluation of
roots of a polynomial of order L + 1, where the parity of L affects
the quality of the roots. For example, when L is even, we know
that there is at least one real root, whereas for odd L the roots
could be solely complex conjugates. Thus, Lemma 1 confirms
that there indeed should not be difference between even and odd
lead times.

In the next section, we build upon the pole analysis used thus
far and analyze the aperiodicity of the system.

3.2. Aperiodicity

If a system has a time-domain response with a number of max-
ima or minima that is less than n, the order of the system, we
call such a system aperiodic (Jury, 1985). These dynamics are
also defined by the poles of the transfer function: positive real
poles contribute a damping component to the response, whereas
negative real poles and poles with an imaginary component con-
tribute oscillatory terms (Nise, 2011). Formally see the following
definition.

Definition 3. (Jury, 1985). Suppose that G(z) = N(z)/C(z) is
the transfer function of a stable, linear, time-invariant system.
Thus, all poles of the transfer function, pi, i = 1, . . . , n, are
within the unit circle. The response of this system is aperiodic
if ∀i, pi ∈ [0, 1). From Disney (2008), we adopt the concept of
a weakly aperiodic system if ∀ i, pi ∈ R and there exists an index
k ∈ {1, . . . , n} such that pk < 0.

By analyzing the poles of the reduced characteristic polynomial
(18) for APVIOBPCS systems and applying Definition 3, we
obtain the following propositions.

Proposition 2. When γI = γP = γ , the response of a stable sys-
tem for all lead times L is

� aperiodic when 0 < γ ≤ 1, and
� weakly aperiodic when 1 < γ < 2.

Proposition 3. When L > 2 and γI �= γP, the response of a stable
system is non-aperiodic.

We can define aperiodicity and weak-aperiodicity for the cases
of γI �= γP and L = 1, 2. The area shaded in yellow represents
the region for which the system is aperiodic in Figure 1(a)
and weakly aperiodic in Figure 1(b). The boundaries for these
regions can be found by following the same analysis as in the
proof of Proposition 3.

Remark 3. Pole analysis can be also used to determine whether
the response of a given system is dampened or oscillatory.
When the L + 2 poles of the transfer function (roots of the
characteristic polynomial) reside within the unit circle and
are real and positive, the response is dampened. When at least
one of the poles is imaginary, or negative, the response is
oscillatory. However, we cannot derive general statements on
the performance of the system through pole analysis, due to the
amount and magnitude of the poles being dependent on the
order of the system and on the specific behavioral parameters.

The analysis of stability is a necessary condition for any study of
an APVIOBPCS design, as a stable system guarantees bounded
orders and inventories for any possible finite demand. Similarly,
the pole analysis of the system is relevant because an aperi-
odic (or dampened) system avoids costly oscillations. By them-
selves, however, stability boundaries and pole analysis are not
enough to measure the performance of the system under differ-
ent demand conditions. The stability conditions and aperiod-
icity propositions, as well as the special regions defined in the
accompanying figures, must be seen as a necessary first step in
the evaluation of the system. In the next section, we perform
extensive numerical experiments to evaluate performance met-
rics defined in Section 2.1 as a function of the behavioral param-
eters of the system.

4. The impact of behavioral biases on performance

In this section, we study the impact of different behavioral
biases on the stationary and non-stationary performance of an
APVIOBPCS design. Closed-form expressions for the perfor-
mance metrics introduced in Section 2 can be derived for a
limited range of parameter combinations (Hoberg et al., 2007a;
Hoberg and Thonemann, 2014). Due to the transcendental
nature of the transfer functions of the system, however, it is not
possible to do so when γI �= γP, which is precisely the behav-
ioral space that we are interested in. Hence, we perform numer-
ical experiments to strengthen our understanding of the system.
In terms of experimental setup, we fix the structural parame-
ters of the system (with α = 0.3,C = 3, L = 5) and vary γI and
γP to quantify the performance over a range of different behav-
ioral parameter settings (i.e., behavioral policies). We test the
sensitivity of the system to changes in the structural parame-
ters inAppendixA. This analysis shows that in general, although
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IISE TRANSACTIONS 989

Figure . Stationary bullwhip contour plots.

the structure of the system affects its behavior, the insights dis-
cussed in the current section hold. In Section 4.1, we measure
the stationary performance of the system in terms of two behav-
ioral biases: smoothing/over-reaction to inventory and pipeline
mismatches (Section 4.1.1 and Section 4.1.2) and under-/over-
estimation of the pipeline (Section 4.1.3). Then, in Section 4.2,
we excite the system with a one-time step change in the demand
to measure its dynamic performance with respect to the afore-
mentioned behavioral biases.

