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Abstract. Let G be a plane triangulated graph. A rectangular dual of G
is a partition of a rectangle R into a set R of interior-disjoint rectangles,
one for each vertex, such that two regions are adjacent if and only if the
corresponding vertices are connected by an edge. A rectangular dual is
sliceable if it can be recursively subdivided along horizontal or vertical
lines. A graph is rectangular if it has a rectangular dual and sliceable if
it has a sliceable rectangular dual. There is a clear characterization of
rectangular graphs. However, a full characterization of sliceable graphs
is still lacking. The currently best result (Yeap and Sarrafzadeh, 1995)
proves that all rectangular graphs without a separating 4-cycle are slice-
able. In this paper we introduce a recursively defined class of graphs
and prove that these graphs are precisely the nonsliceable graphs with
exactly one separating 4-cycle.

1 Introduction

Let G be a plane triangulated graph. A rectangular dual of G is a rectangular
partition R such that (i) no four rectangles meet in the same point, (ii) there is
a one-to-one correspondence between the rectangles in R and the vertices of G,
and (iii) two rectangles in R share a common boundary segment if and only if
the corresponding vertices of G are connected. A graph can have exponentially
many rectangular duals [6], but might not even have a single one. Rectangular
duals have a variety of applications, for example, as rectangular cartograms in
cartography or as floorplans in architecture and VLSI design.

There are several types of rectangular duals that are of particular interest.
Often it is desirable to assign certain areas to each rectangle. A recent paper
by Eppstein et al. [8] studies area-universal rectangular duals, which have the
property that any assignment of areas to rectangles can be realized by a com-
binatorially equivalent rectangular dual. A rectangular dual is sliceable if it can
be recursively subdivided along horizontal or vertical lines (such duals are also
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Fig. 1. A graph (a) with rectangular duals (b)-(d) and a rectangular dual of a different
graph (e): (b) is not sliceable and not area-universal, (c) is sliceable and not area-
universal, (d) is sliceable and area-universal, and (e) is area-universal and not sliceable.

called guillotine floorplans and can be constructed by glass cuts). While it is gen-
erally difficult to determine if an area assignment is feasible and to compute the
corresponding layout of the rectangles, it is very easy to do so for sliceable duals.
Furthermore, sliceable duals more easily facilitate certain layout steps in VLSI
layout. Sliceability does not imply area-universality or vice versa (see Fig. 1).

A graph is rectangular if it has a rectangular dual and sliceable if it has a
sliceable rectangular dual. Ungar [20], Bhasker and Sahni [4], and Koźmiński and
Kinnen [12] independently gave equivalent characterizations of the rectangular
graphs. Eppstein et al. [8] characterized the area-universal rectangular duals.
However, despite an active interest in sliceable rectangular duals, a full charac-
terization of sliceable graphs is still lacking. The currently best result by Yeap
and Sarrafzadeh [22] from 1995 proves that all rectangular graphs without a sep-
arating 4-cycle are sliceable. Dasgupta and Sur-Kolay [7] modified the approach
of Yeap and Sarrafzadeh and claimed two sufficient conditions for sliceability.
However, Mumford [15] discovered a critical flaw that invalidates their results.3

Related work. Rectangular duals have been studied extensively by the VLSI
community. Sliceable layouts more easily facilitate certain steps in the layout
process [16]. For instance, the problem of minimizing the perimeter or area of
modules in a rectangular layout according to a given measure can be solved in
polynomial time for sliceable layouts, but is NP-complete in general [17]. Several
papers focus on restricted classes of sliceable and nonsliceable graphs [5,18].

Rectangular duals are also studied in the context of rectangular cartograms,
which represent geographic regions by rectangles. The positioning and adjacen-
cies of these rectangles are chosen to suggest their geographic locations and their
areas correspond to the numeric values that the cartogram communicates. Van
Kreveld and Speckmann [13] gave the first algorithms to compute rectangular
cartograms. Eppstein et al. [8] present a numerical algorithm for area-universal
rectangular duals which computes a cartogram with approximately the correct
areas. For sliceable rectangular duals one can easily compute a combinatorially
equivalent rectangular dual with exactly the specified area assignment, if such a
rectangular dual exists. Several papers consider rectilinear duals: a generaliza-
tion of rectangular duals which uses simple (axis-aligned) rectilinear polygons
instead of rectangles. Every triangulated graph has a rectilinear dual where ev-

3 Confirmed by Dasgupta and Sur-Kolay, personal communication, 2011-2013.



ery polygon has eight sides, and eight sides are sometimes necessary [10,14,23].
A series of papers studies the question of how many sides are required to re-
spect all adjacencies and area requirements in general. De Berg, Mumford and
Speckmann [3] gave the first bound by showing that forty sides per polygon is
always sufficient. After several intermediate results, Alam et al. [2] finally closed
the gap by proving that eight sides per polygon is always sufficient.