4.1. Stationary analysis

We use the metrics presented in Section 2.1.1 (amplification
ratio), Section 2.1.2 (the bullwhip measure), and Section 2.1.3
(worst-case amplification) to understand how behavioral biases
affect the performance of the system given stationary demand
assumptions. The first behavior we study, over-reaction to
inventory and pipeline mismatches, can be thought of as a bias
born out of a panic reaction—a desire to reach the target level
as soon as possible. The literature warns about the detrimental
effects of such behavior under certain parameter settings; Dis-
ney et al. (2008) show that in the case of a DE-APVIOBPCS
policy, γI = γP > 1 always induces a stationary bullwhip. In
Section 4.1.1, we show that this holds for general APVIOBPCS
systems; the bullwhip measure increases rapidly when γI > 1 or
γP > 1. The converse behavior, under-reaction to mismatches
(i.e., order smoothing), is a widely adopted strategy for bull-
whip reduction (Disney et al., 2008). Hence, in Section 4.1.2,
we analyze the performance of the system within the “smooth-
ing” behavioral region (γI, γP < 1). We find that smoothing
reduces the bullwhip of both orders and inventories but that in
terms of worst-case amplification it only has a significant impact
on the orders. Worst-case inventory amplification appears rel-
atively robust to smoothing. Furthermore, our analysis shows
that the under-/over-estimation of the pipeline interacts with
smoothing, so that it is not possible to ascribe, a priori, a pos-
itive or negative performance impact to such behavioral biases.
Given that bullwhip contour lines span the entire behavioral
region, any stationary-bullwhip target that we achieve with an
unbiased (i.e., DE) policy we can also achieve with policies
that under-estimate the pipeline as well as with policies that

over-estimate the pipeline. To better understand this behavioral
bias, in Section 4.1.3, we analyze it through frequency response
plots. In particular, we study the response to a series of experi-
ments along and across contours to understand what drives the
observed performance.

... Over-reaction to inventory and pipelinemismatches
When γI > 1, the decision maker over-reacts to mismatches
between the actual and desired inventory levels. For example,
if γI = 1.5, then they will order 1.5 units for every 1 unit differ-
ence between ît and it in any given period t . Analogously, when
γP > 1, the decision maker over-reacts to mismatches between
the actual and desired pipeline levels ( p̂t and pt , respectively).
To illustrate the effect of over-reaction, Figure 2 shows the val-
ues of BWO and BWI as a function of γI and γP. The bullwhip
grows rapidly over the stable regions of the system when either
parameter is larger than one. Hence, from a stationary perspec-
tive, there is no advantage in over-reacting to inventory and
pipeline mismatches. In terms of relative performance, we see
that order variance is particularly sensitive to over-reaction. A
comparison between Figures 2(a) and 2(b) shows that the bull-
whip of orders increases faster than the bullwhip of inventories
when over-reaction is present.

... Smoothing of inventory and pipelinemismatches
The under-reaction to inventory and pipeline mismatches is
often referred to as order (or production) smoothing. In contrast
with the over-reaction to mismatches, order smoothing is often
a deliberate decision taken to reduce variability. Hoberg and
Thonemann (2015), for example, showed that order smooth-
ing diminishes the stationary bullwhip in DE-APVIOBPCS
systems. The same is true for general APVIOBPCS policies.
Figure 3 illustrates this by showing contour plots for the station-
ary bullwhip measures (BWO and BWI) for order-smoothing
policies and expands on this by superimposing a density plot for
the logarithm of the worst-case amplification metrics (A∞

O and
A∞
I ). Figure 3(a) plots the metrics for orders as a function of

the behavioral parameters and Figure 3(b) plots the equivalent
for inventories. We see that low values of γI and γP correlate
with low values of BWO and BWI and, as seen in Section 4.1.1,
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990 M. UDENIO ET AL.

Figure . Worst-case amplification density plots and bullwhip contours. Black indicates log A∞ ≥ 2.5.

increase from the lower left quadrant toward the upper right.
Additionally, the contour plots show that any given value ofBWO
or BWI achieved by an unbiased policy can also be achieved
by both over- and under-estimating biased policies. Thus, we
cannot conclude that such biases by themselves are detrimen-
tal to the stationary performance of the system. Comparing
Figures 3(a) and 3(b), we see that the BWO response is more
symmetric along the γI = γP line than the response of BWI .
Moreover, BWI is larger than BWO for any given combination
of behavioral parameters. In terms of the worst-case amplifi-
cation, A∞

O is significantly more sensitive to behavioral biases
than A∞

I . We observe that A∞
O increases markedly in γI and

γP, but A∞
I does not show such an increase. Along any given

contour, A∞
O is smallest at or close to the γI = γP line, with

a high dynamic range (i.e., the ratio between extreme values)
along any given contour. For inventories, on the other hand, the
minimum A∞

I appears above the γI = γP line and its dynamic
range along any given contour is smaller. As one would expect,
worst-case amplification tends to infinity toward the stability
boundaries (defined in Theorem 1) irrespective of the contour.

Under i.i.d. normally distributed demand, the analysis of
BWO and BWI shows that heavy smoothing (low values of γI and
γP) carries a performance advantage in terms of amplification;
in fact, smoothing can generate values of BWO < 1 under these
settings. Under more general demand streams, however, the
analysis of A∞

O and A∞
I shows that the orders of the system

are more sensitive to behavioral biases than its inventory. This
implies that the behavioral bias of under- and over-estimation
of the pipeline has a particularly significant effect on the per-
formance of the system when demand is not i.i.d. normally
distributed.

... Under-/over-estimation of the pipeline
To better understand the drivers behind the interaction between
order smoothing and the under-/over-estimation of the pipeline,
we analyze how the frequency response of the system varies
along a given contour and how it differs across different con-
tours within order-smoothing policies (γI, γP < 1). The bias
of under-estimating the pipeline has long been identified
as the main behavioral cause of the bullwhip effect (Ster-
man, 1989; Croson and Donohue, 2006; Croson et al., 2014).
Over-estimating the pipeline has been linked to a compara-
ble phenomenon (the reverse bullwhip effect) triggered by
supply-side disruptions (Rong et al., 2008; Bueno-Solano and
Cedillo-Campos, 2014).

Figure 4 shows the frequency response of orders under six
different behavioral policies corresponding to two different
BWO contours: the three policies in Figure 4(b) correspond
to BWO = 2 and the three policies in Figure 4(c) corre-
spond to BWO = 6. Similarly, Figure 5 shows the frequency
response of inventories under six different behavioral policies,
grouped according to BWI : the three policies in Figure 5(b)
correspond to BWI = 12 and the three policies in Figure 5(c)
correspond to BWI = 16. In each plot, we see a policy with
over-estimation of the pipeline (γI < γP, dashed line), a policy
with under-estimation of the pipeline (γI < γP, dashed-dotted
line), and an unbiased policy (γP = γI , solid line).

As we observe from Figures 4 and 5, the influence of the
pipeline bias on the amplification of orders and inventory
variance is directly related to the harmonic signature of the
demand; i.e., the contribution of single-frequency harmonics
to the spectral density of the demand (Dejonckheere et al.,
2003). In particular, the behavioral policies cause systems to

Figure . Bullwhip contour and frequency plots for orders.
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IISE TRANSACTIONS 991

Figure . Inventory amplification contour and inventory frequency plots.

react differently to demands with predominantly high- and
low-frequency harmonics, with a very clear tradeoff in perfor-
mance. Under-estimating the pipeline (dashed-dotted lines)
attenuates harmonics whose frequency is larger than roughly
π/4 (if demand is observed daily, a frequency of π/4 repre-
sents a period of 8 days) but considerably amplifies harmonics
of lower frequency. Conversely, over-estimating the pipeline
(dashed lines) attenuates harmonics at frequencies lower than
roughly π/4. A behavioral bias that attenuates a given harmonic
frequency maximizes amplification at another frequency.

Unbiased policies (solid line) are, for any given harmonic
frequency, outperformed by one of the biased policies (in
some cases by both). However, the order response along the
DE-diagonal is the most robust (i.e., flatter) of all. These obser-
vations complement the preceding analysis of the worst-case
amplification metric. This metric only considers the maximum
amplification peak across the entire frequency spectrum and
can thus be directly computed from the frequency plots. Thus,
the aforementioned robustness of the inventory worst-case
amplification to behavioral biases follows immediately from
an analysis of these plots. For both inventory and orders, the
worst-case amplification occurs at relatively low harmonic
frequencies, but in the case of inventories all pipeline estimation
biases show similar peaks. This suggests that the inventory
amplification is dominated by the harmonics in the demand,
whereas the order amplification is sensitive to the combination
of demand harmonics and behavioral bias.

It is important to note that the above analysis does not
imply cyclical demands. Since any given demand pattern can be
decomposed into a sum of single-frequency harmonics, these
insights can be directly applied to any arbitrary demand pat-
tern. Multiple methods exist to decompose any time series into
its constituent harmonics; e.g., using Fast Fourier Transforms

(Cochran et al., 1967) in MS Excel. Under-estimating (over-
estimating) the pipeline will buffer demand patterns with high
(low)-frequency peaks in their harmonic signature. In extreme
cases of clearly cyclical demands, however, structural changes
(i.e., seasonal forecasts) may be required to control amplifica-
tion. In the next section, we investigate the performance of the
system with respect to a special type of non-stationary demand:
a one-time shock.

4.2. Dynamic analysis

To quantify the dynamic performance of the system, we use the
ITAE metrics defined in Equations (14) and (15). Intuitively,
we can relate the ITAE metric of a given system to its time-
domain response; thismetric is proportional to the area between
the response curves and the steady state responses. Therefore,
to build intuition behind the qualitative influence of behav-
ioral biases on the dynamic response of the system, we present
the time-domain response for a number of behavioral biases
following a one-time demand shock in Figure 6. Figure 6(a)
shows the evolution of orders and demand (dotted line) based
on the experimental design of Figure 4(c). Figure 6(a) shows
the evolution of inventory and target inventory (dotted line)
based on the experimental design of Figure 5(c). This illustrates
the qualitative influence of behavioral biases on the dynamic
response of the system. Responses plotted with a dashed line
correspond to over-estimation of the pipeline; those with a
solid line correspond to a DE-response; and with a dashed-
dotted line, to under-estimation of the pipeline. In general, over-
estimating the pipeline causes a dampened response, whereas
under-estimating the pipeline causes an oscillatory response (for
any given policy, the response type can be predicted following
Remark 3).