Sliceable rectangular duals are also called guillotine partitions or guillotine
layouts. In this context a different notion of equivalence is used, which is not
based on a dual graph. Specifically, two guillotine partitions are equivalent if
they have the same structure tree [19]. Yao et al. [21] show that the asymptotic
number of guillotine partitions is the nth Schröder number. Ackerman et al. [1]
derive the asymptotic number of guillotine partitions in higher dimensions.

Results and organization. It is comparatively easy to see that the class of
sliceable graphs is not closed under minors. Hence we need to explore different
approaches to characterize them. In Section 3 we introduce a recursively defined
class of graphs, so-called rotating pyramids, which contain exactly one separating
4-cycle. We conjecture that configurations of rotating pyramids determine if a
graph is sliceable. We verify our conjecture for the graphs that contain exactly
one separating 4-cycle. The nonsliceable graphs in this class are exactly the
graphs that reduce to rotating windmills: rotating pyramids with a specific corner
assignment. In Section 4 we prove that rotating windmills are not sliceable and
in Section 5 we argue that all other graphs with exactly one separating 4-cycle
are sliceable.

2 Preliminaries

t(G)

b(G)
l(G) r(G)

Fig. 2. An extended graph E(G) and
the corresponding rectangular dual.

An extended graph E(G) of a plane graph
G is an extension of G with four vertices
in such a way that the four vertices form
the outer face of E(G). These vertices are
labeled t(G), r(G), b(G) and l(G) in clock-
wise order and are called the poles of E(G).
The vertices of the original graph G are
called the interior vertices. Since choos-
ing the extended graph fixes the vertices
that correspond to the four corners (and
hence the vertices along the four sides) of
the rectangular dual, extended graphs are
also called corner assignments (Fig. 2).

A separating k-cycle of an extended
graph E(G) is a k-cycle with vertices both inside and outside the cycle. A
triangle is a 3-cycle. The outer cycle of a plane graph is the cycle formed by
the edges incident to the unbounded face. An irreducible triangulation is a plane
graph without separating triangles and where all interior faces are triangles and



Fig. 3. The windmill, the generalized windmill (the hatched shape is an arbitrary
graph), and a rectangular dual of the generalized windmill.

the outer face is a quadrangle. A graph G has a rectangular dual if and only if
G has an extended graph which is an irreducible triangulation [4,12,20].

Sliceable graphs. A rectangular partition is sliceable if it can be recursively
subdivided along horizontal or vertical lines. An extended graph E(G) is sliceable
if and only if it has a sliceable rectangular dual. A graph G is sliceable if and
only if it has a sliceable extended graph. Since a graph has only polynomially
many corner assignments, we consider only extended graphs from now on. The
smallest nonsliceable extended graph is the windmill depicted in Fig. 3. This
extended graph can be generalized to a generalized windmill by replacing the
center vertex with an arbitrary graph. All generalized windmills are nonsliceable.

A cut is a partition of the vertices of a graph in two disjoint subsets. The
cut-set of the cut is the set of edges whose endpoints are in different subsets
of the partition. A cut of G with cut-set S is vertical if the edges dual to S
form a path from an interior face incident to t(G) to an interior face incident
to b(G). Order the edges in the cut-set e1, . . . , em, according to the order in
which they are traversed by the dual path. The left vertex of ei is the endpoint
of ei that is in the same component as l(G) in the graph obtained by deleting
t(G), b(G), and S from E(G). The right vertex is defined analogously. Let the
left boundary walk W` = t(G), u1, . . . , u`, b(G) be the sequence of left endpoints
of e1, . . . , em (removing consecutive duplicates), and let the right boundary walk
Wr = t(G), v1, . . . , vr, b(G) be the sequence of right endpoints of e1, . . . , em (re-
moving consecutive duplicates). A walk is a path if it visits every vertex at most
once. A path v1, . . . , vk is chordless if and only if vi and vj are not adjacent for
each 1 ≤ i < j− 1 ≤ k. A vertical cut is a vertical slice if its boundary walks are
chordless paths (Fig. 4). A vertical slice divides G into Gl and Gr. Horizontal cuts,
top and bottom boundary walks and horizontal slices are defined analogously.