Figure . Time domain response to a step increase in demand.
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992 M. UDENIO ET AL.

Figure . ITAE density plots. Black indicates log (ITAE) ≥ 5.

Figure 7 displays ITAEO and ITAEI as a function of γI and
γP using a density plot. Numerically, we calculate the ITAE for
200 periods following the one-time shock and plot logarithmic
values due to the extreme dynamic range. To better understand
the influence of the behavioral parameters on the dynamic
performance, we superimpose contours for a number of values.
In contrast with the stationarymetrics, we find that the dynamic
performance of the system does not deteriorate rapidly with
an over-reaction to orders nor improve with order smoothing.
Rather, the dynamic performance of both orders and inven-
tories appears to perform best around the classic base-stock
policy area (γI = γP = 1). This observation is consistent with
Hoberg and Thonemann (2015), who recommend such a policy
when excellent dynamic performance is required. Outside this
area, the performance is most robust close to the DE-diagonal
(γI = γP) and deteriorates rapidly otherwise. Note, however,
that the effect of smoothing and over-reacting is not symmetric
along this diagonal. The dynamic performance deteriorates
rapidly under heavy smoothing and heavy over-reaction, but
the performance under moderate smoothing is more sensi-
tive than under moderate over-reaction. This suggests that
there is little incentive to adopt over-reaction in practice. Also
note that the contours are closed lines. This indicates that if a
given target ITAE can be achieved by one type of policy (say, a
DE-policy), then it is possible to achieve the same performance
with any other type of policy (smoothing, over-reacting to mis-
matches; under- and over-estimating the pipeline). Observing
the time-domain response illustrated in Figure 6, we see that the
decrease in performance due to under- or over-estimating the
pipeline, although quantitatively similar, stems from contrasting
behaviors. Over-estimating the pipeline degrades performance
through over-dampened oscillations, whereas under-estimating
the pipeline does so through under-dampened oscillations.
Similarly, a given decrease in dynamic performance (ITAE) due
to smoothing or over-reacting is driven by opposing behaviors.
Under a smoothing (over-reacting) policy, orders and invento-
ries converge gradually (rapidly) to the target values with minor
(substantial) under- and over-shoots. Thus, for the decision
maker, the dynamic tradeoff is between speed and variability.

At extreme values of γ , the performance of the system
appears to break down. Dynamic performance in general
decreases rapidly near the stability boundaries and inventory
performance, in particular, decreases rapidly near the γI = 0
boundary. It can be confirmed, through pole analysis, that the
amplitude and frequency of the oscillations increase toward

the stability boundaries defined by Conjecture 1. When γI = 0,
the gap between actual and target inventories is not taken
into account in the ordering equation, which causes the actual
inventory to never approximate its target value. Hence, the
poor inventory performance in such cases.

4.3. Stationary and transient performance tradeoff

From the previous sections, we know that the effect of behav-
ioral biases on the performance depends on the underlying
demand assumptions. Some policies (i.e., γI = γP < 1) increase
the stationary performance but deteriorate the dynamic per-
formance. Others (i.e., γI = γP > 1) have the opposite effect,
and yet others (i.e., γI < γP) bring about non-trivial tradeoffs.
In this section, we quantify the tradeoff between stationary and
dynamic performance under different behavioral biases.

To visualize the tradeoff, we select three sets of stable behav-
ioral policies (a DE-set, a supply line under-estimating set, and
a supply line over-estimating set) and plot the logarithm of
the stationary bullwhip metrics (BWO and BWI) against the
logarithm of the dynamic metrics (ITAEO and ITAEI) for each
set across the parameter space (i.e., from smoothing to over-
reacting). We define the DE-set as 0.05 < γI = γP ≤ 1.95; the
under-estimating set as γI = γP + 0.15 with−0.1 ≤ γP ≤ 1.75;
and the over-estimating set as γI = γP − 0.15 with 0.2 ≤ γP ≤
1.8. Note that we exclude the extreme values of γI = {0, 2} from
the experimental design, due to their extremely poor dynamic
performance. Figures 8(a) and 8(b) show the performance
tradeoff curves of orders and inventories. As is the conven-
tion, the behavioral bias of under-estimating the pipeline is
plotted with dashed-dotted lines; the bias of over-estimating
the pipeline with dashed lines; and the unbiased pipeline (DE-
policy) with a solid line. We direct the graphs through the use of
different markers. The circle markers indicate the performance
tradeoff for the setting closest to an OUT-policy for each set.
(γI = γP = 1 for the DE-set; γI = 1, γP = 0.85 for the under-
estimating set; and γI = 1, γP = 1.5 for the over-estimating
set.) The triangle markers indicate the performance tradeoff
of the setting with the largest stable smoothing for each set
(i.e., γI = 0.05). The square markers indicate the performance
tradeoff of the setting with the largest stable over-reaction for
each set (γP < 2). Thus, the line segments between the triangle
and circle markers indicate the performance of smoothing poli-
cies, and the line segments between circle and square markers
indicate the performance of over-reacting policies.
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Figure . Performance tradeoff curves between stationary and transient responses.

The dominant policy from a tradeoff perspective is that
which lies closest to the origin of the tradeoff plot. In this
sense, smoothed DE-policies (γP = γI < 1) offer the best trade-
off between stationary and dynamic performance. However, in
any given dimension, there exist behavioral biases that out-
perform the DE-policies. For example, the lowest ITAEI cor-
responds to policies that under-estimate the pipeline, and the
lowest BWI corresponds to a policy with over-estimation of
the pipeline. Furthermore, the best dynamic performance for a
given set is associated with over-reacting policies. This is con-
sistent with the analysis of Section 4.2. However, the dynamic
performance for orders is particularly sensitive to the over-
reaction bias; performance deteriorates significantly once past
the “sweet-spot” of over-reaction.

It is important to note that the plots presented here illus-
trate a tradeoff between two extreme forms of demand and, as
such, only provide an intuition of the expected performance of
a system confronted with a real demand stream. The plots, how-
ever, show that behavioral biases by themselves are not suffi-
cient to make predictions about performance. Even an extreme
over-reaction bias, which otherwise produces poor performance
under every setting, results in relatively well-behaved dynamic
inventory performance. Therefore, any analysis of human biases
in the performance of an inventory system needs to explicitly
consider the characteristics of the demand stream.

5. Conclusions

In this article, we used classic control theory to model general
APVIOBPCS systems and analyze the impact of a number of
behavioral biases (i.e., smoothing/over-reaction to target mis-
matches, and under-/over-estimation of the pipeline) on their
stability and performance. Behavioral biases in this context are
parametrized through feedback controllers γI and γP, which
represent the incomplete closure of inventory and pipeline
gaps at the moment of generating replenishment orders.
Moreover, we showed how the behavioral biases affect the

stability of the system and developed a closed-form expression
to determine the exact region of stability for any arbitrary lead
time. This stability test has the advantage of avoiding the direct
calculation of determinants or matrix-based procedures that
characterize previous exact solutions of the problem (Jury,
1964; Disney, 2008). Additionally, this procedure allowed us
to find an asymptotic region of stability independent of the
lead time. This enables decision makers to operate in robust
areas that guarantee stability independent of changes in the
structural parameters. Through numerical experimentation, we
showed that the performance of a stable system depends, to a
large extent, on the behavioral biases but that this performance
should not be analyzed independently of the demand stream.

We contribute to the bullwhip effect literature by explicitly
modeling behavioral biases such as the under-estimation of the
pipeline, long recognized as its main behavioral cause (Ster-
man, 1989). Although previous control-theoretic models have
recognized the tradeoff between stationary and dynamic per-
formance (Hoberg and Thonemann, 2014) as well as the use of
independent controllers (Disney, 2008), our study is the first, to
the best of our knowledge, to adopt this modeling methodology
to explicitly link behavioral biases and demand attributes to sys-
tem performance. Our dynamic performance results are largely
consistent with prior behavioral research. We show that under-
estimation of the pipeline degrades the system’s performance in
the presence of demand shocks.We expand on this insight show-
ing that the complementary bias, over-estimation of the pipeline,
also has a negative effect under such conditions. However, we
show that when the demand stream is stationary, the system is
relatively robust to this bias. In such cases, we find biased poli-
cies (both under-estimating and over-estimating the pipeline)
that perform just as well as unbiased policies (i.e., a DE-policy).

Order smoothing is prescribed as a strategy to limit the
bullwhip effect (Disney, 2008). Empirical research, in fact,
demonstrates that order smoothing and the bullwhip effect
are concurrent in industry (Bray and Mendelson, 2015). We
show that order smoothing is beneficial for the system’s per-
formance when demand is stationary. Its impact, however, is
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limited to the worst-case order amplification when demand is
unpredictable. Dynamic analysis, on the other hand, reveals
that order smoothing can degrade performance in the presence
of demand shocks. The opposite bias (i.e., over-reaction to mis-
matches), on the contrary, degrades the stationary performance
but can increase dynamic performance; controlled over-reaction
can help the system achieve its new targets quickly. The system,
however, is considerably sensitive to this behavior; excessive
over-reaction significantly degrades performance. Given the
above observations, we analyzed the influence of the behavioral
biases in terms of the tradeoff between stationary and dynamic
performance. We showed that unbiased policies offer generally
good results under a large range of demand types. Such policies
do not, however, result in the best performance under a particu-
lar criteria. We can always find a biased policy that outperforms
an unbiased policy for any one performance metric.