Regular edge labelings. The equivalence classes of the rect-
angular duals of an irreducible triangulation E(G) correspond
one-to-one to the regular edge labelings of E(G). A regular
edge labeling of an extended graph E(G) is a partition of the
interior edges of E(G) into two subsets of red (dashed) and
blue (solid) directed edges such that: (i) around each inner
vertex in clockwise order we have four contiguous nonempty
sets of incoming blue edges, outgoing red edges, outgoing blue
edges, and incoming red edges and; (ii) l(G) has only outgoing
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Fig. 4. An extended graph E(G) with a vertical slice indicated by a dash-dotted line and
the corresponding E(G`) and E(Gr). The edges of the cut-set are bold. The boundary
paths are t(G), 1, 2, 3, b(G) and t(G), 4, 5, 6, 7, b(G). Both boundary paths are chordless.
Figure based on [22].

blue edges, t(G) has only incoming red edges, r(G) has only
incoming blue edges and b(G) has only outgoing red edges.

a
a

b bc

d

c

d

e e

f
f

Fig. 5. A regular edge labeling and corre-
sponding rectangular dual. Letters indicate
the slices.

A regular edge labeling is slice-
able if its corresponding rectangular
dual is sliceable. One can find a reg-
ular edge labeling and construct the
corresponding rectangular dual in
linear time [11]. A regular edge color-
ing is a regular edge labeling, with-
out the edge directions. A regular
edge coloring uniquely determines
a regular edge labeling [9, Propo-
sition 2]. A monochromatic triangle
is a triangle where all edges have
the same color. A regular edge la-
beling (of an irreducible triangula-
tion) induces no monochromatic tri-
angles [9, Lemma 1].

Let R be a rectangular dual of E(G) and let L be the regular edge labeling
that corresponds to R. Any vertical slice in R has a blue cut-set and red bound-
ary paths in L. Any horizontal slice in R has a red cut-set and blue boundary
paths (see Fig. 5). A slice is a first slice of E(G) if it starts and ends at poles of
E(G). Slice a is the only first slice in Fig. 5.

k-pyramid extended graphs. A pyramid is a 4-cycle with exactly one vertex
in its interior. A k-pyramid extended graph is an irreducible triangulation E(G)
such that G has no cut-vertices, G has exactly k separating 4-cycles, and all
separating 4-cycles in E(G) are pyramids. We argue that it is sufficient for our
investigation of sliceability to consider only k-pyramid extended graphs with
k ≥ 1. Firstly, we may assume G has no cut-vertex (all omitted proofs are in the
full version of the paper):



Lemma 1. Let E(G) be an extended graph such that G has a cut-vertex v. Then
v is adjacent to two opposite poles, say t(G) and b(G). Slice immediately left and
immediately right of v. Then E(G) is sliceable if and only if the three extended
graphs that result from the two slices are sliceable.

Secondly, Mumford [15] showed that it is sufficient to consider extended graphs
E(G) such that all separating 4-cycles in G are pyramids. Her proof directly
extends to separating 4-cycles in E(G) instead of G, which immediately proves
that generalized windmills (Fig. 3) are nonsliceable. Finally, 0-pyramid extended
graphs are always sliceable [22].

Yeap and Sarrafzadeh’s algorithm. In Section 5, we explicitly construct
slices in a manner which is based on the algorithm by Yeap and Sarrafzadeh [22].
In Theorem 1 below we give a stronger version of their result and also add a
missing case which was overlooked in their original analysis. A cycle C in E(G)
splits the plane into two parts: a bounded region and an unbounded region. We
say that vertices in the bounded region including C are enclosed by C.

Theorem 1. Let E(G) be a k-pyramid extended graph (k ≥ 0). Then there exists
a vertical cut S such that (i) the left boundary walk P` of S is a chordless path
that contains only vertices with distance 2 to r(G) in E(G) \ {t(G), l(G), b(G)}
and (ii) if the cycle Cr := 〈r(G), P`, r(G)〉 does not enclose a pyramid, then S is
a vertical slice. Analogous statements hold for t(G), l(G) and b(G). Consequently,
E(G) is sliceable if k = 0.