Our findings have several implications for the study of the
bullwhip effect. Although the bullwhip effect as a theoreti-
cal phenomenon makes no a priori assumptions on demand
streams, in terms of measurement, an explicit recognition
must be made between those causes that depend on demand
assumptions, and those that do not. With respect to practical
implications, our results suggest that there is no global opti-
mum in terms of behavior. Hence, tradeoffs must be analyzed
in terms of demand expectations and policy recommendations
need to be made taking firm-specific performance priorities
into account. In terms of theory, our results have potential
methodological implications. Research on the field typically
uses different demand assumptions based upon whether they
are centered on structural or behavioral causes of the bullwhip
effect. The former assume stationary demand streams (Chen
and Lee, 2009), whereas the latter are based on experiments
exploiting demand shocks (Croson et al., 2014).

Considering the significant influence of the demand stream
on the impact of behavioral biases, a direction for future
research is to characterize normative policies, both structural
and behavioral, that consider real-world demand scenarios.
This would build on, and refine, the tradeoff analysis described
in this article. Since demand observed in real life is neither
purely stationary nor composed entirely of shocks, further
research can consider the use of behavioral policies as a way
to tailor the robustness of the system to realistic demand time
series or even disruption scenarios. This could lead, for exam-
ple, to recommendations that recognize the position of a system
within a supply chain (i.e., the optimal behavioral policy for a
retailer facing consumer demand would be different from that
of its supplier, or its supplier’s supplier) or recommendations
that recognize different market segments (i.e., policy recom-
mendations for process industries would be different from those
for capital goods industries). Such a “real-life” approach would
be consistent with, and complement, recent developments in
the area that characterize system performance with additional
dimensions. For example, in line with Hoberg and Thonemann
(2015), additional research can use total cost performance as a
complement to order and inventory variability.

Another area for further research concerns the (structural)
forecasting assumptions of the system. In the presence of,
for example, non-stationary or cyclical demands, the use of
exponentially smoothed forecasts can be an additional source

of variability. Thus, a valuable research direction is to further
analyze alternative forecasting methodologies in terms of the
behavioral and the structural bullwhip effect. Li et al. (2014)
provided the first steps in this direction through the con-
trol theoretic analysis of dampened trend forecasts within an
APVIOBPCS-OUT design.
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Appendices
Appendix A: Sensitivity to structural parameters

In this section, we test the sensitivity of the system to changes
in the structural parameters α, C, and L. Figure A1 shows the
sensitivity of the frequency response and Fig. A2 shows the sen-
sitivity of the bullwhip measure. Each sub-figure corresponds to
a value ofC and contains nine plots arranged in a 3 × 3 matrix,
each row containing plots with fixedα and L = 1, 5, 10 and each
column containing plots with fixed L and α = 0.1, 0.3, 0.5. Sub-
figures on the left-hand side of the page represent order-related
metrics and sub-figures on the right-hand side of the page rep-
resent inventory-related metrics.

We use the experimental design from Section 4.1.3 to gen-
erate the frequency response plots in Fig. A1. Figures A1(a),
A1(c), and A1(e) are based upon the parametrization shown in
Fig. 4(a), with BWO = 6. Figures A1(b), A1(d), and A1(f) are
based upon Fig. 5(a), with BWI = 16.

We see that the inventory coverage, C, has a very limited
impact on the amplification of the system. Increasing its value
sixfold has a marginal effect on the absolute value of AO,ω and
AI,ω and no effect on the shape of the response curves. The
effect of the smoothing parameter, α, is more pronounced in
terms of the absolute value of AO,ω and AI,ω; we observe an
increase in amplification at all frequencies as a response to
an increase in α. However, a change in α also has no dis-
cernible qualitative effect on the frequency response. Lead time
L, however, has both a qualitative and quantitative effect on
the frequency response. The absolute value of AO,ω and AI,ω
increases with an increase in L. Moreover, the shape of the
response curves changes as L increases. In particular, the num-
ber and location of the high-frequency response peaks seem to
be determined by the lead time. This effect is clearly seen in the
frequency response plots of orders. An analysis of Fig. A1, how-
ever, suggests that the insights related to the behavioral biases do
not depend on the structural parameters. The relative responses
of under-/over-estimating policies are maintained throughout.

In Fig. A2 we extend the experiments shown in Section 4.1.1.
Figures A2(a), A2(c), and A2(e) show the effect of the struc-
tural parameters on log(BWO). Correspondingly, Figs. A2(b),
A2(d), and A2(f) show the effect of the structural parameters on
log(BWI ). The logarithmic scale used is the same as that shown
in Fig. 2.

Analysis of Fig. A2 suggests that all of the structural param-
eters have a quantitative effect in the bullwhip measure. Similar
to the analysis of the frequency response, we see that the effect of

C is comparatively minor to the effect of α and L. Finally, these
additional experiments suggest that the insights on the behav-
ioral biases developed in this article do not depend on the struc-
tural parameters.

Appendix B: Proofs

Proof of Proposition 1. We denote each root of the character-
istic polynomial (pole of the transfer function) by pLi , where
i = {1, 2, ..., L + 2}.