The following corollary of Lemma 1 gives a final simplification of our problem.

Lemma 2. Let E(G) be an extended graph with pole p such that p has only one
neighbour v in G. Let E(G′) be the extended graph obtained by deleting v from G
and connecting the neighbours of v in G to p. Then E(G) is sliceable if and only
if E(G′) is sliceable.

Exhaustively applying Lemma 2 to an extended graph E(G) reduces E(G) to an
extended graph E(G′). We say that E(G′) is reduced. The extended graphs E(G`)
and E(Gr) resulting from a slice in E(G) might not be reduced even if E(G) is.
In this sense, Lemma 2 is different from Lemma 1 and Mumford’s observation.
In the following we focus on the 1-pyramid extended graphs, among which are
both sliceable and nonsliceable extended graphs. The smallest nonsliceable one
is the windmill in Fig. 3.

3 Rotating pyramids and windmills

The graph on the right is the big pyramid graph. Rotating wind-
mills are recursively defined as follows. The windmill (see Fig. 3) is
a rotating windmill. Furthermore, the extended graphs depicted in
Fig. 6 are base rotating windmills: they are four corner assignments
of the big pyramid graph. If E(G) is a rotating windmill other than



(a) (b) (c) (d)

Fig. 6. The four base rotating windmills.

the windmill, then we can construct another rotating windmill by re-
placing the pyramid in E(G) with a big pyramid using one of three
construction steps, labeled ↑, Å and ¼, each depicted in Fig. 7.

Intuitively, ↑ extends the rotating windmill in the same direction as the pre-
vious extension, Å rotates the direction 90◦ counterclockwise and ¼ rotates the
direction 90◦ clockwise. Note that the construction steps are not allowed to per-
form a rotation of 180◦. We can uniquely identify a rotating windmill by its
construction sequence. The construction sequence of the windmill is ⊠. The con-
struction sequences of the base rotating windmills are , , and . If we apply a
construction step sk+1 ∈ {↑,Å,¼} to a rotating windmill bs1 · · · sk where k ≥ 0,
b ∈ { , , , }, and s1, . . . , sk ∈ {↑,Å,¼}, then the resulting rotating windmill
has construction sequence bs1 · · · sksk+1. Fig. 8 shows three examples. If E(G)
is a rotating windmill, then we call G a rotating pyramid. For a given rotating
pyramid G, which is not the pyramid, the inner graph G′ is defined as the largest
strict subgraph of G such that G′ is a rotating pyramid.

Drawing conventions. We draw the edges of the outer cycle of a rotating
pyramid G as a square. The top side of G is the path from the topleft vertex of G
to the topright vertex (including both). The definitions of right side, bottom side
and left side are analogous. Every rotating windmill has two consecutive sides
with exactly two vertices, and two consecutive sides with at least two vertices.

a

b

a

b

a

b

a

b

↑ ¼ Å
Fig. 7. On the left: the big pyramid in a rotating windmill, along with two of its
neighbors in gray. On the right: the results of applying the three construction steps.



(a) ↑ (b) Å (c) Å¼
Fig. 8. Three rotating windmills.

⋮
⋯

⋯
⋮ G′

∗Consider the graph G on the right. The partially drawn
edges incident to the vertices on the outer cycle of G rep-
resent connections to vertices not shown in the figure. The
inner graph G′ of G is represented by only its outer cycle;
its interior vertices (if any) are not shown. The lines along
the top, right, bottom and left sides of G′ contain the · · · -
symbol in their center to indicate that there may be zero or
more extra vertices on the side. The edges whose color is not
uniquely determined are gray (dotted). The start of a slice
is denoted with ∗, and the end of a slice is denoted with × (not shown). Every
vertex on the top side of G′ is connected to the topleft vertex in the figure, and
every vertex on the right side of G′ is connected to the bottomright vertex in the
figure. Since G′ is a rotating pyramid, a maximum of two sides of G′ (and they
must be consecutive) can have extra vertices.

4 Rotating windmills are not sliceable

Before we can prove the main result of this section, we need the following lemma:

Lemma 3. Let E(G) be an extended graph with a sliceable regular edge labeling
L. Let G′ be a subgraph of G such that the outer cycle of G′ under L has in
clockwise order (i) a nonempty path of red edges followed by a nonempty path
of blue edges oriented clockwise, and (ii) a nonempty path of red edges followed
by a nonempty path of blue edges oriented counterclockwise. Let E(G′) be the
extended graph with labeling L′ induced by coloring the edges of G′ according to
L. The labeling L′ is a sliceable labeling for E(G′).