It follows from Equation (17) that pL1 = (1 − α) is a real root
of the characteristic polynomial that does not depend on L.

When α ∈ (0, 2), pL1 is inside the unit circle and the remain-
ing L + 1 roots of the characteristic polynomial C(z) will be
equal to the L + 1 roots of the reduced characteristic polynomial
Ĉ(z). Thus, the condition for stability when α ∈ (0, 2) reduces
to checking that all roots of Ĉ(z) be inside the unit circle.

When α = 0 or α = 2, then
∣∣pL1∣∣ = 1, which means that the

system will be marginally stable unless
∣∣pL1∣∣ = 1 is also a root of

the numerator of the transfer function. The transfer function for
orders when α = 0 can be rewritten as

GO(z) = γI(z − 1)zL

(z − 1) ˆC(z)
= γIzL

ˆC(z)
. (A1)

The transfer function for inventories when α = 0 can be rewrit-
ten as

GI(z) = γI − z(zL+1 + zL(γP − 1) − γP

(z − 1) ˆC(z)

= γI − z(zL + γPzL−1 + · · · + γPz + γP)

ˆC(z)
. (A2)

Thus, since z = 1 is a root of the denominator of bothGO(z) and
GI(z),∀L ∈ N, the conditions for stability whenα = 0 reduce to
checking that all roots of Ĉ(z) be inside the unit circle. The same
reasoning can be extended for the case of α = 2. �
Proof of Proposition 2. When γI = γP = γ we can rewrite the
reduced characteristic polynomial:

Ĉ(z) = zL(z − 1 + γ ). (A3)

Its L + 1 zeroes are

pL2 = (1 − γ ), (A4)

pL3 = pL4 = · · · = pLL+2 = 0. (A5)

When γ ∈ (0, 2),
∣∣pL2∣∣ < 1; therefore, the system is stable.

More precisely, for γ ∈ (0, 1], pL2 ≥ 0, and for γ ∈ (1, 2),
pL2 < 0. Thus, the system is respectively aperiodic and weakly
aperiodic. �
Proof of Proposition 3. We know that all of the roots of the
reduced characteristic polynomial Ĉ(z) of a stable system lie
inside the unit circle of the complex plane. To judge the ape-
riodicity of such a system, we need to knowwhether the roots of
Ĉ(z) lie on the negative or positive half plane.

To do so, we rewrite the characteristic polynomial:

Ĉ(z) = zL+1 − zL(1 − γP) + γI − γP, (A6)
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Figure A. Sensitivity of frequency plots of orders (left) and inventories (right) to structural parameters.

and apply Descartes’ rule of signs (Struik, 1969, pp. 90–94) to
identify the number of positive and negative roots. We assume
that the system is stable and distinguish between two cases: γI <

γP and γI > γP.

The case of γI < γP: For all values of L and γP this polynomial
will have one sign change. Therefore, we will always have one

positive and real root. To find the negative and real roots of
Ĉ(z), we separate between odd and even lead times L: For L odd,
the polynomial Ĉ(−z) = zL+1 + zL(1 − γP) + γI − γP has one
sign change for all values of γP . Therefore, there exists a real and
negative root of Ĉ(z) and the remaining L − 1 roots come in
pairs of complex conjugates. Only for L = 1 does Ĉ(z) have no
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Figure A. Sensitivity of the bullwhip for orders (left) and inventories (right). Log scale.

complex roots. For L even, the polynomial Ĉ(−z) = −zL+1 −
zL(1 − γP) + γI − γP does not have any sign change when
γP ∈ [0, 1] and thus no negative and real roots. This means
that it has at least one pair of conjugate complex roots. When

γP ∈ (1, 2), it has two sign changes and thus zero or two nega-
tive and real roots. If it has two negative roots and L = 2, then
the system is weakly aperiodic. In any other case, there exists at
least one pair of complex roots and the system is thus aperiodic.
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The case of γI > γP: For all values of L, and for γP ∈ [1, 2),
the reduced characteristic polynomial Ĉ(z) will have no sign
changes and consequently it does not have any positive and
real roots. To find the negative and real roots of Ĉ(z) with
γP ∈ [1, 2), we separate between odd and even lead times L: For
L odd, the polynomial Ĉ(−z) has two sign changes and there-
fore either two or zero real and negative roots. When L = 1 and
it has two negative real roots, the system is weakly aperiodic. In
all other cases, there exist at least one pair of complex roots and
the system will consequently be non-aperiodic. For L even, the
polynomial Ĉ(−z) has one sign change and therefore one real
and negative root. Thus, in this case, the polynomial will always
have at least one pair of complex roots and the systemwill conse-
quently be non-aperiodic. For all values of L, and for γP ∈ [0, 1),
the reduced characteristic polynomial Ĉ(z) will have two sign
changes and consequently it has either two or zero positive
and real roots. To find the negative and real roots of Ĉ(z) with
γP ∈ [0, 1), we separate once more between odd and even lead
times L: For L odd, the polynomial Ĉ(−z) has zero sign changes
and therefore either zero real and negative roots. When L = 1
and it has two positive real roots, the system is aperiodic. In all
other cases there exist at least one pair of complex roots and the
systemwill consequently be non-aperiodic. For L even, the poly-
nomial Ĉ(−z) has one sign change and therefore one real and
negative root. Only the combination L = 2 and two positive real
roots gives a weakly aperiodic response. In all other cases, there
exists at least two pair of complex roots and thus the system is
non-aperiodic. �

Proof of Theorem 1. According to Theorem 43.1 of Mar-
den (1966, p. 198), the number of roots of our reduced
characteristic polynomial Ĉ(z) (Equation 18) inside the
unit circle is equal to the number of negative signs in the
sequence

	1,
	2

	1
, . . . ,

	L+1

	L
, (A7)

where

	n := det
[
An A∗T

n
A∗
n AT

n

]
, (A8)

and

An :=

⎡
⎢⎢⎢⎢⎢⎣

a 0 0 · · · 0
0 a 0 · · · 0
0 0 a · · · 0
...

...
...

...
...

0 0 0 · · · a

⎤
⎥⎥⎥⎥⎥⎦

, n = 1, . . . , L,

AL+1 :=

⎡
⎢⎢⎢⎢⎢⎣

a 0 0 · · · 0
0 a 0 · · · 0
0 0 a · · · 0
...

...
...

...
...

b 0 0 · · · a

⎤
⎥⎥⎥⎥⎥⎦

,

A∗
n :=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
b 1 0 · · · 0
0 b 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

, n = 1, . . . , L + 1,

with a = γI − γP, and b = γP − 1. Here AT
n denotes the trans-

pose of An where the dimension of these matrices is n × n.
To guarantee stability, we need all of the roots of Equa-

tion (18) to be inside the unit circle. Thus, we need to have L + 1
negative signs in the sequence (A7). Consequently, we need to
have

(−1)n	n > 0, ∀n = 1, . . . , L + 1. (A9)

Since the matrices An and A∗
n commute, according to Sil-

vester (2000), we have that for n = 1, . . . , L + 1, (−1)n	n =
det

(
AnAT

n − A∗
nA∗T

n
)
. Thus, for n = 1, . . . , L,

(−1)n	n

= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − a2 b 0 · · · · · · −ab
b 1 − a2 + b2 b 0 · · · 0
0 b 1 − a2 + b2 b · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 b 1 − a2 + b2 b
−ab 0 · · · 0 b 1 − a2 + b2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(A10)

and also

(−1)L+1	L+1

= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − a2 b 0 · · · · · · −ab
b 1 − a2 + b2 b 0 · · · 0
0 b 1 − a2 + b2 b · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 b 1 − a2 + b2 b
−ab 0 · · · 0 b 1 − a2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(A11)
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If we denote Mn as the square n × n matrix with diagonal ele-
ments equal to 1 − a2 + b2 and all elements on the upper and
lower diagonal are equal to b, then we can find recursively
that

(−1)n	n = (1 − a2)detMn−1 − b2detMn−2, n = 2, . . . , L.

(A12)

The determinant detMn can be calculated through formula (3)
of Marr and Vineyard (1988) as

detMn = Dn(1 − a2 + b2, b, b) = |b|Un

(
1 − a2 + b2

2 |b|
)

,

(A13)

whereUn is the nth degree Chebyshev polynomial of the second
kind, defined by

Un(Z) =
(
Z + √

Z2 − 1
)n+1 − (

Z − √
Z2 − 1

)n+1

2
√
Z2 − 1

. (A14)

If we set X = (1 − a2 + b2)/(2 |b|), then
(−1)n	n = (1 − a2) |b|(n−1)Un−1

(
X

) − |b|n Un−2
(
X

)
. (A15)

Similarly, for the (L + 1) st determinant, it holds that

(−1)L+1	L+1 = (1 − a2)2detML−1 − 2(1 − a2)b2detML−2

+ b4 detML−3 + 2(−1)L+1abL+1 − (ab)2 detML−1,

(A16)

which reduces to Equation (23). Observe that −	1 = 1 − a2,
which completes the proof. �
Proof of Lemma 1. In a compact form, the region defined by
Lemma 1 can be written as |b| ≤ 1 − |a| with a = γI − γP and
b = γP − 1. We observe that condition (iii) of Conjecture 1
always defines two boundary lines in this region. Therefore,
inside this region, condition (iii) is always going to be satis-
fied. In order to show that this is indeed the asymptotic region
defined by Lemma 1 when L goes to ∞, it is sufficient to show
that when we set |b| = 1 − |a|:

lim
L→+∞

(−1)L	L = 0. (A17)

Knowing that X = 1 (see proof of Theorem 1) and, using that
UL(1) = L + 1 (Abramowitz and Stegun, 1965, Table 22.3.7,
p. 774), we can rewrite Equation (A15) as

(−1)L	L = (1 − |a|)L(1 + L |a|), (A18)

which goes to zero as L goes to∞ since |a| < 1, and the proof is
complete. �
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