G′

Proof. The figure shows an example of the labeling of the
outer cycle of G′, the induced corner assignment E(G′) and the
labeling of E(G′). Observe that the slices in L′ are exactly the
slices in L that cut through edges of G′. Since L is a sliceable
labeling of E(G′), the labeling L′ must also be sliceable. ut



Theorem 2. Extended graphs that reduce to rotating windmills are not sliceable.

Proof. Since the reduction operation preserves sliceability, it is sufficient to con-
sider rotating windmills. We will prove the theorem by structural induction on
rotating windmills. Our base case is the windmill, which is not sliceable.

⋮
⋯

⋯
⋮ G′

∗

Fig. 9. Graph G.

Let E(G) be a rotating windmill and assume that all ro-
tating windmills with fewer vertices are nonsliceable. Assume
without loss of generality that the construction sequence of
E(G) starts with . For the sake of deriving a contradiction,
suppose that E(G) is sliceable and consider a sliceable regular
edge labeling. We assume wlog that the first slice in E(G) is
a vertical slice from t(G) to b(G). We show that any first slice
either (i) cannot reach b(G) or (ii) cuts E(G) in such a way
that a smaller graph is forced into a corner assignment that
is a rotating windmill. Both cases result in a contradiction.

See Fig. 9. The vertices along the outer cycle of G are
connected to the poles in E(G). Since t(G) has only incoming
red edges, the edges along the top side of G must be blue. A
similar reasoning forces the coloring of all edges on the outer cycle of G. Let G′
be the inner graph of G. We distinguish four cases.

⋯

⋯
⋮⋮ G′

∗

Fig. 10. Case 1.

Case 1. The first slice does not cut through an edge in the
top side of G′, see Fig. 10. As noted previously, the colors of
the edges along the outer cycle of G are forced by the corner
assignment. The choice of the slice forces the colors of all
dotted edges in Fig. 9. The induced corner assignment of G′
is a rotating windmill E(G′) which is smaller than E(G). By
the induction hypothesis, E(G′) is not sliceable. Hence, E(G)
is also not sliceable. Contradiction.

Case 2. The top side of G′ has at least two edges and the first
slice cuts through the rightmost one, as depicted in Fig. 11(a).
The induced corner assignment of G′ is not a rotating wind-
mill, so we cannot immediately conclude that E(G) is not
sliceable. Let us consider the structure of G′. Note that the
top side of G′ has more than two vertices. This means that
the construction sequence of E(G) must start with ¼.

The slice that enters G′ in Fig. 11(a) continues at the ∗ in Fig. 11(b). Let
G′′ be the inner graph of G′. Note that the slice must enter G′′: if it did not, we
would be in Case 1 again. It follows that the slice must enter G′′ through some
edge on the right side of G′′. This forces the colors of all dotted edges in the
figure. The slice cannot leave G′′ through an edge on the top or bottom side of
G′′, since the slice cannot continue to b(G) from there. Since the first slice does
not reach b(G), it cannot be the first slice. Contradiction.

Case 3. The top side of G′ has at least two edges and the first slice does not cut
through the rightmost one, see Fig. 11(c). Hence, the construction sequence of
E(G) must start with ¼. The first slice continues at ∗ in Fig. 11(d). Let G′′ be
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(a) Case 2: G.

⋮
⋯

⋯
G′′

∗
⋮
⋮

×

×
(b) Case 2: G′.

⋯

⋯
⋮⋮ G′

∗
⋯

(c) Case 3: G.

⋯
⋮

⋯
⋮

⋯
G′′
∗

×

×
×

(d) Case 3: G′.

Fig. 11. (a-b) Graphs G and G′ in Case 2. (c-d) Graphs G and G′ in Case 3.

the inner graph of G′. All edges in G′ incident to the topright vertex in G′ must
be red. This forces the coloring of all remaining edges. So the first slice cannot
continue to b(G) after leaving G′′: hence it cannot be the first slice. Contradiction.

Case 4. The top side of G′ has exactly one edge e and the first slice cuts through
e, see Fig. 12(a). Since G′ has only two vertices on its top side, the construction
sequence of E(G) must start with ↑ (G′ = G1) or Å (G′ = G2). See Fig. 12(b)
for G′ = G1 and Fig. 12(c) for G′ = G2. The only difference between G1 and
G (Fig. 9) is that the topright vertex of G1 has an extra blue edge. Suppose
that E(G) is sliceable for G′ = G1 (the case G′ = G2 is similar). Let LG be a
sliceable regular edge labeling of E(G) and let LG [G1] be the restriction of LG to
G1. All edges along the top side and bottom side of G1 in LG [G1] are blue and
all the edges along the left side and right side are red. Let E(G1) be the corner
assignment of G1 such that E(G1) is a rotating windmill. Coloring the edges of
G1 inside E(G1) according to LG [G1] yields a sliceable regular edge labeling for
E(G1) by Lemma 3. But since E(G1) is a smaller rotating windmill than E(G),
it is not sliceable by the induction hypothesis. Contradiction. ut

⋯
⋮⋮ G′

∗

(a) G.

⋮
⋯

⋯
⋮ G3

∗

(b) G1.

⋯
⋮ ⋮

⋯
G4

∗

(c) G2.

Fig. 12. Case 4: graph G and two cases for G′: graphs G1 and G2.



5 Sliceability of 1-pyramid extended graphs

In this section we prove that all reduced 1-pyramid extended graphs other than
rotating windmills are sliceable. Given a 1-pyramid extended graph E(G), let Cp

be the cycle defined in Theorem 1 for each pole p ∈ {l(G), b(G), r(G), t(G)}.
Lemma 4. Let E(G) be a reduced 1-pyramid extended graph. Suppose that there
exists a slice S that splits E(G) into E(G`) and E(Gr), such that E(G`) (or
E(Gr)) can be reduced to a rotating windmill. Then we can construct a reduced
1-pyramid extended graph E(G′) such that E(G′) is not a rotating windmill, G′
is a strict subgraph of G and E(G) is sliceable if E(G′) is sliceable.

Proof (sketch). One can argue that that E(G`) (or E(Gr)) is already be a rotating
windmill and then locally change S to a slice that does not induce a rotating
windmill in the left or right graph. ut

Lemma 5. Let E(G) be a reduced 1-pyramid extended graph. If Cp encloses the
pyramid of G for all poles p, then E(G) is the windmill.

Proof (sketch). First, the proof argues that since C` and Cr both enclose the
pyramid, there is a cycle C formed by vertices L from P` and R from Pr that
encloses the pyramid. Since l(G) (r(G)) has a path of length two to every vertex
on P` (Pr), one can show that every vertex in L \ R must have an edge to a
vertex in R. It follows that C is a 4-cycle and since it encloses the pyramid in the
1-pyramid extended graph E(G), the pyramid must be equal to C. Hence, P` and
Pr contain an edge of the outer cycle of the pyramid. By a symmetric argument,
Pt and Pb contain an edge of the outer cycle of the pyramid. Next, one can show
that every edge of the outer cycle of the pyramid is on a different boundary path.
Finally, we can use this property to show that every vertex on the outer cycle
of the pyramid is connected to two adjacent poles. It follows that E(G) contains
the edges of the windmill. Since E(G) is an irreducible triangulation, no other
vertices can be present, which concludes the proof. ut

The following algorithm computes a sliceable labeling of a reduced 1-pyramid
extended graph that is not a rotating windmill.

1. If G is a single vertex, we are done.
2. Since E(G) is not a rotating windmill, by Lemma 5, there is a pole p for

which Cp does not enclose the pyramid. Use Theorem 1 to compute a slice
from p. This slice splits E(G) into E(G`) and E(Gr). One of these, say G`,
contains the pyramid of G. By Theorem 1, E(Gr) is sliceable. If E(G`) can
be reduced to a rotating windmill, then proceed to Step 1 with the reduced
extended graph E(G′) guaranteed by Lemma 4. Otherwise, reduce E(G`)
using Lemma 2 and go to Step 1 with E(G`).

The algorithm maintains the invariant that E(G) is a reduced 1-pyramid ex-
tended graph that is not a rotating windmill at line 1. Combined with Theorem 2,
this concludes the proof of our main result:

Theorem 3. A 1-pyramid extended graph is sliceable if and only if it cannot be
reduced to a rotating windmill.
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